National Library of Energy BETA

Sample records for molecular beam mass

  1. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    SciTech Connect (OSTI)

    Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.; Seymour, D.L.; Stoffels, E.

    2006-05-15

    Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture. In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.

  2. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOE Patents [OSTI]

    Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.

    1992-12-15

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.

  3. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOE Patents [OSTI]

    Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.

    1992-01-01

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

  4. A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames

    SciTech Connect (OSTI)

    Andrew McIlroy; Toby D. Hain; Hope A. Michelsen; Terrill A. Cool

    2000-12-15

    The oxidation of dimethyl ether (DME) is studied in low-pressure flames using new molecular beam mass spectrometer and laser diagnostics. Two 30.0-Torr, premixed DME/oxygen/argon flames are investigated with stoichiometries of 0.98 and 1.20. The height above burner profiles of nine stable species and two radicals are measured. These results are compared to the detailed chemical reaction mechanism of Curran and coworkers. Generally good agreement is found between the model and data. The largest discrepancies are found for the methyl radical profiles where the model predicts qualitatively different trends in the methyl concentration with stoichiometry than observed in the experiment.

  5. Molecular beam mass spectrometry with tunable vacuum ultraviolet (VUV) synchrotron radiation

    SciTech Connect (OSTI)

    Golan, Amir; Ahmed, Musahid

    2012-01-01

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics.[1-4] Fundamental studies of photoionization processes of biomolecules provide information about electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water.[1, 5-9] We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-methyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline[10] located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds[1]. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations[11, 12]. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain in detail the electronic structure and dynamics of the investigated species [1, 3].

  6. Rapid characterization of lignocellulosic feedstocks for fuels and chemicals: Molecular beam mass spectrometric approach

    SciTech Connect (OSTI)

    Agblevor, F.A.; Davis, M.F. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    Rapid characterization of biomass feedstocks has a pivotal role in the development of biomass energy because of the large number of samples that must be analyzed due to the diversity of biomass feedstocks and the significant differences in the chemical and physical properties of these feedstocks. Several biomass feedstocks (herbaceous, woody, and agricultural residues) were screened for the effects of storage, season of harvest, geographic location, clonal, and species variation on the pyrolysis products of the feed stocks. For herbaceous species such as sericea lespedeza, the season of harvest had a significant effect on the pyrolysis products. Effects of clonal variation on the composition of hybrid poplar feedstocks was easily discerned with the molecular beam mass spectrometric analysis. The effect of geographic location on the poplar clones pyrolysis products was minimal. However in the case of switchgrass, varietal influence on the pyrolysis products was minimal, but where the plant was grown had a strong influence on the pyrolysis products of the feedstock. Significant differences because of species variation could also be shown from the pyrolysis products of various biomass feedstocks. The influence of storage time on biomass samples stored outside in the open could also be discerned from the pyrolysis products of the feedstocks. The differences noted in the pyrolysis products of the feedstocks were noted for samples which were significantly degraded during storage either through the action of microflora or weathering.

  7. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    SciTech Connect (OSTI)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F.C.; Geske, M.; Taha, A.; Pelzer, K.; Schloegl, R.

    2006-05-15

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 {mu}m sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N{sub 2} and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N{sub 2} to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH{sub 3}{center_dot} radicals is successfully demonstrated.

  8. Molecular-beam scattering

    SciTech Connect (OSTI)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  9. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source

    SciTech Connect (OSTI)

    Leplat, N.; Rossi, M. J.

    2013-11-15

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 0.39 for Ar and 10.86 1.59 for i-C{sub 4}H{sub 10} at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 10{sup 11} and 5.0 10{sup 11} molecule s{sup ?1} cm{sup ?3} of C{sub 2}H{sub 5}{sup } (ethyl) and t-C{sub 4}H{sub 9}{sup } (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

  10. 14th international symposium on molecular beams

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation & dynamics; and surfaces.

  11. 14th international symposium on molecular beams

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation dynamics; and surfaces.

  12. Yuan T. Lee's Crossed Molecular Beam Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The above illustration was drawn by Professor Yuan T. Lee, who shared the 1986 Nobel Prize in Chemistry. It shows the design for his crossed molecular beam experiment described in ...

  13. Dudley Herschbach: Chemical Reactions and Molecular Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dudley Herschbach: Chemical Reactions and Molecular Beams Resources with Additional Information Dudley Herschbach Courtesy of Texas A&M University As a co-recipient of the 1986 Nobel Prize in Chemistry, 'Dudley Herschbach was cited for "providing a much more detailed understanding of how chemical reactions take place". Using molecular beams, he studied elementary reactions such as K + CH3I and K + Br2, where it became possible to correlate reaction dynamics with the electronic

  14. Physics with fast molecular-ion beams

    SciTech Connect (OSTI)

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  15. Counting molecular-beam grown graphene layers

    SciTech Connect (OSTI)

    Plaut, Annette S.; Wurstbauer, Ulrich; Pinczuk, Aron; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 ; Garcia, Jorge M.; Pfeiffer, Loren N.

    2013-06-17

    We have used the ratio of the integrated intensity of graphene's Raman G peak to that of the silicon substrate's first-order optical phonon peak, accurately to determine the number of graphene layers across our molecular-beam (MB) grown graphene films. We find that these results agree well both, with those from our own exfoliated single and few-layer graphene flakes, and with the results of Koh et al.[ACS Nano 5, 269 (2011)]. We hence distinguish regions of single-, bi-, tri-, four-layer, etc., graphene, consecutively, as we scan coarsely across our MB-grown graphene. This is the first, but crucial, step to being able to grow, by such molecular-beam-techniques, a specified number of large-area graphene layers, to order.

  16. Mass spectrometer and methods of increasing dispersion between ion beams

    DOE Patents [OSTI]

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  17. Molecular beam-thermal hydrogen desorption from palladium

    SciTech Connect (OSTI)

    Lobo, R. F. M.; Berardo, F. M. V.; Ribeiro, J. H. F.

    2010-04-15

    Among the most efficient techniques for hydrogen desorption monitoring, thermal desorption mass spectrometry is a very sensitive one, but in certain cases can give rise to uptake misleading results due to residual hydrogen partial pressure background variations. In this work one develops a novel thermal desorption variant based on the effusive molecular beam technique that represents a significant improvement in the accurate determination of hydrogen mass absorbed on a solid sample. The enhancement in the signal-to-noise ratio for trace hydrogen is on the order of 20%, and no previous calibration with a chemical standard is required. The kinetic information obtained from the hydrogen desorption mass spectra (at a constant heating rate of 1 deg. C/min) accounts for the consistency of the technique.

  18. Note: High density pulsed molecular beam for cold ion chemistry

    SciTech Connect (OSTI)

    Kokish, M. G.; Rajagopal, V.; Marler, J. P.; Odom, B. C.

    2014-08-15

    A recent expansion of cold and ultracold molecule applications has led to renewed focus on molecular species preparation under ultrahigh vacuum conditions. Meanwhile, molecular beams have been used to study gas phase chemical reactions for decades. In this paper, we describe an apparatus that uses pulsed molecular beam technology to achieve high local gas densities, leading to faster reaction rates with cold trapped ions. We characterize the beam's spatial profile using the trapped ions themselves. This apparatus could be used for preparation of molecular species by reactions requiring excitation of trapped ion precursors to states with short lifetimes or for obtaining a high reaction rate with minimal increase of background chamber pressure.

  19. Molecular beam studies of reaction dynamics

    SciTech Connect (OSTI)

    Lee, Y.T.

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  20. Molecular beam surface analysis. 1993 Summary report

    SciTech Connect (OSTI)

    Appelhans, A.D.; Ingram, J.C.; Groenewold, G.S.; Dahl, D.A.; Delmore, J.E.

    1993-09-01

    The Molecular Beam Surface Analysis (MBSA) program is developing both laboratory-based and potentially field-portable chemical analyses systems taking advantage of new surface analysis technology developed at the Idaho National Engineering Laboratory (INEL). The objective is to develop the means to rapidly detect and identify, with high specificity and high sensitivity, nonvolatile and low volatile organics found in Chemical Weapons (CW) and High Explosives (HE) feedstocks, agents, and decomposition products on surfaces of plants, rocks, paint chips, filters, smears of buildings, vehicles, equipment, etc.. Ideally, the method would involve no sample preparation and no waste generation, and would have the potential for being implemented as a field-portable instrument. In contrast to existing analytical methods that rely on sample volatility, MBSA is optimized for nonvolatile and low volatile compounds. This makes it amenable for rapidly screening field samples for CW agent decomposition products and feedstock chemicals and perhaps actual agents. In its final configuration (benchtop size) it could be operated in a non-laboratory environment (such as an office building) requiring no sample preparation chemistry or chemical supplies. It could also be included in a mobile laboratory used in on-site, ore remote site cooperative surveys, or in a standard laboratory, where it would provide fast screening of samples at minimal cost.

  1. Apparatus and methods for continuous beam fourier transform mass spectrometry

    DOE Patents [OSTI]

    McLuckey, Scott A.; Goeringer, Douglas E.

    2002-01-01

    A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.

  2. Molecular-beam Studies of Primary Photochemical Processes

    DOE R&D Accomplishments [OSTI]

    Lee, Y. T.

    1982-12-01

    Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser.

  3. ScGaN alloy growth by molecular beam epitaxy: Evidence for a...

    Office of Scientific and Technical Information (OSTI)

    ScGaN alloy growth by molecular beam epitaxy: Evidence for a metastable layered hexagonal phase Citation Details In-Document Search Title: ScGaN alloy growth by molecular beam...

  4. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    DOE R&D Accomplishments [OSTI]

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  5. Mass spectrometer with electron source for reducing space charge effects in sample beam

    DOE Patents [OSTI]

    Houk, Robert S.; Praphairaksit, Narong

    2003-10-14

    A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.

  6. Cerenkov emission induced by external beam radiation stimulates molecular fluorescence

    SciTech Connect (OSTI)

    Axelsson, Johan; Davis, Scott C.; Gladstone, David J.; Pogue, Brian W.

    2011-07-15

    Purpose: Cerenkov emission is induced when a charged particle moves faster than the speed of light in a given medium. Both x-ray photons and electrons produce optical Cerenkov photons in everyday radiation therapy of tissue; yet, this phenomenon has never been fully documented. This study quantifies the emissions and also demonstrates that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Methods: In this study, Cerenkov emission induced by radiation from a clinical linear accelerator is investigated. Biological mimicking phantoms were irradiated with x-ray photons, with energies of 6 or 18 MV, or electrons at energies 6, 9, 12, 15, or 18 MeV. The Cerenkov emission and the induced molecular fluorescence were detected by a camera or a spectrometer equipped with a fiber optic cable. Results: It is shown that both x-ray photons and electrons, at MeV energies, produce optical Cerenkov photons in tissue mimicking media. Furthermore, we demonstrate that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Conclusions: The results here indicate that molecular fluorescence monitoring during external beam radiotherapy is possible.

  7. An ultra-compact, high-throughput molecular beam epitaxy growth system

    SciTech Connect (OSTI)

    Baker, A. A.; Hesjedal, T.; Braun, W. E-mail: fischer@createc.de; Rembold, S.; Fischer, A. E-mail: fischer@createc.de; Gassler, G.

    2015-04-15

    We present a miniaturized molecular beam epitaxy (miniMBE) system with an outer diameter of 206 mm, optimized for flexible and high-throughput operation. The three-chamber system, used here for oxide growth, consists of a sample loading chamber, a storage chamber, and a growth chamber. The growth chamber is equipped with eight identical effusion cell ports with linear shutters, one larger port for either a multi-pocket electron beam evaporator or an oxygen plasma source, an integrated cryoshroud, retractable beam-flux monitor or quartz-crystal microbalance, reflection high energy electron diffraction, substrate manipulator, main shutter, and quadrupole mass spectrometer. The system can be combined with ultrahigh vacuum (UHV) end stations on synchrotron and neutron beamlines, or equivalently with other complex surface analysis systems, including low-temperature scanning probe microscopy systems. Substrate handling is compatible with most UHV surface characterization systems, as the miniMBE can accommodate standard surface science sample holders. We introduce the design of the system, and its specific capabilities and operational parameters, and we demonstrate the epitaxial thin film growth of magnetoelectric Cr{sub 2}O{sub 3} on c-plane sapphire and ferrimagnetic Fe{sub 3}O{sub 4} on MgO (001)

  8. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    SciTech Connect (OSTI)

    Meng, Congsen; Janssen, Maurice H. M.

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  9. ALS, Molecular Foundry, and aBeam Technologies Collaborate to Make

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metrology History ALS, Molecular Foundry, and aBeam Technologies Collaborate to Make Metrology History ALS, Molecular Foundry, and aBeam Technologies Collaborate to Make Metrology History Print Thursday, 21 January 2016 12:47 Through a collaboration with two Berkeley Lab user facilities as well as two other national labs, a small Bay Area company has made big news in the semiconductor world. Modern electronics are getting smaller and smaller, which means the demands on semiconductor

  10. Fabrication of precision high quality facets on molecular beam epitaxy material

    DOE Patents [OSTI]

    Petersen, Holly E. (Tracy, CA); Goward, William D. (Antioch, CA); Dijaili, Sol P. (Moraga, CA)

    2001-01-01

    Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.

  11. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    DOE R&D Accomplishments [OSTI]

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  12. INFRARED VIBRATIONAL PREDISSOCIATION SPECTROSCOPY OF WATER CLUSTERS BY THE CROSSED LASER MOLECULAR BEAM TECHNIQUE

    SciTech Connect (OSTI)

    Vernon, M.F.; Krajnovich, D.J.; Kwok, H.S.; Lisy, J.M.; Shen, Y.R.; Lee, Y.T.

    1981-11-01

    Water clusters formed in a molecular beam are predissociated by tunable, pulsed, infrared radiation in the frequency range 2900~3750 cm{sup -1}. The recoiling fragments are detected off axis from the molecular beam using a rotatable mass spectrometer. Arguments are presented which show that the measured frequency dependent signal at a fixed detector angle is proportional to the absorption spectrum of the clusters. It is found that the spectra of clusters containing three or more water molecules are remarkably similar to the liquid phase spectrum. Dynamical information on the predissociation process is obtained from the velocity distribution of the fragments. An upper limit to the excited vibrational state lifetime of ~1 microsecond is observed for the results reported here. The most probable dissociation process concentrates the available excess energy into the internal motions of the fragment molecules. Both the time scale and translational energy distribution are consistent with the qualitative predictions of current theoretical models for cluster predissociation. From adiabatic dissociation trajectories and Monte Carlo simulations it is seen that the strong coupling present in the water polymers probably invalidates the simpler "diatomic" picture formulations of cluster predissociation. Instead, the energy can be extensively shared among the intermolecular motions in the polymer before dissociation. Comparison between current intermolecular potentials describing liquid water and the observed frequencies is made in the normal mode approximation. The inability of any potential to predict the gross spectral features (the number of bands and their observed frequency shift from the gas phase monomer) suggests that substantial improvement in the potential energy functions are possible, but that more accurate methods of solving the vibrational wave equation are necessary before a proper explanation of the spectral fine structure is possible. The observed differences between the dimer and larger polymers (trimer-hexamer) indicate a dramatic change in the hydrogen bonding, which is best explained as arising from the non-additive effects present when a water molecule is both donating and accepting a hydrogen bond. This difference between dimer and trimer also rationalizes the previous disagreement between potential functions based on condensed phase properties (where the water molecule is interacting with multiple neighbors) and those fit to imperfect gas or dimer properties which sample only the isolated pair potential. The data support an interpretation of the hydrogen bonded O-H stretching fundamental region as arising from a homogeneous broadening (not necessarily a result of the predissociation) whose width is characteristic of the hydrogen bond itself and not the sum of distinct bonding geometries. This is different from some previous theories of the water infrared absorption spectrum which assign each band to water molecules bound to different numbers of neighboring molecules.

  13. Proposed Molecular Beam Determination of Energy Partition in the Photodissociation of Polyatomic Molecules

    DOE R&D Accomplishments [OSTI]

    Zare, P. N.; Herschbach, D. R.

    1964-01-29

    Conventional photochemical experiments give no information about the partitioning of energy between translational recoil and internal excitation of the fragment molecules formed in photodissociation of a polyatomic molecule. In a molecular beam experiment, it becomes possible to determine the energy partition from the form of the laboratory angular distribution of one of the photodissociation products. A general kinematic analysis is worked out in detail, and the uncertainty introduced by the finite angular resolution of the apparatus and the velocity spread in the parent beam is examined. The experimental requirements are evaluated for he photolysis of methyl iodide by the 2537 angstrom Hg line.

  14. ALS, Molecular Foundry, and aBeam Technologies Collaborate to Make

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metrology History ALS, Molecular Foundry, and aBeam Technologies Collaborate to Make Metrology History Print Through a collaboration with two Berkeley Lab user facilities as well as two other national labs, a small Bay Area company has made big news in the semiconductor world. Modern electronics are getting smaller and smaller, which means the demands on semiconductor manufacturers are increasing. To ensure the quality and consistency of substrates, wafer manufacturers employ metrology tools

  15. Molecular Beam Epitaxial Growth of GaAs on (631) Oriented Substrates

    SciTech Connect (OSTI)

    Cruz Hernandez, Esteban; Rojas Ramirez, Juan-Salvador; Contreras Hernandez, Rocio; Lopez Lopez, Maximo; Pulzara Mora, Alvaro; Mendez Garcia, Victor H.

    2007-02-09

    In this work, we report the study of the homoepitaxial growth of GaAs on (631) oriented substrates by molecular beam epitaxy (MBE). We observed the spontaneous formation of a high density of large scale features on the surface. The hilly like features are elongated towards the [-5, 9, 3] direction. We show the dependence of these structures with the growth conditions and we present the possibility of to create quantum wires structures on this surface.

  16. Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy

    SciTech Connect (OSTI)

    Li, C.; Zeng, Z. Q.; Hirono, Y.; Morgan, T. A.; Hu, X.; Salamo, G. J.; Fan, D. S.; Wu, J.; Yu, S. Q.; Wang, Zh. M.

    2011-12-12

    Self-assembly of bismuth droplets at nanoscale on GaAs(100) surface using molecular beam epitaxy was demonstrated. Fine control of density and size was achieved by varying growth temperature and total bismuth deposition. Droplet density was tuned by roughly 3 orders of magnitude, and the density-temperature dependence was found to be consistent with classical nucleation theory. These results may extend the flexibility of droplet epitaxy by serving as templates for group V based droplet epitaxy, which is in contrast to conventional group III based droplet epitaxy and may encourage nanostructure formation of bismuth-containing materials.

  17. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy

    SciTech Connect (OSTI)

    Zhang, Zhi; Xu, Hong-Yi; Guo, Ya-Nan; Liao, Zhi-Ming; Lu, Zhen-Yu; Chen, Ping-Ping; Shi, Sui-Xing; Lu, Wei; Zou, Jin; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4072

    2013-08-12

    In this study, the structural quality of Au-catalyzed InAs nanowires grown by molecular beam epitaxy is investigated. Through detailed electron microscopy characterizations and analysis of binary Au-In phase diagram, it is found that defect-free InAs nanowires can be induced by smaller catalysts with a high In concentration, while comparatively larger catalysts containing less In induce defected InAs nanowires. This study indicates that the structural quality of InAs nanowires can be controlled by the size of Au catalysts when other growth conditions remain as constants.

  18. Growth of atomically smooth MgO films on graphene by molecular beam epitaxy

    SciTech Connect (OSTI)

    Wang, W. H.; Han, W.; Pi, K.; McCreary, K. M.; Miao, F.; Bao, W.; Lau, C. N.; Kawakami, R. K.

    2008-11-03

    We investigate the growth of MgO films on graphene by molecular beam epitaxy and find that surface diffusion promotes a rough morphology. To reduce the mobility of surface atoms, the graphene surface is dressed by Ti atoms prior to MgO deposition. With as little as 0.5 ML (monolayer) of Ti, the MgO overlayer becomes atomically smooth. Furthermore, no aggregation of MgO is observed at the edges of the graphene sheet. These results are important for the fabrication of nanoscale electronic and spintronic devices.

  19. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    SciTech Connect (OSTI)

    Kress, Joel David; Ticknor, Christopher; Collins, Lee A.

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  20. Intense terahertz emission from molecular beam epitaxy-grown GaAs/GaSb(001)

    SciTech Connect (OSTI)

    Sadia, Cyril P.; Laganapan, Aleena Maria; Agatha Tumanguil, Mae; Estacio, Elmer; Somintac, Armando; Salvador, Arnel; Que, Christopher T.; Yamamoto, Kohji; Tani, Masahiko

    2012-12-15

    Intense terahertz (THz) electromagnetic wave emission was observed in undoped GaAs thin films deposited on (100) n-GaSb substrates via molecular beam epitaxy. GaAs/n-GaSb heterostructures were found to be viable THz sources having signal amplitude 75% that of bulk p-InAs. The GaAs films were grown by interruption method during the growth initiation and using various metamorphic buffer layers. Reciprocal space maps revealed that the GaAs epilayers are tensile relaxed. Defects at the i-GaAs/n-GaSb interface were confirmed by scanning electron microscope images. Band calculations were performed to infer the depletion region and electric field at the i-GaAs/n-GaSb and the air-GaAs interfaces. However, the resulting band calculations were found to be insufficient to explain the THz emission. The enhanced THz emission is currently attributed to a piezoelectric field induced by incoherent strain and defects.

  1. Improved tunneling magnetoresistance at low temperature in manganite junctions grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Werner, R.; Kleiner, R.; Koelle, D.; Petrov, A. Yu.; Davidson, B. A.; Mino, L. Alvarez

    2011-04-18

    We report resistance versus magnetic field measurements for a La{sub 0.65}Sr{sub 0.35}MnO{sub 3}/SrTiO{sub 3}/La{sub 0.65}Sr{sub 0.35}MnO{sub 3} tunnel junction grown by molecular-beam epitaxy, that show a large field window of extremely high tunneling magnetoresistance (TMR) at low temperature. Scanning the in-plane applied field orientation through 360 deg., the TMR shows fourfold symmetry, i.e., biaxial anisotropy, aligned with the crystalline axis but not the junction geometrical long axis. The TMR reaches {approx}1900% at 4 K, corresponding to an interfacial spin polarization of >95% assuming identical interfaces. These results show that uniaxial anisotropy is not necessary for large TMR, and lay the groundwork for future improvements in TMR in manganite junctions.

  2. Radiation environment simulations at the Tevatron, studies of the beam profile and measurement of the Bc meson mass

    SciTech Connect (OSTI)

    Nicolas, Ludovic Y.

    2005-09-01

    The description of a computer simulation of the CDF detector at Fermilab and the adjacent accelerator parts is detailed, with MARS calculations of the radiation background in various elements of the model due to the collision of beams and machine-related losses. Three components of beam halo formation are simulated for the determination of the principal source of radiation background in CDF due to beam losses. The effect of a collimator as a protection for the detector is studied. The simulation results are compared with data taken by a CDF group. Studies of a 150 GeV Tevatron proton beam are performed to investigate the transverse diffusion growth and distribution. A technique of collimator scan is used to scrape the beam under various experimental conditions, and computer programs are written for the beam reconstruction. An average beam halo growth speed is given and the potential of beam tail reconstruction using the collimator scan is evaluated. A particle physics analysis is conducted in order to detect the B{sub c} {yields} J/{psi}{pi} decay signal with the CDF Run II detector in 360 pb{sup -1} of data. The cut variables and an optimization method to determine their values are presented along with a criterion for the detection threshold of the signal. The mass of the B{sub c} meson is measured with an evaluation of the significance of the signal.

  3. Adsorption of iso-/n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study

    SciTech Connect (OSTI)

    Goering, J.; Kadossov, E.; Burghaus, Uwe; Yu, Zhongqing; Thevuthasan, Suntharampillai; Saraf, Laxmikant V.

    2007-07-01

    Binding energies and adsorption probabilities have been determined for n/iso-butane adsorption on an anatase thin film grown on SrTiO3(001) by means of thermal desorption spectroscopy (TDS) and molecular beam scattering. The sample has been characterized by x-ray diffraction (XRD) and Auger electrons spectroscopy (AES).

  4. Growth and magnetic property of antiperovskite manganese nitride films doped with Cu by molecular beam epitaxy

    SciTech Connect (OSTI)

    Yu, Fengmei; Ren, Lizhu; Meng, Meng; Wang, Yunjia; Yang, Mei; Wu, Shuxiang; Li, Shuwei

    2014-04-07

    Manganese nitrides thin films on MgO (100) substrates with and without Cu-doping have been fabricated by plasma assisted molecular beam epitaxy. Antiperovskite compounds Mn{sub 3.6}Cu{sub 0.4}N have been grown in the case of Cu-doping, and the pure Mn{sub 3}N{sub 2} single crystal has been obtained without Cu-doping. The Mn{sub 3.6}Cu{sub 0.4}N exhibits ferrimagnetism, and the magnetization of Mn{sub 3.6}Cu{sub 0.4}N increases upon the temperature decreasing from 300 K to 5 K, similar to Mn{sub 4}N. The exchange bias (EB) effects emerge in the Mn{sub 3.6}Cu{sub 0.4}N films. The EB behavior is originated from the interfaces between ferrimagnetic Mn{sub 3.6}Cu{sub 0.4}N and antiferromagnetic metal Mn, which is verified to be formed by the data of x-ray photoelectron spectroscopy. The present results not only provide a strategy for producing functional antiperovskite manganese nitrides, but also shed promising light on fabricating the exchange bias part of spintronic devices.

  5. Molecular beam epitaxial growth of Bi{sub 2}Se{sub 3} nanowires and nanoflakes

    SciTech Connect (OSTI)

    Knebl, G. M. Gessler, J. R.; Kamp, M.; Höfling, S.

    2014-09-29

    Topological Insulators are in focus of immense research efforts and rapid scientific progress is obtained in that field. Bi{sub 2}Se{sub 3} has proven to be a topological insulator material that provides a large band gap and a band structure with a single Dirac cone at the Γ-point. This makes Bi{sub 2}Se{sub 3} one of the most promising three dimensional topological insulator materials. While Bi{sub 2}Se{sub 3} nanowires and nanoflakes so far were fabricated with different methods and for different purposes, we here present the first Bi{sub 2}Se{sub 3} nanowires as well as nanoflakes grown by molecular beam epitaxy. The nanostructures were nucleated on pretreated, silicon (100) wafers. Altering the growth conditions nanoflakes could be fabricated instead of nanowires; both with high crystalline quality, confirmed by scanning electron microscopy as well as transmission electron microscopy. These nanostructures have promise for spintronic devices and Majorana fermion observation in contact to superconductor materials.

  6. Lattice-registered growth of GaSb on Si (211) with molecular beam epitaxy

    SciTech Connect (OSTI)

    Hosseini Vajargah, S.; Botton, G. A.; Ghanad-Tavakoli, S.; Preston, J. S.; Kleiman, R. N.

    2012-11-01

    A GaSb film was grown on a Si(211) substrate using molecular beam epitaxy indicating full lattice relaxation as well as full lattice registration and dislocation-free growth in the plane perpendicular to the [01 - 1]-direction. Heteroepitaxy of GaSb on a Si(211) substrate is dominated by numerous first order and multiple higher order micro-twins. The atomic-resolved structural study of GaSb films by high-angle annular dark-field scanning transmission electron microscopy reveals that slight tilt, along with twinning, favors the lattice registry to Si(211) substrates. Preferential bonding of impinging Ga and Sb atoms at the interface due to two distinctive bonding sites on the Si(211) surface enables growth that is sublattice-ordered and free of anti-phase boundaries. The role of the substrate orientation on the strain distribution of GaSb epilayers is further elucidated by investigating the local change in the lattice parameter using the geometric phase analysis method and hence effectiveness of the lattice tilting in reducing the interfacial strain was confirmed further.

  7. Magnetotransport in MgO-based magnetic tunnel junctions grown by molecular beam epitaxy (invited)

    SciTech Connect (OSTI)

    Andrieu, S. Bonell, F.; Hauet, T.; Montaigne, F.; Lefevre, P.; Bertran, F.

    2014-05-07

    The strong impact of molecular beam epitaxy growth and Synchrotron Radiation characterization tools in the understanding of fundamental issues in nanomagnetism and spintronics is illustrated through the example of fully epitaxial MgO-based Magnetic Tunnel Junctions (MTJs). If ab initio calculations predict very high tunnel magnetoresistance (TMR) in such devices, some discrepancy between theory and experiments still exists. The influence of imperfections in real systems has thus to be considered like surface contaminations, structural defects, unexpected electronic states, etc. The influence of possible oxygen contamination at the Fe/MgO(001) interface is thus studied, and is shown to be not so detrimental to TMR as predicted by ab initio calculations. On the contrary, the decrease of dislocations density in the MgO barrier of MTJs using Fe{sub 1−x}V{sub x} electrodes is shown to significantly increase TMR. Finally, unexpected transport properties in Fe{sub 1−X}Co{sub x}/MgO/Fe{sub 1−X}Co{sub x} (001) are presented. With the help of spin and symmetry resolved photoemission and ab initio calculation, the TMR decrease for Co content higher than 25% is shown to come from the existence of an interface state and the shift of the empty Δ1 minority spin state towards the Fermi level.

  8. Note: A short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator

    SciTech Connect (OSTI)

    Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M.; Suits, Arthur G.

    2014-11-15

    Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.

  9. Self-corrected Sensors Based On Atomic Absorption Spectroscopy For Atom Flux Measurements In Molecular Beam Epitaxy

    SciTech Connect (OSTI)

    Du, Yingge; Droubay, Timothy C.; Liyu, Andrey V.; Li, Guosheng; Chambers, Scott A.

    2014-04-24

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device (CCD) detector in a double-beam configuration, we employ a non-resonant line or a resonant line with lower absorbance from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  10. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    SciTech Connect (OSTI)

    Du, Y. E-mail: scott.chambers@pnnl.gov; Liyu, A. V.; Droubay, T. C.; Chambers, S. A. E-mail: scott.chambers@pnnl.gov; Li, G.

    2014-04-21

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  11. Defect study in molecular beam epitaxy-grown HgCdTe films with activated and unactivated arsenic

    SciTech Connect (OSTI)

    Izhnin, I. I.; Dvoretsky, S. A.; Mikhailov, N. N.; Varavin, V. S.; Mynbaev, K. D.; Fitsych, O. I.; Pociask-Bialy, M.; Sheregii, E.; Voitsekhovskii, A. V.

    2014-04-28

    A defect study was performed on molecular beam epitaxy-grown HgCdTe films in situ doped with arsenic. Doping was performed from either effusion cell or cracker cell, and studied were both as-grown samples and samples subjected to arsenic activation annealing. Electrical properties of the films were investigated with the use of ion milling as a means of stirring defects in the material. As a result of the study, it was confirmed that the most efficient incorporation of electrically active arsenic occurs at the cracking zone temperature of 700?C. Interaction between arsenic and tellurium during the growth was observed and is discussed in the paper.

  12. Optical properties of strain-free AlN nanowires grown by molecular beam epitaxy on Si substrates

    SciTech Connect (OSTI)

    Wang, Q.; Zhao, S.; Connie, A. T.; Shih, I.; Mi, Z.; Gonzalez, T.; Andrews, M. P.; Du, X. Z.; Lin, J. Y.; Jiang, H. X.

