Sample records for moisture dewpoint temperature

  1. Determination of the 1%, 2.5%, and 5% occurrences of extreme dew-point temperatures and mean coincident dry-bulb temperatures

    SciTech Connect (OSTI)

    Colliver, D.G.; Zhang, H.; Gates, R.; Priddy, T. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31T23:59:59.000Z

    The purpose of ASHRAE Research Project RP-754 was to find the outdoor design occurrences of extreme dew-point temperature and the corresponding mean coincident dry-bulb temperature for a large number of locations in North America. Thirty years of data (1961--1990) were used for 239 US locations, and the last 30 years of hourly data available (typically 1960--1989) were used for 143 Canadian locations. Tables are given that present the 1%, 2.5%, and 5% extreme summertime occurrences of dew-point temperatures and corresponding values of humidity ratios and the mean coincident dry-bulb (MCDB) temperature for the period of record. A map that shows the general geographical trends for the spatial distribution of the design dew-point values is also presented. Comparisons are provided between interpolation techniques to fill missing data, different weather data sets, and methods of calculating different definitions of extreme design and mean coincident data. Results are also reported of a comparison to evaluate the difference in humidity ratios between that calculated from the extreme design dry-bulb temperature and mean coincident wet-bulb temperature, versus that calculated from the extreme design dew-point temperature and the MCDB. It was found that the method of extreme dew point with MCDB had a higher humidity ratio that was on the average (for the 1% case and the 239 US locations) 0.00564 lb/lb larger than the humidity ratio found with the other method.

  2. DEWPOINT. Final report

    SciTech Connect (OSTI)

    Riddle, R.A.

    1994-09-01T23:59:59.000Z

    The DEWPOINT (Directed Energy POwer INTegration) program was aimed at providing the large amounts of electric power required for a laser or accelerator based in space, or on an aircraft or satellite platform. This is our final report on our efforts as a part of this program which was cancelled before completion. This report summarizes the entire scope of effort funded by this program. It also includes some related information on cryogenically cooled microchannel heatsinks which was funded internally by LLNL. Specifically, the DEWPOINT program was to provide the electrical power for the proposed Neutral Particle Beam weapon system of the Strategic Defense Initiative. The Neutral Particle Beam called for a space-based accelerator driven by radio frequency power sources. The radio frequency solid-state power amplifiers generate waste heat which must be dissipated.

  3. Annotated Bibliography for the DEWPOINT project

    SciTech Connect (OSTI)

    Oehmen, Christopher S.

    2009-04-21T23:59:59.000Z

    This bibliography covers aspects of the Detection and Early Warning of Proliferation from Online INdicators of Threat (DEWPOINT) project including 1) data management and querying, 2) baseline and advanced methods for classifying free text, and 3) algorithms to achieve the ultimate goal of inferring intent from free text sources. Metrics for assessing the quality and correctness of classification are addressed in the second group. Data management and querying include methods for efficiently storing, indexing, searching, and organizing the data we expect to operate on within the DEWPOINT project.

  4. Moisture and temperature effects in composite materials 

    E-Print Network [OSTI]

    Fang, Gwo-Ping

    1987-01-01T23:59:59.000Z

    ) Chairman of Advisory Committee: Dr. Y. Weitsman Th1s thesis concerns env1ronmental effects in graphite/epoxy composites, with emphas1s on environmentally induced damage. The thesis consists of two major parts. The first part presents an experimental 1... weight gain (in %) of a 12-ply unidirectional AS4/3502 graphite/epoxy laminate during exposure to 346'K, 95% R. H. environment. Data (i) and predictions of Flck's law (solid line) Moisture content (ln %) of a 12-ply unidirectional AS4/3502 graphite...

  5. The Influence of Moisture and Temperature on Cotton Root Rot.

    E-Print Network [OSTI]

    Taubenhaus, J. J. (Jacob Joseph); Dana, B. F. (Bliss F.)

    1928-01-01T23:59:59.000Z

    . BAYLES, B. S., Superintendent J. PAUL LUSK, S. M., Plant Patholog Teachers in the School of Arnicultnre Carryine Coo~erative Projects on the Statit -- . G W ADRIANCE M S ~srociate~~rofessor of Horticulture S ' W 'BI~SING ~h D 'kro&sor of Entomology V... of the season. This initial moisture supply, together mith the additions during the growing season, permitted the continued development of root rot throughout the entire season. ,It the INFLUENCE OF MOISTURE AND TEMPERATURE ON COTTON ROOT ROT 9 end...

  6. Temperature and moisture dependence of dielectric constant for silica aerogels

    SciTech Connect (OSTI)

    Hrubesh, L.H., LLNL

    1997-03-01T23:59:59.000Z

    The dielectric constants of silica aerogels are among the lowest measured for any solid material. The silica aerogels also exhibit low thermal expansion and are thermally stable to temperatures exceeding 500{degrees}C. However, due to the open porosity and large surface areas for aerogels, their dielectric constants are strongly affected by moisture and temperature. This paper presents data for the dielectric constants of silica aerogels as a function of moisture content at 25{degrees}C, and as a function of temperature, for temperatures in the range from 25{degrees}C to 450{degrees}C. Dielectric constant data are also given for silica aerogels that are heat treated in dry nitrogen at 500{degrees}C, then cooled to 25{degrees}C for measurements in dry air. All measurements are made on bulk aerogel spheres at 22GHz microwave frequency, using a cavity perturbation method. The results of the dependence found here for bulk materials can be inferred to apply also to thin films of silica aerogels having similar nano-structures and densities.

  7. New correlations for dew-point, specific gravity and producing yield for gas condensates

    E-Print Network [OSTI]

    Ovalle Cortissoz, Adriana Patricia

    2002-01-01T23:59:59.000Z

    This work presents four newly developed correlations to estimate dew-point pressure, current specific gravity and producing yield of gas condensate reservoirs. The first correlation may be used to predict the dew-point pressure of the reservoir gas...

  8. New correlations for dew-point, specific gravity and producing yield for gas condensates 

    E-Print Network [OSTI]

    Ovalle Cortissoz, Adriana Patricia

    2002-01-01T23:59:59.000Z

    This work presents four newly developed correlations to estimate dew-point pressure, current specific gravity and producing yield of gas condensate reservoirs. The first correlation may be used to predict the dew-point pressure of the reservoir gas...

  9. Importance of moisture transport, snow cover and soil freezing to ground temperature predictions

    E-Print Network [OSTI]

    Importance of moisture transport, snow cover and soil freezing to ground temperature predictions moisture transport, snow accumulation and melting, and soil freezing and thawing are investigated transport, snow cover, and soil freezing. 1. Introduction Prediction of ground temperature is an important

  10. TEMPERATURE AND MOISTURE EFFECTS ON COMPOSITE MATERIALS FOR WIND TURBINE BLADES

    E-Print Network [OSTI]

    TEMPERATURE AND MOISTURE EFFECTS ON COMPOSITE MATERIALS FOR WIND TURBINE BLADES by Mei Li A thesis graduate students in the composite materials group for their help and kindness. Finally, thanks to my dear

  11. The effects of grain moisture content and grain temperature on the penetration of hydrogen cyanide

    E-Print Network [OSTI]

    Kunz, Sidney E

    1962-01-01T23:59:59.000Z

    THE EFFECTS QF CRAIN MOISTURE CONTENT AND GRAIN TEMiPERATURE ON THE &NETRATION OF HYDROGEN CYANIDE A Thesis SIDNEY EDMUND KUNZ Submitted to the Graduate School of ths Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE (Mionth) 1262 (Year) Mayor Subject ghtdlggllQJLK THE EFFECTS OF GRAIN MOISTURE CONTENT JBD GRAIN TEMPERATURE ON THE PENETRATION OF HYDROGEN CYANIDE A Thesis SIDNEY EDNUND KUNZ Approved as to style...

  12. Low-temperature conversion of high-moisture biomass: Topical report, January 1984--January 1988

    SciTech Connect (OSTI)

    Sealock, L.J. Jr.; Elliott, D.C.; Butner, R.S.; Neuenschwander, G.G.

    1988-10-01T23:59:59.000Z

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process that converts high-moisture biomass feedstocks and other wet organic substances to useful gaseous and liquid fuels. The advantage of this process is that it works without the need for drying or dewatering the feedstock. Conventional thermal gasification processes, which require temperatures above 750/degree/C and air or oxygen for combustion to supply reaction heat, generally cannot utilize feedstocks with moisture contents above 50 wt %, as the conversion efficiency is greatly reduced as a result of the drying step. For this reason, anaerobic digestion or other bioconversion processes traditionally have been used for gasification of high-moisture feedstocks. However, these processes suffer from slow reaction rates and incomplete carbon conversion. 50 refs., 21 figs., 22 tabs.

  13. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  14. Moisture and temperature effects on curvature of anti-symmetric cross-ply graphite/epoxy laminates 

    E-Print Network [OSTI]

    Lott, Randall Stephen

    1980-01-01T23:59:59.000Z

    MOISTURE AND TEMPERATURE EFFECTS ON CURVATURE OF ANTI-SYMMETRIC CROSS-PLY GRAPHITE/EPOXY LAMINATES A Thesis by RANDALL STEPHEN LOTT Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1980 Major Subject: Mechanical Engineering MOISTURE AND TEMPERATURE EFFECTS ON CURVATURE OF ANTI-SYMMETRIC CROSS-PLY GRAPHITE/EPOXY LAMINATES A Thesis by RANDALL STEPHEN LOTT Approved as to style and content...

  15. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Margaret Torn

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  16. Investigations of Possible Low-Level Temperature and Moisture Anomalies During the AMIE Field Campaign on Manus Island

    SciTech Connect (OSTI)

    Long, CN; Holdridge, DJ

    2012-11-19T23:59:59.000Z

    This document discusses results stemming from the investigation of near-surface temperature and moisture “oddities” that were brought to light as part of the Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment (AMIE), Dynamics of the Madden-Julian Oscillation (DYNAMO), and Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) campaigns.

  17. Magnitude and reactivity consequences of moisture ingress into the modular High-Temperature Gas-Cooled Reactor core

    SciTech Connect (OSTI)

    Smith, O.L. (Oak Ridge National Lab., TN (United States))

    1992-12-01T23:59:59.000Z

    Inadvertent admission of moisture into the primary system of a modular high-temperature gas-cooled reactor has been identified in US Department of Energy-sponsored studies as an important safety concern. The work described here develops an analytical methodology to quantify the pressure and reactivity consequences of steam-generator tube rupture and other moisture-ingress-related incidents. Important neutronic and thermohydraulic processes are coupled with reactivity feedback and safety and control system responses. The rate and magnitude of steam buildup are found to be dominated by major system features such as break size compared with safety valve capacity and reliability and less sensitive to factors such as heat transfer coefficients. The results indicate that ingress transients progress at a slower pace than previously predicted by bounding analyses, with milder power overshoots and more time for operator or automatic corrective actions.

  18. UNCORRECTEDPROOF One-dimensional soil moisture prole retrieval by assimilation of

    E-Print Network [OSTI]

    Walker, Jeff

    moisture and surface temperature data into a soil moisture and heat transfer model. The direct insertion

  19. Development of neural network models for the prediction of dewpoint pressure of retrograde gases and saturated oil viscosity of black oil systems

    E-Print Network [OSTI]

    Gonzalez Zambrano, Alfredo Antonio

    2002-01-01T23:59:59.000Z

    Accurate prediction of gas condensate and crude oil fluid properties are critical elements in reservoir-engineering calculations. Dewpoint pressure of gas condensate reservoirs and oil viscosity of black oil systems are some of the important...

  20. Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cable, William; Romanovsky, Vladimir

    Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

  1. Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment

    SciTech Connect (OSTI)

    Garten Jr, Charles T [ORNL; Classen, Aimee T [ORNL; Norby, Richard J [ORNL

    2009-01-01T23:59:59.000Z

    Some single-factor experiments suggest that elevated CO2 concentrations can increase soil carbon, but few experiments have examined the effects of interacting environmental factors on soil carbon dynamics. We undertook studies of soil carbon and nitrogen in a multi-factor (CO2 x temperature x soil moisture) climate change experiment on a constructed old-field ecosystem. After four growing seasons, elevated CO2 had no measurable effect on carbon and nitrogen concentrations in whole soil, particulate organic matter (POM), and mineral-associated organic matter (MOM). Analysis of stable carbon isotopes, under elevated CO2, indicated between 14 and 19% new soil carbon under two different watering treatments with as much as 48% new carbon in POM. Despite significant belowground inputs of new organic matter, soil carbon concentrations and stocks in POM declined over four years under soil moisture conditions that corresponded to prevailing precipitation inputs (1,300 mm yr-1). Changes over time in soil carbon and nitrogen under a drought treatment (approximately 20% lower soil water content) were not statistically significant. Reduced soil moisture lowered soil CO2 efflux and slowed soil carbon cycling in the POM pool. In this experiment, soil moisture (produced by different watering treatments) was more important than elevated CO2 and temperature as a control on soil carbon dynamics.

  2. Impact of Hillslope-Scale Organization of Topography, Soil Moisture, Soil Temperature, and Vegetation on Modeling Surface Microwave Radiation Emission

    E-Print Network [OSTI]

    Flores, Alejandro N.

    Microwave radiometry will emerge as an important tool for global remote sensing of near-surface soil moisture in the coming decade. In this modeling study, we find that hillslope-scale topography (tens of meters) influences ...

  3. Instrument uncertainty effect on calculation of absolute humidity using dewpoint, wet-bulb, and relative humidity sensors

    SciTech Connect (OSTI)

    Slayzak, S.J.; Ryan, J.P.

    1998-04-01T23:59:59.000Z

    As part of the US Department of Energy`s Advanced Desiccant Technology Program, the National Renewable Energy Laboratory (NREL) is characterizing the state-of-the-art in desiccant dehumidifiers, the key component of desiccant cooling systems. The experimental data will provide industry and end users with independent performance evaluation and help researchers assess the energy savings potential of the technology. Accurate determination of humidity ratio is critical to this work and an understanding of the capabilities of the available instrumentation is central to its proper application. This paper compares the minimum theoretical random error in humidity ratio calculation for three common measurement methods to give a sense of the relative maximum accuracy possible for each method assuming systematic errors can be made negligible. A series of experiments conducted also illustrate the capabilities of relative humidity sensors as compared to dewpoint sensors in measuring the grain depression of desiccant dehumidifiers. These tests support the results of the uncertainty analysis. At generally available instrument accuracies, uncertainty in calculated humidity ratio for dewpoint sensors is determined to be constant at approximately 2%. Wet-bulb sensors range between 2% and 6% above 10 g/kg (4%--15% below), and relative humidity sensors vary between 4% above 90% rh and 15% at 20% rh. Below 20% rh, uncertainty for rh sensors increases dramatically. Highest currently attainable accuracies bring dewpoint instruments down to 1% uncertainty, wet bulb to a range of 1%--3% above 10 g/kg (1.5%--8% below), and rh sensors between 1% and 5%.

  4. Experimental investigation of moisture and temperature conditioning of C600/5208 graphite/epoxy composite material 

    E-Print Network [OSTI]

    Grieger, Kenneth Allen

    1979-01-01T23:59:59.000Z

    I XPERIMENTAI INVESTIGATION OF MOI TURE AND TE11PERATURF CONDITIONING OF CGOO/5208 GRAPHITE/EPOXY COMPOSITE MATL'RIAL KENNETH AILEN GRIFGFR Su5&ritted to the Graduate College of Texa. s AQh University in partial fulfillment of the requirement... for the degree of MASTER OF SCIFNCE December 1979 Majo, Subject: Ae&ospace Engineering EXPERINENTAL INVESTIGATION OF MOISTURE AND TENPERATURE CONDITIONING OF C600/5208 GRAPHITE/EPOXY COMPOSITE HATERIAL A Thesis by -KENNETH ALLEN GRIEGER Approved...

  5. Integrated Temperature and Humidity Control: A Unique Approach 

    E-Print Network [OSTI]

    Shah, D. J.

    2000-01-01T23:59:59.000Z

    the dry-bulb temperature within the conditioned space. This can result in the space dew-point temperature increasing to uncomfortable levels, especially during cool and humid times of the day and/or when there is high latent gain. Consequently...

  6. Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes

    SciTech Connect (OSTI)

    Hakala, J. Alexandra [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Stanchina, William [Univ. of Pittsburgh, PA (United States); National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Soong, Yee [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hedges, Sheila [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2011-01-01T23:59:59.000Z

    Development of in situ electromagnetic (EM) retorting technologies and design of specific EM well logging tools requires an understanding of various process parameters (applied frequency, mineral phases present, water content, organic content and temperature) on oil shale dielectric properties. In this literature review on oil shale dielectric properties, we found that at low temperatures (<200° C) and constant oil shale grade, both the relative dielectric constant (?') and imaginary permittivity (?'') decrease with increased frequency and remain constant at higher frequencies. At low temperature and constant frequency, ?' decreases or remains constant with oil shale grade, while ?'' increases or shows no trend with oil shale grade. At higher temperatures (>200º C) and constant frequency, epsilon' generally increases with temperature regardless of grade while ?'' fluctuates. At these temperatures, maximum values for both ?' and ?'' differ based upon oil shale grade. Formation fluids, mineral-bound water, and oil shale varve geometry also affect measured dielectric properties. This review presents and synthesizes prior work on the influence of applied frequency, oil shale grade, water, and temperature on the dielectric properties of oil shales that can aid in the future development of frequency- and temperature-specific in situ retorting technologies and oil shale grade assay tools.

  7. The effects of temperature, moisture and soluble solids or rehydration, fragmentation and texture of freeze-dried and compressed carrot bars

    E-Print Network [OSTI]

    Rushing, John Earl

    1975-01-01T23:59:59.000Z

    to compression. Three techniques for ob- taining these moisture levels were studied: (1) spraying with water until desired increase in weight is obtained; (2) stopping the freeze-drying operation when the desired moisture level is reach- ed; and (3) allowing... freeze-dried food to equilibrate in a humi- dity chamber until the food adsorbs the desired amount of water. Spraying with water was the method of choice because stopping the freeze-drier at the desired level was difficult and the humidity chamber...

  8. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29T23:59:59.000Z

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  9. Soil moisture in complex terrain: quantifying effects on atmospheric boundary layer flow and providing improved surface boundary conditions for mesoscale models

    E-Print Network [OSTI]

    Daniels, Megan Hanako

    2010-01-01T23:59:59.000Z

    74 ii Soil Moisture Sensors: Decagon ECH2O Capacitance133 A.10 Soil types corresponding to each75 Soil Moisture and Temperature Probe

  10. Distributed fiber optic moisture intrusion sensing system

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2003-06-24T23:59:59.000Z

    Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.

  11. Fiber optic moisture sensor

    DOE Patents [OSTI]

    Kirkham, R.R.

    1984-08-03T23:59:59.000Z

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  12. The Impacts of Indirect Soil Moisture Assimilation and Direct Surface Temperature and Humidity Assimilation on a Mesoscale Model Simulation of an Indian

    E-Print Network [OSTI]

    Niyogi, Dev

    Assimilation on a Mesoscale Model Simulation of an Indian Monsoon Depression VINODKUMAR AND A. CHANDRASEKAR-generation Pennsylvania State University­NCAR Mesoscale Model (MM5) simulation utilized the humidity and temperature

  13. Moisture Metrics Project

    SciTech Connect (OSTI)

    Schuchmann, Mark

    2011-08-31T23:59:59.000Z

    the goal of this project was to determine the optimum moisture levels for biomass processing for pellets commercially, by correlating data taken from numerous points in the process, and across several different feedstock materials produced and harvested using a variety of different management practices. This was to be done by correlating energy consumption and material through put rates with the moisture content of incoming biomass ( corn & wheat stubble, native grasses, weeds, & grass straws), and the quality of the final pellet product.This project disseminated the data through a public website, and answering questions form universities across Missouri that are engaged in biomass conversion technologies. Student interns from a local university were employed to help collect data, which enabled them to learn firsthand about biomass processing.

  14. Investigation of moisture content variations in highway subgrades and bases

    E-Print Network [OSTI]

    Jenkins, Edward Donald

    1957-01-01T23:59:59.000Z

    , temperature gradient, hydraulic gradient, and textural radient, Frost action is caused. by a freezing temperature which forms ice crystals and draws moisnure from the soil pores. This creates a hvdraulic gradient for tI e movement of moisture in the liq... and the remedies are fairly well-known and used. in highway construction. There are three conditions required for detrimental frost action to occur: (1) a frost susceptible soil; (2) a freezing temperature; and ($) a water source. The movement 10 of moisture...

  15. Moisture absorption in hybrid composites

    E-Print Network [OSTI]

    Clark, Dan Laro

    1983-01-01T23:59:59.000Z

    . Calculated Moisture Profile: 8/F1552/F1858' ' 95~ RH Calculated Moisture Profile: F1558/F1852/F1558. 49'C, 954 RH. Calculated Moisture Profile: F155, 8. 49 C, 95% RH. Calculated Moisture Profile: F18518. 49'C, 95% RH. Effect of F185 Coating on F155.... Calculated Moisture Profile F18518-. 49'C, 95% RH. 1. 4 1. 05 0 . 35 I I I / / / I F155 18 F 1 8 5 1/F 1 5 5 8/Fl 85 0 0 16 25 32. 5 48. 75 Time(Hours) Figure 28. Effect of F185 Coating on F155 Core: 49'C, 95o HEI. Us Ut 1. 4 1. 05 7 . 35 I...

  16. The Effect of Moisture Absorption on the Physical Properties of Polyurethane Shape Memory Polymer Foams

    E-Print Network [OSTI]

    Yu, Ya-Jen

    2012-07-16T23:59:59.000Z

    The effect of moisture absorption on the glass transition temperature (Tg) and stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams...

  17. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect (OSTI)

    Arena, L.; Mantha, P.

    2013-05-01T23:59:59.000Z

    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  18. The moisture budget in relation to convection

    E-Print Network [OSTI]

    Scott, Robert Wilson

    1976-01-01T23:59:59.000Z

    Analyses of the local rate-of-change of moisture in the layer from 900-750 mb . . . . . . , . . . , . . . . . . 23 Analyses of the local rate-of-change of moisture in the layer from 750-500 mb 24 Vertical profiles of the net vertical boundary flux... of moisture related to MDR 26 10 Analyses of the net vertical boundary flux of moisture in the layer from 900-750 mb 28 Analyses of the net vertical boundary flux of moisture in the layer from 750-500 mb 29 12 Analyses of the net vertical boundary flux...

  19. Moisture Distribution and Flow During Drying of Wood and Fiber

    SciTech Connect (OSTI)

    Zink-Sharp, Audrey; Hanna, Robert B.

    2001-12-28T23:59:59.000Z

    New understanding, theories, and techniques for moisture flow and distribution were developed in this research on wood and wood fiber. Improved understanding of the mechanisms of flake drying has been provided. Observations of flake drying and drying rate curves revealed that rate of moisture loss consisted of two falling rate periods and no constant rate drying period was observed. Convective heat transfer controls the first period, and bound water diffusion controls the second period. Influence of lower drying temperatures on bending properties of wood flakes was investigated. Drying temperature was found to have a significant influence on bending stiffness and strength. A worksheet for calculation of the energy required to dry a single strandboard flake was developed but has not been tested in an industrial setting yet. A more complete understanding of anisotropic transverse shrinkage of wood is proposed based on test results and statistical analysis. A simplified mod el of a wood cell's cross-section was drawn for calculating differential transverse shrinkage. The model utilizes cell wall thickness and microfibrillar packing density and orientation. In spite of some phenomena of cell wall structure not yet understood completely, the results might explain anisotropic transverse shrinkage to a major extent. Boundary layer theory was found useful for evaluating external moisture resistance during drying. Simulated moisture gradients were quire comparable to the actual gradients in dried wood. A mathematical procedure for determining diffusion and surface emission coefficients was also developed. Thermal conductivity models of wood derived from its anatomical structure were created and tested against experimental values. Model estimations provide insights into changes in heat transfer parameters during drying. Two new techniques for measuring moisture gradients created in wood during drying were developed. A new technique that utilizes optical properties of cobalt chloride was developed for nondestructive determination of surface moisture content. Fundamental new understanding of drying characteristics in wood and fiber has been provided that can be used by researchers to improve drying of wood and fiber. The three techniques for measuring moisture content and gradients provided in this study are efficient, practical, and economical - easy to apply by industry and researchers. An energy consumption worksheet is provided as a first step toward reducing energy consumed during drying of lumber and strandboard flakes. However, it will need additional verification and testing.

  20. An experimental investigation of high temperature, high pressure paper drying

    E-Print Network [OSTI]

    Patel, Kamal Raoji

    1994-01-01T23:59:59.000Z

    % moisture removed oven dried mass of handsheet, g mass of handsheet after drying test, g mass of handsheet before drying test, g relative moisture removed from handsheet moisture removed by drying, % initial moisture (im) initial handsheet sample mass..., and the effects on the paper sheet and drying felt can be detrimental. Elevated temperatures reduce water viscosity which permits reduced resistance to water flow in the sheet. Pressing with a drying temperature of 95 C gives increased drying capacity, reduced...

  1. Measurements of Backsheet Moisture Permeation and Encapsulant-Substrate Adhesion: Preprint

    SciTech Connect (OSTI)

    Jorgensen, G.; Terwilliger, K.; Barber, G.; Kennedy, C.; McMahon, T.

    2001-10-01T23:59:59.000Z

    Presented at the 2001 NCPV Program Review Meeting: Measurements of backsheet moisture permeation and encapsulant-substrate adhesion. At the March 2001 NCPV workshop on ''Moisture Ingress and High-Voltage Isolation'', industry participants identified several properties associated with PV module durability that are critical for commercial success. These include interface conductivity, adhesion of encapsulants to substrate materials as a function of in-service exposure conditions, and moisture permeation through backsheet materials as a function of temperature. Electrical data is discussed in a companion paper; adhesion and water vapor transmission rate (WVTR) measurements are presented herein.

  2. Moisture Control | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EMMissionof EnergyMoisture

  3. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1. Final report

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24T23:59:59.000Z

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  4. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24T23:59:59.000Z

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  5. Moisture levels at which rice grains will not fissure from moisture adsorption

    E-Print Network [OSTI]

    Kamau, John Mugeto

    1985-01-01T23:59:59.000Z

    MOISTURE LEVELS AT WHICH RICE GRAINS WILL NOT FISSURE FROM MOISTURE ADSORPTION A Thesis JOHN MUGETO KAMAU Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... August 1985 Major Subject: Agricultural Engineering MOISTURE LEVELS AT WHICH RICE GRAINS WILL NQT FISSURE FROM MOISTURE ADSORPTION A Thesis JOHN MUGETO KAMAU Approved as to style and content by: Otto R. Kunze (Chairman of Committee) Calvin B...

  6. PREDICTION OF MOISTURE CONTENT AND MOISTURE GRADIENT OF AN OVERLAID PARTICLEBOARD1

    E-Print Network [OSTI]

    PREDICTION OF MOISTURE CONTENT AND MOISTURE GRADIENT OF AN OVERLAID PARTICLEBOARD1 Qinglin Wu and HPL backer. A model based on the diffusion theory was developed to predict MC and moisture distribution for a multi-ply wood composite panel. The model's prediction of the mean MC for a three-layer PB

  7. Moisture Penetration Through Optical Fiber Coatings

    E-Print Network [OSTI]

    Matthewson, M. John

    Moisture Penetration Through Optical Fiber Coatings J. L. Armstrong, M. J. Matthewson and C. R for measuring the diffusion coefficients of water vapor through optical fiber polymer coatings has been. Kurkjian #12;732 International Wire & Cable Symposium Proceedings 1998 Moisture Penetration Through Optical

  8. Estimation of soil moisture in paddy field using Artificial Neural Networks

    E-Print Network [OSTI]

    Arif, Chusnul; Setiawan, Budi Indra; Doi, Ryoichi

    2013-01-01T23:59:59.000Z

    In paddy field, monitoring soil moisture is required for irrigation scheduling and water resource allocation, management and planning. The current study proposes an Artificial Neural Networks (ANN) model to estimate soil moisture in paddy field with limited meteorological data. Dynamic of ANN model was adopted to estimate soil moisture with the inputs of reference evapotranspiration (ETo) and precipitation. ETo was firstly estimated using the maximum, average and minimum values of air temperature as the inputs of model. The models were performed under different weather conditions between the two paddy cultivation periods. Training process of model was carried out using the observation data in the first period, while validation process was conducted based on the observation data in the second period. Dynamic of ANN model estimated soil moisture with R2 values of 0.80 and 0.73 for training and validation processes, respectively, indicated that tight linear correlations between observed and estimated values of s...

  9. Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating

    DOE Patents [OSTI]

    Tao, Shiquan; Singh, Jagdish P.; Winstead, Christopher B.

    2006-05-02T23:59:59.000Z

    An optical fiber moisture sensor that can be used to sense moisture present in gas phase in a wide range of concentrations is provided, as well techniques for making the same. The present invention includes a method that utilizes the light scattering phenomenon which occurs in a porous sol-gel silica by coating an optical fiber core with such silica. Thus, a porous sol-gel silica polymer coated on an optical fiber core forms the transducer of an optical fiber moisture sensor according to an embodiment. The resulting optical fiber sensor of the present invention can be used in various applications, including to sense moisture content in indoor/outdoor air, soil, concrete, and low/high temperature gas streams.

  10. Vadose Zone Soil Moisture Wicking Using Super Absorbent Polymers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vadose Zone Soil Moisture Wicking Using Super Absorbent Polymers. Vadose Zone Soil Moisture Wicking Using Super Absorbent Polymers. Abstract: Super-absorbent polymers (SAPs) have...

  11. Dew-Point Evaporative Comfort Cooling (Presentation)

    SciTech Connect (OSTI)

    Dean, J.

    2012-10-01T23:59:59.000Z

    Presentation on innovative indirect evaporative cooling technology developed by Coolerado Corporation given at the Rocky Mountain Chapter ASHRAE conference in April 2012.

  12. Effect of process variables on the density and durability of the pellets made from high moisture corn stover

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru

    2014-03-01T23:59:59.000Z

    A flat die pellet mill was used to understand the effect of high levels of feedstock moisture content in the range of 28–38% (w.b.), with die rotational speeds of 40–60 Hz, and preheating temperatures of 30–110 °C on the pelleting characteristics of 4.8 mm screen size ground corn stover using an 8 mm pellet die. The physical properties of the pelletised biomass studied are: (a) pellet moisture content, (b) unit, bulk and tapped density, and (c) durability. Pelletisation experiments were conducted based on central composite design. Analysis of variance (ANOVA) indicated that feedstock moisture content influenced all of the physical properties at P < 0.001. Pellet moisture content decreased with increase in preheating temperature to about 110 °C and decreasing the feedstock moisture content to about 28% (w.b.). Response surface models developed for quality attributes with respect to process variables has adequately described the process with coefficient of determination (R2) values of >0.88. The other pellet quality attributes such as unit, bulk, tapped density, were maximised at feedstock moisture content of 30–33% (w.b.), die speeds of >50 Hz and preheating temperature of >90 °C. In case of durability a medium moisture content of 33–34% (w.b.) and preheating temperatures of >70 °C and higher die speeds >50 Hz resulted in high durable pellets. It can be concluded from the present study that feedstock moisture content, followed by preheating, and die rotational speed are the interacting process variables influencing pellet moisture content, unit, bulk and tapped density and durability.

  13. Using Whole-House Field Tests to Empirically Derive Moisture Buffering Model Inputs

    SciTech Connect (OSTI)

    Woods, J.; Winkler, J.; Christensen, D.; Hancock, E.

