National Library of Energy BETA

Sample records for molecular beam mass

  1. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    SciTech Connect (OSTI)

    Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.; Seymour, D.L.; Stoffels, E.

    2006-05-15

    Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture. In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.

  2. Molecular Beam Mass Spectrometry (MBMS) (Revised) (Fact Sheet), National Bioenergy Center Laboratory Capabilities (NBCLC), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Mass Spectrometry Enabling fundamental understanding of thermochemical biomass conversion and biomass composition recalcitrance NREL has six molecular beam mass spectrometers (MBMS): two stationary systems; two field-deployable systems, customized for use in industrial environments; and two additional high-throughput stationary systems with autosamplers. NREL's custom-built molecular beam mass spectrometers provide: * Rapid quantitation of reactive species in high temperature environments *

  3. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOE Patents [OSTI]

    Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.

    1992-12-15

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.

  4. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOE Patents [OSTI]

    Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.

    1992-01-01

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

  5. A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames

    SciTech Connect (OSTI)

    Andrew McIlroy; Toby D. Hain; Hope A. Michelsen; Terrill A. Cool

    2000-12-15

    The oxidation of dimethyl ether (DME) is studied in low-pressure flames using new molecular beam mass spectrometer and laser diagnostics. Two 30.0-Torr, premixed DME/oxygen/argon flames are investigated with stoichiometries of 0.98 and 1.20. The height above burner profiles of nine stable species and two radicals are measured. These results are compared to the detailed chemical reaction mechanism of Curran and coworkers. Generally good agreement is found between the model and data. The largest discrepancies are found for the methyl radical profiles where the model predicts qualitatively different trends in the methyl concentration with stoichiometry than observed in the experiment.

  6. Molecular beam mass spectrometry with tunable vacuum ultraviolet (VUV) synchrotron radiation

    SciTech Connect (OSTI)

    Golan, Amir; Ahmed, Musahid

    2012-01-01

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics.[1-4] Fundamental studies of photoionization processes of biomolecules provide information about electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water.[1, 5-9] We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-methyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline[10] located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds[1]. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations[11, 12]. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain

  7. Rapid characterization of lignocellulosic feedstocks for fuels and chemicals: Molecular beam mass spectrometric approach

    SciTech Connect (OSTI)

    Agblevor, F.A.; Davis, M.F. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    Rapid characterization of biomass feedstocks has a pivotal role in the development of biomass energy because of the large number of samples that must be analyzed due to the diversity of biomass feedstocks and the significant differences in the chemical and physical properties of these feedstocks. Several biomass feedstocks (herbaceous, woody, and agricultural residues) were screened for the effects of storage, season of harvest, geographic location, clonal, and species variation on the pyrolysis products of the feed stocks. For herbaceous species such as sericea lespedeza, the season of harvest had a significant effect on the pyrolysis products. Effects of clonal variation on the composition of hybrid poplar feedstocks was easily discerned with the molecular beam mass spectrometric analysis. The effect of geographic location on the poplar clones pyrolysis products was minimal. However in the case of switchgrass, varietal influence on the pyrolysis products was minimal, but where the plant was grown had a strong influence on the pyrolysis products of the feedstock. Significant differences because of species variation could also be shown from the pyrolysis products of various biomass feedstocks. The influence of storage time on biomass samples stored outside in the open could also be discerned from the pyrolysis products of the feedstocks. The differences noted in the pyrolysis products of the feedstocks were noted for samples which were significantly degraded during storage either through the action of microflora or weathering.

  8. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    SciTech Connect (OSTI)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F.C.; Geske, M.; Taha, A.; Pelzer, K.; Schloegl, R.

    2006-05-15

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 {mu}m sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N{sub 2} and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N{sub 2} to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH{sub 3}{center_dot} radicals is successfully demonstrated.

  9. Molecular-beam scattering

    SciTech Connect (OSTI)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  10. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source

    SciTech Connect (OSTI)

    Leplat, N.; Rossi, M. J.

    2013-11-15

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 0.39 for Ar and 10.86 1.59 for i-C{sub 4}H{sub 10} at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 10{sup 11} and 5.0 10{sup 11} molecule s{sup ?1} cm{sup ?3} of C{sub 2}H{sub 5}{sup } (ethyl) and t-C{sub 4}H{sub 9}{sup } (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

  11. Molecular-beam sampling/mass spectrometric studies of the primary pyrolysis mechanisms of biomass, fossil organic matter, and synthetic polymers

    SciTech Connect (OSTI)

    Evans, R.J.; Milne, T.A.; Soltys, M.N.

    1984-04-01

    To accomplish the determination of primary product composition, the flash pyrolysis of samples in 900/sup 0/C steam/He has been coupled with a molecular-beam sampling system for a mass spectrometer that permits real-time sampling and rapid quenching from ambient hot environments, while preserving reactive and condensible species. The major emphasis of this report is on the determination of the primary pyrolysis mechanisms of the fast pyrolysis of lignocellulosic biomass and its major constituents: cellulose, hemicellulose (particularly the pentoses, xylan and arabinan), and lignin. Other carbonaceous materials are also included for the purposes of comparison and demonstrating the technique, but pyrolysis mechanisms will not be discussed. These materials include Texas lignite, Pittsburgh number8 coal, Utah tar sand, Colorado oil shale, high-moor and low-moor peat, polyethylene, and polystyrene. The plastics are included because they are an important component of municipal solid waste and refuse-derived fuel.

  12. Yuan T. Lee and Molecular Beam Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yuan T. Lee and Molecular Beam Studies Resources with Additional Information * Awards Yuan T. Lee Courtesy of the Michigan State University Chemistry Department Yuan Tseh Lee 'received the 1986 Nobel Prize in Chemistry, ... for elucidating the collision dynamics of elementary chemical reactions. During a postdoctoral appointment at Harvard with [Dudley R.] Herschbach, Lee designed and built a technologically advanced "universal" machine with electron bombardment ionizer and mass

  13. 14th international symposium on molecular beams

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation & dynamics; and surfaces.

  14. 14th international symposium on molecular beams

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation dynamics; and surfaces.

  15. Yuan T. Lee's Crossed Molecular Beam Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yuan T. Lee's Crossed Molecular Beam Experiment http:web.archive.orgweb20000902074635www.er.doe.govproductionbesYuanLeeExp.html (1 of 4)472006 2:46:13 PM Yuan T. ...

  16. Physics with fast molecular-ion beams

    SciTech Connect (OSTI)

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  17. Counting molecular-beam grown graphene layers

    SciTech Connect (OSTI)

    Plaut, Annette S.; Wurstbauer, Ulrich; Pinczuk, Aron; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 ; Garcia, Jorge M.; Pfeiffer, Loren N.

    2013-06-17

    We have used the ratio of the integrated intensity of graphene's Raman G peak to that of the silicon substrate's first-order optical phonon peak, accurately to determine the number of graphene layers across our molecular-beam (MB) grown graphene films. We find that these results agree well both, with those from our own exfoliated single and few-layer graphene flakes, and with the results of Koh et al.[ACS Nano 5, 269 (2011)]. We hence distinguish regions of single-, bi-, tri-, four-layer, etc., graphene, consecutively, as we scan coarsely across our MB-grown graphene. This is the first, but crucial, step to being able to grow, by such molecular-beam-techniques, a specified number of large-area graphene layers, to order.

  18. Reactive Collisions in Crossed Molecular Beams

    DOE R&D Accomplishments [OSTI]

    Herschbach, D. R.

    1962-02-01

    The distribution of velocity vectors of reaction products is discussed with emphasis on the restrictions imposed by the conservation laws. The recoil velocity that carries the products away from the center of mass shows how the energy of reaction is divided between internal excitation and translation. Similarly, the angular distributions, as viewed from the center of mass, reflect the partitioning of the total angular momentum between angular momenta of individual molecules and orbital angular momentum associated with their relative motion. Crossed-beam studies of several reactions of the type M + RI yields R + MI are described, where M = K, Rb, Cs, and R = CH{sub 3}, C{sub 3}H{sub 5}, etc. The results show that most of the energy of reaction goes into internal excitation of the products and that the angular distribution is quite anisotropic, with most of the MI recoiling backward (and R forward) with respect to the incoming K beam. (auth)

  19. Mass spectrometer and methods of increasing dispersion between ion beams

    DOE Patents [OSTI]

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  20. Molecular beam-thermal hydrogen desorption from palladium

    SciTech Connect (OSTI)

    Lobo, R. F. M.; Berardo, F. M. V.; Ribeiro, J. H. F.

    2010-04-15

    Among the most efficient techniques for hydrogen desorption monitoring, thermal desorption mass spectrometry is a very sensitive one, but in certain cases can give rise to uptake misleading results due to residual hydrogen partial pressure background variations. In this work one develops a novel thermal desorption variant based on the effusive molecular beam technique that represents a significant improvement in the accurate determination of hydrogen mass absorbed on a solid sample. The enhancement in the signal-to-noise ratio for trace hydrogen is on the order of 20%, and no previous calibration with a chemical standard is required. The kinetic information obtained from the hydrogen desorption mass spectra (at a constant heating rate of 1 deg. C/min) accounts for the consistency of the technique.

  1. Note: High density pulsed molecular beam for cold ion chemistry

    SciTech Connect (OSTI)

    Kokish, M. G.; Rajagopal, V.; Marler, J. P.; Odom, B. C.

    2014-08-15

    A recent expansion of cold and ultracold molecule applications has led to renewed focus on molecular species preparation under ultrahigh vacuum conditions. Meanwhile, molecular beams have been used to study gas phase chemical reactions for decades. In this paper, we describe an apparatus that uses pulsed molecular beam technology to achieve high local gas densities, leading to faster reaction rates with cold trapped ions. We characterize the beam's spatial profile using the trapped ions themselves. This apparatus could be used for preparation of molecular species by reactions requiring excitation of trapped ion precursors to states with short lifetimes or for obtaining a high reaction rate with minimal increase of background chamber pressure.

  2. Molecular beam studies of reaction dynamics

    SciTech Connect (OSTI)

    Lee, Y.T.

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  3. Molecular beam surface analysis. 1993 Summary report

    SciTech Connect (OSTI)

    Appelhans, A.D.; Ingram, J.C.; Groenewold, G.S.; Dahl, D.A.; Delmore, J.E.

    1993-09-01

    The Molecular Beam Surface Analysis (MBSA) program is developing both laboratory-based and potentially field-portable chemical analyses systems taking advantage of new surface analysis technology developed at the Idaho National Engineering Laboratory (INEL). The objective is to develop the means to rapidly detect and identify, with high specificity and high sensitivity, nonvolatile and low volatile organics found in Chemical Weapons (CW) and High Explosives (HE) feedstocks, agents, and decomposition products on surfaces of plants, rocks, paint chips, filters, smears of buildings, vehicles, equipment, etc.. Ideally, the method would involve no sample preparation and no waste generation, and would have the potential for being implemented as a field-portable instrument. In contrast to existing analytical methods that rely on sample volatility, MBSA is optimized for nonvolatile and low volatile compounds. This makes it amenable for rapidly screening field samples for CW agent decomposition products and feedstock chemicals and perhaps actual agents. In its final configuration (benchtop size) it could be operated in a non-laboratory environment (such as an office building) requiring no sample preparation chemistry or chemical supplies. It could also be included in a mobile laboratory used in on-site, ore remote site cooperative surveys, or in a standard laboratory, where it would provide fast screening of samples at minimal cost.

  4. Apparatus and methods for continuous beam fourier transform mass spectrometry

    DOE Patents [OSTI]

    McLuckey, Scott A.; Goeringer, Douglas E.

    2002-01-01

    A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.

  5. Molecular-beam Studies of Primary Photochemical Processes

    DOE R&D Accomplishments [OSTI]

    Lee, Y. T.

    1982-12-01

    Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser.

  6. MASS SPECTROMETER

    DOE Patents [OSTI]

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  7. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    DOE R&D Accomplishments [OSTI]

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  8. An ion mobility mass spectrometer for investigating photoisomerization and photodissociation of molecular ions

    SciTech Connect (OSTI)

    Adamson, B. D.; Coughlan, N. J. A.; Markworth, P. B.; Bieske, E. J.; Continetti, R. E.

    2014-12-15

    An ion mobility mass spectrometry apparatus for investigating the photoisomerization and photodissociation of electrosprayed molecular ions in the gas phase is described. The device consists of a drift tube mobility spectrometer, with access for a laser beam that intercepts the drifting ion packet either coaxially or transversely, followed by a quadrupole mass filter. An ion gate halfway along the drift region allows the instrument to be used as a tandem ion mobility spectrometer, enabling mobility selection of ions prior to irradiation, with the photoisomer ions being separated over the second half of the drift tube. The utility of the device is illustrated with photoisomerization and photodissociation action spectra of carbocyanine molecular cations. The mobility resolution of the device for singly charged ions is typically 80 and it has a mass range of 100-440 Da, with the lower limit determined by the drive frequency for the ion funnels, and the upper limit by the quadrupole mass filter.

  9. Mass spectrometer with electron source for reducing space charge effects in sample beam

    DOE Patents [OSTI]

    Houk, Robert S.; Praphairaksit, Narong

    2003-10-14

    A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.

  10. Cerenkov emission induced by external beam radiation stimulates molecular fluorescence

    SciTech Connect (OSTI)

    Axelsson, Johan; Davis, Scott C.; Gladstone, David J.; Pogue, Brian W.

    2011-07-15

    Purpose: Cerenkov emission is induced when a charged particle moves faster than the speed of light in a given medium. Both x-ray photons and electrons produce optical Cerenkov photons in everyday radiation therapy of tissue; yet, this phenomenon has never been fully documented. This study quantifies the emissions and also demonstrates that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Methods: In this study, Cerenkov emission induced by radiation from a clinical linear accelerator is investigated. Biological mimicking phantoms were irradiated with x-ray photons, with energies of 6 or 18 MV, or electrons at energies 6, 9, 12, 15, or 18 MeV. The Cerenkov emission and the induced molecular fluorescence were detected by a camera or a spectrometer equipped with a fiber optic cable. Results: It is shown that both x-ray photons and electrons, at MeV energies, produce optical Cerenkov photons in tissue mimicking media. Furthermore, we demonstrate that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Conclusions: The results here indicate that molecular fluorescence monitoring during external beam radiotherapy is possible.

  11. An ultra-compact, high-throughput molecular beam epitaxy growth system

    SciTech Connect (OSTI)

    Baker, A. A.; Hesjedal, T.; Braun, W. E-mail: fischer@createc.de; Rembold, S.; Fischer, A. E-mail: fischer@createc.de; Gassler, G.

    2015-04-15

    We present a miniaturized molecular beam epitaxy (miniMBE) system with an outer diameter of 206 mm, optimized for flexible and high-throughput operation. The three-chamber system, used here for oxide growth, consists of a sample loading chamber, a storage chamber, and a growth chamber. The growth chamber is equipped with eight identical effusion cell ports with linear shutters, one larger port for either a multi-pocket electron beam evaporator or an oxygen plasma source, an integrated cryoshroud, retractable beam-flux monitor or quartz-crystal microbalance, reflection high energy electron diffraction, substrate manipulator, main shutter, and quadrupole mass spectrometer. The system can be combined with ultrahigh vacuum (UHV) end stations on synchrotron and neutron beamlines, or equivalently with other complex surface analysis systems, including low-temperature scanning probe microscopy systems. Substrate handling is compatible with most UHV surface characterization systems, as the miniMBE can accommodate standard surface science sample holders. We introduce the design of the system, and its specific capabilities and operational parameters, and we demonstrate the epitaxial thin film growth of magnetoelectric Cr{sub 2}O{sub 3} on c-plane sapphire and ferrimagnetic Fe{sub 3}O{sub 4} on MgO (001)

  12. Perspective: Rapid synthesis of complex oxides by combinatorial molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    A. T. Bollinger; Wu, J.; Bozovic, I.

    2016-03-15

    In this study, the molecular beam epitaxy(MBE) technique is well known for producing atomically smooth thin films as well as impeccable interfaces in multilayers of many different materials. In particular, molecular beam epitaxy is well suited to the growth of complex oxides, materials that hold promise for many applications. Rapid synthesis and high throughput characterization techniques are needed to tap into that potential most efficiently. We discuss our approach to doing that, leaving behind the traditional one-growth-one-compound scheme and instead implementing combinatorial oxide molecular beam epitaxy in a custom built system.

  13. Internal Energy Dependence of Molecular Condensation Coefficients Determined from Molecular Beam Surface Scattering Experiments

    DOE R&D Accomplishments [OSTI]

    Sibener, S. J.; Lee, Y. T.

    1978-05-01

    An experiment was performed which confirms the existence of an internal mode dependence of molecular sticking probabilities for collisions of molecules with a cold surface. The scattering of a velocity selected effusive beam of CCl{sub 4} from a 90 K CC1{sub 4} ice surface has been studied at five translational velocities and for two different internal temperatures. At a surface temperature of 90 K (approx. 99% sticking probability) a four fold increase in reflected intensity was observed for the internally excited (560 K) CC1{sub 4} relative to the room temperature (298 K) CC1{sub 4} at a translational velocity of 2.5 X 10{sup 4} cm/sec. For a surface temperature of 90 K all angular distributions were found to peak 15{sup 0} superspecularly independent of incident velocity.

  14. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    SciTech Connect (OSTI)

    Meng, Congsen; Janssen, Maurice H. M.

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  15. ALS, Molecular Foundry, and aBeam Technologies Collaborate to Make

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metrology History ALS, Molecular Foundry, and aBeam Technologies Collaborate to Make Metrology History ALS, Molecular Foundry, and aBeam Technologies Collaborate to Make Metrology History Print Thursday, 21 January 2016 12:47 Through a collaboration with two Berkeley Lab user facilities as well as two other national labs, a small Bay Area company has made big news in the semiconductor world. Modern electronics are getting smaller and smaller, which means the demands on semiconductor

  16. Fabrication of precision high quality facets on molecular beam epitaxy material

    DOE Patents [OSTI]

    Petersen, Holly E.; Goward, William D.; Dijaili, Sol P.

    2001-01-01

    Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.

  17. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    DOE R&D Accomplishments [OSTI]

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  18. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    SciTech Connect (OSTI)

    Vogt, Patrick; Bierwagen, Oliver

    2015-02-23

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga{sub 2}O{sub 3}, In{sub 2}O{sub 3}, and SnO{sub 2} on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga{sub 2}O, In{sub 2}O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO{sub 2}, somewhat lower for In{sub 2}O{sub 3}, and the lowest for Ga{sub 2}O{sub 3}. Our findings can be generalized to further oxides that possess related sub-oxides.

  19. INFRARED VIBRATIONAL PREDISSOCIATION SPECTROSCOPY OF WATER CLUSTERS BY THE CROSSED LASER MOLECULAR BEAM TECHNIQUE

    SciTech Connect (OSTI)

    Vernon, M.F.; Krajnovich, D.J.; Kwok, H.S.; Lisy, J.M.; Shen, Y.R.; Lee, Y.T.

    1981-11-01

    Water clusters formed in a molecular beam are predissociated by tunable, pulsed, infrared radiation in the frequency range 2900~3750 cm{sup -1}. The recoiling fragments are detected off axis from the molecular beam using a rotatable mass spectrometer. Arguments are presented which show that the measured frequency dependent signal at a fixed detector angle is proportional to the absorption spectrum of the clusters. It is found that the spectra of clusters containing three or more water molecules are remarkably similar to the liquid phase spectrum. Dynamical information on the predissociation process is obtained from the velocity distribution of the fragments. An upper limit to the excited vibrational state lifetime of ~1 microsecond is observed for the results reported here. The most probable dissociation process concentrates the available excess energy into the internal motions of the fragment molecules. Both the time scale and translational energy distribution are consistent with the qualitative predictions of current theoretical models for cluster predissociation. From adiabatic dissociation trajectories and Monte Carlo simulations it is seen that the strong coupling present in the water polymers probably invalidates the simpler "diatomic" picture formulations of cluster predissociation. Instead, the energy can be extensively shared among the intermolecular motions in the polymer before dissociation. Comparison between current intermolecular potentials describing liquid water and the observed frequencies is made in the normal mode approximation. The inability of any potential to predict the gross spectral features (the number of bands and their observed frequency shift from the gas phase monomer) suggests that substantial improvement in the potential energy functions are possible, but that more accurate methods of solving the vibrational wave equation are necessary before a proper explanation of the spectral fine structure is possible. The observed differences

  20. Crossed Molecular Beam Studies and Dynamics of Decomposition of Chemically Activated Radicals

    DOE R&D Accomplishments [OSTI]

    Lee, Y. T.

    1973-09-01

    The power of the crossed molecular beams method in the investigation of the dynamics of chemical reactions lies mainly in the direct observation of the consequences of single collisions of well controlled reactant molecules. The primary experimental observations which provide information on reaction dynamics are the measurements of angular and velocity distributions of reaction products.