    2014-06-02

    The optical properties of catalyst-free AlN nanowires grown on Si substrates by molecular beam epitaxy were investigated. Such nanowires are nearly free of strain, with strong free exciton emission measured at room temperature. The photoluminescence intensity is significantly enhanced, compared to previously reported AlN epilayer. Moreover, the presence of phonon replicas with an energy separation of ?100?meV was identified to be associated with the surface-optical phonon rather than the commonly reported longitudinal-optical phonon, which is further supported by the micro-Raman scattering experiments.

  13. Energy eigenfunctions for position-dependent mass particles in a new class of molecular Hamiltonians

    SciTech Connect (OSTI)

    Christiansen, H. R.; Cunha, M. S.

    2014-09-15

    Based on recent results on quasi-exactly solvable Schrodinger equations, we review a new phenomenological potential class lately reported. In the present paper, we consider the quantum differential equations resulting from position-dependent mass (PDM) particles. We first focus on the PDM version of the hyperbolic potential V(x) = asech{sup 2}x + bsech{sup 4}x, which we address analytically with no restrictioon the parameters and the energies. This is the celebrated Manning potential, a double-well widely used in molecular physics, until now not investigated for PDM. We also evaluate the PDM version of the sixth power hyperbolic potential V(x) = asech{sup 6}x + bsech{sup 4}x for which we could find exact expressions under some special settings. Finally, we address a triple-well case V(x) = asech{sup 6}x + bsech{sup 4}x + csech{sup 2}x of particular interest for its connection to the new trends in atomtronics. The PDM Schrodinger equations studied in the present paper yield analytical eigenfunctions in terms of local Heun functions in its confluents forms. In all the cases PDM particles are more likely tunneling than ordinary ones. In addition, it is observed a merging of eigenstates when the mass becomes nonuniform.

  14. Molecular fountain.

    SciTech Connect (OSTI)

    Strecker, Kevin E.; Chandler, David W.

    2009-09-01

    A molecular fountain directs slowly moving molecules against gravity to further slow them to translational energies that they can be trapped and studied. If the molecules are initially slow enough they will return some time later to the position from which they were launched. Because this round trip time can be on the order of a second a single molecule can be observed for times sufficient to perform Hz level spectroscopy. The goal of this LDRD proposal was to construct a novel Molecular Fountain apparatus capable of producing dilute samples of molecules at near zero temperatures in well-defined user-selectable, quantum states. The slowly moving molecules used in this research are produced by the previously developed Kinematic Cooling technique, which uses a crossed atomic and molecular beam apparatus to generate single rotational level molecular samples moving slowly in the laboratory reference frame. The Kinematic Cooling technique produces cold molecules from a supersonic molecular beam via single collisions with a supersonic atomic beam. A single collision of an atom with a molecule occurring at the correct energy and relative velocity can cause a small fraction of the molecules to move very slowly vertically against gravity in the laboratory. These slowly moving molecules are captured by an electrostatic hexapole guiding field that both orients and focuses the molecules. The molecules are focused into the ionization region of a time-of-flight mass spectrometer and are ionized by laser radiation. The new molecular fountain apparatus was built utilizing a new design for molecular beam apparatus that has allowed us to miniaturize the apparatus. This new design minimizes the volumes and surface area of the machine allowing smaller pumps to maintain the necessary background pressures needed for these experiments.

  15. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOE Patents [OSTI]

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  16. LaCrO{sub 3} heteroepitaxy on SrTiO{sub 3}(001) by molecular beam epitaxy

    SciTech Connect (OSTI)

    Qiao, L.; Droubay, T. C.; Bowden, M. E.; Shutthanandan, V.; Kaspar, T. C.; Chambers, S. A.

    2011-08-08

    Stoichiometric, epitaxial LaCrO{sub 3} films have been grown on SrTiO{sub 3}(001) by molecular beam epitaxy using O{sub 2} as the oxidant. Films grew in a layer-by-layer fashion, giving rise to coherently strained, structurally excellent films and surfaces which preserve the step-terrace structure of the substrate. The critical thickness is in excess of 500 A. Cr(III) near the surface is easily oxidized to Cr(V) upon exposure to atomic oxygen and reduction back to Cr(III) is readily achieved by vacuum annealing, resulting in tunability of the charge state at the B-site cation.

  17. LaCrO3 heteroepitaxy on SrTiO3(001) by molecular beam epitaxy

    SciTech Connect (OSTI)

    Qiao, Liang; Droubay, Timothy C.; Bowden, Mark E.; Shutthanandan, V.; Kaspar, Tiffany C.; Chambers, Scott A.

    2011-08-09

    Stoichiometric, epitaxial LaCrO3 films have been grown on TiO2-terminated SrTiO3(001) substrates by molecular beam epitaxy using O2 as the oxidant. Film growth occurred in a layer-by-layer fashion, giving rise to structurally excellent films and surfaces which preserve the step-terrace structure of the substrate. The critical thickness is in excess of 500 . Near-surface Cr(III) is highly susceptible to further oxidation to Cr(V), leading to the formation of a disordered phase upon exposure to atomic oxygen. Recovery of the original epitaxial LaCrO3 phase is readily achieved by vacuum annealing.

  18. Growth mode and strain relaxation of InAs on InP (111)A grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Li, H.; Daniels-Race, T.; Wang, Z.

    1999-03-01

    Growth mode and strain relaxation of molecular-beam-epitaxy grown InAs/InAlAs/InP (111)A system have been investigated using reflection high-energy electron diffraction, transmission electron microscopy, atomic force microscopy, and photoluminescence measurements. In direct contrast to the well-studied InAs/GaAs system, our experimental results show that the InAs grown on InAlAs/InP (111)A follows the Stranski{endash}Krastanov mode. Both self-organized InAs quantum dots and relaxed InAs islands are formed depending on the InAs coverage. Intense luminescence signals from both the InAs quantum dots and wetting layer are observed. The luminescence efficiency of (111)A samples is comparable to that of (001) samples, suggesting the feasibility of fabricating quantum dot optoelectronic devices on InP (111)A surfaces. {copyright} {ital 1999 American Institute of Physics.}

  19. High-quality epitaxial CoFe/Si(111) heterostructures fabricated by low-temperature molecular beam epitaxy

    SciTech Connect (OSTI)

    Maeda, Y.; Yamada, S.; Ando, Y.; Yamane, K.; Miyao, M.; Hamaya, K.

    2010-11-08

    We demonstrate atomically controlled heterojunctions consisting of ferromagnetic CoFe alloys and silicon (Si) using low-temperature molecular beam epitaxy with a good atomic matching at the (111) plane. The saturation magnetization of the CoFe layers grown reaches {approx}85% of the value of bulk samples reported so far, and can be systematically controlled by tuning the ratio of Co to Fe, indicating that the silicidation reactions between CoFe and Si are suppressed and the heterojunctions are very high quality. We find that the Schottky barrier height of the high-quality CoFe/Si(111) junctions is unexpectedly low compared to the previous data for other metal/Si ones, implying the reduction in the Fermi-level-pinning effect. We can expand the available high-quality ferromagnet/Si heterostructures in the field of Si-based spintronics.

  20. Molecular beam epitaxial growth and characterization of Bi{sub 2}Se{sub 3}/II-VI semiconductor heterostructures

    SciTech Connect (OSTI)

    Chen, Zhiyi Zhao, Lukas; Krusin-Elbaum, Lia; Garcia, Thor Axtmann; Tamargo, Maria C.; Hernandez-Mainet, Luis C.; Deng, Haiming

    2014-12-15

    Surfaces of three-dimensional topological insulators (TIs) have been proposed to host quantum phases at the interfaces with other types of materials, provided that the topological properties of interfacial regions remain unperturbed. Here, we report on the molecular beam epitaxy growth of II-VI semiconductorTI heterostructures using c-plane sapphire substrates. Our studies demonstrate that Zn{sub 0.49}Cd{sub 0.51}Se and Zn{sub 0.23}Cd{sub 0.25}Mg{sub 0.52}Se layers have improved quality relative to ZnSe. The structures exhibit a large relative upward shift of the TI bulk quantum levels when the TI layers are very thin (?6nm), consistent with quantum confinement imposed by the wide bandgap II-VI layers. Our transport measurements show that the characteristic topological signatures of the Bi{sub 2}Se{sub 3} layers are preserved.

  1. CdSe/CdTe type-II superlattices grown on GaSb (001) substrates by molecular beam epitaxy

    SciTech Connect (OSTI)

    Li Jingjing; Liu Shi; Wang Shumin; Ding Ding; Johnson, Shane R.; Zhang Yonghang; Liu Xinyu; Furdyna, Jacek K.; Smith, David J.

    2012-03-19

    CdSe/CdTe superlattices are grown on GaSb substrates using molecular beam epitaxy. X-ray diffraction measurements and cross-sectional transmission electron microscopy images indicate high crystalline quality. Photoluminescence (PL) measurements show the effective bandgap varies with the superlattice layer thicknesses and confirm the CdSe/CdTe heterostructure has a type-II band edge alignment. The valence band offset between unstrained CdTe and CdSe is determined as 0.63 {+-} 0.06 eV by fitting the measured PL peak positions using the envelope function approximation and the Kronig-Penney model. These results suggest that CdSe/CdTe superlattices are promising candidates for multi-junction solar cells and other optoelectronic devices based on GaSb substrates.

  2. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos (Reston, VA); Nemes, Peter (Silver Spring, MD)

    2011-06-21

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  3. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2013-07-16

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  4. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2012-10-30

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  5. Demonstration of isotype GaN/AlN/GaN heterobarrier diodes by NH{sub 3}-molecular beam epitaxy

    SciTech Connect (OSTI)

    Fireman, Micha N.; Browne, David A.; Mazumder, Baishakhi; Speck, James S.; Mishra, Umesh K.

    2015-05-18

    The results of vertical transport through nitride heterobarrier structures grown by ammonia molecular beam epitaxy are presented. Structures are designed with binary layers to avoid the effects of random alloy fluctuations in ternary nitride barriers. The unintentional incorporation of Ga in the AlN growth is investigated by atom probe tomography and is shown to be strongly dependent on both the NH{sub 3} flowrate and substrate temperature growth parameters. Once nominally pure AlN layer growth conditions are achieved, structures consisting of unintentionally doped (UID) GaN spacer layers adjacent to a nominally pure AlN are grown between two layers of n+ GaN, from which isotype diodes are fabricated. Varying the design parameters of AlN layer thickness, UID spacer layer thickness, and threading dislocation density show marked effects on the vertical transport characteristics of these structures. The lack of significant temperature dependence, coupled with Fowler-Nordheim and/or Milliken-Lauritsen analysis, point to a prevalently tunneling field emission mechanism through the AlN barrier. Once flatband conditions in the UID layer are achieved, electrons leave the barrier with significant energy. This transport mechanism is of great interest for applications in hot electron structures.

  6. Structural and optical properties of InGaNGaN nanowire heterostructures grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Ho?fling, S.; Worschech, L.; Gru?tzmacher, D.

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, ?-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.

  7. Magnetic properties of MnSb inclusions formed in GaSb matrix directly during molecular beam epitaxial growth

    SciTech Connect (OSTI)

    Lawniczak-Jablonska, Krystyna; Wolska, Anna; Klepka, Marcin T.; Kret, Slawomir; Kurowska, Boguslawa; Kowalski, Bogdan J.; Twardowski, Andrzej; Wasik, Dariusz; Kwiatkowski, Adam; Sadowski, Janusz

    2011-04-01

    Despite of intensive search for the proper semiconductor base materials for spintronic devices working at room temperature no appropriate material based on ferromagnetic semiconductors has been found so far. We demonstrate that the phase segregated system with MnSb hexagonal inclusions inside the GaSb matrix, formed directly during the molecular beam epitaxial growth reveals the ferromagnetic properties at room temperature and is a good candidate for exploitation in spintronics. Furthermore, the MnSb inclusions with only one crystalline structure were identified in this GaMn:MnSb granular material. The SQUID magnetometry confirmed that this material exhibits ferromagnetic like behavior starting from helium up to room temperature. Moreover, the magnetic anisotropy was found which was present also at room temperature, and it was proved that by choosing a proper substrate it is possible to control the direction of easy axis of inclusions' magnetization moment between in-plane and out-of-plane; the latter is important in view of potential applications in spintronic devices.

  8. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Yong; Leung, Benjamin; Li, Qiming; Figiel, Jeffrey J.; Wang, George T.

    2015-07-14

    In this study, ammonia-based molecular beam epitaxy (NH3-MBE) was used to grow catalyst-assisted GaN nanowires on (11¯02) r-plane sapphire substrates. Dislocation free [112¯0] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar {101¯0} side facets, which appear due to a decrease in relative growth rate of the {101¯0} facets to the {101¯1} and {101¯1} facets under the growth regime in NH3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal–organic chemical vapor deposition, the NH3-MBE grown GaN nanowires show more than an ordermore » of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.« less

  9. First-principles studies on molecular beam epitaxy growth of GaAs1-xBix

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, Guangfu; Yang, Shujiang; Li, Jincheng; Arjmand, Mehrdad; Szlufarska, Izabela; Brown, April S.; Kuech, Thomas F.; Morgan, Dane

    2015-07-14

    We investigate the molecular beam epitaxy (MBE) growth of GaAs1-xBix film using density functional theory with spin-orbit coupling to understand the growth of this film, especially the mechanisms of Bi incorporation. We study the stable adsorption structures and kinetics of the incident molecules (As? molecule, Ga atom, Bi atom, and Bi? molecule) on the (2 x 1)-Gasub||Bi surface and a proposed q(1 x 1)-Gasub||AsAs surface has a quasi-(1 x 1) As layer above the Ga-terminated GaAs substrate and a randomly oriented As dimer layer on top. We obtain the desorption and diffusion barriers of the adsorbed molecules and also themorereaction barriers of three key processes related to Bi evolution, namely, Bi incorporation, As/Bi exchange, and Bi clustering. The results help explain the experimentally observed dependence of Bi incorporation on the As/Ga ratio and growth temperature. Furthermore, we find that As? exchange with Bi of the (2 x 1)-Gasub||Bi surface is a key step controlling the kinetics of the Bi incorporation. Finally, we explore two possible methods to enhance the Bi incorporation, namely, replacing the MBE growth mode from codeposition of all fluxes with a sequential deposition of fluxes and applying asymmetric in-plane strain to the substrate.less

  10. In-situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Venkata Rama Ses; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R.; Wang, Chong M.

    2015-08-19

    Dynamic molecular evolution at solid/liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe/observe the solid/liquid interface under reaction conditions, which in essence appears to be similarly true for all the fields involving solid/liquid phases, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization, We use in-situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid electrode/liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to deplete the salt anion and with low concentration of Li+ ions, which essentially leads to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributes to the overpotential of the cell. This unprecedented molecular level dynamic observation at the solid electrode/liquid electrolyte interface provides vital chemical information that is needed for designing of better battery chemistry for enhanced performance, and ultimately opens new avenues for using liquid SIMS to probe molecular evolution at solid/liquid interface in general.

  11. Molecular beam epitaxy of GaNAs alloys with high As content for potential photoanode applications in hydrogen production

    SciTech Connect (OSTI)

    Novikov, S. V.; Staddon, C. R.; Foxon, C. T.; Yu, K. M.; Broesler, R.; Hawkridge, M.; Liliental-Weber, Z.; Walukiewicz, W.; Denlinger, J.; Demchenko, I.

    2009-10-06

    The authors have succeeded in growing GaN1?xAsx alloys over a large composition range (0 < x < 0.8) by plasma-assisted molecular beam epitaxy. The enhanced incorporation of As was achieved by growing the films with high As{sub 2} flux at low (as low as 100 C) growth temperatures, which is much below the normal GaN growth temperature range. Using x-ray and transmission electron microscopy, they found that the GaNAs alloys with high As content x > 0.17 are amorphous. Optical absorption measurements together with x-ray absorption and emission spectroscopy results reveal a continuous gradual decrease in band gap from -3.4 to < 1 eV with increasing As content. The energy gap reaches its minimum of -0.8 eV at x - 0.8. The composition dependence of the band gap of the crystalline GaN{sub 1?x}As{sub x} alloys follows the prediction of the band anticrossing model (BAC). However, our measured band gap of amorphous GaN{sub 1?x}As{sub x} with 0.3 < x < 0.8 are larger than that predicted by BAC. The results seem to indicate that for this composition range the amorphous GaN{sub 1?x}As{sub x} alloys have short-range ordering that resembles random crystalline GaN{sub 1?x}As{sub x} alloys. They have demonstrated the possibility of the growth of amorphous GaN{sub 1?x}As{sub x} layers with variable As content on glass substrates

  12. Structural and optical properties of InGaN--GaN nanowire heterostructures grown by molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Hofling, S.; et al

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmore » to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.« less

  13. Structural and optical properties of InGaNGaN nanowire heterostructures grown by molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Ho?fling, S.; et al

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmoreto higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, ?-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.less

  14. Enhancement of minority carrier lifetime of GaInP with lateral composition modulation structure grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Park, K. W.; Ravindran, Sooraj; Kang, S. J.; Hwang, H. Y.; Jho, Y. D.; Park, C. Y.; Jo, Y. R.; Kim, B. J.; Lee, Y. T.

    2014-07-28

    We report the enhancement of the minority carrier lifetime of GaInP with a lateral composition modulated (LCM) structure grown using molecular beam epitaxy (MBE). The structural and optical properties of the grown samples are studied by transmission electron microscopy and photoluminescence, which reveal the formation of vertically aligned bright and dark slabs corresponding to Ga-rich and In-rich GaInP regions, respectively, with good crystal quality. With the decrease of V/III ratio during LCM GaInP growth, it is seen that the band gap of LCM GaInP is reduced, while the PL intensity remains high and is comparable to that of bulk GaInP. We also investigate the minority carrier lifetime of LCM structures made with different flux ratios. It is found that the minority carrier lifetime of LCM GaInP is ?37 times larger than that of bulk GaInP material, due to the spatial separation of electrons and holes by In-rich and Ga-rich regions of the LCM GaInP, respectively. We further demonstrate that the minority carrier lifetime of the grown LCM GaInP structures can easily be tuned by simply adjusting the V/III flux ratio during MBE growth, providing a simple yet powerful technique to tailor the electrical and optical properties at will. The exceptionally high carrier lifetime and the reduced band gap of LCM GaInP make them a highly attractive candidate for forming the top cell of multi-junction solar cells and can enhance their efficiency, and also make them suitable for other optoelectronics devices, such as photodetectors, where longer carrier lifetime is beneficial.

  15. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    SciTech Connect (OSTI)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without breaking vacuum, and convenient visual access to the sample and tip inside a superconducting magnet cryostat. A sample/tip handling system is optimized for both the molecular beam epitaxy growth system and the scanning tunneling microscope system. The sample/tip handing system enables in situ STM studies on epitaxially grown samples, and tip exchange in the superconducting magnet cryostat. The hybrid molecular beam epitaxy and low temperature scanning tunneling microscopy system is capable of growing semiconductor-based hetero-structures with controlled accuracy down to a single atomic-layer and imaging them down to atomic resolution.

  16. Detection of high molecular weight organic tracers in vegetation smoke samples by high-temperature gas chromatography-mass spectrometry

    SciTech Connect (OSTI)

    Elias, V.O.; Simoneit, B.R.T. ); Pereira, A.S.; Cardoso, J.N. ); Cabral, J.A. )

    1999-07-15

    High-temperature high-resolution gas chromatography (HTGC) is an established technique for the separation of complex mixtures of high molecular weight (HMW) compounds which do not elute when analyzed on conventional GC columns. The combination of this technique with mass spectrometry is not so common and application to aerosols is novel. The HTGC and HTGC-MS analyses of smoke samples taken by particle filtration from combustion of different species of plants provided the characterization of various classes of HMW compounds reported to occur for the first time in emissions from biomass burning. Among these components are a series of wax esters with up to 58 carbon numbers, aliphatic hydrocarbons, triglycerides, long chain methyl ketones, alkanols and a series of triterpenyl fatty acid esters which have been characterized as novel natural products. Long chain fatty acids with more than 32 carbon numbers are not present in the smoke samples analyzed. The HMW compounds in smoke samples from the burning of plants from Amazonia indicate the input of directly volatilized natural products in the original plants during their combustion. However, the major organic compounds extracted from smoke consist of a series of lower molecular weight polar components, which are not natural products but the result of the thermal breakdown of cellulose and lignin. In contrast, the HMW natural products may be suitable tracers for specific sources of vegetation combustion because they are emitted as particles without thermal alternation in the smoke and can thus be related directly to the original plant material.

  17. Molecular Characterization of Organic Aerosol Using Nanospray Desorption/Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect (OSTI)

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Liu, Shang; Weber, Robin; Russell, Lynn; Goldstein, Allen H.

    2013-04-01

    Aerosol samples from the CalNex 2010 field study were analyzed using high resolution mass spectrometry (HR-MS) coupled to a nanospray-desorption/electrospray ionization (nano-DESI) source. The samples were collected in Bakersfield, CA on June 22-23, 2010. The chemical formulas of over 1300 unique molecular species were detected in the mass range of 50-800 m/z. Our analysis focused on identification of two main groups: compounds containing only carbon, hydrogen, and oxygen (CHO only), and nitrogen-containing organic compounds (NOC). The NOC accounted for 35% (by number) of the compounds observed in the afternoon, and for 59% in the early morning samples. By comparing plausible reactant-product pairs, we propose that over 50% of the NOC in each sample could have been formed through reactions transforming carbonyls into imines. The CHO only compounds were dominant in the afternoon suggesting a photochemical source. The average O:C ratios of all observed compounds were fairly consistent throughout the day, ranging from 0.34 in the early morning to 0.37 at night. We conclude that both photooxidation and ammonia chemistry play important roles in forming the compounds observed in this mixed urban-rural environment.

  18. Magneto-transport properties of InAs nanowires laterally-grown by selective area molecular beam epitaxy on GaAs (110) masked substrates

    SciTech Connect (OSTI)

    Akabori, M.; Yamada, S.

    2013-12-04

    We prepared InAs nanowires (NWs) by lateral growth on GaAs (110) masked substrates in molecular beam epitaxy. We measured magneto-transport properties of the InAs NWs. In spite of parallel-NW multi-channels, we observed fluctuating magneto-conductance. From the fluctuation, we evaluated phase coherence length as a function of measurement temperature, and found decrease in the length with increase in the temperature. We also evaluate phase coherence length as a function of gate voltage.

  19. Effects of hydrogen on the optical properties of ZnCdO/ZnO quantum wells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Buyanova, I. A.; Wang, X. J.; Chen, W. M.; Pozina, G.; Lim, W.; Norton, D. P.; Pearton, S. J.; Osinsky, A.; Dong, J. W.; Hertog, B.

    2008-06-30

    Temperature-dependent cw- and time-resolved photoluminescence (PL), as well as optically detected magnetic resonance (ODMR) measurements are employed to evaluate effects of deuterium (2H) doping on optical properties of ZnCdO/ZnO quantum well structures grown by molecular beam epitaxy. It is shown that incorporation of {sup 2}H from a remote plasma causes a substantial improvement in radiative efficiency of the investigated structures. Based on transient PL measurements, the observed improvements are attributed to efficient passivation by hydrogen of competing nonradiative recombination centers via defects. This conclusion is confirmed from the ODMR studies.

  20. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Beam Status Print Loading... You can also view the Operations Group's Beam History archives.

  1. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities AB SCIEX TF4800 MALDI TOF-TOF Mass Spectrometer This instrument is the tandem time-of-flight mass spectrometer systems, providing the excellent level of molecular...

  2. Tellurium n-type doping of highly mismatched amorphous GaN1-xAsx alloys in plasma-assisted molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Novikov, S. V.; Ting, M.; Yu, K. M.; Sarney, W. L.; Martin, R. W.; Svensson, S. P.; Walukiewicz, W.; Foxon, C. T.

    2014-10-01

    In this paper we report our study on n-type Te doping of amorphous GaN1-xAsx layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN1-xAsx layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN1-xAsx layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN1-xAsx layers has been determined.

  3. Room temperature photoluminescence from In{sub x}Al{sub (1?x)}N films deposited by plasma-assisted molecular beam epitaxy

    SciTech Connect (OSTI)

    Kong, W. Jiao, W. Y.; Kim, T. H.; Brown, A. S.; Mohanta, A.; Roberts, A. T.; Fournelle, J.; Losurdo, M.; Everitt, H. O.

    2014-09-29

    InAlN films deposited by plasma-assisted molecular beam epitaxy exhibited a lateral composition modulation characterized by 1012?nm diameter, honeycomb-shaped, columnar domains with Al-rich cores and In-rich boundaries. To ascertain the effect of this microstructure on its optical properties, room temperature absorption and photoluminescence characteristics of In{sub x}Al{sub (1?x)}N were comparatively investigated for indium compositions ranging from x?=?0.092 to 0.235, including x?=?0.166 lattice matched to GaN. The Stokes shift of the emission was significantly greater than reported for films grown by metalorganic chemical vapor deposition, possibly due to the phase separation in these nanocolumnar domains. The room temperature photoluminescence also provided evidence of carrier transfer from the InAlN film to the GaN template.

  4. Properties of molecular beam epitaxy grown Eu{sub x}(transition metal){sub y} films (transition metals: Mn, Cr)

    SciTech Connect (OSTI)

    Balin, K.; Nowak, A.; Gibaud, A.; Szade, J.; Celinski, Z.

    2011-04-01

    The electronic and crystallographic structures, as well as the magnetic properties, of Eu{sub x}(transition metal){sub y} (transition metals: Mn, Cr) thin films grown by molecular beam epitaxy were studied. Relative changes of the Eu/Mn and Eu/Cr ratios derived from the XPS lines, as well as x-ray reflectivity, indicate mixing of the Eu/Mn and Eu/Cr layers. Valency transitions from Eu{sup 2+} to Eu{sup 3+} were observed in both systems for most studied stoichiometries. A transition to a magnetically ordered phase was observed at 15 K, 40 K, and 62 K for selected films in the Eu-Mn system, and at 50 K for the film with a Eu/Cr ratio of 0.5.

  5. Low density of self-assembled InAs quantum dots grown by solid-source molecular beam epitaxy on InP(001)

    SciTech Connect (OSTI)

    Dupuy, E.; Regreny, P.; Robach, Y.; Gendry, M.; Chauvin, N.; Tranvouez, E.; Bremond, G.; Bru-Chevallier, C.; Patriarche, G.

    2006-09-18

    The authors report on a postgrowth method to obtain low density InAs/InP(001) quantum dots by solid-source molecular beam epitaxy. They used an approach based on the ripening of the InAs sticks, which is triggered by the sample cooling under arsenic overpressure, before InP capping. Atomic force microscopy images show the evolution of InAs islands from sticks oriented along the [1-10] direction to dot-shaped islands with a density that can be reduced to about 2x10{sup 9} dots/cm{sup 2}. Macro- and microphotoluminescence reveal that these diluted InAs dots exhibit a strong spatial confinement and emit in the 1.55 {mu}m range.

  6. Double capping of molecular beam epitaxy grown InAs/InP quantum dots studied by cross-sectional scanning tunneling microscopy

    SciTech Connect (OSTI)

    Ulloa, J. M.; Koenraad, P. M.; Gapihan, E.; Letoublon, A.; Bertru, N.

    2007-08-13

    Cross-sectional scanning tunneling microscopy was used to study at the atomic scale the double capping process of self-assembled InAs/InP quantum dots (QDs) grown by molecular beam epitaxy on a (311)B substrate. The thickness of the first capping layer is found to play a mayor role in determining the final results of the process. For first capping layers up to 3.5 nm, the height of the QDs correspond to the thickness of the first capping layer. Nevertheless, for thicknesses higher than 3.5 nm, a reduction in the dot height compared to the thickness of the first capping layer is observed. These results are interpreted in terms of a transition from a double capping to a classical capping process when the first capping layer is thick enough to completely cover the dots.

  7. Growth, steady-state, and time-resolved photoluminescence study of CdTe/MgCdTe double heterostructures on InSb substrates using molecular beam epitaxy

    SciTech Connect (OSTI)

    DiNezza, Michael J.; Liu, Shi; Kirk, Alexander P.; Zhang, Yong-Hang; School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 ; Zhao, Xin-Hao; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287

    2013-11-04

    CdTe/MgCdTe double heterostructures (DHs) are grown on InSb substrates using molecular beam epitaxy and reveal strong photoluminescence with over double the intensity of a GaAs/AlGaAs DH with an identical layer structure design grown on GaAs. Time-resolved photoluminescence of the CdTe/MgCdTe DH gives a Shockley-Read-Hall recombination lifetime of 86 ns, which is more than one order of magnitude longer than that of typical polycrystalline CdTe films. These findings indicate that monocrystalline CdTe/MgCdTe DHs effectively reduce surface recombination, have limited nonradiative interface recombination, and are promising for solar cells that could reach power conversion efficiencies similar to that of GaAs.

  8. Determination of CdTe bulk carrier lifetime and interface recombination velocity of CdTe/MgCdTe double heterostructures grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Zhao, Xin-Hao; Campbell, Calli M.; DiNezza, Michael J.; Liu, Shi; Zhao, Yuan; Zhang, Yong-Hang

    2014-12-22

    The bulk Shockley-Read-Hall carrier lifetime of CdTe and interface recombination velocity at the CdTe/Mg{sub 0.24}Cd{sub 0.76}Te heterointerface are estimated to be around 0.5??s and (4.7??0.4)??10{sup 2?}cm/s, respectively, using time-resolved photoluminescence (PL) measurements. Four CdTe/MgCdTe double heterostructures (DHs) with varying CdTe layer thicknesses were grown on nearly lattice-matched InSb (001) substrates using molecular beam epitaxy. The longest lifetime of 179?ns is observed in the DH with a 2??m thick CdTe layer. It is also shown that the photon recycling effect has a strong influence on the bulk radiative lifetime, and the reabsorption process affects the measured PL spectrum shape and intensity.

  9. Clarification of enhanced ferromagnetism in Be-codoped InMnP fabricated using Mn/InP:Be bilayers grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Shon, Yoon; Lee, Sejoon; Taek Yoon, Im; Jeon, H. C.; Lee, D. J.; Kang, T. W.; Song, J. D.; Yoon, Chong S.; Kim, D. Y.; Park, C. S.

    2011-11-07

    The p-type InMnP:Be epilayers were prepared by the sequential growth of Mn/InP:Be bilayers using molecular-beam-epitaxy and the subsequent in-situ annealing at 200-300 deg. C. In triple-axis x-ray diffraction patterns, the samples revealed a shoulder peak indicative of intrinsic InMnP. The ferromagnetic transition in InMnP:Be was observed to occur at the elevated temperature of {approx}140 K, and the ferromagnetic spin-domains clearly appeared in magnetic force microscopy images. The improved ferromagnetic properties are attributed to the increased p-d hybridation due to high p-type conductivity of InMnP:Be (p {approx} 10{sup 20 }cm{sup -3}). The results suggest that enhanced ferromagnetism can be effectively obtained from Be-codoped InMnP.