    2014-08-01T23:59:59.000Z

    Building energy simulations can be used to predict a building's interior conditions, along with the energy use associated with keeping these conditions comfortable. These models simulate the loads on the building (e.g., internal gains, envelope heat transfer), determine the operation of the space conditioning equipment, and then calculate the building's temperature and humidity throughout the year. The indoor temperature and humidity are affected not only by the loads and the space conditioning equipment, but also by the capacitance of the building materials, which buffer changes in temperature and humidity. This research developed an empirical method to extract whole-house model inputs for use with a more accurate moisture capacitance model (the effective moisture penetration depth model). The experimental approach was to subject the materials in the house to a square-wave relative humidity profile, measure all of the moisture transfer terms (e.g., infiltration, air conditioner condensate) and calculate the only unmeasured term: the moisture absorption into the materials. After validating the method with laboratory measurements, we performed the tests in a field house. A least-squares fit of an analytical solution to the measured moisture absorption curves was used to determine the three independent model parameters representing the moisture buffering potential of this house and its furnishings. Follow on tests with realistic latent and sensible loads showed good agreement with the derived parameters, especially compared to the commonly-used effective capacitance approach. These results show that the EMPD model, once the inputs are known, is an accurate moisture buffering model.

  14. The Soil Moisture Active Passive (SMAP) Mission

    E-Print Network [OSTI]

    Entekhabi, Dara

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey. SMAP will make global measurements of ...

  15. Transient Analysis for Thermal and Moisture Behavior of Building Elements

    E-Print Network [OSTI]

    Guo, X.; Chen, Y.

    2006-01-01T23:59:59.000Z

    (,0)mx m= (10) 3.SOLVING METHOD Applying the Laplace transformation to Eqs.(3), (4), (5), (6), (7) and (8) with respect to t , they become 2 00 dTLSTTSm dx ??=?? + m (11) 2 00 dmDSmmST dx T? ?=?? + (12) 11 11 1 11 (,) [(,) ] (1... diffusivity approaches unity. So far, there have been many studies[3,8]concerned with the interactive effect between temperature and moisture, experimentally or analytically. However, for the convenience of analysis, most of the analytical investigations...

  16. MoistureMap: A soil moisture monitoring, prediction and reporting system for sustainable land and water management

    E-Print Network [OSTI]

    Walker, Jeff

    9 MoistureMap: A soil moisture monitoring, prediction and reporting system for sustainable land soil moisture monitoring, prediction and reporting system (MoistureMap) for Australia uncertainty at 1km resolution, by assimilating (i) low-resolution passive microwave-derived surface soil

  17. Measuring soil moisture with imaging radars

    SciTech Connect (OSTI)

    Dubois, P.C.; Zyl, J. van [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.] [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.; Engman, T. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)] [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1995-07-01T23:59:59.000Z

    An empirical algorithm for the retrieval of soil moisture content and surface Root Mean Square (RMS) height from remotely sensed radar data was developed using scatterometer data. The algorithm is optimized for bare surfaces and requires two copolarized channels at a frequency between 1.5 and 11 GHz. It gives best results for kh {le} 2.5, {mu}{sub {upsilon}}{le}35%, and {theta}{ge}30{degree}. Omitting the usually weaker hv-polarized returns makes the algorithm less sensitive to system cross-talk and system noise, simplify the calibration process and adds robustness to the algorithm in the presence of vegetation. However, inversion results indicate that significant amounts of vegetation (NDVI>0.4) cause the algorithm to underestimate soil moisture and overestimate RMS height. A simple criteria based on the {sigma}{sub hv}{sup 0}/{sigma}{sub vv}{sup 0} ratio is developed to select the areas where the inversion is not impaired by the vegetation. The inversion accuracy is assessed on the original scatterometer data sets but also on several SAR data sets by comparing the derived soil moisture values with in-situ measurements collected over a variety of scenes between 1991 and 1994. Both spaceborne (SIR-C) and airborne (AIRSAR) data are used in the test. Over this large sample of conditions, the RMS error in the soil moisture estimate is found to be less than 4.2% soil moisture.

  18. Effects of temperature and moisture on low-volume roads

    E-Print Network [OSTI]

    Chandra, Djan

    1988-01-01T23:59:59.000Z

    factors for the pavement stiffness of low-volume roads. METHOD OF APPROACH The studies undertaken to achieve the stated objectives consist of three main parts, and they are: laboratory stress relaxation testing on granular soil, field testing... oi these programs were developerl based upon layered els, stic theory or the finite ele- ment method. A detailed comparison of these programs for backcalculating layer moduli of low-volume roads has been presented by Chua (1988). In this study...

  19. Method and apparatus for fuel gas moisturization and heating

    DOE Patents [OSTI]

    Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01T23:59:59.000Z

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  20. Control of Moisture Ingress into Photovoltaic Modules

    SciTech Connect (OSTI)

    Kempe, M. D.

    2005-02-01T23:59:59.000Z

    During long-term exposure of photovoltaic modules to environmental stress, the ingress of water into the module is correlated with decreased performance. By using diffusivity measurements for water through encapsulants such as ethylene vinyl acetate (EVA), we have modeled moisture ingress using a finite-element analysis with atmospheric data from various locations such as Miami, Florida. This analysis shows that because of the high diffusivity of EVA, even an impermeable glass back-sheet alone is incapable of preventing significant moisture ingress from the edges for a 20-year lifecycle. This result has led us to investigate ways to protect modules from moisture through the use of different encapsulating chemistries and materials.

  1. A soil moisture budget analysis of Texas using basic climatic data while assuming a possible warming trend across the state

    E-Print Network [OSTI]

    Bjornson, Brian Matthew

    1990-01-01T23:59:59.000Z

    of the slope (dashed lines) of the regression line of precipitation on mean temperature for the Lower Valley. 35. Isopleths of MTRANGE (in 'F) for Texas during August. 71 36. Percentage of monthly soil moisture (SM) for the High Plains for a O'F (control... are significant at the 95% confidence interval. 74 37. Percentage of monthly soil moisture (SM) for the High Plains for a O'F (control), I' F, 2'F, 3'F, and 4'F increase in the mean annual temperature of Texas. Mean monthly temperatures increase non...

  2. Influence of Moisture on Heating in Feeds.

    E-Print Network [OSTI]

    Richardson, L. R.; Halick, J. V.

    1953-01-01T23:59:59.000Z

    investigation was supported in part by a grant-in-aid from ~uthwestern Sugar and Molasses Company, New York, through urtesy of A. I. Kaplan, president. ?e are indebted to E. I. du Pont de Nemours and Company, ngton, Del. through the courtesy of F. M. Jornlin..., standards for the moisture content of all in- gredients used in feeds should be reevaluated. The absence of heating in molasses feeds will not be insured by establishing a standard for the moisture content of molasses alone. Standardr for molasses...

  3. Intrinsically safe moisture blending system

    DOE Patents [OSTI]

    Hallman Jr., Russell L.; Vanatta, Paul D.

    2012-09-11T23:59:59.000Z

    A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

  4. Assessment of NGNP Moisture Ingress Events

    SciTech Connect (OSTI)

    Bill Landman

    2011-04-01T23:59:59.000Z

    An assessment of modular HTGR moisture ingress events, making use of a phenomena identification and ranking process, was conducted by a panel of experts in the related areas for the U.S. next generation nuclear plant (NGNP) design. Consideration was given mainly to the prismatic core gas-cooled reactor configurations incorporating a steam generator within the primary circuit.

  5. 1. Control moisture. 2. Clean regularly.

    E-Print Network [OSTI]

    , water heaters, and fireplaces that burn fuel must vent to the outside. Stoves, ovens, and cook on the things we do to affect how healthy our home is. Step 1. Control Moisture Water and excessive humidity of pesticides. Food and water attract pests. Controlling food and water helps to minimize pests. Sealing

  6. Measurements of moisture suction in hot mix asphalt mixes 

    E-Print Network [OSTI]

    Kassem, Emad Abdel-Rahman

    2006-10-30T23:59:59.000Z

    with different bond energies and exhibited different field performance in terms of resistance to moisture damage. The suction measurements in sand asphalt specimens were used to calculate the moisture diffusion coefficient. The results revealed that water...

  7. Soil moisture modeling and scaling using passive microwave remote sensing

    E-Print Network [OSTI]

    Das, Narendra N.

    2007-04-25T23:59:59.000Z

    Soil moisture in the shallow subsurface is a primary hydrologic state governing land-atmosphere interaction at various scales. The primary objectives of this study are to model soil moisture in the root zone in a distributed manner and determine...

  8. Evaluation of moisture damage within asphalt concrete mixes 

    E-Print Network [OSTI]

    Shah, Brij D.

    2004-09-30T23:59:59.000Z

    as bond energy in order to predict moisture damage. Mixtures with the two types of bitumen and each aggregate with and without hydrated lime were evaluated. The hydrated lime substantially improved the resistance of the mixture to moisture damage....

  9. Monitoring and controlling moisture during carpet and textile drying

    SciTech Connect (OSTI)

    Robinson, J.W.

    1995-02-01T23:59:59.000Z

    Industrial dryer/moisture control is usually performed by feedback type systems, i.e., sensors indirectly measure moisture content (MC) of the product after it leaves the dryer, or exhaust temperature from the last zone is used as an indicator of the existing MC. Such a control system is inherently weak because of the {open_quotes}after-the-fact{close_quotes} nature of the MC data. A feedback system may be improved by adding feedforward loops to handle disturbances to the system, e.g., variations in entering MC and feed rate. Such additions to the control system are expensive and require higher expertise for operating and maintaining. If the MC of the product could be measured inside the dryer, a control system could be offered that would be superior to feedback/feedforward types. This has not been possible up to this time because no MC sensor was capable of withstanding the atmosphere inside dryers. Moreover, the sample size would not have been large enough to be representative.

  10. Effect of varying moisture levels on sorghum stand establishment

    E-Print Network [OSTI]

    Kanyenji, Ben Machaki

    1991-01-01T23:59:59.000Z

    to germinate, emerge, and survive under low moisture situations. At the lowest moisture level (20% water holding capacity of the potted soil/media; 264 water on dry weight basis), germination was reduced by 50 percent. Hegari and CSM388 had the highest... germination performance at this moisture level. Seedling emergence was decreased by 60 percent from performance under optimum moisture (454 water holding capacity potted soil/media) and cultivers such as Segaolane and CSM388 had the highest emergence...

  11. Process for treating moisture laden coal fines

    DOE Patents [OSTI]

    Davis, Burl E. (New Kensington, PA); Henry, Raymond M. (Gibsonia, PA); Trivett, Gordon S. (South Surrey, CA); Albaugh, Edgar W. (Birmingham, AL)

    1993-01-01T23:59:59.000Z

    A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.

  12. Practical Considerations of Moisture in Baled Biomass Feedstocks

    SciTech Connect (OSTI)

    William A. Smith; Ian J. Bonner; Kevin L. Kenney; Lynn M. Wendt

    2013-01-01T23:59:59.000Z

    Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover and energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.

  13. Combustion: What is the Lower Heating Value (LHV) of Propane? Before we start: how reasonable is the use of the LHV? What is the dewpoint of the reaction products?

    E-Print Network [OSTI]

    Combustion: What is the Lower Heating Value (LHV) of Propane? Before we start: how reasonable temperature we can achieve with a propane-and-air blowtorch? We repeat this calculation for several different

  14. High Temperature Materials for Aerospace Applications

    E-Print Network [OSTI]

    Adamczak, Andrea Diane

    2011-08-08T23:59:59.000Z

    Chair of Advisory Committee: Dr. Jaime C. Grunlan Further crosslinking of the fluorinated polyimide was examined to separate the cure reactions from degradation and to determine the optimum post curing conditions. Glass transition... ranging from 225 ? 362 ?C, with 1.7 - 3.0 wt% absorbed moisture, and the polyimide composite had blister temperatures from 246 ? 294 ?C with 0.5 - 1.5 wt% moisture. iv Weight loss of the fluorinated polyimide and its corresponding polyimide carbon...

  15. Soil Moisture and the Drought in Texas Todd Caldwell

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Neutron scatter 50 2 2010 AmeriFlux Dielectric 215 1 2005 NEON ?? 20 1 ~2011 West Texas Mesonet: 79 sitesSoil Moisture and the Drought in Texas Todd Caldwell Bridget Scanlon Michael Young Di Long Water;Soil Moisture and the Drought in Texas I. How is drought linked to water resources? II. Where does soil

  16. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    SciTech Connect (OSTI)

    Wiehagen, J.; Kochkin, V.

    2012-12-01T23:59:59.000Z

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  17. Soil Moisture Measurement in Heterogeneous Terrain Merlin, O.1

    E-Print Network [OSTI]

    Walker, Jeff

    , uncertainty assessment, soil moisture patterns. EXTENDED ABSTRACT Reliable soil moisture measurement over such data, portable electronic sensors offer a practical alternative to gravimetric measurements % v/v in clay. On the other hand, the real component of the measured relative DC is found to be more

  18. Moisture Management for High R-Value Walls

    SciTech Connect (OSTI)

    Lepage, R.; Schumacher, C.; Lukachko, A.

    2013-11-01T23:59:59.000Z

    The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.

  19. Measurements of moisture suction in hot mix asphalt mixes

    E-Print Network [OSTI]

    Kassem, Emad Abdel-Rahman

    2006-10-30T23:59:59.000Z

    The presence of moisture in hot mix asphalt (HMA) causes loss of strength and durability of the mix, which is referred to as moisture damage. This study deals with the development of experimental methods for measuring total suction in HMA, which can...

  20. Moisture Management of High-R Walls (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01T23:59:59.000Z

    The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.

  1. The moisture budget in relation to convection 

    E-Print Network [OSTI]

    Scott, Robert Wilson

    1976-01-01T23:59:59.000Z

    : x10-6g cm-2s-1) 30 (, 'j I" '~, ". :, ', :, ':: P, ' r 0 (a) 0600 GMT, 24 April 1975 . . . ~t' . '. a--'-, . ' ' P) D (b) 0600 GiXT, 25 April 1975 Analyses of the net vertacal boundary flux of moisture in the layer from 500-350 mb... 120 4 060 , J 16O I 2 1" , 090 ~ J 120 32+ r I 24~ 190 12 10 (b) 700 mb Fig. 3. Synoptic charts for 0600 GMT on 24 April 1975. 16 86. 16 04 08 I 12 I I f 08 I 08 I L 08 12 16 (a) Surface 20 - 8 A 4X 4 0 ) O2O ~~(~ -2 J--4...

  2. Fast prototyping and Indirect Adaptive GPC temperature control of a class of passive HVAC

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fast prototyping and Indirect Adaptive GPC temperature control of a class of passive HVAC TAWEGOUM (temperature, moisture) is a dominating factor, on the one hand to deal with the market quantitative

  3. Investigation of factors influencing infrared roof moisture surveys using a mathematical model

    SciTech Connect (OSTI)

    Childs, K.W.; Courville, G.E.; Childs, P.W.

    1983-01-01T23:59:59.000Z

    In low sloped roofing systems using porous insulation, the presence of water can significantly degrade thermal performance. Because of the different thermal characteristics of wet and dry insulation, there is often a surface temperature differential between areas of wet and dry insulation. Under the right circumstances, the areas of wet insulation can be detected by means of infrared sensing techniques. To better define the conditions under which infrared techniques can distinguish between areas of wet and dry insulation, a mathematical model was developed. This model is a one-dimensional, transient heat transfer model of a roofing system. The model considers conduction through the roof, insolation, radiant exchange between roof and sky, convective heat transfer between the roof and air, and the influence of moisture trapped in insulation. For one particular roof system, a parametric study was undertaken using this model to determine the influence of moisture content, outside air temperature, wind speed, insolation, sky temperature, and other factors on the roof surface temperature. Preliminary recommendations for employing thermal sensing techniques to locate wet insulation are developed.

  4. Investigation of factors influencing infrared roof moisture surveys using a mathematical model

    SciTech Connect (OSTI)

    Childs, K.W.; Courville, G.E.; Childs, P.W.

    1984-01-01T23:59:59.000Z

    In low sloped roofing systems using porous insulation, the presence of water can significantly degrade thermal performance. Because of the different thermal characteristics of wet and dry insulation, there is often a surface temperature differential between areas of wet and dry insulation. Under the right circumstances, the areas of wet insulation can be detected by means of infrared sensing techniques. To better define the conditions under which infrared techniques can distinguish between areas of wet and dry insulation, a mathematical model was developed. This model is a one-dimensional, transient heat transfer model of a roofing system. The model considers conduction through the roof, insulation, radiant exchange between roof and sky, convective heat transfer between the roof and air, and the influence of moisture trapped in insulation. For one particular roof system, a parametric study was undertaken using this model to determine the influence of moisture content, outside air temperature, wind speed, insulation, sky temperature, and other factors on the roof surface temperature. Preliminary recommendations for employing thermal sensing techniques to locate wet insulation are developed. 11 references, 12 figures.

  5. Design of an Integrated Laboratory Scale Test for Hydrogen Production via High Temperature Electrolysis

    SciTech Connect (OSTI)

    G.K. Housley; K.G. Condie; J.E. O'Brien; C. M. Stoots

    2007-06-01T23:59:59.000Z

    The Idaho National Laboratory (INL) is researching the feasibility of high-temperature steam electrolysis for high-efficiency carbon-free hydrogen production using nuclear energy. Typical temperatures for high-temperature electrolysis (HTE) are between 800º-900ºC, consistent with anticipated coolant outlet temperatures of advanced high-temperature nuclear reactors. An Integrated Laboratory Scale (ILS) test is underway to study issues such as thermal management, multiple-stack electrical configuration, pre-heating of process gases, and heat recuperation that will be crucial in any large-scale implementation of HTE. The current ILS design includes three electrolysis modules in a single hot zone. Of special design significance is preheating of the inlet streams by superheaters to 830°C before entering the hot zone. The ILS system is assembled on a 10’ x 16’ skid that includes electronics, power supplies, air compressor, pumps, superheaters, , hot zone, condensers, and dew-point sensor vessels. The ILS support system consists of three independent, parallel supplies of electrical power, sweep gas streams, and feedstock gas mixtures of hydrogen and steam to the electrolysis modules. Each electrolysis module has its own support and instrumentation system, allowing for independent testing under different operating conditions. The hot zone is an insulated enclosure utilizing electrical heating panels to maintain operating conditions. The target hydrogen production rate for the ILS is 5000 Nl/hr.

  6. Moisture burst structure in satellite water vapor imagery

    E-Print Network [OSTI]

    Ulsh, David Joel

    1988-01-01T23:59:59.000Z

    The moisture burst is a tropical synoptic-scale weather event that typically originates along the ITCZ and has been defined previously in window-channel infrared imagery. This research uses 6. 7-micrometer water vapor absorption band imagery to composite 35... moisture burst events during the North Pacific cool season of 1983-1984. Composite maps are constructed at four times, each 24 h apart, during the life cycle of the moisture burst. A comparative baseline is provided by an additional composite of 35 dates...

  7. Influence of Airflow on Laboratory Storage of High Moisture Corn Stover

    SciTech Connect (OSTI)

    Lynn M. Wendt; Ian J. Bonner; Amber N. Hoover; Rachel M. Emerson; William A. Smith

    2014-04-01T23:59:59.000Z

    Storing high moisture biomass for bioenergy use is a reality in many areas of the country where wet harvest conditions and environmental factors prevent dry storage from being feasible. Aerobic storage of high moisture biomass leads to microbial degradation and self-heating, but oxygen limitation can aid in material preservation. To understand the influence of oxygen presence on high moisture biomass (50 %, wet basis), three airflow rates were tested on corn stover stored in laboratory reactors. Temperature, carbon dioxide production, dry matter loss, chemical composition, fungal abundance, pH, and organic acids were used to monitor the effects of airflow on storage conditions. The results of this work indicate that oxygen availability impacts both the duration of self-heating and the severity of dry matter loss. High airflow systems experienced the greatest initial rates of loss but a shortened microbially active period that limited total dry matter loss (19 %). Intermediate airflow had improved preservation in short-term storage compared to high airflow systems but accumulated the greatest dry matter loss over time (up to 27 %) as a result of an extended microbially active period. Low airflow systems displayed the best performance with the lowest rates of loss and total loss (10 %) in storage at 50 days. Total structural sugar levels of the stored material were preserved, although glucan enrichment and xylan loss were documented in the high and intermediate flow conditions. By understanding the role of oxygen availability on biomass storage performance, the requirements for high moisture storage solutions may begin to be experimentally defined.

  8. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings

    SciTech Connect (OSTI)

    Woods, J.; Winkler, J.; Christensen, D.

    2013-01-01T23:59:59.000Z

    This study examines the effective moisture penetration depth (EMPD) model, and its suitability for building simulations. The EMPD model is a compromise between the simple, inaccurate effective capacitance approach and the complex, yet accurate, finite-difference approach. Two formulations of the EMPD model were examined, including the model used in the EnergyPlus building simulation software. An error in the EMPD model we uncovered was fixed with the release of EnergyPlus version 7.2, and the EMPD model in earlier versions of EnergyPlus should not be used.

  9. Thermal Effects of Moisture in Rigid Insulation Board

    E-Print Network [OSTI]

    Crow, G. W.

    The impact of moisture in rigid roof insulation upon energy consumption is often assumed to be a simple function of the conductance. This paper will show that there are complex interactions between conductance, thermal mass, and climate. The energy...

  10. Measurement of Moisture Content in Sand, Slag, and Crucible Materials

    SciTech Connect (OSTI)

    Gray, J.H.

    1999-09-20T23:59:59.000Z

    The deinventory process at Rocky Flats (RFETS) has included moisture content measurements of sand, slag, and crucible (SSC) materials by performing weight loss measurements at 210 degrees - 220 degrees Celsius on representative samples prior to packaging for shipment. Shipping requirements include knowledge of the moisture content. Work at the Savannah River Technology Center (SRTC) showed that the measurement at 210 degrees - 220 degrees Celsius did not account for all of the moisture. The objective of the work in this report was to determine if the measurement at 210 degrees - 220 degrees Celsius at RFETS could be used to set upper bounds on moisture content and therefore, eliminate the need for RFETS to unpack, reanalyze and repack the material.

  11. Building America Top Innovations Hall of Fame Profile ? Moisture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. House-as-a-System Solutions 2.1 New Homes with Whole-House Packages Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing Research by Building...

  12. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    SciTech Connect (OSTI)

    Prahl, D.; Shaffer, M.

    2014-11-01T23:59:59.000Z

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Warme und Feuchte instationar Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  13. Thermal Effects of Moisture in Rigid Insulation Board 

    E-Print Network [OSTI]

    Crow, G. W.

    1992-01-01T23:59:59.000Z

    The impact of moisture in rigid roof insulation upon energy consumption is often assumed to be a simple function of the conductance. This paper will show that there are complex interactions between conductance, thermal mass, and climate. The energy...

  14. Moisture Diffusion in Asphalt Binders and Fine Aggregate Mixtures

    E-Print Network [OSTI]

    Vasconcelos, Kamilla L.

    2011-08-08T23:59:59.000Z

    cost in highway maintenance and vehicle operations. One key mechanism of how moisture reaches the asphalt-aggregate interface is by its permeation or diffusion through the asphalt binder or mastic. Different techniques are available for diffusion...

  15. Evaluation of Moisture Susceptibility of Warm Mix Asphalt

    E-Print Network [OSTI]

    Garcia Cucalon, Maria Lorena

    2013-05-03T23:59:59.000Z

    . To evaluate WMA moisture susceptibility during this critical period, standard laboratory tests were used for three field projects each with an HMA control mixtures and multiple WMA mixtures. Different specimen types were also evaluated to capture differences...

  16. The spatial and temporal organization of soil moisture 

    E-Print Network [OSTI]

    Vogel, Gregor Klaus

    1995-01-01T23:59:59.000Z

    THE SPATIAL AND TEMPORAL ORGANIZATION OF SOIL MOISTURE A Thesis by GREGOR KLAUS VOGEL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December... 1995 Major Subject: Water Resources Engineering THE SPATIAL AND TEMPORAL ORGANIZATION OF SOIL MOISTURE A Thesis by GREGOR KLAUS VOGEL Submitted to Texas ARM University in partial fulfillment of the requirements for the degree of MASTER...

  17. Evaluation of moisture damage within asphalt concrete mixes

    E-Print Network [OSTI]

    Shah, Brij D.

    2004-09-30T23:59:59.000Z

    with load cycles. The analysis demonstrates the need to consider mixture compliance as well as bond energy in order to predict moisture damage. Mixtures with the two types of bitumen and each aggregate with and without hydrated lime were... evaluated. The hydrated lime substantially improved the resistance of the mixture to moisture damage. iv To my parents. v ACKNOWLEDGMENTS I would like to extend my sincere thanks to everyone who helped...

  18. Airborne microwave remote sensing of soil moisture

    E-Print Network [OSTI]

    Black, Quentin Robert

    1980-01-01T23:59:59.000Z

    . Studies of Sampling Accuracy Soil Type Variation . Surface Conditions. Lawrence, 1976 Experiment. Finney County, 1976 Experiment Hand County, 1976 Experiment . 1 1 3 4 4 5 7 15 16 16 21 28 31 33 33 33 35 36 36 37 38 39 41 42... 1971 soil and temperature profiles using surface layers 0. 5 cm thick 56 22 Comparison of the response of coherent and noncoherent emissions models for several 1971 soil and temperature profiles using surface layers 1. 0 cm thick . . . . . . . . 57...

  19. Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates

    SciTech Connect (OSTI)

    Widder, Sarah H.; Martin, Eric

    2013-03-15T23:59:59.000Z

    This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

  20. Moisture Sensor for Sulfur Hexafluoride (SF6)-filled Circuit Breakers

    SciTech Connect (OSTI)

    Sauers, I.

    2001-04-27T23:59:59.000Z

    Measurements at ORNL were made on the Kahn moisture sensor which Doble Engineering wants to evaluate for use in SF{sub 6} circuit breakers. Test conducted at ORNL indicate that vacuum conditions, as might be found in SF{sub 6} circuit breakers prior to filling with SF{sub 6}, could lead to significant changes in calibration, resulting in erroneous readings of moisture content. Similar effects might also be observed in cases where SF{sub 6} byproducts are present, due the reactivity of some of these byproducts with water.

  1. System design description for surface moisture measurement system (SMMS)

    SciTech Connect (OSTI)

    Vargo, G.F.

    1996-09-23T23:59:59.000Z

    The SMMS has been developed to measure moisture in the top few centimeters of tank waste. The SMMS development was initiated by the preliminary findings of SAR-033, and does not necessarily fulfill any established DQO. After the SAR-033 is released, if no significant changes are made, moisture measurements in the organic waste tanks will rapidly become a DQO. The SMMS was designed to be installed in any 4 inch or larger riser, and to allow maximum adjustability for riser lengths, and is used to deploy a sensor package on the waste surface within a 6 foot radius about the azimuth. The first sensor package will be a neutron probe.

  2. Remote monitoring of soil moisture using airborne microwave radiometers

    E-Print Network [OSTI]

    Kroll, Charles Lindsey

    1973-01-01T23:59:59.000Z

    REMOTE MONITORING OF SOIL MOISTURE USING AIRBORNE MICROWAVE RADIOMETERS A Thesis by CHARLES LINDSEY J(ROLL Submitted to the Graduate College of Texas A)M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... August 1973 Major Subject: Electrical Engineering REMOTE MONITORING OF SOIL MOISTURE USING AIRBORNE MICROWAVE RADIOMETERS A Thesis by CHARLES LINDSEY KROLL Approved as to style and content by: man o Co mrtt Hca o D artmc c Ill l c r Mem e Member...

  3. Stresses in adhesive joints due to moisture sorption 

    E-Print Network [OSTI]

    Jen, Ming-Hwa Robert

    1980-01-01T23:59:59.000Z

    for the Case of 2 Moisture Absorpt1on. . . . . . . . . . . . . . . . . . 53 The Non-Dimensional Peel Stress p and the Interlaminar Shear Stresses T and T vs. the Non-Dimensional D1stance x for the Case of Moi stfre Absorption . . . . . . . . . 54 The Non...-Dimensional Displacement W2 of the Outer-Adherends vs. the Non-Dimens1onal Distance x for the Case of Moisture Desorption . . . . . . . . . . . . . . . . . . 55 The Non-Dimensional Peel Stress p and the Interlaminar Shear Stresses T and T2 vs. the Non-D1mens1onal...

  4. Predicting farm machinery operation time with a soil moisture mode

    E-Print Network [OSTI]

    Bordovsky, James Paul

    1978-01-01T23:59:59.000Z

    -1972 . 76 Figure Page 24. Measured and computed plant available soil moisture in the top 30 cm of the soil profile on watershed Y-8 at Riesel, Texas during 1969, 1970, and 1972 79-81 25. Measured and computed plant available soil moisture in the top... for September, October, and November, 1977 97-99 32. Observed and calculated trafficability data at Corpus Christi, Texas for July, September, October, and November, 1977 . . 101-104 A-1 . The value of PM when S = O. l and S = 0. 25 and aM is the independ...

  5. Moisture effects in low-slope roofs: Drying rates after water addition with various vapor retarders

    SciTech Connect (OSTI)

    Pedersen, C.R. [Technical Univ. of Denmark, Lyngby (Denmark); Petrie, T.W. [Marquette Univ., Milwaukee, WI (United States). Dept. of Mechanical Engineering; Courville, G.E.; Desjarlais, A.O.; Childs, P.W.; Wilkes, K.E. [Oak Ridge National Lab., TN (United States)

    1992-10-01T23:59:59.000Z

    Tests have been conducted in the Large Scale Climate Simulator (LSCS) of the US. Building Envelope Research Center at the Oak Ridge National Laboratory (ORNL) to investigate downward drying rates of various unvented, low-slope roof systems. A secondary objective was to study heat flow patterns so as to understand how to control latent heat effects on impermeable heat flux transducers. Nine test sections were tested simultaneously. The sections had a p deck above fibrous-glass insulation and were examples of cold-deck systems. These five sections had various vapor retarder systems on a gypsum board ceiling below the insulation. The other four sections had a lightweight insulating concrete deck below expanded polystyrene insulation and the same vapor retarder systems, and were examples of warm-deck systems. The cold-deck systems had materials that were relatively permeable to water vapor, while the materials in the warm-deck systems were less permeable. All test sections were topped by an impermeable roofing membrane. The test sections were instrumented with thermocouples between all layers and with small heat flux transducers at the bottom and top of the fibrous-glass insulation and in the middle of the expanded polystyrene insulation. Two different kinds of moisture probes were used to qualitatively monitor the movement of the moisture. The heat flux measurements showed that heat conduction dominates the system using impermeable insulation materials, with only a slight increase due to increased thermal conductivity of wet expanded polystyrene. There was significant transfer of latent heat in the test sections with permeable insulation, causing the peak heat fluxes to increase by as much as a factor of two. With temperatures imposed that are typical of summer days, latent heat transfer associated with condensation and evaporation of moisture in the test sections was measured to be as important as the heat transfer by conduction.

  6. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Heating Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Vieira, R.; Parker, D.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.

    2013-09-01T23:59:59.000Z

    Two identical laboratory homes designed to model existing Florida building stock were sealed and tested to 2.5 ACH50. Then, one was made leaky with 70% leakage through the attic and 30% through windows, to a tested value of 9 ACH50. Reduced energy use was measured in the tighter home (2.5 ACH50) in the range of 15% to 16.5% relative to the leaky (9 ACH50) home. Internal moisture loads resulted in higher dew points inside the tight home than the leaky home. Window condensation and mold growth occurred inside the tight home. Even cutting internal moisture gains in half to 6.05 lbs/day, the dew point of the tight home was more than 15 degrees F higher than the outside dry bulb temperature. The homes have single pane glass representative of older Central Florida homes.