  1. Three-dimensional imaging of the ultracold plasma formed in a supersonic molecular beam

    SciTech Connect (OSTI)

    Schulz-Weiling, Markus; Grant, Edward

    2015-06-29

    Double-resonant excitation of nitric oxide in a seeded supersonic molecular beam forms a state-selected Rydberg gas that evolves to form an ultracold plasma. This plasma travels with the propagation of the molecular beam in z over a variable distance as great as 600 mm to strike an imaging detector, which records the charge distribution in the dimensions, x and y. The ω{sub 1} + ω{sub 2} laser crossed molecular beam excitation geometry convolutes the axial Gaussian distribution of NO in the molecular beam with the Gaussian intensity distribution of the perpendicularly aligned laser beam to create an ellipsoidal volume of Rydberg gas. Detected images describe the evolution of this initial density as a function of selected Rydberg gas initial principal quantum number, n{sub 0}, ω{sub 1} laser pulse energy (linearly related to Rydberg gas density, ρ{sub 0}) and flight time. Low-density Rydberg gases of lower principal quantum number produce uniformly expanding, ellipsoidal charge-density distributions. Increase either of n{sub 0} or ρ{sub 0} breaks the ellipsoidal symmetry of plasma expansion. The volume bifurcates to form repelling plasma volumes. The velocity of separation depends on n{sub 0} and ρ{sub 0} in a way that scales uniformly with ρ{sub e}, the density of electrons formed in the core of the Rydberg gas by prompt Penning ionization. Conditions under which this electron gas drives expansion in the long axis dimension of the ellipsoid favours the formation of counter-propagating shock waves.

  2. Proposed Molecular Beam Determination of Energy Partition in the Photodissociation of Polyatomic Molecules

    DOE R&D Accomplishments [OSTI]

    Zare, P. N.; Herschbach, D. R.

    1964-01-29

    Conventional photochemical experiments give no information about the partitioning of energy between translational recoil and internal excitation of the fragment molecules formed in photodissociation of a polyatomic molecule. In a molecular beam experiment, it becomes possible to determine the energy partition from the form of the laboratory angular distribution of one of the photodissociation products. A general kinematic analysis is worked out in detail, and the uncertainty introduced by the finite angular resolution of the apparatus and the velocity spread in the parent beam is examined. The experimental requirements are evaluated for he photolysis of methyl iodide by the 2537 angstrom Hg line.

  3. Molecular Beam Epitaxial Growth of GaAs on (631) Oriented Substrates

    SciTech Connect (OSTI)

    Cruz Hernandez, Esteban; Rojas Ramirez, Juan-Salvador; Contreras Hernandez, Rocio; Lopez Lopez, Maximo; Pulzara Mora, Alvaro; Mendez Garcia, Victor H.

    2007-02-09

    In this work, we report the study of the homoepitaxial growth of GaAs on (631) oriented substrates by molecular beam epitaxy (MBE). We observed the spontaneous formation of a high density of large scale features on the surface. The hilly like features are elongated towards the [-5, 9, 3] direction. We show the dependence of these structures with the growth conditions and we present the possibility of to create quantum wires structures on this surface.

  4. ALS, Molecular Foundry, and aBeam Technologies Collaborate to Make

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metrology History ALS, Molecular Foundry, and aBeam Technologies Collaborate to Make Metrology History Print Through a collaboration with two Berkeley Lab user facilities as well as two other national labs, a small Bay Area company has made big news in the semiconductor world. Modern electronics are getting smaller and smaller, which means the demands on semiconductor manufacturers are increasing. To ensure the quality and consistency of substrates, wafer manufacturers employ metrology tools

  5. Molecular Beam Epitaxy on Gas Cluster Ion Beam Prepared GaSb Substrates: Towards Improved Surfaces and Interfaces

    SciTech Connect (OSTI)

    Krishnaswami, Kannan; Vangala, Shivashankar R.; Dauplaise, Helen; Allen, Lisa; Dallas, Gordon; Bakken, Daniel; Bliss, David; Goodhue, William

    2008-04-01

    A key problem in producing mid-infrared optoelectronic and low-power electronic devices in the GaSb material system is the lack of substrates with appropriate surfaces for epitaxial growth. Chemical mechanical polishing (CMP) of GaSb results in surface damage accompanied by tenacious oxides that do not easily desorb. To overcome this, we have developed a process using gas cluster ion beams (GCIB) to remove surface damage and produce engineered surface oxides. In this paper, we present surface modification results on GaSb substrates using O2-, CF4/O2-, and HBr-GCIB processes. X-ray photoelectron spectroscopy of GCIB produced surface layers showed the presence of mixed Ga- and Sb-oxides, with mostly Ga-oxides at the interface, desorbing at temperatures ranging 530°C to 560°C. Cross-sectional transmission electron microscopy of molecular beam epitaxy grown GaSb/AlGaSb layers showed that GCIB surfaces yielded smooth defect free substrate to epi transitions as compared to CMP surfaces. Furthermore, HBr-GCIB surfaces exhibited neither dislocation layers nor discernable interfaces, indicating complete oxide desorbtion prior to epigrowth on a clean single crystal template. Atomic force microscopy of GCIB epilayers exhibited smooth surfaces with characteristic step-terrace formations comprising monatomic steps and wide terraces. The HBr-GCIB process can be easily adapted to a large scale manufacturing process for epi-ready GaSb.

  6. High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy

    SciTech Connect (OSTI)

    McSkimming, Brian M. Speck, James S.; Chaix, Catherine

    2015-09-15

    In the present study, the authors report on a modified Riber radio frequency (RF) nitrogen plasma source that provides active nitrogen fluxes more than 30 times higher than those commonly used for plasma assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) and thus a significantly higher growth rate than has been previously reported. GaN films were grown using N{sub 2} gas flow rates between 5 and 25 sccm while varying the plasma source's RF forward power from 200 to 600 W. The highest growth rate, and therefore the highest active nitrogen flux, achieved was ∼7.6 μm/h. For optimized growth conditions, the surfaces displayed a clear step-terrace structure with an average RMS roughness (3 × 3 μm) on the order of 1 nm. Secondary ion mass spectroscopy impurity analysis demonstrates oxygen and hydrogen incorporation of 1 × 10{sup 16} and ∼5 × 10{sup 17}, respectively. In addition, the authors have achieved PAMBE growth of GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN growth regime and ∼100 °C greater than any previously reported PAMBE growth of GaN. This growth temperature corresponds to GaN decomposition in vacuum of more than 20 nm/min; a regime previously unattainable with conventional nitrogen plasma sources. Arrhenius analysis of the decomposition rate shows that samples with a flux ratio below stoichiometry have an activation energy greater than decomposition of GaN in vacuum while samples grown at or above stoichiometry have decreased activation energy. The activation energy of decomposition for GaN in vacuum was previously determined to be ∼3.1 eV. For a Ga/N flux ratio of ∼1.5, this activation energy was found to be ∼2.8 eV, while for a Ga/N flux ratio of ∼0.5, it was found to be ∼7.9 eV.

  7. Growth of atomically smooth MgO films on graphene by molecular beam epitaxy

    SciTech Connect (OSTI)

    Wang, W. H.; Han, W.; Pi, K.; McCreary, K. M.; Miao, F.; Bao, W.; Lau, C. N.; Kawakami, R. K.

    2008-11-03

    We investigate the growth of MgO films on graphene by molecular beam epitaxy and find that surface diffusion promotes a rough morphology. To reduce the mobility of surface atoms, the graphene surface is dressed by Ti atoms prior to MgO deposition. With as little as 0.5 ML (monolayer) of Ti, the MgO overlayer becomes atomically smooth. Furthermore, no aggregation of MgO is observed at the edges of the graphene sheet. These results are important for the fabrication of nanoscale electronic and spintronic devices.

  8. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy

    SciTech Connect (OSTI)

    Zhang, Zhi; Xu, Hong-Yi; Guo, Ya-Nan; Liao, Zhi-Ming; Lu, Zhen-Yu; Chen, Ping-Ping; Shi, Sui-Xing; Lu, Wei; Zou, Jin; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4072

    2013-08-12

    In this study, the structural quality of Au-catalyzed InAs nanowires grown by molecular beam epitaxy is investigated. Through detailed electron microscopy characterizations and analysis of binary Au-In phase diagram, it is found that defect-free InAs nanowires can be induced by smaller catalysts with a high In concentration, while comparatively larger catalysts containing less In induce defected InAs nanowires. This study indicates that the structural quality of InAs nanowires can be controlled by the size of Au catalysts when other growth conditions remain as constants.

  9. Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy

    SciTech Connect (OSTI)

    Li, C.; Zeng, Z. Q.; Hirono, Y.; Morgan, T. A.; Hu, X.; Salamo, G. J.; Fan, D. S.; Wu, J.; Yu, S. Q.; Wang, Zh. M.

    2011-12-12

    Self-assembly of bismuth droplets at nanoscale on GaAs(100) surface using molecular beam epitaxy was demonstrated. Fine control of density and size was achieved by varying growth temperature and total bismuth deposition. Droplet density was tuned by roughly 3 orders of magnitude, and the density-temperature dependence was found to be consistent with classical nucleation theory. These results may extend the flexibility of droplet epitaxy by serving as templates for group V based droplet epitaxy, which is in contrast to conventional group III based droplet epitaxy and may encourage nanostructure formation of bismuth-containing materials.

  10. Three-dimensional ordering of cold ion beams in a storage ring: A molecular-dynamics simulation study

    SciTech Connect (OSTI)

    Yuri, Yosuke

    2015-06-29

    Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.

  11. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    SciTech Connect (OSTI)

    Kress, Joel David; Ticknor, Christopher; Collins, Lee A.

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  12. Radiation environment simulations at the Tevatron, studies of the beam profile and measurement of the Bc meson mass

    SciTech Connect (OSTI)

    Nicolas, Ludovic Y.

    2005-09-01

    The description of a computer simulation of the CDF detector at Fermilab and the adjacent accelerator parts is detailed, with MARS calculations of the radiation background in various elements of the model due to the collision of beams and machine-related losses. Three components of beam halo formation are simulated for the determination of the principal source of radiation background in CDF due to beam losses. The effect of a collimator as a protection for the detector is studied. The simulation results are compared with data taken by a CDF group. Studies of a 150 GeV Tevatron proton beam are performed to investigate the transverse diffusion growth and distribution. A technique of collimator scan is used to scrape the beam under various experimental conditions, and computer programs are written for the beam reconstruction. An average beam halo growth speed is given and the potential of beam tail reconstruction using the collimator scan is evaluated. A particle physics analysis is conducted in order to detect the B{sub c} {yields} J/{psi}{pi} decay signal with the CDF Run II detector in 360 pb{sup -1} of data. The cut variables and an optimization method to determine their values are presented along with a criterion for the detection threshold of the signal. The mass of the B{sub c} meson is measured with an evaluation of the significance of the signal.

  13. Controlling field-effect mobility in pentacene-based transistors by supersonic molecular-beam deposition

    SciTech Connect (OSTI)

    Toccoli, T.; Pallaoro, A.; Coppede, N.; Iannotta, S.; De Angelis, F.; Mariucci, L.; Fortunato, G.

    2006-03-27

    We show that pentacene field-effect transistors, fabricated by supersonic molecular beams, have a performance strongly depending on the precursor's kinetic energy (K{sub E}). The major role played by K{sub E} is in achieving highly ordered and flat films. In the range K{sub E}{approx_equal}3.5-6.5 eV, the organic field effect transistor linear mobility increases of a factor {approx}5. The highest value (1.0 cm{sup 2} V{sup -1} s{sup -1}) corresponds to very uniform and flat films (layer-by-layer type growth). The temperature dependence of mobility for films grown at K{sub E}>6 eV recalls that of single crystals (bandlike) and shows an opposite trend for films grown at K{sub E}{<=}5.5 eV.

  14. Bismuth-induced phase control of GaAs nanowires grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Lu, Zhenyu; Chen, Pingping E-mail: luwei@mail.sitp.ac.cn; Shi, Suixing; Yao, Luchi; Zhou, Xiaohao; Lu, Wei E-mail: luwei@mail.sitp.ac.cn; Zhang, Zhi; Zhou, Chen; Zou, Jin

    2014-10-20

    In this work, the crystal structure of GaAs nanowires grown by molecular beam epitaxy has been tailored only by bismuth without changing the growth temperature and V/III flux ratio. The introduction of bismuth can lead to the formation of zinc-blende GaAs nanowires, while the removal of bismuth changes the structure into a 4H polytypism before it turns back to the wurtzite phase eventually. The theoretical calculation shows that it is the steadiest for bismuth to adsorb on the GaAs(111){sub B} surface compared to the liquid gold catalyst surface and the interface between the gold catalyst droplet and the nanowire, and these adsorbed bismuth could decrease the diffusion length of adsorbed Ga and hence the supersaturation of Ga in the gold catalyst droplet.

  15. Communication: Global minimum search of Ag{sub 10}{sup +} with molecular beam optical spectroscopy

    SciTech Connect (OSTI)

    Shayeghi, A. Schäfer, R.; Johnston, R. L.

    2014-11-14

    The present study is focused on the optical properties of the Ag{sub 10}{sup +} cluster in the photon energy range ℏω = 1.9–4.4 eV. Absorption spectra are recorded by longitudinal molecular beam depletion spectroscopy and compared to optical response calculations using time-dependent density functional theory. Several cluster isomers obtained by the new pool-based parallel implementation of the Birmingham Cluster Genetic Algorithm, coupled with density functional theory, are used in excited state calculations. The experimental observations, together with additional simulations of ion mobilities for the several geometries found within this work using different models, clearly identify the ground state isomer of Ag{sub 10}{sup +} to be composed of two orthogonal interpenetrating pentagonal bipyramids, having overall D{sub 2d} symmetry.

  16. Molecular beam epitaxy of SrTiO{sub 3} with a growth window

    SciTech Connect (OSTI)

    Jalan, Bharat; Moetakef, Pouya; Stemmer, Susanne

    2009-07-20

    Many complex oxides with only nonvolatile constituents do not have a wide growth window in conventional molecular beam epitaxy (MBE) approaches, which makes it difficult to obtain stoichiometric films. Here it is shown that a growth window in which the stoichiometry is self-regulating can be achieved for SrTiO{sub 3} films by using a hybrid MBE approach that uses a volatile metal-organic source for Ti, titanium tetra isopropoxide (TTIP). The growth window widens and shifts to higher TTIP/Sr flux ratios with increasing temperature, showing that it is related to the desorption of the volatile TTIP. We demonstrate stoichiometric, highly perfect, insulating SrTiO{sub 3} films. The approach can be adapted for the growth of other complex oxides that previously were believed to have no wide MBE growth window.

  17. Improved tunneling magnetoresistance at low temperature in manganite junctions grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Werner, R.; Kleiner, R.; Koelle, D.; Petrov, A. Yu.; Davidson, B. A.; Mino, L. Alvarez

    2011-04-18

    We report resistance versus magnetic field measurements for a La{sub 0.65}Sr{sub 0.35}MnO{sub 3}/SrTiO{sub 3}/La{sub 0.65}Sr{sub 0.35}MnO{sub 3} tunnel junction grown by molecular-beam epitaxy, that show a large field window of extremely high tunneling magnetoresistance (TMR) at low temperature. Scanning the in-plane applied field orientation through 360 deg., the TMR shows fourfold symmetry, i.e., biaxial anisotropy, aligned with the crystalline axis but not the junction geometrical long axis. The TMR reaches {approx}1900% at 4 K, corresponding to an interfacial spin polarization of >95% assuming identical interfaces. These results show that uniaxial anisotropy is not necessary for large TMR, and lay the groundwork for future improvements in TMR in manganite junctions.

  18. Intense terahertz emission from molecular beam epitaxy-grown GaAs/GaSb(001)

    SciTech Connect (OSTI)

    Sadia, Cyril P.; Laganapan, Aleena Maria; Agatha Tumanguil, Mae; Estacio, Elmer; Somintac, Armando; Salvador, Arnel; Que, Christopher T.; Yamamoto, Kohji; Tani, Masahiko

    2012-12-15

    Intense terahertz (THz) electromagnetic wave emission was observed in undoped GaAs thin films deposited on (100) n-GaSb substrates via molecular beam epitaxy. GaAs/n-GaSb heterostructures were found to be viable THz sources having signal amplitude 75% that of bulk p-InAs. The GaAs films were grown by interruption method during the growth initiation and using various metamorphic buffer layers. Reciprocal space maps revealed that the GaAs epilayers are tensile relaxed. Defects at the i-GaAs/n-GaSb interface were confirmed by scanning electron microscope images. Band calculations were performed to infer the depletion region and electric field at the i-GaAs/n-GaSb and the air-GaAs interfaces. However, the resulting band calculations were found to be insufficient to explain the THz emission. The enhanced THz emission is currently attributed to a piezoelectric field induced by incoherent strain and defects.

  19. High-mobility BaSnO{sub 3} grown by oxide molecular beam epitaxy

    SciTech Connect (OSTI)

    Raghavan, Santosh; Schumann, Timo; Kim, Honggyu; Zhang, Jack Y.; Cain, Tyler A.; Stemmer, Susanne

    2016-01-01

    High-mobility perovskite BaSnO{sub 3} films are of significant interest as new wide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnO{sub 3} films have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy (MBE) approach, which supplies pre-oxidized SnO{sub x}. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO{sub 3}. We demonstrate room temperature electron mobilities of 150 cm{sup 2} V{sup −1} s{sup −1} in films grown on PrScO{sub 3}. The results open up a wide range of opportunities for future electronic devices.

  20. Molecular beam epitaxy growth of SnO{sub 2} using a tin chemical precursor

    SciTech Connect (OSTI)

    Wang, Tianqi; Prakash, Abhinav; Jalan, Bharat; Warner, Ellis; Gladfelter, Wayne L.

    2015-03-15

    The authors report on the development of a molecular beam epitaxy approach for atomic layer controlled growth of phase-pure, single-crystalline epitaxial SnO{sub 2} films with scalable growth rates using a highly volatile precursor (tetraethyltin) for tin and rf-oxygen plasma for oxygen. Smooth, epitaxial SnO{sub 2} (101) films on r-sapphire (101{sup ¯}2) substrates were grown as a function of tin precursor flux and substrate temperatures between 300 and 900 °C. Three distinct growth regimes were identified where SnO{sub 2} films grew in a reaction-, flux-, and desorption-limited mode, respectively, with increasing substrate temperature. In particular, with increasing tin flux, the growth rates were found to increase and then saturate indicating any excess tin precursor desorbs above a critical beam equivalent pressure of tin precursor. Important implications of growth kinetic behaviors on the self-regulating stoichiometric growth of perovskite stannates are discussed.

  1. Adsorption of iso-/n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study

    SciTech Connect (OSTI)

    Goering, J.; Kadossov, E.; Burghaus, Uwe; Yu, Zhongqing; Thevuthasan, Suntharampillai; Saraf, Laxmikant V.

    2007-07-01

    Binding energies and adsorption probabilities have been determined for n/iso-butane adsorption on an anatase thin film grown on SrTiO3(001) by means of thermal desorption spectroscopy (TDS) and molecular beam scattering. The sample has been characterized by x-ray diffraction (XRD) and Auger electrons spectroscopy (AES).

  2. The dense gas mass fraction of molecular clouds in the Milky Way

    SciTech Connect (OSTI)

    Battisti, Andrew J.; Heyer, Mark H. E-mail: heyer@astro.umass.edu

    2014-01-10

    The mass fraction of dense gas within giant molecular clouds (GMCs) of the Milky Way is investigated using {sup 13}CO data from the Five College Radio Astronomy Observatory Galactic Plane Surveys and the Bolocam Galactic Plane Survey (BGPS) of 1.1 mm dust continuum emission. A sample of 860 compact dust sources are selected from the BGPS catalog and kinematically linked to 344 clouds of extended (>3') {sup 13}CO J = 1-0 emission. Gas masses are tabulated for the full dust source and subregions within the dust sources with mass surface densities greater than 200 M {sub ☉} pc{sup –2}, which are assumed to be regions of enhanced volume density. Masses of the parent GMCs are calculated assuming optically thin {sup 13}CO J = 1-0 emission and local thermodynamic equilibrium conditions. The mean fractional mass of dust sources to host GMC mass is 0.11{sub −0.06}{sup +0.12}. The high column density subregions comprise 0.07{sub −0.05}{sup +0.13} of the mass of the cloud. Owing to our assumptions, these values are upper limits to the true mass fractions. The fractional mass of dense gas is independent of GMC mass and gas surface density. The low dense gas mass fraction suggests that the formation of dense structures within GMCs is the primary bottleneck for star formation. The distribution of velocity differences between the dense gas and the low density material along the line of sight is also examined. We find a strong, centrally peaked distribution centered on zero velocity displacement. This distribution of velocity differences is modeled with radially converging flows toward the dense gas position that are randomly oriented with respect to the observed line of sight. These models constrain the infall velocities to be 2-4 km s{sup –1} for various flow configurations.

  3. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    SciTech Connect (OSTI)

    Feng, Wuwei Wang, Weihua; Zhao, Chenglong; Van Quang, Nguyen; Cho, Sunglae; Dung, Dang Duc

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperature is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.

  4. Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO{sub 3}

    SciTech Connect (OSTI)

    Prakash, Abhinav Dewey, John; Yun, Hwanhui; Jeong, Jong Seok; Mkhoyan, K. Andre; Jalan, Bharat

    2015-11-15

    Owing to its high room-temperature electron mobility and wide bandgap, BaSnO{sub 3} has recently become of significant interest for potential room-temperature oxide electronics. A hybrid molecular beam epitaxy (MBE) approach for the growth of high-quality BaSnO{sub 3} films is developed in this work. This approach employs hexamethylditin as a chemical precursor for tin, an effusion cell for barium, and a radio frequency plasma source for oxygen. BaSnO{sub 3} films were thus grown on SrTiO{sub 3} (001) and LaAlO{sub 3} (001) substrates. Growth conditions for stoichiometric BaSnO{sub 3} were identified. Reflection high-energy electron diffraction (RHEED) intensity oscillations, characteristic of a layer-by-layer growth mode were observed. A critical thickness of ∼1 nm for strain relaxation was determined for films grown on SrTiO{sub 3} using in situ RHEED. Scanning transmission electron microscopy combined with electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy confirmed the cube-on-cube epitaxy and composition. The importance of precursor chemistry is discussed in the context of the MBE growth of BaSnO{sub 3}.