  10. Electrical performance of phase change memory cells with Ge{sub 3}Sb{sub 2}Te{sub 6} deposited by molecular beam epitaxy

    SciTech Connect (OSTI)

    Boschker, Jos E.; Riechert, Henning; Calarco, Raffaella; Boniardi, Mattia; Redaelli, Andrea

    2015-01-12

    Here, we report on the electrical characterization of phase change memory cells containing a Ge{sub 3}Sb{sub 2}Te{sub 6} (GST) alloy grown in its crystalline form by Molecular Beam Epitaxy (MBE). It is found that the high temperature growth on the amorphous substrate results in a polycrystalline film exhibiting a rough surface with a grain size of approximately 80150?nm. A detailed electrical characterization has been performed, including I-V characteristic curves, programming curves, set operation performance, crystallization activation at low temperature, and resistance drift, in order to determine the material related parameters. The results indicate very good alignment of the electrical parameters with the current state-of-the-art GST, deposited by physical vapor deposition. Such alignment enables a possible employment of the MBE deposition technique for chalcogenide materials in the phase change memory technology, thus leading to future studies of as-deposited crystalline chalcogenides as integrated in electrical vehicles.

  11. CROSSED MOLECULAR BEAM STUDIES OF CHEMILUMINESCENT REACTIONS: F{sub 2} + I{sub 2}, Br{sub 2} and ICl

    SciTech Connect (OSTI)

    Kahler, C.C.; Lee, Y.T.

    1980-05-01

    The chemiluminescent bimolecular halogen-halogen reactions, F{sub 2} + I{sub 2}, Br{sub 2} and ICl, have been studied by the crossed molecular beam technique. Undispersed chemiluminescence was measured as a function of collision energy and, for I{sub 2} + F{sub 2}, as a function of the two beam pressures. Although no spectra were obtained to positively identify the emitters as IF*, ClF* and BrF*, arguments are given to support this identification. The observed reaction thresholds of 4.2 and 5.9 kcal/mole for I{sub 2} + F{sub 2} and ICl + F{sub 2} , respectively, are the same as the threshold energies for production of the stable trihalogens I{sub 2}F and ClF. This coincidence of threshold energies, as well as similar high collision energy behavior, implies that the chemiluminescent reaction proceeds via a stable trihalogen intermediate. This mechanism can explain our results and the results of other workers without resorting to a symmetry forbidden four center reaction mechanism. A threshold of 11.3 kcal/mole was found for Br{sub 2} + F{sub 2} , no threshold for Br{sub 2}F has been previously reported. Laser enhancement of the I{sub 2} + F{sub 2} reaction was attempted, but no enhancement was seen.

  12. Structural anisotropic properties of a-plane GaN epilayers grown on r-plane sapphire by molecular beam epitaxy

    SciTech Connect (OSTI)

    Lotsari, A.; Kehagias, Th.; Katsikini, M.; Arvanitidis, J.; Ves, S.; Komninou, Ph.; Dimitrakopulos, G. P.; Tsiakatouras, G.; Tsagaraki, K.; Georgakilas, A.; Christofilos, D.

    2014-06-07

    Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the M-shape dependence of the (112{sup }0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults, and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.

  13. In situ synchrotron radiation photoelectron spectroscopy study of the oxidation of the Ge(100)-2 1 surface by supersonic molecular oxygen beams

    SciTech Connect (OSTI)

    Yoshigoe, Akitaka; Teraoka, Yuden; Okada, Ryuta; Yamada, Yoichi; Sasaki, Masahiro

    2014-11-07

    In situ synchrotron radiation photoelectron spectroscopy was performed during the oxidation of the Ge(100)-2 1 surface induced by a molecular oxygen beam with various incident energies up to 2.2 eV from the initial to saturation coverage of surface oxides. The saturation coverage of oxygen on the clean Ge(100) surface was much lower than one monolayer and the oxidation state of Ge was +2 at most. This indicates that the Ge(100) surface is so inert toward oxidation that complete oxidation cannot be achieved with only pure oxygen (O{sub 2}) gas, which is in strong contrast to Si surfaces. Two types of dissociative adsorption, trapping-mediated and direct dissociation, were confirmed by oxygen uptake measurements depending on the incident energy of O{sub 2}. The direct adsorption process can be activated by increasing the translational energy, resulting in an increased population of Ge{sup 2+} and a higher final oxygen coverage. We demonstrated that hyperthermal O{sub 2} beams remarkably promote the room-temperature oxidation with novel atomic configurations of oxides at the Ge(100) surface. Our findings will contribute to the fundamental understanding of oxygen adsorption processes at 300 K from the initial stages to saturated oxidation.

  14. Development and evaluation of supercritical fluid chromatography/mass spectrometry for polar and high-molecular-weight coal components. Technical progress report

    SciTech Connect (OSTI)

    Chess, E.K.; Smith, R.D.

    1986-01-01

    This Technical Progress Report reviews the technical progress made over the first 18 months of the program. Our goals include the design, development, and evaluation of a combined capillary column supercritical fluid chromatograph/high-performance mass spectrometer capable of analyzing high-molecular-weight polar materials and evaluating the system's potential for application in coal conversion process monitoring. The program includes not only the development and evaluation of the required instrumentation, but the development of polar fluids and compatible chromatographic stationary phases needed for efficient separation and analysis of polar and high-molecular-weight compounds. A new chromatograph/mass spectrometer interface and new mass spectrometer ion source have been designed, constructed, and evaluated using low-polarity supercritical fluids such as pentane. Results from the evaluations have been used to modify the instrumentation to improve performance. The design and fabrication of capillary flow restrictors from fused silica tubing has been explored. Research has also been conducted toward advancing the technology of fabricating high-performance chromatographic columns suitable for use with polar supercritical fluids. Results to date support our initial belief that high-resolution supercritical fluid chromatography (SFC)/high-performance mass spectrometry (MS) will provide a significantly enhanced analytical capability for broad classes of previously intractable fuel components. 10 refs., 13 figs.

  15. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Print Loading... You can also view the Operations Group's Beam History archives

  16. Compact hydrogen/helium isotope mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM); Scime, Earl E. (Morgantown, WV)

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  17. Highly charged ion secondary ion mass spectroscopy

    DOE Patents [OSTI]

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  18. X-ray magnetic circular dichroism for Co{sub x}Fe{sub 4?x}N (x?=?0, 3, 4) films grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Ito, Keita; Sanai, Tatsunori; Yasutomi, Yoko; Toko, Kaoru; Suemasu, Takashi; Zhu, Siyuan; Kimura, Akio; Takeda, Yukiharu; Saitoh, Yuji

    2014-05-07

    We evaluated orbital (m{sub orb}) and spin magnetic moments (m{sub spin}) of Co{sub x}Fe{sub 4?x}N (x?=?0, 3, 4) epitaxial thin films grown by molecular beam epitaxy using x-ray magnetic circular dichroism, and discussed the dependence of these values on x. Site-averaged m{sub spin} value of Fe atoms was deduced to be 1.91??{sub B} per atom, and that of Co atoms to be 1.47??{sub B} per atom in Co{sub 3}FeN at 300?K. These values are close to 1.87??{sub B} per Fe atom in Fe{sub 4}N and 1.43??{sub B} per Co atom in Co{sub 4}N, respectively. This result implies that the Fe and Co atoms in the Co{sub 3}FeN films were located both at corner and face-centered sites in the anti-perovskite lattice. Spin magnetic moments per unit cell were decreased linearly with increasing x in Co{sub x}Fe{sub 4?x}N. This tendency is in good agreement with theory predicted by the first-principle calculation.

  19. Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods

    SciTech Connect (OSTI)

    Barate, P.; Zhang, T. T.; Vidal, M.; Renucci, P.; Marie, X.; Amand, T.; Liang, S.; Devaux, X.; Hehn, M.; Mangin, S.; Lu, Y.; Frougier, J.; Jaffrs, H.; George, J. M.; Zheng, Y.; Tao, B.; Han, X. F.

    2014-07-07

    An efficient electrical spin injection into an InGaAs/GaAs quantum well light emitting diode is demonstrated thanks to a CoFeB/MgO spin injector. The textured MgO tunnel barrier is fabricated by two different techniques: sputtering and molecular beam epitaxy. The maximal spin injection efficiency is comparable for both methods. Additionally, the effect of annealing is also investigated for the two types of samples. Both samples show the same trend: an increase of the electroluminescence circular polarization (P{sub c}) with the increase of annealing temperature, followed by a saturation of P{sub c} beyond 350?C annealing. Since the increase of P{sub c} starts well below the crystallization temperature of the full CoFeB bulk layer, this trend could be mainly due to an improvement of chemical structure at the top CoFeB/MgO interface. This study reveals that the control of CoFeB/MgO interface is essential for an optimal spin injection into semiconductor.

  20. Photochemical Properties, Composition, and Structure in Molecular Beam Epitaxy Grown Fe Doped and (Fe,N) Codoped Rutile TiO2(110)

    SciTech Connect (OSTI)

    Mangham, Andrew N.; Govind, Niranjan; Bowden, Mark E.; Shutthanandan, V.; Joly, Alan G.; Henderson, Michael A.; Chambers, Scott A.

    2011-08-11

    We have investigated the surface photochemical properties of Fe "doped" and (Fe,N) co-doped homoepitaxial rutile TiO2 (110) films grown by plasma assisted molecular beam epitaxy. Fe does not incorporate as an electronic dopant in the rutile lattice, but rather segregates to the film surface. However, co-deposition of Fe with N enhances the solubility of Fe, and DFT calculations suggest that co-dopant complex formation is the driving force behind the enhanced solubility. The co-doped films, in which a few atomic percent of Ti (O) are replaced with Fe (N), exhibit significant disorder compared to undoped films grown under the same conditions, presumably due to dopant-induced strain. Co-doping redshifts the rutile bandgap into the visible. However, the film surfaces are photochemically inert with respect to hole-mediated decomposition of adsorbed trimethyl acetate. The absence of photochemical activity may result from dopant-induced trap and/or recombination sites within the film. This study indicates that enhanced visible light absorptivity in TiO2 does not necessarily result in visible light initiated surface photochemistry.

  1. First-principles studies on molecular beam epitaxy growth of GaAs1-xBix

    SciTech Connect (OSTI)

    Luo, Guangfu; Yang, Shujiang; Li, Jincheng; Arjmand, Mehrdad; Szlufarska, Izabela; Brown, April S.; Kuech, Thomas F.; Morgan, Dane

    2015-07-14

    We investigate the molecular beam epitaxy (MBE) growth of GaAs1-xBix film using density functional theory with spin-orbit coupling to understand the growth of this film, especially the mechanisms of Bi incorporation. We study the stable adsorption structures and kinetics of the incident molecules (As? molecule, Ga atom, Bi atom, and Bi? molecule) on the (2 x 1)-Gasub||Bi surface and a proposed q(1 x 1)-Gasub||AsAs surface has a quasi-(1 x 1) As layer above the Ga-terminated GaAs substrate and a randomly oriented As dimer layer on top. We obtain the desorption and diffusion barriers of the adsorbed molecules and also the reaction barriers of three key processes related to Bi evolution, namely, Bi incorporation, As/Bi exchange, and Bi clustering. The results help explain the experimentally observed dependence of Bi incorporation on the As/Ga ratio and growth temperature. Furthermore, we find that As? exchange with Bi of the (2 x 1)-Gasub||Bi surface is a key step controlling the kinetics of the Bi incorporation. Finally, we explore two possible methods to enhance the Bi incorporation, namely, replacing the MBE growth mode from codeposition of all fluxes with a sequential deposition of fluxes and applying asymmetric in-plane strain to the substrate.

  2. Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy

    SciTech Connect (OSTI)

    Mary?ski, A.; S?k, G.; Musia?, A.; Andrzejewski, J.; Misiewicz, J.; Gilfert, C.; Reithmaier, J. P.; Capua, A.; Karni, O.; Gready, D.; Eisenstein, G.; Atiya, G.; Kaplan, W. D.; Klling, S.

    2013-09-07

    The optical and structural properties of a new kind of InAs/InGaAlAs/InP quantum dot (QD)-like objects grown by molecular beam epitaxy have been investigated. These nanostructures were found to have significantly more symmetrical shapes compared to the commonly obtained dash-like geometries typical of this material system. The enhanced symmetry has been achieved due to the use of an As{sub 2} source and the consequent shorter migration length of the indium atoms. Structural studies based on a combination of scanning transmission electron microscopy (STEM) and atom probe tomography (APT) provided detailed information on both the structure and composition distribution within an individual nanostructure. However, it was not possible to determine the lateral aspect ratio from STEM or APT. To verify the in-plane geometry, electronic structure calculations, including the energy levels and transition oscillator strength for the QDs have been performed using an eight-band kp model and realistic system parameters. The results of calculations were compared to measured polarization-resolved photoluminescence data. On the basis of measured degree of linear polarization of the surface emission, the in-plane shape of the QDs has been assessed proving a substantial increase in lateral symmetry. This results in quantum-dot rather than quantum-dash like properties, consistent with expectations based on the growth conditions and the structural data.

  3. Improved Performance of GaInNAs Solar Cells Grown by Molecular-Beam Epitaxy Using Increased Growth Rate Instead of Surfactants

    SciTech Connect (OSTI)

    Ptak, A. J.; France, R.; Jiang, C. S.; Romero, M. J.

    2009-01-01

    GaInNAs is potentially useful for increasing the conversion efficiency of multijunction solar cells if low photocurrents and photovoltages can be increased. Wide-depletion width devices generate significant photocurrents using an n-i-p structure grown by molecular-beam epitaxy, but these wide depletion widths are only realized in a region of parameter space that leads to rough surface morphologies. Surfactants are effective at reducing the surface roughness, but lead to increased defect densities and changes in the net acceptor or donor concentration. Here, we show that increasing the growth rate of GaInNAs solar cells leads to smooth surfaces without the use of a surfactant, even at high In compositions and substrate temperatures. No degradation in material quality is observed when increasing the growth rate from 1.5 to 3.0 {micro}m/h, but a shunt resistance does appear for the high-growth-rate samples. This shunt is attributed to increased spitting of the Ga cell, leading to an increase in the oval defect density, at the higher effusion cell temperatures used to achieve high growth rates. As with the case of Bi in GaInNAs, increased growth rates also appear to increase the net donor concentration, but it is not clear if these effects have the same cause.

  4. Effect of Ag addition to L1{sub 0} FePt and L1{sub 0} FePd films grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Tokuoka, Y.; Seto, Y.; Kato, T.; Iwata, S.

    2014-05-07

    L1{sub 0} ordered FePt-Ag (5?nm) and FePd-Ag (5?nm) films were grown on MgO (001) substrate at temperatures of 250400?C by using molecular beam epitaxy method, and their crystal and surface structures, perpendicular magnetic anisotropies and Curie temperatures were investigated. In the case of FePt-Ag, Ag addition with the amount of 1020 at.?% was effective to promote L1{sub 0} ordering and granular growth, resulting in the increase of the perpendicular magnetic anisotropy and coercivity of the FePt-Ag films. On the other hand, in the case of FePd-Ag, Ag addition changed the surface morphology from island to continuous film associated with the reductions of its coercivity and perpendicular anisotropy. The variations of lattice constants and Curie temperature with Ag addition were significantly different between FePt-Ag and FePd-Ag. For FePd-Ag, the c and a axes lattice spacings and Curie temperature gradually changed with increasing Ag content, while they unchanged for FePt-Ag. These results suggest the possibility of the formation of FePdAg alloy in FePd-Ag, while Ag segregation in FePt-Ag.

  5. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See the Foundry's full equipment list Nanofabrication Capabilities & Tools Instrument Scheduler Major Capabilities: Instruments and Labs Zeiss Crossbeam 1540 EsB The Molecular Foundry Zeiss Cross-beam is one of the most versatile lithographic and inspection tools allowing fabrication of complex prototypes for nanoelectronics, nano-optical antenna, modifying scanning probe tips, rapid electrical contacting and many other applications. The 1500XB Cross Beam combines the Gemini field emission

  6. Molecular Characterization of Organosulfates in Organic Aerosols from Shanghai and Los Angeles Urban Areas by Nanospray-Desorption Electrospray Ionization High-Resolution Mass Spectrometry

    SciTech Connect (OSTI)

    Tao, Shikang; Lu, Xiaohui; Levac, Nicole A.; Bateman, Adam P.; Nguyen, Tran B.; Bones, David L.; Nizkorodov, Sergey; Laskin, Julia; Laskin, Alexander; Yang, Xin

    2014-08-21

    Aerosol samples collected in the urban areas of Shanghai and Los Angeles were analyzed by nanospray-desorption electrospray ionization mass spectrometry (nano-DESI MS) with high mass resolution (m/?m=100,000). Solvent mixtures of acetonitrile/water and acetonitrile/toluene were used to extract and ionize polar and non-polar compounds, respectively. A diverse mixture of oxygenated hydrocarbons, organosulfates, organonitrates, and organics with reduced nitrogen were detected in the Los Angeles sample. Majority of the organics in the Shanghai sample were detected as organosulfates. The dominant organosulfates in the two samples have distinctly different molecular characteristics. Specifically, organosulfates in the Los Angeles sample were dominated by isoprene- or monoterpene-derived products, while organosulfates of yet unknown origin in the Shanghai sample had distinctive characteristics of long aliphatic carbon chains and low degree of oxidation and unsaturation. The use of acetonitrile/toluene solvent facilitated identification of this type of organosulfates, suggesting they could be missed in previous studies relying on sample extraction using common polar solvents. The high molecular weight and low degree of unsaturation and oxidization of the organosulfates detected in the Shanghai sample suggest that they may act as surfactants, and plausibly affect the surface tension and hygroscopicity of the atmospheric particulate matter. We propose that direct esterification of carbonyl or hydroxyl compounds by sulfates or sulfuric acid in liquid phase could be the formation pathway of these special organosulfates. Long-chain alkanes from vehicle emissions might be their precursors.

  7. Structural, morphological, and magnetic characterization of In{sub 1-x}Mn{sub x}As quantum dots grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Ferri, F. A.; Marega, E. Jr.; Coelho, L. N.; Kunets, V. P.; Salamo, G. J.

    2012-08-01

    In this paper, we present a method to order low temperature (LT) self-assembled ferromagnetic In{sub 1-x}Mn{sub x}As quantum dots (QDs) grown by molecular beam epitaxy (MBE). The ordered In{sub 1-x}Mn{sub x}As QDs were grown on top of a non-magnetic In{sub 0.4}Ga{sub 0.6}As/GaAs(100) QDs multi-layered structure. The modulation of the chemical potential, due to the stacking, provides a nucleation center for the LT In{sub 1-x}Mn{sub x}As QDs. For particular conditions, such as surface morphology and growth conditions, the In{sub 1-x}Mn{sub x}As QDs align along lines like chains. This work also reports the characterization of QDs grown on plain GaAs(100) substrates, as well as of the ordered structures, as function of Mn content and growth temperature. The substitutional Mn incorporation in the InAs lattice and the conditions for obtaining coherent and incoherent structures are discussed from comparison between Raman spectroscopy and x-ray analysis. Ferromagnetic behavior was observed for all structures at 2 K. We found that the magnetic moment axis changes from [110] in In{sub 1-x}Mn{sub x}As over GaAs to [1-10] for the ordered In{sub 1-x}Mn{sub x}As grown over GaAs template.

  8. Beam-beam simulations for separated beams

    SciTech Connect (OSTI)

    Furman, Miguel A.

    2000-04-10

    We present beam-beam simulation results from a strong-strong gaussian code for separated beams for the LHC and RHIC. The frequency spectrum produced by the beam-beam collisions is readily obtained and offers a good opportunity for experimental comparisons. Although our results for the emittance blowup are preliminary, we conclude that, for nominal parameter values, there is no significant difference between separated beams and center-on-center collisions.

  9. High-energy accelerator for beams of heavy ions

    DOE Patents [OSTI]

    Martin, Ronald L. (La Grange, IL); Arnold, Richard C. (Chicago, IL)

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  10. Co: clqrt. Beam

    Office of Legacy Management (LM)

    Co: clqrt. Beam*/:

  11. Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Masuda, T; Tomasulo, S; Lang, JR; Lee, ML

    2015-03-07

    We have investigated similar to 2.0 eV (AlxGa1-x)(0.51)In0.49P and similar to 1.9 eV Ga0.51In0.49P single junction solar cells grown on both on-axis and misoriented GaAs substrates by molecular beam epitaxy (MBE). Although lattice-matched (AlxGa1-x)(0.51)In0.49P solar cells are highly attractive for space and concentrator photovoltaics, there have been few reports on the MBE growth of such cells. In this work, we demonstrate open circuit voltages (V-oc) ranging from 1.29 to 1.30 V for Ga0.51In0.49P cells, and 1.35-1.37 V for (AlxGa1-x)(0.51)In0.49P cells. Growth on misoriented substrates enabled the bandgap-voltage offset (W-oc = E-g/q - V-oc) of Ga0.51In0.49P cells to decrease from similar to 575 mV to similar to 565 mV, while that of (AlxGa1-x)(0.51)In0.49P cells remained nearly constant at 620 mV. The constant Woc as a function of substrate offcut for (AlxGa1-x)(0.51)In0.49P implies greater losses from non-radiative recombination compared with the Ga0.51In0.49P devices. In addition to larger Woc values, the (AlxGa1-x)(0.51)In0.49P cells exhibited significantly lower internal quantum efficiency (IQE) values than Ga0.51In0.49P cells due to recombination at the emitter/window layer interface. A thin emitter design is experimentally shown to be highly effective in improving IQE, particularly at short wavelengths. Our work shows that with further optimization of both cell structure and growth conditions, MBE-grown (AlxGa1-x)(0.51)In0.49P will be a promising wide-bandgap candidate material for high-efficiency, lattice-matched multi-junction solar cells. (C) 2015 AIP Publishing LLC.

  12. GAS KINEMATICS AND THE DRAGGED MAGNETIC FIELD IN THE HIGH-MASS MOLECULAR OUTFLOW SOURCE G192.16-3.84: AN SMA VIEW

    SciTech Connect (OSTI)

    Liu Hauyu Baobab; Ho, Paul T. P.; Qiu Keping; Zhang Qizhou; Girart, Josep M.

    2013-07-01

    We report Submillimeter Array (SMA) observations of polarized 0.88 mm thermal dust emission and various molecular line transitions toward the early B-type (L{sub *} {approx} 2 Multiplication-Sign 10{sup 3} L{sub Sun }) star-forming region G192.16-3.84 (IRAS 05553+1631). The peak of the continuum Stokes-I emission coincides with a hot rotating disk/envelope (SO{sub 2} rotational temperature T{sub rot}{sup SO{sub 2}}{approx}84{sup +18}{sub -13} K), with a north-south velocity gradient. Joint analysis of the rotation curve traced by HCO{sup +} 4-3 and SO{sub 2} 19{sub 1,19}-18{sub 0,18} suggests that the dense molecular gas is undergoing a spinning-up rotation, marginally bound by the gravitational force of an enclosed mass M{sub *+gas+dust} {approx} 11.2-25.2 M{sub Sun }. Perpendicular to the rotational plane, a {approx}>100/cos (i) km s{sup -1} (i {approx} 63 Degree-Sign ) high velocity molecular jet and a {approx}15-20 km s{sup -1} expanding biconical cavity were revealed in the CO 3-2 emission. The polarization percentage of the 0.88 mm continuum emission decreases toward the central rotating disk/envelope. The polarization angle in the inner {approx}2'' (0.015 pc) disk/envelope is perpendicular to the plane of the rotation. The magnetic field lines, which are predominantly in the toroidal direction along the disk plane, are likely to be dragged by the gravitationally accelerated rotation.

  13. Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Masuda, Taizo Tomasulo, Stephanie; Lang, Jordan R.; Lee, Minjoo Larry

    2015-03-07

    We have investigated ?2.0?eV (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P and ?1.9?eV Ga{sub 0.51}In{sub 0.49}P single junction solar cells grown on both on-axis and misoriented GaAs substrates by molecular beam epitaxy (MBE). Although lattice-matched (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P solar cells are highly attractive for space and concentrator photovoltaics, there have been few reports on the MBE growth of such cells. In this work, we demonstrate open circuit voltages (V{sub oc}) ranging from 1.29 to 1.30?V for Ga{sub 0.51}In{sub 0.49}P cells, and 1.351.37?V for (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P cells. Growth on misoriented substrates enabled the bandgap-voltage offset (W{sub oc}?=?E{sub g}/q???V{sub oc}) of Ga{sub 0.51}In{sub 0.49}P cells to decrease from ?575?mV to ?565?mV, while that of (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P cells remained nearly constant at 620?mV. The constant W{sub oc} as a function of substrate offcut for (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P implies greater losses from non-radiative recombination compared with the Ga{sub 0.51}In{sub 0.49}P devices. In addition to larger W{sub oc} values, the (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P cells exhibited significantly lower internal quantum efficiency (IQE) values than Ga{sub 0.51}In{sub 0.49}P cells due to recombination at the emitter/window layer interface. A thin emitter design is experimentally shown to be highly effective in improving IQE, particularly at short wavelengths. Our work shows that with further optimization of both cell structure and growth conditions, MBE-grown (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P will be a promising wide-bandgap candidate material for high-efficiency, lattice-matched multi-junction solar cells.

  14. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  15. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  16. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEWS New Form of Electron-beam Imaging Can See Elements that are 'Invisible' to Common Methods Molecular Foundry-pioneered 'MIDI-STEM' produces high-resolution views of lightweight atoms [MORE] Foundry Users Developing Paint-on Coating for Energy Efficient Windows Low-cost coating is based on brush block copolymers that rapidly self-assemble to photonics crystals and could disrupt the building retrofit market and potentially save billions in electricity. [MORE] Modernizing a Technology From the

  17. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Transport Beam Transport A simplified drawing of the beam transport system from the linac to Target-1 (Lujan Center), Target-2 (Blue Room) and Target-4 is shown below. In usual operation beam is transported from the linac through the pulsed Ring Injection Kicker (RIKI) magnet. When RIKI is switched on, the beam is injected into the storage ring with the time structure shown here. The beam is accumulated in the PSR and then transported to Target-1. beam_transport1 Simplified drawing of the

  18. High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy

    SciTech Connect (OSTI)

    Lang, J. R.; Neufeld, C. J.; Hurni, C. A.; Cruz, S. C.; Matioli, E.; Mishra, U. K.; Speck, J. S.

    2011-04-01

    High external quantum efficiency (EQE) p-i-n heterojunction solar cellsgrown by NH3 -based molecular beam epitaxy are presented. EQE values including optical losses are greater than 50% with fill-factors over 72% when illuminated with a 1 sun AM0 spectrum. Optical absorptionmeasurements in conjunction with EQE measurements indicate an internal quantum efficiency greater than 90% for the InGaN absorbing layer. By adjusting the thickness of the top p-type GaN window contact layer, it is shown that the short-wavelength (<365 nm) quantum efficiency is limited by the minority carrier diffusion length in highly Mg-doped p-GaN.

  19. Impact of substrate temperature on the structural and optical properties of strain-balanced InAs/InAsSb type-II superlattices grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Liu, Shi; Li, Hua; Cellek, Oray O.; Ding, Ding; Lin, Zhi-Yuan; Steenbergen, Elizabeth H.; He, Zhao-Yu; Johnson, Shane R.; Zhang, Yong-Hang; Center for Photonics Innovation, Arizona State University, Tempe, Arizona 85287 ; Shen, Xiao-Meng; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 ; Fan, Jin; Smith, David J.; Department of Physics, Arizona State University, Tempe, Arizona 85287 ; Lu, Jing

    2013-02-18

    Molecular beam epitaxial growth of strain-balanced InAs/InAs{sub 1-x}Sb{sub x} type-II superlattices on GaSb substrates has been investigated for substrate temperatures from 400 Degree-Sign C to 450 Degree-Sign C. The Sb composition is found to vary linearly with substrate temperature at constant V/III ratios. For samples grown at the optimized substrate temperature (410 Degree-Sign C), superlattice zero-order peak full-width at half-maximums are routinely less than 25 arc sec using high-resolution X-ray diffraction. Cross-sectional transmission electron microscopy images show the absence of any visible defects. Strong photoluminescence covers a wavelength range from 5.5 to 13 {mu}m at 12 K. Photoluminescence linewidth simulations show satisfactory agreement with experiments.

  20. Two-dimensional weak anti-localization in Bi{sub 2}Te{sub 3} thin film grown on Si(111)-(7 Multiplication-Sign 7) surface by molecular beam epitaxy

    SciTech Connect (OSTI)

    Roy, Anupam; Guchhait, Samaresh; Sonde, Sushant; Dey, Rik; Pramanik, Tanmoy; Rai, Amritesh; Movva, Hema C. P.; Banerjee, Sanjay K. [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)] [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States); Colombo, Luigi [Texas Instruments, 12500 TI Boulevard, Dallas, Texas 75266 (United States)] [Texas Instruments, 12500 TI Boulevard, Dallas, Texas 75266 (United States)

    2013-04-22

    We report on low temperature transport studies of Bi{sub 2}Te{sub 3} topological insulator thin films grown on Si(111)-(7 Multiplication-Sign 7) surface by molecular beam epitaxy. A sharp increase in the magnetoresistance with magnetic field at low temperature indicates the existence of weak anti-localization. The measured weak anti-localization effect agrees well with the Hikami-Larkin-Nagaoka model, and the extracted phase coherence length shows a power-law dependence with temperature indicating the existence of a two-dimensional system. An insulating ground state has also been observed at low temperature showing a logarithmic divergence of the resistance that appears to be the influence of electron-electron interaction in a two-dimensional system.

  1. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13

  2. BEAM PROPAGATOR

    Energy Science and Technology Software Center (OSTI)

    003691MLTPL00 Beam Propagator for Weather Radars, Modules 1 and 2 http://www.exelisvis.com/ProductsServices/IDL.aspx

  3. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

  4. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

  5. THE DARK MOLECULAR GAS

    SciTech Connect (OSTI)

    Wolfire, Mark G.; Hollenbach, David; McKee, Christopher F. E-mail: dhollenbach@seti.or

    2010-06-20

    The mass of molecular gas in an interstellar cloud is often measured using line emission from low rotational levels of CO, which are sensitive to the CO mass, and then scaling to the assumed molecular hydrogen H{sub 2} mass. However, a significant H{sub 2} mass may lie outside the CO region, in the outer regions of the molecular cloud where the gas-phase carbon resides in C or C{sup +}. Here, H{sub 2} self-shields or is shielded by dust from UV photodissociation, whereas CO is photodissociated. This H{sub 2} gas is 'dark' in molecular transitions because of the absence of CO and other trace molecules, and because H{sub 2} emits so weakly at temperatures 10 K molecular component. This component has been indirectly observed through other tracers of mass such as gamma rays produced in cosmic-ray collisions with the gas and far-infrared/submillimeter wavelength dust continuum radiation. In this paper, we theoretically model this dark mass and find that the fraction of the molecular mass in this dark component is remarkably constant ({approx}0.3 for average visual extinction through the cloud A-bar{sub V{approx_equal}}8) and insensitive to the incident ultraviolet radiation field strength, the internal density distribution, and the mass of the molecular cloud as long as A-bar{sub V}, or equivalently, the product of the average hydrogen nucleus column and the metallicity through the cloud, is constant. We also find that the dark mass fraction increases with decreasing A-bar{sub V}, since relatively more molecular H{sub 2} material lies outside the CO region in this case.