  7. Derivation of Soil Moisture Retention Characteristics from Saturated Hydraulic Conductivity

    E-Print Network [OSTI]

    Kumar, C.P.

    systems require knowledge of the relationships between soil moisture content (), soil water pressure (h, and evapotranspiration. The soil factors include soil matric potential and water content relationship, saturated content of soil. The relation between matric potential and volumetric water content in a soil is termed

  8. SOIL MOISTURE CHARACTERISTICS IN UPPER PART OF HINDON RIVER CATCHMENT

    E-Print Network [OSTI]

    Kumar, C.P.

    of the contribution of various parts of a watershed to the ground water storage. Convenient and reliable techniques for the water demand of the vegetation, as well as for the recharge of the ground water storage. A fair into ground water aquifers. For analytical studies on soil moisture regime, critical review and accurate

  9. Integrating soil moisture and groundwater into climate models

    E-Print Network [OSTI]

    Krakauer, Nir Y.

    dNm dt =m Nm1- Nm -h Nh min1, Nm State transition to oscillatory solutions with efficient hunting: same initial and boundary conditions, but soil moisture set to seasonal climatology from DYNA experiments: Irrigation Simulate equilibrium climate with a mixed- layer ocean, year-2000 or 2050 (A1B

  10. Soil Water and Temperature System (SWATS) Handbook

    SciTech Connect (OSTI)

    Bond, D

    2005-01-01T23:59:59.000Z

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  11. Preliminary non-destructive assessment of moisture content, hydration and dielectric properties of Portland cement concrete 

    E-Print Network [OSTI]

    Avelar Lezama, Ivan

    2007-04-25T23:59:59.000Z

    Moisture availability is a focal point in the structural development of young concrete. Under low humidity and hot weather conditions, concrete loses moisture rapidly as it hardens, and it is very difficult, if not impossible, ...

  12. Moisture degradation in FRP bonded concrete systems : an interface fracture approach

    E-Print Network [OSTI]

    Au, Ching, 1977-

    2005-01-01T23:59:59.000Z

    (cont.) characterization, and kink criterion implementation, form a synergistic analysis of the mechanistic debonding behavior affected by moisture. Results have shown that moisture affected debonding is a highly complex ...

  13. A Coupled Micromechanical Model of Moisture-Induced Damage in Asphalt Mixtures: Formulation and Applications 

    E-Print Network [OSTI]

    Caro Spinel, Silvia

    2011-02-22T23:59:59.000Z

    The deleterious effect of moisture on the structural integrity of asphalt mixtures has been recognized as one of the main causes of early deterioration of asphalt pavements. This phenomenon, usually referred to as moisture damage, is defined...

  14. DEVELOPMENT OF A RAPID TEST TO DETERMINE MOISTURE SENSTIVITY OF HMA (SUPERPAVE) MIXTURES

    E-Print Network [OSTI]

    Shiwakoti, Harihar

    2007-12-14T23:59:59.000Z

    Exiting test methods to determine moisture sensitivity in hot mix asphalt are time consuming and inconsistent. This research focused on wheel tracking devices to develop a rapid test method to evaluate moisture sensitivity. The Asphalt Pavement...

  15. SOLID WOOD PRODUCTS I TECHNICAL NOTE CALIBRATION OF MOISTURE METERS FOR

    E-Print Network [OSTI]

    tanks, and boats, the kiln and allowed to cool. They were content (MC) of wood. However, the cor and electrical resis- cypress have been supplied by moisture handled or conditioned. One moisture tance

  16. NASA's Soil Moisture Active Passive (SMAP) Mission and Opportunities for Applications Users

    E-Print Network [OSTI]

    Brown, Molly E.

    Water in the soil—both its amount (soil moisture) and its state (freeze/thaw)—plays a key role in water and energy cycles, in weather and climate, and in the carbon cycle. Additionally, soil moisture touches upon human ...

  17. The Soil Moisture Active and Passive Mission (SMAP): Science and Applications

    E-Print Network [OSTI]

    Entekhabi, Dara

    The soil moisture active and passive mission (SMAP) will provide global maps of soil moisture content and surface freeze/thaw state. Global measurements of these variables are critical for terrestrial water and carbon cycle ...

  18. Bond Strength Degradation for CFRP and Steel reinforcing Bars in Concrete at Elevated Temperature 

    E-Print Network [OSTI]

    Maluk, Cristian; Bisby, Luke; Terrasi, Giovanni; Green, Mark

    2011-03-01T23:59:59.000Z

    temperature is a complex phenomenon which is influenced by a number of interrelated factors, including the type of prestressing, degradation of the concrete, CFRP, and steel, differential thermal expansion, thermal gradients and stresses, release of moisture...

  19. Evolution of moisture convergence in a mesoscale convective complex

    E-Print Network [OSTI]

    Bercherer, John Phillip

    1990-01-01T23:59:59.000Z

    Committee: Dr. Keuneth C. Brundidge Two separate Mesoscale Convective Complexes (MCCs) were investigated to determine if a characteristic surface moisture convergence (MC) signature existed on the mesoscale during their lifecycle. The first storm (Case 1... convergence, a bandpass filtering technique was utilized. It was found that MC could identify the general area of initial thunderstorm activity 2 h prior to its development for both cases. During the initial development stage of Case 1, advection...

  20. Hazards and operability study for the surface moisture monitoring system

    SciTech Connect (OSTI)

    Board, B.D.

    1996-04-04T23:59:59.000Z

    The Hanford Nuclear Reservation Tank Farms` underground waste tanks have been used to store liquid radioactive waste from defense materials production since the 1940`s. Waste in certain of the tanks may contain material in the form of ferrocyanide or various organic compounds which could potentially be susceptible to condensed phase chemical reactions. Because of the presence of oxidizing materials (nitrate compounds) and heat sources (radioactive decay and chemical reactions), the ferrocyanide or organic material could potentially fuel a propagating exothermic reaction with undesirable consequences. Analysis and experiments indicate that the reaction propagation and/or initiation may be prevented by the presence of sufficient moisture in the waste. Because the reaction would probably be initiated at the surface of the waste, evidence of sufficient moisture concentration would help provide evidence that the tank waste can continue to be safely stored. The Surface Moisture Measurement System (SMMS) was developed to collect data on the surface moisture in the waste by inserting two types of probes (singly) into a waste tank-a neutron probe and an electromagnetic inductance (EMI) probe. The sensor probes will be placed on the surface of the waste utilizing a moveable deployment arm to lower them through an available riser. The movement of the SMMS within the tank will be monitored by a camera lowered through an adjacent riser. The SMMS equipment is the subject of this study. Hazards and Operability Analysis (HAZOP) is a systematic technique for assessing potential hazards and/or operability problems for a new activity. It utilizes a multidiscipline team of knowledgeable individuals in a systematic brainstorming effort. The results of this study will be used as input to an Unreviewed Safety Question determination.

  1. [DELTA T dryer/moisture control system]. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    Drying Technology, Inc. was awarded a grant for the purpose of extending DELTA T dryer/moisture control technology into additional industries. Ultimate purpose of the grant was to save energy and improve efficiency in the process industries. Results indicate that these objectives have been met and will continue as this new technology is duplicated in the present industries and also is extended into other industries as well.

  2. The structure of a late-spring moisture burst

    E-Print Network [OSTI]

    Stockton, Jay Richard

    1986-01-01T23:59:59.000Z

    masses from tropical air masses. McGuirk et ol. (1983) developed a moisture burst climatology for the months of November through Apnl, utilizing Geostationary Operational Environmental Satelhte-West (GOES-W) IR imagery taken every six hours. Four... in the area. c) Point comparisons outside of the active burst regions show systematic overpredictions of mean relative humidity and underpredictions of temporal variability by ECMWF analyses with respect to observations. d) Satellite channel radiance data...

  3. Nondestructive NMR technique for moisture determination in radioactive materials.

    SciTech Connect (OSTI)

    Aumeier, S.; Gerald, R.E. II; Growney, E.; Nunez, L.; Kaminski, M.

    1998-12-04T23:59:59.000Z

    This progress report focuses on experimental and computational studies used to evaluate nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) for detecting, quantifying, and monitoring hydrogen and other magnetically active nuclei ({sup 3}H, {sup 3}He, {sup 239}Pu, {sup 241}Pu) in Spent nuclear fuels and packaging materials. The detection of moisture by using a toroid cavity NMR imager has been demonstrated in SiO{sub 2} and UO{sub 2} systems. The total moisture was quantified by means of {sup 1}H NMR detection of H{sub 2}O with a sensitivity of 100 ppm. In addition, an MRI technique that was used to determine the moisture distribution also enabled investigators to discriminate between bulk and stationary water sorbed on the particles. This imaging feature is unavailable in any other nondestructive assay (NDA) technique. Following the initial success of this program, the NMR detector volume was scaled up from the original design by a factor of 2000. The capacity of this detector exceeds the size specified by DOE-STD-3013-96.

  4. Applications of statistical models to synchronous climate variables: a case study of temperature and dew point for College Station, Texas 

    E-Print Network [OSTI]

    O'Brien, Charles F.

    1995-01-01T23:59:59.000Z

    transformations. Generally speaking, temperature, dew point, and dew point depression values could be transformed to resemble a bivariate normal distribution. Of the 288 cases (6 mos. x 24 hrs. x 2 moisture variables) applied to the bivariate normal distribution...

  5. Using electrical resistance probes for moisture determination in switchgrass windrows

    SciTech Connect (OSTI)

    Chesser Jr., G. D.; Davis, J. D.; Purswell, J. L.; Lemus, R.

    2011-08-01T23:59:59.000Z

    Determining moisture levels in windrowed biomass is important for both forage producers and researchers. Energy crops such as switchgrass have been troublesome when using the standard methods set for electrical resistance meters. The objectives of this study were to i) develop the methodologies needed to measure MC in switchgrass using electrical resistance meters, ii) to determine the effects of pressure and probe orientation on MC measurement and iii) to generate MC calibration equations for electrical resistance meters using switchgrass in the senescence growth stage. Two meters (Meter 1, Farmex HT-PRO; Meter 2, Delmhorst F-2000) were selected based on commercial availability. A forage compression apparatus was designed and constructed with on-farm materials and methods to provide a simple system of applying pressure achievable by any forage producer or researcher in the field. Two trials were performed to test four levels of moisture contents (10, 20, 30, and 40%), five pressures (0, 1.68, 3.11, 4.55, 6.22 kN/m 2; 0, 35, 65, 95, 130 lb/ft 2), and two probe orientations (axial and transverse) in a 4x5x2 factorial design. Results indicated that meter accuracy increased as pressure increased. Regression models accounted for 91% and 81% of the variation for Meter 1 and Meter 2 at a pressure of 4.55 kN/m 2 (95 lb/ft 2) and a transverse probe orientation. Calibration equations were developed for both meters to improve moisture measurement accuracy for farmers and researchers in the field.

  6. A soil moisture availability model for crop stress prediction

    E-Print Network [OSTI]

    Gay, Roger Franklin

    1983-01-01T23:59:59.000Z

    wet so11 profile [Ritch1e et al. , 1972] . . . . . . . . . . . . . . 12 Relationships between the ratio of actual evaporation (Ea) to pan evaporat1on (E an) as a function of the available soil water in Rule and Bragg soybean [Burch et al. , 1978...] F1gure Interact1ons between soil-moisture status and other components of a general crop yield model . . . . . . . . . . . . . . . 16 Figure Root densit1es for ra1nfed Ruse and Bragg soybean, 98 days after planting [Burch et al. , 1978...

  7. Determination of moisture in solids using high frequency methods

    E-Print Network [OSTI]

    Burton, Melven Boyd

    1953-01-01T23:59:59.000Z

    ~, An induction-Ccpacit Oscillator of Unusual Fre uenc Stabi lit-, Proc ~ I. -". ". , larch, 1948 ~ (14) Glass':one, Samuel, Textbook of Physical Chemistry? D. Tan Nostrand Companv, Ino. , New York, 1947 pp 417 (15) Ibid, pp, 333 ... and low melting solids ~ . '. :eascrement of a change in a physical consL'ant ro deucrcc ne moisture content is incorporated in many methods' The chango in dielectric constant has been used with some success (0, 7 ' 8), 'cut s. "a' n it has boon more...

  8. Production of High Quality Dust Control Foam to Minimize Moisture Addition to Coal

    E-Print Network [OSTI]

    Termine, F.; Jordan, S. T.

    PRODUCTION OF HIGH QUALITY DUST CONTROL FOAM TO MINIMIZE MOISTURE ADDITION TO COAL Frank Tenni ne Steve T. Jordan BETZ Laboratories, Trevose, PA Inc. ABSTRACT Foam is displacing wet suppression as the method of choice for controlling... fugitive emissions from coal. Coal treated by wet suppression consumes through moisture addition, a heat energy equivalent of 1 ton out of every 500 tons fired. The application of foam requires less than 10% of the moisture usually required for wet...

  9. A study of the troxler nuclear soil density and moisture gauges

    E-Print Network [OSTI]

    Friedenwald, Robert Lane

    1963-01-01T23:59:59.000Z

    Be 60 source was used in moisture determinations and a Co source in density measurements. Average deviations of 0. 8 pounds of water per cubic foot of soil were reported for moisture measurements. Density measurements varied by 3 pounds per cubic... foot. It was found that moisture readings may be affected by chemically bound water but for mineral soils, soil type generally has little effect on the calibration of these instruments. Goldberg et al (15) in 1955 constructed a sensitive, r liable...

  10. Validation of Atmospheric Infrared Sounder temperature and moisture profiles over tropical oceans and their impact

    E-Print Network [OSTI]

    Pu, Zhaoxia

    ] Tropical cyclones are one of the costliest and deadliest natural disasters in the United States and other the potential for economic damage and deaths. However, due to the lack of the conventional observations over/I satellite rainfall rates results in improvements in hurricane track forecasts in the GEOS global model [Hou

  11. Controlling Deformation in Elastic and Viscoelastic Beams Due to Temperature and Moisture Changes Using Piezoelectric Actuator

    E-Print Network [OSTI]

    Kuravi, Ramachandra Srinivasa Chaitanya

    2012-07-16T23:59:59.000Z

    variables in cases of actuated and unactuated beams. Four materials are chosen for this study; aluminium, epoxy, carbon fiber reinforced polymer with fiber volume fraction of 60 percent, and an epoxy-like viscoelastic material. The viscoelastic material...

  12. Effects of soil moisture on the responses of soil temperatures to climate change in cold regions

    E-Print Network [OSTI]

    Subin, Z.M.

    2014-01-01T23:59:59.000Z

    and the Commu- nity Earth System Model 1 (CESM1) (http://poorly simulated by current earth system models. A number of

  13. Dielectrometry measurements of moisture diffusion and temperature dynamics in oil impregnated paper insulated electric power cables

    E-Print Network [OSTI]

    Thomas, Zachary M. (Zachary Michael)

    2007-01-01T23:59:59.000Z

    Paper insulated lead covered (PILC) cables have played an important role in underground power distribution for a hundred years. Replacing aged PILC before failure is critical to managing power distribution. Three prominent ...

  14. Advanced MR moisture sensor market feasibility analysis. Executive summary

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This paper briefly documents activities, background information, and results of marketing studies on the Magnetic Resonance Advanced Moisture Sensor (AMS). The main goals of the study are to identify industrial uses to guide development efforts, to become familiar with the industrial and magnetic resonance research capabilities/resources at the Southwest Research Institute (SwRI), and to develop a summary data sheet describing the AMS product for use with a broad mail survey of potential users. The studies are being performed through an alliance of Quantum Magnetics, US DOE, SwRI, The Townsend Agency, and PAI Partners. Efforts are being focused on NIR, Raman, and other optical spectroscopies as process measurement tools for onstream applications. Domestic and world markets for process analytical instrumentation, process moisture instrumentation, and nuclear magnetic resonance instrumentation are summarized. Three applications are identified as the most promising for magnetic resonance instrumentation: (1) polymer production, (2) pharmaceuticals preparation, and (3) prepared food processing. It is estimated that the process magnetic resonance market could reach $5 to $10 million annually by the end of this decade.

  15. Temperature, Temperature, Earth, geotherm for

    E-Print Network [OSTI]

    Treiman, Allan H.

    Temperature, Temperature, Earth, geotherm for total global heat flow Venus, geotherm for total global heat flow, 500 Ma #12;Temperature, Temperature, #12;Earth's modern regional continental geotherms Venusian Geotherms, 500 Ma Temperature, Temperature, After Blatt, Tracy, and Owens Petrology #12;Ca2Mg5Si8

  16. High-Temperature Co-electrolysis of Steam and Carbon Dioxide for Direct Production of Syngas; Equilibrium Model and Single-Cell Tests

    SciTech Connect (OSTI)

    O'Brien, J. E.; Stoots, C. M.; Herring, J. S.; Hartvigsen, J. J.

    2007-07-01T23:59:59.000Z

    An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850ºC in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Cell area-specific resistance values were similar for steam electrolysis and coelectrolysis.

  17. High-Temperature Co-electrolysis of Carbon Dioxide and Steam for the Production of Syngas; Equilibrium Model and Single-Cell Tests

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; G. L. Hawkes; J. S. Herring; J. J. Hartvigsen

    2007-06-01T23:59:59.000Z

    An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850ºC in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Area-specific resistance values were similar for steam electrolysis and coelectrolysis.

  18. Peel and Shear Fracture Characterization of Debonding in FRP Plated Concrete Affected by Moisture

    E-Print Network [OSTI]

    Entekhabi, Dara

    polymer CFRP plated concrete systems by mechanically testing accelerated moisture conditioned mesoscalePeel and Shear Fracture Characterization of Debonding in FRP Plated Concrete Affected by Moisture fracture toughness as the quantification parameter of the CFRP-epoxy-concrete trilayer system, which

  19. Monitoring Soil Moisture and Drought Using a Thermal TwoSource Energy Balance Model

    E-Print Network [OSTI]

    Kuligowski, Bob

    Monitoring Soil Moisture and Drought Using a Thermal TwoSource Energy Balance Model Christopher. In general, dry soil or stressed vegetation heats up more rapidly than wet soil or unstressed vegetation, using one dual polarized channel (either Cband or Xband) for the retrieval of soil moisture

  20. Using moisture transport properties of rice seed components for identifying fissure resistance

    E-Print Network [OSTI]

    Thomas, Audrey Elizabeth

    2002-01-01T23:59:59.000Z

    , LaGrue, Lemont, and Cypress. Equilibrium moisture content (EMC) tests exposed 200 grams of brown rice to identify how the four varieties compare in their ability to hold moisture at a specific condition. Cypress, Lemont, and LaGrue tended to hold...

  1. SOIL MOISTURE RETENTION CHARACTERISTICS AT RD 838 OF I. G. N. P. STAGE -II

    E-Print Network [OSTI]

    Kumar, C.P.

    aquifers. For analytical studies on soil moisture regime, critical review and accurate assessment among soil moisture characteristic curves are attributed primarily to the differences in pore size structures. In addition, the curves generally show hysteresis according to the wetting or drying of soils

  2. NEC Hazardous classification and compliance regarding the surface moisture monitor measurement system

    SciTech Connect (OSTI)

    Bussell, J.H., WHC

    1996-06-12T23:59:59.000Z

    The National Electrical Code, NFPA 70, and National Fire Protection Association requirements for use of Surface Moisture Monitor Systems in classified locations are discussed. The design and configuration of the surface moisture monitor are analyzed with respect to how they comply with requirements of the National Electrical Code requirements, articles 500-504.

  3. SOIL MOISTURE CHARACTERIZATION USING MULTI-ANGULAR POLARIMETRIC RADARSAT-2 DATASETS

    E-Print Network [OSTI]

    Boyer, Edmond

    SOIL MOISTURE CHARACTERIZATION USING MULTI-ANGULAR POLARIMETRIC RADARSAT-2 DATASETS Hongquan Wang to be a solution to improve the effectiveness of bare soil char- acterization. However, the potential single and multiple incidence angle acquisitions is investigated against in situ soil moisture

  4. Dynamic Effects on Moisture Transport in Asphalt Concrete M. Emin Kutay1

    E-Print Network [OSTI]

    Aydilek, Ahmet

    Dynamic Effects on Moisture Transport in Asphalt Concrete M. Emin Kutay1 and Ahmet H. Aydilek2 2007 133:7 406 CE Database subject headings: Moisture; Asphalt concrete; Dynamics; Hydraulic and Magdalena 2002 ; however, limited research has been conducted in modeling dynamic flow in porous geomedia

  5. Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture

    E-Print Network [OSTI]

    Katul, Gabriel

    Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture Stefano Accepted 26 September 2013 Available online 9 October 2013 Keywords: Optimization Photosynthesis Soil moisture Stomatal conductance Transpiration a b s t r a c t Optimization theories explain a variety

  6. Moisture corrections in neutron coincidence counting of PuO/sub 2/

    SciTech Connect (OSTI)

    Stewart, J.E.; Menlove, H.O.

    1987-01-01T23:59:59.000Z

    Passive neutron coincidence counting is capable of 1% assay accuracy for pure, well-characterized PuO/sub 2/ samples that contain plutonium masses from a few tens of grams to several kilograms. Moisture in the sample can significantly bias the assay high by changing the (..cap alpha..,n) neutron production, the sample multiplication, and the detection efficiency. Monte Carlo calculations and an analytical model of coincidence counting have been used to quantify the individual and cumulative effects of moisture biases for two PuO/sub 2/ sample sizes and a range of moisture levels from 0 to 9 wt %. Results of the calculations suggest a simple correction procedure for moisture bias that is effective from 0 to 3 wt % H/sub 2/O. The procedure requires that the moisture level in the sample be known before the coincidence measurement.

  7. Dynamic Analysis of Moisture Transport Through Walls and Associated Cooling Loads in the Hot/Humid Climate of Florianopolis, Brazil 

    E-Print Network [OSTI]

    Mendes, N.; Winkelmann, F. C.; Lamberts, R.; Philippi, P. C.; Da Cunha, Neto, J. A. B.

    1996-01-01T23:59:59.000Z

    . The simulation results were compared to those obtained by pure conduction heat transfer without moisture effects. Also analyzed were the influence on cooling loads of high moisture content due to rain soaking of materials. and the influence of solar radiation...

  8. Caribbean and Pacific moisture sources on the Isthmus of Panama revealed from stalagmite and surface water d18

    E-Print Network [OSTI]

    Asmerom, Yemane

    Caribbean and Pacific moisture sources on the Isthmus of Panama revealed from stalagmite values from Panama and Costa Rica. The d18 O values decrease with distance from the Caribbean Sea a contribution of both Caribbean and Pacific sourced moisture to the isthmus. We estimated the Pacific moisture

  9. Recent Advances in Profile Soil Moisture Retrieval Jeffrey P. Walker, Garry R. Willgoose and Jetse D. Kalma

    E-Print Network [OSTI]

    Walker, Jeff

    and agriculture. The significance of soil moisture is its role in the partitioning of energy at the ground surface for hydrologic, climatic and agricultural studies, such observations of surface soil moisture must be related to accept remote sensing data as input to track soil moisture status in time. As surface observations

  10. Moisture in Molasses as a Factor in the Heating of Feeds.

    E-Print Network [OSTI]

    Halick, John V.; Richardson, L. R.

    1952-01-01T23:59:59.000Z

    sugars after inversion, moisture, Brix and ash. Moist.ure was determined by the vacuum oven drying method and ranged from 19 to over 31 percent. Over 71.0 percent of the samples contained 26 percent or more of lwater. If 10 percent of molasses... in a feed contain a normal amount of water, the extra water added in the molasses might raise the moisture content to an unsafe level. Different values for solids were obtained by the Brix and the vacuum oven drying methods, Brix is an unreliable...

  11. Experimental Study of Multi-type Macromolecule Porosity Moisture-Conditioned Material

    E-Print Network [OSTI]

    Huang, X.; Fan, Y.; Di, Y.

    2006-01-01T23:59:59.000Z

    MATERIALS AND EXPERIMENTAL DEVICES 4.1 The Experimental Materials (1) Porous materials: Concrete blocks, weight for 550Kg/m3, pore rate of 73%, saturated humidity rate of 45%, dimensions of 300?600?80mm. (2) Combined with the moisture conditioned... on buildings or wallpaper to adjust humidity. 2) Concrete blocks: 300?600?80mm. (3) Combined with the moisture conditioned plate and porous materials 1) Moisture conditioned plate: Absorbent resin adsorption salt solution, forms a Gel, mixed the Gel...

  12. Ultra-thin moisture barrier coatings for passive components

    E-Print Network [OSTI]

    Jensen, Robert A. (Robert Allen), 1980-

    2004-01-01T23:59:59.000Z

    Polymer Multi-Layer (PML) capacitors have demonstrated excellent performance for numerous power electronics applications, particularly where high temperature stability is required. These capacitors are sensitive to high ...

  13. area moisture sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    option in this regards because of its renewable, abundant, environment friendly nature. Gasification systems require high temperatures and an oxygenstarved environment to convert...

  14. atmospheric moisture content: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    option in this regards because of its renewable, abundant, environment friendly nature. Gasification systems require high temperatures and an oxygenstarved environment to convert...

  15. atmospheric moisture transports: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    option in this regards because of its renewable, abundant, environment friendly nature. Gasification systems require high temperatures and an oxygenstarved environment to convert...

  16. atmospheric moisture budget: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    option in this regards because of its renewable, abundant, environment friendly nature. Gasification systems require high temperatures and an oxygenstarved environment to convert...

  17. aquic moisture regime: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    option in this regards because of its renewable, abundant, environment friendly nature. Gasification systems require high temperatures and an oxygenstarved environment to convert...

  18. active heat moisture: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    option in this regards because of its renewable, abundant, environment friendly nature. Gasification systems require high temperatures and an oxygenstarved environment to convert...

  19. atmospheric moisture transport: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    option in this regards because of its renewable, abundant, environment friendly nature. Gasification systems require high temperatures and an oxygenstarved environment to convert...

  20. Compaction Effects on Uniformity, Moisture Diffusion, and Mechanical Properties of Asphalt Pavements

    E-Print Network [OSTI]

    Kassem, Emad Abdel-Rahman Ahmed

    2011-08-08T23:59:59.000Z

    in gyratory specimens were related to the mixture mechanical properties measured using the Overlay and Hamburg tests. The second part of this study focused on studying the relationship between air void distribution and moisture diffusion. A laboratory test...

  1. Investigation of Conditions for Moisture Damage in Asphalt Concrete and Appropriate Laboratory Test Methods

    E-Print Network [OSTI]

    Lu, Qing

    2005-01-01T23:59:59.000Z

    of Asphalt Concrete-Physical Testing. ” Final Report, #930-of Asphalt Concrete: Chemical Testing. ” Alabama Highwayconcrete mixes, it is preferred to use a mix that would have good moisture resistance under laboratory testing

  2. Investigation of Conditions for Moisture Damage in Asphalt Concrete and Appropriate Laboratory Test Methods

    E-Print Network [OSTI]

    Harvey, John T; Lu, Qing

    2005-01-01T23:59:59.000Z

    of Asphalt Concrete-Physical Testing. ” Final Report no.of Asphalt Concrete: Chemical Testing. ” Alabama Highwayconcrete mixes, it is preferable to use a mix that would have good moisture resistance under laboratory testing

  3. OVERSTORY-IMPOSED HETEROGENEITY IN SOLAR RADIATION AND SOIL MOISTURE IN A SEMIARID WOODLAND

    E-Print Network [OSTI]

    Breshears, David D.; Rich, Paul M.; Barnes, Fairley J.; Katherine, Campbell

    1997-01-01T23:59:59.000Z

    plants and the intercanopy patches that separate them, yielding an overstory with intermediate closure. Field measurements of microclimate at the scale of canopy patches, particularly for near-ground solar radiation and soil moisture, are largely lacking...

  4. The effects of aggregate gradation on moisture diffusivity in a cementious based material

    E-Print Network [OSTI]

    Szecsy, Richard

    1993-01-01T23:59:59.000Z

    Gravel), and the presence of fly ash (10% by cement weight or none). Also developed, is an experimental laboratory procedure which measures the moisture diffusivity of a cementious material. The method and procedure for measuring diffusivity developed...

  5. PATTERNS OF LEAF WETTABILITY ALONG AN EXTREME MOISTURE GRADIENT IN WESTERN PATAGONIA, ARGENTINA

    E-Print Network [OSTI]

    Brewer, Carol

    PATTERNS OF LEAF WETTABILITY ALONG AN EXTREME MOISTURE GRADIENT IN WESTERN PATAGONIA, ARGENTINA Patagonia, Argentina. Morphological and structural characteristics of leaves significantly affected leaf surfaces. Keywords: leaf wetness, morphology, water droplet, Patagonia, gradient. Introduction A large

  6. The effects of soil moisture on pecan weevil emergence and predicting drought delay

    E-Print Network [OSTI]

    Schraer, Stephen Martin

    1996-01-01T23:59:59.000Z

    soils. Drought conditions, induced on soil plots, as well as natural soil conditions were used to assess the effects of soil particle size distribution and soil moisture on soil hardness. Soil hardness can be determined by the following: 572...

  7. Modeling land surface processes of the midwestern United States : predicting soil moisture under a warmer climate

    E-Print Network [OSTI]

    Winter, Jonathan (Jonathan Mark)

    2010-01-01T23:59:59.000Z

    This dissertation seeks to quantify the response of soil moisture to climate change in the midwestern United States. To assess this response, a dynamic global vegetation model, Integrated Biosphere Simulator, was coupled ...

  8. Measurement of moisture and total reducing sugars using Near Infrared Spectroscopy

    E-Print Network [OSTI]

    Mehrubeoglu, Mehrube

    1995-01-01T23:59:59.000Z

    industrial applications. In this project, the accuracy and feasibility of measuring moisture and total reducing sugar content in a vegetable medium using a Near Infrared Spectroscopy technique was investigated as an alternative to slow and tedious classical...

  9. Long-Term Degradation Testing of High-Temperature Electrolytic Cells

    SciTech Connect (OSTI)

    C.M. Stoots; J.E. O'Brien; J.S. Herring; G.K. Housley; D.G. Milobar; M.S. Sohal

    2009-08-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This report presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  10. MODEL 9975 SHIPPING PACKAGE: IMPACT OF CAPLUG REMOVAL ON FIBERBOARD MOISTURE LEVEL

    SciTech Connect (OSTI)

    Daugherty, W.

    2011-06-23T23:59:59.000Z

    Two 9975 shipping packages were removed from KAC and provided to SRNL for test purposes, after both packages were found to exceed the 1 inch maximum criterion for the axial gap at the top of the package. Package 9975-01818 was found with an axial gap of 1.437 inch, and an estimated 2.5 liters of excess moisture in the lower fiberboard layers. Package 9975-02287 was found with an axial gap of 1.008 inch, and only slightly elevated moisture levels relative to typical packages. Prior data from the 9975 Surveillance Program has shown that the 9975 drum provides a degree of isolation, and will tend to preserve fiberboard moisture levels for an extended period of time. Both packages were provided to SRNL to identify whether removal of the 4 caplugs in each package would allow moisture to escape the package. Following testing with the caplugs removed for approximately 1 year, this report documents the findings from this effort. Two 9975 shipping packages removed from service in K-Area Complex (KAC) due to an excessive axial gap have been tested in SRNL to determine if caplug removal would facilitate the reduction of excess fiberboard moisture. An additional question to be answered through this testing was whether the resulting moisture loss would reduce the axial gap, reversing the effect seen during storage with excess moisture present. These packages have completed approximately 1 year in test, during which time the weight of each package has steadily decreased as a result of moisture migration out of the package. However, elevated moisture levels still remain in the packages. During this test period, the bottom fiberboard layers of package 9975-01818 (which contained the greater amount of excess moisture) experienced further compaction, and the axial gap of both packages has increased. This effort has shown that removal of the caplugs may not be a sufficient measure to rehabilitate packages with excess moisture or excess axial gaps in a timely manner. However, this measure might make a meaningful contribution in combination with other actions (to be determined). It is recommended that the caplug removal tests in SRNL be discontinued at this time.