  5. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    SciTech Connect (OSTI)

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.

    2015-01-15

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heat and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.

  6. Growth and magnetic property of antiperovskite manganese nitride films doped with Cu by molecular beam epitaxy

    SciTech Connect (OSTI)

    Yu, Fengmei; Ren, Lizhu; Meng, Meng; Wang, Yunjia; Yang, Mei; Wu, Shuxiang; Li, Shuwei

    2014-04-07

    Manganese nitrides thin films on MgO (100) substrates with and without Cu-doping have been fabricated by plasma assisted molecular beam epitaxy. Antiperovskite compounds Mn{sub 3.6}Cu{sub 0.4}N have been grown in the case of Cu-doping, and the pure Mn{sub 3}N{sub 2} single crystal has been obtained without Cu-doping. The Mn{sub 3.6}Cu{sub 0.4}N exhibits ferrimagnetism, and the magnetization of Mn{sub 3.6}Cu{sub 0.4}N increases upon the temperature decreasing from 300 K to 5 K, similar to Mn{sub 4}N. The exchange bias (EB) effects emerge in the Mn{sub 3.6}Cu{sub 0.4}N films. The EB behavior is originated from the interfaces between ferrimagnetic Mn{sub 3.6}Cu{sub 0.4}N and antiferromagnetic metal Mn, which is verified to be formed by the data of x-ray photoelectron spectroscopy. The present results not only provide a strategy for producing functional antiperovskite manganese nitrides, but also shed promising light on fabricating the exchange bias part of spintronic devices.

  7. Molecular beam epitaxial growth of Bi{sub 2}Se{sub 3} nanowires and nanoflakes

    SciTech Connect (OSTI)

    Knebl, G. M. Gessler, J. R.; Kamp, M.; Höfling, S.

    2014-09-29

    Topological Insulators are in focus of immense research efforts and rapid scientific progress is obtained in that field. Bi{sub 2}Se{sub 3} has proven to be a topological insulator material that provides a large band gap and a band structure with a single Dirac cone at the Γ-point. This makes Bi{sub 2}Se{sub 3} one of the most promising three dimensional topological insulator materials. While Bi{sub 2}Se{sub 3} nanowires and nanoflakes so far were fabricated with different methods and for different purposes, we here present the first Bi{sub 2}Se{sub 3} nanowires as well as nanoflakes grown by molecular beam epitaxy. The nanostructures were nucleated on pretreated, silicon (100) wafers. Altering the growth conditions nanoflakes could be fabricated instead of nanowires; both with high crystalline quality, confirmed by scanning electron microscopy as well as transmission electron microscopy. These nanostructures have promise for spintronic devices and Majorana fermion observation in contact to superconductor materials.

  8. Lattice-registered growth of GaSb on Si (211) with molecular beam epitaxy

    SciTech Connect (OSTI)

    Hosseini Vajargah, S.; Botton, G. A.; Ghanad-Tavakoli, S.; Preston, J. S.; Kleiman, R. N.

    2012-11-01

    A GaSb film was grown on a Si(211) substrate using molecular beam epitaxy indicating full lattice relaxation as well as full lattice registration and dislocation-free growth in the plane perpendicular to the [01 - 1]-direction. Heteroepitaxy of GaSb on a Si(211) substrate is dominated by numerous first order and multiple higher order micro-twins. The atomic-resolved structural study of GaSb films by high-angle annular dark-field scanning transmission electron microscopy reveals that slight tilt, along with twinning, favors the lattice registry to Si(211) substrates. Preferential bonding of impinging Ga and Sb atoms at the interface due to two distinctive bonding sites on the Si(211) surface enables growth that is sublattice-ordered and free of anti-phase boundaries. The role of the substrate orientation on the strain distribution of GaSb epilayers is further elucidated by investigating the local change in the lattice parameter using the geometric phase analysis method and hence effectiveness of the lattice tilting in reducing the interfacial strain was confirmed further.

  9. Magnetotransport in MgO-based magnetic tunnel junctions grown by molecular beam epitaxy (invited)

    SciTech Connect (OSTI)

    Andrieu, S. Bonell, F.; Hauet, T.; Montaigne, F.; Lefevre, P.; Bertran, F.

    2014-05-07

    The strong impact of molecular beam epitaxy growth and Synchrotron Radiation characterization tools in the understanding of fundamental issues in nanomagnetism and spintronics is illustrated through the example of fully epitaxial MgO-based Magnetic Tunnel Junctions (MTJs). If ab initio calculations predict very high tunnel magnetoresistance (TMR) in such devices, some discrepancy between theory and experiments still exists. The influence of imperfections in real systems has thus to be considered like surface contaminations, structural defects, unexpected electronic states, etc. The influence of possible oxygen contamination at the Fe/MgO(001) interface is thus studied, and is shown to be not so detrimental to TMR as predicted by ab initio calculations. On the contrary, the decrease of dislocations density in the MgO barrier of MTJs using Fe{sub 1−x}V{sub x} electrodes is shown to significantly increase TMR. Finally, unexpected transport properties in Fe{sub 1−X}Co{sub x}/MgO/Fe{sub 1−X}Co{sub x} (001) are presented. With the help of spin and symmetry resolved photoemission and ab initio calculation, the TMR decrease for Co content higher than 25% is shown to come from the existence of an interface state and the shift of the empty Δ1 minority spin state towards the Fermi level.

  10. Note: A short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator

    SciTech Connect (OSTI)

    Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M.; Suits, Arthur G.

    2014-11-15

    Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.

  11. Deposition of hetero-epitaxial In{sub 2}O{sub 3} thin films by molecular beam epitaxy

    SciTech Connect (OSTI)

    Taga, N.; Maekawa, M.; Shigesato, Y.; Yasui, I.; Haynes, T.E.

    1996-05-01

    Highly oriented thin film In{sub 2}O{sub 3} was heteroepitaxially grown on optically polished (100) plane of single crystalline yttria stabilized zirconia (YSZ) substrate using Molecular Beam Epitaxy (MBE). Full-width at half-maximum (FWHM) of X-ray rocking-curve showed 0.08{degree} for In{sub 2}O{sub 3} 200 nm thick layers indicating that excellent uniformity orientation compared with the heteroepitaxially-grown In{sub 2}O{sub 3} epitaxially deposited by the conventional methods such as electron-beam (e-beam) evaporation or sputtering method. The minimum yield ({chi}{sub min}) of the MBE grown in In{sub 2}O{sub 3} film of Rutherford Backscattering Spectrometry (RBS) was also extremely small value 3.1%, implying the very high crystallinity.

  12. Self-corrected Sensors Based On Atomic Absorption Spectroscopy For Atom Flux Measurements In Molecular Beam Epitaxy

    SciTech Connect (OSTI)

    Du, Yingge; Droubay, Timothy C.; Liyu, Andrey V.; Li, Guosheng; Chambers, Scott A.

    2014-04-24

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device (CCD) detector in a double-beam configuration, we employ a non-resonant line or a resonant line with lower absorbance from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  13. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    SciTech Connect (OSTI)

    Du, Y. E-mail: scott.chambers@pnnl.gov; Liyu, A. V.; Droubay, T. C.; Chambers, S. A. E-mail: scott.chambers@pnnl.gov; Li, G.

    2014-04-21

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  14. Self-assembly of compositionally modulated Ga{sub 1−x}Mn{sub x}As multilayers during molecular beam epitaxy

    SciTech Connect (OSTI)

    Gallardo-Hernández, S.; Martinez-Velis, I.; Ramirez-Lopez, M.; Lopez-Lopez, M.; Kudriatsev, Y.; Escobosa-Echavarria, A.; Luiz Morelhao, S.

    2013-11-04

    GaMnAs structures were grown on GaAs(100) substrates by molecular beam epitaxy employing different growth parameters. We studied manganese incorporation employing secondary ion mass spectrometry (SIMS). At a growth temperature of 300 °C, we observed a self-assembled modulation of the manganese concentration. SIMS depth profiles were analyzed employing a depth resolution function taking into account sputtering-induced broadening of the original distribution and segregation. We found a Mn segregation length along the growth direction of ∼4 nm. The presence of GaMnAs multilayers was corroborated by high-resolution x-ray diffraction. Spinodal decomposition is a possible mechanism for the spontaneous formation of the multilayer structure.

  15. Minority carrier lifetime in iodine-doped molecular beam epitaxy-grown HgCdTe

    SciTech Connect (OSTI)

    Madni, I.; Umana-Membreno, G. A.; Lei, W.; Gu, R.; Antoszewski, J.; Faraone, L.

    2015-11-02

    The minority carrier lifetime in molecular beam epitaxy grown layers of iodine-doped Hg{sub 1−x}Cd{sub x}Te (x ∼ 0.3) on CdZnTe substrates has been studied. The samples demonstrated extrinsic donor behavior for carrier concentrations in the range from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3} without any post-growth annealing. At a temperature of 77 K, the electron mobility was found to vary from 10{sup 4} cm{sup 2}/V s to 7 × 10{sup 3} cm{sup 2}/V s and minority carrier lifetime from 1.6 μs to 790 ns, respectively, as the carrier concentration was increased from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. The diffusion of iodine is much lower than that of indium and hence a better alternative in heterostructures such as nBn devices. The influence of carrier concentration and temperature on the minority carrier lifetime was studied in order to characterize the carrier recombination mechanisms. Measured lifetimes were also analyzed and compared with the theoretical models of the various recombination processes occurring in these materials, indicating that Auger-1 recombination was predominant at higher doping levels. An increase in deep-level generation-recombination centers was observed with increasing doping level, which suggests that the increase in deep-level trap density is associated with the incorporation of higher concentrations of iodine into the HgCdTe.

  16. Growth window and effect of substrate symmetry in hybrid molecular beam epitaxy of a Mott insulating rare earth titanate

    SciTech Connect (OSTI)

    Moetakef, Pouya; Zhang, Jack Y.; Raghavan, Santosh; Kajdos, Adam P.; Stemmer, Susanne

    2013-07-15

    The conditions for the growth of stoichiometric GdTiO{sub 3} thin films by molecular beam epitaxy (MBE) are investigated. It is shown that relatively high growth temperatures (>750 Degree-Sign C) are required to obtain an MBE growth window in which only the stoichiometric film grows for a range of cation flux ratios. This growth window narrows with increasing film thickness. It is also shown that single-domain films are obtained by the growth on a symmetry-matched substrate. The influence of lattice mismatch strain on the electrical and magnetic characteristics of the GdTiO{sub 3} thin film is investigated.

  17. Ultraviolet light-emitting diodes grown by plasma-assisted molecular beam epitaxy on semipolar GaN (2021) substrates

    SciTech Connect (OSTI)

    Sawicka, M.; Grzanka, S.; Skierbiszewski, C.; Turski, H.; Muziol, G.; Krysko, M.; Grzanka, E.; Sochacki, T.; Siekacz, M.; Kucharski, R.

    2013-03-18

    Multi-quantum well (MQW) structures and light emitting diodes (LEDs) were grown on semipolar (2021) and polar (0001) GaN substrates by plasma-assisted molecular beam epitaxy. The In incorporation efficiency was found to be significantly lower for the semipolar plane as compared to the polar one. The semipolar MQWs exhibit a smooth surface morphology, abrupt interfaces, and a high photoluminescence intensity. The electroluminescence of semipolar (2021) and polar (0001) LEDs fabricated in the same growth run peaks at 387 and 462 nm, respectively. Semipolar LEDs with additional (Al,Ga)N cladding layers exhibit a higher optical output power but simultaneously a higher turn-on voltage.

  18. Optical properties of strain-free AlN nanowires grown by molecular beam epitaxy on Si substrates

    SciTech Connect (OSTI)

    Wang, Q.; Zhao, S.; Connie, A. T.; Shih, I.; Mi, Z.; Gonzalez, T.; Andrews, M. P.; Du, X. Z.; Lin, J. Y.; Jiang, H. X.

    2014-06-02

    The optical properties of catalyst-free AlN nanowires grown on Si substrates by molecular beam epitaxy were investigated. Such nanowires are nearly free of strain, with strong free exciton emission measured at room temperature. The photoluminescence intensity is significantly enhanced, compared to previously reported AlN epilayer. Moreover, the presence of phonon replicas with an energy separation of ?100?meV was identified to be associated with the surface-optical phonon rather than the commonly reported longitudinal-optical phonon, which is further supported by the micro-Raman scattering experiments.

  19. Peculiarly strong room-temperature ferromagnetism from low Mn-doping in ZnO grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Zuo Zheng; Morshed, Muhammad; Liu Jianlin; Beyermann, W. P.; Zheng Jianguo; Xin Yan

    2013-03-15

    Strong room-temperature ferromagnetism is demonstrated in single crystalline Mn-doped ZnO thin films grown by molecular beam epitaxy. Very low Mn doping concentration is investigated, and the measured magnetic moment is much larger than what is expected for an isolated ion based on Hund's rules. The ferromagnetic behavior evolves with Mn concentration. Both magnetic anisotropy and anomalous Hall effect confirm the intrinsic nature of ferromagnetism. While the Mn dopant plays a crucial role, another entity in the system is needed to explain the observed large magnetic moments.

  20. Chirped-pulse manipulated carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs

    SciTech Connect (OSTI)

    Lee, Chao-Kuei; Lin, Yuan-Yao; Lin, Sung-Hui; Lin, Gong-Ru; Pan, Ci-Ling

    2014-04-28

    Chirped pulse controlled carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs are investigated by degenerate pump-probe technique. Varying the chirped condition of excited pulse from negative to positive increases the carrier relaxation time so as to modify the dispersion and reshape current pulse in time domain. The spectral dependence of carrier dynamics is analytically derived and explained by Shockley-Read Hall model. This observation enables the new feasibility of controlling carrier dynamics in ultrafast optical devices via the chirped pulse excitations.

  1. Defect study in molecular beam epitaxy-grown HgCdTe films with activated and unactivated arsenic

    SciTech Connect (OSTI)

    Izhnin, I. I.; Dvoretsky, S. A.; Mikhailov, N. N.; Varavin, V. S.; Mynbaev, K. D.; Fitsych, O. I.; Pociask-Bialy, M.; Sheregii, E.; Voitsekhovskii, A. V.

    2014-04-28

    A defect study was performed on molecular beam epitaxy-grown HgCdTe films in situ doped with arsenic. Doping was performed from either effusion cell or cracker cell, and studied were both as-grown samples and samples subjected to arsenic activation annealing. Electrical properties of the films were investigated with the use of ion milling as a means of stirring defects in the material. As a result of the study, it was confirmed that the most efficient incorporation of electrically active arsenic occurs at the cracking zone temperature of 700?C. Interaction between arsenic and tellurium during the growth was observed and is discussed in the paper.

  2. Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature

    SciTech Connect (OSTI)

    Taioli, Simone; Garberoglio, Giovanni; Simonucci, Stefano; Beccara, Silvio a; Aversa, Lucrezia; Nardi, Marco; Verucchi, Roberto; Iannotta, Salvatore; Dapor, Maurizio; and others

    2013-01-28

    In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C{sub 60} collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C{sub 60} impact on the Si surface is in good agreement with our experimental findings.

  3. Molecular fountain.

    SciTech Connect (OSTI)

    Strecker, Kevin E.; Chandler, David W.

    2009-09-01

    A molecular fountain directs slowly moving molecules against gravity to further slow them to translational energies that they can be trapped and studied. If the molecules are initially slow enough they will return some time later to the position from which they were launched. Because this round trip time can be on the order of a second a single molecule can be observed for times sufficient to perform Hz level spectroscopy. The goal of this LDRD proposal was to construct a novel Molecular Fountain apparatus capable of producing dilute samples of molecules at near zero temperatures in well-defined user-selectable, quantum states. The slowly moving molecules used in this research are produced by the previously developed Kinematic Cooling technique, which uses a crossed atomic and molecular beam apparatus to generate single rotational level molecular samples moving slowly in the laboratory reference frame. The Kinematic Cooling technique produces cold molecules from a supersonic molecular beam via single collisions with a supersonic atomic beam. A single collision of an atom with a molecule occurring at the correct energy and relative velocity can cause a small fraction of the molecules to move very slowly vertically against gravity in the laboratory. These slowly moving molecules are captured by an electrostatic hexapole guiding field that both orients and focuses the molecules. The molecules are focused into the ionization region of a time-of-flight mass spectrometer and are ionized by laser radiation. The new molecular fountain apparatus was built utilizing a new design for molecular beam apparatus that has allowed us to miniaturize the apparatus. This new design minimizes the volumes and surface area of the machine allowing smaller pumps to maintain the necessary background pressures needed for these experiments.

  4. Energy eigenfunctions for position-dependent mass particles in a new class of molecular Hamiltonians

    SciTech Connect (OSTI)

    Christiansen, H. R.; Cunha, M. S.

    2014-09-15

    Based on recent results on quasi-exactly solvable Schrodinger equations, we review a new phenomenological potential class lately reported. In the present paper, we consider the quantum differential equations resulting from position-dependent mass (PDM) particles. We first focus on the PDM version of the hyperbolic potential V(x) = asech{sup 2}x + bsech{sup 4}x, which we address analytically with no restrictioon the parameters and the energies. This is the celebrated Manning potential, a double-well widely used in molecular physics, until now not investigated for PDM. We also evaluate the PDM version of the sixth power hyperbolic potential V(x) = asech{sup 6}x + bsech{sup 4}x for which we could find exact expressions under some special settings. Finally, we address a triple-well case V(x) = asech{sup 6}x + bsech{sup 4}x + csech{sup 2}x of particular interest for its connection to the new trends in atomtronics. The PDM Schrodinger equations studied in the present paper yield analytical eigenfunctions in terms of local Heun functions in its confluents forms. In all the cases PDM particles are more likely tunneling than ordinary ones. In addition, it is observed a merging of eigenstates when the mass becomes nonuniform.

  5. A High-Reflectivity, Ambient-Stable Graphene Mirror for Neutral Atomic and Molecular Beams

    SciTech Connect (OSTI)

    Sutter, P.; Minniti, M.; Albrecht, P.; Farias, D.; Miranda, R.; Sutter, E.

    2011-11-21

    We report a He and H{sub 2} diffraction study of graphene-terminated Ru(0001) thin films grown epitaxially on c-axis sapphire. Even for samples exposed for several weeks to ambient conditions, brief annealing in ultrahigh vacuum restored extraordinarily high specular reflectivities for He and H{sub 2} beams (23% and 7% of the incident beam, respectively). The quality of the angular distributions recorded with both probes exceeds the one obtained from in-situ prepared graphene on Ru(0001) single crystals. Our results for graphene-terminated Ru thin films represent a significant step toward ambient tolerant, high-reflectivity curved surface mirrors for He-atom microscopy.

  6. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOE Patents [OSTI]

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  7. CdSe/CdTe type-II superlattices grown on GaSb (001) substrates by molecular beam epitaxy

    SciTech Connect (OSTI)

    Li Jingjing; Liu Shi; Wang Shumin; Ding Ding; Johnson, Shane R.; Zhang Yonghang; Liu Xinyu; Furdyna, Jacek K.; Smith, David J.

    2012-03-19

    CdSe/CdTe superlattices are grown on GaSb substrates using molecular beam epitaxy. X-ray diffraction measurements and cross-sectional transmission electron microscopy images indicate high crystalline quality. Photoluminescence (PL) measurements show the effective bandgap varies with the superlattice layer thicknesses and confirm the CdSe/CdTe heterostructure has a type-II band edge alignment. The valence band offset between unstrained CdTe and CdSe is determined as 0.63 {+-} 0.06 eV by fitting the measured PL peak positions using the envelope function approximation and the Kronig-Penney model. These results suggest that CdSe/CdTe superlattices are promising candidates for multi-junction solar cells and other optoelectronic devices based on GaSb substrates.

  8. Formation of strained interfaces in AlSb/InAs multilayers grown by molecular beam epitaxy for quantum cascade lasers

    SciTech Connect (OSTI)

    Nicolaï, J.; Warot-Fonrose, B.; Gatel, C. Ponchet, A.; Teissier, R.; Baranov, A. N.; Magen, C.

    2015-07-21

    Structural and chemical properties of InAs/AlSb interfaces have been studied by transmission electron microscopy. InAs/AlSb multilayers were grown by molecular beam epitaxy with different growth sequences at interfaces. The out-of-plane strain, determined using high resolution microscopy and geometrical phase analysis, has been related to the chemical composition of the interfaces analyzed by high angle annular dark field imaging. Considering the local strain and chemistry, we estimated the interface composition and discussed the mechanisms of interface formation for the different growth sequences. In particular, we found that the formation of the tensile AlAs-type interface is spontaneously favored due to its high thermal stability compared to the InSb-type interface. We also showed that the interface composition could be tuned using an appropriate growth sequence.

  9. Growth mode and strain relaxation of InAs on InP (111)A grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Li, H.; Daniels-Race, T.; Wang, Z.