  6. Investigation of high hole mobility In{sub 0.41}Ga{sub 0.59}Sb/Al{sub 0.91}Ga{sub 0.09}Sb quantum well structures grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Wang, Juan; Xing, Jun-Liang; Xiang, Wei; Wang, Guo-Wei; Xu, Ying-Qiang; Ren, Zheng-Wei; Niu, Zhi-Chuan

    2014-02-03

    Modulation-doped In{sub 0.41}Ga{sub 0.59}Sb/Al{sub 0.91}Ga{sub 0.09}Sb quantum-well (QW) structures were grown by molecular beam epitaxy. Cross-sectional transmission electron microscopy and atomic force microscopy studies show high crystalline quality and smooth surface morphology. X-ray diffraction investigations confirm 1.94% compressive strain within In{sub 0.41}Ga{sub 0.59}Sb channel. High room temperature hole mobility with high sheet density of 1000 cm{sup 2}/Vs, 0.877??10{sup 12}/cm{sup 2}, and 965 cm{sup 2}/Vs, 1.112??10{sup 12}/cm{sup 2} were obtained with different doping concentrations. Temperature dependent Hall measurements show different scattering mechanisms on hole mobility at different temperature range. The sheet hole density keeps almost constantly from 300?K to 77?K. This study shows great potential of In{sub 0.41}Ga{sub 0.59}Sb/Al{sub 0.91}Ga{sub 0.09}Sb QW for high-hole-mobility device applications.

  7. Plasma assisted molecular beam epitaxy growth and effect of varying buffer thickness on the formation of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructure on Si(111)

    SciTech Connect (OSTI)

    Chowdhury, Subhra; Biswas, Dhrubes

    2015-02-23

    This work reports on the detailed plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructures on Si(111) substrate with three different buffer thickness (600?nm, 400?nm, and 200?nm). Growth through critical optimization of growth conditions is followed by the investigation of impact of varying buffer thickness on the formation of ultra-thin 1.5?nm, In{sub 0.17}Al{sub 0.83}N1.25?nm, GaN1.5?nm, In{sub 0.17}Al{sub 0.83}N heterostructure, in terms of threading dislocation (TD) density. Analysis reveals a drastic reduction of TD density from the order 10{sup 10?}cm{sup ?2} to 10{sup 8?}cm{sup ?2} with increasing buffer thickness resulting smooth ultra-thin active region for thick buffer structure. Increasing strain with decreasing buffer thickness is studied through reciprocal space mapping analysis. Surface morphology through atomic force microscopy analysis also supports our study by observing an increase of pits and root mean square value (0.89?nm, 1.2?nm, and 1.45?nm) with decreasing buffer thickness which are resulted due to the internal strain and TDs.

  8. Structural and band alignment properties of Al{sub 2}O{sub 3} on epitaxial Ge grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy

    SciTech Connect (OSTI)

    Hudait, M. K.; Zhu, Y.; Maurya, D.; Priya, S.; Patra, P. K.; Ma, A. W. K.; Aphale, A.; Macwan, I.

    2013-04-07

    Structural and band alignment properties of atomic layer Al{sub 2}O{sub 3} oxide film deposited on crystallographically oriented epitaxial Ge grown in-situ on (100), (110), and (111)A GaAs substrates using two separate molecular beam epitaxy chambers were investigated using cross-sectional transmission microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). High-resolution triple axis x-ray measurement demonstrated pseudomorphic and high-quality Ge epitaxial layer on crystallographically oriented GaAs substrates. The cross-sectional TEM exhibited a sharp interface between the Ge epilayer and each orientation of the GaAs substrate as well as the Al{sub 2}O{sub 3} film and the Ge epilayer. The extracted valence band offset, {Delta}E{sub v}, values of Al{sub 2}O{sub 3} relative to (100), (110), and (111) Ge orientations using XPS measurement were 3.17 eV, 3.34 eV, and 3.10 eV, respectively. Using XPS data, variations in {Delta}E{sub v} related to the crystallographic orientation were {Delta}E{sub V}(110)Ge>{Delta}E{sub V}(100)Ge{>=}{Delta}E{sub V}(111)Ge and the conduction band offset, {Delta}E{sub c}, related to the crystallographic orientation was {Delta}E{sub c}(111)Ge>{Delta}E{sub c}(110)Ge>{Delta}E{sub c}(100)Ge using the measured {Delta}E{sub v}, bandgap of Al{sub 2}O{sub 3} in each orientation, and well-known Ge bandgap of 0.67 eV. These band offset parameters are important for future application of Ge-based p- and n-channel metal-oxide field-effect transistor design.

  9. CONTINUOUS EXTRACTED BEAM IN THE AGS FAST EXTERNAL BEAM LINE.

    SciTech Connect (OSTI)

    GLENN,J.W.; TSOUPAS,N.; BROWN,K.A.; BIRYUKOV,V.M.

    2001-06-18

    A method to split off a few percent of the 6 x 10{sup 13} AGS beam delivered to the Slow External Beam (SEB) lines and send it down the Fast External Beam line (FEB) has been developed. The mission is to feed a counter experiment off the FEB that directly measures the neutrino mass using the muon storage ring. The use of normal thin septum splitters would have an excessive loss overhead and been optically difficult. The AGS Slow Extraction uses a third integer resonance with sextuple strength so the resonance width is a few percent of the beam width. This results in a low density tail which will be clipped by a bent crystal and deflected into the FEB channel. This clipping off of the tail should reduce losses in the SEB transport line. Details of modeled orbits, particle distribution and extraction trajectories into and out off the crystal will be given.

  10. A molecular beam optical study of YCC

    SciTech Connect (OSTI)

    Xin, J.; Marr, A.J.; Steimle, T.C.

    1996-12-31

    A weak signal near 13395 cm{sup -1} in the low resolution laser induced fluorescence spectra of the laser ablated Y/ethylene supersonic expansion products was noted by Simard. He speculated that it may be due to yttrium dicarbide. Following up on this suggestion, the authors have detected by medium resolution LIF three red degraded bands at 12895 cm{sup -1}, 13395 cm{sup -1} and 13896 cm{sup -1} which is attributed to YCC. The resolved LIF spectra for the 12895 cm{sup -1} and 13395 cm{sup -1} band systems produce strong Stokes progressions with the features separated by approximately 560 cm{sup -1}. These are tentatively assigned to the Y-CC ground state stretching. Additional weaker features are also observed. The high resolution LIF spectrum of the 12895 cm{sup -1} band system was recorded. Attempts to model the spectrum as a A{sup 4} A{sub 1}-X{sup 2}A{sub 1} transition suggested by a recent ab initio calculation are being made. Progress on the analysis will be presented.

  11. Method of deposition by molecular beam epitaxy

    DOE Patents [OSTI]

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-01-10

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time. 9 figures.

  12. Method of deposition by molecular beam epitaxy

    DOE Patents [OSTI]

    Chalmers, Scott A. (Albuquerque, NM); Killeen, Kevin P. (Albuquerque, NM); Lear, Kevin L. (Albuquerque, NM)

    1995-01-01

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time.

  13. Yuan T. Lee and Molecular Beam Studies

    Office of Scientific and Technical Information (OSTI)

    ... Yuan T. Lee Receives Clark Kerr Award, UC Berkeley News Center Chemical Heritage Foundation to Present 2008 Othmer Gold Medal to Yuan Tseh Lee, University of California, Berkeley

  14. CEBAF beam loss accounting

    SciTech Connect (OSTI)

    Ursic, R.; Mahoney, K.; Hovater, C.; Hutton, A.; Sinclair, C.

    1995-12-31

    This paper describes the design and implementation of a beam loss accounting system for the CEBAF electron accelerator. This system samples the beam curent throughout the beam path and measures the beam current accurately. Personnel Safety and Machine Protection systems use this system to turn off the beam when hazardous beam losses occur.

  15. Beam geometry selection using sequential beam addition

    SciTech Connect (OSTI)

    Popple, Richard A. Brezovich, Ivan A.; Fiveash, John B.

    2014-05-15

    Purpose: The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. Methods: The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. Results: In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. Conclusions: For situations in which beam geometry has a significant effect on the objective function, SBA can identify arrangements equivalent to equiangular geometries but using fewer beams. Furthermore, SBA provides the value of the objective function as the number of beams is increased, allowing the planner to select the minimal beam number that achieves the clinical goals. The method is simple to implement and could readily be incorporated into an existing optimization system.

  16. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Electron Microscopy FIB DRIVER TEST FIB SPECIFICATIONS SCHEDULE CONTACTS: John Turner FIB The FEI Strata 235 dual beam Focused Ion Beam (FIB) is used for TEM sample...

  17. Properties of Inconel 625 Mesh Structures Grown by Electron Beam Additive

    Office of Scientific and Technical Information (OSTI)

    Manufacturing (Journal Article) | SciTech Connect Journal Article: Properties of Inconel 625 Mesh Structures Grown by Electron Beam Additive Manufacturing Citation Details In-Document Search Title: Properties of Inconel 625 Mesh Structures Grown by Electron Beam Additive Manufacturing Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625

  18. Molecular Dynameomics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynameomics Molecular Dynameomics DaggettHiResWhitebg.png Key Challenges: Perform molecular dynamics simulations to characterize both native (i.e. biologically active) and...

  19. Laser beam monitoring system

    DOE Patents [OSTI]

    Weil, Bradley S. (Knoxville, TN); Wetherington, Jr., Grady R. (Harriman, TN)

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  20. X-ray beam finder

    DOE Patents [OSTI]

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  1. Beam imaging sensor

    DOE Patents [OSTI]

    McAninch, Michael D; Root, Jeffrey J

    2015-03-31

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  2. BEAM INSTRUMENTATION FOR HIGH POWER HADRON BEAMS

    SciTech Connect (OSTI)

    Aleksandrov, Alexander V

    2013-01-01

    This presentation will describe developments in the beam diagnostics which support the understanding and operation of high power hadron accelerators. These include the measurement of large dynamic range transverse and longitudinal beam profiles, beam loss detection, and non-interceptive diagnostics.

  3. High speed x-ray beam chopper

    DOE Patents [OSTI]

    McPherson, Armon (Oswego, IL); Mills, Dennis M. (Naperville, IL)

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  4. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microfabrication techniques including physical and chemical vapor deposition, chemical etching, and optical and electron beam lithography. He is also proficient in analysis...

  5. Generation of beams of refractory-metal clusters

    SciTech Connect (OSTI)

    Wexler, S.; Riley, R.J.; Parks, E.K.; Mao, C.R.; Pobo, L.G.

    1982-01-01

    Interest in the physical and chemical properties of small metal clusters has recently stimulated the development of sources for the generation of molecular beams of metal clusters, since the collision-free environment of a beam has the advantage of permitting in-flight study of isolated species free of interference from surroundings. For example, spectroscopic studies utilizing tunable lasers may be performed in the molecular beam environment. The objectives of our research program are the elucidation of the physical and chemical properties of clusters of refractory metal atoms, in particular those of the catalytically active transition metals. For these purposes we have built and tested two sources suitable for generation of cluster beams of refractory metals, one for continuous beams and the other for pulsed beams.

  6. Neutral beam dump with cathodic arc titanium gettering

    SciTech Connect (OSTI)

    Smirnov, A.; Korepanov, S. A.; Putvinski, S.; Krivenko, A. S.; Murakhtin, S. V.; Savkin, V. Ya.

    2011-03-15

    An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features a new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.

  7. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Molecular Foundry is a Department of Energy-funded nanoscience research facility that provides users from around the world with access to cutting-edge expertise and instrumentation in a collaborative, multidisciplinary environment. Read about the Molecular Foundry's research themes in its recently updated Strategic Plan Learn about the Advanced Materials Special Issue on the Molecular Foundry Call for Proposals: The next deadline for standard proposals is March 31, 2016 Molecular Foundry

  8. Pyramid beam splitter

    DOE Patents [OSTI]

    McKeown, Mark H. (Golden, CO); Beason, Steven C. (Lakewood, CO); Fairer, George (Boulder, CO)

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  9. Beam position monitor

    DOE Patents [OSTI]

    Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf

    2003-07-22

    An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.

  10. Beam Dynamics for ARIA

    SciTech Connect (OSTI)

    Ekdahl, Carl August Jr.

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  11. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEMINARS The Molecular Foundry regularly offers seminars and events that feature compelling research and information for those who investigate at the nanoscale. Seminars occur on Tuesdays at 11:00 am, in Building 67, Room 3111 unless otherwise noted. To be added to the Molecular Foundry's seminar mailing list, please email Jason Sweet. Recent Seminar Series Winter 2016 Fall 2015 Spring/Summer 2015 Winter 2015 < Full Seminar Archive EVENTS < events archive Upcoming Events Molecular Foundry

  12. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility RLGarcia@lbl.gov 510.486.4125 Biography Education B.A. Molecular Biology, Scripps College, Claremont, CA, 2005 Previous Professional Positions Principal...

  13. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flatter and Faster: Transition Metal Dichalcogendies at the Molecular Foundry (Part II) Brain Imaging and Optical Manipulation Active Nanointerfaces for Electrochemistry SAXS-WAXS...

  14. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transport properties of oligothiophene-based molecular films studied by current sensing atomic force microscopy. Nano Lett. 11, 4107-4112 (2011). Schwartzberg, A. M., Aloni, S.,...

  15. Neutral beam monitoring

    DOE Patents [OSTI]

    Fink, Joel H. (Livermore, CA)

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  16. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, Larry; Hopkins, Harvey S.

    1998-12-10

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse.

  17. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, L.; Hopkins, H.S.

    1998-12-01

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse. {copyright} {ital 1998 American Institute of Physics.}

  18. Electron beam enhanced surface modification for making highly resolved structures

    DOE Patents [OSTI]

    Pitts, John R. (Golden, CO)

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  19. Electron beam enhanced surface modification for making highly resolved structures

    DOE Patents [OSTI]

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  20. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a sensitive mass spec allows better analysis of samples. Workstation for Automated Nanomaterial Discovery and Analysis (WANDA) WANDA is an automated robot for the synthesis of...

  1. Noise reduction in negative-ion quadrupole mass spectrometry

    DOE Patents [OSTI]

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  2. Quark Masses

    SciTech Connect (OSTI)

    Gasser, Juerg

    2005-10-26

    In my talk, I reviewed some basic aspects of quark masses: what do they mean, how can they be determined, what is our present knowledge on them. The talk was addressed to non specialists in the field, and so is this write up.

  3. Beam Instrumentation Workshop

    SciTech Connect (OSTI)

    Shafer, R.E. )

    1994-01-01

    The fifth annual Beam Instrumentation Workshop was hosted by Los Alamos National Laboratory in Santa Fe, New Mexico. These proceedings represent the papers presented at the Workshop. A variety of topics were covered including beam emittance diagnostics, fluorescent screens, control systems for many accelerators and photon sources. Beam monitoring was discussed in great detail. There were thirty seven papers presented at the Workshop and all have been abstracted for the Energy and Science Technology database. (AIP)

  4. Beam Stability Complaint Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For New Users For Current Users For Administrators MX Users APS User Portal APS Data Management Practices Find a Beamline Apply for Beam Time ESAF Contacts Calendars User...

  5. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  6. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alison Hatt allison User Program Director ajhatt@lbl.gov 510.486.7154 Biography Alison Hatt is the Director of the User Program at the Molecular Foundry and a former Foundry postdoc. Dr. Hatt received a B.S. in Physics from the University of Utah and a Ph.D. in Materials from the University of California, Santa Barbara. As User Program Director, Dr. Hatt is responsible for overseeing the Molecular Foundry's scientific proposal process, including administration associated with User proposal

  7. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Behzad Rad Rad Senior Scientific Engineering Associate, Biological Nanostructures BRad@lbl.gov 510.486.5795 Biography Education Postdoctoral Fellow Molecular Foundry Lawrence Berkeley National Labs Ph.D. in Biophysics University of California at Davis Dissertation Title: "The Unwinding Mechanism of the E. coli RecQ helicase" Dissertation Advisor: Dr. Stephen C. Kowalczykowski Bachelor's in Molecular and Cellular Biology University of California at Berkeley Expertise Behzad's interests

  8. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neaton Jeff Neaton Director, Molecular Foundry Senior Faculty Scientist, Theory of Nanostructured Materials jbneaton@lbl.gov 510.486.4527 personal website Biography Jeffrey B. Neaton is Director of the Molecular Foundry, a Department of Energy Nanoscale Science Research Center. He is also a Senior Faculty Scientist at Lawrence Berkeley National Laboratory, Professor of Physics at UC Berkeley, and member of the Kavli Energy NanoSciences Institute at Berkeley. He received his Ph.D. in physics from

  9. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Careers Information about current openings at the Molecular Foundry and complete application information is available from LBNL Human Resources. Please follow the application instructions at the bottom of the job posting. Inquiries about opportunities to work in specific areas of the Molecular Foundry can be sent to the following: Imaging and Manipulation of Nanostructures Facility P. Jim Schuck 510.486.4822 Nanofabrication Facility Stefano Cabrini 510.486.7339 Theory of Nanostructured Materials

  10. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media and Resources MEDIA Molecular Foundry Youtube Channel Berkeley Lab Youtube Channel Berkeley Lab Photo Archive Webcam The Molecular Foundry and its users benefit from its location at Berkeley Lab within the Bay Area's vibrant scientific ecosystem. The expansive views serve to fuel the imagination and build connections among the Foundry's diverse research community. Baycam Click here for a full screen view from our webcam. RESOURCES Style Guide PDF 308 KB Logos Signature Preferred 41 KB ZIP

  11. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Advanced Materials Special Issue » The Molecular Foundry publication database lists peer-reviewed work that has resulted from internal and user research. New publications can be added to the database here. All published work resulting from the use of this facility must acknowledge the Molecular Foundry, regardless of whether Foundry staff are included as authors. Proper acknowledgement text can be found here. Citation Year Facility User Loading data from server

  12. Piezoelectric energy harvester having planform-tapered interdigitated beams

    DOE Patents [OSTI]

    Kellogg, Rick A.; Sumali, Hartono

    2011-05-24

    Embodiments of energy harvesters have a plurality of piezoelectric planform-tapered, interdigitated cantilevered beams anchored to a common frame. The plurality of beams can be arranged as two or more sets of beams with each set sharing a common sense mass affixed to their free ends. Each set thus defined being capable of motion independent of any other set of beams. Each beam can comprise a unimorph or bimorph piezoelectric configuration bonded to a conductive or non-conductive supporting layer and provided with electrical contacts to the active piezoelectric elements for collecting strain induced charge (i.e. energy). The beams are planform tapered along the entirety or a portion of their length thereby increasing the effective stress level and power output of each piezoelectric element, and are interdigitated by sets to increase the power output per unit volume of a harvester thus produced.

  13. Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams

    DOE Patents [OSTI]

    Gammel, George M. (Merrick, NY); Kugel, Henry W. (Somerset, NJ)

    1992-10-06

    A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

  14. Method for detecting a mass density image of an object

    DOE Patents [OSTI]

    Wernick, Miles N. (Chicago, IL); Yang, Yongyi (Westmont, IL)

    2008-12-23

    A method for detecting a mass density image of an object. An x-ray beam is transmitted through the object and a transmitted beam is emitted from the object. The transmitted beam is directed at an angle of incidence upon a crystal analyzer. A diffracted beam is emitted from the crystal analyzer onto a detector and digitized. A first image of the object is detected from the diffracted beam emitted from the crystal analyzer when positioned at a first angular position. A second image of the object is detected from the diffracted beam emitted from the crystal analyzer when positioned at a second angular position. A refraction image is obtained and a regularized mathematical inversion algorithm is applied to the refraction image to obtain a mass density image.

  15. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  16. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  17. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1994-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  18. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1993-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  19. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams Citation Details In-Document Search Title: Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design

  20. Electron Lens for Beam-Beam Compensation at LHC

    SciTech Connect (OSTI)

    Valishev, A.; Shiltsev, V.; /Fermilab

    2009-05-01

    Head-on beam-beam effect may become a major performance limitation for the LHC in some of the upgrade scenarios. Given the vast experience gained from the operation of Tevatron electron lenses, a similar device provides significant potential for mitigation of beam-beam effects at the LHC. In this report we present the results of simulation studies of beam-beam compensation and analyze potential application of electron lense at LHC and RHIC.

  1. MEIS: Molecular Environmental & Interface Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People BL 11-2 Reports &Publications Model Compound Library SixPACK Glitch Curves MES User Resources & Instrumentation Environmental Remediation Science at SSRL MEIS Home SSRL Stanford EMSI SLAC Beam line resources and instrumentation Fundamental and applied research Why synchrotrons for environmental science? Molecular Environmental Science (MES) research at SSRL focuses on the fundamental interfacial, molecular- and nano-scale processes that control contaminant and nutrient cycling in

  2. Dynamics of CN+alkane reactions by crossed-beam dc slice imaging

    SciTech Connect (OSTI)

    Huang Cunshun; Li Wen; Estillore, Armando D.; Suits, Arthur G.

    2008-08-21

    The hydrogen atom abstraction reactions of CN (X {sup 2}{sigma}{sup +}) with alkanes have been studied using the crossed molecular beam technique with dc slice ion imaging at collision energies of 7.5 and 10.8 kcal/mol. The product alkyl radical images were obtained via single photon ionization at 157 nm for the reactions of CN (X {sup 2}{sigma}{sup +}) with n-butane, n-pentane, n-hexane, and cyclohexane. From analysis of the images, we obtained the center-of-mass frame product angular distributions and translational energy distributions directly. The results indicate that the products are largely backscattered and that most of the available energy ({approx}80%-85%) goes to the internal energy of the products. The reaction dynamics is discussed in light of recent kinetics data, theoretical calculations, and results for related halogen and oxygen atom reactions.

  3. STUDY OF ELECTRON -PROTON BEAM-BEAM INTERACTION IN ERHIC

    SciTech Connect (OSTI)

    HAO,Y.; LITVINENKO, V.N.; MONTAG, C.; POZDEYEV, E.; PTITSYN, V.

    2007-06-25

    Beam-beam effects present one of major factors limiting the luminosity of colliders. In the linac-ring option of eRHIC design, an electron beam accelerated in a superconducting energy recovery linac collides with a proton beam circulating in the RHIC ring. There are some features of beam-beam effects, which require careful examination in linac-ring configuration. First, the beam-beam interaction can induce specific head-tail type instability of the proton beam referred to as a ''kink'' instability. Thus, beam stability conditions should be established to avoid proton beam loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure beam quality is good enough for the energy recovery pass. In addition, fluctuations of electron beam current and/or electron beam size, as well as transverse offset, can cause proton beam emittance growth. The tolerances for those factors should be determined and possible countermeasures should be developed to mitigate the emittance growth. In this paper, a soft Gaussian strong-strong simulation is used to study all of mentioned beam-beam interaction features and possible techniques to reduce the emittance growth.

  4. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda March 24, 2016 Lawrence Berkeley National Laboratory Building 50 Auditorium Registration: Free Registration 8:30 am - 9:00 am The Molecular Foundry's History and Impact 9:00 am - 10:30 am Jeff Neaton, Molecular Foundry Paul Alivisatos, Berkeley Lab/UC Berkeley Michael Witherell, Berkeley Lab Brian Schowengerdt, Magic Leap Pat Dehmer, DOE Office of Science Representative Mike Honda (D-CA) Break 10:30 am - 11:00 am Session 1 11:00 am - 12:00 pm Moderated by David Prendergast, Andy Minor Jim

  5. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See the Foundry's full equipment list Research Themes Discovering the Future, Atom by Atom The six-story, 94,000 square-foot Molecular Foundry building at LBNL overlooks the UC Berkeley campus and, from a distance, the San Francisco Bay. Directly adjacent to the Foundry is the NCEM complex that was established in 1983 to maintain a forefront research center for electron microscopy with state-of-the-art instrumentation and expertise. Merged with the Molecular Foundry in 2014 to take advantage of

  6. Molecular beam epitaxial growth of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} topological insulators on GaAs (111) substrates: a potential route to fabricate topological insulator p-n junction

    SciTech Connect (OSTI)

    Zeng, Zhaoquan; Morgan, Timothy A.; Li, Chen; Hirono, Yusuke; Hu, Xian; Hawkridge, Michael E.; Benamara, Mourad; Salamo, Gregory J.; Fan, Dongsheng; Yu, Shuiqing; Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701 ; Zhao, Yanfei; Lee, Joon Sue; Wang, Jian; The Center for Nanoscale Science and Department of Physics, The Pennsylvania State University, University Park, PA 16802 ; Wang, Zhiming M.; State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054; Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083

    2013-07-15

    High quality Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} topological insulators films were epitaxially grown on GaAs (111) substrate using solid source molecular beam epitaxy. Their growth and behavior on both vicinal and non-vicinal GaAs (111) substrates were investigated by reflection high-energy electron diffraction, atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. It is found that non-vicinal GaAs (111) substrate is better than a vicinal substrate to provide high quality Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} films. Hall and magnetoresistance measurements indicate that p type Sb{sub 2}Te{sub 3} and n type Bi{sub 2}Te{sub 3} topological insulator films can be directly grown on a GaAs (111) substrate, which may pave a way to fabricate topological insulator p-n junction on the same substrate, compatible with the fabrication process of present semiconductor optoelectronic devices.

  7. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However,

  8. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However,

  9. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However,

  10. BEAMS: Curiosity | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAMS: Curiosity January 9, 2013 BEAMS, Becoming Excited About Math and Science, is one of our education programs. In particular, it is the only one in which I participate with more than a ceremonial role. I try my best to pull my full share of BEAMS visits. Today was the first of the year, and it went really well. There were about a dozen middle school kids in my office, plus the teacher. Of course, the lab's education team ensures complete immersion by making themselves scarce for the allotted

  11. Ion beam lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  12. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meg Holm Meg Senior Administrator mcholm@lbl.gov 510.486.5135 Biography Meg is the Molecular Foundry's Senior Administrator. In this role, she supervises the Foundry budget administrator, three facility support staff, and two matrixed IT support staff. As part of the management and operations team, she provides operational management, budget, strategy and policy support to the Foundry Director

  13. LEDA BEAM DIAGNOSTICS INSTRUMENTATION: BEAM POSITION MONITORS

    SciTech Connect (OSTI)

    D. BARR; ET AL

    2000-05-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  14. Inverse time-of-flight spectrometer for beam plasma research

    SciTech Connect (OSTI)

    Yushkov, Yu. G., E-mail: yuyushkov@gmail.com; Zolotukhin, D. B.; Tyunkov, A. V. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation); Savkin, K. P. [Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2014-08-15

    The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (520 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.

  15. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  16. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aug. 17, 2015 Back to Table of Contents WEEK OF Nov. 17, 2014 Nov. 17, 2014 Nov. 18, 2014 Nov. 19, 2014 Nov. 20, 2014 Nov. 21, 2014 Nov. 22, 2014 Nov. 23, 2014 BEAM LINE 5-4 Nov....

  17. Beam! Magic! | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with all the changes, the accelerator can be made to work. Beam Since my first serious introduction to nuclear and particle physics - when I worked for a few weeks one summer at...

  18. Focused ion beam system

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Gough, Richard A. (Kensington, CA); Ji, Qing (Berkeley, CA); Lee, Yung-Hee Yvette (Berkeley, CA)

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  19. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  20. B13+: Photodriven Molecular Wankel Engine

    SciTech Connect (OSTI)

    Zhang, Jin; Sergeeva, Alina P.; Sparta, Manuel; Alexandrova, Anastassia N.

    2012-07-09

    Synthetic molecular motors that are capable of delivering controlled movement upon energy input are one of the key building blocks in nanomachinery. The major energy sources of molecular motors are from chemical reactions, photon beams, or electric current, which are converted into mechanical forces through the excitation of the electronic states of the molecule. The energy scale of the electronic excitation is normally two orders of magnitude larger than the molecular vibrational frequencies. To reduce the heat dissipation and increase the energy utilization efficiency, a motor running purely on the electronic ground-state (GS) potential energy surfaces is highly desirable.

  1. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  2. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, Tuncer M. (Naperville, IL); Shu, Deming (Darien, IL)

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  3. Beam/seam alignment control for electron beam welding

    DOE Patents [OSTI]

    Burkhardt, Jr., James H. (Knoxville, TN); Henry, J. James (Oak Ridge, TN); Davenport, Clyde M. (Knoxville, TN)

    1980-01-01

    This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.

  4. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEMINARS ARCHIVE The Molecular Foundry regularly offers seminars and events that feature compelling research and information for those who investigate at the nanoscale. Seminars occur on Tuesdays at 11:00 am, in Building 67, Room 3111 unless otherwise noted. < seminars and events Tuesday, March 8, 2016 at 11am Utilizing Inelastically Scattered Electrons in the Transmission Electron Microscope Christian Dwyer, Arizona State University [MORE] Tuesday, March 1, 2016 at 11am Noncovalent Binding

  5. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Branden Brough Branden Director of Strategy and External Relations bbrough@lbl.gov 510.486.4206 Biography Branden Brough is the Molecular Foundry's Director of Strategy and External Relations. In this role, Dr. Brough is responsible for the organization's strategic planning and management. He also facilitates internal and external communications to promote the Foundry's mission and showcase its accomplishments to the DOE, the nanoscience research community and the public. Before joining the

  6. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Prendergast David Prendergast Director, Theory of Nanostructured Materials dgprendergast@lbl.gov 510.486.4948 personal website Biography Education 2002 Ph.D., Physics, University College Cork, Ireland 1999 B.Sc., Physics and Mathematics, University College Cork, Ireland Research Interests My research focuses on employing and developing first-principles electronic structure theory and molecular dynamics simulations on high-performance computing infrastructure to reveal energy relevant

  7. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dmitry Soustin dmitry User Program Administrator dsoustin@lbl.gov 510.486.7687 Biography Dmitry Soustin is the Molecular Foundry's User Program Administrator. In this role, Dmitry manages proposals throughout the processes of submission, review, and execution, and is a resource for proposal administration, user on-boarding, user agreements, coordinating user access and reporting publications. He also assists with event planning and coordination, including meetings of the Proposal Review Board

  8. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emory Chan Brand Staff Scientist, Inorganic Nanostructures EMChan@lbl.gov 510.486.7874 personal website Biography Education Postdoctoral fellow, Molecular Foundry with Dr. Delia Milliron Ph. D., Chemistry, UC Berkeley with Prof. Paul Alivisatos and Prof. Richard Mathies, B. S., Chemistry, Stanford University with Prof. Hongjie Dai Expertise Dr. Chan's expertise lies in the combinatorial and high-throughput synthesis of colloidal inorganic nanoparticles. As part of the Foundry's Combinatorial

  9. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracy Mattox TMMattox Senior Scientific Engineering Associate, Inorganic Nanostructures TMMattox@lbl.gov 510.495.2649 Biography Education M.S. in Chemistry, Miami University, 2006 B.S. in Chemistry, University of Portland, 2003 Tracy Mattox has been a member of the Inorganic Facility at the Molecular Foundry as a Scientific Engineering Associate since 2007. Expertise Tracy's main focus is assisting users with their research projects (helping design reactions and analyze results). She is well

  10. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Guide Download the complete Users' Guide (PDF) Submit a Proposal Learn about the Molecular Foundry and its user program Explore Foundry capabilities and plan your proposal Prepare responses to proposal questions Create and submit your proposal through the online proposal portal After your proposal is approved* Complete secondary safety screening Become a badged LBNL "affiliate" Contact your assigned Foundry scientist When you arrive* Go to your appointment with the Affiliate

  11. molecular foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molecular foundry - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  12. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Dinner On March 24, 2016, the Molecular Foundry will be celebrating the 10th anniversary of the dedication of it's iconic building with a full day scientific symposium and dinner event. This celebration will recognize the Foundry's major scientific and operational milestones and look forward to the promising future of nanoscience. Leaders from Congress, DOE, academia, industry, and Berkeley Lab will join prominent Foundry users and staff, both past and present, to participate in this

  13. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    One of the World's Premier Nanoscience Research Institutions Supported by the Department of Energy Office of Basic Energy Sciences (BES) through their Nanoscale Science Research Center (NSRC) program, the Molecular Foundry is a national User Facility for nanoscale science serving hundreds of academic, industrial and government scientists around the world each year. Users come to the Foundry to perform multidisciplinary research beyond the scope of an individual's own laboratory. By taking

  14. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Molecular Foundry Lawrence Berkeley National Laboratory One Cyclotron Road Building 67 Berkeley, CA 94720 Berkeley Lab Visitor Information Berkeley Lab Interactive Map View Larger Map Foundry Staff FOUNDRY ADMINISTRATION Director Jeff Neaton email 510.486.4527 Director of Strategy and External Relations Branden Brough email 510.486.4206 Senior Administrator Meg Holm email 510.486.5135 User Program Director Alison Hatt email 510.486.7154 User Program Administrator Dmitry Soustin email

  15. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory of Nanostructured Materials The Theory of Nanostructured Materials Facility at the Molecular Foundry is focused on expanding our understanding of materials at the nanoscale. Our research connects the structural and dynamical properties of materials to their functions, such as electrical conductivity and storage, light-harvesting for electricity and fuel, or gas separation and sequestration. We develop and employ a broad range of tools, including advanced electronic-structure theory,

  16. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    POLICIES AND DEFINITIONS PROPOSAL GUIDE USER GUIDE USER PROGRAM SUBMIT A PROPOSAL » Reviewer Login » Proposal Deadline March 31, 2016 Instrument Scheduler Nanofabrication Instrument Scheduler User Program The Molecular Foundry user program gives researchers access to expertise and equipment for cutting-edge nanoscience in a collaborative, multidisciplinary environment. The program is open to scientists from academia, industry, and research institutes worldwide. These users join a vibrant

  17. Single element laser beam shaper

    DOE Patents [OSTI]

    Zhang, Shukui (Yorktown, VA); Michelle D. Shinn (Newport News, VA)

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  18. Beam Dynamics Challenges for the ILC

    SciTech Connect (OSTI)

    Kubo, Kiyoshi; Seryi, Andrei; Walker, Nicholas; Wolski, Andy; /Cockcroft Inst. Accel. Sci. Tech.