  11. The influence of particle-size distribution and moisture levels on the formation of soil hardpans

    E-Print Network [OSTI]

    Bauer, Herman John

    1963-01-01T23:59:59.000Z

    THE INFLUENCE OF PARTICLE-SIZE DISTRIBUTION AND MOISTURE LEVELS ON THE FORMATION OF SOIL HARDPANS A Thesis By HERMAN J. BAUER Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE January, 1963 Major Subject: Soil Physics THE INFLUENCE OF PARTICLE-SIZE DISTRIBUTION AND MOISTURE LEVELS ON THE FORMATION OF SOIL HARDPANS A Thesis By HERMAN J. BAUER Approved as to style and content...

  12. The influence of particle-size distribution and moisture levels on the formation of soil hardpans 

    E-Print Network [OSTI]

    Bauer, Herman John

    1963-01-01T23:59:59.000Z

    THE INFLUENCE OF PARTICLE-SIZE DISTRIBUTION AND MOISTURE LEVELS ON THE FORMATION OF SOIL HARDPANS A Thesis By HERMAN J. BAUER Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE January, 1963 Major Subject: Soil Physics THE INFLUENCE OF PARTICLE-SIZE DISTRIBUTION AND MOISTURE LEVELS ON THE FORMATION OF SOIL HARDPANS A Thesis By HERMAN J. BAUER Approved as to style and content...

  13. Elemental Analyses of Hanford Surface Neutron Moisture Measurement Calibration Standard Samples

    SciTech Connect (OSTI)

    Watson, W.T., Westinghouse Hanford

    1996-07-31T23:59:59.000Z

    Elemental analyses have been performed on twenty samples taken from the moisture standards prepared to use in performing experimental calibrations of the surface neutron moisture measurement system. These standards consisted of mixtures of sand, hydrated alumina, and boron carbide. Elemental analyses were performed primarily to discover the quantities of any strong thermal neutron absorbers that may have been present in the mixture in unknown trace quantities.

  14. Effect of external stress on moisture diffusion in an epoxy resin and its composite material

    E-Print Network [OSTI]

    Henson, Michael Chamberlain

    1986-01-01T23:59:59.000Z

    EFFECT OF EXTERNAL STRESS ON MOISTURE DIFFUSION IN AN EPOXY RESIN AND ITS C(MPOSITE MATERIAL A Thesis by MICHAEL CHAMBERLAIN HENSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 1986 Major Subject: Civil Engineering EFFECT OF EXTERNAL STRESS ON MOISTURE DIFFUSION IN AN EPOXY RESIN AND ITS CCNPOSITE MATERIAL A Thesis by MICHAEL CHAMBERLAIN HENSON Approved as to style and content by: (Y...

  15. Distribution of soil and leaf water potentials of mature grapefruit trees under three soil moisture regimes

    E-Print Network [OSTI]

    Prathapar, Sanmugam Ahembaranathan

    1982-01-01T23:59:59.000Z

    DISTRIBUTION OF SOIL AND LEAF WATER POTENTIALS OF MATURE GRAPEFRUIT TREES UNDER THREE SOIL MOISTURE REGIMES A Thesis by SANMUGAM AHEMBARANATHAN PRATHAPAP, Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 1982 Major Subject; Agricultural Engineering DISTRIBUTION OF SOIL AND LEAF WATER POTENTIALS OF MATURE GRAPEFRUIT TREES UNDER THREE SOIL MOISTURE REGIMES A Thesis by SANMUGAM AHEMBARANATHAN PRATHAPAR...

  16. Dual frequency microwave radiometer measurements of soil moisture for bare and vegetated rough surfaces

    E-Print Network [OSTI]

    Lee, Siu Lim

    1974-01-01T23:59:59.000Z

    DUAL FREQUENCY MICROWAVE RADIOMETER MEASUREMENTS OF SOIL MOISTURE FOR BARE AND VEGETATED ROUGH SURFACES A Thesis by SIU LIM LEE Submitted to the Graduate College of Texas A(M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE August 1974 Major Subject: Electrical Engineering DUAL FREQUENCY MICROWAVE RADIOMETER MEASUREMENTS OF' SOIL MOISTURE FOR BARE AND VEGETATED ROUGH SURFACES A Thesis by SIU LIM LEE Approved as to style and content by: (C rman...

  17. Evaluation of oil shale bitumen as a pavement asphalt additive to reduce moisture damage susceptibility

    SciTech Connect (OSTI)

    Robertson, R.E.; Harnsberger, P.M.; Wolf, J.M.

    1991-01-01T23:59:59.000Z

    An unrefined shale bitumen was evaluated as an agent to reduce moisture damage susceptibility of asphalt aggregate mixtures. Some activity was observed but less than might have been expected based on the molecular weight and nitrogen content of the bitumen. The counter effects of free carboxylic acids, which are known to be variable in asphalt and which are also present in the unrefined bitumen, appear to diminish the activity of the bitumen to inhibit moisture damage. 5 refs., 1 tab.

  18. Potential Soil Moisture Products from the Aquarius Radiometer and Scatterometer Using an Observing System Simulation Experiment

    SciTech Connect (OSTI)

    Luo, Yan [I.M. Systems Group at NOAA/NCEP/EMC; Feng, Xia [George Mason University; Houser, Paul [George Mason University; Anantharaj, Valentine G [ORNL; Fan, Xingang [Western Kentucky University, Bowling Green; De Lannoy, Gabrielle [Ghent University, Belgium; Zhan, Xiwu [NOAA/NESDIS Center for Satellite Applications and Research; Dabbiru, Lalitha [Mississippi State University (MSU)

    2013-01-01T23:59:59.000Z

    Using an observing system simulation experiment (OSSE), we investigate the potential soil moisture retrieval capability of the National Aeronautics and Space Administration (NASA) Aquarius radiometer (L-band 1.413 GHz) and scatterometer (L-band, 1.260 GHz). We estimate potential errors in soil moisture retrievals and identify the sources that could cause those errors. The OSSE system includes (i) a land surface model in the NASA Land Information System, (ii) a radiative transfer and backscatter model, (iii) a realistic orbital sampling model, and (iv) an inverse soil moisture retrieval model. We execute the OSSE over a 1000 2200 km2 region in the central United States, including the Red and Arkansas river basins. Spatial distributions of soil moisture retrieved from the radiometer and scatterometer are close to the synthetic truth. High root mean square errors (RMSEs) of radiometer retrievals are found over the heavily vegetated regions, while large RMSEs of scatterometer retrievals are scattered over the entire domain. The temporal variations of soil moisture are realistically captured over a sparely vegetated region with correlations 0.98 and 0.63, and RMSEs 1.28% and 8.23% vol/vol for radiometer and scatterometer, respectively. Over the densely vegetated region, soil moisture exhibits larger temporal variation than the truth, leading to correlation 0.70 and 0.67, respectively, and RMSEs 9.49% and 6.09% vol/vol respectively. The domain-averaged correlations and RMSEs suggest that radiometer is more accurate than scatterometer in retrieving soil moisture. The analysis also demonstrates that the accuracy of the retrieved soil moisture is affected by vegetation coverage and spatial aggregation.

  19. FINAL REPORT FOR MOISTURE EFFECTS ON COMPACTION OF FIBERBOARD IN A 9975 SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Stefek, T.; Daugherty, W.; Estochen, E.

    2013-09-17T23:59:59.000Z

    Compaction of lower layers in the fiberboard assembly has been observed in 9975 packages that contain elevated moisture. Lab testing has resulted in a better understanding of the relationship between the fiberboard moisture level and compaction of the lower fiberboard assembly, and the behavior of the fiberboard during transport. In laboratory tests of cane fiberboard, higher moisture content has been shown to correspond to higher total compaction, greater rate of compaction, and continued compaction over a longer period of time. In addition, laboratory tests have shown that the application of a dynamic load results in higher fiberboard compaction compared to a static load. The test conditions and sample geometric/loading configurations were chosen to simulate the regulatory requirements for 9975 package input dynamic loading. Dynamic testing was conducted to acquire immediate and cumulative changes in geometric data for various moisture levels. Two sample sets have undergone a complete dynamic test regimen, one set for 27 weeks, and the second set for 47 weeks. The dynamic input, data acquisition, test effects on sample dynamic parameters, and results from this test program are summarized and compared to regulatory specifications for dynamic loading. Compaction of the bottom fiberboard layers due to the accumulation of moisture is one possible cause of an increase in the axial gap at the top of the package. The net compaction of the bottom layers will directly add to the axial gap. The moisture which caused this compaction migrated from the middle region of the fiberboard assembly (which is typically the hottest). This will cause the middle region to shrink axially, which will also contribute directly to the axial gap. Measurement of the axial gap provides a screening tool for identifying significant change in the fiberboard condition. The data in this report provide a basis to evaluate the impact of moisture and fiberboard compaction on 9975 package performance during storage at the Savannah River Site (SRS).

  20. Heating of solid earthen material, measuring moisture and resistivity

    DOE Patents [OSTI]

    Heath, W.O.; Richardson, R.L.; Goheen, S.C.

    1994-07-19T23:59:59.000Z

    The present invention includes a method of treating solid earthen material having volatile, semi-volatile, and non-volatile contaminants. Six electrodes are inserted into a region of earthen material to be treated in a substantially equilateral hexagonal arrangement. Six phases of voltages are applied to corresponding electrodes. The voltages are adjusted within a first range of voltages to create multiple current paths between pairs of the electrodes. The current paths are evenly distributed throughout the region defined by the electrodes and therefore uniformly heat the region. The region of earthen material is heated to a temperature sufficient to substantially remove volatile and semi-volatile contaminants by promoting microbial action. This temperature is less than a melting temperature of the earthen material. 13 figs.

  1. Electronmagnetic induction probe calibration for electrical conductivity measurements and moisture content determination of Hanford high level waste

    SciTech Connect (OSTI)

    Wittekind, W.D., Westinghouse Hanford

    1996-05-23T23:59:59.000Z

    Logic of converting EMI measured electrical conductivity to moisture with expected uncertainty. Estimates from present knowledge, assumptions, and measured data. Archie`s Law has been used since the 1940`s to relate electrical conductivity in porous media to liquid volume fraction. Measured electrical conductivity to moisture content uses: Porosity, Interstitial liquid electrical conductivity, Solid particle density,Interstitial liquid density, and interstitial liquid water content. The uncertainty of assumed values is calculated to determine the final moisture wt.% result uncertainty.

  2. Atmospheric Moisture Budget and Spatial Resolution Dependence of Precipitation Extremes in Aquaplanet Simulations

    SciTech Connect (OSTI)

    Yang, Qing; Leung, Lai-Yung R.; Rauscher, Sara; Ringler, Todd; Taylor, Mark

    2014-05-01T23:59:59.000Z

    This study investigates the resolution dependency of precipitation extremes in an aqua-planet framework. Strong resolution dependency of precipitation extremes is seen over both tropics and extra-tropics, and the magnitude of this dependency also varies with dynamical cores. Moisture budget analyses based on aqua-planet simulations with the Community Atmosphere Model (CAM) using the Model for Prediction Across Scales (MPAS) and High Order Method Modeling Environment (HOMME) dynamical cores but the same physics parameterizations suggest that during precipitation extremes moisture supply for surface precipitation is mainly derived from advective moisture convergence. The resolution dependency of precipitation extremes mainly originates from advective moisture transport in the vertical direction. At most vertical levels over the tropics and in the lower atmosphere over the subtropics, the vertical eddy transport of mean moisture field dominates the contribution to precipitation extremes and its resolution dependency. Over the subtropics, the source of moisture, its associated energy, and the resolution dependency during extremes are dominated by eddy transport of eddies moisture at the mid- and upper-troposphere. With both MPAS and HOMME dynamical cores, the resolution dependency of the vertical advective moisture convergence is mainly explained by dynamical changes (related to vertical velocity or omega), although the vertical gradients of moisture act like averaging kernels to determine the sensitivity of the overall resolution dependency to the changes in omega at different vertical levels. The natural reduction of variability with coarser resolution, represented by areal data averaging (aggregation) effect, largely explains the resolution dependency in omega. The thermodynamic changes, which likely result from non-linear feedback in response to the large dynamical changes, are small compared to the overall changes in dynamics (omega). However, after excluding the data aggregation effect in omega, thermodynamic changes become relatively significant in offsetting the effect of dynamics leading to reduce differences between the simulated and aggregated results. Compared to MPAS, the simulated stronger vertical motion with HOMME also results in larger resolution dependency. Compared to the simulation at fine resolution, the vertical motion during extremes is insufficiently resolved/parameterized at the coarser resolution even after accounting for the natural reduction in variability with coarser resolution, and this is more distinct in the simulation with HOMME. To reduce uncertainties in simulated precipitation extremes, future development in cloud parameterizations must address their sensitivity to spatial resolution as well as dynamical cores.

  3. STATUS REPORT FOR MOISTURE EFFECTS ON COMPACTION OF FIBERBOARD IN A 9975 SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Stefek, T.; Daugherty, W.; Estochen, E.

    2011-06-23T23:59:59.000Z

    Compaction of lower layers in the fiberboard overpack has been observed in 9975 packages that contain elevated moisture. Lab testing has resulted in a better understanding of the relationship between the fiberboard moisture level and compaction of the lower fiberboard assembly, and the behavior of the fiberboard during transport. In laboratory tests, higher moisture content has been shown to correspond to higher total compaction of fiberboard material, greater rate of compaction, and continued compaction over a longer period of time. In addition, laboratory tests have shown that the application of a dynamic load results in higher fiberboard compaction. The test conditions and sample geometric/loading configurations were chosen to simulate the regulatory requirements for 9975 package input dynamic loading. Dynamic testing was conducted over a period of six months to acquire immediate and cumulative changes in geometric data for various moisture levels. Currently, one sample set has undergone a complete dynamic test regimen, while testing of another set is still in-progress. The dynamic input, data acquisition, test effects on sample dynamic parameters, and interim results from this test program are summarized and compared to regulatory specifications for dynamic loading. This will provide a basis from which to evaluate the impact of moisture and fiberboard compaction on the safety basis for transportation (Safety Analysis Report for Packaging) and storage (facility Documented Safety Analysis) at the Savannah River Site (SRS).

  4. Variation in soil moisture and N availability modulates carbon and water exchange in a California grassland experiment

    E-Print Network [OSTI]

    St. Clair, S.B.

    2010-01-01T23:59:59.000Z

    in soil moisture and N availability modulates carbon andamount and timing, N availability, and plant communityparticularly as water availability was increased. These

  5. Sequential high temperature reduction, low temperature hydrolysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high temperature reduction, low temperature hydrolysis for the regeneration of sulfated NOx trap catalysts. Sequential high temperature reduction, low temperature hydrolysis for...

  6. Understanding the Temperature and Humidity Environment Inside a PV Module (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This PowerPoint presentation was originally given by Michael Kempe of NREL in February 2013 detailing a project funded by the SunShot Initiative. Understanding the Temperature and Humidity Environment Inside a PV Module aims to show that by choosing humidity conditions that more closely match the use environment, one can minimize the uncertainty associated with moisture induced degradation modes.

  7. Determination of Binding Constants of Cyclodextrins in Room-Temperature Ionic Liquids

    E-Print Network [OSTI]

    Reid, Scott A.

    unique chemical and physical properties, including being air and moisture stable, a high solubility power with supercritical fluid CO2;9-11 (4) electrochemical reactions;12,13 and (5) as a medium for enzymatic reactions.14Determination of Binding Constants of Cyclodextrins in Room-Temperature Ionic Liquids by Near

  8. Shear Modulus of Cylindrical CFRP Tendons Exposed to Moisture

    E-Print Network [OSTI]

    Toumpanaki, Eleni; Lees, Janet M.; Terrasi, Giovanni P.

    2014-09-02T23:59:59.000Z

    the degree 69 of molecular crosslinking in a resin matrix and consequently influences the chemical 70 stability and mechanical performance on the macroscale. The polymerisation of epoxy 71 groups is the result of three principal curing reactions. The first... against hydrolysis (chain scission) due to the 112 stability of the epoxy resin and carbon fibres when subjected to wet environments. 113 Nevertheless, hydrolysis has been observed in epoxy matrices exposed in distilled water at 114 high temperatures...

  9. ANALYSIS OF THE AXIAL GAP VS FIBERBOARD MOISTURE CONTENT IN A 9975 SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Daugherty, W.

    2013-09-30T23:59:59.000Z

    The fiberboard assembly within a 9975 shipping package contains a modest amount of moisture, which can migrate to the cooler regions of the package when an internal heat load is present. Typically, this leads to increased moisture levels in the bottom fiberboard layers, along with elevated chloride levels which can leach from the fiberboard. Concerns have been raised that this condition could lead to corrosion of the stainless steel drum. It has been postulated that checking the axial gap at the top of the package against the current 1 inch maximum criterion provides a sufficient indication regarding the integrity of the fiberboard and drum. This report estimates the increase in axial gap that might be expected for a given moisture increase in the bottom fiberboard layers, and the likelihood that the increase will create a nonconforming condition that will lead to identification of the moisture increase. Using data relating the fiberboard moisture content with the degree of compaction under load, the present analysis indicates that the axial gap will increase by 0.282 inch as the bottom fiberboard layers approach the saturation point. This increase will cause approximately 58% of packages with otherwise nominal package component dimensions to fail the axial gap criterion, based on a survey of axial gap values recorded in K-Area surveillance activities. As the moisture content increases above saturation, the predicted increase in axial gap jumps to 0.405 inch, which would result in 92% or more of all packages failing the axial gap criterion. The data and analysis described in this report are specific to cane fiberboard. While it is expected that softwood fiberboard will behave similarly, such behavior has not yet been demonstrated.

  10. Tropical synoptic scale moisture fields observed from the Nimbus-7 SMMR

    E-Print Network [OSTI]

    Fink, Jeffrey David

    1989-01-01T23:59:59.000Z

    TROPICAL SYNOPTIC SCALE MOISTURE FIELDS OBSERVED FROM THE NIMBUS ? 7 SMMR A Thesis by JEFFREY DAVID FINK Submitted to the OfFice of Graduate Studies of Texas AkM University in partial fulfillment of the requirements for the degree of MASTER... ( iliember) AIarshnll J. 1VIcVnrlnnd ( (tlemb er ) James Il. Scoggins (Read of Departnrent) i%lay 1989 ns ABSTRACT Tropical Synoptic Scale Moisture Fields Observed from the NIMBUS ? 7 SMMR. (May 1989) Jefl'rey David Fink, B. S. , Texas A...

  11. Study of the moisture-fertility requirements of cotton in the Brazos River Valley, 1957

    E-Print Network [OSTI]

    Keese, Carroll Wayne

    1958-01-01T23:59:59.000Z

    of the moisture level imposed, and that water was not used efficiently from the two to five-foot zone. Hamilton and Stanberry (2) investigated the effects of varying rates of nitrogen fertilizer on the need of cotton for irrigation at Yuma, Arizona...LIBRARY II a III COLLEI:. e& 7EXAs STUDY OF THE MOISTURE-FERTILITY REQUIREMENTS OF COTTON IN THE BRAZOS RIVER VALLEY - 1957 A Thesis by CARROLL VIAYNE KEESE Submitted to the Graduate School of the Agricultural and Mechanical College...

  12. The effects of soil moisture on the phytotoxicity of a microwave field

    E-Print Network [OSTI]

    Whatley, Thomas Lamar

    1974-01-01T23:59:59.000Z

    THF. FFFECTS OF SOIL MOISTURE ON THE PHYTOTOXICITY OF A MICROWAVE FIELD A Thesis THOMAS LAMAR WHATLEY Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... August 1974 Ma5or Sub)ect: Agronomy THE EFFECTS OF SOIL MOISTURE ON THE PHYTOTOXICITY OF A MICROHAVE FIELD A Thesis by THOMAS LAMAR VHATLEY Approved as to style and content by: (Chairman of Committee) (Head of Department) Member) ( t) August...

  13. A climatology of tropical moisture bursts in the eastern North Pacific Ocean

    E-Print Network [OSTI]

    Smith, Neil Ray

    1986-01-01T23:59:59.000Z

    A CLIil'IATOLOGY OF TROFICAL MOISTURE BURSTS IN THF. EASTERN NORTH PACIFIC OCEAN A Theseus NEIL R A Y SMITH Submitted to the Graduate College of' Texas AKIil University in partial fulfil)nient of the requirements I'o. the degree of MASTER... OF SCIENCE December 1986 M;i;iir Subject: Meteorology A CLIMATOLOGY OF TROPICAL MOISTURE BURSTS IN THE EASTERN NORTH PACIFIC OCEAN A Thesis NEIL RAY SMITH Approved as to style and content by: James P. McE uirk (Co-Chairman) ylmer H, Thompson (Co...

  14. Observing the synoptic structure of two moisture bursts

    E-Print Network [OSTI]

    Schaeffer, James Royal

    1985-01-01T23:59:59.000Z

    ()'N 115'W 25'N 112 'l1 20 N 109 otf 1000 mh 105 N Fig. 1. SATEM cross section of temperature distributton for 0000 GMT 21 January 1979. SATEM OOGMT 23 JAN 79 -00'C 200 b -50 oc -40 C -30 'C 400 mb . 20 oc -10 'C 600 mb 0'C +10'C... is similar, although the area of significant variability around 15 N/145 W has shrunk considerably. The corresponding analysis at 700 mb (Fig. 15) continues this trend of lesser variability all along the burst axes. There is a 2 ~ e B e g 2 ~ "2 EQ 1...

  15. Examining the Relationship between Antecedent Soil Moisture and Summer Precipitation in the U.S. Great Plains

    E-Print Network [OSTI]

    Meng, Lei

    2010-01-14T23:59:59.000Z

    ............................................................................................. 67 5.2 Spatial variations in the soil moisture-precipitation relationship............ 67 5.3 Temporal variations in the soil moisture-precipitation relationship ....... 71 5.4 Persistence of spatial patterns in SM anomalies... ..................................... 74 5.5 Temporal variations in the relationship between GP summer precipitation and Ni?o SSTs ................................................................... 75 5.6 SST persistence versus SM persistence...

  16. Effect of grid size on runoff and soil moisture for a variable-source-area hydrology model

    E-Print Network [OSTI]

    Walter, M.Todd

    landscapes are dependent on the distribution and pattern of soil moisture and water transport. In this paper for efficient manage- ment of water quality [U.S. Environmental Protection Agency, 1994, 1995, 1996Effect of grid size on runoff and soil moisture for a variable-source-area hydrology model Wen

  17. SOIL MOISTURE RETENTION CHARACTERISTICS AND HYDRAULIC CONDUCTIVITY FOR DIFFERENT AREAS IN INDIA IN SELECTED STATES

    E-Print Network [OSTI]

    Kumar, C.P.

    systems require knowledge of the relationships between soil moisture content (), soil water pressure (h and water content relationship, hydraulic conductivity and water content relationship of the soil, saturated conductivity is affected markedly by the volumetric water content of soil. The relation between matric

  18. MOISTURE EFFECT ON DURABILITY OF AXIALLY LOADED CONCRETE-FILLED TUBULAR FRP PILES

    E-Print Network [OSTI]

    MOISTURE EFFECT ON DURABILITY OF AXIALLY LOADED CONCRETE-FILLED TUBULAR FRP PILES Miguel Pando, Ph_rizkalla@ncsu.edu ABSTRACT Fiber reinforced polymer (FRP) composite piles are a possible foundation alternative for projects located in harsh marine environments. Problems associated with traditional pile materials used in harsh

  19. Feasibility study of prompt gamma neutron activation for NDT measurement of moisture in stone and brick

    SciTech Connect (OSTI)

    Livingston, R. A.; Al-Sheikhly, M. [Materials Science and Engineering Dept., U. of Maryland, College Park MD 20742 (United States); Grissom, C.; Aloiz, E. [Museum Conservation Institute, Smithsonian Institution, Washington DC 20746 (United States); Paul, R. [Chemical Sciences Division, NIST, Gaithersburg MD 20899 (United States)

    2014-02-18T23:59:59.000Z

    The conservation of stone and brick architecture or sculpture often involves damage caused by moisture. The feasibility of a NDT method based on prompt gamma neutron activation (PGNA) for measuring the element hydrogen as an indication of water is being evaluated. This includes systematic characterization of the lithology and physical properties of seven building stones and one brick type used in the buildings of the Smithsonian Institution in Washington, D.C. To determine the required dynamic range of the NDT method, moisture-related properties were measured by standard methods. Cold neutron PGNA was also used to determine chemically bound water (CBW) content. The CBW does not damage porous masonry, but creates an H background that defines the minimum level of detection of damaging moisture. The CBW was on the order of 0.5% for all the stones. This rules out the measurement of hygric processes in all of the stones and hydric processed for the stones with fine scale pore-size distributions The upper bound of moisture content, set by porosity through water immersion, was on the order of 5%. The dynamic range is about 10–20. The H count rates were roughly 1–3 cps. Taking into account differences in neutron energies and fluxes and sample volume between cold PGNA and a portable PGNA instrument, it appears that it is feasible to apply PGNA in the field.

  20. A Satellite Study of Tropical Moist Convection and Environmental Variability: A Moisture and Thermal Budget Analysis

    E-Print Network [OSTI]

    Masunaga, Hirohiko

    radiometer and scatterometer aboard different platforms. Satellite measurements of atmospheric parameters of moisture and dry static energy and their vertical flux at cloud base from satellite observations alone convergence for highly organized systems; 2) FT diabatic heating is largely offset on an instantaneous basis

  1. Passive microwave soil moisture downscaling using evaporative fraction Olivier Merlin1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    stations (METFLUX) and six flights of the L-band Push Broom Microwave Radiometer (PBMR). For each PBMR fraction (EF), which is the ratio of the evapotranspiration to the total energy available at the surface, especially for high soil moisture values. Those results illustrate the potential use of high

  2. Evaluation of ERS Scatterometer soil moisture products over a half-degree region in Southwestern France

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Based on a high resolution soil moisture simulation (1km²) validated at the local scale, the ERS in the water and energy exchanges between the land surface and the atmosphere. Several authors have shown027231 #12;Aeronautics and Space Administration (NASA) sensors such as the AMSR-E radiometer (since 2002

  3. Soil moisture variability of root zone profiles within SMEX02 remote sensing footprints

    E-Print Network [OSTI]

    as the par- titioning of incoming solar radiation and long wave radia- tion into outgoing long wave radiation.e., various active and passive microwave sensors), which provide mean sur- face soil moisture (0­5 cm) values footprints can provide a blueprint to design ground-based experiments and net- works and to efficiently use

  4. Characterization of fracture patterns and hygric properties for moisture flow modelling in cracked concrete

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of building materials is far from complete. The pore structure of the material itself may change over time assessment, not only of building and building components, but of any built structure in general structures, as well as on the health and comfort of their occupants. Any analysis of moisture transfer

  5. The Effects of Roof Membrane Color on Moisture Accumulation in Low-slope Commercial Roof Systems

    SciTech Connect (OSTI)

    Kehrer, Manfred [ORNL

    2011-01-01T23:59:59.000Z

    The use of highly reflective roof membrane systems is being promoted and in some cases required in energy codes and green building codes and standards. Highly reflective membranes, which typically are light in color, have demonstrated reduced overall energy consumption in cooling dominated climate. These membranes also are theorized to reduce the heat island effect. Concern has been expressed about using highly reflective roof membrane systems in cool to cold climate zones because they potentially increase moisture accumulation in roof systems. Roof membranes are vapor retarders. The theory is that highly reflective membranes reflect the heat that could enter the roof assembly, potentially providing a condensing surface on the cold side of the roof assembly during winter months. The other concern is that roof systems using highly reflective membranes will not get hot enough during the summer months to dry out moisture that may have condensed or otherwise entered the roof assembly. This study focuses on mechanically attached, highly reflective, single-ply roof systems installed on low-slope (less than 2:12) structures in cool to cold climate zones. Three sources of data are considered when determining the moisture accumulation potential of these systems. 1.Test roof cuts taken during the winter months 2.Modeling data from a building envelope model specifically designed to evaluate moisture accumulation 3.Data from previous studies to determine the effects of roof membrane color on the drying rate of low-slope roof assemblies

  6. ASSESSMENT OF BISCUIT MOISTURE AND BISCUIT BROWNING Jens Michael Carstensen1

    E-Print Network [OSTI]

    weight moisture measurements. The data set includes biscuits from different lines and both hot and cooled. The imaging system, VideometerLab (www.videometer.com) captures 18 high resolution spectral images representations may be estimated in both the biscuit center region and in the edge/corner region. CIELAB

  7. Uncertainties in Estimating Moisture Fluxes over the Intra-Americas Sea ALBERTO M. MESTAS-NUEZ

    E-Print Network [OSTI]

    by these uncertainties. Therefore, NCEP­ NCAR reanalysis, with its global coverage and long-term record, can be used-third of all the summer moisture that enters the continental United States is transported by the GPLLJ (Helfand United States. Future re- search aimed at understanding summer precipitation must therefore deal

  8. Monitoring ET, Soil Moisture Saves Farmers Water, Energy, Time and Money

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Monitoring ET, Soil Moisture Saves Farmers Water, Energy, Time and Money By Sandi Alswager Karstens irrigation," said Gary Zoubek, extension educator in York County. "Using these tools not only saves energy that these two tools used together can save two to three inches of irrigation water per season, he said

  9. Fuel moisture influences on fire-altered carbon in masticated fuels: An experimental study

    E-Print Network [OSTI]

    ] Biomass burning is a significant contributor to atmospheric carbon emissions but may also provide mastication (mechanical forest thinning) and fire convert biomass to black carbon is essential moisture and its role in dictating both the quantity and quality of the carbon produced in masticated fuel

  10. Effectiveness of vertical moisture barriers in highway pavements on expansive soils

    E-Print Network [OSTI]

    Jayatilaka, Ranasinghege

    1993-01-01T23:59:59.000Z

    finite element program, FLODEF, which couples moisture flow and elasticity was calibrated to reproduce the field observations of the suction in each of the locations. The program was then used to perform a study of the effects of climatic zone, degree...

  11. Evapotranspiration and regional probabilities of soil moisture stress in rainfed crops, southern India

    E-Print Network [OSTI]

    Biggs, Trent

    India Trent W. Biggs a, *, Prasanta K. Mishra b , Hugh Turral c a Department of Geography, San Diego 0902; fax: +1 619 594 4938. E-mail addresses: tbiggs@mail.sdsu.edu (T.W. Biggs), pkmbellary in press as: Biggs, T.W. et al., Evapotranspiration and regional probabilities of soil moisture stress

  12. The effects of moisture and particle size of feedlot biomass on co-firing burner performance 

    E-Print Network [OSTI]

    Chen, Chen-Jung

    2001-01-01T23:59:59.000Z

    increased from 350 ppm to 650 ppm while CO decreased from 46,000 ppm to 18,000 ppm (data measured at the first probe, 6" from the burner). The external water injection used to simulate high moisture FB decreased the pollutant emissions (NO[]) from 570 ppm...

  13. Modeling studies of gas movement and moisture migration at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Tsang, Y.W.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01T23:59:59.000Z

    Modeling studies on moisture redistribution processes that are mediated by gas phase flow and diffusion have been carried out. The problem addressed is the effect of a lowered humidity of the soil gas at the land surface on moisture removal from Yucca Mountain, the potential site for a high-level nuclear waste repository. At the land surface, humid formation gas contacts much drier atmospheric air. Near this contact, the humidity of the soil gas may be considerably lower than at greater depth, where the authors expect equilibrium with the liquid phase and close to 100% humidity. The lower relative humidity of the soil gas may be modeled by imposing, at the land surface, an additional negative capillary suction corresponding to vapor pressure lowering according to Kelvin`s Equation, thus providing a driving force for the upward movement of moisture in both the vapor and liquid phases. Sensitivity studies show that moisture removal from Yucca Mountain arising from the lowered-relative-humidity boundary condition is controlled by vapor diffusion. There is much experimental evidence in the soil literature that diffusion of vapor is enhanced due to pore-level phase change effects by a few orders of magnitude. Modeling results presented here will account for this enhancement in vapor diffusion.