    1999-03-01

    Growth mode and strain relaxation of molecular-beam-epitaxy grown InAs/InAlAs/InP (111)A system have been investigated using reflection high-energy electron diffraction, transmission electron microscopy, atomic force microscopy, and photoluminescence measurements. In direct contrast to the well-studied InAs/GaAs system, our experimental results show that the InAs grown on InAlAs/InP (111)A follows the Stranski{endash}Krastanov mode. Both self-organized InAs quantum dots and relaxed InAs islands are formed depending on the InAs coverage. Intense luminescence signals from both the InAs quantum dots and wetting layer are observed. The luminescence efficiency of (111)A samples is comparable to that of (001) samples, suggesting the feasibility of fabricating quantum dot optoelectronic devices on InP (111)A surfaces. {copyright} {ital 1999 American Institute of Physics.}

  10. High-quality epitaxial CoFe/Si(111) heterostructures fabricated by low-temperature molecular beam epitaxy

    SciTech Connect (OSTI)

    Maeda, Y.; Yamada, S.; Ando, Y.; Yamane, K.; Miyao, M.; Hamaya, K.

    2010-11-08

    We demonstrate atomically controlled heterojunctions consisting of ferromagnetic CoFe alloys and silicon (Si) using low-temperature molecular beam epitaxy with a good atomic matching at the (111) plane. The saturation magnetization of the CoFe layers grown reaches {approx}85% of the value of bulk samples reported so far, and can be systematically controlled by tuning the ratio of Co to Fe, indicating that the silicidation reactions between CoFe and Si are suppressed and the heterojunctions are very high quality. We find that the Schottky barrier height of the high-quality CoFe/Si(111) junctions is unexpectedly low compared to the previous data for other metal/Si ones, implying the reduction in the Fermi-level-pinning effect. We can expand the available high-quality ferromagnet/Si heterostructures in the field of Si-based spintronics.

  11. Molecular beam epitaxial growth and characterization of Bi{sub 2}Se{sub 3}/II-VI semiconductor heterostructures

    SciTech Connect (OSTI)

    Chen, Zhiyi Zhao, Lukas; Krusin-Elbaum, Lia; Garcia, Thor Axtmann; Tamargo, Maria C.; Hernandez-Mainet, Luis C.; Deng, Haiming

    2014-12-15

    Surfaces of three-dimensional topological insulators (TIs) have been proposed to host quantum phases at the interfaces with other types of materials, provided that the topological properties of interfacial regions remain unperturbed. Here, we report on the molecular beam epitaxy growth of II-VI semiconductorTI heterostructures using c-plane sapphire substrates. Our studies demonstrate that Zn{sub 0.49}Cd{sub 0.51}Se and Zn{sub 0.23}Cd{sub 0.25}Mg{sub 0.52}Se layers have improved quality relative to ZnSe. The structures exhibit a large relative upward shift of the TI bulk quantum levels when the TI layers are very thin (?6nm), consistent with quantum confinement imposed by the wide bandgap II-VI layers. Our transport measurements show that the characteristic topological signatures of the Bi{sub 2}Se{sub 3} layers are preserved.

  12. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; Pinchuk, Igor V.; Zhu, Tiancong; Beechem, Thomas; Kawakami, Roland K.

    2016-04-27

    Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  13. LaCrO{sub 3} heteroepitaxy on SrTiO{sub 3}(001) by molecular beam epitaxy

    SciTech Connect (OSTI)

    Qiao, L.; Droubay, T. C.; Bowden, M. E.; Shutthanandan, V.; Kaspar, T. C.; Chambers, S. A.

    2011-08-08

    Stoichiometric, epitaxial LaCrO{sub 3} films have been grown on SrTiO{sub 3}(001) by molecular beam epitaxy using O{sub 2} as the oxidant. Films grew in a layer-by-layer fashion, giving rise to coherently strained, structurally excellent films and surfaces which preserve the step-terrace structure of the substrate. The critical thickness is in excess of 500 A. Cr(III) near the surface is easily oxidized to Cr(V) upon exposure to atomic oxygen and reduction back to Cr(III) is readily achieved by vacuum annealing, resulting in tunability of the charge state at the B-site cation.

  14. LaCrO3 heteroepitaxy on SrTiO3(001) by molecular beam epitaxy

    SciTech Connect (OSTI)

    Qiao, Liang; Droubay, Timothy C.; Bowden, Mark E.; Shutthanandan, V.; Kaspar, Tiffany C.; Chambers, Scott A.

    2011-08-09

    Stoichiometric, epitaxial LaCrO3 films have been grown on TiO2-terminated SrTiO3(001) substrates by molecular beam epitaxy using O2 as the oxidant. Film growth occurred in a layer-by-layer fashion, giving rise to structurally excellent films and surfaces which preserve the step-terrace structure of the substrate. The critical thickness is in excess of 500 . Near-surface Cr(III) is highly susceptible to further oxidation to Cr(V), leading to the formation of a disordered phase upon exposure to atomic oxygen. Recovery of the original epitaxial LaCrO3 phase is readily achieved by vacuum annealing.

  15. Results from beam tests of MEGA's low-mass, high-rate cylindrical MWPCs

    SciTech Connect (OSTI)

    Stanislaus, S.; Armijo, V.; Black, J.K.; Bolton, R.D.; Carius, S.; Cooper, M.D.; Espinoza, C.; Hart, G.; Hogan, G.; Gonzales, A.; Mischke, R.E.; Piilonen, L.E.; Sandoval, J.; Schilling, S.; Sena, J.; Suazo, G.; Szymanski, J.J.; Whitehouse, D.A.; Wilkinson, C.A. ); Fisk, R.; Koetke, D.D.; Manweiler, R.W. ); Jui, C.C. (Stanford Univ., CA

    1991-01-01

    One of the leading experimental projects at LAMPF has been the MEGA experiment. This is an experiment to search for the rare decay {mu} {yields} e{gamma} with a sensitivity of 10{sup {minus}13}. A prime component of this project has been the design and construction of high-rate, low mass MWPCs for the tracking of positrons from muon decay. With rate capabilities of 2 {times} 10{sup 4} e{sup +}/mm{sup 2}/s and a thickness of 3 {times} 10{sup {minus}4} radiation lengths, these chambers are state-of-the-art cylindrical MWPCs. Cylindrical chambers of this size (0.9 m{sup 2}) and thinness have never been previously constructed. The MEGA project at LAMPF has recently succeeded in building chambers with these necessary performance characteristics as demonstrated by data taken from muon decays, cosmic rays, and sources.

  16. High-efficiency cross-beam magnetic electron-impact source for improved miniature Mattauch-Herzog mass spectrometer performance

    SciTech Connect (OSTI)

    Hadjar, O.; Fowler, W. K.

    2012-06-15

    We describe a newly designed cross-beam magnetic electron-impact ion source (CBM-EI). We demonstrate its superiority in comparison with a conventional source (CB-EI) when used with a commercial miniature sector-field-type, non-scanning mass spectrometer featuring Mattauch-Herzog geometry (MH-MS) and a permanent sector-field magnet. This paper clearly shows the value of the CBM-EI for enhancing MH-MS sensitivity. Unlike secondary electron-multiplier type detectors, the pixelated detector (IonCCD Trade-Mark-Sign ) used in the commercial MH-MS has no gain. The MH-MS/IonCCD system is therefore challenged to compete with time-of-flight and quadrupole MS systems due to their higher ion transmissions and detector gains. Using the new CBM-EI, we demonstrate an instrument sensitivity increase of 20-fold to 100-fold relative to the CB-EI-equipped instrument. This remarkable signal increase by the simple addition of the magnet assembly arises from the magnet-induced gyromotion of the thermionic electrons, which vastly increases the effective path length of the electrons through the ionization region, and the collimated nature of the electron flux, which optimizes the ion transmission through the 100-{mu}m object slit of the MH-MS. Some or all of the realized sensitivity increase may be exchanged for an increase in resolution and/or mass range through the use of a narrower object slit, or for a reduction in ion-source pressure to limit quenching. The CBM-EI should facilitate development of a differentially pumped ion source to extend the lifetime of the filament, especially in otherwise intractable applications associated with oxidizing and corrosive samples.

  17. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2012-10-30

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  18. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2013-07-16

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  19. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2011-06-21

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  20. Magnetic properties of MnSb inclusions formed in GaSb matrix directly during molecular beam epitaxial growth

    SciTech Connect (OSTI)

    Lawniczak-Jablonska, Krystyna; Wolska, Anna; Klepka, Marcin T.; Kret, Slawomir; Kurowska, Boguslawa; Kowalski, Bogdan J.; Twardowski, Andrzej; Wasik, Dariusz; Kwiatkowski, Adam; Sadowski, Janusz

    2011-04-01

    Despite of intensive search for the proper semiconductor base materials for spintronic devices working at room temperature no appropriate material based on ferromagnetic semiconductors has been found so far. We demonstrate that the phase segregated system with MnSb hexagonal inclusions inside the GaSb matrix, formed directly during the molecular beam epitaxial growth reveals the ferromagnetic properties at room temperature and is a good candidate for exploitation in spintronics. Furthermore, the MnSb inclusions with only one crystalline structure were identified in this GaMn:MnSb granular material. The SQUID magnetometry confirmed that this material exhibits ferromagnetic like behavior starting from helium up to room temperature. Moreover, the magnetic anisotropy was found which was present also at room temperature, and it was proved that by choosing a proper substrate it is possible to control the direction of easy axis of inclusions' magnetization moment between in-plane and out-of-plane; the latter is important in view of potential applications in spintronic devices.

  1. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    SciTech Connect (OSTI)

    Lin, Yong; Leung, Benjamin; Li, Qiming; Figiel, Jeffrey J.; Wang, George T.

    2015-07-14

    In this study, ammonia-based molecular beam epitaxy (NH3-MBE) was used to grow catalyst-assisted GaN nanowires on (11¯02) r-plane sapphire substrates. Dislocation free [112¯0] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar {101¯0} side facets, which appear due to a decrease in relative growth rate of the {101¯0} facets to the {101¯1} and {101¯1} facets under the growth regime in NH3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal–organic chemical vapor deposition, the NH3-MBE grown GaN nanowires show more than an order of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.

  2. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    SciTech Connect (OSTI)

    Lee, H. Y.; Hong, J. H.; Jang, J. H.; Park, J. S.; Choe, Wonho; Hahn, S. H.; Bak, J. G.; Lee, J. H.; Ko, W. H.; Lee, K. D.; Lee, S. H.; Lee, H. H.; Juhn, J.-W.; Kim, H. S.; Yoon, S. W.; Han, H.; Ghim, Y.-C.

    2015-12-15

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the D{sub α} amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in the electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.

  3. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Yong; Leung, Benjamin; Li, Qiming; Figiel, Jeffrey J.; Wang, George T.

    2015-07-14

    In this study, ammonia-based molecular beam epitaxy (NH3-MBE) was used to grow catalyst-assisted GaN nanowires on (11¯02) r-plane sapphire substrates. Dislocation free [112¯0] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar {101¯0} side facets, which appear due to a decrease in relative growth rate of the {101¯0} facets to the {101¯1} and {101¯1} facets under the growth regime in NH3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal–organic chemical vapor deposition, the NH3-MBE grown GaN nanowires show more than an ordermore » of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.« less

  4. Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO{sub 3} films

    SciTech Connect (OSTI)

    Wang, Tianqi; Ganguly, Koustav; Marshall, Patrick; Xu, Peng; Jalan, Bharat

    2013-11-18

    We report on the study of the critical thickness and the strain relaxation in epitaxial SrTiO{sub 3} film grown on (La{sub 0.3}Sr{sub 0.7})(Al{sub 0.65}Ta{sub 0.35})O{sub 3} (001) (LSAT) substrate using the hybrid molecular beam epitaxy approach. No change in the film's lattice parameter (both the in-plane and the out-of-plane) was observed up to a film thickness of 180 nm, which is in sharp contrast to the theoretical critical thickness of ∼12 nm calculated using the equilibrium theory of strain relaxation. For film thicknesses greater than 180 nm, the out-of-plane lattice parameter was found to decrease hyperbolically in an excellent agreement with the relaxation via forming misfit dislocations. Possible mechanisms are discussed by which the elastic strain energy can be accommodated prior to forming misfit dislocations leading to such anomalously large critical thickness.

  5. First-principles studies on molecular beam epitaxy growth of GaAs1-xBix

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, Guangfu; Yang, Shujiang; Li, Jincheng; Arjmand, Mehrdad; Szlufarska, Izabela; Brown, April S.; Kuech, Thomas F.; Morgan, Dane

    2015-07-14

    We investigate the molecular beam epitaxy (MBE) growth of GaAs1-xBix film using density functional theory with spin-orbit coupling to understand the growth of this film, especially the mechanisms of Bi incorporation. We study the stable adsorption structures and kinetics of the incident molecules (As₂ molecule, Ga atom, Bi atom, and Bi₂ molecule) on the (2 x 1)-Gasub||Bi surface and a proposed q(1 x 1)-Gasub||AsAs surface has a quasi-(1 x 1) As layer above the Ga-terminated GaAs substrate and a randomly oriented As dimer layer on top. We obtain the desorption and diffusion barriers of the adsorbed molecules and also themore » reaction barriers of three key processes related to Bi evolution, namely, Bi incorporation, As/Bi exchange, and Bi clustering. The results help explain the experimentally observed dependence of Bi incorporation on the As/Ga ratio and growth temperature. Furthermore, we find that As₂ exchange with Bi of the (2 x 1)-Gasub||Bi surface is a key step controlling the kinetics of the Bi incorporation. Finally, we explore two possible methods to enhance the Bi incorporation, namely, replacing the MBE growth mode from codeposition of all fluxes with a sequential deposition of fluxes and applying asymmetric in-plane strain to the substrate.« less

  6. Demonstration of isotype GaN/AlN/GaN heterobarrier diodes by NH{sub 3}-molecular beam epitaxy

    SciTech Connect (OSTI)

    Fireman, Micha N.; Browne, David A.; Mazumder, Baishakhi; Speck, James S.; Mishra, Umesh K.

    2015-05-18

    The results of vertical transport through nitride heterobarrier structures grown by ammonia molecular beam epitaxy are presented. Structures are designed with binary layers to avoid the effects of random alloy fluctuations in ternary nitride barriers. The unintentional incorporation of Ga in the AlN growth is investigated by atom probe tomography and is shown to be strongly dependent on both the NH{sub 3} flowrate and substrate temperature growth parameters. Once nominally pure AlN layer growth conditions are achieved, structures consisting of unintentionally doped (UID) GaN spacer layers adjacent to a nominally pure AlN are grown between two layers of n+ GaN, from which isotype diodes are fabricated. Varying the design parameters of AlN layer thickness, UID spacer layer thickness, and threading dislocation density show marked effects on the vertical transport characteristics of these structures. The lack of significant temperature dependence, coupled with Fowler-Nordheim and/or Milliken-Lauritsen analysis, point to a prevalently tunneling field emission mechanism through the AlN barrier. Once flatband conditions in the UID layer are achieved, electrons leave the barrier with significant energy. This transport mechanism is of great interest for applications in hot electron structures.

  7. In-situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Venkata Rama Ses; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R.; Wang, Chong M.

    2015-08-19

    Dynamic molecular evolution at solid/liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe/observe the solid/liquid interface under reaction conditions, which in essence appears to be similarly true for all the fields involving solid/liquid phases, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization, We use in-situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid electrode/liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to deplete the salt anion and with low concentration of Li+ ions, which essentially leads to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributes to the overpotential of the cell. This unprecedented molecular level dynamic observation at the solid electrode/liquid electrolyte interface provides vital chemical information that is needed for designing of better battery chemistry for enhanced performance, and ultimately opens new avenues for using liquid SIMS to probe molecular evolution at solid/liquid interface in general.

  8. Enhancement of minority carrier lifetime of GaInP with lateral composition modulation structure grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Park, K. W.; Ravindran, Sooraj; Kang, S. J.; Hwang, H. Y.; Jho, Y. D.; Park, C. Y.; Jo, Y. R.; Kim, B. J.; Lee, Y. T.

    2014-07-28

    We report the enhancement of the minority carrier lifetime of GaInP with a lateral composition modulated (LCM) structure grown using molecular beam epitaxy (MBE). The structural and optical properties of the grown samples are studied by transmission electron microscopy and photoluminescence, which reveal the formation of vertically aligned bright and dark slabs corresponding to Ga-rich and In-rich GaInP regions, respectively, with good crystal quality. With the decrease of V/III ratio during LCM GaInP growth, it is seen that the band gap of LCM GaInP is reduced, while the PL intensity remains high and is comparable to that of bulk GaInP. We also investigate the minority carrier lifetime of LCM structures made with different flux ratios. It is found that the minority carrier lifetime of LCM GaInP is ?37 times larger than that of bulk GaInP material, due to the spatial separation of electrons and holes by In-rich and Ga-rich regions of the LCM GaInP, respectively. We further demonstrate that the minority carrier lifetime of the grown LCM GaInP structures can easily be tuned by simply adjusting the V/III flux ratio during MBE growth, providing a simple yet powerful technique to tailor the electrical and optical properties at will. The exceptionally high carrier lifetime and the reduced band gap of LCM GaInP make them a highly attractive candidate for forming the top cell of multi-junction solar cells and can enhance their efficiency, and also make them suitable for other optoelectronics devices, such as photodetectors, where longer carrier lifetime is beneficial.

  9. Structural and optical properties of InGaN--GaN nanowire heterostructures grown by molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Hofling, S.; et al

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmore » to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.« less

  10. Structural and optical properties of InGaN--GaN nanowire heterostructures grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Hofling, S.; Worschech, L.; Grutzmacher, D.

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.

  11. Structural and optical properties of InGaNGaN nanowire heterostructures grown by molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Ho?fling, S.; et al

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmoreto higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, ?-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.less

  12. Molecular beam epitaxy of GaNAs alloys with high As content for potential photoanode applications in hydrogen production

    SciTech Connect (OSTI)

    Novikov, S. V.; Staddon, C. R.; Foxon, C. T.; Yu, K. M.; Broesler, R.; Hawkridge, M.; Liliental-Weber, Z.; Walukiewicz, W.; Denlinger, J.; Demchenko, I.

    2009-10-06

    The authors have succeeded in growing GaN1?xAsx alloys over a large composition range (0 < x < 0.8) by plasma-assisted molecular beam epitaxy. The enhanced incorporation of As was achieved by growing the films with high As{sub 2} flux at low (as low as 100 C) growth temperatures, which is much below the normal GaN growth temperature range. Using x-ray and transmission electron microscopy, they found that the GaNAs alloys with high As content x > 0.17 are amorphous. Optical absorption measurements together with x-ray absorption and emission spectroscopy results reveal a continuous gradual decrease in band gap from -3.4 to < 1 eV with increasing As content. The energy gap reaches its minimum of -0.8 eV at x - 0.8. The composition dependence of the band gap of the crystalline GaN{sub 1?x}As{sub x} alloys follows the prediction of the band anticrossing model (BAC). However, our measured band gap of amorphous GaN{sub 1?x}As{sub x} with 0.3 < x < 0.8 are larger than that predicted by BAC. The results seem to indicate that for this composition range the amorphous GaN{sub 1?x}As{sub x} alloys have short-range ordering that resembles random crystalline GaN{sub 1?x}As{sub x} alloys. They have demonstrated the possibility of the growth of amorphous GaN{sub 1?x}As{sub x} layers with variable As content on glass substrates

  13. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    SciTech Connect (OSTI)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  14. Detection of high molecular weight organic tracers in vegetation smoke samples by high-temperature gas chromatography-mass spectrometry

    SciTech Connect (OSTI)

    Elias, V.O.; Simoneit, B.R.T. ); Pereira, A.S.; Cardoso, J.N. ); Cabral, J.A. )

    1999-07-15

    High-temperature high-resolution gas chromatography (HTGC) is an established technique for the separation of complex mixtures of high molecular weight (HMW) compounds which do not elute when analyzed on conventional GC columns. The combination of this technique with mass spectrometry is not so common and application to aerosols is novel. The HTGC and HTGC-MS analyses of smoke samples taken by particle filtration from combustion of different species of plants provided the characterization of various classes of HMW compounds reported to occur for the first time in emissions from biomass burning. Among these components are a series of wax esters with up to 58 carbon numbers, aliphatic hydrocarbons, triglycerides, long chain methyl ketones, alkanols and a series of triterpenyl fatty acid esters which have been characterized as novel natural products. Long chain fatty acids with more than 32 carbon numbers are not present in the smoke samples analyzed. The HMW compounds in smoke samples from the burning of plants from Amazonia indicate the input of directly volatilized natural products in the original plants during their combustion. However, the major organic compounds extracted from smoke consist of a series of lower molecular weight polar components, which are not natural products but the result of the thermal breakdown of cellulose and lignin. In contrast, the HMW natural products may be suitable tracers for specific sources of vegetation combustion because they are emitted as particles without thermal alternation in the smoke and can thus be related directly to the original plant material.

  15. Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry

    SciTech Connect (OSTI)

    Tfaily, Malak M.; Chu, Rosalie K.; Tolic, Nikola; Roscioli, Kristyn M.; Anderton, Christopher R.; Pasa-Tolic, Ljiljana; Robinson, Errol W.; Hess, Nancy J.

    2015-05-19

    Soil organic matter (SOM) a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and predict accurately how terrestrial carbon fluxes will response to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soils with a wide range of C content. Our use of Electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O:C ratios; water was selective for carbohydrates with high O:C ratios; acetonitrile preferentially extracts lignin, condensed structures, and tannin poly phenolic compounds with O:C > 0.5; methanol has higher selectivity towards compounds characterized with low O:C < 0.5; and hexane, MeOH, ACN and water solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI-FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils.