    2008-02-13

    The International Linear Collider (ILC) is a proposal for 500 GeV center-of-mass electron-positron collider, with a possible upgrade to {approx}1 TeV center-of-mass. At the heart of the ILC are the two {approx}12 km 1.3 GHz superconducting RF (SCRF) linacs which will accelerate the electron and positron beams to an initial maximum energy of 250 GeV each. The Global Design Effort (GDE)--responsible for the world-wide coordination of this uniquely international project--published the ILC Reference Design Report in August of 2007 [1]. The ILC outlined in the RDR design stands on a legacy of over fifteen-years of R&D. The GDE is currently beginning the next step in this ambitious project, namely an Engineering Design phase, which will culminate with the publication of an Engineering Design Report (EDR) in mid-2010. Throughout the history of linear collider development, beam dynamics has played an essential role. In particular, the need for complex computer simulations to predict the performance of the machine has always been crucial, not least because the parameters of the ILC represent in general a large extrapolation from where current machines operate today; many of the critical beam-dynamics features planned for the ILC can ultimately only be truly tested once the ILC has been constructed. It is for this reason that beam dynamics activities will continue to be crucial during the Engineering Design phase, as the available computer power and software techniques allow ever-more complex and realistic models of the machine to be developed. Complementary to the computer simulation efforts are the need for well-designed experiments at beam-test facilities, which--while not necessarily producing a direct demonstration of the ILC-like parameters for the reasons mentioned above--can provide important input and benchmarking for the computer models.

  19. Molecular Characterization of S- and N-containing Organic Constituents in Ambient Aerosols by negative ion mode High-Resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect (OSTI)

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Rubitschun, Caitlin L.; Surratt, Jason D.; Goldstein, Allen H.

    2014-11-27

    Samples of ambient aerosols from the 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study were analyzed using Nanospray Desorption Electrospray Ionization High Resolution Mass Spectrometry (nano-DESI/MS). Four samples per day were collected in Bakersfield, CA on June 20-24 with a collection time of 6 hours per sample. Four characteristic groups of organic constituents were identified in the samples: compounds containing carbon, hydrogen, and oxygen only (CHO), sulfur- (CHOS), nitrogen-(CHON), and both nitrogen- and sulfur-containing organics (CHONS). Within the groups, organonitrates, organosulfates, and nitroxy organosulfates were assigned based on accurate mass measurements and elemental ratio comparisons. Changes in the chemical composition of the aerosol samples were observed throughout the day. The number of observed CHO compounds increased in the afternoon samples, suggesting regional photochemical processing as a source. The average number of CHOS compounds had the smallest changes throughout the day, consistent with a more broadly distributed source. Both of the nitrogen-containing groups (CHON and CHONS) had greater numbers of compounds in the night and morning samples, indicating that nitrate radical chemistry was likely a source for those compounds. Most of the compounds were found in submicron particles. The size distribution of CHON compounds was bimodal. We conclude that the majority of the compounds observed were secondary in nature with both biogenic and anthropogenic sources.

  20. Beam Characterizations at Femtosecond Electron Beam Facility

    SciTech Connect (OSTI)

    Rimjaem, S.; Jinamoon, V.; Kangrang, M.; Kusoljariyakul, K.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Wiedemann, H.; /SLAC

    2006-03-17

    The SURIYA project at the Fast Neutron Research Facility (FNRF) has been established and is being commissioning to generate femtosecond (fs) electron bunches. Theses short bunches are produced by a system consisting of an S-band thermionic cathode RF-gun, an alpha magnet (a-magnet) serving as a magnetic bunch compressor, and a SLAC-type linear accelerator (linac). The characteristics of its major components and the beam characterizations as well as the preliminary experimental results will be presented and discussed in this paper.

  1. ICFA Beam Dynamics Newsletter

    SciTech Connect (OSTI)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  2. Beam-beam observations in the Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.; White, S.

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  3. LHC beam-beam compensation studies at RHIC

    SciTech Connect (OSTI)

    Fischer,W.; Abreu, N.; Calaga, R.; Robert-Demolaize, G.; Luo, Y.; Montag, C.

    2009-05-04

    Long-range and head-on beam-beam effects are expected to limit the LHC performance with design parameters. To mitigate long-range effects current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. To reduce the head-on beam-beam effect electron lenses were proposed for both the LHC and RHIC. We present the experimental long-range beam-beam program and report on head-on compensations studies at RHIC, which are based on simulations.

  4. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brett A. Helms Helms Staff Scientist, Organic and Macromolecular Synthesis bahelms@lbl.gov 510.486.7729 personal website Biography Brett A. Helms received his B.S. (2000) from Harvey Mudd College and his Ph.D. (2006) with Jean M. J. Fréchet at the University of California, Berkeley. He joined the staff of the Molecular Foundry in 2007, after postdoctoral research at the Technische Universiteit Eindhoven with E. W. (Bert) Meijer. His research interests include structure of and reactivity at

  5. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Caroline M. Ajo-Franklin Ajo-Franklin Staff Scientist, Biological Nanostructures cajo-franklin@lbl.gov 510.486.4299 personal website Biography Dr. Ajo-Franklin has been a Staff Scientist at the Molecular Foundry since 2007. Before that, she received her Ph.D. in Chemistry from Stanford University with Prof. Steve Boxer and was a post-doctoral fellow with Prof. Pam Silver in the Department of Systems Biology at Harvard Medical School. Dr. Ajo-Franklin is fascinated by the incredible, diverse

  6. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gil Torres Gil Torres gjtorres@lbl.gov 510.486.4395 Biography Gil is the Building Manager for MSD in buildings 62, 66, 2, 30, JCAP and the Molecular Foundry. Gil supports Foundry operations through a broad range of responsibilities including space management/maintenance and modification of the building and lab equipment, both institutional and programatic. Gil also serves as the Building Emergency Team lead. Gil came to the Lab in 2006 after a twenty-eight year career in the specialty gases and

  7. Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles

    DOE Patents [OSTI]

    Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

    2005-12-26

    A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

  8. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN BEAM LINE 1-5 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN BEAM LINE 2-1 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19,

  9. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Back to Table of Contents WEEK OF Nov. 17, 2014 Nov. 17, 2014 Nov. 18, 2014 Nov. 19, 2014 Nov. 20, 2014 Nov. 21, 2014 Nov. 22, 2014 Nov. 23, 2014 BEAM LINE 7-1 Nov. 17, 2014 Nov. 18, 2014 Nov. 19, 2014 Nov. 20, 2014 Nov. 21, 2014 Nov. 22, 2014 Nov. 23, 2014 Unscheduled STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP BEAM LINE 11-1 Nov. 17, 2014 Nov. 18, 2014 Nov. 19, 2014 Nov. 20, 2014 Nov. 21, 2014 Nov. 22, 2014 Nov. 23, 2014 Unscheduled STUP

  10. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-4 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN BEAM LINE 2-1 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN BEAM LINE 2-2 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar.

  11. Future Directions of Structural Mass Spectrometry using Hydroxyl Radical Footprinting

    SciTech Connect (OSTI)

    J Kiselar; M Chance

    2011-12-31

    Hydroxyl radical protein footprinting coupled to mass spectrometry has been developed over the last decade and has matured to a powerful method for analyzing protein structure and dynamics. It has been successfully applied in the analysis of protein structure, protein folding, protein dynamics, and protein-protein and protein-DNA interactions. Using synchrotron radiolysis, exposure of proteins to a 'white' X-ray beam for milliseconds provides sufficient oxidative modification to surface amino acid side chains, which can be easily detected and quantified by mass spectrometry. Thus, conformational changes in proteins or protein complexes can be examined using a time-resolved approach, which would be a valuable method for the study of macromolecular dynamics. In this review, we describe a new application of hydroxyl radical protein footprinting to probe the time evolution of the calcium-dependent conformational changes of gelsolin on the millisecond timescale. The data suggest a cooperative transition as multiple sites in different molecular subdomains have similar rates of conformational change. These findings demonstrate that time-resolved protein footprinting is suitable for studies of protein dynamics that occur over periods ranging from milliseconds to seconds. In this review, we also show how the structural resolution and sensitivity of the technology can be improved as well. The hydroxyl radical varies in its reactivity to different side chains by over two orders of magnitude, thus oxidation of amino acid side chains of lower reactivity are more rarely observed in such experiments. Here we demonstrate that the selected reaction monitoring (SRM)-based method can be utilized for quantification of oxidized species, improving the signal-to-noise ratio. This expansion of the set of oxidized residues of lower reactivity will improve the overall structural resolution of the technique. This approach is also suggested as a basis for developing hypothesis-driven structural mass spectrometry experiments.

  12. Synchrotron photoionization mass spectrometry study of intermediates in fuel-rich 1,2-dimethoxyethane flame

    SciTech Connect (OSTI)

    Lin, Z. K.; Han, D. L.; Li, S. F.; Li, Y. Y.; Yuan, T.

    2009-04-21

    Intermediates in a fuel-rich premixed laminar 1,2-dimethoxyethane (DME) flame are studied by molecular beam mass spectrometry combined with tunable synchrotron vacuum ultraviolet photoionization. About 30 intermediate species are identified in the present work, and their mole fraction profiles are evaluated. The experimental results show that the formations of intermediates, both hydrocarbons and oxygenated hydrocarbons, are closely linked to the structure of fuel, which is consistent with the previous reports. Species produced from H atom abstraction and beta scission of DME usually have much higher concentrations than others. The oxygen atoms in DME are considered to act as partitions of the primary intermediates; therefore farther reactions among these primary intermediates are difficult to occur, resulting in absence of most large intermediate species.

  13. Beam position monitor sensitivity for low-{beta} beams

    SciTech Connect (OSTI)

    Shafer, R.E.

    1993-11-01

    At low velocities, the EM field of a particle in a conducting beam tube is no longer a TEM wave, but has a finite longitudinal extent. The net effect of this is to reduce the coupling of the high-frequency Fourier components of the beam current to BPM (beam position monitor) electrodes, which modifies the BPM sensitivity to beam displacement. This effect is especially pronounced for high-frequency, large-aperture pickups used for low-{beta} beams. Non-interceptive beam position monitors used in conjunction with high frequency RFQ (radio-frequency-quadrupole) and DTL (drift-tube-linac) accelerators fall into this category. When testing a BPM with a thin wire excited with either pulses or high-frequency sinusoidal currents, the EM wave represents the principal (TEM) mode in a coaxial transmission line, which is equivalent to a highly relativistic ({beta} = 1) beam. Thus wire measurements are not suitable for simulating slow particle beams in high bandwidth diagnostic devices that couple to the image currents in the beam tube wall. Attempts to load the tin wire either capacitively or inductively to slow the EM wave down have met with limited success. In general, the equations used to represent the 2-D response of cylindrical-geometry BPMs to charged-particle beams make several assumptions: (1) the BPM electrodes are flush with and grounded to the surface of the conducting beam tube; (2) the beam is a line source (pencil beam); (3) the longitudinal extent of the EM field of a beam particle at the beam tube wall is zero, corresponding to a highly relativistic beam. The purpose of this paper is to make some quantitative estimates of the corrections to the conventional approximations when a BPM is used to measure the position of low velocity (low-{beta}) beams.

  14. Beam imaging diagnostics for heavy ion beam fusion experiments

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Prost, L.; Ghiorso, W.

    2003-05-01

    We are developing techniques for imaging beams in heavy-ion beam fusion experiments in the HIF-VNL in 2 to 4 transverse dimensions. The beams in current experiments range in energy from 50 keV to 2 MeV, with beam current densities from <10 to 200 mA/cm{sup 2}, and pulse lengths of 4 to 20 {micro}s. The beam energy will range up to 10 MeV in near-future beam experiments. The imaging techniques, based on kapton films and optical scintillators, complement and, in some cases, may replace mechanical slit scanners. The kapton film images represent a time-integrated image on the film exposed to the beam. The optical scintillator utilizes glass and ceramic scintillator material imaged by a fast, image-intensified CCD-based camera. We will discuss the techniques, results, and plans for implementation of the diagnostics on the beam experiments.

  15. SSRL Beam Lines Map | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL Beam Lines Map Beam Line by Number | Beam Line by Techniques | Photon Source Parameters

  16. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MC CHECKOUT8044 MC CHECKOUT9A91 MC CHECKOUT8837 AP DOWN DOWN 9A72 M.Deller 8044 I.Mathews 9A91 D.Das 8837 A.Cohen AP DOWN DOWN BEAM LINE 12-2 Dec. 14, 2015 Dec. 15, 2015 Dec....

  17. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  18. Beam current sensor

    DOE Patents [OSTI]

    Kuchnir, M.; Mills, F.E.

    1984-09-28

    A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

  19. Beam current sensor

    DOE Patents [OSTI]

    Kuchnir, Moyses (Elmhurst, IL); Mills, Frederick E. (Elburn, IL)

    1987-01-01

    A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

  20. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAM LINE 7-1 Nov. 11, 2013 Nov. 12, 2013 Nov. 13, 2013 Nov. 14, 2013 Nov. 15, 2013 Nov. 16, 2013 Nov. 17, 2013 8803 C.Smith 8803 C.Smith 8803 C.Smith 8803 C.Smith 8803 C.Smith ...

  1. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAM LINE 9-1 Feb. 14, 2005 Feb. 15, 2005 Feb. 16, 2005 Feb. 17, 2005 Feb. 18, 2005 Feb. 19, 2005 Feb. 20, 2005 8803 C.SMITH 8803 C.SMITHDOWN 9B01 A.DEACON 9B01 A.DEACON 1B00 ...

  2. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAM LINE 7-1 Nov. 06, 2006 Nov. 07, 2006 Nov. 08, 2006 Nov. 09, 2006 Nov. 10, 2006 Nov. 11, 2006 Nov. 12, 2006 8803 C.SMITH 8803 C.SMITH 8803 C.SMITH 8803 C.SMITH 8803 C.SMITH ...

  3. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAM LINE 9-1 Nov. 07, 2011 Nov. 08, 2011 Nov. 09, 2011 Nov. 10, 2011 Nov. 11, 2011 Nov. 12, 2011 Nov. 13, 2011 DOWN DOWN DOWN DOWN 8803 C.SMITH 8803 C.SMITH 8803 C.SMITH DOWN DOWN ...

  4. Optimizing the electron beam parameters for head-on beam-beam compensation in RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.; Pikin, A.; Gu, X.

    2011-03-28

    Head-on beam-beam compensation is adopted to compensate the large beam-beam tune spread from the protonproton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). Two e-lenses are being built and to be in stalled near IP10 in the end of 2011. In this article we perform numeric simulation to investigate the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse profile, size, current, offset and random errors in them. In this article we studied the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse shape, size, current, offset and their random errors. From the study, we require that the electron beam size can not be smaller than the proton beam's. And the random noise in the electron current should be better than 0.1%. The offset of electron beam w.r.t. the proton beam center is crucial to head-on beam-beam compensation. Its random errors should be below {+-}8{micro}m.

  5. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN)

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  6. Beam position monitor sensitivity for low-[beta] beams

    SciTech Connect (OSTI)

    Shafer, R.E. )

    1994-10-10

    Design of a beam position monitor (BPM) which is sensitive to low velo charged particle beams is considered. Quantitative estimates are made for the corrections to the conventional approximations to solutions of the Laplace Equation in two-dimensions when a BPM is used to measure to position of low velocity (low-[beta]) beams. (AIP)

  7. The Beam | Open Energy Information

    Open Energy Info (EERE)

    Name: The Beam Place: Brookline, Massachusetts Zip: 2446 Product: The Beam is a start-up company that looks to establish an online retail portal that would market and sell...

  8. Laser beam pulse formatting method

    DOE Patents [OSTI]

    Daly, Thomas P. (Livermore, CA); Moses, Edward I. (Livermore, CA); Patterson, Ralph W. (Livermore, CA); Sawicki, Richard H. (Danville, CA)

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  9. ANL Beams and Applications Seminar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 Seminar Sponsers AAI ASD ATLAS HEP PHY ANL Beams and Applications Seminar The ANL Beam and Applications Seminar is...

  10. Designing π-stacked molecular structures to control heat transport through molecular junctions

    SciTech Connect (OSTI)

    Kiršanskas, Gediminas; Li, Qian; Solomon, Gemma C.; Flensberg, Karsten; Leijnse, Martin

    2014-12-08

    We propose and analyze a way of using π stacking to design molecular junctions that either enhance or suppress a phononic heat current, but at the same time remain conductors for an electric current. Such functionality is highly desirable in thermoelectric energy converters, as well as in other electronic components where heat dissipation should be minimized or maximized. We suggest a molecular design consisting of two masses coupled to each other with one mass coupled to each lead. By having a small coupling (spring constant) between the masses, it is possible to either reduce or perhaps more surprisingly enhance the phonon conductance. We investigate a simple model system to identify optimal parameter regimes and then use first principle calculations to extract model parameters for a number of specific molecular realizations, confirming that our proposal can indeed be realized using standard molecular building blocks.

  11. Laser beam guard clamps

    DOE Patents [OSTI]

    Dickson, Richard K. (Stockton, CA)

    2010-09-07

    A quick insert and release laser beam guard panel clamping apparatus having a base plate mountable on an optical table, a first jaw affixed to the base plate, and a spring-loaded second jaw slidably carried by the base plate to exert a clamping force. The first and second jaws each having a face acutely angled relative to the other face to form a V-shaped, open channel mouth, which enables wedge-action jaw separation by and subsequent clamping of a laser beam guard panel inserted through the open channel mouth. Preferably, the clamping apparatus also includes a support structure having an open slot aperture which is positioned over and parallel with the open channel mouth.

  12. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-4 Oct. 30, 2006 Oct. 31, 2006 Nov. 01, 2006 Nov. 02, 2006 Nov. 03, 2006 Nov. 04, 2006 Nov. 05, 2006 DOWN Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled BEAM LINE 2-1 Oct. 30, 2006 Oct. 31, 2006 Nov. 01, 2006 Nov. 02, 2006 Nov. 03, 2006 Nov. 04, 2006 Nov. 05, 2006 DOWN 8859 B.JOHNSON 8859 B.JOHNSON 8859

  13. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  14. Neutral Beam Excitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Excitation of Alfv ´ en Continua in the Madison Symmetric Torus Reversed Field Pinch by Jonathan Jay Koliner A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at the University of Wisconsin - Madison 2013 Defended on 22 October 2013 Dissertation approved by the following members of the Final Oral Committee: Cary Forest * Professor of Physics John Sar↵ * Professor of Physics Jan Egedal * Professor of Physics Paul Terry *

  15. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  16. Stationary nonlinear Airy beams

    SciTech Connect (OSTI)

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-08-15

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  17. All Beams 2013.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass (amu) A MeV Total Energy (MeV) Energy at Bragg Peak (MeV) Range in Si (m) Range at Bragg (m) Range to Bragg Peak (m) Initial LET (vacuum) Initial LET (air) LET at...

  18. Design and operational characteristics of a cast steel mass spectrometer

    SciTech Connect (OSTI)

    Blantocas, Gene Q.; Ramos, Henry J.; Wada, Motoi

    2004-09-01

    A cast steel magnetic sector mass analyzer is developed for studies of hydrogen and helium ion beams generated by a gas discharge compact ion source. The optimum induced magnetic flux density of 3500 G made it possible to scan the whole spectrum of hydrogen and helium ion species. Analysis of beam characteristics shows that the mass spectrometer sensitivity, and resolving power are approximately inversely proportional. The resolution is enhanced at higher pressures and lower current discharges. In contrast, the instrument sensitivity increased at higher current discharges and decreased at higher pressures. Calculations of the ultimate resolving power with reference to analyzer dimensions yield a numerical value of 30. System anomaly in the form of spherical aberrations was also analyzed using the paraxial beam envelope equation. Beam divergence is most significant at high discharge conditions where angular spread reaches an upper limit of 8.6 deg.

  19. Ultra High Mass Range Mass Spectrometer System

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  20. RadiaBeam PPT template

    Energy Savers [EERE]

    Pedro Frigola RadiaBeam Systems, LLC Advanced Methods for Manufacturing Workshop Lockheed Martin, September 29, 2015 Development of Nuclear Quality Components using Metal Additive Manufacturing  RadiaBeam overview  AM research at RadiaBeam  Overview of EBM AM technology  Goals and relevance of the Phase I/II project  Phase I/II work 09/29/2015 2015 AMM Workshop - P. Frigola, RadiaBeam Systems, LLC 2 Outline  RadiaBeam has two core missions:  To manufacture high quality,

  1. Ion source for high-precision mass spectrometry

    DOE Patents [OSTI]

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  2. Nanoscale molecularly imprinted polymers and method thereof

    DOE Patents [OSTI]

    Hart, Bradley R. (Brentwood, CA); Talley, Chad E. (Brentwood, CA)

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  3. First test of BNL electron beam ion source with high current density electron beam

    SciTech Connect (OSTI)

    Pikin, Alexander Alessi, James G. Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  4. Structural Molecular Biology, SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Training Workshops & Summer Schools Summer Students Structural Molecular Biology Illuminating Biological Structures at the Atomic and Molecular Levels Your browser...

  5. Mass spectrometric immunoassay

    DOE Patents [OSTI]

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2013-07-16

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  6. Mass spectrometric immunoassay

    DOE Patents [OSTI]

    Nelson, Randall W (Phoenix, AZ); Williams, Peter (Phoenix, AZ); Krone, Jennifer Reeve (Granbury, TX)

    2007-12-04

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  7. Mass spectrometric immunoassay

    DOE Patents [OSTI]

    Nelson, Randall W.; Williams, Peter; Krone, Jennifer Reeve

    2005-12-13

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  8. RECENT EXPERIENCE WITH ELECTRON LENS BEAM-BEAM COMPENSATION AT...

    Office of Scientific and Technical Information (OSTI)

    with use of bent crystals and pulsed dipole deflectors (orbit correctors). The angular beam deflection by the crystal - see Fig.2 - must be large enough to send the...

  9. Bismuth-induced phase control of GaAs nanowires grown by molecular...

    Office of Scientific and Technical Information (OSTI)

    Bismuth-induced phase control of GaAs nanowires grown by molecular beam epitaxy Citation Details In-Document Search Title: Bismuth-induced phase control of GaAs nanowires grown by ...

  10. Beam experiments related to the head-on beam-beam compensation project at RHIC

    SciTech Connect (OSTI)

    Montag, C.; Bai, M.; Drees, A.; Fischer, W.; Marusic, A.; Wang, G.

    2011-03-28

    Beam experiments have been performed in RHIC to determine some key parameters of the RHIC electron lenses, and to test the capability of verifying lattice modifications by beam measurements. We report the status and recent results of these experiments. The Relativistic Heavy Ion Collider (RHIC) consists of two superconducting storage rings that intersect at six locations around its circumference. Beams collide in interaction points (IPs) 6 and 8, which are equipped with the detectors STAR and PHENIX, respectively (Fig. 1). With the polarized proton working point constrained between 2/3 and 7/10 to achieve good luminosity lifetime and maintain polarization, the proton bunch intensity is limited to 2 {center_dot} 10{sup 11} protons per bunch by the resulting beam-beam tuneshift. To overcome this limitation, installation of an electron lens in IP 10 is foreseen to partially compensate the beam-beam effect and reduce the beam-beam tuneshift parameter. As part of this project, beam experiments are being performed at RHIC to determine key parameters of the electron lens as well as to verify lattice modifications.

  11. Magnetically operated beam dump for dumping high power beams in a neutral beamline

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1984-01-27

    It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

  12. Beam characterization by wavefront sensor

    DOE Patents [OSTI]

    Neal, Daniel R. (17 Eric Alan Lane, Tijeras, NM 87059); Alford, W. J. (3455 Tahoe, N.E., Albuquerque, NM 87111); Gruetzner, James K. (9407 Shoehone, N.E., Albuquerque, NM 87111)

    1999-01-01

    An apparatus and method for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed.

  13. Beam characterization by wavefront sensor

    DOE Patents [OSTI]

    Neal, D.R.; Alford, W.J.; Gruetzner, J.K.

    1999-08-10

    An apparatus and method are disclosed for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed. 21 figs.

  14. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, David A. (Walnut Creek, CA); Flood, William S. (Berkeley, CA); Arthur, Allan A. (Martinez, CA); Voelker, Ferdinand (Orinda, CA)

    1986-01-01

    A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

  15. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect (OSTI)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  16. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally,more » we report on the measured performance of this profile monitor.« less

  17. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-5 Nov. 28, 2005 Nov. 29, 2005 Nov. 30, 2005 Dec. 01, 2005 Dec. 02, 2005 Dec. 03, 2005 Dec. 04, 2005 MA 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ BEAM LINE 7-1 Nov. 28, 2005 Nov. 29, 2005 Nov. 30, 2005 Dec. 01, 2005 Dec.

  18. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN BEAM LINE 9-1 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 Unscheduled CHANGE/8837 A.COHE 8837 A.COHEN 8837 A.COHEN 8837 A.COHEN 8837 A.COHEN 8837 A.COHEN Unscheduled 8837 A.COHEN/DOWN 8837 A.COHEN 8837 A.COHEN 8837 A.COHEN 8837 A.COHEN 8837

  19. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7-1 Nov. 15, 2010 Nov. 16, 2010 Nov. 17, 2010 Nov. 18, 2010 Nov. 19, 2010 Nov. 20, 2010 Nov. 21, 2010 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 2B87 I.SEVRIOUKOVA 2B87 I.SEVRIOUKOVA 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ MC CHECKOUT/2B87 2B87 I.SEVRIOUKOVA 2B87 I.SEVRIOUKOVA 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 2B87 I.SEVRIOUKOVA 2B87 I.SEVRIOUKOVA 2B87 I.SEVRIOUKOVA BEAM LINE 9-1 Nov. 15, 2010 Nov. 16,

  20. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-4 Nov. 10, 2008 Nov. 11, 2008 Nov. 12, 2008 Nov. 13, 2008 Nov. 14, 2008 Nov. 15, 2008 Nov. 16, 2008 DOWN 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU BEAM LINE 8-1 Nov. 10, 2008 Nov. 11, 2008 Nov. 12, 2008 Nov. 13, 2008 Nov. 14, 2008 Nov. 15, 2008 Nov. 16, 2008 DOWN DOWN DOWN DOWN DOWN 3064 S.SUN 3064 S.SUN DOWN DOWN DOWN DOWN VUV CHECKOUT

  1. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-4 Oct. 26, 2009 Oct. 27, 2009 Oct. 28, 2009 Oct. 29, 2009 Oct. 30, 2009 Oct. 31, 2009 Nov. 01, 2009 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU BEAM LINE 8-1 Oct. 26, 2009 Oct. 27, 2009 Oct. 28, 2009 Oct. 29, 2009 Oct. 30, 2009 Oct. 31, 2009 Nov. 01, 2009 Unscheduled Unscheduled Unscheduled Unscheduled

  2. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-4 Nov. 15, 2010 Nov. 16, 2010 Nov. 17, 2010 Nov. 18, 2010 Nov. 19, 2010 Nov. 20, 2010 Nov. 21, 2010 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU BEAM LINE 8-1 Nov. 15, 2010 Nov. 16, 2010 Nov. 17, 2010 Nov. 18, 2010 Nov. 19, 2010 Nov. 20, 2010 Nov. 21, 2010 Unscheduled Unscheduled Unscheduled 3269 S.SUN 3269 S.SUN 3269 S.SUN 3269

  3. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-4 Nov. 05, 2007 Nov. 06, 2007 Nov. 07, 2007 Nov. 08, 2007 Nov. 09, 2007 Nov. 10, 2007 Nov. 11, 2007 Unscheduled Unscheduled 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY Unscheduled CHANGE/8051 M.TONE 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY Unscheduled 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY BEAM LINE 2-1 Nov. 05, 2007 Nov. 06, 2007 Nov. 07, 2007 Nov. 08, 2007 Nov. 09, 2007 Nov. 10, 2007 Nov. 11, 2007 8859

  4. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-4 Nov. 10, 2008 Nov. 11, 2008 Nov. 12, 2008 Nov. 13, 2008 Nov. 14, 2008 Nov. 15, 2008 Nov. 16, 2008 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN BEAM LINE 2-1 Nov. 10, 2008 Nov. 11, 2008 Nov. 12, 2008 Nov. 13, 2008 Nov. 14, 2008 Nov. 15, 2008 Nov. 16, 2008 DOWN 8859 B.JOHNSON 8051* M.TONEY 8051* M.TONEY 8051* M.TONEY 3205 M.BIBEE 3205 M.BIBEE Xray CHECKOUT/8859 CHANGE/8051* M.TON 8051* M.TONEY 8051* M.TONEY Xray CHECKOUT/3205 3205

  5. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

    1984-03-20

    A broad-band beam bunther is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-

  6. Studies of beam dynamics in relativistic klystron two-beam accelerators

    SciTech Connect (OSTI)

    Lidia, Steven M.