  14. UNCORRECTEDPROOF 1 Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil

    E-Print Network [OSTI]

    Boyer, Edmond

    of environmental applications including meteor- 33 ology, hydrology, water resource management and climatology. 34UNCORRECTEDPROOF 1 Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil Kerr b 4 a Civil and Environmental Engineering, The University of Melbourne, Australia 5 b Centre d

  15. Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses

    E-Print Network [OSTI]

    Fasullo, John

    Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses KEVIN E energy and hydrological cycles from eight current atmospheric reanalyses and their depiction of changes over time. A brief evaluation of the water and energy cycles in the latest version of the NCAR climate

  16. Hydrogen and moisture getter and absorber for sealed devices

    DOE Patents [OSTI]

    Smith, H.M.; Schicker, J.R.

    1999-03-30T23:59:59.000Z

    The present invention is a hydrogen getter and method for formulating and using the getter. This getter effectively removes hydrogen gas typically present in many hermetically-sealed electronic applications where the presence of such gas would otherwise be harmful to the electronics. The getter is a non-organic composition, usable in a wide range of temperatures as compared to organic getters. Moreover, the getter is formulated to be used without the need for the presence of oxygen. The getter is comprised of effective amounts of an oxide of a platinum group metal, a desiccant, and a gas permeable binder which preferably is cured after composition in an oxygen-bearing environment at about 150 to about 205 degrees centigrade.

  17. Hillslope-scale soil moisture estimation with a physically-based ecohydrology model and L-band microwave remote sensing observations from space

    E-Print Network [OSTI]

    Flores, Alejandro Nicolas

    2009-01-01T23:59:59.000Z

    Soil moisture is a critical hydrosphere state variable that links the global water, energy, and carbon cycles. Knowledge of soil moisture at scales of individual hillslopes (10's to 100's of meters) is critical to advancing ...

  18. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01T23:59:59.000Z

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  19. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    DOE Patents [OSTI]

    Sikka, Vinod K. (Clinton, TN)

    1992-01-01T23:59:59.000Z

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  20. Early-age concrete temperature and moisture relative to curing effectiveness and projected effects on selected aspects of slab behavior

    E-Print Network [OSTI]

    Ye, Dan

    2009-05-15T23:59:59.000Z

    . Palazzolo for serving as advisory committee members. vi TABLE OF CONTENTS Page ABSTRACT .....................................................................................................................iii DEDICATION... ..................................................................................................................iv ACKNOWLEDGMENTS.................................................................................................. v TABLE OF CONTENTS..................................................................................................vi LIST...

  1. Reconstitution of sorghum grain: effects of time, temperature and moisture upon total gas production in an in vitro system

    E-Print Network [OSTI]

    Wilfong, Charlie Birch

    1969-01-01T23:59:59.000Z

    advantage in feed efficien y over dry grain for reconstituted sorghum grain fed to bulls for a 102 day firishing period Gains were hicher for bulls fed dr) crain due to increased feed consump+. 'on. Riggs and Nal lace (1962) also reported. reduced intake...:. Sor storace ano: )he risk '. . valved in leavirg or: . r ". crain in th ~ S'eld to dry as well as 'he adv nt ~f air t. :g&. t =- ore. e reviv. d in=wrest in hiah moissure grain. Rigg et a) ?!195' ) and Rigc s !1962; reported success irhsrvesting...

  2. Experimental investigation of moisture and temperature conditioning of C600/5208 graphite/epoxy composite material

    E-Print Network [OSTI]

    Grieger, Kenneth Allen

    1979-01-01T23:59:59.000Z

    done to discover improved techniques for the determina- tion of !?oisture content. One method which was found successful in [IO) was to measure the electrical res1stivity of a test, specimen. This study showed a Iinear relationship between electrica...

  3. The effects of temperature and soil moisture on the germination and emergence of three perennial warm season grasses

    E-Print Network [OSTI]

    Ohlenbusch, Paul Dietrich

    1966-01-01T23:59:59.000Z

    1'he seed unit was the extracted caryopsls The caryopsos were examined under magnification to insure that only w?hole, undamaged seed units w re used, Cne hundred treated c:. . ryopses distribut??d evenly over blotter or pl n ed at a one-h, *, lf... within 'SOOI83d 3Wli 3Ald. h03SNOO 338'. 83hO 3AIJV1AWAQ S3WIS38 38ALVII3dW33. NAOd LV S3SSVBS 33IIHJ dO NOIJVNII%I3S 1 38ASIB I wvBs sdvo30ls Xo ' C 'LD 'LD 'Lee 'Lee 1 99 1 I9 'L 99 '1 '169 90 ?99 169 'ale 19l 'Lel Cl '196 1 CD C 00...

  4. Test plan for long-term, low-temperature oxidation of BWR spent fuel

    SciTech Connect (OSTI)

    Einziger, R.E.

    1988-12-01T23:59:59.000Z

    Preliminary studies indicated the need for more spent fuel oxidation data in order to determine the probable behavior of spent fuel in a tuff repository. Long-term, low-temperature testing was recommended in a comprehensive technical approach to (1) confirm the findings of the short-term thermogravimetric analysis tests; (2) evaluate the effects of variables such as burnup, atmospheric moisture,and fuel type on the oxidation rate; and (3) extend the oxidation data base to representative repository temperatures and better define the temperature dependence of the operative oxidation mechanisms. This document presents the test plan to study the effects of atmospheric moisture and temperature on oxidation rate and phase formation using a large number of boiling-water reactor fuel samples. Tests will run for up to two years, use characterized fragmented and pulverized fuel samples, cover a temperature range of 110{degree}C to 175{degree}C, and be conducted with an atmospheric moisture content ranging from <{minus}55{degree}C to {approximately}80{degree}C dew point. After testing, the samples will be examined and made available for leaching testing. 15 refs., 2 figs., 2 tabs.

  5. Substrate Moisture Content Effects on Growth and Shelf Life of Angelonia angustifolia

    E-Print Network [OSTI]

    Bingham, Alison

    2012-07-16T23:59:59.000Z

    [Impatiens walleriana (Hook.)], petunia, salvia [Salvia splendens Sellow (ex Roemer & J.A. Schultes)] and vinca [Catharanthus roseus (L.) G. Don.] for an extended period of time despite varying plant sizes with little to no runoff and wastage of water... moisture sensors and solenoid valves interfaced to an irrigation controller. When ? dropped below the set point, the controller opened solenoid valves and the impatiens, petunias, salvia, and vinca were irrigated and substrate water content was returned...

  6. Biochemical changes in the proteins of sorghum grain during moisture reconstitution

    E-Print Network [OSTI]

    Billings, Toby Jackson

    1972-01-01T23:59:59.000Z

    MICROORGANISM INHABITING SORGHUM GRAIN AFTER RECONSTITUTION Medium Growth Acid Gas MR VP Nitrate Reduction Mannose yes yes no Glucose yes yes no Sucrose yes no no Gal actos e yes yes no Mannitol Starch Maltose yes yes yes no no yes...BIOCHEMICAL CHANGES IN THE PROTEINS OF SORGHUM GRAIN DURING MOISTURE RECONSTITUTION A Thesis by TOBY JACKSON BILLINGS Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirement for the degree...

  7. Energy Balance Partitioning and Net Radiation Controls on Soil Moisture – Precipitation Feedbacks

    E-Print Network [OSTI]

    Jones, Aubrey R.; Brunsell, Nathaniel A.

    2009-01-14T23:59:59.000Z

    in determining regional weather and climate. Although this idea has been widely accepted, an under- standing of the physical processes and the scales over which these interactions occur remains somewhat limited. Improving the current understanding... of these relationships has important implications for increasing predictability of local weather and climate. According to Barros and Hwu (Barros and Hwu 2002), the basis of studies on land–atmosphere interactions is the idea that moisture and energy gradients across a...

  8. Effect of external stress on moisture diffusion in an epoxy resin and its composite material 

    E-Print Network [OSTI]

    Henson, Michael Chamberlain

    1986-01-01T23:59:59.000Z

    ) Michael Chamberlain Henson, B. S. , Texas A&N University Chairman of Advisory Comnittee: Dr. Y. Weitsman The effects of stress on moisture diffusion in a graphite epoxy composrte material have been studied experimentally by examining the correspondrng... diffusion at all stress levels while the graphite epoxy generated results indicative of Non-Fickean, . concentration dependent diffusion at different levels of stress. The external stress affected both materials in a similar manner, causing...

  9. Effect of an external stress on moisture diffusion in composite materials 

    E-Print Network [OSTI]

    Porth, Edward John

    1983-01-01T23:59:59.000Z

    . . 49 LIST OF FIGURES Figure Page Cure Cycle for Hexcel F155 Graphite/Epoxy. . Cure Cycle for Narmco M329-7 Adhesive. Final Configuration of the Graphite/Epoxy and Stainless Steel Tensile Coupons. Load Frame Used to Stress Tensile Coupons During...-ply laminates absorbed more moisture than unidirectional laminates. However, it was also noted that cross-ply laminates are less compact than unidirectional laminates. Gillat and Broutman [5] subjected bidirectional graphite/epoxy laminates to external loads...

  10. Moisture performance of sealed attics in the mixed-humid climate

    SciTech Connect (OSTI)

    Boudreaux, Philip R [ORNL; Pallin, Simon B [ORNL; Jackson, Roderick K [ORNL

    2013-12-01T23:59:59.000Z

    Oak Ridge National Laboratory studied 8 homes in the mixed-humid climate, 4 with vented attics and 4 with sealed attics. ORNL wanted to understand the moisture performance of the sealed attic and how it affected the interior environment. We found that the attic and interior of sealed attic homes were more humid than the attic and interior observed in vented attic homes. This is due to the lack of ventilation in the sealed attic. Historically attics have been vented to dehumidify the attic and interior of the home. A sealed attic design greatly reduces the venting potential and thus this drying pathway and can cause elevated interior moisture over a vented attic home. Despite the elevated attic and interior moisture in the sealed attic homes, so far no mold or material degradation has been found. The roof sheathing moisture content has stayed below 20%, indicating low potential for material degradation. Also the relative humidity at the roof sheathing has stayed within the ASHRAE 160 design criteria except for a short time during the 2011/2012 winter. This was due to a combination of the sealed attic design (minimal venting to the outside) and the duct work not being operated in the attic which usually provides a dehumidification pathway. It was also found that when the humidity was controlled using the HVAC system, it resulted in 7% more cooling energy consumption. In the mixed-humid climate this reduces the cost effectiveness of the sealed attic design as a solution for bringing ducts into a semi-conditioned space. Because of this we are recommending the other alternatives be used to bringing ducts into the conditioned space in both new construction and retrofit work in the mixed-humid climate.

  11. Preliminary non-destructive assessment of moisture content, hydration and dielectric properties of Portland cement concrete

    E-Print Network [OSTI]

    Avelar Lezama, Ivan

    2007-04-25T23:59:59.000Z

    PRELIMINARY NON-DESTRUCTIVE ASSESSMENT OF MOISTURE CONTENT, HYDRATION AND DIELECTRIC PROPERTIES OF PORTLAND CEMENT CONCRETE A Thesis by IVAN AVELAR LEZAMA Submitted to the Office of Graduate Studies of Texas A... AND DIELECTRIC PROPERTIES OF PORTLAND CEMENT CONCRETE A Thesis by IVAN AVELAR LEZAMA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...

  12. Size reduction of high- and low-moisture corn stalks by linear knife grid system

    SciTech Connect (OSTI)

    Womac, A.R. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Sokhansanj, Shahabaddine [ORNL; Narayan, S. [First American Scientific Co.

    2009-04-01T23:59:59.000Z

    High- and low-moisture corn stalks were tested using a linear knife grid size reduction device developed for first-stage size reduction. The device was used in conjunction with a universal test machine that quantified shearing stress and energy characteristics for forcing a bed of corn stalks through a grid of sharp knives. No published engineering performance data for corn stover with similar devices are available to optimize performance; however, commercial knife grid systems exist for forage size reduction. From the force displacement data, mean and maximum ultimate shear stresses, cumulative and peak mass-based cutting energies for corn stalks, and mean new surface area-based cutting energies were determined from 4 5 refill runs at two moisture contents (78.8% and 11.3% wet basis), three knife grid spacings (25.4, 50.8, and 101.6 mm), and three bed depths (50.8, 101.6, and 152.4 mm). In general, the results indicated that peak failure load, ultimate shear stress, and cutting energy values varied directly with bed depth and inversely with knife grid spacing. Mean separation analysis established that high- and low-moisture conditions and bed depths 101.6 mm did not differ significantly (P < 0.05) for ultimate stress and cutting energy values, but knife grid spacing were significantly different. Linear knife grid cutting energy requirements for both moisture conditions of corn stalks were much smaller than reported cutting energy requirements. Ultimate shear stress and cutting energy results of this research should aid the engineering design of commercial scale linear knife gird size reduction equipment for various biomass feedstocks.

  13. Tertiary nitrogen heterocyclic material to reduce moisture-induced damage in asphalt-aggregate mixtures

    DOE Patents [OSTI]

    Plancher, Henry (Laramie, WY); Petersen, Joseph C. (Laramie, WY)

    1982-01-01T23:59:59.000Z

    Asphalt-aggregate roads crack when subjected to freezing and thawing cycles. Herein, the useful life of asphalts are substantially improved by a minor amount of a moisture damage inhibiting agent selected from compounds having a pyridine moiety, including acid salts of such compounds. A shale oil fraction may serve as the source of the improving agent and may simply be blended with conventional petroleum asphalts.

  14. Dynamic Analysis of Moisture Transport Through Walls and Associated Cooling Loads in the Hot/Humid Climate of Florianopolis, Brazil

    E-Print Network [OSTI]

    Mendes, N.; Winkelmann, F. C.; Lamberts, R.; Philippi, P. C.; Da Cunha, Neto, J. A. B.

    1996-01-01T23:59:59.000Z

    We describe the use of a dynamic model of combined heat and mass transfer to analyze the effects on cooling loads of transient moisture storage and transport through walls with porous building materials, under varying boundary conditions...

  15. A wireless soil moisture smart sensor web using physics-based optimal control: Concept and initial demonstrations

    E-Print Network [OSTI]

    Moghaddam, Mahta

    This paper introduces a new concept for a smart wireless sensor web technology for optimal measurements of surface-to-depth profiles of soil moisture using in-situ sensors. The objective of the technology, supported by the ...

  16. Precipitation and soil impacts on partitioning of subsurface moisture in Avena barbata: Observations from a greenhouse experiment

    SciTech Connect (OSTI)

    Salve, R.; Torn, M.S.

    2011-03-01T23:59:59.000Z

    The primary objective of this study was to assess the impact of two grassland soils and precipitation regimes on soil-moisture dynamics. We set up an experiment in a greenhouse, and monitored soil moisture dynamics in mesocosms planted with Avena barbata, an annual species found in California grasslands. By repeating the precipitation input at regular intervals, we were able to observe plant manipulation of soil moisture during well-defined periods during the growing season. We found that the amount of water partitioned to evapotranspiration, seepage, and soil storage varied among different growth stages. Further, both soil type and precipitation regimes had a significant impact on redistributing soil moisture. Whereas in the low-precipitation treatments most water was released to the atmosphere as evapotranspiration, major losses from the high-precipitation treatment occurred as gravity drainage. Observations from this study emphasize the importance of understanding intra-seasonal relationships between vegetation, soil, and water.

  17. Moisture Flux Convergence in Regional and Global Climate Models: Implications for Droughts in the Southwestern United States Under Climate Change

    SciTech Connect (OSTI)

    Gao, Yanhong; Leung, Lai-Yung R.; Salathe, E.; Dominguez, Francina; Nijssen, Bart; Lettenmaier, D. P.

    2012-05-10T23:59:59.000Z

    The water cycle of the southwestern United States (SW) is dominated by winter storms that maintain a positive annual net precipitation. Analysis of the control and future climate from four pairs of regional and global climate models (RCMs and GCMs) shows that the RCMs simulate a higher fraction of transient eddy moisture fluxes because the hydrodynamic instabilities associated with flow over complex terrain are better resolved. Under global warming, this enables the RCMs to capture the response of transient eddies to increased atmospheric stability that allows more moisture to converge on the windward side of the mountains by blocking. As a result, RCMs simulate enhanced transient eddy moisture convergence in the SW compared to GCMs, although both robustly simulate drying due to enhanced moisture divergence by the divergent mean flow in a warmer climate. This enhanced convergence leads to reduced susceptibility to hydrological change in the RCMs compared to GCMs.

  18. IMPACTS OF SOIL MOISTURE VARIABILITY ON CONVECTIVE PRECIPITATION IN THE CENTRAL PLAINS THROUGH LAND-ATMOSPHERE FEEDBACKS

    E-Print Network [OSTI]

    Jones, Aubrey R.

    2008-08-20T23:59:59.000Z

    of cummulative precipitation for a) FC b) 50FC c) WP ............ 31 Figure 4. Precipitation summed over the domain for the 12 day period for each model run............................................................................................................................ 66 Figure 17. Scatter plots of soil moisture versus Bowen ratio (top) a) FC b) 50FC c) WP and soil moisture versus net radiation (bottom) d) FC e) 50FC f) WP for the 4 km runs...

  19. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  20. Building-related symptoms among U.S. office workers and risks factors for moisture and contamination: Preliminary analyses of U.S. EPA BASE Data

    SciTech Connect (OSTI)

    Mendell, Mark J.; Cozen, Myrna

    2002-09-01T23:59:59.000Z

    The authors assessed relationships between health symptoms in office workers and risk factors related to moisture and contamination, using data collected from a representative sample of U.S. office buildings in the U.S. EPA BASE study. Methods: Analyses assessed associations between three types of weekly, workrelated symptoms-lower respiratory, mucous membrane, and neurologic-and risk factors for moisture or contamination in these office buildings. Multivariate logistic regression models were used to estimate the strength of associations for these risk factors as odds ratios (ORs) adjusted for personal-level potential confounding variables related to demographics, health, job, and workspace. A number of risk factors were associated (e.g., 95% confidence limits excluded 1.0) significantly with small to moderate increases in one or more symptom outcomes. Significantly elevated ORs for mucous membrane symptoms were associated with the following risk factors: presence of humidification system in good condition versus none (OR = 1.4); air handler inspection annually versus daily (OR = 1.6); current water damage in the building (OR = 1.2); and less than daily vacuuming in study space (OR = 1.2). Significantly elevated ORs for lower respiratory symptoms were associated with: air handler inspection annually versus daily (OR = 2.0); air handler inspection less than daily but at least semi-annually (OR=1.6); less than daily cleaning of offices (1.7); and less than daily vacuuming of the study space (OR = 1.4). Only two statistically significant risk factors for neurologic symptoms were identified: presence of any humidification system versus none (OR = 1.3); and less than daily vacuuming of the study space (OR = 1.3). Dirty cooling coils, dirty or poorly draining drain pans, and standing water near outdoor air intakes, evaluated by inspection, were not identified as risk factors in these analyses, despite predictions based on previous findings elsewhere, except that very dirty cooling coils were associated with a nonsignificant increase in lower respiratory symptoms. These preliminary findings suggest that some factors that indicate risks for moisture or contamination in office buildings may have adverse effects on respiratory or neurologic health of office workers. More refined analyses are underway that will include these risk factors in simultaneous multivariate models along with additional risk factors that may be confounders, such as ventilation rate and indoor temperature. Future analyses will also use more refined metrics for both health outcomes and environmental risks, as well as assess risk in susceptible sub-groups.

  1. Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications

    SciTech Connect (OSTI)

    David M. Dean

    2012-10-30T23:59:59.000Z

    Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is the key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.

  2. International H2O Project (IHOP) 2002: Datasets Related to Atmospheric Moisture and Rainfall Prediction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schanot, Allen [IHOP 2002 PI; Friesen, Dick [IHOP 2002 PI

    IHOP 2002 was a field experiment that took place over the Southern Great Plains of the United States from 13 May to 25 June 2002. The chief aim of IHOP_2002 was improved characterization of the four-dimensional (4-D) distribution of water vapor and its application to improving the understanding and prediction of convection. The region was an optimal location due to existing experimental and operational facilities, strong variability in moisture, and active convection [copied from http://www.eol.ucar.edu/projects/ihop/]. The project's master list of data identifies 146 publicly accessible datasets.

  3. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    DOE Patents [OSTI]

    Sheen, Shuh-Haw (Naperville, IL); Chien, Hual-Te (Naperville, IL); Raptis, Apostolos C. (Downers Grove, IL)

    1997-01-01T23:59:59.000Z

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  4. The effect of soil moisture levels on evapotranspiration from cotton and grain sorghum

    E-Print Network [OSTI]

    Schneider, Arland David

    1964-01-01T23:59:59.000Z

    measured value of soil t moisture. Substituting these values into Equations (I), (2) and (3) gave the following three equations: SM =be ct t SM =bK t t SM = d ? b log (t+c ) t (5) (6) The next logical step would have been to evaluate... as several atmospheres pressure which is sufficient tc move water to the leaves of even the tallest trees. The flew cf water can be governed by either the rate at which it is extracted from the soil or the rate at which it moves through the plants...

  5. Responses of bitterweed (Hymenoxys odorata) to 2, 4-D in relation to soil moisture

    E-Print Network [OSTI]

    Sultemeier, George Wayne

    1961-01-01T23:59:59.000Z

    aoistme for shoat three weehs battee syrayfsg with 2, ~ oa iTass 7. Taboos clay lhsdaD clay Ososa clay Valesa clog Valera else' shallow yhase Irioa alar Ceyrsssed 16. 3 1702 2$og sSoae ylents ia this sell asterisk sai yro4aee4 seek... and herbicidal aotion at time of spraying on ths several clay soil types. Mater is universally a component of soils, although ths amounts present may wary from hygrosopio to a quantity sufficient to saturate the soil. FLaM moisture samples msy be oompared...

  6. Surface soil moisture estimation with the electrically scanning microwave radiometer (ESMR)

    E-Print Network [OSTI]

    Theis, Sidney Wayne

    1979-01-01T23:59:59.000Z

    that is important in determining the ability of a plant to uptake water and that determines the state of saturation of a soil. Matric potential is very important for crop modeling and runoff prediction. Roe et al. (1971) observed that the emissivity of a mooth... that were approximately 15 to 20 cm high. For an area covered with thick turfted grass to a height of 20 cm, Barton (1978) obtained a poor relationship between soil moisture and emissivity for both the ESHR and a 2. 65-cm radiometer. The ESHR response...

  7. Phase relationship equation for moisture induced shrink and swell of soils

    E-Print Network [OSTI]

    Hoffmann, Stacey Bruemmer

    1997-01-01T23:59:59.000Z

    to the w moisture content prior to swell, a = air void coefficient equal to the ratio of air volume change (AV?) to the initial air volume (V?), n(1-S) = ratio of VA to the initial total volume (Vr). The shrinkage form of PREMISS (1. 2), also derived... in Chapter VI, is: AV hw = Sn ? (t + a, ?j r where a? = the air void constant equal to the ratio of dV? to the change in water volume (dV~). The parameters S, n and w are readily obtained from soil samples. Means of obtaining the change im water...

  8. Wetting of Sodium on ??-Al2O3/YSZ Composites for Low Temperature Planar Sodium-Metal Halide Batteries

    SciTech Connect (OSTI)

    Reed, David M.; Coffey, Greg W.; Mast, Eric S.; Canfield, Nathan L.; Mansurov, Jirgal; Lu, Xiaochuan; Sprenkle, Vincent L.

    2013-04-01T23:59:59.000Z

    Wetting of Na on B”-Al2O3/YSZ composites was investigated using the sessile drop technique. The effects of moisture and surface preparation were studied at low temperatures. Electrical conductivity of Na/B”-Al2O3-YSZ/Na cells was also investigated at low temperatures and correlated to the wetting behavior. The use of planar B”-Al2O3 substrates at low temperature with low cost polymeric seals is realized due to improved wetting at low temperature and conductivity values consistent with the literature.

  9. Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction- August 13, 2014- Moisture Monitoring Results in an R-40 Wall

    Broader source: Energy.gov [DOE]

    This presentation, Moisture Monitoring Results in an R-40 Wall, was presented at the Building America webinar, High Performance Enclosure Strategies, Part II, on August 13, 2014.

  10. Radius of influence for a cosmic-ray soil moisture probe : theory and Monte Carlo simulations.

    SciTech Connect (OSTI)

    Desilets, Darin

    2011-02-01T23:59:59.000Z

    The lateral footprint of a cosmic-ray soil moisture probe was determined using diffusion theory and neutron transport simulations. The footprint is radial and can be described by a single parameter, an e-folding length that is closely related to the slowing down length in air. In our work the slowing down length is defined as the crow-flight distance traveled by a neutron from nuclear emission as a fast neutron to detection at a lower energy threshold defined by the detector. Here the footprint is defined as the area encompassed by two e-fold distances, i.e. the area from which 86% of the recorded neutrons originate. The slowing down length is approximately 150 m at sea level for neutrons detected over a wide range of energies - from 10{sup 0} to 10{sup 5} eV. Both theory and simulations indicate that the slowing down length is inversely proportional to air density and linearly proportional to the height of the sensor above the ground for heights up to 100 m. Simulations suggest that the radius of influence for neutrons >1 eV is only slightly influenced by soil moisture content, and depends weakly on the energy sensitivity of the neutron detector. Good agreement between the theoretical slowing down length in air and the simulated slowing down length near the air/ground interface support the conclusion that the footprint is determined mainly by the neutron scattering properties of air.

  11. In situ electrokinetic control of moisture and nutrients in unsaturated soils

    SciTech Connect (OSTI)

    Lindgren, E.R.; Brady, P.V.

    1994-12-31T23:59:59.000Z

    Many DOE facilities have unsaturated soils contaminated with metals and organic solvents. Because of the large volumes, in situ remediation is often the most economically attractive remediation technique. The success of many in situ treatment technologies depends critically on the degree to which the movement of water and desired ions can be engineered in the vadose zone. Bioremediation efforts in the vadose zone are limited by the ability to provide moisture and nutrients to contaminant-metabolizing microorganisms. An in situ electrokinetic remediation process has been developed at Sandia National Laboratories (SNL) for use in unsaturated soils, and is presently undergoing field demonstration. The electrokinetic process is not limited by low soil permeabilities and, therefore, provides a level of control not achievable by hydraulic means. Moisture is added to the subsurface in a controlled fashion such that the field capacity is never exceeded, preventing the unwanted mobilization of dissolved contaminants by saturated wetting fronts. The Sandia electrokinetic process can potentially transport both water and nutrients for bioremediation efforts and is compatible with vapor phase in situ techniques such as bioventing. The approach should as bioventing. The approach should lend itself to the directed transport of biodegradable chelating agents and complexed metals from contaminated soils.

  12. Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

    SciTech Connect (OSTI)

    Karagiozis, A.N.

    2007-05-15T23:59:59.000Z

    This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

  13. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

    2014-05-01T23:59:59.000Z

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  14. “Multi-temperature” method for high-pressure sorption measurements on moist shales

    SciTech Connect (OSTI)

    Gasparik, Matus; Ghanizadeh, Amin; Gensterblum, Yves; Krooss, Bernhard M. [Energy and Mineral Resources Group (EMR), Institute of Geology and Geochemistry of Petroleum and Coal, Lochnerstr. 4-20, RWTH Aachen University, 52056 Aachen (Germany)] [Energy and Mineral Resources Group (EMR), Institute of Geology and Geochemistry of Petroleum and Coal, Lochnerstr. 4-20, RWTH Aachen University, 52056 Aachen (Germany)

    2013-08-15T23:59:59.000Z

    A simple and effective experimental approach has been developed and tested to study the temperature dependence of high-pressure methane sorption in moist organic-rich shales. This method, denoted as “multi-temperature” (short “multi-T”) method, enables measuring multiple isotherms at varying temperatures in a single run. The measurement of individual sorption isotherms at different temperatures takes place in a closed system ensuring that the moisture content remains constant. The multi-T method was successfully tested for methane sorption on an organic-rich shale sample. Excess sorption isotherms for methane were measured at pressures of up to 25 MPa and at temperatures of 318.1 K, 338.1 K, and 348.1 K on dry and moisture-equilibrated samples. The measured isotherms were parameterized with a 3-parameter Langmuir-based excess sorption function, from which thermodynamic sorption parameters (enthalpy and entropy of adsorption) were obtained. Using these, we show that by taking explicitly into account water vapor as molecular species in the gas phase with temperature-dependent water vapor pressure during the experiment, more meaningful results are obtained with respect to thermodynamical considerations. The proposed method can be applied to any adsorbent system (coals, shales, industrial adsorbents) and any supercritical gas (e.g., CH{sub 4}, CO{sub 2}) and is particularly suitable for sorption measurements using the manometric (volumetric) method.

  15. Simulation of soil moisture and evapotranspiration in a soil profile during the 1999 MAP-Riviera Campaign Hydrology and Earth System Sciences, 7(6), 903919 (2003) EGU

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -Riviera Campaign 903 Hydrology and Earth System Sciences, 7(6), 903919 (2003) © EGU Simulation of soil moisture and evapotranspiration scheme in hydrological models. This study presents the validation of soil moisture soil plot at the edge of a corn field. The hydrological model PREVAH was driven using three

  16. An integral-balance nonlinear model to simulate changes in soil moisture, groundwater and surface runoff dynamics at the hillslope scale

    E-Print Network [OSTI]

    Jay, Laurent O.

    An integral-balance nonlinear model to simulate changes in soil moisture, groundwater and surface-state integral-balance model for soil moisture and groundwater dynamics. Development of the model was motivated. Ã? 2014 Elsevier Ltd. All rights reserved. 1. Introduction Recent studies on the modeling

  17. Acoustic wave (AW) based moisture sensor for use with corrosive gases

    DOE Patents [OSTI]

    Pfeifer, K.B.; Frye, G.C.; Schneider, T.W.

    1996-11-05T23:59:59.000Z

    Moisture corrosive gas stream is measured as a function of the difference in resonant frequencies between two acoustic wave (AW) devices, each with a film which accepts at least one of the components of the gas stream. One AW is located in the gas stream while the other is located outside the gas stream but in the same thermal environment. In one embodiment, the film is a hydrophilic material such as SiO{sub 2}. In another embodiment, the SiO{sub 2} is covered with another film which is impermeable to the corrosive gas, such that the AW device in the gas stream measures only the water vapor. In yet another embodiment, the film comprises polyethylene oxide which is hydrophobic and measures only the partial pressure of the corrosive gas. Other embodiments allow for compensation of drift in the system. 8 figs.

  18. Hygric Redistribution in Insulated Assemblies: Retrofitting Residential Envelopes Without Creating Moisture Issues

    SciTech Connect (OSTI)

    Smegal, J.; Lstiburek, J.

    2013-01-01T23:59:59.000Z

    The Building America program has recognized that most of the current housing stock is in need of energy related retrofits. One of the best ways of reducing the space conditioning energy consumption is to improve the thermal performance of the enclosure by adding exterior board foam insulation. This report quantifies the amount of water that can become trapped in the drainage cavity of typical wall systems, and measures the effect of water trapped in the drainage cavity on the moisture content of the sheathing. This study also attempts to explain the discrepancy between hygrothermal simulations and field performance of low permeance, low R-value exterior insulation (e.g. 3/4-in. foil faced polyisocyanurate) in cold climates.

  19. Sidewall tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    2001-01-01T23:59:59.000Z

    A sidewall tensiometer to in situ determine below-grade soil moisture potential of earthen soil includes, a) a body adapted for insertion into an opening in earthen soil below grade, the body having lateral sidewalls; b) a laterally oriented porous material provided relative to the body lateral sidewalls, the laterally oriented porous material at least in part defining a fluid chamber within the body; c) a pressure a sensor in fluid communication with the fluid chamber; and d) sidewall engaging means for engaging a portion of a sidewall of an earth opening to laterally urge the porous material into hydraulic communication with earthen soil of another portion of the opening sidewall. Methods of taking tensiometric measurements are also disclosed.