  16. Strong room-temperature ferromagnetism of high-quality lightly Mn-doped ZnO grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Zuo Zheng; Zhou Huimei; Olmedo, Mario J.; Kong Jieying; Liu Jianlin; Beyermann, Ward P.; Zheng Jianguo; Xin Yan

    2012-09-01

    Strong room-temperature ferromagnetism is demonstrated in single crystalline Mn-doped ZnO grown by molecular beam epitaxy. With a low Mn concentration of 2 Multiplication-Sign 10{sup 19} cm{sup -3}, Mn-doped ZnO films exhibited room-temperature ferromagnetism with a coercivity field larger than 200 Oe, a large saturation moment of 6 {mu}{sub B}/ion, and a large residue moment that is {approx}70% of the saturation magnetization. Isolated ions with long range carrier mediated spin-spin coupling may be responsible for the intrinsic ferromagnetism.

  17. Magneto-transport properties of InAs nanowires laterally-grown by selective area molecular beam epitaxy on GaAs (110) masked substrates

    SciTech Connect (OSTI)

    Akabori, M.; Yamada, S.

    2013-12-04

    We prepared InAs nanowires (NWs) by lateral growth on GaAs (110) masked substrates in molecular beam epitaxy. We measured magneto-transport properties of the InAs NWs. In spite of parallel-NW multi-channels, we observed fluctuating magneto-conductance. From the fluctuation, we evaluated phase coherence length as a function of measurement temperature, and found decrease in the length with increase in the temperature. We also evaluate phase coherence length as a function of gate voltage.

  18. Effects of hydrogen on the optical properties of ZnCdO/ZnO quantum wells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Buyanova, I. A.; Wang, X. J.; Chen, W. M.; Pozina, G.; Lim, W.; Norton, D. P.; Pearton, S. J.; Osinsky, A.; Dong, J. W.; Hertog, B.

    2008-06-30

    Temperature-dependent cw- and time-resolved photoluminescence (PL), as well as optically detected magnetic resonance (ODMR) measurements are employed to evaluate effects of deuterium (2H) doping on optical properties of ZnCdO/ZnO quantum well structures grown by molecular beam epitaxy. It is shown that incorporation of {sup 2}H from a remote plasma causes a substantial improvement in radiative efficiency of the investigated structures. Based on transient PL measurements, the observed improvements are attributed to efficient passivation by hydrogen of competing nonradiative recombination centers via defects. This conclusion is confirmed from the ODMR studies.

  19. Molecular Characterization of Organic Aerosol Using Nanospray Desorption/Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect (OSTI)

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Liu, Shang; Weber, Robin; Russell, Lynn; Goldstein, Allen H.

    2013-04-01

    Aerosol samples from the CalNex 2010 field study were analyzed using high resolution mass spectrometry (HR-MS) coupled to a nanospray-desorption/electrospray ionization (nano-DESI) source. The samples were collected in Bakersfield, CA on June 22-23, 2010. The chemical formulas of over 1300 unique molecular species were detected in the mass range of 50-800 m/z. Our analysis focused on identification of two main groups: compounds containing only carbon, hydrogen, and oxygen (CHO only), and nitrogen-containing organic compounds (NOC). The NOC accounted for 35% (by number) of the compounds observed in the afternoon, and for 59% in the early morning samples. By comparing plausible reactant-product pairs, we propose that over 50% of the NOC in each sample could have been formed through reactions transforming carbonyls into imines. The CHO only compounds were dominant in the afternoon suggesting a photochemical source. The average O:C ratios of all observed compounds were fairly consistent throughout the day, ranging from 0.34 in the early morning to 0.37 at night. We conclude that both photooxidation and ammonia chemistry play important roles in forming the compounds observed in this mixed urban-rural environment.

  20. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Beam Status Print Loading... You can also view the Operations Group's Beam History archives.

  1. Beam tuning

    SciTech Connect (OSTI)

    Pardo, R.C.; Zinkann, G.P.

    1995-08-01

    A program for configuring the linac, based on previously run configurations for any desired beam was used during the past year. This program uses only a small number of empirical tunes to scale resonator fields to properly accelerate a beam with a different charge-to-mass (q/A) ratio from the original tune configuration. The program worked very well for the PII linac section where we can easily match a new beam`s arrival phase and velocity to the tuned value. It was also fairly successful for the Booster and ATLAS sections of the linac, but not as successful as for the PII linac. Most of the problems are associated with setting the beam arrival time correctly for each major linac section. This problem is being addressed with the development of the capacitive pickup beam phase monitor discussed above. During the next year we expect to improve our ability to quickly configure the linac for new beams and reduce the time required for linac tuning. Already the time required for linac tuning as a percentage of research hours has decreased from 22% in FY 1993 to 15% in the first quarter of FY 1995.

  2. Impact of growth and annealing conditions on the parameters of Ge/Si(001) relaxed layers grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Yurasov, D. V.; Bobrov, A. I.; Daniltsev, V. M.; Novikov, A. V.; Pavlov, D. A.; Skorokhodov, E. V.; Shaleev, M. V.; Yunin, P. A.

    2015-11-15

    Influence of the Ge layer thickness and annealing conditions on the parameters of relaxed Ge/Si(001) layers grown by molecular beam epitaxy via two-stage growth is investigated. The dependences of the threading dislocation density and surface roughness on the Ge layer thickness, annealing temperature and time, and the presence of a hydrogen atmosphere are obtained. As a result of optimization of the growth and annealing conditions, relaxed Ge/Si(001) layers which are thinner than 1 μm with a low threading dislocation density on the order of 10{sup 7} cm{sup –2} and a root mean square roughness of less than 1 nm are obtained.

  3. Growth, steady-state, and time-resolved photoluminescence study of CdTe/MgCdTe double heterostructures on InSb substrates using molecular beam epitaxy

    SciTech Connect (OSTI)

    DiNezza, Michael J.; Liu, Shi; Kirk, Alexander P.; Zhang, Yong-Hang; School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 ; Zhao, Xin-Hao; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287

    2013-11-04

    CdTe/MgCdTe double heterostructures (DHs) are grown on InSb substrates using molecular beam epitaxy and reveal strong photoluminescence with over double the intensity of a GaAs/AlGaAs DH with an identical layer structure design grown on GaAs. Time-resolved photoluminescence of the CdTe/MgCdTe DH gives a Shockley-Read-Hall recombination lifetime of 86 ns, which is more than one order of magnitude longer than that of typical polycrystalline CdTe films. These findings indicate that monocrystalline CdTe/MgCdTe DHs effectively reduce surface recombination, have limited nonradiative interface recombination, and are promising for solar cells that could reach power conversion efficiencies similar to that of GaAs.

  4. Determination of CdTe bulk carrier lifetime and interface recombination velocity of CdTe/MgCdTe double heterostructures grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Zhao, Xin-Hao; Campbell, Calli M.; DiNezza, Michael J.; Liu, Shi; Zhao, Yuan; Zhang, Yong-Hang

    2014-12-22

    The bulk Shockley-Read-Hall carrier lifetime of CdTe and interface recombination velocity at the CdTe/Mg{sub 0.24}Cd{sub 0.76}Te heterointerface are estimated to be around 0.5??s and (4.7??0.4)??10{sup 2?}cm/s, respectively, using time-resolved photoluminescence (PL) measurements. Four CdTe/MgCdTe double heterostructures (DHs) with varying CdTe layer thicknesses were grown on nearly lattice-matched InSb (001) substrates using molecular beam epitaxy. The longest lifetime of 179?ns is observed in the DH with a 2??m thick CdTe layer. It is also shown that the photon recycling effect has a strong influence on the bulk radiative lifetime, and the reabsorption process affects the measured PL spectrum shape and intensity.

  5. Molecular beam epitaxial growth and optical properties of red-emitting ({lambda} = 650 nm) InGaN/GaN disks-in-nanowires on silicon

    SciTech Connect (OSTI)

    Jahangir, S.; Bhattacharya, P.; Mandl, M.; Strassburg, M.

    2013-02-18

    We have investigated the radiative properties of InGaN disks in GaN nanowires grown by plasma enhanced molecular beam epitaxy on (001) silicon substrates. The growth of the nanowire heterostructures has been optimized to maximize the radiative efficiency, or internal quantum efficiency (IQE), for photoluminescence emission at {lambda} = 650 nm. It is found that the IQE increases significantly (by {approx}10%) to 52%, when post-growth passivation of nanowire surface with silicon nitride or parylene is applied. The increase in efficiency is supported by radiative- and nonradiative lifetimes derived from data obtained from temperature dependent- and time-resolved photoluminescence measurements. Light emitting diodes with p-i-n disk-in-nanowire heterostructures passivated with parylene have been fabricated and characterized.

  6. Structural properties of InN films grown on O-face ZnO(0001) by plasma-assisted molecular beam epitaxy

    SciTech Connect (OSTI)

    Cho, Yong Jin; Brandt, Oliver; Kaganer, Vladimir M.; Ramsteiner, Manfred; Riechert, Henning; Korytov, Maxim; Albrecht, Martin

    2012-04-09

    We study the impact of substrate temperature and layer thickness on the morphological and structural properties of InN films directly grown on O-face ZnO(0001) substrates by plasma-assisted molecular beam epitaxy. With increasing substrate temperature, an interfacial reaction between InN and ZnO takes place that eventually results in the formation of cubic In{sub 2}O{sub 3} and voids. The properties of the InN films, however, are found to be unaffected by this reaction for substrate temperatures less than 550 deg. C. In fact, both the morphological and the structural quality of InN improve with increasing substrate temperature in the range from 350 to 500 deg. C. High quality films with low threading dislocation densities are demonstrated.

  7. Properties of molecular beam epitaxy grown Eu{sub x}(transition metal){sub y} films (transition metals: Mn, Cr)

    SciTech Connect (OSTI)

    Balin, K.; Nowak, A.; Gibaud, A.; Szade, J.; Celinski, Z.

    2011-04-01

    The electronic and crystallographic structures, as well as the magnetic properties, of Eu{sub x}(transition metal){sub y} (transition metals: Mn, Cr) thin films grown by molecular beam epitaxy were studied. Relative changes of the Eu/Mn and Eu/Cr ratios derived from the XPS lines, as well as x-ray reflectivity, indicate mixing of the Eu/Mn and Eu/Cr layers. Valency transitions from Eu{sup 2+} to Eu{sup 3+} were observed in both systems for most studied stoichiometries. A transition to a magnetically ordered phase was observed at 15 K, 40 K, and 62 K for selected films in the Eu-Mn system, and at 50 K for the film with a Eu/Cr ratio of 0.5.

  8. Tellurium n-type doping of highly mismatched amorphous GaN1-xAsx alloys in plasma-assisted molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Novikov, S. V.; Ting, M.; Yu, K. M.; Sarney, W. L.; Martin, R. W.; Svensson, S. P.; Walukiewicz, W.; Foxon, C. T.

    2014-10-01

    In this paper we report our study on n-type Te doping of amorphous GaN1-xAsx layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN1-xAsx layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN1-xAsx layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN1-xAsx layers has been determined.

  9. Low density of self-assembled InAs quantum dots grown by solid-source molecular beam epitaxy on InP(001)

    SciTech Connect (OSTI)

    Dupuy, E.; Regreny, P.; Robach, Y.; Gendry, M.; Chauvin, N.; Tranvouez, E.; Bremond, G.; Bru-Chevallier, C.; Patriarche, G.

    2006-09-18

    The authors report on a postgrowth method to obtain low density InAs/InP(001) quantum dots by solid-source molecular beam epitaxy. They used an approach based on the ripening of the InAs sticks, which is triggered by the sample cooling under arsenic overpressure, before InP capping. Atomic force microscopy images show the evolution of InAs islands from sticks oriented along the [1-10] direction to dot-shaped islands with a density that can be reduced to about 2x10{sup 9} dots/cm{sup 2}. Macro- and microphotoluminescence reveal that these diluted InAs dots exhibit a strong spatial confinement and emit in the 1.55 {mu}m range.

  10. Double capping of molecular beam epitaxy grown InAs/InP quantum dots studied by cross-sectional scanning tunneling microscopy

    SciTech Connect (OSTI)

    Ulloa, J. M.; Koenraad, P. M.; Gapihan, E.; Letoublon, A.; Bertru, N.

    2007-08-13

    Cross-sectional scanning tunneling microscopy was used to study at the atomic scale the double capping process of self-assembled InAs/InP quantum dots (QDs) grown by molecular beam epitaxy on a (311)B substrate. The thickness of the first capping layer is found to play a mayor role in determining the final results of the process. For first capping layers up to 3.5 nm, the height of the QDs correspond to the thickness of the first capping layer. Nevertheless, for thicknesses higher than 3.5 nm, a reduction in the dot height compared to the thickness of the first capping layer is observed. These results are interpreted in terms of a transition from a double capping to a classical capping process when the first capping layer is thick enough to completely cover the dots.

  11. Clarification of enhanced ferromagnetism in Be-codoped InMnP fabricated using Mn/InP:Be bilayers grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Shon, Yoon; Lee, Sejoon; Taek Yoon, Im; Jeon, H. C.; Lee, D. J.; Kang, T. W.; Song, J. D.; Yoon, Chong S.; Kim, D. Y.; Park, C. S.

    2011-11-07

    The p-type InMnP:Be epilayers were prepared by the sequential growth of Mn/InP:Be bilayers using molecular-beam-epitaxy and the subsequent in-situ annealing at 200-300 deg. C. In triple-axis x-ray diffraction patterns, the samples revealed a shoulder peak indicative of intrinsic InMnP. The ferromagnetic transition in InMnP:Be was observed to occur at the elevated temperature of {approx}140 K, and the ferromagnetic spin-domains clearly appeared in magnetic force microscopy images. The improved ferromagnetic properties are attributed to the increased p-d hybridation due to high p-type conductivity of InMnP:Be (p {approx} 10{sup 20 }cm{sup -3}). The results suggest that enhanced ferromagnetism can be effectively obtained from Be-codoped InMnP.

  12. Domain formation due to surface steps in topological insulator Bi{sub 2}Te{sub 3} thin films grown on Si (111) by molecular beam epitaxy

    SciTech Connect (OSTI)

    Borisova, S.; Kampmeier, J.; Mussler, G.; Grützmacher, D.; Jülich Aachen Research Alliance, Fundamentals of Future Information Technologies, Jülich 52425 ; Luysberg, M.

    2013-08-19

    The atomic structure of topological insulators Bi{sub 2}Te{sub 3} thin films on Si (111) substrates grown in van der Waals mode by molecular beam epitaxy has been investigated by in situ scanning tunneling microscopy and scanning transmission electron microscopy. Besides single and multiple quintuple layer (QL) steps, which are typical for the step-flow mode of growth, a number of 0.4 QL steps is observed. We determine that these steps originate from single steps at the substrate surface causing domain boundaries in the Bi{sub 2}Te{sub 3} film. Due to the peculiar structure of these domain boundaries the domains are stable and penetrate throughout the entire film.

  13. Generation of atomic hydrogen during radio-frequency nitrogen plasma-assisted gas-source molecular-beam epitaxy of III-V dilute nitrides

    SciTech Connect (OSTI)

    Fotkatzikis, A.; Pinault, M.-A.; Freundlich, A.

    2004-09-27

    The interaction of a typical gas-source molecular-beam epitaxy (GSMBE) environment with a radio-frequency (RF) nitrogen plasma source is investigated. In particular, a real-time in situ analysis of the evolution of the emission spectrum of an RF nitrogen plasma source, under high partial pressures of hydrogen ({approx}10{sup -5} Torr), is presented. Hydrogen, emanating from the decomposition of hydride precursors in GSMBE, results in the appearance of a sharp emission peak at the region of 656 nm in the plasma spectrum, suggesting the generation of atomic hydrogen species in the nitrogen plasma cavity. The intensity of this peak is used for a qualitative evaluation of this interaction and its evolution as a function of the RF nitrogen plasma source conditions is investigated.

  14. Room temperature photoluminescence from In{sub x}Al{sub (1?x)}N films deposited by plasma-assisted molecular beam epitaxy

    SciTech Connect (OSTI)

    Kong, W. Jiao, W. Y.; Kim, T. H.; Brown, A. S.; Mohanta, A.; Roberts, A. T.; Fournelle, J.; Losurdo, M.; Everitt, H. O.

    2014-09-29

    InAlN films deposited by plasma-assisted molecular beam epitaxy exhibited a lateral composition modulation characterized by 1012?nm diameter, honeycomb-shaped, columnar domains with Al-rich cores and In-rich boundaries. To ascertain the effect of this microstructure on its optical properties, room temperature absorption and photoluminescence characteristics of In{sub x}Al{sub (1?x)}N were comparatively investigated for indium compositions ranging from x?=?0.092 to 0.235, including x?=?0.166 lattice matched to GaN. The Stokes shift of the emission was significantly greater than reported for films grown by metalorganic chemical vapor deposition, possibly due to the phase separation in these nanocolumnar domains. The room temperature photoluminescence also provided evidence of carrier transfer from the InAlN film to the GaN template.

  15. Electrical performance of phase change memory cells with Ge{sub 3}Sb{sub 2}Te{sub 6} deposited by molecular beam epitaxy

    SciTech Connect (OSTI)

    Boschker, Jos E.; Riechert, Henning; Calarco, Raffaella; Boniardi, Mattia; Redaelli, Andrea

    2015-01-12

    Here, we report on the electrical characterization of phase change memory cells containing a Ge{sub 3}Sb{sub 2}Te{sub 6} (GST) alloy grown in its crystalline form by Molecular Beam Epitaxy (MBE). It is found that the high temperature growth on the amorphous substrate results in a polycrystalline film exhibiting a rough surface with a grain size of approximately 80150?nm. A detailed electrical characterization has been performed, including I-V characteristic curves, programming curves, set operation performance, crystallization activation at low temperature, and resistance drift, in order to determine the material related parameters. The results indicate very good alignment of the electrical parameters with the current state-of-the-art GST, deposited by physical vapor deposition. Such alignment enables a possible employment of the MBE deposition technique for chalcogenide materials in the phase change memory technology, thus leading to future studies of as-deposited crystalline chalcogenides as integrated in electrical vehicles.

  16. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See the Foundry's full equipment list Organic and Macromolecular Synthesis Capabilities & Tools Instrument Scheduler Major Instruments and Capabilities AB SCIEX TF4800 MALDI TOF-TOF Mass Spectrometer This instrument is the tandem time-of-flight mass spectrometer systems, providing the excellent level of molecular mass coverage in the range of molecular masses 500 and 150,000 Da, high throughput, and confidence in both qualitative and quantitative analyses. The analyzer combines all of the

  17. CROSSED MOLECULAR BEAM STUDIES OF CHEMILUMINESCENT REACTIONS: F{sub 2} + I{sub 2}, Br{sub 2} and ICl

    SciTech Connect (OSTI)

    Kahler, C.C.; Lee, Y.T.

    1980-05-01

    The chemiluminescent bimolecular halogen-halogen reactions, F{sub 2} + I{sub 2}, Br{sub 2} and ICl, have been studied by the crossed molecular beam technique. Undispersed chemiluminescence was measured as a function of collision energy and, for I{sub 2} + F{sub 2}, as a function of the two beam pressures. Although no spectra were obtained to positively identify the emitters as IF*, ClF* and BrF*, arguments are given to support this identification. The observed reaction thresholds of 4.2 and 5.9 kcal/mole for I{sub 2} + F{sub 2} and ICl + F{sub 2} , respectively, are the same as the threshold energies for production of the stable trihalogens I{sub 2}F and ClF. This coincidence of threshold energies, as well as similar high collision energy behavior, implies that the chemiluminescent reaction proceeds via a stable trihalogen intermediate. This mechanism can explain our results and the results of other workers without resorting to a symmetry forbidden four center reaction mechanism. A threshold of 11.3 kcal/mole was found for Br{sub 2} + F{sub 2} , no threshold for Br{sub 2}F has been previously reported. Laser enhancement of the I{sub 2} + F{sub 2} reaction was attempted, but no enhancement was seen.

  18. Structural anisotropic properties of a-plane GaN epilayers grown on r-plane sapphire by molecular beam epitaxy

    SciTech Connect (OSTI)

    Lotsari, A.; Kehagias, Th.; Katsikini, M.; Arvanitidis, J.; Ves, S.; Komninou, Ph.; Dimitrakopulos, G. P.; Tsiakatouras, G.; Tsagaraki, K.; Georgakilas, A.; Christofilos, D.

    2014-06-07

    Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the M-shape dependence of the (112{sup }0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults, and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.

  19. In situ synchrotron radiation photoelectron spectroscopy study of the oxidation of the Ge(100)-2 1 surface by supersonic molecular oxygen beams

    SciTech Connect (OSTI)

    Yoshigoe, Akitaka; Teraoka, Yuden; Okada, Ryuta; Yamada, Yoichi; Sasaki, Masahiro

    2014-11-07

    In situ synchrotron radiation photoelectron spectroscopy was performed during the oxidation of the Ge(100)-2 1 surface induced by a molecular oxygen beam with various incident energies up to 2.2 eV from the initial to saturation coverage of surface oxides. The saturation coverage of oxygen on the clean Ge(100) surface was much lower than one monolayer and the oxidation state of Ge was +2 at most. This indicates that the Ge(100) surface is so inert toward oxidation that complete oxidation cannot be achieved with only pure oxygen (O{sub 2}) gas, which is in strong contrast to Si surfaces. Two types of dissociative adsorption, trapping-mediated and direct dissociation, were confirmed by oxygen uptake measurements depending on the incident energy of O{sub 2}. The direct adsorption process can be activated by increasing the translational energy, resulting in an increased population of Ge{sup 2+} and a higher final oxygen coverage. We demonstrated that hyperthermal O{sub 2} beams remarkably promote the room-temperature oxidation with novel atomic configurations of oxides at the Ge(100) surface. Our findings will contribute to the fundamental understanding of oxygen adsorption processes at 300 K from the initial stages to saturated oxidation.