    1999-11-01

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band ({approximately}8-12 GHz) through Ka band ({approximately} 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also described.

  7. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    SciTech Connect (OSTI)

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G.; Singh, P.

    2013-12-15

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  8. The Gas Flow from the Gas Attenuator to the Beam Line

    SciTech Connect (OSTI)

    Ryutov, D.D.

    2010-12-03

    The gas leak from the gas attenuator to the main beam line of the Linac Coherent Light Source has been evaluated, with the effect of the Knudsen molecular beam included. It has been found that the gas leak from the gas attenuator of the present design, with nitrogen as a working gas, does not exceed 10{sup -5} torr x l/s even at the highest pressure in the main attenuation cell (20 torr).

  9. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  10. Depolarization due to beam-beam interaction in electron-positron linear

    Office of Scientific and Technical Information (OSTI)

    colliders (Conference) | SciTech Connect Conference: Depolarization due to beam-beam interaction in electron-positron linear colliders Citation Details In-Document Search Title: Depolarization due to beam-beam interaction in electron-positron linear colliders We investigate two major mechanisms which induce depolarization of electron beams during beam-beam interaction in linear colliders. These are the classical spin precession under the collective field of the oncoming beam, and the

  11. Properties of Inconel 625 Mesh Structures Grown by Electron Beam...

    Office of Scientific and Technical Information (OSTI)

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) ... Simple models have been used to understand better these relationships. Structural ...

  12. BEAM-BEAM SIMULATIONS FOR THE ERHIC ELECTRON RING.

    SciTech Connect (OSTI)

    MONTAG, C.

    2005-05-16

    To study collisions between polarized electrons and heavy ions or polarized protons at high energy, adding a 10 GeV electron storage ring to the existing RHIC facility is currently under consideration. To achieve high luminosities of several 10{sup 33} cm{sup -2} sec{sup -1} range, a vertical beam-beam tuneshift parameter of {zeta}{sub y} = 0.08 is required for the electron beam. Simulation studies are being performed to study the feasibility of this high tuneshift parameter and explore the potential for even higher tuneshifts. Recent results of these studies are presented.

  13. Design of the low energy beam transport line between CARIBU and the EBIS charge breeder

    SciTech Connect (OSTI)

    Perry, A.; Ostroumov, P. N.; Barcikowski, A.; Dickerson, C.; Kondrashev, S. A.; Mustapha, B.; Savard, G.

    2015-01-09

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at ATLAS. The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and improve the purity of reaccelerated radioactive ion beams. The EBIS-CB is in the final stage of off-line commissioning. Currently, we are developing a low energy beam transport (LEBT) system to transfer CARIBU beams to the EBIS-CB. As was originally planned, an RFQ cooler-buncher will precede the EBIS-CB. Recently, it was decided to include a multi-reflection time-of-flight (MR-TOF) mass-spectrometer following the RFQ. MR-TOF is a relatively new technology used to purify beams with a mass-resolving power up to 310{sup 5} as was demonstrated in experiments at CERN/ISOLDE. Very high purity singly-charged radioactive ion beams will be injected into the EBIS for charge breeding and due to its inherent properties, the EBIS-CB will maintain the purity of the charge bred beams. Possible contamination of residual gas ions will be greatly suppressed by achieving ultra-high vacuum in the EBIS trap. This paper will present and discuss the design of the LEBT and the overall integration of the EBIS-CB into ATLAS.

  14. Laser beam alignment apparatus and method

    DOE Patents [OSTI]

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  15. Laser beam alignment apparatus and method

    DOE Patents [OSTI]

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  16. Coherent instabilities of a relativistic bunched beam

    SciTech Connect (OSTI)

    Chao, A.W.

    1982-06-01

    A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references.

  17. Electrostatic wire stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  18. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  19. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, John W. (Pleasanton, CA); O'Brien, Dennis W. (Livermore, CA)

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  20. TH-E-BRE-06: Challenges in the Dosimetry of Flattening Filter Free Beams

    SciTech Connect (OSTI)

    Czarnecki, D; Voigts-Rhetz, P von; Zink, K

    2014-06-15

    Purpose: In current dosimetry protocols [AAPM TG51, IAEA TRS-389] the beam quality correction factor kQ and the water-to-air restricted mass collision stopping-power ratio SPR are related to beam quality specifiers %dd(10){sub x} respectively TPR{sub 20,10} Determining kQ and SPR using these regular beam quality specifiers for conventional accelerators (WFF) and flattening filter free accelerators (FFF) similarly could lead to systemic bias.The influence of the flattening filter on the relationship between various beam quality specifiers and SPR respectively k{sub Q} was studied using Monte Carlo simulations with realistic beam sources. Methods: All Monte Carlo simulations were performed using the BEAMnrc/EGSnrc code system. Radiation transport through nine linear accelerator heads modeled according to technical drawings given by the manufactures and a {sup 60} Co therapy source was simulated with BEAMnrc and then used as a radiation source for further simulations. FFF beam sources were implemented by removing the fattening filter from the WFF model. SPR was calculated applying the user code SPRRZnrc. The mean photon energy below the accelerator head and the mean energies of photons and electrons at the measuring point within the water phantom were calculated using FLURZnrc. Dose calculations within a small water voxel and the thimble ionization chamber PTW-31010 in a water depth of 10 cm were made using the egs-chamber code. Results: SPR and k{sub Q} as a function of fluence spectra based beam quality specifiers as well as conventional beam quality specifiers differ systematically between FFF and WFF beams. According to the results the specifier %dd(10){sub x} revealed the smallest deviation (max. 0.4%) between FFF and WFF beams. Conclusion: The results show that %dd(10){sub x} is an acceptable beam quality specifier for FFF beams. Nevertheless the results confirm the expected bias between FFF and WFF beams which must by further investigated.

  1. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood,...

  2. Ion Beams - Radiation Effects Facility / Cyclotron Institute...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Useful Graphs Various ion beams have been developed specifically for the Radiation Effects Facility. These beams provide for a wide scope of LET with high energies for...

  3. Monitoring external beam radiotherapy using real-time beam visualization

    SciTech Connect (OSTI)

    Jenkins, Cesare H.; Naczynski, Dominik J.; Yu, Shu-Jung S.; Xing, Lei

    2015-01-15

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd{sub 2}O{sub 2}S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure.

  4. Observations and open questions in beam-beam interactions

    SciTech Connect (OSTI)

    Sen, Tanaji; /Fermilab

    2010-08-01

    The first of the hadron colliders, ISR, started operation in 1970. In the following years, the hadron colliders to follow were the SPS (started 1980), the Tevatron (started 1987 first as a fixed target machine), RHIC (started 2000) and most recently the LHC, which started in 2008. HERA was a hybrid that collided electrons and protons. All of these accelerators had or have their performance limited by the effects of the beam-beam interactions. That has also been true for the electron-positron colliders such as LEP, CESR, KEKB and PEPII. In this article I will discuss how the beam-beam limitations arose in some of these machines. The discussion will be focused on common themes that span the different colliders. I will mostly discuss the hadron colliders but sometimes discuss the lepton colliders where relevant. Only a handful of common accelerator physics topics are chosen here, the list is not meant to be exhaustive. A comparative review of beam-beam performance in the ISR, SPS and Tevatron (ca 1989) can be found in reference. Table 1 shows the relevant parameters of colliders (excluding the LHC), which have accelerated protons.

  5. Formation of the diphenyl molecule in the crossed beam reaction of phenyl radicals with benzene

    SciTech Connect (OSTI)

    Zhang Fangtong; Gu Xibin; Kaiser, Ralf I.

    2008-02-28

    The chemical dynamics to form the D5-diphenyl molecule, C{sub 6}H{sub 5}C{sub 6}D{sub 5}, via the neutral-neutral reaction of phenyl radicals (C{sub 6}H{sub 5}) with D6-benzene (C{sub 6}D{sub 6}), was investigated in a crossed molecular beams experiment at a collision energy of 185 kJ mol{sup -1}. The laboratory angular distribution and time-of-flight spectra of the C{sub 6}H{sub 5}C{sub 6}D{sub 5} product were recorded at mass to charge m/z of 159. Forward-convolution fitting of our data reveals that the reaction dynamics are governed by an initial addition of the phenyl radical to the {pi} electron density of the D6-benzene molecule yielding a short-lived C{sub 6}H{sub 5}C{sub 6}D{sub 6} collision complex. The latter undergoes atomic deuterium elimination via a tight exit transition state located about 30 kJ mol{sup -1} above the separated reactants; the overall reaction to form D5-diphenyl from phenyl and D6-benzene was found to be weakly exoergic. The explicit identification of the D5-biphenyl molecules suggests that in high temperature combustion flames, a diphenyl molecule can be formed via a single collision event between a phenyl radical and a benzene molecule.

  6. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, Robert W. (Los Alamos, NM); Dobelbower, M. Christian (Toledo, OH)

    1995-01-01

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  7. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  8. Quantum fluctuations in beam dynamics.

    SciTech Connect (OSTI)

    Kim, K.-J.

    1998-06-04

    Quantum effects could become important for particle and photon beams used in high-luminosity and high brightness applications in the current and next generation accelerators and radiation sources. This paper is a review of some of these effects.

  9. The Fermilab neutrino beam program

    SciTech Connect (OSTI)

    Rameika, Regina A.; /Fermilab

    2007-01-01

    This talk presents an overview of the Fermilab Neutrino Beam Program. Results from completed experiments as well as the status and outlook for current experiments is given. Emphasis is given to current activities towards planning for a future program.

  10. 6-D weak-strong beam-beam simulation study of proton lifetime in presence of head-on beam-beam compensation in the RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.

    2010-08-01

    In this note we summarize the calculated particle loss of a proton bunch in the presence of head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). To compensate the head-on beam-beam effect in the RHIC 250 GeV polarized proton run, we are introducing a DC electron beam with the same transverse profile as the proton beam to collide with the proton beam. Such a device is called an electron lens (e-lens). In this note we first present the optics and beam parameters and the tracking setup. Then we calculate and compare the particle loss of a proton bunch with head-on beam-beam compensation, phase advance of k{pi} between IP8 and the center of the e-lens and second order chromaticity correction. We scanned the proton beam's linear chromaticity, working point and bunch intensity. We also scanned the electron beam's intensity, transverse beam size. The effect of the electron-proton transverse offset in the e-lens was studied. In the study 6-D weak-strong beam-beam interaction model a la Hirata is used for proton collisions at IP6 and IP8. The e-lens is modeled as 8 slices. Each slice is modeled with as drift - (4D beam-beam kick) - drift.

  11. Confined energy distribution for charged particle beams

    DOE Patents [OSTI]

    Jason, Andrew J.; Blind, Barbara

    1990-01-01

    A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

  12. Total cyanide mass measurement with micro-ion selective electrode for determination of specific activity of carbon-11 cyanide

    SciTech Connect (OSTI)

    Shea, Colleen; Alexoff, David L.; Kim, Dohyun; Hoque, Ruma; Schueller, Michael J.; Fowler, Joanna S.; Qu, Wenchao

    2015-04-25

    In this study, we aim to directly measure the specific activity (SA) of the carbon-11 cyanide ([11C]CN¯) produced by our in-house built automated [11C]HCN production system and to identify the major sources of 12C-cyanide (12CN¯). The [11C]CN¯ is produced from [11C]CO2, which is generated by the 14N(p,α)11C nuclear reaction using a cyclotron. Direct measurement of cyanide concentrations was accomplished using a relatively inexpensive, and easy to use ion selective electrode (ISE) which offered an appropriate range of sensitivity for detecting mass. Multiple components of the [11C]HCN production system were isolated in order to determine their relative contributions to 12CN¯ mass. It was determined that the system gases were responsible for approximately 30% of the mass, and that the molecular sieve/nickel furnace unit contributed approximately 70% of the mass. Beam on target (33 µA for 1 and 10 min) did not contribute significantly to the mass. Additionally, we compared the SA of our [11C]HCN precursor determined using the ISE to the SA of our current [11C]CN¯ derived radiotracers determined by HPLC to assure there was no significant difference between the two methods. These results are the first reported use of an ion selective electrode to determine the SA of no-carrier-added cyanide ion, and clearly show that it is a valuable, inexpensive and readily available tool suitable for this purpose.

  13. Total cyanide mass measurement with micro-ion selective electrode for determination of specific activity of carbon-11 cyanide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shea, Colleen; Alexoff, David L.; Kim, Dohyun; Hoque, Ruma; Schueller, Michael J.; Fowler, Joanna S.; Qu, Wenchao

    2015-04-25

    In this study, we aim to directly measure the specific activity (SA) of the carbon-11 cyanide ([11C]CN¯) produced by our in-house built automated [11C]HCN production system and to identify the major sources of 12C-cyanide (12CN¯). The [11C]CN¯ is produced from [11C]CO2, which is generated by the 14N(p,α)11C nuclear reaction using a cyclotron. Direct measurement of cyanide concentrations was accomplished using a relatively inexpensive, and easy to use ion selective electrode (ISE) which offered an appropriate range of sensitivity for detecting mass. Multiple components of the [11C]HCN production system were isolated in order to determine their relative contributions to 12CN¯ mass.more » It was determined that the system gases were responsible for approximately 30% of the mass, and that the molecular sieve/nickel furnace unit contributed approximately 70% of the mass. Beam on target (33 µA for 1 and 10 min) did not contribute significantly to the mass. Additionally, we compared the SA of our [11C]HCN precursor determined using the ISE to the SA of our current [11C]CN¯ derived radiotracers determined by HPLC to assure there was no significant difference between the two methods. These results are the first reported use of an ion selective electrode to determine the SA of no-carrier-added cyanide ion, and clearly show that it is a valuable, inexpensive and readily available tool suitable for this purpose.« less

  14. Electron beam diagnostic for profiling high power beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  15. The Origins of Mass

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  16. The Origins of Mass

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-07-30

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  17. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  18. Sandia Energy - Photoionization Mass Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photoionization Mass Spectroscopy Home Transportation Energy Predictive Simulation of Engines Diagnostics Gas-Phase Diagnostics Photoionization Mass Spectroscopy Photoionization...

  19. Overview of the APT high-energy beam transport and beam expanders

    SciTech Connect (OSTI)

    Shafer, R.E.; Blind, B.; Gray, E.R.

    1997-08-01

    The APT high energy beam transport (HEBT) and beam expanders convey the 1700-MeV, 100-mA cw proton beam from the linac to the tritium target/blanket assembly, or a tuning beam stop. The HEBT includes extensive beam diagnostics, collimators, and beam jitter correction, to monitor and control the 170-MW beam prior to expansion. A zero-degree beamline conveys the beam to the beam stop, and an achromatic bend conveys the beam to the tritium production target. Nonlinear beam expanders make use of higher-order multipole magnets and dithering dipoles to expand the beam to a uniform-density, 16-cm wide by 160-cm high rectangular profile on the tritium-production target. The overall optics design will be reviewed, and beam simulations will be presented.

  20. Impact of individual nuclear masses on r-process abundances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mumpower, M. R.; Surman, R.; Fang, D. -L.; Beard, M.; Möller, P.; Kawano, T.; Aprahamian, A.

    2015-09-15

    We have performed for the first time a comprehensive study of the sensitivity of r-process nucleosynthesis to individual nuclear masses across the chart of nuclides. Using the latest version (2012) of the Finite-Range Droplet Model, we consider mass variations of ±0.5 MeV and propagate each mass change to all affected quantities, including Q values, reaction rates, and branching ratios. We find such mass variations can result in up to an order of magnitude local change in the final abundance pattern produced in an r-process simulation. As a result, we identify key nuclei whose masses have a substantial impact on abundancemore » predictions for hot, cold, and neutron star merger r-process scenarios and could be measured at future radioactive beam facilities.« less

  1. eRHIC ring-ring design with head-on beam-beam compensation

    SciTech Connect (OSTI)

    Montag,C.; Blaskiewicz, M.; Pozdeyev, E.; Fischer, W.; MacKay, W. W.

    2009-05-04

    The luminosity of the eRHIC ring-ring design is limited by the beam-beam effect exerted on the electron beam. Recent simulation studies have shown that the beam-beam limit can be increased by means of an electron lens that compensates the beam-beam effect experienced by the electron beam. This scheme requires proper design of the electron ring, providing the correct betatron phase advance between interaction point and electron lens. We review the performance of the eRHIC ring-ring version and discuss various parameter sets, based on different cooling schemes for the proton/ion beam.

  2. Multi-particle weak-strong simulation of RHIC head-on beam-beam compensation.

    SciTech Connect (OSTI)

    Luo,Y.; Abreu, N.; Beebe-Wang, J.; FischW; Robert-Demolaize, G.

    2008-06-23

    To compensate the large tune spread generated by the beam-beam interactions in the polarized proton (pp) run in the Relativistic Heavy Ion Collider (RHIC), a low energy round Gaussian electron beam or electron lens is proposed to collide head-on with the proton beam. Using a weakstrong beam-beam interaction model, we carry out multiparticle simulations to investigate the effects of head-on beam-beam compensation on the proton beam's lifetime and emittance growth. The simplectic 6-D element-by-element tracking code SixTrack is adopted and modified for this study. The code benchmarking and preliminary simulation results are presented.

  3. Mechanism of Angular Momentum Exchange between Molecules and Laguerre-Gaussian Beams

    SciTech Connect (OSTI)

    Alexandrescu, Adrian; Cojoc, Dan; Fabrizio, Enzo Di

    2006-06-23

    We derive the interaction Hamiltonian between a diatomic molecule and a Laguerre-Gaussian beam under the assumption of a small spread of the center of mass wave function of the molecule in comparison with the beam waist. Considering the dynamical variables of the center of mass, vibrational, rotational, and electronic motion, we show that, within the electronic dipole approximation, the orbital angular momentum of the field couples with the rotational and electronic motion. The changes in the transition probabilities and selection rules induced by the field orbital angular momentum and the applicability of the derived interaction mechanisms for polyatomic molecules are discussed.

  4. Small system for tritium accelerator mass spectrometry

    DOE Patents [OSTI]

    Roberts, M.L.; Davis, J.C.

    1993-02-23

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and [sup 3]He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  5. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect (OSTI)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  6. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect (OSTI)

    Perdian, David C.

    2009-08-19

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  7. Beam-energy and laser beam-profile monitor at the BNL LINAC

    SciTech Connect (OSTI)

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  8. Quantized beam shifts in graphene

    SciTech Connect (OSTI)

    de Melo Kort-Kamp, Wilton Junior; Sinitsyn, Nikolai; Dalvit, Diego Alejandro Roberto

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant ?, while the Goos-Hanchen ones in multiples of ?2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  9. Shimmed electron beam welding process

    DOE Patents [OSTI]

    Feng, Ganjiang (Clifton Park, NY); Nowak, Daniel Anthony (Alplaus, NY); Murphy, John Thomas (Niskayuna, NY)

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  10. Gas mass transfer for stratified flows

    SciTech Connect (OSTI)

    Duffey, R.B.; Hughes, E.D.

    1995-06-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi})Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature.

  11. Gas mass transfer for stratified flows

    SciTech Connect (OSTI)

    Duffey, R.B.; Hughes, E.D.

    1995-07-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrum integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi}) Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geophysical and chemical engineering literature.

  12. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E. (Hempfield Township, Westmoreland County, PA)

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  13. Simulations of Head-On Beam-Beam Compensation at RHIC and LHC

    SciTech Connect (OSTI)

    Valishev, A.; /Fermilab

    2010-05-19

    Electron lenses are proposed as a way to mitigate head-on beam-beam effects for RHIC and LHC upgrades. An extensive effort was put together within the US LARP in order to develop numerical simulations of beam-beam effects in the presence of electron lenses. In this report the results of numerical beam-beam simulations for RHIC and LHC are presented. The effect of electron lenses is demonstrated and sensitivity of beam-beam compensation to machine parameters is discussed.

  14. EMITTANCE COMPENSATION FOR MAGNETIZED BEAMS

    SciTech Connect (OSTI)

    KEWISCH,J.; CHANG, X.

    2007-06-25

    Emittance compensation is a well established technique for minimizing the emittance of an electron beam from a RF photo-cathode gun. Longitudinal slices of a bunch have a small emittance, but due to the longitudinal charge distribution of the bunch and time dependent RF fields they are not focused in the same way, so that the direction of their phase ellipses diverges in phase space and the projected emittance is much larger. Emittance compensation reverses the divergence. At the location where the slopes of the phase ellipses coincide the beam is accelerated, so that the space charge forces are reduced. A recipe for emittance compensation is given in. For magnetized beams (where the angular momentum is non-zero) such emittance compensation is not sufficient because variations in the slice radius lead to variations in the angular speed and therefore to an increase of emittance in the rotating game. We describe a method and tools for a compensation that includes the beam magnetization.

  15. SPEAR3 Beam Line Availability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Wide Angle X-ray Scattering Open 1-5 MC MAD, Monochromatic Open 2-1 X-ray Powder Diffraction Open 2-2 X-ray Michromachining, Topography, White Beam, LIGA Down 2-3 X-ray XAS,...

  16. Bunch length effects in the beam-beam compensation with an electron lens

    SciTech Connect (OSTI)

    Fischer, W.; Luo, Y.; Montag, C.

    2010-02-25

    Electron lenses for the head-on beam-beam compensation are under construction at the Relativistic Heavy Ion Collider. The bunch length is of the same order as the {beta}-function at the interaction point, and a proton passing through another proton bunch experiences a substantial phase shift which modifies the beam-beam interaction. We review the effect of the bunch length in the single pass beam-beam interaction, apply the same analysis to a proton passing through a long electron lens, and study the single pass beam-beam compensation with long bunches. We also discuss the beam-beam compensation of the electron beam in an electron-ion collider ring.

  17. State-to-state dynamics of molecular energy transfer

    SciTech Connect (OSTI)

    Gentry, W.R.; Giese, C.F.

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  18. Combining tissue-phantom ratios to provide a beam-quality specifier for flattening filter free photon beams

    SciTech Connect (OSTI)

    Dalaryd, Mrten Kns, Tommy; Ceberg, Crister

    2014-11-01

    Purpose: There are currently several commercially available radiotherapy treatment units without a flattening filter in the beam line. Unflattened photon beams have an energy and lateral fluence distribution that is different from conventional beams and, thus, their attenuation properties differ. As a consequence, for flattening filter free (FFF) beams, the relationship between the beam-quality specifier TPR{sub 20,10} and the SpencerAttix restricted water-to-air mass collision stopping-power ratios, (L{sup -}/?){sub air}{sup water}, may have to be refined in order to be used with equivalent accuracy as for beams with a flattening filter. The purpose of this work was twofold. First, to study the relationship between TPR{sub 20,10} and (L{sup -}/?){sub air}{sup water} for FFF beams, where the flattening filter has been replaced by a metal plate as in most clinical FFF beams. Second, to investigate the potential of increasing the accuracy in determining (L{sup -}/?){sub air}{sup water} by adding another beam-quality metric, TPR{sub 10,5}. The relationship between (L{sup -}/?){sub air}{sup water} and %dd(10){sub x} for beams with and without a flattening filter was also included in this study. Methods: A total of 24 realistic photon beams (10 with and 14 without a flattening filter) from three different treatment units have been used to calculate (L{sup -}/?){sub air}{sup water}, TPR{sub 20,10}, and TPR{sub 10,5} using the EGSnrc Monte Carlo package. The relationship between (L{sup -}/?){sub air}{sup water} and the dual beam-quality specifier TPR{sub 20,10} and TPR{sub 10,5} was described by a simple bilinear equation. The relationship between the photon beam-quality specifier %dd(10){sub x} used in the AAPMs TG-51 dosimetry protocol and (L{sup -}/?){sub air}{sup water} was also investigated for the beams used in this study, by calculating the photon component of the percentage depth dose at 10 cm depth with SSD 100 cm. Results: The calculated (L{sup -}/?){sub air}{sup water} for beams without a flattening filter was 0.3% lower, on average, than for beams with a flattening filter and comparable TPR{sub 20,10}. Using the relationship in IAEA, TRS-398 resulted in a root mean square deviation (RMSD) of 0.0028 with a maximum deviation of 0.0043 (0.39%) from Monte Carlo calculated values. For all beams in this study, the RMSD between the proposed model and the Monte Carlo calculated values was 0.0006 with a maximum deviation of 0.0013 (0.1%). Using an earlier proposed relationship [Xiong and Rogers, Med. Phys. 35, 21042109 (2008)] between %dd(10){sub x} and (L{sup -}/?){sub air}{sup water} gave a RMSD of 0.0018 with a maximum deviation of 0.0029 (0.26%) for all beams in this study (compared to RMSD 0.0015 and a maximum deviation of 0.0048 (0.47%) for the relationship used in AAPM TG-51 published by Almond et al. [Med. Phys. 26, 18471870 (1999)]). Conclusions: Using TPR{sub 20,10} as a beam-quality specifier, for the flattening filter free beams used in this study, gave a maximum difference of 0.39% between (L{sup -}/?){sub air}{sup water} predicted using IAEA TRS-398 and Monte Carlo calculations. An additional parameter for determining (L{sup -}/?){sub air}{sup water} has been presented. This parameter is easy to measure; it requires only an additional dose measurement at 5 cm depth with SSD 95 cm, and provides information for accurate determination of the (L{sup -}/?){sub air}{sup water} ratio for beams both with and without a flattening filter at the investigated energies.

  19. Apply for Beam Time | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All About Proposals Users Home Apply for Beam Time Deadlines Proposal Types Concepts, Definitions, and Help My APS Portal My APS Portal Apply for Beam Time Next Proposal Deadline...

  20. Collimation Studies with Hollow Electron Beams

    SciTech Connect (OSTI)

    Stancari, G.; Annala, G.; Johnson, T.R.; Saewert, G.W.; Shiltsev, V.; Still, D.A.; Valishev, A.; /Fermilab

    2011-08-01

    Recent experimental studies at the Fermilab Tevatron collider have shown that magnetically confined hollow electron beams can act as a new kind of collimator for high-intensity beams in storage rings. In a hollow electron beam collimator, electrons enclose the circulating beam. Their electric charge kicks halo particles transversely. If their distribution is axially symmetric, the beam core is unaffected. This device is complementary to conventional two-stage collimation systems: the electron beam can be placed arbitrarily close to the circulating beam; and particle removal is smooth, so that the device is a diffusion enhancer rather than a hard aperture limitation. The concept was tested in the Tevatron collider using a hollow electron gun installed in one of the existing electron lenses. We describe some of the technical aspects of hollow-beam scraping and the results of recent measurements.

  1. Property:Beam(m) | Open Energy Information

    Open Energy Info (EERE)

    Beam(m) Jump to: navigation, search This is a property of type String. Pages using the property "Beam(m)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft...

  2. Neutral particle beam sensing and steering

    DOE Patents [OSTI]

    Maier, II, William B. (Los Alamos, NM); Cobb, Donald D. (Los Alamos, NM); Robiscoe, Richard T. (Los Alamos, NM)

    1991-01-01

    The direction of a neutral particle beam (NPB) is determined by detecting Ly.alpha. radiation emitted during motional quenching of excited H(2S) atoms in the beam during movement of the atoms through a magnetic field. At least one detector is placed adjacent the beam exit to define an optical axis that intercepts the beam at a viewing angle to include a volume generating a selected number of photons for detection. The detection system includes a lens having an area that is small relative to the NPB area and a pixel array located in the focal plane of the lens. The lens viewing angle and area pixel array are selected to optimize the beam tilt sensitivity. In one embodiment, two detectors are placed coplanar with the beam axis to generate a difference signal that is insensitive to beam variations other than beam tilt.

  3. Autogenerator of beams of charged particles

    DOE Patents [OSTI]

    Adler, Richard J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Miller, Robert B. (Albuquerque, NM); Shope, Steven L. (Albuquerque, NM); Smith, David L. (Albuquerque, NM)

    1986-01-01

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  4. Autogenerator of beams of charged particles

    DOE Patents [OSTI]

    Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.

    1983-10-31

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  5. Femtosecond laser ablation-based mass spectrometry. An ideal tool for stoichiometric analysis of thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LaHaye, Nicole L.; Kurian, Jose; Diwakar, Prasoon K.; Alff, Lambert; Harilal, Sivanandan S.

    2015-08-19

    An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a material’s properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd(x)Sb2 and T´-La2CuO4 to demonstrate themore » capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations.« less

  6. Femtosecond laser ablation-based mass spectrometry. An ideal tool for stoichiometric analysis of thin films

    SciTech Connect (OSTI)

    LaHaye, Nicole L.; Kurian, Jose; Diwakar, Prasoon K.; Alff, Lambert; Harilal, Sivanandan S.

    2015-08-19

    An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a materials properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd(x)Sb2 and T-La2CuO4 to demonstrate the capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations.

  7. Maskless, resistless ion beam lithography

    SciTech Connect (OSTI)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P{sup +} beam implantation at 5 keV is also presented. With implantation dose of around 10{sup 16} cm{sup -2}, the electron concentration is about 2.5 x 10{sup 18} cm{sup -3} and electron mobility is around 200 cm{sup 2}/V{center_dot}s. To demonstrate the suitability of scanning FIB lithography for the manufacture of integrated circuit devices, SOI MOSFET fabrication using the maskless, resistless ion beam lithography is demonstrated. An array of microcolumns can be built by stacking multi-aperture electrode and insulator layers. Because the multicusp plasma source can achieve uniform ion density over a large area, it can be used in conjunction with the array of microcolumns, for massively parallel FIB processing to achieve reasonable exposure throughput.

  8. Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors

    DOE Patents [OSTI]

    Frank, Matthias (Berkeley, CA); Mears, Carl A. (Oakland, CA); Labov, Simon E. (Berkeley, CA); Benner, W. Henry (Danville, CA)

    1999-01-01

    An ultra-high-mass time-of-flight mass spectrometer using a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as "stop" detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al.sub.2 O.sub.3 -Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

  9. Beam instability studies for the SSC

    SciTech Connect (OSTI)

    Chou, W.

    1994-09-01

    Beam instability studies of the Superconducting Super Collider (SSC) during the period 1989--1993 are briefly reviewed in this paper. Various topics are covered: single bunch and multi-bunch, single beam and beam-beam, parasitic heating and active feedback, etc. Although the SSC will not be built, many of the results obtained from these studies remain as useful references to the accelerator community.

  10. The NuMI Neutrino Beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; et al

    2015-10-20

    Our paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important part of our design details pertaining to individual components is described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  11. Apparatus and method of determining molecular weight of large molecules

    DOE Patents [OSTI]

    Fuerstenau, Stephen (Montrose, CA); Benner, W. Henry (Danville, CA); Madden, Norman (Livermore, CA); Searles, William (Fremont, CA)

    1998-01-01

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e.sup.- are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation.

  12. Apparatus and method of determining molecular weight of large molecules

    DOE Patents [OSTI]

    Fuerstenau, S.; Benner, W.H.; Madden, N.M.; Searles, W.

    1998-06-23

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e{sup {minus}} are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation. 14 figs.