  20. In situ changes in the moisture content of heated, welded tuff based on thermal neutron measurements

    SciTech Connect (OSTI)

    Ramirez, A.L.; Carlson, R.C.; Buscheck, T.A.

    1991-07-01T23:59:59.000Z

    Thermal neutron logs were collected to monitor changes in moisture content within a welded tuff rock mass heated from a borehole containing an electrical heater which remained energized for 195 days. Thermal neutron measurements were made in sampling boreholes before, during and after heating. The results generally corroborated our conceptual understanding of hydrothermal flow as well as most of the numerical modeling conducting for this study. Conceptual models have been developed in conjunction with the numerical model calculations to explain differences in the drying and re-wetting behavior above and below the heater. Numerical modeling indicated that the re-wetting of the dried-out zone was dominated by the binary diffusion of water vapor through fractures. Saturation gradients in the rock matrix resulted in relative humidity gradients which drove water vapor (primarily along fractures) back to the dried-out zone where it condensed along the fracture walls and was imbibed by the matrix. 4 refs., 28 figs.

  1. Exterior Insulation Finish System (EIFS) Walls ORNL provides the tools to enable industry to engineer durable, moisture-tolerant

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Exterior Insulation Finish System (EIFS) Walls ORNL provides the tools to enable industry the insulating value of walls and the energy efficiency of buildings. The EIFS concept came to America from in both moisture control and insulating value. EIFS's are inherently superior on thermal performance

  2. Evaluation of SMOS Retrievals of Soil Moisture over the Central United States with Currently Available In-situ Observations

    E-Print Network [OSTI]

    Robock, Alan

    SMOS retrievals by comparing them to in-situ soil moisture observations4 for the top 5 cm at several.01% of the total water on the planet [Prigent et al.,20 2005]. But soil water content is important for many reasons, such as agriculture. Soil water21 content also has an important influence on climate, as it determines

  3. Wall Design Redundancy for Improving the Moisture Performance of Building Cladding Systems in Hot-Humid Climates

    E-Print Network [OSTI]

    Graham, C. W.

    2000-01-01T23:59:59.000Z

    An investigation of approximately 4,000 buildings in the hot-humid climate locations of the United States where the potential for decay of hygroscopic building materials or corrosion of metals is moderate-to-severe found that redundant moisture...

  4. INDICATOR: LAKE ERIE ICE COVER Winter ice cover on Lake Erie affects the amount of heat and moisture transferred

    E-Print Network [OSTI]

    102 INDICATOR: LAKE ERIE ICE COVER Background Winter ice cover on Lake Erie affects the amount of heat and moisture transferred between the lake and the atmosphere. During winter, ice and snow can decrease the amount of light available below the ice surface for photosynthesis. In the absence of an ice

  5. Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils

    E-Print Network [OSTI]

    Benscoter, Brian W.

    5, Canada. D University of Alberta, Department of Renewable Resources, Edmonton, AB, T6G 2H1, Canada consumption. We experimentally altered soil moisture profiles of peat monoliths collected from several. Additional keywords: bog, boreal, carbon, fire, ground-layer fuels, peat, peatland, Sphagnum, smouldering

  6. Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils

    E-Print Network [OSTI]

    Turetsky, Merritt

    5, Canada. D University of Alberta, Department of Renewable Resources, Edmonton, AB, T6G 2H1, Canada consumption. We experimentally altered soil moisture profiles of peat monoliths collected from several. Additional keywords: bog, boreal, carbon, fire, ground-layer fuels, peat, peatland, smouldering, Sphagnum

  7. A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave

    E-Print Network [OSTI]

    influences the partitioning of surface available energy into sensible and latent heat fluxes and henceA dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR, we have designed a dual-pass assimilation (DP-En4DVar) framework to optimize the model state

  8. Variation in soil moisture and N availability modulates carbon and water exchange in a California grassland experiment

    SciTech Connect (OSTI)

    St. Clair, S.B.; Sudderth, E.; Fischer, M.L.; Torn, M.S.; Stuart, S.; Salve, R.; Eggett, D.; Ackerly, D.

    2009-03-15T23:59:59.000Z

    Variability in the magnitude and timing of precipitation is predicted to change under future climate scenarios. The primary objective of this study was to understand how variation in precipitation patterns consisting of soil moisture pulses mixed with intermittent dry down events influence ecosystem gas fluxes. We characterized the effects of precipitation amount and timing, N availability, and plant community composition on whole ecosystem and leaf gas exchange in a California annual grassland mesocosm study system that allowed precise control of soil moisture conditions. Ecosystem CO2 and fluxes increased significantly with greater precipitation and were positively correlated with soil moisture. A repeated 10 day dry down period following 11 days of variable precipitation inputs strongly depressed net ecosystem CO2 exchange (NEE) across a range of season precipitation totals, and plant community types. Ecosystem respiration (Re), evapotranspiration (ET) and leaf level photosynthesis (Amax) showed greatest sensitivity to dry down periods in low precipitation plots. Nitrogen additions significantly increased NEE, Re and Amax, particularly as water availability was increased. These results demonstrate that N availability and intermittent periods of soil moisture deficit (across a wide range of cumulative season precipitation totals) strongly modulate ecosystem gas exchange.

  9. Real time detection of soil moisture and nitrates using on-board in-situ impedance spectroscopy

    E-Print Network [OSTI]

    Kumar, Ratnesh

    Real time detection of soil moisture and nitrates using on-board in-situ impedance spectroscopy across a pair of electrodes immersed in that medium. We make accurate measurements on soil impedance over multiple frequen- cies using an in-situ soil-sensor we have designed. The impedance values are then used

  10. SOURCE: UNIVERSITY OF CALIFORNIA PAVEMENT RESEARCH CENTER FIGURE 1 Moisture-induced stripping in asphalt treated base layer

    E-Print Network [OSTI]

    California at Berkeley, University of

    SOURCE: UNIVERSITY OF CALIFORNIA PAVEMENT RESEARCH CENTER FIGURE 1 Moisture-induced stripping in asphalt treated base layer PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is provided by the University of California Pavement Research Center. The University of California Pavement

  11. 2392 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 10, OCTOBER 2003 Soil Moisture Mapping Using ESTAR Under

    E-Print Network [OSTI]

    2392 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 10, OCTOBER 2003 Soil of the entire region. Index Terms--Microwave, remote sensing, soil moisture. I. INTRODUCTION THE FUNDAMENTAL regional heat fluxes [15], and to validate distributed land surface models in order to study the scaling

  12. Soil animal responses to moisture availability are largely scale, not ecosystem dependent: insight from a cross-site

    E-Print Network [OSTI]

    Wall, Diana

    Soil animal responses to moisture availability are largely scale, not ecosystem dependent: insight Cruces, NM 88012, USA, 4 USDA ARS Grassland Soil and Water Research Laboratory, Temple, TX 76502, USA, 5 Abstract Climate change will result in reduced soil water availability in much of the world either due

  13. Detection of nitroesters and moisture in combustible cartridge case wall by indicator strips and instruments. Final report

    SciTech Connect (OSTI)

    Ho, C.H.; Moneyhun, J.H.; Agouridis, D.C.; Gayle, T.M.; Hurst, G.B.; Griest, W.H.

    1992-09-30T23:59:59.000Z

    Nitroester migration into the case wall from the propellant and moisture accumulation within the case have been identified as important internal and external (respectively) factors which contribute to the physical deterioration of combustible cartridge case (ccc) munitions. The latter factor also may hinder proper ignition of the ccc and cause incomplete combustion in firing. Visual indicators sensitive to these factors and affixed to ccc rounds would allow quality assurance specialists or gun crews in the field to rapidly determine the potential reliability of individual rounds. Previous work in this task identified chemistries suitable for the detection of nitroesters and moisture in the ccc wall. A version of the Griess reaction was modified for a dry colorimetric indicator which in the presence of nitroglycerin (NG) or diethyleneglycol dinitrate (DEGDN) generates a brilliant red color. Inorganic salts such as cupric chloride, which changes from brown to blue-green upon hydration, were suggested as promising visual indicators of moisture. This report describes the development and preliminary testing of prototype nitroester and moisture indicator strips, and the scoping of two instrumental techniques, infrared spectroscopy and electrical capacitance, which could lead to portable instruments for rapid and nondestructive testing of ccc in the field.

  14. Effects of cropping-system-related soil moisture and nutrient dynamics on the sustainability of semiarid dryland agriculture

    E-Print Network [OSTI]

    Norton, Jay B.

    Effects of cropping-system-related soil moisture and nutrient dynamics on the sustainability are to evaluate sustainability of conservation cropping systems in order to improve management approaches of semiarid dryland agriculture Project Summary We propose to investigate cropping-system-related soil

  15. A Pacific Moisture Conveyor Belt and Its Relationship to a Significant Precipitation Event in the Semiarid Southwestern United States

    E-Print Network [OSTI]

    Williams, Justin

    with the University of Wisconsin- Nonhydrostatic Modeling System, as well as analysis data, surface observations with different influence factors can be distinguished. 1) Close to the COL center, moist tropical air is overrun extraordinary cool season precipitation events in western North America to bands of enhanced moisture transport

  16. ., ~., t.o -., '-'~ Effect of moisture content on the composting of pig-manure sawdust litter disposed from the

    E-Print Network [OSTI]

    Tiquia-Arashiro, Sonia M.

    '- ., ~., t.o - ., '-'~ Effect of moisture content on the composting of pig-manure sawdust litter-situ composting, has been developed as one of the recommended methods in Hong Kong to treat pig waste. The system microbial biomass, which is similar to an immature compost. In order to improve the quality of the spent

  17. Influence of radar frequency on the relationship between bare surface soil moisture vertical profile and radar backscatter

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    produced from Envisat ASAR and TerraSAR-X data, acquired over bare soils with in situ measurements heterogeneity into account in the backscatter model. Key words: SAR, AIEM, soil moisture profile, bare soil hal in the L, C, and X frequency bands, empirical and semi-empirical models are often calibrated using soil

  18. How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem?

    SciTech Connect (OSTI)

    Dermody, Orla [University of Tennessee, Knoxville (UTK); Weltzin, Jake [University of Tennessee, Knoxville (UTK); Engel, Elizabeth C. [University of Tennessee, Knoxville (UTK); Allen, Phillip [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL

    2007-01-01T23:59:59.000Z

    Soil moisture content and leaf area index (LAI) are properties that will be particularly important in mediating whole system responses to the combined effects of elevated atmospheric [CO2], warming and altered precipitation. Warming and drying will likely reduce soil moisture, and this effect may be exacerbated when these factors are combined. However, elevated [CO2] may increase soil moisture contents and when combined with warming and drying may partially compensate for their effects. The response of LAI to elevated [CO2] and warming will be closely tied to soil moisture status and may mitigate or exacerbate the effects of global change on soil moisture. Using open-top chambers (4-m diameter), the interactive effects of elevated [CO2], warming, and differential irrigation on soil moisture availability were examined in the OCCAM (Old-Field Community Climate and Atmospheric Manipulation) experiment at Oak Ridge National Laboratory in eastern Tennessee. Warming consistently reduced soil moisture contents and this effect was exacerbated by reduced irrigation. However, elevated [CO2] partially compensated for the effects of warming and drying on soil moisture. Changes in LAI were closely linked to soil moisture status. LAI was determined using an AccuPAR ceptometer and both the leaf area duration (LAD) and canopy size were increased by irrigation and elevated [CO2]. The climate of the southeastern United States is predicted to be warmer and drier in the future. This research suggests that although elevated [CO2] will partially ameliorate the effects of warming and drying, losses of soil moisture will increase from old field ecosystems in the future.

  19. Primed Lettuce Seeds Exhibit Increased Sensitivity to Moisture during , Kent J. Bradford2

    E-Print Network [OSTI]

    Bradford, Kent

    (Bruggink et al., 1999). We are not aware of any lettuce priming protocol that can eliminate temperature and

  20. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P. (Idaho Falls, ID)

    1992-01-01T23:59:59.000Z

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  1. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04T23:59:59.000Z

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  2. Isolating Effects of Water Table Dynamics, Terrain, and Soil Moisture Heterogeneity on the Atmospheric Boundary Layer Using Coupled Models

    E-Print Network [OSTI]

    Rihani, Jehan

    2010-01-01T23:59:59.000Z

    boundary conditions of wind, potential temperature, andvariables such as winds, potential temperature, rainfall,variables such as wind speed, potential temperature, and

  3. Tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A portable tensiometer to in situ determine below-grade soil moisture potential of earthen soil includes, a) a body having opposing first and second ends and being adapted for complete insertion into earthen soil below grade; b) a porous material provided at the first body end, the porous material at least in part defining a fluid chamber within the body at the first body end, the fluid chamber being fluidically sealed within the body but for the porous material; c) a degassed liquid received within the fluid chamber; d) a pressure transducer mounted in fluid communication with the fluid chamber; e) the body, pressure transducer and degassed liquid having a combined mass; f) a flexible suspension line connected to the body adjacent the second body end, the flexible line being of sufficient strength to gravitationally freely self suspend the combined mass; and c) the combined mass being sufficient to effectively impart hydraulic communication between below-grade earthen soil contacted by the porous material under the weight of the combined mass. Tensiometers configured to engage the sidewalls of an earthen opening are also disclosed. Methods of taking tensiometric measurements are also disclosed.

  4. Tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOE Patents [OSTI]

    Hubbell, J.M.; Sisson, J.B.

    1997-07-08T23:59:59.000Z

    A portable tensiometer to in-situ determine below-grade soil moisture potential of earthen soil includes, (a) a body having opposing first and second ends and being adapted for complete insertion into earthen soil below grade; (b) a porous material provided at the first body end, the porous material at least in part defining a fluid chamber within the body at the first body end, the fluid chamber being fluidically sealed within the body but for the porous material; (c) a degassed liquid received within the fluid chamber; (d) a pressure transducer mounted in fluid communication with the fluid chamber; (e) the body, pressure transducer and degassed liquid having a combined mass; (f) a flexible suspension line connected to the body adjacent the second body end, the flexible line being of sufficient strength to gravitationally freely self suspend the combined mass; and (g) the combined mass being sufficient to effectively impart hydraulic communication between below-grade earthen soil contacted by the porous material under the weight of the combined mass. Tensiometers configured to engage the sidewalls of an earthen opening are also disclosed. Methods of taking tensiometric measurements are also disclosed. 12 figs.

  5. Tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Mattson, Earl D. (Albuquerque, NM); Sisson, James B. (Idaho Falls, ID)

    1998-01-01T23:59:59.000Z

    A tensiometer to in situ determine below-grade soil moisture, potential of earthen soil includes, a) an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and, comprising; b) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; c) a first fluid conduit extending outwardly of the first fluid chamber; d) a first controllable isolation valve provided within the first fluid conduit, the first controllable isolation valve defining a second fluid chamber in fluid communication with the first fluid chamber through the first fluid conduit and the isolation valve, the first controllable isolation valve being received within the below-grade portion; and e) a pressure transducer in fluid communication with the first fluid chamber, the pressure transducer being received within the below-grade portion. An alternate embodiment includes an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and including: i) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; and ii) a pressure sensing apparatus in fluid communication with the first fluid chamber, the pressure sensing apparatus being entirely received within the below-grade portion. A method is also disclosed using the above and other apparatus.

  6. Tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOE Patents [OSTI]

    Hubbell, J.M.; Mattson, E.D.; Sisson, J.B.

    1998-06-02T23:59:59.000Z

    A tensiometer to in-situ determine below-grade soil moisture, potential of earthen soil includes, (a) an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and, comprising; (b) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; (c) a first fluid conduit extending outwardly of the first fluid chamber; (d) a first controllable isolation valve provided within the first fluid conduit, the first controllable isolation valve defining a second fluid chamber in fluid communication with the first fluid chamber through the first fluid conduit and the isolation valve, the first controllable isolation valve being received within the below-grade portion; and (e) a pressure transducer in fluid communication with the first fluid chamber, the pressure transducer being received within the below-grade portion. An alternate embodiment includes an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and including: (1) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; and (2) a pressure sensing apparatus in fluid communication with the first fluid chamber, the pressure sensing apparatus being entirely received within the below-grade portion. A method is also disclosed using the above and other apparatus. 6 figs.

  7. Strings at finite temperature

    SciTech Connect (OSTI)

    Arago C. de; Bazeia, D.; Eboli, O.J.P.; Marques, G.C.

    1985-12-15T23:59:59.000Z

    We obtain a semiclassical evaluation of the temperature for which the free energy of the strings of spontaneously broken scalar electrodynamics vanishes. We argue that, above this temperature, these objects should play a significant physical role.

  8. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18T23:59:59.000Z

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  9. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael (Plano, TX)

    1997-11-18T23:59:59.000Z

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  10. The temperature market A stochastic model for temperature

    E-Print Network [OSTI]

    Pfeifer, Holger

    The temperature market A stochastic model for temperature Temperature futures Conclusions The Volatility of Temperature and Pricing of Weather Derivatives Fred Espen Benth Work in collaboration with J Universit¨at Ulm, April 2007 #12;The temperature market A stochastic model for temperature Temperature

  11. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  12. Expensive Moisture/Insulation System Problems at Several Central Florida and South Texas Nursing Homes

    E-Print Network [OSTI]

    Lotz, W. A.

    2000-01-01T23:59:59.000Z

    where temperaturs reach 150° F. increases condensation due to inadequate details in mechanical insulation on ducts and pipes Vinyl wall covering is well known to be a disaster in this climate but interior decorators continue to specify it on various...

  13. Automatic temperature adjustment apparatus

    DOE Patents [OSTI]

    Chaplin, James E. (66 Overlook Rd., Bloomingdale, NJ 07403)

    1985-01-01T23:59:59.000Z

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  14. The degradation of TPX components by oxygen, elevated temperature, and ionizing radiation

    SciTech Connect (OSTI)

    Farmer, J.C.

    1996-05-31T23:59:59.000Z

    TPX is PMP or poly(4-methyl-1-pentene). It has several commercially important characteristics such as high optical transparency, high crystalline melting point, etc., leading to numerous applications including infrared windows, lenses, membranes, food packaging. The life components fabricated from this material may be limited by thermal oxidative and radiation-induced degradation. A preliminary review of the scientific literature was conducted to obtain relevant information on the effects of oxygen, moisture elevated temperature, and radiation on the chemical, thermodynamic, mechanical, and electrical properties of this material. Refs, figs, tabs.

  15. Time and temperature factors in reconstituting sorghum grain for beef cattle

    E-Print Network [OSTI]

    Bowers, Edwin J

    1970-01-01T23:59:59.000Z

    whole, dry sorghum grain to about 28 percent moisture with cold (60' F) or warm (120' F) water, followed by air-tight storage for 10 or 20 days and grinding just prior to feeding, increased gain 23 percent and decreased dry matter re- quired per... pound of gain 21 percent as compared with ground dry grain when fed to 490 pound heifers for 84 days during the winter. Neither water temperature nor storage time significantly altered the effect of reconstitution. These results indicate...

  16. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Zenon F. (Orland Park, IL)

    1989-01-01T23:59:59.000Z

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperature of 77 degrees Kelvin.

  17. Temperature and RH Targets

    Broader source: Energy.gov [DOE]

    Presented by Vishal O Mittal of the Florida Solar Energy Center at the High Temperature Membrane Working Group Meeting, San Francisco, September 14, 2006.

  18. Group 3: Humidity, Temperature, and Voltage

    Broader source: Energy.gov (indexed) [DOE]

    lines, interconnect r ibbons, s older bonds) will likely corrode if exposed to liquid water. * So even if our contacts can survive moisture in the encapsulant they are n ot...

  19. Thermoelectric Temperature Control

    E-Print Network [OSTI]

    Saffman, Mark

    NOTE 201TM TECHNICAL Optimizing Thermoelectric Temperature Control Systems #12;2 May 1995 92-040000A © 1995 Wavelength Electronics, Inc. Thermoelectric coolers (TECs) are used in a variety understanding of thermal management techniques and carefully select the thermoelectric module, temperature

  20. Testing a hypothesis concerning the quantitative dependence of evapotranspiration on availability of moisture 

    E-Print Network [OSTI]

    Covey, Winton Guy

    1959-01-01T23:59:59.000Z

    used (items 1 - 10) and the following results are tabulated in Appendix A: 11. Friction velocity ? u (cm/sec) 2 12. Evaporative heat flux ? q (cal/cm sec) e 13 . Surface temperature ? 0 ( 'C) . 0 14. Saturation vapor pressure at surface temperature... ? millibars (mb). The conversion fac 1 cal = 4. 185 1 mb = 1. 000 tora for energy and pressure are: 7 2 2 x 10 gm cm /sec , and 3 2 0 x 10 gm/cm sec from many aspects; for example, (I) it is an addition of water vapor to the atmosphere; (2) it is a...

  1. Organic acid preservation of high-moisture sorghum grain and its feeding value for growing-finishing swine

    E-Print Network [OSTI]

    Knabe, Darrell Albert

    1973-01-01T23:59:59.000Z

    to the 24 to 36% moisture grain when it was harvested in mid-July but extensive mold growth was noted in one bin after 70 days. This required that it be retreated which raised the acid content from about 1. 5 to 3. 4 percent. The failure of the grain... effective in preserving the grain harvested in mid-July that was used in the second group feeding trial. Ho mold growth was found in the three bins and essentially no microbial growth could be plated from grains preserved with 1. 1/ acid after six weeks...

  2. A method of determining the dissolved oxygen in the moisture of a porous medium and some oxygen diffusion studies

    E-Print Network [OSTI]

    Runkles, Jack Ralph

    1952-01-01T23:59:59.000Z

    this dissolved oxygen The sample chamber apparatus gives ocnsplcte seal of the bottle from the atmosphere The ohsabor does not require a large ameunt Of nitrogen Sb remove all the oxygen from it, It is easily portable and light in weight The proposed method... METHOD QF DETRHRIUIHO THE DISSOLVED OXmEK IE THE MOISTURE OF A POROUS ERDD% @AD SMfE QXYOEB DKFFUSIOE STUDIES ' INTRO DUO fQRF, I Oxygen, bas been known to be important in plant growth fox maay years There has been a great deal of xesearoh...

  3. A decision procedure for determination of convective precipitation with implications on cumulus cloud modification

    E-Print Network [OSTI]

    Martens, James Donovan

    1972-01-01T23:59:59.000Z

    temperature - 700-mb temperature level of maximum wind 700-mb dew-point depression 0. 5108 0. 4542 0. 3649 0. 3474 0. 2903 0. 2859 0. 2479 0. 2182 0. 2177 0. 2007 0. 1856 0. 1556 0. 1256 0. 0545 0. 0538 0. 0227 0. 0165 Table ld. Correlation... / 4 6 8 10 12 14 16 18 20 22 24 700. 6 de -point depr cero ('C. ) Fig. 3n. Frequency distributions for 700-mb dew-point depression. 38 April 30 ? June 17 J ne 18 ? J ly 30 April 30 ? July 30 e nv 5 a II C 0 1D\\ 130 155 180 205 230 255 280...

  4. 109Gea-Izquierdo et al. Xylem, temperature, and moisture availability International Association of Wood Anatomists, 2013 DOI 10.1163/22941932-00000010

    E-Print Network [OSTI]

    : Mediterranean, tree rings, climate change, adaptation, limiting factor, drought. INTRODUCTION Plants respond of xylem architecture can be a species specific strategy to reduce vul- nerability to climate change) at two sites characterized by contrasting Mediterranean climates in Italy and Spain. Shrubs regulated

  5. Accepted Manuscript Process modeling for soil moisture using sensor network data

    E-Print Network [OSTI]

    Clark, James S.

    in the department of Electrical Engineering, Northern Arizona University, Flagstaff, AZ 86011 , USA. 1 #12 in agriculture, per- colation, and soil chemistry. Precipitation, temperature, atmospheric demand and topography of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA. A. E. Gelfand (alan

  6. Moisture budget of the Arctic atmosphere from TOVS satellite data David G. Groves

    E-Print Network [OSTI]

    Francis, Jennifer

    and radiative heating of the atmosphere. These, in turn, affect surface temperature, ice growth and melt and hemispheric atmospheric processes affect the Arctic Ocean. The lack of humidity data over the Arctic Ocean. Our method yields an average annual net precipitation of 15.1 cm yrÀ1 over the polar cap (poleward

  7. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1985-09-24T23:59:59.000Z

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.

  8. High Temperature Capacitor Development

    SciTech Connect (OSTI)

    John Kosek

    2009-06-30T23:59:59.000Z

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a unique high-temperature electrolyte developed during the course of the program. During this program the feasibility of operating a high voltage hybridized capacitor at 230oC was demonstrated. Capacitor specifications were established in conjunction with potential capacitor users. A method to allow for capacitor operation at both ambient and elevated temperatures was demonstrated. The program was terminated prior to moving into Phase II due to a lack of cost-sharing funds.

  9. Finite Temperature Effective Actions

    E-Print Network [OSTI]

    Ashok Das; J. Frenkel

    2009-08-27T23:59:59.000Z

    We present, from first principles, a direct method for evaluating the exact fermion propagator in the presence of a general background field at finite temperature, which can be used to determine the finite temperature effective action for the system. As applications, we determine the complete one loop finite temperature effective actions for 0+1 dimensional QED as well as the Schwinger model. These effective actions, which are derived in the real time (closed time path) formalism, generate systematically all the Feynman amplitudes calculated in thermal perturbation theory and also show that the retarded (advanced) amplitudes vanish in these theories.

  10. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08T23:59:59.000Z

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  11. Penrose Well Temperatures

    SciTech Connect (OSTI)

    Christopherson, Karen

    2013-03-15T23:59:59.000Z

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  12. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Z.F.

    1988-04-12T23:59:59.000Z

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperatures of 77 degrees Kelvin, is discussed. 3 figs.

  13. Temperature in the Throat

    E-Print Network [OSTI]

    Dariush Kaviani; Amir Esmaeil Mosaffa

    2015-03-06T23:59:59.000Z

    We study the temperature of extended objects in string theory. Rotating D-branes in warped Calabi-Yau throats have induced metrics with thermal horizons and Hawking temperatures a la Unruh effect. We solve the equations of motion for slow rotating probe branes and derive their induced metrics in the UV/IR solutions of warped conifold throats. Our analysis shows that horizons and temperatures of expected features form on the world volume of the rotating probe brane in terms of conserved charges in the UV solutions of the conifold throat. In certain limits, we find world volume horizons and temperatures of the form similar to those of rotating probes in the AdS throat.

  14. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

    1981-01-01T23:59:59.000Z

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  15. Temperature measuring device

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Sohns, Carl W. (Oak Ridge, TN)

    1999-01-01T23:59:59.000Z

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  16. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01T23:59:59.000Z

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  17. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  18. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season. ?

  19. Temperature Data Evaluation

    SciTech Connect (OSTI)

    Gillespie, David

    2003-03-01T23:59:59.000Z

    Groundwater temperature is sensitive to the competing processes of heat flow from below the advective transport of heat by groundwater flow. Because groundwater temperature is sensitive to conductive and advective processes, groundwater temperature may be utilized as a tracer to further constrain the uncertainty of predictions of advective radionuclide transport models constructed for the Nevada Test Site (NTS). Since heat transport, geochemical, and hydrologic models for a given area must all be consistent, uncertainty can be reduced by devaluing the weight of those models that do not match estimated heat flow. The objective of this study was to identify the quantity and quality of available heat flow data at the NTS. One-hundred-forty-five temperature logs from 63 boreholes were examined. Thirteen were found to have temperature profiles suitable for the determination of heat flow values from one or more intervals within the boreholes. If sufficient spatially distributed heat flow values are obtained, a heat transport model coupled to a hydrologic model may be used to reduce the uncertainty of a nonisothermal hydrologic model of the NTS.

  20. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

    1999-03-23T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  1. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  2. High-temperature Pump Monitoring - High-temperature ESP Monitoring...

    Broader source: Energy.gov (indexed) [DOE]

    7 4.4.4 High-temperature Pump Monitoring - High-temperature ESP Monitoring Presentation Number: 018 Investigator: Dhruva, Brindesh (Schlumberger Technology Corp.) Objectives: To...

  3. High temperature adsorption measurements

    SciTech Connect (OSTI)

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24T23:59:59.000Z

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  4. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, Richard D. (West Richland, WA)

    1983-01-01T23:59:59.000Z

    A temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles.

  5. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, R.D.

    1983-10-11T23:59:59.000Z

    Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

  6. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G. (Albuquerque, NM); Gurary, Alexander I. (Bridgewater, NJ); Boguslavskiy, Vadim (Princeton, NJ)

    2002-01-01T23:59:59.000Z

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  7. Fluorescent temperature sensor

    DOE Patents [OSTI]

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03T23:59:59.000Z

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  8. Chai, S.S., Veenendaal,B., West G. and J.P. Walker (2009). Input Parameter Selection for Soil Moisture Retrieval Using an Artificial Neural Network. In: Ostendorf, B., Baldock, P., Bruce, D., Burdett, M. and P. Corcoran (eds.),

    E-Print Network [OSTI]

    Walker, Jeff

    2009-01-01T23:59:59.000Z

    Moisture Retrieval Using an Artificial Neural Network. In: Ostendorf, B., Baldock, P., Bruce, D., Burdett-0-9581366-8-6. INPUT PARAMETERS SELECTION FOR SOIL MOISTURE RETRIEVAL USING AN ARTIFICIAL NEURAL NETWORK Soo-See Chai 1-linear and ill-posed problem. Artificial Neural Networks (ANNs) have been demonstrated to be good solutions

  9. Atmospheric structure determined from satellite data

    E-Print Network [OSTI]

    Knight, Keith Shelburne

    1978-01-01T23:59:59.000Z

    , and the cross section over the Canada region 12 Synoptic conditions and locations of grid points, soundings, and the cross section over the western United States region. 13 Profiles of the average difference and standard deviation of the differences... and 500 mb over the Canada region. 47 Charts of dew-point temperatvre and dew point difference ( C) at 850 and 700 mb over the Cariobean region. . . . . . . . . . . . . . ~ 49 Charts of dew-point temperature and dew point difference (vC) at 500 mb...

  10. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  11. Transition temperature in QCD

    SciTech Connect (OSTI)

    Cheng, M.; Christ, N. H.; Mawhinney, R. D. [Physics Department, Columbia University, New York, New York 10027 (United States); Datta, S.; Jung, C.; Schmidt, C.; Umeda, T. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Heide, J. van der; Kaczmarek, O.; Laermann, E.; Miao, C. [Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Karsch, F. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Petreczky, P. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973 (United States); Petrov, K. [Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)

    2006-09-01T23:59:59.000Z

    We present a detailed calculation of the transition temperature in QCD with two light and one heavier (strange) quark mass on lattices with temporal extent N{sub {tau}}=4 and 6. Calculations with improved staggered fermions have been performed for various light to strange quark mass ratios in the range, 0.05{<=}m-circumflex{sub l}/m-circumflex{sub s}{<=}0.5, and with a strange quark mass fixed close to its physical value. From a combined extrapolation to the chiral (m-circumflex{sub l}{yields}0) and continuum (aT{identical_to}1/N{sub {tau}}{yields}0) limits we find for the transition temperature at the physical point T{sub c}r{sub 0}=0.457(7) where the scale is set by the Sommer-scale parameter r{sub 0} defined as the distance in the static quark potential at which the slope takes on the value (dV{sub qq}(r)/dr){sub r=r{sub 0}}=1.65/r{sub 0}{sup 2}. Using the currently best known value for r{sub 0} this translates to a transition temperature T{sub c}=192(7)(4) MeV. The transition temperature in the chiral limit is about 3% smaller. We discuss current ambiguities in the determination of T{sub c} in physical units and also comment on the universal scaling behavior of thermodynamic quantities in the chiral limit.