  20. Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Brubaker, Matt D.; Rourke, Devin M.; Sanford, Norman A.; Bertness, Kris A.; Bright, Victor M.

    2011-09-01

    Low-temperature AlN buffer layers grown via plasma-assisted molecular beam epitaxy on Si (111) were found to significantly affect the subsequent growth morphology of GaN nanowires. The AlN buffer layers exhibited nanowire-like columnar protrusions, with their size, shape, and tilt determined by the AlN V/III flux ratio. GaN nanowires were frequently observed to adopt the structural characteristics of the underlying AlN columns, including the size and the degree of tilt. Piezoresponse force microscopy and polarity-sensitive etching indicate that the AlN films and the protruding columns have a mixed crystallographic polarity. Convergent beam electron diffraction indicates that GaN nanowires are Ga-polar, suggesting that Al-polar columns are nanowire nucleation sites for Ga-polar nanowires. GaN nanowires of low density could be grown on AlN buffers that were predominantly N-polar with isolated Al-polar columns, indicating a high growth rate for Ga-polar nanowires and suppressed growth of N-polar nanowires under typical growth conditions. AlN buffer layers grown under slightly N-rich conditions (V/III flux ratio = 1.0 to 1.3) were found to provide a favorable growth surface for low-density, coalescence-free nanowires.

  1. Development and evaluation of supercritical fluid chromatography/mass spectrometry for polar and high-molecular-weight coal components. Technical progress report

    SciTech Connect (OSTI)

    Chess, E.K.; Smith, R.D.

    1986-01-01

    This Technical Progress Report reviews the technical progress made over the first 18 months of the program. Our goals include the design, development, and evaluation of a combined capillary column supercritical fluid chromatograph/high-performance mass spectrometer capable of analyzing high-molecular-weight polar materials and evaluating the system's potential for application in coal conversion process monitoring. The program includes not only the development and evaluation of the required instrumentation, but the development of polar fluids and compatible chromatographic stationary phases needed for efficient separation and analysis of polar and high-molecular-weight compounds. A new chromatograph/mass spectrometer interface and new mass spectrometer ion source have been designed, constructed, and evaluated using low-polarity supercritical fluids such as pentane. Results from the evaluations have been used to modify the instrumentation to improve performance. The design and fabrication of capillary flow restrictors from fused silica tubing has been explored. Research has also been conducted toward advancing the technology of fabricating high-performance chromatographic columns suitable for use with polar supercritical fluids. Results to date support our initial belief that high-resolution supercritical fluid chromatography (SFC)/high-performance mass spectrometry (MS) will provide a significantly enhanced analytical capability for broad classes of previously intractable fuel components. 10 refs., 13 figs.

  2. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Print Loading... You can also view the Operations Group's Beam History archives

  3. Highly charged ion secondary ion mass spectroscopy

    DOE Patents [OSTI]

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  4. Compact hydrogen/helium isotope mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  5. Effect of Ag addition to L1{sub 0} FePt and L1{sub 0} FePd films grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Tokuoka, Y.; Seto, Y.; Kato, T.; Iwata, S.

    2014-05-07

    L1{sub 0} ordered FePt-Ag (5?nm) and FePd-Ag (5?nm) films were grown on MgO (001) substrate at temperatures of 250400?C by using molecular beam epitaxy method, and their crystal and surface structures, perpendicular magnetic anisotropies and Curie temperatures were investigated. In the case of FePt-Ag, Ag addition with the amount of 1020 at.?% was effective to promote L1{sub 0} ordering and granular growth, resulting in the increase of the perpendicular magnetic anisotropy and coercivity of the FePt-Ag films. On the other hand, in the case of FePd-Ag, Ag addition changed the surface morphology from island to continuous film associated with the reductions of its coercivity and perpendicular anisotropy. The variations of lattice constants and Curie temperature with Ag addition were significantly different between FePt-Ag and FePd-Ag. For FePd-Ag, the c and a axes lattice spacings and Curie temperature gradually changed with increasing Ag content, while they unchanged for FePt-Ag. These results suggest the possibility of the formation of FePdAg alloy in FePd-Ag, while Ag segregation in FePt-Ag.

  6. Molecular-beam epitaxy of heterostructures of wide-gap II–VI compounds for low-threshold lasers with optical and electron pumping

    SciTech Connect (OSTI)

    Sorokin, S. V. Gronin, S. V.; Sedova, I. V.; Rakhlin, M. V.; Baidakova, M. V.; Kop’ev, P. S.; Vainilovich, A. G.; Lutsenko, E. V.; Yablonskii, G. P.; Gamov, N. A.; Zhdanova, E. V.; Zverev, M. M.; Ruvimov, S. S.; Ivanov, S. V.

    2015-03-15

    The paper presents basic approaches in designing and growing by molecular beam epitaxy of (Zn,Mg)(S,Se)-based laser heterostructures with multiple CdSe quantum dot (QD) sheets or ZnCdSe quantum wells (QW). The method of calculation of compensating short-period ZnSSe/ZnSe superlattices (SLs) in both active and waveguide regions of laser heterostructures possessing the different waveguide thickness and different number of active regions is presented. The method allowing reduction of the density of nonequilibrium point defects in the active region of the II–VI laser structures has been proposed. It utilizes the migration enhanced epitaxy mode in growing the ZnSe QW confining the CdSe QD sheet. The threshold power density as low as P{sub thr} ∼ 0.8 kW/cm{sup 2} at T = 300 K has been demonstrated for laser heterostructure with single CdSe QD sheet and asymmetric graded-index waveguide with strain-compensating SLs.

  7. Strain relaxation in GaN/Al{sub x}Ga{sub 1-x}N superlattices grown by plasma-assisted molecular-beam epitaxy

    SciTech Connect (OSTI)

    Kotsar, Y.; Bellet-Amalric, E.; Das, A.; Monroy, E.; Sarigiannidou, E.

    2011-08-01

    We have investigated the misfit relaxation process in GaN/Al{sub x}Ga{sub 1-x}N (x = 0.1, 0.3, 0.44) superlattices (SL) deposited by plasma-assisted molecular beam epitaxy. The SLs under consideration were designed to achieve intersubband absorption in the mid-infrared spectral range. We have considered the case of growth on GaN (tensile stress) and on AlGaN (compressive stress) buffer layers, both deposited on GaN-on-sapphire templates. Using GaN buffer layers, the SL remains almost pseudomorphic for x = 0.1, 0.3, with edge-type threading dislocation densities below 9 x 10{sup 8} cm{sup -2} to 2 x 10{sup 9} cm{sup -2}. Increasing the Al mole fraction to 0.44, we observe an enhancement of misfit relaxation resulting in dislocation densities above 10{sup 10} cm{sup -2}. In the case of growth on AlGaN, strain relaxation is systematically stronger, with the corresponding increase in the dislocation density. In addition to the average relaxation trend of the SL, in situ measurements indicate a periodic fluctuation of the in-plane lattice parameter, which is explained by the different elastic response of the GaN and AlGaN surfaces to the Ga excess at the growth front. The results are compared with GaN/AlN SLs designed for near-infrared intersubband absorption.

  8. Molecular beam epitaxy of ZnSSe/CdSe short-period superlattices for III–V/II–VI multijunction solar cells

    SciTech Connect (OSTI)

    Sorokin, S. V. Gronin, S. V.; Sedova, I. V.; Klimko, G. V.; Evropeitsev, E. A.; Baidakova, M. V.; Sitnikova, A. A.; Toropov, A. A.; Ivanov, S. V.

    2015-08-15

    Results on the molecular-beam epitaxy growth of short-period alternately-strained ZnS{sub x}Se{sub 1−x}/CdSe superlattices which are pseudomorphic to GaAs (001) substrates and possess effective band-gap values within the range of E{sub g} ≈ 2.5–2.7 eV are presented. Oscillations of the specular-spot intensity in reflection high-energy electron diffraction are used for in situ control of the superlattice parameters. A method to determine the SL parameters (compositions and thicknesses of the constituent layers) based on combined analysis of the grown structures by low-temperature photoluminescence and X-ray diffractometry is developed. It is found that the parameters of the grown ZnS{sub x}Se{sub 1−x}/CdSe superlattices are close to their design values and the density of extended defects in the structures is low even though the structure thickness (∼300 nm) considerably exceeds the critical thickness for bulk II–VI layers with the same lattice-constant mismatch.

  9. Self-catalyzed growth of dilute nitride GaAs/GaAsSbN/GaAs core-shell nanowires by molecular beam epitaxy

    SciTech Connect (OSTI)

    Kasanaboina, Pavan Kumar; Ahmad, Estiak; Li, Jia; Iyer, Shanthi; Reynolds, C. Lewis; Liu, Yang

    2015-09-07

    Bandgap tuning up to 1.3 μm in GaAsSb based nanowires by incorporation of dilute amount of N is reported. Highly vertical GaAs/GaAsSbN/GaAs core-shell configured nanowires were grown for different N contents on Si (111) substrates using plasma assisted molecular beam epitaxy. X-ray diffraction analysis revealed close lattice matching of GaAsSbN with GaAs. Micro-photoluminescence (μ-PL) revealed red shift as well as broadening of the spectra attesting to N incorporation in the nanowires. Replication of the 4K PL spectra for several different single nanowires compared to the corresponding nanowire array suggests good compositional homogeneity amongst the nanowires. A large red shift of the Raman spectrum and associated symmetric line shape in these nanowires have been attributed to phonon localization at point defects. Transmission electron microscopy reveals the dominance of stacking faults and twins in these nanowires. The lower strain present in these dilute nitride nanowires, as opposed to GaAsSb nanowires having the same PL emission wavelength, and the observation of room temperature PL demonstrate the advantage of the dilute nitride system offers in the nanowire configuration, providing a pathway for realizing nanoscale optoelectronic devices in the telecommunication wavelength region.

  10. Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy

    SciTech Connect (OSTI)

    Mary?ski, A.; S?k, G.; Musia?, A.; Andrzejewski, J.; Misiewicz, J.; Gilfert, C.; Reithmaier, J. P.; Capua, A.; Karni, O.; Gready, D.; Eisenstein, G.; Atiya, G.; Kaplan, W. D.; Klling, S.

    2013-09-07

    The optical and structural properties of a new kind of InAs/InGaAlAs/InP quantum dot (QD)-like objects grown by molecular beam epitaxy have been investigated. These nanostructures were found to have significantly more symmetrical shapes compared to the commonly obtained dash-like geometries typical of this material system. The enhanced symmetry has been achieved due to the use of an As{sub 2} source and the consequent shorter migration length of the indium atoms. Structural studies based on a combination of scanning transmission electron microscopy (STEM) and atom probe tomography (APT) provided detailed information on both the structure and composition distribution within an individual nanostructure. However, it was not possible to determine the lateral aspect ratio from STEM or APT. To verify the in-plane geometry, electronic structure calculations, including the energy levels and transition oscillator strength for the QDs have been performed using an eight-band kp model and realistic system parameters. The results of calculations were compared to measured polarization-resolved photoluminescence data. On the basis of measured degree of linear polarization of the surface emission, the in-plane shape of the QDs has been assessed proving a substantial increase in lateral symmetry. This results in quantum-dot rather than quantum-dash like properties, consistent with expectations based on the growth conditions and the structural data.

  11. First-principles studies on molecular beam epitaxy growth of GaAs1-xBix

    SciTech Connect (OSTI)

    Luo, Guangfu; Yang, Shujiang; Li, Jincheng; Arjmand, Mehrdad; Szlufarska, Izabela; Brown, April S.; Kuech, Thomas F.; Morgan, Dane

    2015-07-14

    We investigate the molecular beam epitaxy (MBE) growth of GaAs1-xBix film using density functional theory with spin-orbit coupling to understand the growth of this film, especially the mechanisms of Bi incorporation. We study the stable adsorption structures and kinetics of the incident molecules (As? molecule, Ga atom, Bi atom, and Bi? molecule) on the (2 x 1)-Gasub||Bi surface and a proposed q(1 x 1)-Gasub||AsAs surface has a quasi-(1 x 1) As layer above the Ga-terminated GaAs substrate and a randomly oriented As dimer layer on top. We obtain the desorption and diffusion barriers of the adsorbed molecules and also the reaction barriers of three key processes related to Bi evolution, namely, Bi incorporation, As/Bi exchange, and Bi clustering. The results help explain the experimentally observed dependence of Bi incorporation on the As/Ga ratio and growth temperature. Furthermore, we find that As? exchange with Bi of the (2 x 1)-Gasub||Bi surface is a key step controlling the kinetics of the Bi incorporation. Finally, we explore two possible methods to enhance the Bi incorporation, namely, replacing the MBE growth mode from codeposition of all fluxes with a sequential deposition of fluxes and applying asymmetric in-plane strain to the substrate.

  12. Photochemical Properties, Composition, and Structure in Molecular Beam Epitaxy Grown Fe Doped and (Fe,N) Codoped Rutile TiO2(110)

    SciTech Connect (OSTI)

    Mangham, Andrew N.; Govind, Niranjan; Bowden, Mark E.; Shutthanandan, V.; Joly, Alan G.; Henderson, Michael A.; Chambers, Scott A.

    2011-08-11

    We have investigated the surface photochemical properties of Fe "doped" and (Fe,N) co-doped homoepitaxial rutile TiO2 (110) films grown by plasma assisted molecular beam epitaxy. Fe does not incorporate as an electronic dopant in the rutile lattice, but rather segregates to the film surface. However, co-deposition of Fe with N enhances the solubility of Fe, and DFT calculations suggest that co-dopant complex formation is the driving force behind the enhanced solubility. The co-doped films, in which a few atomic percent of Ti (O) are replaced with Fe (N), exhibit significant disorder compared to undoped films grown under the same conditions, presumably due to dopant-induced strain. Co-doping redshifts the rutile bandgap into the visible. However, the film surfaces are photochemically inert with respect to hole-mediated decomposition of adsorbed trimethyl acetate. The absence of photochemical activity may result from dopant-induced trap and/or recombination sites within the film. This study indicates that enhanced visible light absorptivity in TiO2 does not necessarily result in visible light initiated surface photochemistry.

  13. X-ray magnetic circular dichroism for Co{sub x}Fe{sub 4?x}N (x?=?0, 3, 4) films grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Ito, Keita; Sanai, Tatsunori; Yasutomi, Yoko; Toko, Kaoru; Suemasu, Takashi; Zhu, Siyuan; Kimura, Akio; Takeda, Yukiharu; Saitoh, Yuji

    2014-05-07

    We evaluated orbital (m{sub orb}) and spin magnetic moments (m{sub spin}) of Co{sub x}Fe{sub 4?x}N (x?=?0, 3, 4) epitaxial thin films grown by molecular beam epitaxy using x-ray magnetic circular dichroism, and discussed the dependence of these values on x. Site-averaged m{sub spin} value of Fe atoms was deduced to be 1.91??{sub B} per atom, and that of Co atoms to be 1.47??{sub B} per atom in Co{sub 3}FeN at 300?K. These values are close to 1.87??{sub B} per Fe atom in Fe{sub 4}N and 1.43??{sub B} per Co atom in Co{sub 4}N, respectively. This result implies that the Fe and Co atoms in the Co{sub 3}FeN films were located both at corner and face-centered sites in the anti-perovskite lattice. Spin magnetic moments per unit cell were decreased linearly with increasing x in Co{sub x}Fe{sub 4?x}N. This tendency is in good agreement with theory predicted by the first-principle calculation.

  14. Enhanced internal quantum efficiency and light extraction efficiency from textured GaN/AlGaN quantum wells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Cabalu, J.S.; Thomidis, C.; Moustakas, T.D.; Riyopoulos, S.; Zhou Lin; Smith, David J.

    2006-03-15

    GaN/Al{sub 0.2}Ga{sub 0.8}N multiple quantum wells (MQWs) were grown by molecular beam epitaxy on randomly textured and atomically smooth (0001) GaN templates. Smooth and textured GaN templates were deposited on (0001) sapphire substrates by varying the III/V ratio and the substrate temperature during growth by the hydride vapor-phase epitaxy method. We find that the MQWs replicate the texture of the GaN template, which was found to have a Gaussian distribution. The peak photoluminescence intensity from the textured MQWs is always higher than from the smooth MQWs and for GaN (7 nm)/Al{sub 0.2}Ga{sub 0.8}N (8 nm) MQWs, it is 700 times higher than that from similarly produced MQWs on smooth GaN templates. This result is attributed partly to the enhancement in light extraction efficiency and partly to the enhancement in internal quantum efficiency. The origin of the increase in internal quantum efficiency is partly due to the reduction of the quantum-confined Stark effect, since the polarization vector intersects the quantum well (QW) planes at angles smaller than 90 deg. , and partly due to the charge redistribution in the QWs caused by the polarization component parallel to the planes of the QWs.

  15. Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods

    SciTech Connect (OSTI)

    Barate, P.; Zhang, T. T.; Vidal, M.; Renucci, P.; Marie, X.; Amand, T.; Liang, S.; Devaux, X.; Hehn, M.; Mangin, S.; Lu, Y.; Frougier, J.; Jaffrs, H.; George, J. M.; Zheng, Y.; Tao, B.; Han, X. F.

    2014-07-07

    An efficient electrical spin injection into an InGaAs/GaAs quantum well light emitting diode is demonstrated thanks to a CoFeB/MgO spin injector. The textured MgO tunnel barrier is fabricated by two different techniques: sputtering and molecular beam epitaxy. The maximal spin injection efficiency is comparable for both methods. Additionally, the effect of annealing is also investigated for the two types of samples. Both samples show the same trend: an increase of the electroluminescence circular polarization (P{sub c}) with the increase of annealing temperature, followed by a saturation of P{sub c} beyond 350?C annealing. Since the increase of P{sub c} starts well below the crystallization temperature of the full CoFeB bulk layer, this trend could be mainly due to an improvement of chemical structure at the top CoFeB/MgO interface. This study reveals that the control of CoFeB/MgO interface is essential for an optimal spin injection into semiconductor.

  16. Improved Performance of GaInNAs Solar Cells Grown by Molecular-Beam Epitaxy Using Increased Growth Rate Instead of Surfactants

    SciTech Connect (OSTI)

    Ptak, A. J.; France, R.; Jiang, C. S.; Romero, M. J.

    2009-01-01

    GaInNAs is potentially useful for increasing the conversion efficiency of multijunction solar cells if low photocurrents and photovoltages can be increased. Wide-depletion width devices generate significant photocurrents using an n-i-p structure grown by molecular-beam epitaxy, but these wide depletion widths are only realized in a region of parameter space that leads to rough surface morphologies. Surfactants are effective at reducing the surface roughness, but lead to increased defect densities and changes in the net acceptor or donor concentration. Here, we show that increasing the growth rate of GaInNAs solar cells leads to smooth surfaces without the use of a surfactant, even at high In compositions and substrate temperatures. No degradation in material quality is observed when increasing the growth rate from 1.5 to 3.0 {micro}m/h, but a shunt resistance does appear for the high-growth-rate samples. This shunt is attributed to increased spitting of the Ga cell, leading to an increase in the oval defect density, at the higher effusion cell temperatures used to achieve high growth rates. As with the case of Bi in GaInNAs, increased growth rates also appear to increase the net donor concentration, but it is not clear if these effects have the same cause.

  17. Beam-beam simulations for separated beams

    SciTech Connect (OSTI)

    Furman, Miguel A.

    2000-04-10

    We present beam-beam simulation results from a strong-strong gaussian code for separated beams for the LHC and RHIC. The frequency spectrum produced by the beam-beam collisions is readily obtained and offers a good opportunity for experimental comparisons. Although our results for the emittance blowup are preliminary, we conclude that, for nominal parameter values, there is no significant difference between separated beams and center-on-center collisions.

  18. Structural, morphological, and magnetic characterization of In{sub 1-x}Mn{sub x}As quantum dots grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Ferri, F. A.; Marega, E. Jr.; Coelho, L. N.; Kunets, V. P.; Salamo, G. J.

    2012-08-01

    In this paper, we present a method to order low temperature (LT) self-assembled ferromagnetic In{sub 1-x}Mn{sub x}As quantum dots (QDs) grown by molecular beam epitaxy (MBE). The ordered In{sub 1-x}Mn{sub x}As QDs were grown on top of a non-magnetic In{sub 0.4}Ga{sub 0.6}As/GaAs(100) QDs multi-layered structure. The modulation of the chemical potential, due to the stacking, provides a nucleation center for the LT In{sub 1-x}Mn{sub x}As QDs. For particular conditions, such as surface morphology and growth conditions, the In{sub 1-x}Mn{sub x}As QDs align along lines like chains. This work also reports the characterization of QDs grown on plain GaAs(100) substrates, as well as of the ordered structures, as function of Mn content and growth temperature. The substitutional Mn incorporation in the InAs lattice and the conditions for obtaining coherent and incoherent structures are discussed from comparison between Raman spectroscopy and x-ray analysis. Ferromagnetic behavior was observed for all structures at 2 K. We found that the magnetic moment axis changes from [110] in In{sub 1-x}Mn{sub x}As over GaAs to [1-10] for the ordered In{sub 1-x}Mn{sub x}As grown over GaAs template.