  13. Development of high-spatial and high-mass resolution mass spectrometric imaging (MSI) and its application to the study of small metabolites and endogenous molecules of plants

    SciTech Connect (OSTI)

    Jun, Ji Hyun

    2011-11-30

    High-spatial and high-mass resolution laser desorption ionization (LDI) mass spectrometric (MS) imaging technology was developed for the attainment of MS images of higher quality containing more information on the relevant cellular and molecular biology in unprecedented depth. The distribution of plant metabolites is asymmetric throughout the cells and tissues, and therefore the increase in the spatial resolution was pursued to reveal the localization of plant metabolites at the cellular level by MS imaging. For achieving high-spatial resolution, the laser beam size was reduced by utilizing an optical fiber with small core diameter (25 ?m) in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer. Matrix application was greatly improved using oscillating capillary nebulizer. As a result, single cell level spatial resolution of ~ 12 ?m was achieved. MS imaging at this high spatial resolution was directly applied to a whole Arabidopsis flower and the substructures of an anther and single pollen grains at the stigma and anther were successfully visualized. MS imaging of high spatial resolution was also demonstrated to the secondary roots of Arabidopsis thaliana and a high degree of localization of detected metabolites was successfully unveiled. This was the first MS imaging on the root for molecular species. MS imaging with high mass resolution was also achieved by utilizing the LTQ-Orbitrap mass spectrometer for the direct identification of the surface metabolites on the Arabidopsis stem and root and differentiation of isobaric ions having the same nominal mass with no need of tandem mass spectrometry (MS/MS). MS imaging at high-spatial and high-mass resolution was also applied to cer1 mutant of the model system Arabidopsis thaliana to demonstrate its usefulness in biological studies and reveal associated metabolite changes in terms of spatial distribution and/or abundances compared to those of wild-type. The spatial distribution of targeted metabolites, mainly waxes and flavonoids, was systematically explored on various organs, including flowers, leaves, stems, and roots at high spatial resolution of ~ 12-50 ?m and the changes in the abundance level of these metabolites were monitored on the cer1 mutant with respect to the wild-type. This study revealed the metabolic biology of CER1 gene on each individual organ level with very detailed high spatial resolution. The separate MS images of isobaric metabolites, i.e. C29 alkane vs. C28 aldehyde could be constructed on both genotypes from MS imaging at high mass resolution. This allows tracking of abundance changes for those compounds along with the genetic mutation, which is not achievable with low mass resolution mass spectrometry. This study supported previous hypothesis of molecular function of CER1 gene as aldehyde decarbonylase, especially by displaying hyper accumulation of aldehydes and C30 fatty acid and decrease in abundance of alkanes and ketones in several plant organs of cer1 mutant. The scope of analytes was further directed toward internal cell metabolites from the surface metabolites of the plant. MS profiling and imaging of internal cell metabolites were performed on the vibratome section of Arabidopsis leaf. Vibratome sectioning of the leaf was first conducted to remove the surface cuticle layer and it was followed by enzymatic treatment of the section to induce the digestion of primary cell walls, middle lamella, and expose the internal cells underneath to the surface for detection with the laser by LDI-MS. The subsequent MS imaging onto the enzymatically treated vibratome section allowed us to map the distribution of the metabolites in the internal cell layers, linolenic acid (C18:3 FA) and linoleic acid (C18:2 FA). The development of an assay for relative quantification of analytes at the single subcellular/organelle level by LDI-MS imaging was attempted and both plausibility and significant obstacles were seen. As a test system, native plant organelle, chloroplasts isolated from the spinach leaves were used

  14. A new luminescence beam profile monitor for intense proton and heavy ion beams

    SciTech Connect (OSTI)

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  15. Beam shuttering interferometer and method

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Lassahn, Gordon D. (Idaho Falls, ID)

    1993-01-01

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  16. Beam shuttering interferometer and method

    DOE Patents [OSTI]

    Deason, V.A.; Lassahn, G.D.

    1993-07-27

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  17. Beam collimation at hadron colliders

    SciTech Connect (OSTI)

    Nikolai V. Mokhov

    2003-08-12

    Operational and accidental beam losses in hadron colliders can have a serious impact on machine and detector performance, resulting in effects ranging from minor to catastrophic. Principles and realization are described for a reliable beam collimation system required to sustain favorable background conditions in the collider detectors, provide quench stability of superconducting magnets, minimize irradiation of accelerator equipment, maintain operational reliability over the life of the machine, and reduce the impact of radiation on personnel and the environment. Based on detailed Monte-Carlo simulations, such a system has been designed and incorporated in the Tevatron collider. Its performance, comparison to measurements and possible ways to further improve the collimation efficiency are described in detail. Specifics of the collimation systems designed for the SSC, LHC, VLHC, and HERA colliders are discussed.

  18. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  19. Beam intensity upgrade at Fermilab

    SciTech Connect (OSTI)

    Marchionni, A.; /Fermilab

    2006-07-01

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  20. Optical Modulation of Molecular Conductance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transient absorption spectra of these molecular layers are consistent with formation of a long-lived charge separated state, a finding with implications for the design of molecular ...

  1. Ion beam inertial confinement target

    DOE Patents [OSTI]

    Bangerter, Roger O. (Danville, CA); Meeker, Donald J. (Livermore, CA)

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  2. Stability of Single Particle Motion with Head-On Beam-Beam Compensation in the RHIC

    SciTech Connect (OSTI)

    Luo,Y.; Fischer, W.; Abreu, N.

    2008-05-01

    To compensate the large tune shift and tune spread generated by the head-on beam-beam interactions in the polarized proton run in the Relativistic Heavy Ion Collider (RHIC), we proposed a low energy electron beam with a Gaussian transverse profiles to collide head-on with the proton beam. In this article, with a weak-strong beam-beam interaction model, we investigate the stability of single particle motion in the presence of head-on beam-beam compensation. Tune footprints, tune diffusion, Lyapunov exponents, and 10{sup 6} turn dynamic apertures are calculated and compared between the cases without and with beam-beam compensation. A tune scan is performed and the possibility of increasing the bunch intensity is studied. The cause of tune footprint foldings is discussed, and the tune diffusion and Lyapunov exponent analysis are compared.

  3. Engineering rock mass classifications

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1989-01-01

    This book is a reference on rock mass classification, consolidating into one handy source information widely scattered through the literature. Includes new, unpublished material and case histories. Presents the fundamental concepts of classification schemes and critically appraises their practical application in industrial projects such as tunneling and mining.

  4. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, M.A.; Hagen, W.F.; Boyd, R.D.

    1984-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  5. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, Mark A. (Livermore, CA); Hagen, Wilhelm F. (Livermore, CA); Boyd, Robert D. (Livermore, CA)

    1985-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  6. W-Band Sheet Beam Klystron Design

    SciTech Connect (OSTI)

    Scheitrum, G.; Caryotakis, G.; Burke, A.; Jensen, A.; Jongewaard, E.a Krasnykh, A.; Neubauer, M.; Phillips, R.; Rauenbuehler, K.; /SLAC

    2011-11-11

    Sheet beam devices provide important advantages for very high power, narrow bandwidth RF sources like accelerator klystrons [1]. Reduced current density and increased surface area result in increased power capabi1ity, reduced magnetic fields for focusing and reduced cathode loading. These advantages are offset by increased complexity, beam formation and transport issues and potential for mode competition in the ovennoded cavities and drift tube. This paper will describe the design issues encountered in developing a 100 kW peak and 2 kW average power sheet beam k1ystron at W-band including beam formation, beam transport, circuit design, circuit fabrication and mode competition.

  7. Electron beam generation in Tevatron electron lenses

    SciTech Connect (OSTI)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF

    2006-08-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.

  8. Optimizing the beam-beam alignment in an electron lens using bremsstrahlung

    SciTech Connect (OSTI)

    Montag, C.; Fischer, W.; Gassner, D.; Thieberger, P.; Haug, E.

    2010-05-23

    Installation of electron lenses for the purpose of head-on beam-beam compensation is foreseen at RHIC. To optimize the relative alignment of the electron lens beam with the circulating proton (or ion) beam, photon detectors will be installed to measure the bremsstrahlung generated by momentum transfer from protons to electrons. We present the detector layout and simulations of the bremsstrahlung signal as function of beam offset and crossing angle.

  9. Geochemical Speciation Mass Transfer

    Energy Science and Technology Software Center (OSTI)

    1985-12-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineralmore » phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.« less

  10. Generation of low-divergence laser beams

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-09-14

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.

  11. Generation of low-divergence laser beams

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1993-01-01

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.

  12. BEAM CONTAINMENT SYSTEM FOR NSLS-II

    SciTech Connect (OSTI)

    Kramer, S.L.; Casey, W.; Job, P.K.

    2010-05-23

    The shielding design for the NSLS-II will provide adequate protection for the full injected beam loss in two periods of the ring around the injection point, but the remainder of the ring is shielded for lower losses of {le} 10% full beam. This will require a system to insure that beam losses don't exceed these levels for a period of time that could cause excessive radiation levels outside the shield walls. This beam containment system will measure, provide a level of control and alarm indication of the beam power losses along the beam path from the source (e-gun, linac) thru the injection system and the storage ring. This system will consist of collimators that will provide limits to (and potentially to measure) the beam miss-steering and control the loss points of the charge and monitors that will measure the average beam current losses along the beam path and alarm when this beam power loss exceeds the level set by the shielding specifications. This will require some new ideas in beam loss detection capability and collimation. The initial planning and R&D program will be presented.

  13. Particle beam injector system and method

    DOE Patents [OSTI]

    Guethlein, Gary

    2013-06-18

    Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole accelerator. Coupling of the charged particle beam is accomplished, at least in-part, by relying on of sensitivity of the input phase space acceptance of the radio frequency quadrupole to the angle of the input charged particle beam. A first electric field across a beam deflector deflects the particle beam at an angle that is beyond the acceptance angle of the radio frequency quadrupole. By momentarily reversing or reducing the established electric field, a narrow portion of the charged particle beam is deflected at an angle within the acceptance angle of the radio frequency quadrupole. In another configuration, beam is directed at an angle within the acceptance angle of the radio frequency quadrupole by the first electric field and is deflected beyond the acceptance angle of the radio frequency quadrupole due to the second electric field.

  14. Method for calibrating mass spectrometers

    DOE Patents [OSTI]

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  15. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOE Patents [OSTI]

    Shu, Deming (Darien, IL); Kuzay, Tuncer M. (Naperville, IL)

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  16. Twisted mass finite volume effects

    SciTech Connect (OSTI)

    Colangelo, Gilberto; Wenger, Urs; Wu, Jackson M. S.

    2010-08-01

    We calculate finite-volume effects on the pion masses and decay constant in twisted mass lattice QCD at finite lattice spacing. We show that the lighter neutral pion in twisted mass lattice QCD gives rise to finite-volume effects that are exponentially enhanced when compared to those arising from the heavier charged pions. We demonstrate that the recent two flavor twisted mass lattice data can be better fitted when twisted mass effects in finite-volume corrections are taken into account.

  17. Single event mass spectrometry

    DOE Patents [OSTI]

    Conzemius, Robert J. (Ames, IA)

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  18. Nanoscale mass conveyors

    DOE Patents [OSTI]

    Regan, Brian C. (Oakland, CA); Aloni, Shaul (Albany, CA); Zettl, Alexander K. (Kensington, CA)

    2008-03-11

    A mass transport method and device for individually delivering chargeable atoms or molecules from source particles is disclosed. It comprises a channel; at least one source particle of chargeable material fixed to the surface of the channel at a position along its length; a means of heating the channel; and a means for applying an controllable electric field along the channel, whereby the device transports the atoms or molecules along the channel in response to applied electric field. In a preferred embodiment, the mass transport device will comprise a multiwalled carbon nanotube (MWNT), although other one dimensional structures may also be used. The MWNT or other structure acts as a channel for individual or small collections of atoms due to the atomic smoothness of the material. Also preferred is a source particle of a metal such as indium. The particles move by dissociation into small units, in some cases, individual atoms. The particles are preferably less than 100 nm in size.

  19. Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  20. Photoionization Mass Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photoionization Mass Spectroscopy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  1. Solution mass measurement

    SciTech Connect (OSTI)

    Ford, W.; Marshall, R.S.; Osborn, L.C.; Picard, R.; Thomas, C.C. Jr.

    1982-07-01

    This report describes the efforts to develop and demonstrate a solution mass measurement system for use at the Los Alamos Plutonium Facility. Because of inaccuracy of load cell measurements, our major effort was directed towards the pneumatic bubbler tube. The differential pressure between the air inlet to the bubbler tube and the glovebox interior is measured and is proportional to the solution mass in the tank. An inexpensive, reliable pressure transducer system for measuring solution mass in vertical, cylindrical tanks was developed, tested, and evaluated in a laboratory test bed. The system can withstand the over- and underpressures resulting from solution transfer operations and can prevent solution backup into the measurement pressure transducer during transfers. Drifts, noise, quantization error, and other effects limit the accuracy to 30 g. A transportable calibration system using a precision machined tank, pneumatic bubbler tubes, and a Ruska DDR 6000 electromanometer was designed, fabricated, tested, and evaluated. Resolution of the system is +-3.5 g out of 50 kg. The calibration error is 5 g, using room-temperature water as the calibrating fluid. Future efforts will be directed towards in-plant test and evaluation of the tank measurement systems. 16 figures, 3 tables.

  2. Beam splitter and method for generating equal optical path length beams

    DOE Patents [OSTI]

    Qian, Shinan; Takacs, Peter

    2003-08-26

    The present invention is a beam splitter for splitting an incident beam into first and second beams so that the first and second beams have a fixed separation and are parallel upon exiting. The beam splitter includes a first prism, a second prism, and a film located between the prisms. The first prism is defined by a first thickness and a first perimeter which has a first major base. The second prism is defined by a second thickness and a second perimeter which has a second major base. The film is located between the first major base and the second major base for splitting the incident beam into the first and second beams. The first and second perimeters are right angle trapezoidal shaped. The beam splitter is configured for generating equal optical path length beams.

  3. Simulation study of dynamic aperture with head-on beam-beam compensation in the RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.

    2010-08-01

    In this note we summarize the calculated 10{sup 6} turn dynamic apertures with the proposed head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). To compensate the head-on beam-beam effect in the RHIC 250 GeV polarized proton run, we are planning to introduce a DC electron beam with the same transverse profile as the proton beam to collide with the proton beam. Such a device to provide the electron beam is called an electron lens (e-lens). In this note we first present the optics and beam parameters and the tracking setup. Then we compare the calculated dynamic apertures without and with head-on beam-beam compensation. The effects of adjusted phase advances between IP8 and the center of e-lens and second order chromaticity correction are checked. In the end we will scan the proton and electron beam parameters with head-on beam-beam compensation.

  4. Nuclear astrophysics and electron beams

    SciTech Connect (OSTI)

    Schwenk, A.

    2013-11-07

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  5. Proton beam therapy control system

    DOE Patents [OSTI]

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-12-03

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  6. Proton beam therapy control system

    DOE Patents [OSTI]

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-06-25

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  7. Proton beam therapy control system

    DOE Patents [OSTI]

    Baumann, Michael A. (Riverside, CA); Beloussov, Alexandre V. (San Bernardino, CA); Bakir, Julide (Alta Loma, CA); Armon, Deganit (Longmeadow, MA); Olsen, Howard B. (Irvine, CA); Salem, Dana (Riverside, CA)

    2010-09-21

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  8. Proton beam therapy control system

    DOE Patents [OSTI]

    Baumann, Michael A. (Riverside, CA); Beloussov, Alexandre V. (Bernardino, CA); Bakir, Julide (Alta Loma, CA); Armon, Deganit (Redlands, CA); Olsen, Howard B. (Colton, CA); Salem, Dana (Riverside, CA)

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  9. Protective laser beam viewing device

    DOE Patents [OSTI]

    Neil, George R.; Jordan, Kevin Carl

    2012-12-18

    A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

  10. Substructured multibody molecular dynamics.

    SciTech Connect (OSTI)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  11. Effect of Beam-Beam Interactions on Stability of Coherent Oscillations in a

    Office of Scientific and Technical Information (OSTI)

    Muon Collider (Conference) | SciTech Connect Effect of Beam-Beam Interactions on Stability of Coherent Oscillations in a Muon Collider Citation Details In-Document Search Title: Effect of Beam-Beam Interactions on Stability of Coherent Oscillations in a Muon Collider In order to achieve peak luminosity of a muon collider in the 10{sup 34}/cm{sup 2}/s range the number of muons per bunch should be of the order of a few units of 10{sup 12} rendering the beam-beam parameter as high as 0.1 per

  12. STATUS OF THE RHIC HEAD-ON BEAM-BEAM COMPENSATION PROJECT

    SciTech Connect (OSTI)

    Fischer, W.; Luo, Y.; Pikin, A.; Beebe, E.; Bruno, D.; Gassner, D.; Hocke, J.; Jain, A.; Lambiase, R.; Mapes, M.; Meng, W.; Montag, C.; Oerter, B.; Okamura, M.; Raparia, D.; Than, R.; Tuozzolo, J.

    2010-05-23

    In polarized proton operation the luminosity of RHIC is limited by the head-on beam-beam effect, and methods that mitigate the effect will result in higher peak and average luminosities. Two electron lenses, one for each ring, are being constructed to partially compensate the head-on beam-beam effect in the two rings. An electron lens consists of a low energy electron beam that creates the same amplitude dependent transverse kick as the proton beam. We discuss design considerations and present the main parameters.

  13. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    SciTech Connect (OSTI)

    1997-12-01

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10{sup 9} electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE`s National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE`s evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc.

  14. Focused electron and ion beam systems

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  15. Radiation beam calorimetric power measurement system

    DOE Patents [OSTI]

    Baker, John (Livermore, CA); Collins, Leland F. (Pleasanton, CA); Kuklo, Thomas C. (Ripon, CA); Micali, James V. (Dublin, CA)

    1992-01-01

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  16. Rippled beam free electron laser amplifier

    DOE Patents [OSTI]

    Carlsten, Bruce E. (Los Alamos, NM)

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  17. Virtual mask digital electron beam lithography

    DOE Patents [OSTI]

    Baylor, L.R.; Thomas, C.E.; Voelkl, E.; Moore, J.A.; Simpson, M.L.; Paulus, M.J.

    1999-04-06

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made. 5 figs.

  18. Virtual mask digital electron beam lithography

    DOE Patents [OSTI]

    Baylor, Larry R. (Farragut, TN); Thomas, Clarence E. (Knoxville, TN); Voelkl, Edgar (Oak Ridge, TN); Moore, James A. (Powell, TN); Simpson, Michael L. (Knoxville, TN); Paulus, Michael J. (Knoxville, TN)

    1999-01-01

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.

  19. Molecular Foundry Bay Cam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Baycam The Molecular Foundry is a Department of Energy-funded nanoscience research facility at Berkeley Lab that provides users from around the world with access to cutting-edge expertise and instrumentation in a collaborative, multidisciplinary environment. twitter instagram facebook

  20. Coherence delay augmented laser beam homogenizer

    DOE Patents [OSTI]

    Rasmussen, P.; Bernhardt, A.

    1993-06-29

    The geometrical restrictions on a laser beam homogenizer are relaxed by ug a coherence delay line to separate a coherent input beam into several components each having a path length difference equal to a multiple of the coherence length with respect to the other components. The components recombine incoherently at the output of the homogenizer, and the resultant beam has a more uniform spatial intensity suitable for microlithography and laser pantogography. Also disclosed is a variable aperture homogenizer, and a liquid filled homogenizer.

  1. Coherence delay augmented laser beam homogenizer

    DOE Patents [OSTI]

    Rasmussen, Paul (Livermore, CA); Bernhardt, Anthony (Berkeley, CA)

    1993-01-01

    The geometrical restrictions on a laser beam homogenizer are relaxed by ug a coherence delay line to separate a coherent input beam into several components each having a path length difference equal to a multiple of the coherence length with respect to the other components. The components recombine incoherently at the output of the homogenizer, and the resultant beam has a more uniform spatial intensity suitable for microlithography and laser pantogography. Also disclosed is a variable aperture homogenizer, and a liquid filled homogenizer.

  2. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  3. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2011-06-28

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  4. Focused ion beam source method and apparatus

    DOE Patents [OSTI]

    Pellin, Michael J. (Naperville, IL); Lykke, Keith R. (Gaithersburg, MD); Lill, Thorsten B. (Sunnyvale, CA)

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  5. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  6. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect (OSTI)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beams effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beams effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the models energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  7. PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING...

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Mack, Stephanie; Ottawa U. SLAC 43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING; CRYSTAL LATTICES; DETECTION; FORTRAN;...

  8. PowerBeam Inc | Open Energy Information

    Open Energy Info (EERE)

    Product: PowerBeam holds the patent to a power transmission technology that produces wireless electricity. Coordinates: 32.780338, -96.547405 Show Map Loading map......

  9. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is...

  10. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Dane, Clifford B. (Livermore, CA)

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  11. Raman beam combining for laser brightness enhancement

    DOE Patents [OSTI]

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  12. Raman beam combining for laser brightness enhancement

    DOE Patents [OSTI]

    Dawson, Jay W; Allen, Grahan S; Pax, Paul H; Heebner, John E; Sridharan, Arun K; Rubenchik, Alexander M; Barty, Christopher B.J

    2015-11-05

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  13. Plasma formed ion beam projection lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lee, Yung-Hee Yvette (Berkeley, CA); Ngo, Vinh (San Jose, CA); Zahir, Nastaran (Greenbrae, CA)

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  14. First Beam Waist Measurements in the Final Focus Beam Line at...

    Office of Scientific and Technical Information (OSTI)

    KEK Accelerator Test Facility Citation Details In-Document Search Title: First Beam Waist Measurements in the Final Focus Beam Line at the KEK Accelerator Test Facility The ATF2 ...

  15. Head-on beam-beam compensation with electron lenses in the RHIC.

    SciTech Connect (OSTI)

    Luo,Y.; FischW; Abreu, N.; Beebe, E.; Montag, C.; Okamura, M.; Pikin, A.; Robert-Demolaize, G.

    2008-06-23

    The working point for the polarized proton run in the Relativistic Heavy Ion Collider is constrained between 2/3 and 7/10 in order to maintain good beam lifetime and polarization. To further increase the bunch intensity to improve the luminosity, a low energy Gaussian electron beam, or an electron lens is proposed to head-on collide with the proton beam to compensate the large tune shift and tune spread generated by the proton-proton beam-beam interactions at IP6 and IP8. In this article, we outline the scheme of head-on beam-beam compensation in the RHIC and give the layout of e-lens installation and the parameters of the proton and electron beams. The involved physics and engineering issues are shortly discussed.

  16. Summary of the LARP Mini-Workshop on Beam-Beam Compensation 2007

    SciTech Connect (OSTI)

    Fischer, Wolfram; Bruning, Oliver S.; Koutchouk, J.P.; Zimmermann, F.; Sen, T.; Shiltsev, V.; Ohmi, K.; Furman, M.; Cai, Y.; Chao, A.; /SLAC

    2011-11-07

    The LARP Mini-Workshop on Beam-Beam Compensation 2007 was held at SLAC, 2-4 July 2007. It was attended by 33 participants from 10 institutions in Asia, Europe, and America. 26 presentations were given, while more than one third of the time was allocated to discussions. The workshop web site is Ref. [1]. The workshop's main focus was on long-range and head-on beam-beam compensation, with a view towards application in the LHC. Other topics included the beam-beam performance of previous, existing and future circular colliders; beam-beam simulations; new operating modes, theory, and unexplained phenomena. This summary is also published as Ref. [2].

  17. Mass Transport within Soils

    SciTech Connect (OSTI)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend strongly on (1) the composition of the soil and physical state of the soil, (2) the chemical and physic

  18. Method and apparatus for laser-controlled proton beam radiology

    DOE Patents [OSTI]

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  19. Method and apparatus for laser-controlled proton beam radiology

    DOE Patents [OSTI]

    Johnstone, C.J.

    1998-06-02

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.

  20. Simulations of coherent beam-beam effects with head-on compensation

    SciTech Connect (OSTI)

    White S.; Fischer, W.; Luo. Y.

    2012-05-20

    Electron lenses are under construction for installation in RHIC in order to mitigate the head-on beam-beam effects. This would allow operation with higher bunch intensity and result in a significant increase in luminosity. We report on recent strong-strong simulations and experiments that were carried out using the RHIC upgrade parameters to assess the impact of coherent beam-beam effects in the presence of head-on compensation.

  1. Lattice design for head-on beam-beam compensation at RHIC

    SciTech Connect (OSTI)

    Montag, C.

    2011-03-28

    Electron lenses for head-on beam-beam compensation will be installed in IP 10 at RHIC. Compensation of the beam-beam effect experienced at IP 8 requires betatron phase advances of {Delta}{psi} = k {center_dot} {pi} between the proton-proton interaction point at IP 8, and the electron lens at IP 10. This paper describes the lattice solutions for both the BLUE and the YELLOW ring to achieve this goal.

  2. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, David J. (Los Alamos, NM); Nordholt, Jane E. (Los Alamos, NM)

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  3. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  4. Low energy beam transport system developments

    SciTech Connect (OSTI)

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup ?} beams up to 60?mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100?mA) proton beam transport. Preservation of low emittances (~0.15 ? mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1?m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup ?} beams, but such gas densities cause unacceptably high H{sup ?} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup ?} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  5. Method and apparatus for timing of laser beams in a multiple laser beam fusion system

    DOE Patents [OSTI]

    Eastman, Jay M. (Pittsford, NY); Miller, Theodore L. (Rochester, NY)

    1981-01-01

    The optical path lengths of a plurality of comparison laser beams directed to impinge upon a common target from different directions are compared to that of a master laser beam by using an optical heterodyne interferometric detection technique. The technique consists of frequency shifting the master laser beam and combining the master beam with a first one of the comparison laser beams to produce a time-varying heterodyne interference pattern which is detected by a photo-detector to produce an AC electrical signal indicative of the difference in the optical path lengths of the two beams which were combined. The optical path length of this first comparison laser beam is adjusted to compensate for the detected difference in the optical path lengths of the two beams. The optical path lengths of all of the comparison laser beams are made equal to the optical path length of the master laser beam by repeating the optical path length adjustment process for each of the comparison laser beams. In this manner, the comparison laser beams are synchronized or timed to arrive at the target within .+-.1.times.10.sup.-12 second of each other.

  6. Electron lenses for compensation of beam-beam effects: Tevatron, RHIC, LHC

    SciTech Connect (OSTI)

    Shiltsev, V.; /Fermilab

    2007-12-01

    Since previous BEAM'06 workshop a year ago, significant progress has been made in the field of beam-beam compensation (BBC)--it has been experimentally demonstrated that both Tevatron Electron Lenses (TEL) significantly improve proton and luminosity lifetimes in high-luminosity stores. This article summarizes these results and discusses prospects of the BBC in Tevatron, RHIC and LHC.

  7. Cascaded injection resonator for coherent beam combining of laser arrays

    DOE Patents [OSTI]

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  8. Tevatron End-of-Run Beam Physics Experiments

    SciTech Connect (OSTI)

    Valishev, A.; Gu, X.; Miyamoto, R.; White, S.; Schmidt, F.; Qiang, J.; /LBNL

    2012-05-01

    Before the Tevatron Collider Run II ended in September of 2011, a number of specialized beam study periods were dedicated to the experiments on various accelerator physics concepts and effects during the last year of the machine operation. The study topics included collimation with bent crystals and hollow electron beams, diffusion measurements and various aspects of beam-beam interactions. In this report we concentrate on the subject of beam-beam interactions, summarizing the results of beam experiments. The covered topics include offset collisions, coherent beam stability, effect of the bunch-length-to-beta-function ratio, and operation of AC dipole with colliding beams.

  9. Optical remote diagnostics of atmospheric propagating beams of ionizing radiation

    DOE Patents [OSTI]

    Karl, Jr., Robert R. (Los Alamos, NM)

    1990-01-01

    Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

  10. Structural Molecular Biology, SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Mission Our Mission The SSRL Structural Molecular Biology program operates as a integrated resource and has three primary areas (or cores) of technological research and development and scientific focus: Macromolecular Crystallography (MC) Small Angle X-ray Scattering/Diffraction (SAXS) X-ray Absorption Spectroscopy (XAS) Central to the core technological developments in all three of these areas is the development and utilization of improved detectors and instrumentation, especially to be

  11. Polarization of fast particle beams by collisional pumping

    DOE Patents [OSTI]

    Stearns, J. Warren (Castro Valley, CA); Kaplan, Selig N. (El Cerrito, CA); Pyle, Robert V. (Berkeley, CA); Anderson, L. Wilmer (Madison, WI); Ruby, Lawrence (Berkeley, CA); Schlachter, Alfred S. (Oakland, CA)

    1988-01-01

    Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.

  12. A machine protection beam position monitor system

    SciTech Connect (OSTI)

    Medvedko, E.; Smith, S.; Fisher, A.

    1998-12-10

    Loss of the stored beam in an uncontrolled manner can cause damage to the PEP-II B Factory. We describe here a device which detects large beam position excursions or unexpected beam loss and triggers the beam abort system to extract the stored beam safely. The bad-orbit abort trigger beam position monitor (BOAT BPM) generates a trigger when the beam orbit is far off the center (>20 mm), or rapid beam current loss (dI/dT) is detected. The BOAT BPM averages the input signal over one turn (136 kHz). AM demodulation is used to convert input signals at 476 MHz to baseband voltages. The detected signal goes to a filter section for suppression of the revolution frequency, then on to amplifiers, dividers, and comparators for position and current measurements and triggering. The derived current signal goes to a special filter, designed to perform dI/dT monitoring at fast, medium, and slow current loss rates. The BOAT BPM prototype test results confirm the design concepts.

  13. A machine protection beam position monitor system

    SciTech Connect (OSTI)

    Medvedko, E.; Smith, S.; Fisher, A.

    1998-12-01

    Loss of the stored beam in an uncontrolled manner can cause damage to the PEP-II {ital B} Factory. We describe here a device which detects large beam position excursions or unexpected beam loss and triggers the beam abort system to extract the stored beam safely. The bad-orbit abort trigger beam position monitor (BOAT BPM) generates a trigger when the beam orbit is far off the center ({gt}20 mm), or rapid beam current loss (dI/dT) is detected. The BOAT BPM averages the input signal over one turn (136 kHz). AM demodulation is used to convert input signals at 476 MHz to baseband voltages. The detected signal goes to a filter section for suppression of the revolution frequency, then on to amplifiers, dividers, and comparators for position and current measurements and triggering. The derived current signal goes to a special filter, designed to perform dI/dT monitoring at fast, medium, and slow current loss rates. The BOAT BPM prototype test results confirm the design concepts. {copyright} {ital 1998 American Institute of Physics.}

  14. W-Band Sheet Beam Klystron Simulation

    SciTech Connect (OSTI)

    Colby, E.R.; Caryotakis, G.; Fowkes, W.R.; /SLAC; Smithe, D.N.; /Mission Res., Newington

    2005-09-12

    With the development of ever higher energy particle accelerators comes the need for compactness and high gradient, which in turn require very high frequency high power rf sources. Recent development work in W-band accelerating techniques has spurred the development of a high-power W-band source. Axisymmetric sources suffer from fundamental power output limitations (P{sub sat} {approx} {lambda}{sup 2}) brought on by the conflicting requirements of small beam sizes and high beam current. The sheet beam klystron allows for an increase in beam current without substantial increase in the beam current density, allowing for reduced cathode current densities and focusing field strengths. Initial simulations of a 20:1 aspect ratio sheet beam/cavity interaction using the 3 dimensional particle-in-cell code Magic3D have demonstrated a 35% beam-power to RF power extraction efficiency. Calculational work and numerical simulations leading to a prototype W-band sheet beam klystron will be presented, together with preliminary cold test structure studies of a proposed RF cavity geometry.