  12. High temperature storage battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1988-06-07T23:59:59.000Z

    A high temperature electrochemical cell is described comprising: a solid-state divalent cation conducting electrolyte; a positive electrode in contact with the electrolyte; a solid-state negative electrode contacting a divalent cation conducting molten salt mediating agent providing ionic mediation between the solid-state negative electrode and the solid-state electrolyte.

  13. Low Temperature Performance Characterization

    Broader source: Energy.gov (indexed) [DOE]

    0.0036 0.0038 0.004 0.0042 Inverse Temperature, 1K Gen2 Electrodes and 1.2M LiPF6 in EC:EMC (3:7 ww) (BID 1935), 4.1V, 3 Sep. Gen2 Electrodes and 1.2M LiPF6 in EC:EMC (3:7 ww)...

  14. Localized temperature stability of low temperature cofired ceramics

    DOE Patents [OSTI]

    Dai, Steven Xunhu

    2013-11-26T23:59:59.000Z

    The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

  15. Temperature Temperature is the physical property of a

    E-Print Network [OSTI]

    Alexeenko, Alina

    Temperature Temperature is the physical property of a system which underlines the common notion and said to be at the same temperature. If a thermometer is placed in a gas container then the thermal zero. #12;Temperature The energy exchange between gas and thermometer is through collisions of gas

  16. Ecological Entomology (2011), 36, 344354 DOI: 10.1111/j.1365-2311.2011.01278.x Moisture content and nutrition as selection forces

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    green ash trees, a behaviour confirmed in greenhouse-grown black ash seedlings. Furthermore, biomass as phloem moisture above the feeding site decreased to levels reducing survivorship and biomass) (Seigler & Price, 1976). The role of plant defence in the evolution of insect herbivore feeding behaviours

  17. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  18. Engine Cylinder Temperature Control

    DOE Patents [OSTI]

    Kilkenny, Jonathan Patrick (Peoria, IL); Duffy, Kevin Patrick (Metamora, IL)

    2005-09-27T23:59:59.000Z

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  19. High Altitude Unmanned Air System for Atmospheric Science Missions

    E-Print Network [OSTI]

    Sóbester, András

    designed to enable the construction of an emulator (surrogate model) of an atmospheric quantity across-launched dropsonde will record temperature, dewpoint, ambient pressure and GPS-derived wind speed. b) Pollution industry is that a safe level of ash density is around 2 Ã? 10-3 g/m3 (corresponding to an engine core

  20. Microburst Nowcasting Applications of GOES KENNETH L. PRYOR

    E-Print Network [OSTI]

    Kuligowski, Bob

    ) and consists of a set of predictor variables (i.e. dewpoint depression, temperature lapse rate) that generates that the Geostationary Operational Environmental Satellite (GOES) microburst products are effective in the assessment. The negative functional relationship between the OT parameters and wind gust speed highlights the importance

  1. Method of CO.sub.2 removal from a gasesous stream at reduced temperature

    SciTech Connect (OSTI)

    Fisher, James C; Siriwardane, Ranjani V; Berry, David A; Richards, George A

    2014-11-18T23:59:59.000Z

    A method for the removal of H.sub.2O and CO.sub.2 from a gaseous stream comprising H.sub.2O and CO.sub.2, such as a flue gas. The method initially utilizes an H.sub.2O removal sorbent to remove some portion of the H.sub.2O, producing a dry gaseous stream and a wet H.sub.2O removal sorbent. The dry gaseous stream is subsequently contacted with a CO.sub.2 removal sorbent to remove some portion of the CO.sub.2, generating a dry CO.sub.2 reduced stream and a loaded CO.sub.2 removal sorbent. The loaded CO.sub.2 removal sorbent is subsequently heated to produce a heated CO.sub.2 stream. The wet H.sub.2O removal sorbent and the dry CO.sub.2 reduced stream are contacted in a first regeneration stage, generating a partially regenerated H.sub.2O removal sorbent, and the partially regenerated H.sub.2O removal sorbent and the heated CO.sub.2 stream are subsequently contacted in a second regeneration stage. The first and second stage regeneration typically act to retain an initial monolayer of moisture on the various removal sorbents and only remove moisture layers bound to the initial monolayer, allowing for relatively low temperature and pressure operation. Generally the applicable H.sub.2O sorption/desorption processes may be conducted at temperatures less than about 70.degree. C. and pressures less than 1.5 atmospheres, with certain operations conducted at temperatures less than about 50.degree. C.

  2. Effects of Temperature and Humidity on Wilethane 44 Cure

    SciTech Connect (OSTI)

    John C. Weigle

    2006-10-01T23:59:59.000Z

    Wilethane 44 is a polyurethane adhesive developed by the Materials Team within ESA-MEE at Los Alamos National Laboratory as a replacement for Hexcel Corporation Urethane 7200. Urethane 7200 is used in numerous weapon systems, but it was withdrawn from the market in 1989. The weapons complex requires a replacement material for use in the W76-1 LEP and the W88, as well as for assembly of JTAs for other warheads. All polyurethane systems are susceptible to moisture reacting with unreacted isocyanate groups. This side reaction competes with the curing reaction and results in CO{sub 2} formation. Therefore, a polyurethane adhesive can exhibit foaming if appropriate environmental controls are not in place while it cures. A designed experiment has been conducted at TA-16-304 to determine the effects of ambient conditions on the properties of cured Wilethane 44. Temperature was varied from 15 C to 30 C and relative humidity from 15% to 40%. The density, hardness at 24 hours, and butt tensile strength on aluminum substrates were measured and fitted to quadratic equations over the experimental space. Additionally, the loss and storage moduli during cure were monitored as a function of cure temperature. These experiments provide a stronger basis for establishing appropriate environmental conditions and cure times when using Wilethane 44. The current guidelines are a working time of 90 minutes, a cure time of 18 hours, and a relative humidity of less than 25%, regardless of ambient temperature. Viscosity measurements revealed that the working time is a strong function of temperature and can be as long as 130 minutes at 15 C or as short as 90 minutes at 30 C. The experiments also showed that the gel time is much longer than originally thought, as long as 13 hours at 15 C. Consequently, it may be necessary to extend the required cure time at temperatures below 20 C. Allowable humidity varies as a function of temperature from 34% at 15 C to 15% at 30 C.

  3. Thermionic Converter Temperature Controller

    SciTech Connect (OSTI)

    Shaner,B. J.; Wolf, Joseph H.; Johnson, Robert G. R.

    1999-08-23T23:59:59.000Z

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  4. Thermionic converter temperature controller

    DOE Patents [OSTI]

    Shaner, Benjamin J. (McMurray, PA); Wolf, Joseph H. (Pittsburgh, PA); Johnson, Robert G. R. (Trafford, PA)

    2001-04-24T23:59:59.000Z

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  5. Drexel University Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01T23:59:59.000Z

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) Drexel University Project 31091 irradiation. The objective of this test was to assess the radiation performance of new ceramic materials for advanced reactor applications. Accordingly, irradiations of transition metal carbides and nitrides were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in static capsules inserted into the A-3 and East Flux Trap Position 5 locations of the ATR.

  6. ARM - Word Seek: Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities and InstrumentsInstrumentsTemperature

  7. Temperature | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechint Spa JumpTVCEtTemperature" Showing 9

  8. Temperature Maps and Data

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)ThousandNumber andCrudeTemperature Maps and Data

  9. Temperature Maps and Data

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)ThousandNumber andCrudeTemperature Maps and

  10. The Greenhouse Effect Temperature Equilibrium

    E-Print Network [OSTI]

    Walter, Frederick M.

    The Greenhouse Effect #12;Temperature Equilibrium The Earth is in equilibrium with the Sun temperature is about 14C, or 287K. The 40K difference is due to the greenhouse effect. Essentially all

  11. Philosophy 26 High Temperature Superconductivity

    E-Print Network [OSTI]

    Callender, Craig

    Philosophy 26 High Temperature Superconductivity By Ohm's Law, resistance will dim. Low temperature superconductivity was discovered in 1911 by Heike was explained by BCS theory. BCS theory explains superconductivity microscopically

  12. Soil moisture in complex terrain: quantifying effects on atmospheric boundary layer flow and providing improved surface boundary conditions for mesoscale models

    E-Print Network [OSTI]

    Daniels, Megan Hanako

    2010-01-01T23:59:59.000Z

    direction, (b) wind speed, (c) potential temperature, and (Airport of potential temperature, wind speed, winderrors (bias) for potential temperature, wind speed, wind

  13. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  14. Hot Pot Contoured Temperature Gradient Map

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-28T23:59:59.000Z

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  15. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13T23:59:59.000Z

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  16. Solid waste leach characteristics and contaminant-sediment interactions Volume 2: Contaminant transport under unsaturated moisture contents

    SciTech Connect (OSTI)

    Lindenmeier, C.W.; Serne, R.J.; Conca, J.L. [and others

    1995-09-01T23:59:59.000Z

    The objectives of this report and subsequent volumes include describing progress on (1) development and optimization of experimental methods to quantify the release of contaminants from solid wastes and their subsequent interactions with unsaturated sediments and (2) the creation of empirical data that become input parameters to performance assessment (PA) analyses for future Hanford Site disposal units and baseline risk assessments for inactive and existing solid waste disposal units. For this report, efforts focused on developing methodologies to evaluate contaminant transport in Trench 8 (W-5 Burial Ground) sediments under unsaturated (vadose zone) conditions. To accomplish this task, a series of flow-through column tests were run using standard saturated column systems, Wierenga unsaturated column systems (both commercial and modified), and the Unsaturated Flow Apparatus (UFA). The reactants investigated were {sup 85}Sr, {sup 236}U, and {sup 238}U as reactive tracers, and tritium as a non-reactive tracer. Results indicate that for moderately unsaturated conditions (volumetric water contents >50 % of saturation), the Wierenga system performed reasonably well such that long water residence times (50-147 h) were achieved, and reasonably good steady-state flow conditions were maintained. The major drawbacks in using this system for reactive tracer work included (1) the inability to achieve reproducible and constant moisture content below 50% of saturation, (2) the four to six month time required to complete a single test, and (3) the propensity for mechanical failure resulting from laboratory power outages during the prolonged testing period.

  17. Effect of soil moisture on the vascular cambial activity of terminal shoot growth of grapefruit trees in Texas in winter months

    E-Print Network [OSTI]

    Husain, Akbar

    1957-01-01T23:59:59.000Z

    EFFECT OP SOIL MOISTURE OE TBE VASCULAR CAMBIAL ACTIVITY OF TERMINAL SHOOT GROWTH OP GRAPEFRUIT TREES ZN TEXAS ZN WINTER MONTHS A Thesis By Akbar Hueain Submitted to ths Graduate School of the Agricultural and Mechanical College of Texas... CAMBIAL ACTlVITX OP TERMINAL SHOOT GROWTH OP GRAPEFRUIT TREES I? TEXAS IR WINTER MOMTHS Introduction Frost damage is an important problem in almost all the large citrus producing areas of the world. Such damage is common in the main citrus growing...

  18. The Impact of Above-Sheathing Ventilation on the Thermal and Moisture Performance of Steep-Slope Residential Roofs and Attics

    E-Print Network [OSTI]

    Miller, W.; Karagiozis, A.; Wilson, J.

    2006-01-01T23:59:59.000Z

    THE IMPACT OF ABOVE-SHEATHING VENTILATION ON THE THERMAL AND MOISTURE PERFORMANCE OF STEEP-SLOPE RESIDENTIAL ROOFS AND ATTICS William (Bill) Miller Research Scientist Oak Ridge National Laboratory Oak Ridge, Tennessee Joe Wilson Product... with and without infrared blocking color pigments (IrBCPs) and with and without above-sheathing ventilation. The combination of increased solar reflectance and above-sheathing ventilation reduced the heat flow penetrating the attic floor by 70% as compared...

  19. The Impact of Above-Sheathing Ventilation on the Thermal and Moisture Performance of Steep-Slope Residential Roofs and Attics 

    E-Print Network [OSTI]

    Miller, W.; Karagiozis, A.; Wilson, J.

    2006-01-01T23:59:59.000Z

    THE IMPACT OF ABOVE-SHEATHING VENTILATION ON THE THERMAL AND MOISTURE PERFORMANCE OF STEEP-SLOPE RESIDENTIAL ROOFS AND ATTICS William (Bill) Miller Research Scientist Oak Ridge National Laboratory Oak Ridge, Tennessee Joe Wilson Product... Manager Metro Roof Products Oceanside, California Achilles Karagiozis Research Scientist Oak Ridge National Laboratory Oak Ridge, Tennessee ABSTRACT Field studies were conducted on several attic assemblies having stone-coated metal shake roofs...

  20. The degradation of TPX components by oxygen, elevated temperature, and ionizing radiation

    SciTech Connect (OSTI)

    Farmer, J.C.

    1996-09-01T23:59:59.000Z

    Poly(4-methyl-l-pentene), also known as PMP or TPX, has several commercially important characteristics such as high optical transparency, high crystalline melting point, low density, low electrical conductivity, and good heat resistance. Such characteristics have lead to numerous industrial applications including infrared windows, infrared lenses, membranes, and food packaging. The life components fabricated from this material may be limited bv thermal oxidative and radiation-induced degradation. A preliminary review of the scientific literature has been conducted to obtain relevant information on the effects of oxygen, moisture elevated temperature, and radiation on the chemical, thermodynamic, mechanical, and electrical properties of this important construction material. Key information from the literature has become especially important in light of decreased budgets for defense-related research and development, and the prolonged service life of existing systems.

  1. High temperature interfacial superconductivity

    DOE Patents [OSTI]

    Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

    2012-06-19T23:59:59.000Z

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  2. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect (OSTI)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I. [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)] [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)

    2013-09-11T23:59:59.000Z

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  3. Test Plan for Evaluating Hammer and Fixed Cutter Grinders Using Multiple Varieties and Moistures of Biomass Feedstock

    SciTech Connect (OSTI)

    Not listed

    2007-07-01T23:59:59.000Z

    Biomass preprocessing is a critical operation in the preparation of feedstock for the front-end of a cellulosic ethanol biorefinery. Its purpose is to chop, grind, or otherwise format the biomass material into a suitable feedstock for optimum conversion to ethanol and other bioproducts. Without this operation, the natural size, bulk density, and flowability characteristics of harvested biomass would decrease the capacities and efficiencies of feedstock assembly unit operations and biorefinery conversion processes to the degree that programmatic cost targets could not be met. The preprocessing unit operation produces a bulk flowable material that 1) improves handling and conveying efficiencies throughout the feedstock assembly system and biorefinery 2) increases biomass surface areas for improved pretreatment efficiencies, 3) reduces particle sizes for improved feedstock uniformity and density, and 4) fractionates structural components for improved compositional quality. The Idaho National Laboratory (INL) is tasked with defining the overall efficiency/effectiveness of current commercial hammer and fixed cutter grinding systems and other connecting systems such as harvest and collection, storage, transportation, and handling for a wide variety of feedstock types used in bioethanol or syngas production. This test plan details tasks and activities for two separate full-scale grinding tests: Material Characterization Test and Machine Characterization Test. For the Material Characterization Test, a small amount (~5-7 tons each) of several feedstock varieties will be ground. This test will define the fractionation characteristics of the grinder that affect the bulk density, particle size distribution, and quality of the size reduced biomass resulting from different separation screen sizes. A specific screen size will be selected based on the characteristics of the ground material. The Machine Characterization Test will then use this selected screen to grind several 30-ton batches of different feedstock varieties and moistures. This test will focus on identifying the performance parameters of the grinding system specific to the feed, fractionation, and screen separation components and their affect on machine capacity and efficiency.

  4. High-temperature ceramic receivers

    SciTech Connect (OSTI)

    Jarvinen, P. O.

    1980-01-01T23:59:59.000Z

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  5. A summary of volatile impurity measurements and gas generation studies on MISSTD-1, a high-purity plutonium oxide produced by low-temperature calcination of plutonium oxalate

    SciTech Connect (OSTI)

    Berg, John M. [Los Alamos National Laboratory; Narlesky, Joshua E. [Los Alamos National Laboratory; Veirs, Douglas K. [Los Alamos National Laboratory

    2012-06-08T23:59:59.000Z

    Plutonium dioxide of high specific surface area was subjected to long-term tests of gas generation in sealed containers. The material preparation and the storage conditions were outside the bounds of acceptable parameters defined by DOE-STD-3013-2012 in that the material was stabilized to a lower temperature than required and had higher moisture content than allowed. The data provide useful information for better defining the bounding conditions for safe storage. Net increases in internal pressure and transient increases in H{sub 2} and O{sub 2} were observed, but were well within the bounds of gas compositions previously shown to not threaten integrity of 3013 containers.

  6. RECHARGEABLE HIGH-TEMPERATURE BATTERIES

    E-Print Network [OSTI]

    Cairns, Elton J.

    2014-01-01T23:59:59.000Z

    F. Eshman, High-Performance Batteries for Electric-VehicleS. Sudar, High Performance Batteries for Electric-VehicleHIGH-TEMPERATURE BATTERIES Elton J. Cairns January 1981 TWO-

  7. Hotline IV ?High Temperature ESP

    Broader source: Energy.gov (indexed) [DOE]

    Hotline IV - High Temperature ESP Brindesh Dhruva (principal Inv.) Michael Dowling (presenter) Schlumberger Track Name May 18, 2010 This presentation does not contain any...

  8. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10T23:59:59.000Z

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  9. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12T23:59:59.000Z

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  10. Low temperature irradiation tests on

    E-Print Network [OSTI]

    McDonald, Kirk

    Sample cool down by He gas loop 10K ­ 20K Fast neutron flux Measured by Ni activation in 2010 1.4xK #12;reactor Cryogenics #12;Al-Cu-Mg He gas temperature near sample 12K Resistance changesLow temperature irradiation tests on stabilizer materials using reactor neutrons at KUR Makoto

  11. ARM - Measurement - Atmospheric moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, AlaskaWhenimage ARM Dataparticlemoisture ARM

  12. ARM - Measurement - Soil moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat flux ARM Data Discovery Browse Data Comments?

  13. Roofing Moisture Tolerance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember 15 toAdvancesRockSodiumWIPP UPDATE:

  14. Detecting temperature fluctuations at equilibrium

    E-Print Network [OSTI]

    Dixit, Purushottam D

    2015-01-01T23:59:59.000Z

    Gibbs and Boltzmann definitions of temperature agree only in the macroscopic limit. The ambiguity in identifying the equilibrium temperature of a finite sized `small' system exchanging energy with a bath is usually understood as a limitation of conventional statistical mechanics. We interpret this ambiguity as resulting from a stochastically fluctuating temperature coupled with the phase space variables giving rise to a broad temperature distribution. With this ansatz, we develop the equilibrium statistics and dynamics of small systems. Numerical evidence using an analytically tractable model shows that the effects of temperature fluctuations can be detected in equilibrium and dynamical properties of the phase space of the small system. Our theory generalizes statistical mechanics to small systems relevant to biophysics and nanotechnology.

  15. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids Research Initiative Will Demonstrate Low Temperature...

  16. Effect of Gas Turbine Exhaust Temperature, Stack Temperature and Ambient Temperature on Overall Efficiency of Combine Cycle Power Plant

    E-Print Network [OSTI]

    unknown authors

    Abstract—The gas turbine exhaust temperature, stack temperature and ambient temperature play a very important role during the predication of the performance of combine cycle power plant. This paper covers parametric analysis of effects of gas turbine exhaust temperature, stack temperature and ambient temperature on the overall efficiency of combine cycle power plant keeping the gas turbine efficiency as well as steam turbine efficiency constant. The results shows that out of three variables i.e. turbine exhaust temperature, stack temperature and ambient temperature, the most dominating factor of increasing the overall efficiency of the combine cycle power plant is the stack temperature.

  17. A case study of the mesoscale and synoptic-scale heat and moisture budgets in the vicinity of a mesoscale convective complex

    E-Print Network [OSTI]

    Dial, Greg Leander

    1990-01-01T23:59:59.000Z

    A CASE STUDY OF THE MESOSCALE AND SYNOPTIC-SCALE HEAT AND MOISTURE BUDGETS IN THE VICINITY OF A MESOSCALE CONVECTIVE COMPLEX A Thesis by GREG LEANDER DIAL Submitted to the Office of Graduate Studies of Texas A8 M University in partial...&j Leandor Dial Approved as lo style and content by: Kcnnctt& C, ftrunrti&lgc (Ctn&i& ol' Co&nn&ittcc) (I tcn&l&c&) Norman W. Na glc (Mcmbcr) E ar . ipscr (I les&I of Dcpartmcnt) I 1 a y I 9 &3 0 ABSTRACT A Case Study of the Mesoscale and Synoptic...

  18. SRNL PHASE II SHELF LIFE STUDIES - SERIES 1 ROOM TEMPERATURE AND HIGH RELATIVE HUMIDITY

    SciTech Connect (OSTI)

    Mickalonis, J.; Duffey, J.

    2012-09-12T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) Phase II, Series 1 shelf-life corrosion testing for the Department of Energy Standard 3013 container is presented and discussed in terms of the localized corrosion behavior of Type 304 stainless steel in contact with moist plutonium oxide and chloride salt mixtures and the potential impact to the 3013 inner container. This testing was designed to address the influence of temperature, salt composition, initial salt moisture, residual stress and type of oxide/salt contact on the relative humidity inside a 3013 container and the initiation and propagation of localized corrosion, especially stress corrosion cracking. The integrated plan is being conducted by Los Alamos National Laboratory and SRNL. SRNL is responsible for conducting a corrosion study in small scale vessels containing plutonium oxide and chloride salts under conditions of humidity, temperature and oxide/salt compositions both within the limits of 3013 storage conditions as well as beyond the 3013 storage requirements to identify margins for minimizing the initiation of stress corrosion cracking. These worst case conditions provide data that bound the material packaged in 3013 containers. Phase I of this testing was completed in 2010. The Phase II, Series 1 testing was performed to verify previous results from Phase I testing and extend our understanding about the initiation of stress corrosion cracking and pitting that occur in 304L under conditions of room temperature, high humidity, and a specific plutonium oxide/salt chemistry. These results will aid in bounding the safe storage conditions of plutonium oxides in 3013 containers. A substantial change in the testing was the addition of the capability to monitor relative humidity during test exposure. The results show that under conditions of high initial moisture ({approx}0.5 wt%) and room temperature stress corrosion cracking occurred in 304L teardrop coupons in contact with the oxide/salt mixture at times as short as 85 days. In all cases, the cracking appeared to be associated with pitting or localized general corrosion. Crack initiation at other sites, such as surface imperfections or inclusions, cannot be excluded. Cracks appear in most cases to initiate through an intergranular mode and transition to a transgranular mode.

  19. Method for measuring surface temperature

    DOE Patents [OSTI]

    Baker, Gary A. (Los Alamos, NM); Baker, Sheila N. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

    2009-07-28T23:59:59.000Z

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  20. Shock temperature measurements in ammonia

    SciTech Connect (OSTI)

    Radousky, H.B.; Mitchell, A.C.; Nellis, W.J.; Ross, M.

    1985-07-01T23:59:59.000Z

    Our first shock temperature measurements on a cryogenic target are reported for NH/sub 3/. A new fast optical pyrometer and a cryogenic specimen holder for liquid NH/sub 3/ were developed to measure shock temperatures of 4400 and 3600 K at pressures of 61 and 48 GPa. These conditions correspond to those in the ice layers in Uranus and Neptune. The shock temperature data are in reasonable agreement with an equation of state based on an intermolecular potential derived from NH/sub 3/ Hugoniot data.

  1. Optimizing Low Temperature Diesel Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Consortium 2008 DOE Merit Review - UW-ERC 1 Optimizing Low Temperature Diesel Combustion Profs. Rolf Reitz, P. Farrell, D. Foster, J. Ghandhi, C. Rutland, S. Sanders Engine...

  2. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, W.Y.

    1984-07-27T23:59:59.000Z

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  3. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y. (Munster, IN)

    1987-01-01T23:59:59.000Z

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  4. Fuel Temperature Coefficient of Reactivity

    SciTech Connect (OSTI)

    Loewe, W.E.

    2001-07-31T23:59:59.000Z

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  5. Low to moderate temperature nanolaminate heater

    DOE Patents [OSTI]

    Eckels, J. Del (Livermore, CA); Nunes, Peter J. (Danville, CA); Simpson, Randall L. (Livermore, CA); Hau-Riege, Stefan (Fremont, CA); Walton, Chris (Oakland, CA); Carter, J. Chance (Livermore, CA); Reynolds, John G. (San Ramon, CA)

    2011-01-11T23:59:59.000Z

    A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.

  6. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

    1998-01-01T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  7. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  8. Apparatus and method for high temperature viscosity and temperature measurements

    DOE Patents [OSTI]

    Balasubramaniam, Krishnan (Mississippi State, MS); Shah, Vimal (Houston, TX); Costley, R. Daniel (Mississippi State, MS); Singh, Jagdish P. (Mississippi State, MS)

    2001-01-01T23:59:59.000Z

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  9. THE TEMPERATURES OF RED SUPERGIANTS

    SciTech Connect (OSTI)

    Davies, Ben [Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom)] [Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Kudritzki, Rolf-Peter; Gazak, Zach [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)] [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Plez, Bertrand [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS, F-34095 Montpellier (France)] [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS, F-34095 Montpellier (France); Trager, Scott [Kapteyn Institute, University of Groningen, P.O. Box 800, 9700-AV Groningen (Netherlands)] [Kapteyn Institute, University of Groningen, P.O. Box 800, 9700-AV Groningen (Netherlands); Lancon, Ariane [Observatoire Astronomique and CNRS UMR 7550, Universite de Strasbourg, F-67000 Strasbourg (France)] [Observatoire Astronomique and CNRS UMR 7550, Universite de Strasbourg, F-67000 Strasbourg (France); Bergemann, Maria [Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)] [Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Evans, Chris [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)] [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Chiavassa, Andrea [CNRS Laboratoire Lagrange, Universite de Nice Sophia-Antipolis, Observatoire de la Cote d'Azur, BP 4229, F-06304 Nice Cedex 4 (France)] [CNRS Laboratoire Lagrange, Universite de Nice Sophia-Antipolis, Observatoire de la Cote d'Azur, BP 4229, F-06304 Nice Cedex 4 (France)

    2013-04-10T23:59:59.000Z

    We present a re-appraisal of the temperatures of red supergiants (RSGs) using their optical and near-infrared spectral energy distributions (SEDs). We have obtained data of a sample of RSGs in the Magellanic Clouds using VLT+XSHOOTER, and we fit MARCS model atmospheres to different regions of the spectra, deriving effective temperatures for each star from (1) the TiO bands, (2) line-free continuum regions of the SEDs, and (3) the integrated fluxes. We show that the temperatures derived from fits to the TiO bands are systematically lower than the other two methods by several hundred kelvin. The TiO fits also dramatically overpredict the flux in the near-IR, and imply extinctions which are anomalously low compared to neighboring stars. In contrast, the SED temperatures provide good fits to the fluxes at all wavelengths other than the TiO bands, are in agreement with the temperatures from the flux integration method, and imply extinctions consistent with nearby stars. After considering a number of ways to reconcile this discrepancy, we conclude that three-dimensional effects (i.e., granulation) are the most likely cause, as they affect the temperature structure in the upper layers where the TiO lines form. The continuum, however, which forms at much deeper layers, is apparently more robust to such effects. We therefore conclude that RSG temperatures are much warmer than previously thought. We discuss the implications of this result for stellar evolution and supernova progenitors, and provide relations to determine the bolometric luminosities of RSGs from single-band photometry.

  10. Thermal disconnect for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph George (Albuquerque, NM); Armijo, James Rudolph (Albuquerque, NM); Frear, Darrel Richard (Austin, TX)

    2000-01-01T23:59:59.000Z

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  11. Temperature & Nuclear Fusion 4 October 2011

    E-Print Network [OSTI]

    Militzer, Burkhard

    Temperature & Nuclear Fusion 4 October 2011 Goals · Review temperature in stars · Practice using the important energy scales for nuclear fusion Temperature 1. For each relation we regularly use in class temperature. #12;temperature & nuclear fusion 2 Nuclear Fusion 2. There are a few different energy scales

  12. Finite Temperature Closed Superstring Theory

    E-Print Network [OSTI]

    Shyamoli Chaudhuri

    2005-09-12T23:59:59.000Z

    We find that the gas of IIA strings undergoes a phase transition into a gas of IIB strings at the self-dual temperature. A gas of free heterotic strings undergoes a Kosterlitz-Thouless duality transition with positive free energy and positive specific heat but vanishing internal energy at criticality. We examine the consequences of requiring a tachyon-free thermal string spectrum. We show that in the absence of Ramond-Ramond fluxes the IIA and IIB string ensembles are thermodynamically ill-defined. The 10D heterotic superstrings have nonabelian gauge fields and in the presence of a temperature dependent Wilson line background are found to share a stable and tachyon-free ground state at all temperatures starting from zero with gauge group SO(16)xSO(16). The internal energy of the heterotic string is a monotonically increasing function of temperature with a stable and supersymmetric zero temperature limit. Our results point to the necessity of gauge fields in a viable weakly coupled superstring theory. Note Added (Sep 2005).

  13. High temperature Seebeck coefficient metrology

    SciTech Connect (OSTI)

    Martin, J. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Tritt, T. [Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634 (United States); Uher, C. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2010-12-15T23:59:59.000Z

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  14. High temperature Seebeck coefficient metrology

    SciTech Connect (OSTI)

    Martin, J.; Tritt, T.; Uher, Ctirad

    2010-01-01T23:59:59.000Z

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential propertymeasurement for evaluating the potential performance of novel thermoelectricmaterials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectricmeasurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  15. Mechanical instability at finite temperature

    E-Print Network [OSTI]

    Xiaoming Mao; Anton Souslov; Carlos I. Mendoza; T. C. Lubensky

    2014-07-08T23:59:59.000Z

    Many physical systems including lattices near structural phase transitions, glasses, jammed solids, and bio-polymer gels have coordination numbers that place them at the edge of mechanical instability. Their properties are determined by an interplay between soft mechanical modes and thermal fluctuations. In this paper we investigate a simple square-lattice model with a $\\phi^4$ potential between next-nearest-neighbor sites whose quadratic coefficient $\\kappa$ can be tuned from positive negative. We show that its zero-temperature ground state for $\\kappa power-law behavior of the shear modulus as a function of temperature. We expect our study to provide a general framework for the study of finite-temperature mechanical and phase behavior of other systems with a large number of floppy modes.

  16. Integrated Emissivity And Temperature Measurement

    DOE Patents [OSTI]

    Poulsen, Peter (Livermore, CA)

    2005-11-08T23:59:59.000Z

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  17. RFID tag antenna based temperature sensing

    E-Print Network [OSTI]

    Bhattacharyya, Rahul

    Temperature monitoring is important in a number of fields, particularly cold supply chain applications. Most commercial wireless temperature sensors consist of transceivers, memory and batteries to maintain a temperature ...

  18. Temperature dependence of the indentation size effect

    E-Print Network [OSTI]

    Franke, Oliver

    The influence of temperature on the indentation size effect is explored experimentally. Copper is indented on a custom-built high-temperature nanoindenter at temperatures between ambient and 200 °C, in an inert atmosphere ...

  19. Crystal face temperature determination means

    DOE Patents [OSTI]

    Nason, D.O.; Burger, A.

    1994-11-22T23:59:59.000Z

    An optically transparent furnace having a detection apparatus with a pedestal enclosed in an evacuated ampule for growing a crystal thereon is disclosed. Temperature differential is provided by a source heater, a base heater and a cold finger such that material migrates from a polycrystalline source material to grow the crystal. A quartz halogen lamp projects a collimated beam onto the crystal and a reflected beam is analyzed by a double monochromator and photomultiplier detection spectrometer and the detected peak position in the reflected energy spectrum of the reflected beam is interpreted to determine surface temperature of the crystal. 3 figs.