  19. Molecular Characterization of Organosulfates in Organic Aerosols from Shanghai and Los Angeles Urban Areas by Nanospray-Desorption Electrospray Ionization High-Resolution Mass Spectrometry

    SciTech Connect (OSTI)

    Tao, Shikang; Lu, Xiaohui; Levac, Nicole A.; Bateman, Adam P.; Nguyen, Tran B.; Bones, David L.; Nizkorodov, Sergey; Laskin, Julia; Laskin, Alexander; Yang, Xin

    2014-08-21

    Aerosol samples collected in the urban areas of Shanghai and Los Angeles were analyzed by nanospray-desorption electrospray ionization mass spectrometry (nano-DESI MS) with high mass resolution (m/?m=100,000). Solvent mixtures of acetonitrile/water and acetonitrile/toluene were used to extract and ionize polar and non-polar compounds, respectively. A diverse mixture of oxygenated hydrocarbons, organosulfates, organonitrates, and organics with reduced nitrogen were detected in the Los Angeles sample. Majority of the organics in the Shanghai sample were detected as organosulfates. The dominant organosulfates in the two samples have distinctly different molecular characteristics. Specifically, organosulfates in the Los Angeles sample were dominated by isoprene- or monoterpene-derived products, while organosulfates of yet unknown origin in the Shanghai sample had distinctive characteristics of long aliphatic carbon chains and low degree of oxidation and unsaturation. The use of acetonitrile/toluene solvent facilitated identification of this type of organosulfates, suggesting they could be missed in previous studies relying on sample extraction using common polar solvents. The high molecular weight and low degree of unsaturation and oxidization of the organosulfates detected in the Shanghai sample suggest that they may act as surfactants, and plausibly affect the surface tension and hygroscopicity of the atmospheric particulate matter. We propose that direct esterification of carbonyl or hydroxyl compounds by sulfates or sulfuric acid in liquid phase could be the formation pathway of these special organosulfates. Long-chain alkanes from vehicle emissions might be their precursors.

  20. High-energy accelerator for beams of heavy ions

    DOE Patents [OSTI]

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  1. Electrostatic ion beam trap for electron collision studies

    SciTech Connect (OSTI)

    Heber, O.; Witte, P.D.; Diner, A.; Bhushan, K.G.; Strasser, D.; Toker, Y.; Rappaport, M.L.; Ben-Itzhak, I.; Altstein, N.; Schwalm, D.; Wolf, A.; Zajfman, D.

    2005-01-01

    We describe a system combining an ion beam trap and a low energy electron target in which the interaction between electrons and vibrationally cold molecular ions and clusters can be studied. The entire system uses only electrostatic fields for both trapping and focusing, thus being able to store particles without a mass limit. Preliminary results for the electron impact neutralization of C{sub 2}{sup -} ions and aluminum clusters are presented.

  2. Co: clqrt. Beam

    Office of Legacy Management (LM)

    Co: clqrt. Beam*/:

  3. Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Masuda, T; Tomasulo, S; Lang, JR; Lee, ML

    2015-03-07

    We have investigated similar to 2.0 eV (AlxGa1-x)(0.51)In0.49P and similar to 1.9 eV Ga0.51In0.49P single junction solar cells grown on both on-axis and misoriented GaAs substrates by molecular beam epitaxy (MBE). Although lattice-matched (AlxGa1-x)(0.51)In0.49P solar cells are highly attractive for space and concentrator photovoltaics, there have been few reports on the MBE growth of such cells. In this work, we demonstrate open circuit voltages (V-oc) ranging from 1.29 to 1.30 V for Ga0.51In0.49P cells, and 1.35-1.37 V for (AlxGa1-x)(0.51)In0.49P cells. Growth on misoriented substrates enabled the bandgap-voltage offset (W-oc = E-g/q - V-oc) of Ga0.51In0.49P cells to decrease from similar to 575 mV to similar to 565 mV, while that of (AlxGa1-x)(0.51)In0.49P cells remained nearly constant at 620 mV. The constant Woc as a function of substrate offcut for (AlxGa1-x)(0.51)In0.49P implies greater losses from non-radiative recombination compared with the Ga0.51In0.49P devices. In addition to larger Woc values, the (AlxGa1-x)(0.51)In0.49P cells exhibited significantly lower internal quantum efficiency (IQE) values than Ga0.51In0.49P cells due to recombination at the emitter/window layer interface. A thin emitter design is experimentally shown to be highly effective in improving IQE, particularly at short wavelengths. Our work shows that with further optimization of both cell structure and growth conditions, MBE-grown (AlxGa1-x)(0.51)In0.49P will be a promising wide-bandgap candidate material for high-efficiency, lattice-matched multi-junction solar cells. (C) 2015 AIP Publishing LLC.

  4. Effect of InGaAs interlayer on the properties of GaAs grown on Si (111) substrate by molecular beam epitaxy

    SciTech Connect (OSTI)

    Wen, Lei; Gao, Fangliang; Li, Jingling; Guan, Yunfang; Wang, Wenliang; Zhou, Shizhong; Lin, Zhiting; Zhang, Xiaona; Zhang, Shuguang E-mail: mssgzhang@scut.edu.cn; Li, Guoqiang E-mail: mssgzhang@scut.edu.cn

    2014-11-21

    High-quality GaAs films have been epitaxially grown on Si (111) substrates by inserting an In{sub x}Ga{sub 1−x}As interlayer with proper In composition by molecular beam epitaxy (MBE). The effect of In{sub x}Ga{sub 1−x}As (0 < x < 0.2) interlayers on the properties of GaAs films grown on Si (111) substrates by MBE has been studied in detailed. Due to the high compressive strain between InGaAs and Si, InGaAs undergoes partial strain relaxation. Unstrained InGaAs has a larger lattice constant than GaAs. Therefore, a thin InGaAs layer with proper In composition may adopt a close lattice constant with that of GaAs, which is beneficial to the growth of high-quality GaAs epilayer on top. It is found that the proper In composition in In{sub x}Ga{sub 1−x}As interlayer of 10% is beneficial to obtaining high-quality GaAs films, which, on the one hand, greatly compensates the misfit stress between GaAs film and Si substrate, and on the other hand, suppresses the formation of multiple twin during the heteroepitaxial growth of GaAs film. However, when the In composition does not reach the proper value (∼10%), the In{sub x}Ga{sub 1−x}As adopts a lower strain relaxation and undergoes a lattice constant smaller than unstrained GaAs, and therefore introduces compressive stress to GaAs grown on top. When In composition exceeds the proper value, the In{sub x}Ga{sub 1−x}As will adopt a higher strain relaxation and undergoes a lattice constant larger than unstrained GaAs, and therefore introduces tensile stress to GaAs grown on top. As a result, In{sub x}Ga{sub 1−x}As interlayers with improper In composition introduces enlarged misfit stress to GaAs epilayers grown on top, and deteriorates the quality of GaAs epilayers. This work demonstrates a simple but effective method to grow high-quality GaAs epilayers and brings up a broad prospect for the application of GaAs-based optoelectronic devices on Si substrates.

  5. GAS KINEMATICS AND THE DRAGGED MAGNETIC FIELD IN THE HIGH-MASS MOLECULAR OUTFLOW SOURCE G192.16-3.84: AN SMA VIEW

    SciTech Connect (OSTI)

    Liu Hauyu Baobab; Ho, Paul T. P.; Qiu Keping; Zhang Qizhou; Girart, Josep M.

    2013-07-01

    We report Submillimeter Array (SMA) observations of polarized 0.88 mm thermal dust emission and various molecular line transitions toward the early B-type (L{sub *} {approx} 2 Multiplication-Sign 10{sup 3} L{sub Sun }) star-forming region G192.16-3.84 (IRAS 05553+1631). The peak of the continuum Stokes-I emission coincides with a hot rotating disk/envelope (SO{sub 2} rotational temperature T{sub rot}{sup SO{sub 2}}{approx}84{sup +18}{sub -13} K), with a north-south velocity gradient. Joint analysis of the rotation curve traced by HCO{sup +} 4-3 and SO{sub 2} 19{sub 1,19}-18{sub 0,18} suggests that the dense molecular gas is undergoing a spinning-up rotation, marginally bound by the gravitational force of an enclosed mass M{sub *+gas+dust} {approx} 11.2-25.2 M{sub Sun }. Perpendicular to the rotational plane, a {approx}>100/cos (i) km s{sup -1} (i {approx} 63 Degree-Sign ) high velocity molecular jet and a {approx}15-20 km s{sup -1} expanding biconical cavity were revealed in the CO 3-2 emission. The polarization percentage of the 0.88 mm continuum emission decreases toward the central rotating disk/envelope. The polarization angle in the inner {approx}2'' (0.015 pc) disk/envelope is perpendicular to the plane of the rotation. The magnetic field lines, which are predominantly in the toroidal direction along the disk plane, are likely to be dragged by the gravitationally accelerated rotation.

  6. Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Masuda, Taizo Tomasulo, Stephanie; Lang, Jordan R.; Lee, Minjoo Larry

    2015-03-07

    We have investigated ∼2.0 eV (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P and ∼1.9 eV Ga{sub 0.51}In{sub 0.49}P single junction solar cells grown on both on-axis and misoriented GaAs substrates by molecular beam epitaxy (MBE). Although lattice-matched (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P solar cells are highly attractive for space and concentrator photovoltaics, there have been few reports on the MBE growth of such cells. In this work, we demonstrate open circuit voltages (V{sub oc}) ranging from 1.29 to 1.30 V for Ga{sub 0.51}In{sub 0.49}P cells, and 1.35–1.37 V for (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P cells. Growth on misoriented substrates enabled the bandgap-voltage offset (W{sub oc} = E{sub g}/q − V{sub oc}) of Ga{sub 0.51}In{sub 0.49}P cells to decrease from ∼575 mV to ∼565 mV, while that of (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P cells remained nearly constant at 620 mV. The constant W{sub oc} as a function of substrate offcut for (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P implies greater losses from non-radiative recombination compared with the Ga{sub 0.51}In{sub 0.49}P devices. In addition to larger W{sub oc} values, the (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P cells exhibited significantly lower internal quantum efficiency (IQE) values than Ga{sub 0.51}In{sub 0.49}P cells due to recombination at the emitter/window layer interface. A thin emitter design is experimentally shown to be highly effective in improving IQE, particularly at short wavelengths. Our work shows that with further optimization of both cell structure and growth conditions, MBE-grown (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P will be a promising wide-bandgap candidate material for high-efficiency, lattice-matched multi-junction solar cells.

  7. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  8. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  9. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Transport A simplified drawing of the beam transport system from the linac to Target-1 (Lujan Center), Target-2 (Blue Room) and Target-4 is shown below. In usual operation ...

  10. Simulation of dependence of the cross section of deuterons beam fragmentation into cumulative pions and protons on the mass of the target nucleus

    SciTech Connect (OSTI)

    Litvinenko, A. G.; Litvinenko, E. I.

    2015-03-15

    We have studied the mechanisms influencing production of cumulative pions and protons in the fragmentation of the incident deuterons into cumulative pions and protons emitted at zero angle. We argue that the peripheral dependence on the atomic mass of the target nucleus, which was obtained in the experiments for medium and heavy nuclei, can be explained by scattering on target nucleons without introducing additional parameters.

  11. Impact of substrate temperature on the structural and optical properties of strain-balanced InAs/InAsSb type-II superlattices grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Liu, Shi; Li, Hua; Cellek, Oray O.; Ding, Ding; Lin, Zhi-Yuan; Steenbergen, Elizabeth H.; He, Zhao-Yu; Johnson, Shane R.; Zhang, Yong-Hang; Center for Photonics Innovation, Arizona State University, Tempe, Arizona 85287 ; Shen, Xiao-Meng; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 ; Fan, Jin; Smith, David J.; Department of Physics, Arizona State University, Tempe, Arizona 85287 ; Lu, Jing

    2013-02-18

    Molecular beam epitaxial growth of strain-balanced InAs/InAs{sub 1-x}Sb{sub x} type-II superlattices on GaSb substrates has been investigated for substrate temperatures from 400 Degree-Sign C to 450 Degree-Sign C. The Sb composition is found to vary linearly with substrate temperature at constant V/III ratios. For samples grown at the optimized substrate temperature (410 Degree-Sign C), superlattice zero-order peak full-width at half-maximums are routinely less than 25 arc sec using high-resolution X-ray diffraction. Cross-sectional transmission electron microscopy images show the absence of any visible defects. Strong photoluminescence covers a wavelength range from 5.5 to 13 {mu}m at 12 K. Photoluminescence linewidth simulations show satisfactory agreement with experiments.

  12. Role of an ultra-thin AlN/GaN superlattice interlayer on the strain engineering of GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy

    SciTech Connect (OSTI)

    Shen, X. Q.; Takahashi, T.; Matsuhata, H.; Ide, T.; Shimizu, M.; Rong, X.; Chen, G.; Wang, X. Q.; Shen, B.

    2013-12-02

    We investigate the role of an ultra-thin AlN/GaN superlattice interlayer (SL-IL) on the strain engineering of the GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy. It is found that micro-cracks limitted only at the SL-IL position are naturally generated. These micro-cracks play an important role in relaxing the tensile strain caused by the difference of the coefficient of thermal expansion between GaN and Si and keeping the residual strain in the crack-free GaN epilayers resulted from the SL-IL during the growth. The mechanism understanding of the strain modulation by the SL-IL in the GaN epilayers grown on Si substrates makes it possible to design new heterostructures of III-nitrides for optic and electronic device applications.

  13. High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy

    SciTech Connect (OSTI)

    Lang, J. R.; Neufeld, C. J.; Hurni, C. A.; Cruz, S. C.; Matioli, E.; Mishra, U. K.; Speck, J. S.

    2011-04-01

    High external quantum efficiency (EQE) p-i-n heterojunction solar cellsgrown by NH3 -based molecular beam epitaxy are presented. EQE values including optical losses are greater than 50% with fill-factors over 72% when illuminated with a 1 sun AM0 spectrum. Optical absorptionmeasurements in conjunction with EQE measurements indicate an internal quantum efficiency greater than 90% for the InGaN absorbing layer. By adjusting the thickness of the top p-type GaN window contact layer, it is shown that the short-wavelength (<365 nm) quantum efficiency is limited by the minority carrier diffusion length in highly Mg-doped p-GaN.

  14. Two-dimensional weak anti-localization in Bi{sub 2}Te{sub 3} thin film grown on Si(111)-(7 Multiplication-Sign 7) surface by molecular beam epitaxy

    SciTech Connect (OSTI)

    Roy, Anupam; Guchhait, Samaresh; Sonde, Sushant; Dey, Rik; Pramanik, Tanmoy; Rai, Amritesh; Movva, Hema C. P.; Banerjee, Sanjay K. [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)] [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States); Colombo, Luigi [Texas Instruments, 12500 TI Boulevard, Dallas, Texas 75266 (United States)] [Texas Instruments, 12500 TI Boulevard, Dallas, Texas 75266 (United States)

    2013-04-22

    We report on low temperature transport studies of Bi{sub 2}Te{sub 3} topological insulator thin films grown on Si(111)-(7 Multiplication-Sign 7) surface by molecular beam epitaxy. A sharp increase in the magnetoresistance with magnetic field at low temperature indicates the existence of weak anti-localization. The measured weak anti-localization effect agrees well with the Hikami-Larkin-Nagaoka model, and the extracted phase coherence length shows a power-law dependence with temperature indicating the existence of a two-dimensional system. An insulating ground state has also been observed at low temperature showing a logarithmic divergence of the resistance that appears to be the influence of electron-electron interaction in a two-dimensional system.

  15. Spin and orbital magnetic moments of molecular beam epitaxy {gamma}{sup '}-Fe{sub 4}N films on LaAlO{sub 3}(001) and MgO(001) substrates by x-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Ito, K.; Lee, G. H.; Harada, K.; Suzuno, M.; Suemasu, T.; Takeda, Y.; Saitoh, Y.; Ye, M.; Kimura, A.; Akinaga, H.

    2011-03-07

    10-nm-thick {gamma}{sup '}-Fe{sub 4}N films were grown epitaxially on LaAlO{sub 3}(001) and MgO(001) substrates by molecular beam epitaxy using solid Fe and a radio-frequency NH{sub 3} plasma. The lattice mismatch of these substrates to {gamma}{sup '}-Fe{sub 4}N is 0% and 11%, respectively. Spin and orbital magnetic moments of these {gamma}{sup '}-Fe{sub 4}N epitaxial films were deduced by x-ray magnetic circular dichroism measurements at 300 K. The total magnetic moments are almost the same for the two substrates, that is, 2.44{+-}0.06 {mu}{sub B} and 2.47{+-}0.06 {mu}{sub B}, respectively. These values are very close to those predicted theoretically, and distinctively larger than that for {alpha}-Fe.

  16. BEAM PROPAGATOR

    Energy Science and Technology Software Center (OSTI)

    003691MLTPL00 Beam Propagator for Weather Radars, Modules 1 and 2 http://www.exelisvis.com/ProductsServices/IDL.aspx

  17. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13

  18. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

  19. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

  20. Beam Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Test Facility Beam Test Facility Print Tuesday, 20 October 2009 09:36 Coming Soon

  1. Critical thickness for strain relaxation of Ge{sub 1−x}Sn{sub x} (x ≤ 0.17) grown by molecular beam epitaxy on Ge(001)

    SciTech Connect (OSTI)

    Wang, Wei; Zhou, Qian; Dong, Yuan; Yeo, Yee-Chia; Tok, Eng Soon

    2015-06-08

    We investigated the critical thickness (h{sub c}) for plastic relaxation of Ge{sub 1−x}Sn{sub x} grown by molecular beam epitaxy. Ge{sub 1−x}Sn{sub x} films with various Sn mole fraction x (x ≤ 0.17) and different thicknesses were grown on Ge(001). The strain relaxation of Ge{sub 1−x}Sn{sub x} films and the h{sub c} were investigated by high-resolution x-ray diffraction and reciprocal space mapping. It demonstrates that the measured h{sub c} values of Ge{sub 1−x}Sn{sub x} layers are as much as an order of magnitude larger than that predicted by the Matthews and Blakeslee (M-B) model. The People and Bean (P-B) model was also used to predict the h{sub c} values in Ge{sub 1−x}Sn{sub x}/Ge system. The measured h{sub c} values for various Sn content follow the trend, but slightly larger than that predicted by the P-B model.

  2. Plasma assisted molecular beam epitaxy growth and effect of varying buffer thickness on the formation of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructure on Si(111)

    SciTech Connect (OSTI)

    Chowdhury, Subhra; Biswas, Dhrubes

    2015-02-23

    This work reports on the detailed plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructures on Si(111) substrate with three different buffer thickness (600?nm, 400?nm, and 200?nm). Growth through critical optimization of growth conditions is followed by the investigation of impact of varying buffer thickness on the formation of ultra-thin 1.5?nm, In{sub 0.17}Al{sub 0.83}N1.25?nm, GaN1.5?nm, In{sub 0.17}Al{sub 0.83}N heterostructure, in terms of threading dislocation (TD) density. Analysis reveals a drastic reduction of TD density from the order 10{sup 10?}cm{sup ?2} to 10{sup 8?}cm{sup ?2} with increasing buffer thickness resulting smooth ultra-thin active region for thick buffer structure. Increasing strain with decreasing buffer thickness is studied through reciprocal space mapping analysis. Surface morphology through atomic force microscopy analysis also supports our study by observing an increase of pits and root mean square value (0.89?nm, 1.2?nm, and 1.45?nm) with decreasing buffer thickness which are resulted due to the internal strain and TDs.

  3. Investigation of high hole mobility In{sub 0.41}Ga{sub 0.59}Sb/Al{sub 0.91}Ga{sub 0.09}Sb quantum well structures grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Wang, Juan; Xing, Jun-Liang; Xiang, Wei; Wang, Guo-Wei; Xu, Ying-Qiang; Ren, Zheng-Wei; Niu, Zhi-Chuan

    2014-02-03

    Modulation-doped In{sub 0.41}Ga{sub 0.59}Sb/Al{sub 0.91}Ga{sub 0.09}Sb quantum-well (QW) structures were grown by molecular beam epitaxy. Cross-sectional transmission electron microscopy and atomic force microscopy studies show high crystalline quality and smooth surface morphology. X-ray diffraction investigations confirm 1.94% compressive strain within In{sub 0.41}Ga{sub 0.59}Sb channel. High room temperature hole mobility with high sheet density of 1000 cm{sup 2}/Vs, 0.877??10{sup 12}/cm{sup 2}, and 965 cm{sup 2}/Vs, 1.112??10{sup 12}/cm{sup 2} were obtained with different doping concentrations. Temperature dependent Hall measurements show different scattering mechanisms on hole mobility at different temperature range. The sheet hole density keeps almost constantly from 300?K to 77?K. This study shows great potential of In{sub 0.41}Ga{sub 0.59}Sb/Al{sub 0.91}Ga{sub 0.09}Sb QW for high-hole-mobility device applications.