  15. W-band sheet beam klystron simulation

    SciTech Connect (OSTI)

    Colby, E.R.; Caryotakis, G.; Fowkes, W.R. [Stanford Linear Accelerator Center, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Smithe, D.N. [Mission Research Corporation, 8560 Cinderbed Road, Ste. 700, Newington, Virginia 22122 (United States)

    1999-05-01

    With the development of ever higher energy particle accelerators comes the need for compactness and high gradient, which in turn require very high frequency high power rf sources. Recent development work in W-band accelerating techniques has spurred the development of a high-power W-band source. Axisymmetric sources suffer from fundamental power output limitations (P{sub sat}{approximately}{lambda}{sup 2}) brought on by the conflicting requirements of small beam sizes and high beam current. The sheet beam klystron allows for an increase in beam current without substantial increase in the beam current density, allowing for reduced cathode current densities and focussing field strengths. Initial simulations of a 20:1 aspect ratio sheet beam/cavity interaction using the 3 dimensional particle-in-cell code Magic3D have demonstrated a 35{percent} beam-power to RF power extraction efficiency. Calculational work and numerical simulations leading to a prototype W-band sheet beam klystron will be presented, together with preliminary cold test structure studies of a proposed RF cavity geometry. {copyright} {ital 1999 American Institute of Physics.}

  16. 3-D simulations of multiple beam klystrons

    SciTech Connect (OSTI)

    Smithe, David N.; Bettenhausen, Mike; Ludeking, Larry; Caryotakis, G.; Sprehn, Daryl; Scheitrum, Glenn [Mission Research Corporation, 8560 Cinderbed Rd., Suite 700, Newington, Virginia 22122 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States)

    1999-05-07

    The MAGIC3D simulation code is being used to assess the multi-dimensional physics issues relating to the design and operation of multiple beam klystrons. Investigations, to date, include a detailed study of the mode structure of the cavities in the 19-beam hexagonally packed geometry and a study of the velocity spread caused by the cavity mode's field profile. Some attempts to minimize this effect are investigated. Additional simulations have provided quantification of the beam loading Q in a dual input cavity, and optimization of a dual output cavity. An important goal of the simulations is an accurate picture of beam transport along the length of the MBK. We have quantified the magnitude and spatial variation of the beam-line space charge interactions within a cavity gap. Present simulations have demonstrated the transport of the beam through three cavities (the present limits of our simulation size) without difficulty; additional length simulations are expected. We have also examined unbalanced beam-line scenarios, e.g., one beam-line suppressed, and find little disturbance to the transport in individual cavity tests, with results for multiple cavity transport expected.

  17. Polymer surface treatment with particle beams

    DOE Patents [OSTI]

    Stinnett, Regan W. (1033 Tramway La. NE., Albuquerque, NM 87122); VanDevender, J. Pace (7604 Lamplighter NE., Albuquerque, NM 87109)

    1999-01-01

    A polymer surface and near surface treatment process produced by irradiation with high energy particle beams. The process is preferably implemented with pulsed ion beams. The process alters the chemical and mechanical properties of the polymer surface in a manner useful for a wide range of commercial applications.

  18. A TOMOGRAPHIC TECHNIQUE FOR MAGNETIZED BEAM MATCHING.

    SciTech Connect (OSTI)

    MONTAG,C.ET AL.

    2004-07-05

    To maintain low electron beam temperatures in the proposed RHIC electron cooler, careful matching of the magnetized beam from the source to the cooler solenoid is mandatory. We propose a tomographic technique to diagnose matching conditions. First simulation results will be presented.

  19. Aerodynamic beam generator for large particles

    DOE Patents [OSTI]

    Brockmann, John E. (Albuquerque, NM); Torczynski, John R. (Albuquerque, NM); Dykhuizen, Ronald C. (Albuquerque, NM); Neiser, Richard A. (Albuquerque, NM); Smith, Mark F. (Albuquerque, NM)

    2002-01-01

    A new type of aerodynamic particle beam generator is disclosed. This generator produces a tightly focused beam of large material particles at velocities ranging from a few feet per second to supersonic speeds, depending on the exact configuration and operating conditions. Such generators are of particular interest for use in additive fabrication techniques.

  20. Polymer surface treatment with particle beams

    DOE Patents [OSTI]

    Stinnett, R.W.; VanDevender, J.P.

    1999-05-04

    A polymer surface and near surface treatment process produced by irradiation with high energy particle beams is disclosed. The process is preferably implemented with pulsed ion beams. The process alters the chemical and mechanical properties of the polymer surface in a manner useful for a wide range of commercial applications. 16 figs.

  1. Microwave accelerator E-beam pumped laser

    DOE Patents [OSTI]

    Brau, Charles A.; Stein, William E.; Rockwood, Stephen D.

    1980-01-01

    A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

  2. Strong-strong beam-beam simulation using a green function approach

    SciTech Connect (OSTI)

    Qiang, Ji; Furman, Miguel A.; Ryne, Robert D.

    2002-09-08

    In this paper we present a news approach, based on a shifted Green function, to evaluate the electromagnetic field in a simulation of colliding beams. Unlike a conventional particle-mesh code, we use a method in which the computational mesh covers only the largest of the two colliding beams. This allows us to study long-range parasitic collisions accurately and efficiently. We have implemented this algorithm in a new parallel strong-strong beam-beam simulation code. As an application, we present a study of a beam sweeping scheme for the LBNL luminosity monitor of the Large Hadron Collider.

  3. CEBAF Beam Goes Over the Hump Highest-Energy Beam Ever Delivered at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab | Jefferson Lab Beam Goes Over the Hump Highest-Energy Beam Ever Delivered at Jefferson Lab Late in the evening on May 7, Jefferson Lab staff successfully threaded the electron beam up the new beamline toward Hall D for the first time Late in the evening on May 7, Jefferson Lab staff successfully threaded the electron beam up the new beamline toward Hall D for the first time. NEWPORT NEWS, VA, May 14, 2014 - The Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S.

  4. First Beam Waist Measurements in the Final Focus Beam Line at the KEK

    Office of Scientific and Technical Information (OSTI)

    Accelerator Test Facility (Journal Article) | SciTech Connect First Beam Waist Measurements in the Final Focus Beam Line at the KEK Accelerator Test Facility Citation Details In-Document Search Title: First Beam Waist Measurements in the Final Focus Beam Line at the KEK Accelerator Test Facility The ATF2 project is the final focus system prototype for the ILC and CLIC linear collider projects, with a purpose to reach a 37 nm vertical beam size at the interaction point using compact optics

  5. In-situ determination of energy species yields of intense particle beams

    DOE Patents [OSTI]

    Kugel, H.W.; Kaita, R.

    1983-09-26

    Objects of the present invention are provided for a particle beam having a full energy component at least as great as 25 keV, which is directed onto a beamstop target, such that Rutherford backscattering, preferably near-surface backscattering occurs. The geometry, material composition and impurity concentration of the beam stop are predetermined, using any suitable conventional technique. The energy-yield characteristic response of backscattered particles is measured over a range of angles using a fast ion electrostatic analyzer having a microchannel plate array at its focal plane. The knee of the resulting yield curve, on a plot of yield versus energy, is analyzed to determine the energy species components of various beam particles having the same mass.

  6. Fully 3D Multiple Beam Dynamics Processes Simulation for the Fermilab Tevatron

    SciTech Connect (OSTI)

    Stern, E.; Amundson, J.; Spentzouris, P; Valishev, A.; /Fermilab

    2010-06-01

    The Fermilab Tevatron has been, until 2010, the premier high-energy physics collider in the world. The data collected over the last decade by high-energy physics experiments running at the Tevatron have been analyzed to make important measurements in fundamental areas such as B meson masses and flavor oscillation, searches for the Higgs boson, and supersymmetry. Collecting these data at the limits of detectability has required the Tevatron to operate reliably at high beam intensities to maximize the number of collisions to analyze. This impressive achievement has been assisted by the use of HPC resources and software provided through the SciDAC program. This paper describes the enhancements to the BeamBeam3d code to realistically simulate the Tevatron, the validation of these simulations, and the improvement in equipment reliability and personal safety achieved with the aid of simulations.

  7. Weak-strong simulation on head-on beam-beam compensation in the RHIC

    SciTech Connect (OSTI)

    Luo,Y.; Fischer, W.; McIntosh, E.; Robert-Demolaize, G.; Abreu, N.; Beebe-Wang, J.; Montag, C.

    2009-05-04

    In the Relativistic Heavy Ion Collider (RHIC) beams collide in the two interaction points IP6 and IP8. To further increase the bunch intensity above 2 x 10{sup 11} or further reduce the transverse emittance in polarized proton operation, there will not be enough tune space between the current working area [2/3, 7/10] to hold the beam-beam generated tune spread. We proposed a low energy DC electron beam (e-lens) with similar Gaussian transverse profiles to collide with the proton beam at IP10. Early studies have shown that e-lens does reduce the proton-proton beam-beam tune spread. In this article, we carried out numerical simulation to investigate the effects of the head-on beam-beam effect on the proton's colliding beam lifetime and emittance growth. The preliminary results including scans of compensation strength, phase advances between IP8 and IP10, electron beam transverse sizes are presented. In these studies, the particle loss in the multi-particle simulation is used for the comparison between different conditions.

  8. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    SciTech Connect (OSTI)

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R.

    2012-07-15

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage ({approx}100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  9. Method and apparatus for molecular imaging using X-rays at resonance wavelengths

    DOE Patents [OSTI]

    Chapline, Jr., George F. (Alamo, CA)

    1985-01-01

    Holographic X-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent X-rays upon the object to produce scattering of the X-rays by the object, producing interference on a recording medium between the scattered X-rays from the object and unscattered coherent X-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent X-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent X-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  10. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, George P. (Arlington, VA)

    1988-01-01

    A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

  11. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1987-02-20

    A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

  12. Role Model and Activity Volunteers Needed to Help with BEAMS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model and Activity Volunteers Needed to Help with BEAMS - Jefferson Lab's Science and Math Outreach Program for Students B.E.A.M.S. BEAMS students learn about energy transfer,...

  13. TIME-OF-FLIGHT MASS MEASUREMENTS AND THEIR IMPORTANCE FOR NUCLEAR ASTROPHYSICS

    SciTech Connect (OSTI)

    Matos, M.; Shapira, Dan

    2009-01-01

    Atomic masses play an important role in nuclear astrophysics. The lack of experimental values for nuclides of interest has triggered a rapid development of new mass measurement devices around the world, including Time-of-Flight (TOF) mass measurements offering an access to the most exotic nuclides. Recently, the TOF-B rho technique that includes a position measurement for magnetic rigidity correction has been implemented at the NSCL. An experiment with a similar TOF-B rho technique is approved and planned at the next generation radioactive beam facility (RIBF) at RIKEN.

  14. SUPERGIANT SHELLS AND MOLECULAR CLOUD FORMATION IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect (OSTI)

    Dawson, J. R.; Dickey, John M.; McClure-Griffiths, N. M.; Wong, T.; Hughes, A.; Fukui, Y.; Kawamura, A.

    2013-01-20

    We investigate the influence of large-scale stellar feedback on the formation of molecular clouds in the Large Magellanic Cloud (LMC). Examining the relationship between H I and {sup 12}CO(J = 1-0) in supergiant shells (SGSs), we find that the molecular fraction in the total volume occupied by SGSs is not enhanced with respect to the rest of the LMC disk. However, the majority of objects ({approx}70% by mass) are more molecular than their local surroundings, implying that the presence of a supergiant shell does on average have a positive effect on the molecular gas fraction. Averaged over the full SGS sample, our results suggest that {approx}12%-25% of the molecular mass in supergiant shell systems was formed as a direct result of the stellar feedback that created the shells. This corresponds to {approx}4%-11% of the total molecular mass of the galaxy. These figures are an approximate lower limit to the total contribution of stellar feedback to molecular cloud formation in the LMC, and constitute one of the first quantitative measurements of feedback-triggered molecular cloud formation in a galactic system.

  15. The 2011 Dynamics of Molecular Collisions Conference

    SciTech Connect (OSTI)

    Nesbitt, David J.

    2011-07-11

    The Dynamics of Molecular Collisions Conference focuses on all aspects of molecular collisions--experimental & theoretical studies of elastic, inelastic, & reactive encounters involving atoms, molecules, ions, clusters, & surfaces--as well as half collisions--photodissociation, photo-induced reaction, & photodesorption. The scientific program for the meeting in 2011 included exciting advances in both the core & multidisciplinary forefronts of the study of molecular collision processes. Following the format of the 2009 meeting, we also invited sessions in special topics that involve interfacial dynamics, novel emerging spectroscopies, chemical dynamics in atmospheric, combustion & interstellar environments, as well as a session devoted to theoretical & experimental advances in ultracold molecular samples. Researchers working inside & outside the traditional core topics of the meeting are encouraged to join the conference. We invite contributions of work that seeks understanding of how inter & intra-molecular forces determine the dynamics of the phenomena under study. In addition to invited oral sessions & contributed poster sessions, the scientific program included a formal session consisting of five contributed talks selected from the submitted poster abstracts. The DMC has distinguished itself by having the Herschbach Medal Symposium as part of the meeting format. This tradition of the Herschbach Medal was first started in the 2007 meeting chaired by David Chandler, based on a generous donation of funds & artwork design by Professor Dudley Herschbach himself. There are two such awards made, one for experimental & one for theoretical contributions to the field of Molecular Collision Dynamics, broadly defined. The symposium is always held on the last night of the meeting & has the awardees are asked to deliver an invited lecture on their work. The 2011 Herschbach Medal was dedicated to the contributions of two long standing leaders in Chemical Physics, Professor Yuan T. Lee & Professor George Schatz. Professor Lees research has been based on the development & use of advanced chemical kinetics & molecular beams to investigate & manipulate the behavior of fundamental chemical reactions. Lees work has been recognized by many awards, including the Nobel Prize for Chemistry in 1986, as well as Sloan Fellow, Dreyfus Scholar, Fellowship in the American Academy of Arts & Sciences, Fellowship in the American Physical Society, Guggenheim Fellow, Member National Academy of Sciences, Member Academia Sinica, E.O. Lawrence Award, Miller Professor, Berkeley, Fairchild Distinguished Scholar, Harrison Howe Award, Peter Debye Award, & the National Medal of Science. Lee also has served as the President of the Academia Sinica in Taiwan (ROC). Professor Schatzs research group is interested in using theory & computation to describe physical phenomena in a broad range of applications relevant to chemistry, physics, biology & engineering. Among the types of applications that we interested are: optical properties of nanoparticles & nanoparticle assemblies; using theory to model polymer properties; DNA structure, thermodynamics & dynamics; modeling self assembly & nanopatterning; & gas phase reaction dynamics. Among his many awards & distinctions have been appointment as an Alfred P. Sloan Research Fellow, Camille & Henry Dreyfus Teacher-Scholar, the Fresenius Award, Fellow of the American Physical Society, the Max Planck Research Award, Fellowship in the American Association for the Advancement of Science, & election to the International Academy of Quantum Molecular Sciences & the American Academy of Arts & Sciences. Dr Schatz is also lauded for his highly successful work as Editor for the Journal of Physical Chemistry. We requested $10,000 from DOE in support of this meeting. The money was distributed widely among the student & post doctoral fellows & some used to attract the very best scientists in the field. The organizers were committed to encouraging women & minorities as well as encourage the field of Chemical Physics in scientific

  16. Method for reduction of selected ion intensities in confined ion beams

    DOE Patents [OSTI]

    Eiden, G.C.; Barinaga, C.J.; Koppenaal, D.W.

    1998-06-16

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer. 7 figs.

  17. Apparatus for reduction of selected ion intensities in confined ion beams

    DOE Patents [OSTI]

    Eiden, Gregory C. (Richland, WA); Barinaga, Charles J. (Richland, WA); Koppenaal, David W. (Richland, WA)

    2001-01-01

    An apparatus for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the apparatus has an ion trap or a collision cell containing a reagent gas wherein the reagent gas accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the collision cell as employed in various locations within analytical instruments including an inductively coupled plasma mass spectrometer.

  18. Method for reduction of selected ion intensities in confined ion beams

    DOE Patents [OSTI]

    Eiden, Gregory C. (Richland, WA); Barinaga, Charles J. (Richland, WA); Koppenaal, David W. (Richland, WA)

    1998-01-01

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer.

  19. Electrostatic wire for stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, Daniel S. (Livermore, CA); Caporaso, George J. (Livermore, CA); Briggs, Richard J. (Livermore, CA)

    1985-01-01

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  20. Mass Spectrometer Laboratory | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer Laboratory Mass Spectrometer Laboratory A look inside the recently updated Mass Spectrometer Facility managed by Staff Scientish Hao Zhang

  1. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  2. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  3. Status of RHIC head-on beam-beam compensation project

    SciTech Connect (OSTI)

    Fischer, W.; Anerella, M.; Beebe, E.; Bruno, D.; Gassner, D.M.; Gu, X.; Gupta, R.C.; Hock, J.; Jain, A.K.; Lambiase, R.; Liu, C.; Luo, Y.; Mapes, M.; Montag, C.; Oerter, B.; Okamura, M.; Pikin, A.I.; Raparia, D.; Tan, Y.; Than, R.; Thieberger, P.; Tuozzolo, J.; Zhang, W.

    2011-03-28

    Two electron lenses are under construction for RHIC to partially compensate the head-on beam-beam effect in order to increase both the peak and average luminosities. The final design of the overall system is reported as well as the status of the component design, acquisition, and manufacturing. An overview of the RHIC head-on beam-beam compensation project is given in [1], and more details in [2]. With 2 head-on beam-beam interactions in IP6 and IP8, a third interaction with a low-energy electron beam is added near IP10 to partially compensate the the head-on beam-beam effect. Two electron lenses are under construction, one for each ring. Both will be located in a region common to both beams, but each lens will act only on one beam. With head-on beam-beam compensation up to a factor of two improvement in luminosity is expected together with a polarized source upgrade. The current RHIC polarized proton performance is documented in Ref. [4]. An electron lens (Fig. 1) consists of an DC electron gun, warm solenoids to focus the electron beam during transport, a superconducting main solenoid in which the interaction with the proton beam occurs, steering magnets, a collector, and instrumentation. The main developments in the last year are given below. The experimental program for polarized program at 100 GeV was expected to be finished by the time the electron lenses are commissioned. However, decadal plans by the RHIC experiments STAR and PHENIX show a continuing interest at both 100 GeV and 250 GeV, and a larger proton beam size has been accommodated in the design (Tab. 1). Over the last year beam and lattice parameters were optimized, and RHIC proton lattices are under development for optimized electron lens performance. The effect of the electron lens magnetic structure on the proton beam was evaluated, and found to be correctable. Experiments were done in RHIC and the Tevatron.

  4. Prediction of Material Thermal Properties and Beam-Particle Interactio...

    Office of Scientific and Technical Information (OSTI)

    and Beam-Particle Interaction at Meso-Scale during Electron Beam Additive Manufacturing Citation Details In-Document Search Title: Prediction of Material Thermal...

  5. Design of a Subnanometer Resolution Beam Position Monitor for...

    Office of Scientific and Technical Information (OSTI)

    Design of a Subnanometer Resolution Beam Position Monitor for Dielectric Laser Accelerators Citation Details In-Document Search Title: Design of a Subnanometer Resolution Beam...

  6. Beam Loading by Distributed Injection of Electrons in a Plasma...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Beam Loading by Distributed Injection of Electrons in a Plasma Wakefield Accelerator Citation Details In-Document Search Title: Beam Loading by Distributed...

  7. Inhomogeneity smoothing using density valley formed by ion beam...

    Office of Scientific and Technical Information (OSTI)

    deposition in an ion-beam inertial confinement fusion pellets by numerical simulation. ... dominated beam physics for heavy ion fusion, Saitama (Japan), 10-12 Dec 1998; Other ...

  8. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL ...

  9. Design of a Subnanometer Resolution Beam Position Monitor for...

    Office of Scientific and Technical Information (OSTI)

    Design of a Subnanometer Resolution Beam Position Monitor for Dielectric Laser Accelerators Citation Details In-Document Search Title: Design of a Subnanometer Resolution Beam ...

  10. Progress on optimization of the nonlinear beam dynamics in the...

    Office of Scientific and Technical Information (OSTI)

    strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent...

  11. Meso-Scale during Electron Beam Additive Manufacturing Chen,...

    Office of Scientific and Technical Information (OSTI)

    Thermal Properties and Beam-Particle Interaction at Meso-Scale during Electron Beam Additive Manufacturing Chen, Jian ORNL ORNL; Zheng, Lili ORNL ORNL; Feng, Zhili...

  12. PERSONNEL PROTECTION SYSTEM UPGRADE FOR THE LCLS ELECTRON BEAM...

    Office of Scientific and Technical Information (OSTI)

    PERSONNEL PROTECTION SYSTEM UPGRADE FOR THE LCLS ELECTRON BEAM LINAC Citation Details In-Document Search Title: PERSONNEL PROTECTION SYSTEM UPGRADE FOR THE LCLS ELECTRON BEAM LINAC...

  13. Ion beam assisted deposition of thermal barrier coatings

    DOE Patents [OSTI]

    Youchison, Dennis L. (Albuquerque, NM); McDonald, Jimmie M. (Albuquerque, NM); Lutz, Thomas J. (Albuquerque, NM); Gallis, Michail A. (Albuquerque, NM)

    2010-11-23

    Methods and apparatus for depositing thermal barrier coatings on gas turbine blades and vanes using Electron Beam Physical Vapor Deposition (EBPVD) combined with Ion Beam Assisted Deposition (IBAD).

  14. 43 PARTICLE ACCELERATORS; ELECTRON GUNS; BEAM EMITTANCE; CHARGE

    Office of Scientific and Technical Information (OSTI)

    SPACE 430200* -- Particle Accelerators-- Beam Dynamics, Field Calculations, & Ion Optics The evolution of the electron-beam phase space distribution in laser-driven rf guns is...

  15. Online optimization of storage ring nonlinear beam dynamics ...

    Office of Scientific and Technical Information (OSTI)

    Online optimization of storage ring nonlinear beam dynamics Citation Details In-Document Search Title: Online optimization of storage ring nonlinear beam dynamics Authors: Huang,...

  16. Online optimization of storage ring nonlinear beam dynamics ...

    Office of Scientific and Technical Information (OSTI)

    Online optimization of storage ring nonlinear beam dynamics Citation Details In-Document Search Title: Online optimization of storage ring nonlinear beam dynamics You are...

  17. Sandia Energy - National Solar Thermal Testing Facility Beam...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Testing Facility Beam Profiling Home Renewable Energy News Concentrating Solar Power Solar National Solar Thermal Testing Facility Beam Profiling Previous...

  18. First Beam Measurements with the LHC Synchrotron Light Monitors...

    Office of Scientific and Technical Information (OSTI)

    Title: First Beam Measurements with the LHC Synchrotron Light Monitors The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on ...

  19. Transverse beam dynamics in plasma-based linacs (Conference)...

    Office of Scientific and Technical Information (OSTI)

    accelerator by a uniform focusing channel. The transverse beam sizes and a basic offset tolerance are calculated, finding that sub-micron beams must be transported with even...

  20. Measuring Tiny Waves with High Power Particle Beams | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring Tiny Waves with High Power Particle Beams American Fusion News Category: U.S. Universities Link: Measuring Tiny Waves with High Power Particle Beams...

  1. Intense steady state electron beam generator

    DOE Patents [OSTI]

    Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

    1990-07-17

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

  2. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, Craig L. (Albuquerque, NM)

    1987-01-01

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  3. Control and manipulation of electron beams

    SciTech Connect (OSTI)

    Piot, Philippe; /NICADD, DeKalb /Northern Illinois U. /Fermilab

    2008-09-01

    The concepts of the advanced accelerators and light source rely on the production of bright electron beams. The rms areas of the beam phase space often need to be tailored to the specific applications. Furthermore, a new class of the forefront research calls for detailed specific distribution such as the particle density in the time coordinate. Several groups are tackling these various challenges and in this report we attempt to give a review of the state-of-the-art of the control and manipulation of the electron beams.

  4. SNS BEAM COMMISSIONING TOOLS AND EXPERIENCE

    SciTech Connect (OSTI)

    Shishlo, Andrei P; Galambos, John D

    2008-01-01

    The Spallation Neutron Source (SNS) successfully met the primary construction project completion milestones in April 2006. An important ingredient of this successful commissioning was the development and use of software tools. With the increasing digitalization of beam diagnostics and increasing complexity of Integrated Control Systems of large accelerators, the need for high level software tools is critical for smooth commissioning. At SNS a special Java based infrastructure called XAL was prepared for beam commissioning. XAL provides a hierarchal view of the accelerator, is data base configured, and includes a physics model of the beam. This infrastructure and individual applications development along with a historical time line of the SNS commissioning will be discussed.

  5. Energy-beam-driven rapid fabrication system

    DOE Patents [OSTI]

    Keicher, David M. (Albuquerque, NM); Atwood, Clinton L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Griffith, Michelle L. (Albuquerque, NM); Harwell, Lane D. (Albuquerque, NM); Jeantette, Francisco P. (Albuquerque, NM); Romero, Joseph A. (Albuquerque, NM); Schanwald, Lee P. (Albuquerque, NM); Schmale, David T. (Albuquerque, NM)

    2002-01-01

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  6. Injected Beam Dynamics in SPEAR3

    SciTech Connect (OSTI)

    Corbett, Jeff; Fisher, Alan; Huang, Xiaobiao; Safranek, James; Westerman, Stuart; Cheng, Weixing; Mok, Walter; /Unlisted

    2012-06-21

    For the top-off operation it is important to understand the time evolution of charge injected into the storage ring. The large-amplitude horizontal oscillation quickly filaments and decoheres, and in some cases exhibits non-linear x-y coupling before damping to the stored orbit. Similarly, in the longitudinal dimension, any mismatch in beam arrival time, beam energy or phase-space results in damped, non-linear synchrotron oscillations. In this paper we report on measurements of injection beam dynamics in the transverse and longitudinal planes using turn-by-turn BPMs, a fast-gated, image-intensified CCD camera and a Hamamatsu C5680 streak camera.

  7. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, C.L.

    1984-03-16

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  8. Buckling of microtubules: An insight by molecular and continuum mechanics

    SciTech Connect (OSTI)

    Zhang, Jin; Meguid, S. A.

    2014-10-27

    The molecular structural mechanics method has been extended to investigate the buckling of microtubules (MTs) with various configurations. The results indicate that for relative short MTs the shear deformation effect, rather than the nonlocal effect, is mainly responsible for the limitation of their widely used Euler beam description and the observed length-dependence of their bending stiffness. In addition, the configuration effect of MTs is also studied and considered as an explanation for the large scattering of the critical buckling force and bending stiffness observed in existing experiments. This configuration effect is also found to mainly originate from the geometry of the MTs and is mainly determined by the protofilament number.

  9. Solar Power Beaming: From Space to Earth

    SciTech Connect (OSTI)

    Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

    2009-04-14

    Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

  10. Electron gun jitter effects on beam bunching

    SciTech Connect (OSTI)

    Liu, M. S.; Iqbal, M.

    2014-02-15

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps which eventually deteriorates both the beam performance and the injection rate to the storage ring.

  11. Compact high precision adjustable beam defining aperture

    DOE Patents [OSTI]

    Morton, Simon A; Dickert, Jeffrey

    2013-07-02

    The present invention provides an adjustable aperture for limiting the dimension of a beam of energy. In an exemplary embodiment, the aperture includes (1) at least one piezoelectric bender, where a fixed end of the bender is attached to a common support structure via a first attachment and where a movable end of the bender is movable in response to an actuating voltage applied to the bender and (2) at least one blade attached to the movable end of the bender via a second attachment such that the blade is capable of impinging upon the beam. In an exemplary embodiment, the beam of energy is electromagnetic radiation. In an exemplary embodiment, the beam of energy is X-rays.

  12. SolBeam Inc | Open Energy Information

    Open Energy Info (EERE)

    California Zip: 92677 Product: California-based startup developing concentrator photovoltaics. References: SolBeam Inc1 This article is a stub. You can help OpenEI by...

  13. Time Structure of the LANSCE Beam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The proton beam is delivered to Target-1 after passing through the proton storage ring (PSR). The time it takes an 800 MeV proton to travel one circuit of the PSR is 360 ns. The...

  14. Laser beam centering and pointing system

    DOE Patents [OSTI]

    Rushford, Michael Charles

    2015-01-13

    An optical instrument aligns an optical beam without the need for physical intervention of the instrument within the apparatus or platforms from which the trajectory of the beam to be ascertained. The alignment apparatus and method enable the desired function to be realized without the placement of physical apertures or sensors directly in the path of the beam through the system whose spatial position and slope is to be sought. An image plane provides the observer with a pair of well-defined images that are indicative of the beam centering and pointing alignment parameters. The optical alignment can be realized without the need for referencing to an external or fixed set of coordinates or fiducials. The instrument can therefore service situations where adverse environments would otherwise prohibit the use of such instruments, including regions of high radiation, high temperature, vacuum and/or cryogenic atmospheres.

  15. Pseudo ribbon metal ion beam source

    SciTech Connect (OSTI)

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  16. Optical chirped beam amplification and propagation

    DOE Patents [OSTI]

    Barty, Christopher P.

    2004-10-12

    A short pulse laser system uses dispersive optics in a chirped-beam amplification architecture to produce high peak power pulses and high peak intensities without the potential for intensity dependent damage to downstream optical components after amplification.

  17. Flow-through ion beam source

    DOE Patents [OSTI]

    Springer, Robert W.

    1997-01-01

    A method and an apparatus for forming a charge neutral ion beam which is useful in producing thin films of material on electrically conductive or non-conductive substrates are provided.

  18. Flow-through ion beam source

    DOE Patents [OSTI]

    Springer, R.W.

    1997-02-11

    A method and an apparatus for forming a charge neutral ion beam which is useful in producing thin films of material on electrically conductive or non-conductive substrates are provided. 4 figs.

  19. The Electron Beam Ion Source (EBIS)

    ScienceCinema (OSTI)

    Brookhaven Lab

    2010-01-08

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  20. Doublet III neutral beam power system

    SciTech Connect (OSTI)

    Nerem, A.; Beal, J.W.; Colleraine, A.P.; LeVine, F.H.; Pipkins, J.F.; Remsen, D.B. Jr.; Tooker, J.F.; Varga, H.J.; Franck, J.V.

    1981-01-01

    The Doublet III neutral beam power system supplies pulsed power to the neutral beam injectors for plasma heating experiments on the Doublet III tokamak. The power supply system is connected to an ion source where the power is converted to an 80 kV, 80A, 0.5 sec beam of hydrogen ions at maximum power output. These energetic ions undergo partial neutralization via charge exchange in the beamline. The energetic neutral hydrogen atoms pass through the Doublet III toroidal and poloidal magnet fields and deposit their energy in the confined plasma. The unneutralized ions are deflected into a water-cooled dump. The entire system is interfaced through the neutral beam computer instrumentation and control system.