  20. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1995-01-01T23:59:59.000Z

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  1. Temperature Resistant Optimal Ratchet Transport

    E-Print Network [OSTI]

    Cesar Manchein; Alan Celestino; Marcus W Beims

    2012-11-12T23:59:59.000Z

    Stable periodic structures containing optimal ratchet transport, recently found in the parameter space dissipation versus ratchet parameter [PRL 106, 234101 (2011)], are shown to be resistant to reasonable temperatures, reinforcing the expectation that they are essential to explain the optimal ratchet transport in nature. Critical temperatures for their destruction, valid from the overdamping to close to the conservative limits, are obtained numerically and shown to be connected to the current efficiency, given here analytically. Results are demonstrated for a discrete ratchet model and generalized to the Langevin equation with an additional external oscillating force.

  2. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, J.R.; Poeppel, R.B.

    1995-06-20T23:59:59.000Z

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  3. Thermodynamic Advantages of Low Temperature Combustion Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use...

  4. Acid Doped Membranes for High Temperature PEMFC

    Broader source: Energy.gov [DOE]

    Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  5. Variable Temperature UHV STM/AFM | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature UHV STMAFM The Omicron variable temperature ultra-high vacuum (UHV) scanning tunneling microscope (VTSTM) is designed to study the structure of both clean and...

  6. High-Temperature Thermoelectric Materials Characterization for...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  7. High Temperature Thermoelectric Materials Characterization for...

    Broader source: Energy.gov (indexed) [DOE]

    High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  8. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  9. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature Geothermal...

  10. Temperature and cooling management in computing systems

    E-Print Network [OSTI]

    Ayoub, Raid

    2011-01-01T23:59:59.000Z

    Chapter 6 Conclusion and Future Work Temperature and coolingthan 1%. Future research directions Temperature and coolingcooling are critical aspects of design in today’s and future

  11. SPREADSHEET DESCRIPTION DOCUMENT FOR SATURATION TEMPERATURE CALCULATION

    SciTech Connect (OSTI)

    JO J

    2008-08-29T23:59:59.000Z

    This document describes the methodology for determining the saturation temperature in waste tanks. The saturation temperature is used to calculate neutral buoyancy ratio.

  12. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature Geothermal...

  13. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste...

  14. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D...

  15. Temperature Independent Physisorption Kinetics and Adsorbate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Independent Physisorption Kinetics and Adsorbate Layer Compression for Ar Adsorbed on Pt (111). Temperature Independent Physisorption Kinetics and Adsorbate Layer...

  16. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect (OSTI)

    Michael Swanson; Daniel Laudal

    2008-03-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

  17. High temperature synthetic cement retarder

    SciTech Connect (OSTI)

    Eoff, L.S.; Buster, D.

    1995-11-01T23:59:59.000Z

    A synthetic cement retarder which provides excellent retardation and compressive strength development has been synthesized. The response properties and temperature ranges of the synthetic retarder far exceed those of commonly used retarders such as lignosulfonates. The chemical nature of the new retarder is discussed and compared to another synthetic retarder.

  18. Temperature controlled high voltage regulator

    DOE Patents [OSTI]

    Chiaro, Jr., Peter J. (Clinton, TN); Schulze, Gerald K. (Knoxville, TN)

    2004-04-20T23:59:59.000Z

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  19. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01T23:59:59.000Z

    on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

  20. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1989-01-01T23:59:59.000Z

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  1. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03T23:59:59.000Z

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  2. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26T23:59:59.000Z

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  3. Geothermal high temperature instrumentation applications

    SciTech Connect (OSTI)

    Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants (United States)

    1998-06-11T23:59:59.000Z

    A quick look at the geothermal industry shows a small industry producing about $1 billion in electric sales annually. The industry is becoming older and in need of new innovative solutions to instrumentation problems. A quick look at problem areas is given along with basic instrumentation requirements. The focus of instrumentation is on high temperature electronics.

  4. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  5. temperature heat pumps applied to

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    losses (waste heat) 250-300°C......1100°C ~ 100 TWh/year Low temperature thermal losses (waste heat) 25°C;Waste heat recovery (1) In a decreasing energetic interest order Achema 2012 Frankfurt June 21th 2012>>Twaste #12;Waste heat recovery (2) Achema 2012 Frankfurt June 21th 2012 There is no interesting thermal

  6. Novel room temperature ferromagnetic semiconductors

    SciTech Connect (OSTI)

    Gupta, Amita

    2004-11-01T23:59:59.000Z

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2+ state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2+ state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS, revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

  7. Temperature & Nuclear Fusion 4 October 2011

    E-Print Network [OSTI]

    Militzer, Burkhard

    Temperature & Nuclear Fusion 4 October 2011 Goals · Review temperature in stars · Practice using the important energy scales for nuclear fusion Temperature 1. For each relation we regularly use in class-Boltzmann equation: L = 4R2 T4 . (d) In fusion energy generation: T . #12;temperature & nuclear fusion 2 Nuclear

  8. A study of wind-speed maxima near the surface over the south central United States 

    E-Print Network [OSTI]

    Beckman, Samuel Karl

    1973-01-01T23:59:59.000Z

    , the front is indicated by a wind shift, pressure change, or a decrease in moisture. In some cases the position of the cold front may be confused with the position of a dew-point front (Henry and Thompson, 1963) which is active in west Texas, eastern New... N. A wind speed of at least 30 kt was considered to be strong. The initial flow is confined on both the east and west sides. The mountains restrict the western extent of the southerly flow. The eastward extent of the southerly flow is determined...

  9. Quantum radiation at finite temperature

    E-Print Network [OSTI]

    Ralf Schützhold; Günter Plunien; Gerhard Soff

    2001-05-23T23:59:59.000Z

    We investigate the phenomenon of quantum radiation - i.e. the conversion of (virtual) quantum fluctuations into (real) particles induced by dynamical external conditions - for an initial thermal equilibrium state. For a resonantly vibrating cavity a rather strong enhancement of the number of generated particles (the dynamical Casimir effect) at finite temperatures is observed. Furthermore we derive the temperature corrections to the energy radiated by a single moving mirror and an oscillating bubble within a dielectric medium as well as the number of created particles within the Friedmann-Robertson-Walker universe. Possible implications and the relevance for experimental tests are addressed. PACS: 42.50.Lc, 03.70.+k, 11.10.Ef, 11.10.Wx.

  10. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30T23:59:59.000Z

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  11. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1994-01-01T23:59:59.000Z

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  12. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1993-01-01T23:59:59.000Z

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  13. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1992-01-01T23:59:59.000Z

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  14. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J; Trester, Dale B

    2014-02-04T23:59:59.000Z

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  15. Quantifying Temperature Effects on Fall Chinook Salmon

    SciTech Connect (OSTI)

    Jager, Yetta [ORNL

    2011-11-01T23:59:59.000Z

    The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

  16. Finite temperature reservoir engineering and entanglement dynamics

    E-Print Network [OSTI]

    S. Fedortchenko; A. Keller; T. Coudreau; P. Milman

    2014-05-29T23:59:59.000Z

    We propose experimental methods to engineer reservoirs at arbitrary temperature which are feasible with current technology. Our results generalize to mixed states the possibility of quantum state engineering through controlled decoherence. Finite temperature engineered reservoirs can lead to the experimental observation of thermal entanglement --the appearance and increase of entanglement with temperature-- to the study of the dependence of finite time disentanglement and revival with temperature, quantum thermodynamical effects, among many other applications, enlarging the comprehension of temperature dependent entanglement properties.

  17. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, Xiaonan (Golden, CO); Sheldon, Peter (Lakewood, CO)

    1998-01-01T23:59:59.000Z

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  18. NSTX High Temperature Sensor Systems

    SciTech Connect (OSTI)

    B.McCormack; H.W. Kugel; P. Goranson; R. Kaita; et al

    1999-11-01T23:59:59.000Z

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed.

  19. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27T23:59:59.000Z

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  20. Understanding the Temperature and Humidity Environment Inside a PV Module (Presentation)

    SciTech Connect (OSTI)

    Kempe, M.

    2013-06-01T23:59:59.000Z

    This presentation addresses moisture-driven degradation processes in PV modules and the conditions to use for accelerated stress testing. Here we show that by choosing humidity conditions that more closely match the use environment, one can minimize the uncertainty associated with moisture induced degradation modes.

  1. Renormalization of QED near Decoupling Temperature

    E-Print Network [OSTI]

    Samina S. Masood

    2014-07-05T23:59:59.000Z

    We study the effective parameters of QED near decoupling temperatures and show that the QED perturbative series is convergent, at temperatures below the decoupling temperature. The renormalization constant of QED acquires different values if a system cools down from a hotter system to the electron mass temperature or heats up from a cooler system to the same temperature. At T = m, the first order contribution to the electron selfmass, {\\delta}m/m is 0.0076 for a heating system and 0.0115 for a cooling system and the difference between two values is equal to 1/3 of the low temperature value and 1/2 of the high temperature value around T~m. This difference is a measure of hot fermion background at high temperatures. With the increase in release of more fermions at hotter temperatures, the fermion background contribution dominates and weak interactions have to be incorporated to understand the background effects.

  2. Method and apparatus for optical temperature measurement

    DOE Patents [OSTI]

    O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

    1994-09-20T23:59:59.000Z

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

  3. Method and apparatus for optical temperature measurement

    DOE Patents [OSTI]

    O'Rourke, Patrick E. (Martinez, GA); Livingston, Ronald R. (Aiken, SC); Prather, William S. (Augusta, GA)

    1994-01-01T23:59:59.000Z

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped boresilicate glass, accurate to .+-.0.5.degree. C. over an operating temperature range of about -196.degree. C. to 400.degree. C.; and a mixture of D.sub.2 O and H.sub.2 O, accurate to .+-.0.1.degree. C. over an operating range of about 5.degree. C. to 90.degree. C.

  4. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01T23:59:59.000Z

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  5. University of Illinois Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01T23:59:59.000Z

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) University of Illinois Project 29609 irradiation. The objective of this test was to assess the radiation performance of ferritic alloys for advanced reactor applications. The FeCr-based alloy system is considered the lead alloy system for a variety of advanced reactor components and applications. Irradiations of FeCr alloy samples were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in a static capsule in the A-11 position of the ATR.

  6. Seasonal Average Temperature - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-Comments Sign In About | CareersAverage Temperature

  7. Single-Duct Constant Air Volume System Supply Air Temperature Reset: Using Return Air Temperature or Outside Air Temperature

    E-Print Network [OSTI]

    Wei, G.; Turner, W. D.; Claridge, D.; Liu, M.

    2002-01-01T23:59:59.000Z

    space area. Room temperatures are controlled by pneumatic thermostats. The AHU has a minimum outside air damper and a maximum outside air damper. The minimum outside air damper is fully open when the AHU is in operation. The maximum outside air... of thermostat, and the relationship between room temperature set point and return air temperature. The Role Of Thermostat Traditional pneumatic thermostat is a proportional (P) type controller. It senses the space temperature changes and produces...

  8. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2003-03-31T23:59:59.000Z

    This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.

  9. Magnetic insulation at finite temperatures

    SciTech Connect (OSTI)

    Goedecke, G. H.; Davis, Brian T.; Chen, Chiping [Physics Department, New Mexico State University, Las Cruces, New Mexico 88003 and Raytheon Missile Systems, 1151 E. Hermans Road, Tucson, Arizona 85706 (United States); Intense Beam Theoretical Research Group, Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and Raytheon Missile Systems, 1151 E. Hermans Road, Tucson, Arizona 85706 (United States)

    2006-08-15T23:59:59.000Z

    A finite-temperature non-neutral plasma (FTNNP) theory of magnetically insulated (MI) electron flows in crossed-field vacuum devices is developed and applied in planar geometry. It is shown that, in contrast to the single type of MI flow predicted by traditional cold-plasma treatments, the nonlinear FTNNP equations admit five types of steady flow, of which three types are MI flows, including flows in which the electric field and/or the tangential velocity at the cathode may be zero or nonzero. It is also shown that finite-temperature Vlasov-Poisson treatments yield solutions for electron number densities and electrostatic potentials that are a subset of the FTNNP solutions. The algorithms that are used to solve the FTNNP equations numerically are discussed, and the numerical results are presented for several examples of the three types of MI flow. Results include prediction of the existence, boundaries, number density profiles, and other properties of sheaths of electrons in the anode-cathode gap.

  10. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01T23:59:59.000Z

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratory’s Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  11. Low Temperature Heat Recovery for Boiler Systems 

    E-Print Network [OSTI]

    Shook, J. R.; Luttenberger, D. B.

    1986-01-01T23:59:59.000Z

    Low temperature corrosion proof heat exchangers designed to reduce boiler flue gas temperatures to 150°F or lower are now being commercially operated on gas, oil and coal fired boilers. These heat exchangers, when applied to boiler flue gas...

  12. Temperature calibration of Gulf of Mexico corals

    E-Print Network [OSTI]

    Smith, Jennifer Mae

    2001-01-01T23:59:59.000Z

    for measurement of extension, density, and isotopes ([]¹?O, []¹³C). The coral oxygen isotope signature was calibrated against high-resolution daily temperature and salinity data sets spanning 1990-1997. Coralline estimates of water temperature demonstrate only...

  13. Low Temperature UHV STM/AFM | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UHV STMAFM Low Temperature UHV STMAFM EMSL's ultra-high vacuum, low-temperature scanning probe microscope instrument, or UHV LT SPM, is the preeminent system dedicated to surface...

  14. Variable Temperature STM/AFM | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STMAFM Variable Temperature STMAFM EMSL's ultra-high vacuum, variable-temperature scanning probe microscope system, or UHV VT SPM, is a state-of-the-art surface science tool...

  15. High-temperature thermocouples and related methods

    DOE Patents [OSTI]

    Rempe, Joy L. (Idaho Falls, ID); Knudson, Darrell L. (Firth, ID); Condie, Keith G. (Idaho Falls, ID); Wilkins, S. Curt (Idaho Falls, ID)

    2011-01-18T23:59:59.000Z

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  16. Temperature Sensor Data Michael W. Bigrigg

    E-Print Network [OSTI]

    Sadeh, Norman M.

    in the room. Sensor networks can be used to identify larger trends in temperature which could be used to report energy usage, HVAC problems, computer failures based on high temperatures, and fire evacuation

  17. Development and Processing Temperature Dependence of Ferromagnetism...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Processing Temperature Dependence of Ferromagnetism in Zn0.98Co0.02O. Development and Processing Temperature Dependence of Ferromagnetism in Zn0.98Co0.02O. Abstract: We report...

  18. Corrosion Resistant Coatings for High Temperature Applications

    SciTech Connect (OSTI)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01T23:59:59.000Z

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  19. The stable fly: prediction of larval temperature

    E-Print Network [OSTI]

    Foerster, Kenneth Wayne

    1978-01-01T23:59:59.000Z

    of the manure and to develop a dynamic heat transfer model, Larval migration behavior was observed in simulated sections of a manure mound. From these data a dynamic, temperature-dependent, larval migration model was developed. The results indicate... Of The Stable Fly Response To Temperature Heat Transfer Model III. EXPERIMENTAL PROCEDURE AND MATERIALS Manure Mound Temperature Distribution Temperature Measurement Thermodynamic Model Heat Transfer in the Mound Convective Heat Transfer Heat Transfer...

  20. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Materials Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials 2011 DOE Hydrogen and Fuel Cells...

  1. Integrated Ingredients Dehydrated Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Ingredients Dehydrated Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Integrated Ingredients Dehydrated Agricultural Drying Low...

  2. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1998-01-01T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.

  3. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1996-01-01T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.

  4. Determining Outdoor CPV Cell Temperature: Preprint

    SciTech Connect (OSTI)

    Muller, M.; Deline, C.; Marion, B.; Kurtz, S.; Bosco, N.

    2011-07-01T23:59:59.000Z

    An accurate method is needed for determining cell temperature when measuring CPV modules outdoors. It has been suggested that cell temperature can be calculated though a procedure that shutters sunlight to the cells while measuring the transients in open-circuit voltage (Voc) and heat sink temperature. This paper documents application of this shutter procedure to multiple CPV modules at NREL. The challenges and limitations are presented along with an alternate approach to measuring CPV cell operating temperature.

  5. Progress in lattice QCD at finite temperature

    E-Print Network [OSTI]

    Peter Petreczky

    2006-06-09T23:59:59.000Z

    I review current status of lattice QCD calculations of the deconfining transition at finite temperature and quarkonia spectral functions.

  6. Carbon nanotube temperature and pressure sensors

    DOE Patents [OSTI]

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29T23:59:59.000Z

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  7. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1996-08-20T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit. 7 figs.

  8. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1998-06-30T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.

  9. Agenda: High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

  10. Simulation of Top Oil Temperature for Transformers

    E-Print Network [OSTI]

    Simulation of Top Oil Temperature for Transformers Masters Thesis and Final Project Report Power-Oil Temperature for Transformers Thesis and Final Report Yong Liang PSERC Publication 01-21 February 2001 #12 for the PSERC project "On-Line Peak Loading of Substation Distribution Transformers Through Accurate Temperature

  11. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-01-01T23:59:59.000Z

    Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

  12. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, J.R.

    1997-02-04T23:59:59.000Z

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  13. Temperature Dependent Wire Delay Estimation in Floorplanning

    E-Print Network [OSTI]

    Nannarelli, Alberto

    Temperature Dependent Wire Delay Estimation in Floorplanning Andreas Thor Winther, Wei Liu, Alberto, Arizona State University, Tempe, USA Abstract--Due to large variations in temperature in VLSI cir- cuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length

  14. Progress in Lattice QCD at finite temperature

    E-Print Network [OSTI]

    P. Petreczky

    2007-05-19T23:59:59.000Z

    I review recent developements in lattice QCD at finite temperature, including the determination of the transition temperature T_c, equation of state and diffenet static screening lengths. The lattice data suggest that at temperatures above 1.5T_c the quark gluon plasma can be considered as gas consisting of quarks and gluons.

  15. LOW TEMPERATURE PHYSICS RADIATION EFFECTS ON

    E-Print Network [OSTI]

    McDonald, Kirk

    LOW TEMPERATURE PHYSICS RADIATION EFFECTS ON FUSION MAGNET COMPONENTS Harald W. Weber Vienna Stabilizer Insulation Conclusions ESS, 4th High Power Targetry Workshop, Malmö 5 May 2011 #12;LOW TEMPERATURE PHYSICS Overview: ITER 300-500 s INTRODUCTION #12;LOW TEMPERATURE PHYSICS ITER Magnet System (5 K / 6.5 K

  16. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1997-01-01T23:59:59.000Z

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  17. Use of roof temperature modeling to predict necessary conditions for locating wet insulation with infrared thermography

    SciTech Connect (OSTI)

    Childs, K.W.

    1985-11-01T23:59:59.000Z

    In low-sloped roofing systems using porous insulation, the presence of water can significantly degrade thermal performance. For this reason, it is desirable to develop a reliable method for detecting the presence of water in a roofing system. Because of the different thermal characteristics of wet and dry insulation, there is often a surface temperature differential between areas containing wet insulation and areas containing dry insulation. Under the right circumstances, the areas of wet insulation can be detected by means of infrared sensing techniques. These techniques have already gained widespread acceptance, but there is still some uncertainty as to what are appropriate environmental conditions for viewing. To better define the conditions under which infrared techniques can distinguish between areas of wet and dry insulation, a one-dimensional, transient heat transfer model of a roofing system was developed. The model considers conduction through the roof, insolation on the surface, radiant exchange between the roof and sky, convective heat transfer between the roof and air, and the influence of trapped moisture on the thermal properties of the insulation. A study was undertaken using this model to develop an easily-applied technique for prediction of necessary conditions for locating wet roof insulation using infrared thermography.

  18. Correlations of Polyimides and Blended Polyimides for High Temperature Gas Separations

    SciTech Connect (OSTI)

    John R. Klaehn; Christopher J. Orme; Thomas A. Luther; Eric S. Peterson; Jagoda M. Urban-Klaehn

    2002-03-01T23:59:59.000Z

    High performance polymers are of interest for high temperature gas separations, especially for the sequestration of carbon dioxide. A new family of high performance imide polymers has been identified as a successful membrane capture material. VTEC polyimides possess desired thermal properties (up to 500 °C) along with being robust and flexible even after multiple thermal cycles (up to 400 °C). Polyimides (PI) are excellent materials for high selectivity for smaller kinetic diameter gases such as H2 and CO2; however, they have low fluxes. We blended small amounts of different polymers with VTEC polyimide, which changes the fluxes. Another critical problem when working with glassy polymers is their moisture content. It has been found that water entrapped within the polymer matrix (left over from the solvent, or physisorbed) can also cause the polymer to change dramatically. Additionally presence of molecular water in the polymer’s void volume has been validated through Positron Annihilation Lifetime (PAL) spectroscopy. In this presentation, polymer characterization and gas-separation testing results will be discussed.

  19. Air Handling Unit Supply Air Temperature Optimization During Economizer Cycles

    E-Print Network [OSTI]

    Xu, K.; Liu, M.; Wang, G.; Wang, Z.

    2007-01-01T23:59:59.000Z

    temperature at supply air temperature setpoint. Mechanical cooling is always required when outside air temperature is higher than the supply air temperature setpoint. Generally the supply air temperature setpoint is set at 55°F for space humidity control...

  20. Apparent Temperature Dependence on Localized Atmospheric Water Vapor

    E-Print Network [OSTI]

    Salvaggio, Carl

    Apparent Temperature Dependence on Localized Atmospheric Water Vapor Matthew Montanaroa, Carl temperature of the target if not properly accounted for. The temperature error is defined as the difference between the target leaving apparent temperature and observed apparent temperature. The effects

  1. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, L.A.; Reichert, P.

    1997-03-18T23:59:59.000Z

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  2. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2000-09-30T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Microstructural changes in unsupported nanocrystalline yttrium stabilized zirconia (ZrO{sub 2}:16%Y, or YSZ) thin films were examined as a function of temperature and annealing time in order to determine the grain growth exponent and the mechanisms of pinhole formation. Grain growth and pinhole formation were measured using high resolution transmission electron microscopy (HRTEM), normal imaging mode transmission electron microscopy (TEM), electron diffraction, and energy dispersive X-ray microanalysis (EDS). Grain growth was found to vary with a time exponent of about one half before pinhole formation and about one third after. Pinhole formation in 70 nm thick films occurred at temperatures near 600 C, corresponding to a grain size of about 15 nm, or a grain size to film thickness ration of approximately 0.25. The deposition of films on porous substrates is hampered by the penetration of the polymer precursor solution into the substrate whose pores as > 0.2 {micro}m, therefore much attention has to be paid to the development of porous colloidal oxide films onto surfaces. Thus during this line period we have been studying these films. Optical properties have proven to be an excellent way to study the quality of these nanoporous films. The influence of porosity and densification on optical properties of films on sapphire substrates that were prepared from water colloidal suspensions of small ({approx}5nm) particles of ceria was investigated. The colloidal ceria films have initially very porous structure (porosity about 50%) and densification starts at about 600 C accompanied by grain growth. The concurrence of these two processes makes it difficult to interpret the results of the optical spectrophotometry, but the combination of transmittance and reflectance measurements provides enough data to separate these two influences and to calculate the porosity, particle size and energy band gap separately. XRD, SEM, ellipsometry and mechanical profilometry were used to confirm the results obtained from the spectrophotometric measurements. All these methods gave results, which are in good agreement: the change in the porosity from 50% to 15% and the particle size increased from 5 to 65nm in the temperature region from 400 to 1000 C. An important result of the investigation is the fact that the main optical properties of the coating such as refractive index and band gap energy depend only on the porosity, but not on the grain size. The grain size influences the scattering properties of the coating, which allows the grain size to be estimated from optical measurements.

  3. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson

    2000-03-31T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates. However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

  4. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Reichert, Patrick (Hayward, CA)

    1997-01-01T23:59:59.000Z

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  5. Al{sub 2}O{sub 3} multi-density layer structure as a moisture permeation barrier deposited by radio frequency remote plasma atomic layer deposition

    SciTech Connect (OSTI)

    Jung, Hyunsoo [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 (Korea, Republic of); Jeon, Heeyoung [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Choi, Hagyoung; Ham, Giyul; Shin, Seokyoon [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-02-21T23:59:59.000Z

    Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition have been used for thin film encapsulation of organic light emitting diode. In this study, a multi-density layer structure consisting of two Al{sub 2}O{sub 3} layers with different densities are deposited with different deposition conditions of O{sub 2} plasma reactant time. This structure improves moisture permeation barrier characteristics, as confirmed by a water vapor transmission rate (WVTR) test. The lowest WVTR of the multi-density layer structure was 4.7 × 10{sup ?5} gm{sup ?2} day{sup ?1}, which is one order of magnitude less than WVTR for the reference single-density Al{sub 2}O{sub 3} layer. This improvement is attributed to the location mismatch of paths for atmospheric gases, such as O{sub 2} and H{sub 2}O, in the film due to different densities in the layers. This mechanism is analyzed by high resolution transmission electron microscopy, elastic recoil detection, and angle resolved X-ray photoelectron spectroscopy. These results confirmed that the multi-density layer structure exhibits very good characteristics as an encapsulation layer via location mismatch of paths for H{sub 2}O and O{sub 2} between the two layers.

  6. Coronal Temperature as an Age Indicator

    E-Print Network [OSTI]

    Hwankyung Sung; M. S. Bessell; Hugues Sana

    2008-03-26T23:59:59.000Z

    The X-ray spectra of late type stars can generally be well fitted by a two temperature component model of the corona. We fnd that the temperature of both components are strong functions of stellar age, although the temperature of the hotter plasma in the corona shows a larger scatter and is probably affected by the activity of stars, such as flares. We confirm the power-law decay of the temperature of the hot plasma, but the temperature of the cool component decays linearly with log (age).

  7. Low temperature sodium-beta battery

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-11-19T23:59:59.000Z

    A battery that will operate at ambient temperature or lower includes an enclosure, a current collector within the enclosure, an anode that will operate at ambient temperature or lower within the enclosure, a cathode that will operate at ambient temperature or lower within the enclosure, and a separator and electrolyte within the enclosure between the anode and the cathode. The anode is a sodium eutectic anode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower. The cathode is a low melting ion liquid cathode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower.

  8. Temperature and electrical memory of polymer fibers

    SciTech Connect (OSTI)

    Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe [Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, Avenue Schweitzer, 33600 Pessac (France)

    2014-05-15T23:59:59.000Z

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  9. Nuclear fuels for very high temperature applications

    SciTech Connect (OSTI)

    Lundberg, L.B.; Hobbins, R.R.

    1992-08-01T23:59:59.000Z

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  10. Nuclear fuels for very high temperature applications

    SciTech Connect (OSTI)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01T23:59:59.000Z

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  11. High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model

    E-Print Network [OSTI]

    Adler, Joan

    High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model Zaher Abstract We have analysed low and high temperature series expansions for the three­dimensional Ising model on the simple cubic lattice. Our analysis of Butera and Comi's new 32 term high temperature series yields K c

  12. High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model

    E-Print Network [OSTI]

    Adler, Joan

    High and Low Temperature Series Estimates for the Critical Temperature Abstract We have analysed low and high temperature series expansions for the three high temperature series yields Kc = 0.221659 +0.000002-0.000005and from the 32 term low

  13. Effect of low and high storage temperatures on head space gas concentrations and physical properties of wood pellets

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; C. Jim Lim; Tony Bi; Xingya Kuang; Staffan Melin

    2013-11-01T23:59:59.000Z

    Headspace gas concentrations and wood pellet properties were studied in sealed glass canisters at 5–40 degrees C storage temperatures. CO2 and CO concentrations at 5, 10, 20 and 40 degrees C at the end of 23–28 days of storage were 1600 and 200, 4700 and 1200, and 31 200 and 15 800 parts per million by volume (ppmv) respectively. Corresponding O2 concentration was about 19•49, 19•20, 18•0 and 2•07% respectively. Non-linear regression equations adequately described the gas concentrations in the storage container as a function of time. Safe level estimation functions developed were linear for O2 and logarithmic for CO and CO2 concentrations. Measured pellet properties moisture, length, diameter, unit, bulk and tapped density, durability, calorific value, ash content and per cent fines were in the range of 4•6–5•02%, 14–15 mm, 6•4–6•5 mm, 1125–1175 kg m-3, 750–770 kg m-3, 825–840 kg m-3, 73–74%, 18•32–18•78 MJ kg-1, 0•65–0•74% and 0•13–0•15%. Durability values of pellets decreased by 13% at 40 degrees C storage temperature and other properties changed marginally.

  14. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31T23:59:59.000Z

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

  15. Topological Insulators at Room Temperature

    SciTech Connect (OSTI)

    Zhang, Haijun; /Beijing, Inst. Phys.; Liu, Chao-Xing; /Tsinghua U., Beijing; Qi, Xiao-Liang; /Stanford U., Phys. Dept.; Dai, Xi; Fang, Zhong; /Beijing, Inst. Phys.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-25T23:59:59.000Z

    Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for Sb{sub 2}Te{sub 3}, Sb{sub 2}Se{sub 3}, Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystals. Our calculations predict that Sb{sub 2}Te{sub 3}, Bi{sub 2}T e{sub 3} and Bi{sub 2}Se{sub 3} are topological insulators, while Sb{sub 2}Se{sub 3} is not. In particular, Bi{sub 2}Se{sub 3} has a topologically non-trivial energy gap of 0.3eV , suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the {Lambda} point.

  16. High Temperature Superconducting Underground Cable

    SciTech Connect (OSTI)

    Farrell, Roger, A.

    2010-02-28T23:59:59.000Z

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  17. Variable temperature seat climate control system

    DOE Patents [OSTI]

    Karunasiri, Tissa R. (Van Nuys, CA); Gallup, David F. (Pasadena, CA); Noles, David R. (Glendale, CA); Gregory, Christian T. (Alhambra, CA)

    1997-05-06T23:59:59.000Z

    A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

  18. Temperature Dependent Neutron Scattering Sections for Polyethylene

    E-Print Network [OSTI]

    Roger E. Hill; C. -Y. Liu

    2003-09-05T23:59:59.000Z

    This note presents neutron scattering cross sections for polyethylene at 296 K, 77 K and 4 K derived from a new scattering kernel for neutron scattering off of hydrogen in polyethylene. The kernel was developed in ENDF-6 format as a set of S(alpha,beta) tables using the LEAPR module of the NJOY94 code package. The polyethylene density of states (from 0 to sub eV) adopted to derive the new kernel is presented. We compare our calculated room temperature total scattering cross sections and double differential cross sections at 232 meV at various angles with the available experimental data (at room temperature), and then extrapolate the calculations to lower temperatures (77K and 4K). The new temperature dependent scattering kernel gives a good quantitative fit to the available room temperature data and has a temperature dependence that is qualitatively consistent with thermodynamics.

  19. Temperature detection in a gas turbine

    DOE Patents [OSTI]

    Lacy, Benjamin; Kraemer, Gilbert; Stevenson, Christian

    2012-12-18T23:59:59.000Z

    A temperature detector includes a first metal and a second metal different from the first metal. The first metal includes a plurality of wires and the second metal includes a wire. The plurality of wires of the first metal are connected to the wire of the second metal in parallel junctions. Another temperature detector includes a plurality of resistance temperature detectors. The plurality of resistance temperature detectors are connected at a plurality of junctions. A method of detecting a temperature change of a component of a turbine includes providing a temperature detector include ing a first metal and a second metal different from the first metal connected to each other at a plurality of junctions in contact with the component; and detecting any voltage change at any junction.

  20. High temperature solar selective coatings

    DOE Patents [OSTI]

    Kennedy, Cheryl E

    2014-11-25T23:59:59.000Z

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.