  4. THE DARK MOLECULAR GAS

    SciTech Connect (OSTI)

    Wolfire, Mark G.; Hollenbach, David; McKee, Christopher F. E-mail: dhollenbach@seti.or

    2010-06-20

    The mass of molecular gas in an interstellar cloud is often measured using line emission from low rotational levels of CO, which are sensitive to the CO mass, and then scaling to the assumed molecular hydrogen H{sub 2} mass. However, a significant H{sub 2} mass may lie outside the CO region, in the outer regions of the molecular cloud where the gas-phase carbon resides in C or C{sup +}. Here, H{sub 2} self-shields or is shielded by dust from UV photodissociation, whereas CO is photodissociated. This H{sub 2} gas is 'dark' in molecular transitions because of the absence of CO and other trace molecules, and because H{sub 2} emits so weakly at temperatures 10 K molecular component. This component has been indirectly observed through other tracers of mass such as gamma rays produced in cosmic-ray collisions with the gas and far-infrared/submillimeter wavelength dust continuum radiation. In this paper, we theoretically model this dark mass and find that the fraction of the molecular mass in this dark component is remarkably constant ({approx}0.3 for average visual extinction through the cloud A-bar{sub V{approx_equal}}8) and insensitive to the incident ultraviolet radiation field strength, the internal density distribution, and the mass of the molecular cloud as long as A-bar{sub V}, or equivalently, the product of the average hydrogen nucleus column and the metallicity through the cloud, is constant. We also find that the dark mass fraction increases with decreasing A-bar{sub V}, since relatively more molecular H{sub 2} material lies outside the CO region in this case.

  5. Dark matter beams at LBNF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Coloma, Pilar; Dobrescu, Bogdan A.; Frugiuele, Claudia; Harnik, Roni

    2016-04-08

    High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. We find that a dark matter beam produced by a Zmore » $$^{'}$$ boson in the GeV mass range is both broader and more energetic than the neutrino beam. The reach for dark matter is maximized for a detector sensitive to hard neutral-current scatterings, placed at a sizable angle off the neutrino beam axis. In the case of the Long-Baseline Neutrino Facility (LBNF), a detector placed at roughly 6 degrees off axis and at a distance of about 200 m from the target would be sensitive to Z$$^{'}$$ couplings as low as 0.05. This search can proceed symbiotically with neutrino measurements. We also show that the MiniBooNE and MicroBooNE detectors, which are on Fermilab’s Booster beamline, happen to be at an optimal angle from the NuMI beam and could perform searches with existing data. As a result, this illustrates potential synergies between LBNF and the short-baseline neutrino program if the detectors are positioned appropriately.« less

  6. CONTINUOUS EXTRACTED BEAM IN THE AGS FAST EXTERNAL BEAM LINE.

    SciTech Connect (OSTI)

    GLENN,J.W.; TSOUPAS,N.; BROWN,K.A.; BIRYUKOV,V.M.

    2001-06-18

    A method to split off a few percent of the 6 x 10{sup 13} AGS beam delivered to the Slow External Beam (SEB) lines and send it down the Fast External Beam line (FEB) has been developed. The mission is to feed a counter experiment off the FEB that directly measures the neutrino mass using the muon storage ring. The use of normal thin septum splitters would have an excessive loss overhead and been optically difficult. The AGS Slow Extraction uses a third integer resonance with sextuple strength so the resonance width is a few percent of the beam width. This results in a low density tail which will be clipped by a bent crystal and deflected into the FEB channel. This clipping off of the tail should reduce losses in the SEB transport line. Details of modeled orbits, particle distribution and extraction trajectories into and out off the crystal will be given.

  7. Structural and band alignment properties of Al{sub 2}O{sub 3} on epitaxial Ge grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy

    SciTech Connect (OSTI)

    Hudait, M. K.; Zhu, Y.; Maurya, D.; Priya, S.; Patra, P. K.; Ma, A. W. K.; Aphale, A.; Macwan, I.

    2013-04-07

    Structural and band alignment properties of atomic layer Al{sub 2}O{sub 3} oxide film deposited on crystallographically oriented epitaxial Ge grown in-situ on (100), (110), and (111)A GaAs substrates using two separate molecular beam epitaxy chambers were investigated using cross-sectional transmission microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). High-resolution triple axis x-ray measurement demonstrated pseudomorphic and high-quality Ge epitaxial layer on crystallographically oriented GaAs substrates. The cross-sectional TEM exhibited a sharp interface between the Ge epilayer and each orientation of the GaAs substrate as well as the Al{sub 2}O{sub 3} film and the Ge epilayer. The extracted valence band offset, {Delta}E{sub v}, values of Al{sub 2}O{sub 3} relative to (100), (110), and (111) Ge orientations using XPS measurement were 3.17 eV, 3.34 eV, and 3.10 eV, respectively. Using XPS data, variations in {Delta}E{sub v} related to the crystallographic orientation were {Delta}E{sub V}(110)Ge>{Delta}E{sub V}(100)Ge{>=}{Delta}E{sub V}(111)Ge and the conduction band offset, {Delta}E{sub c}, related to the crystallographic orientation was {Delta}E{sub c}(111)Ge>{Delta}E{sub c}(110)Ge>{Delta}E{sub c}(100)Ge using the measured {Delta}E{sub v}, bandgap of Al{sub 2}O{sub 3} in each orientation, and well-known Ge bandgap of 0.67 eV. These band offset parameters are important for future application of Ge-based p- and n-channel metal-oxide field-effect transistor design.

  8. Opto-acoustic interactions in gravitational wave detectors: Comparing flat-top beams with Gaussian beams

    SciTech Connect (OSTI)

    Gras, S.; Blair, D. G.; Ju, L.

    2010-02-15

    To reduce the thermal noise in the future generation of gravitational wave detectors, flat-top beams have been proposed to replace conventional Gaussian beams, so as to obtain better averaging over the Brownian motion of the test masses. Here, we present a detailed investigation of the unwanted opto-acoustic interactions in such interferometers, which can lead to the phenomenon of parametric instability. Our results show that the increased overlap of the Mesa beams with the test masses leads to approximately 3 times as many unstable modes in comparison to a similar interferometer with Gaussian beams.

  9. Method of deposition by molecular beam epitaxy

    DOE Patents [OSTI]

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time.

  10. Dudley Herschbach: Chemical Reactions and Molecular Beams

    Office of Scientific and Technical Information (OSTI)

    Herschbach was born in San Jose, California and studied at Stanford and Harvard. After a period on the faculty at the University of California, Berkeley (1959-1963) he returned to ...

  11. Yuan T. Lee and Molecular Beam Studies

    Office of Scientific and Technical Information (OSTI)

    of California, Berkeley (1965). After the postdoctoral year with Herschbach he joined the University of Chicago faculty (1968). In 1974 he moved to the University of California, ...

  12. Dudley Herschbach: Chemical Reactions and Molecular Beams

    Office of Scientific and Technical Information (OSTI)

    As a co-recipient of the 1986 Nobel Prize in Chemistry, 'Dudley Herschbach was cited for ... Dudley R. Herschbach, Harvard Department of Chemistry and Chemical Biology Teaching ...

  13. A molecular beam optical study of YCC

    SciTech Connect (OSTI)

    Xin, J.; Marr, A.J.; Steimle, T.C.

    1996-12-31

    A weak signal near 13395 cm{sup -1} in the low resolution laser induced fluorescence spectra of the laser ablated Y/ethylene supersonic expansion products was noted by Simard. He speculated that it may be due to yttrium dicarbide. Following up on this suggestion, the authors have detected by medium resolution LIF three red degraded bands at 12895 cm{sup -1}, 13395 cm{sup -1} and 13896 cm{sup -1} which is attributed to YCC. The resolved LIF spectra for the 12895 cm{sup -1} and 13395 cm{sup -1} band systems produce strong Stokes progressions with the features separated by approximately 560 cm{sup -1}. These are tentatively assigned to the Y-CC ground state stretching. Additional weaker features are also observed. The high resolution LIF spectrum of the 12895 cm{sup -1} band system was recorded. Attempts to model the spectrum as a A{sup 4} A{sub 1}-X{sup 2}A{sub 1} transition suggested by a recent ab initio calculation are being made. Progress on the analysis will be presented.

  14. Method of deposition by molecular beam epitaxy

    DOE Patents [OSTI]

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-01-10

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time. 9 figures.

  15. MASS SEPARATION OF HIGH ENERGY PARTICLES

    DOE Patents [OSTI]

    Marshall, L.

    1962-09-25

    An apparatus and method are described for separating charged, high energy particles of equal momentum forming a beam where the particles differ slightly in masses. Magnetic lenses are utilized to focus the beam and maintain that condition while electrostatic fields located between magnetic lenses are utilized to cause transverse separation of the particles into two beams separated by a sufficient amount to permit an aperture to block one beam. (AEC)

  16. CEBAF beam loss accounting

    SciTech Connect (OSTI)

    Ursic, R.; Mahoney, K.; Hovater, C.; Hutton, A.; Sinclair, C.

    1995-12-31

    This paper describes the design and implementation of a beam loss accounting system for the CEBAF electron accelerator. This system samples the beam curent throughout the beam path and measures the beam current accurately. Personnel Safety and Machine Protection systems use this system to turn off the beam when hazardous beam losses occur.

  17. Beam geometry selection using sequential beam addition

    SciTech Connect (OSTI)

    Popple, Richard A. Brezovich, Ivan A.; Fiveash, John B.

    2014-05-15

    Purpose: The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. Methods: The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. Results: In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. Conclusions: For situations in which beam geometry has a significant effect on the objective function, SBA can identify

  18. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Electron Microscopy FIB DRIVER TEST FIB SPECIFICATIONS SCHEDULE CONTACTS: John Turner FIB The FEI Strata 235 dual beam Focused Ion Beam (FIB) is used for TEM sample...

  19. BEAMS: Curiosity | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAMS: Curiosity BEAMS: Curiosity January 9, 2013 BEAMS, Becoming Excited About Math and Science, is one of our education programs. In particular, it is the only one in which I ...

  20. Relativistic electron beam generator

    DOE Patents [OSTI]

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  1. Laser beam monitoring system

    DOE Patents [OSTI]

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  2. Laser beam monitoring system

    DOE Patents [OSTI]

    Weil, B.S.; Wetherington, G.R. Jr.

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  3. Beam imaging sensor

    DOE Patents [OSTI]

    McAninch, Michael D; Root, Jeffrey J

    2015-03-31

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  4. Beam imaging sensor

    DOE Patents [OSTI]

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  5. X-ray beam finder

    DOE Patents [OSTI]

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  6. BEAM INSTRUMENTATION FOR HIGH POWER HADRON BEAMS

    SciTech Connect (OSTI)

    Aleksandrov, Alexander V

    2013-01-01

    This presentation will describe developments in the beam diagnostics which support the understanding and operation of high power hadron accelerators. These include the measurement of large dynamic range transverse and longitudinal beam profiles, beam loss detection, and non-interceptive diagnostics.

  7. Molecular Dynameomics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynameomics Molecular Dynameomics DaggettHiResWhitebg.png Key Challenges: Perform molecular dynamics simulations to characterize both native (i.e. biologically active) and...

  8. Beam halo in mismatched proton beams.

    SciTech Connect (OSTI)

    Wangler, Thomas P.,; Allen, C. K.; Chan, D.; Colestock, P. L. ,; Crandall, K. R.; Qiang, J.; Garnett, R. W.; Lysenko, W. P.; Gilpatrick, J. D.; Schneider, J. D.; Schulze, M. E.; Sheffield, R. L.; Smith, H. V.

    2002-01-01

    Progress was made during the past decade towards a better understanding of halo formation caused by beam mismatch in high-intensity beams. To test these ideas an experiment was carried out at Los Alamos with proton beams in a 52-quadrupole focusing channel. Rms emittances and beam widths were obtained from measured beam profiles for comparison with the maximum emittance growth predictions of a free-energy model and the maximum haloamplitude predictions of a particle-core model. The experimental results are also compared with multiparticle simulations. In this paper we will present the experimental results and discuss the implications with respect to the validity of both the models and the simulations. Keywords: beam halo, emittance growth, beam profiles, simulations, space charge, mismatch

  9. High speed x-ray beam chopper

    DOE Patents [OSTI]

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  10. Power beaming: Mission enabling for lunar exploration

    SciTech Connect (OSTI)

    Bamberger, J.A.

    1992-01-01

    This paper explores several beam power concepts proposed for powering either lunar base or rover vehicles. At present, power requirements to support lunar exploration activity are met by integral self-contained power system designs. To provide requisite energy flexibility for human expansion into space, an innovative approach to replace on-board self-contained power systems is needed. Power beaming provides an alternative approach to supplying power that would ensure increased mission flexibility while reducing total mass launched into space. Providing power to the moon presents significant design challenges because of the duration of the lunar night. Power beaming provides an alternative to solar photovoltaic systems coupled with battery storage, radioisotope thermoelectric generation, and surface nuclear power. The Synthesis Group describes power beaming as a technology supporting lunar exploration. In this analysis beam power designs are compared to conventional power generation methods.

  11. Telecommunication using muon beams

    DOE Patents [OSTI]

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  12. Generation of beams of refractory-metal clusters

    SciTech Connect (OSTI)

    Wexler, S.; Riley, R.J.; Parks, E.K.; Mao, C.R.; Pobo, L.G.

    1982-01-01

    Interest in the physical and chemical properties of small metal clusters has recently stimulated the development of sources for the generation of molecular beams of metal clusters, since the collision-free environment of a beam has the advantage of permitting in-flight study of isolated species free of interference from surroundings. For example, spectroscopic studies utilizing tunable lasers may be performed in the molecular beam environment. The objectives of our research program are the elucidation of the physical and chemical properties of clusters of refractory metal atoms, in particular those of the catalytically active transition metals. For these purposes we have built and tested two sources suitable for generation of cluster beams of refractory metals, one for continuous beams and the other for pulsed beams.

  13. Ion Beam Materials Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted

  14. BEAM HALO IN PROTON LINAC BEAMS

    SciTech Connect (OSTI)

    T. WANGLER; K. CRANDALL

    2000-08-01

    In this paper we review the present picture of km halo in proton linacs. Space-charge forces acting in mismatched beams have been identified as a major cause of beam-halo. We present a definition of halo based on a ratio of moments of the distribution of the beam coordinates. We find from our initial studies that for halo detined in this way, a beam can have rms emittance growth without halo growth, but halo growth is always accompanied by rms emittance growth. We describe the beam-halo experiment that is in preparation at Los Alamos, which will address questions about the beam profiles, maximum particle amplitudes, and rms emittance growth associated with the halo.

  15. Neutral beam dump with cathodic arc titanium gettering

    SciTech Connect (OSTI)

    Smirnov, A.; Korepanov, S. A.; Putvinski, S.; Krivenko, A. S.; Murakhtin, S. V.; Savkin, V. Ya.

    2011-03-15

    An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features a new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.

  16. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microfabrication techniques including physical and chemical vapor deposition, chemical etching, and optical and electron beam lithography. He is also proficient in analysis...

  17. ION BEAM COLLIMATOR

    DOE Patents [OSTI]

    Langsdorf, A.S. Jr.

    1957-11-26

    A device is described for defining a beam of high energy particles wherein the means for defining the beam in the horizontal and vertical dimension are separately adjustable and the defining members are internally cooled. In general, the device comprises a mounting block having a central opening through which the beam is projected, means for rotatably supporting two pairs of beam- forming members, passages in each member for the flow of coolant; the beam- forming members being insulated from each other and the block, and each having an end projecting into the opening. The beam-forming members are adjustable and may be cooperatively positioned to define the beam passing between the end of the members. To assist in projecting and defining the beam, the member ends have individual means connected thereto for indicating the amount of charge collected thereon due to beam interception.

  18. Pyramid beam splitter

    DOE Patents [OSTI]

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  19. Beam position monitor

    DOE Patents [OSTI]

    Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf

    2003-07-22

    An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.

  20. Neutral Beam Excitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... the presence of a small fast ion population are one area ... This research is highly relevant to fusion reactors as beam ... 100 A beam of < 200 keV sodium or potassium ions which ...

  1. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mike Brady ed_barnard Joint Molecular Foundry/ALS Project Scientist mabrady@lbl.gov 510.486.6548

  2. Molecular Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Science NETL's Molecular Science competency provides technology-enabling computational and experimental insight into the atomic-level processes occurring in condensed matter and gas phase systems or at the heterogeneous surface-gas interfaces used for energy applications. Research includes molecular optimization as well as both classical and high-throughput material design, specifically: Molecular Optimization Development and application of new computational approaches in the general

  3. PARTICLE BEAM TRACKING CIRCUIT

    DOE Patents [OSTI]

    Anderson, O.A.

    1959-05-01

    >A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)

  4. Beam Dynamics for ARIA

    SciTech Connect (OSTI)

    Ekdahl, Carl August Jr.

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  5. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    SciTech Connect (OSTI)

    Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L.; Oliveira, A. N.; Li, M. S.

    2015-07-15

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  6. Neutral beam monitoring

    DOE Patents [OSTI]

    Fink, Joel H.

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  7. BEAM CONTROL PROBE

    DOE Patents [OSTI]

    Chesterman, A.W.

    1959-03-17

    A probe is described for intercepting a desired portion of a beam of charged particles and for indicating the spatial disposition of the beam. The disclosed probe assembly includes a pair of pivotally mounted vanes moveable into a single plane with adjacent edges joining and a calibrated mechanical arrangement for pivoting the vancs apart. When the probe is disposed in the path of a charged particle beam, the vanes may be adjusted according to the beam current received in each vane to ascertain the dimension of the beam.

  8. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an ArgonOxygen ion gun. The Xenos pattern generator allows the ion and electron beam to write computer-generated patterns while the ArgonOxygen ion gun allows milling of ...

  9. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, Larry; Hopkins, Harvey S.

    1998-12-10

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse.

  10. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, L.; Hopkins, H.S.

    1998-12-01

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse. {copyright} {ital 1998 American Institute of Physics.}

  11. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEWS Subatomic Microscopy Key to Building New Classes of Materials Molecular Foundry users from Penn State University and Cornell University have worked with staff to describe the first atomic scale evidence for strain-induced ferroelectricity in a layered oxide. [MORE] Molecular Foundry User Featured in MIT's Technology Review Cyclotron Road's Kendra Kuhl Featured in '35 Innovators Under 35' for 2016. [MORE] Foundry Fall Seminar Series Begins September 13 The next Molecular Foundry seminar

  12. Electron beam enhanced surface modification for making highly resolved structures

    DOE Patents [OSTI]

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  13. Electron beam enhanced surface modification for making highly resolved structures

    DOE Patents [OSTI]

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  14. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Branden Brough Branden Director of Strategy and External Relations bbrough@lbl.gov 510.486.4206 Biography Branden Brough is the Molecular Foundry's Director of Strategy and...

  15. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Molecular Foundry as a Scientific Engineering Associate since 2007. Expertise Tracy's main focus is assisting users with their research projects (helping design reactions ...

  16. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liu's research aims to achieve coherent control of functionality and properties across different scales through molecular level design and synthesis. With the developed materials ...

  17. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jeff Urban of the Molecular. Both of these positions involved the application of his laser physics and chemistry knowledge to implement various spectroscopic imaging techniques. ...

  18. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sources, as well as lasers that can be used in total internal reflectance mode (TIRF). ... to aid in work with biomolecules, microbes, molecular biology techniques and cell culture. ...

  19. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Guide Download the complete Users' Guide (PDF) Submit a Proposal Learn about the Molecular Foundry and its user program Explore Foundry capabilities and plan your proposal...

  20. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility RLGarcia@lbl.gov 510.486.4125 Biography Education B.A. Molecular Biology, Scripps College, Claremont, CA, 2005 Previous Professional Positions Principal...

  1. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flatter and Faster: Transition Metal Dichalcogendies at the Molecular Foundry (Part II) Brain Imaging and Optical Manipulation Active Nanointerfaces for Electrochemistry SAXS-WAXS...

  2. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dmitry Soustin dmitry User Program Administrator dsoustin@lbl.gov 510.486.7687 Biography Dmitry Soustin is the Molecular Foundry's User Program Administrator. In this role, Dmitry...

  3. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory of Nanostructured Materials jbneaton@lbl.gov 510.486.4527 personal website Biography Jeffrey B. Neaton is Director of the Molecular Foundry, a Department of Energy...

  4. Particle beam injection system

    DOE Patents [OSTI]

    Jassby, Daniel L.; Kulsrud, Russell M.

    1977-01-01

    This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

  5. Penning trap mass measurements on nobelium isotopes

    SciTech Connect (OSTI)

    Dworschak, M.; Block, M.; Ackermann, D.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Vorobyev, G. K.; Audi, G.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Eliseev, S.; Ketter, J.; Fleckenstein, T.; Haettner, E.; Plass, W. R.; Scheidenberger, C.; Ketelaer, J.; Kluge, H.-J.

    2010-06-15

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes {sup 252-254}No were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a {sup 48}Ca beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.

  6. Beam Instrumentation Workshop

    SciTech Connect (OSTI)

    Shafer, R.E. )

    1994-01-01

    The fifth annual Beam Instrumentation Workshop was hosted by Los Alamos National Laboratory in Santa Fe, New Mexico. These proceedings represent the papers presented at the Workshop. A variety of topics were covered including beam emittance diagnostics, fluorescent screens, control systems for many accelerators and photon sources. Beam monitoring was discussed in great detail. There were thirty seven papers presented at the Workshop and all have been abstracted for the Energy and Science Technology database. (AIP)

  7. Beam Stability Complaint Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For New Users For Current Users For Administrators MX Users APS User Portal APS Data Management Practices Find a Beamline Apply for Beam Time ESAF Contacts Calendars User...

  8. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  9. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  10. Accelerators AND Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... to energies far higher than usually found on earth. ... Implanting them very precisely in metal surfaces means ... of a Facility for Rare Isotope Beams (FRIB), an ...