National Library of Energy BETA

Sample records for moisture dewpoint temperature

  1. Annotated Bibliography for the DEWPOINT project

    SciTech Connect (OSTI)

    Oehmen, Christopher S.

    2009-04-21

    This bibliography covers aspects of the Detection and Early Warning of Proliferation from Online INdicators of Threat (DEWPOINT) project including 1) data management and querying, 2) baseline and advanced methods for classifying free text, and 3) algorithms to achieve the ultimate goal of inferring intent from free text sources. Metrics for assessing the quality and correctness of classification are addressed in the second group. Data management and querying include methods for efficiently storing, indexing, searching, and organizing the data we expect to operate on within the DEWPOINT project.

  2. Temperature and moisture dependence of dielectric constant for silica aerogels

    SciTech Connect (OSTI)

    Hrubesh, L.H., LLNL

    1997-03-01

    The dielectric constants of silica aerogels are among the lowest measured for any solid material. The silica aerogels also exhibit low thermal expansion and are thermally stable to temperatures exceeding 500{degrees}C. However, due to the open porosity and large surface areas for aerogels, their dielectric constants are strongly affected by moisture and temperature. This paper presents data for the dielectric constants of silica aerogels as a function of moisture content at 25{degrees}C, and as a function of temperature, for temperatures in the range from 25{degrees}C to 450{degrees}C. Dielectric constant data are also given for silica aerogels that are heat treated in dry nitrogen at 500{degrees}C, then cooled to 25{degrees}C for measurements in dry air. All measurements are made on bulk aerogel spheres at 22GHz microwave frequency, using a cavity perturbation method. The results of the dependence found here for bulk materials can be inferred to apply also to thin films of silica aerogels having similar nano-structures and densities.

  3. Low-temperature conversion of high-moisture biomass: Topical report, January 1984--January 1988

    SciTech Connect (OSTI)

    Sealock, L.J. Jr.; Elliott, D.C.; Butner, R.S.; Neuenschwander, G.G.

    1988-10-01

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process that converts high-moisture biomass feedstocks and other wet organic substances to useful gaseous and liquid fuels. The advantage of this process is that it works without the need for drying or dewatering the feedstock. Conventional thermal gasification processes, which require temperatures above 750/degree/C and air or oxygen for combustion to supply reaction heat, generally cannot utilize feedstocks with moisture contents above 50 wt %, as the conversion efficiency is greatly reduced as a result of the drying step. For this reason, anaerobic digestion or other bioconversion processes traditionally have been used for gasification of high-moisture feedstocks. However, these processes suffer from slow reaction rates and incomplete carbon conversion. 50 refs., 21 figs., 22 tabs.

  4. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  5. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    2014-01-10

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  6. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    SciTech Connect (OSTI)

    Margaret Torn

    2015-01-14

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  7. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Margaret Torn

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  8. Investigations of Possible Low-Level Temperature and Moisture Anomalies During the AMIE Field Campaign on Manus Island

    SciTech Connect (OSTI)

    Long, CN; Holdridge, DJ

    2012-11-19

    This document discusses results stemming from the investigation of near-surface temperature and moisture “oddities” that were brought to light as part of the Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment (AMIE), Dynamics of the Madden-Julian Oscillation (DYNAMO), and Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) campaigns.

  9. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets

    SciTech Connect (OSTI)

    Ishii, Kazuei Furuichi, Toru

    2014-12-15

    Highlights: • Optimized conditions were determined for the production of rice straw pellets. • The moisture content and forming temperature are key factors. • High quality rice pellets in the lower heating value and durability were produced. - Abstract: A large amount of rice straw is generated and left as much in paddy fields, which causes greenhouse gas emissions as methane. Rice straw can be used as bioenergy. Rice straw pellets are a promising technology because pelletization of rice straw is a form of mass and energy densification, which leads to a product that is easy to handle, transport, store and utilize because of the increase in the bulk density. The operational conditions required to produce high quality rice straw pellets have not been determined. This study determined the optimal moisture content range required to produce rice straw pellets with high yield ratio and high heating value, and also determined the influence of particle size and the forming temperature on the yield ratio and durability of rice straw pellets. The optimal moisture content range was between 13% and 20% under a forming temperature of 60 or 80 °C. The optimal particle size was between 10 and 20 mm, considering the time and energy required for shredding, although the particle size did not significantly affect the yield ratio and durability of the pellets. The optimized conditions provided high quality rice straw pellets with nearly 90% yield ratio, ⩾12 MJ/kg for the lower heating value, and >95% durability.

  10. Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cable, William; Romanovsky, Vladimir

    2014-03-31

    Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

  11. Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cable, William; Romanovsky, Vladimir

    Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

  12. Instrument uncertainty effect on calculation of absolute humidity using dewpoint, wet-bulb, and relative humidity sensors

    SciTech Connect (OSTI)

    Slayzak, S.J.; Ryan, J.P.

    1998-04-01

    As part of the US Department of Energy`s Advanced Desiccant Technology Program, the National Renewable Energy Laboratory (NREL) is characterizing the state-of-the-art in desiccant dehumidifiers, the key component of desiccant cooling systems. The experimental data will provide industry and end users with independent performance evaluation and help researchers assess the energy savings potential of the technology. Accurate determination of humidity ratio is critical to this work and an understanding of the capabilities of the available instrumentation is central to its proper application. This paper compares the minimum theoretical random error in humidity ratio calculation for three common measurement methods to give a sense of the relative maximum accuracy possible for each method assuming systematic errors can be made negligible. A series of experiments conducted also illustrate the capabilities of relative humidity sensors as compared to dewpoint sensors in measuring the grain depression of desiccant dehumidifiers. These tests support the results of the uncertainty analysis. At generally available instrument accuracies, uncertainty in calculated humidity ratio for dewpoint sensors is determined to be constant at approximately 2%. Wet-bulb sensors range between 2% and 6% above 10 g/kg (4%--15% below), and relative humidity sensors vary between 4% above 90% rh and 15% at 20% rh. Below 20% rh, uncertainty for rh sensors increases dramatically. Highest currently attainable accuracies bring dewpoint instruments down to 1% uncertainty, wet bulb to a range of 1%--3% above 10 g/kg (1.5%--8% below), and rh sensors between 1% and 5%.

  13. Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes

    SciTech Connect (OSTI)

    Hakala, J. Alexandra [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Stanchina, William [Univ. of Pittsburgh, PA (United States); National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Soong, Yee [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hedges, Sheila [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2011-01-01

    Development of in situ electromagnetic (EM) retorting technologies and design of specific EM well logging tools requires an understanding of various process parameters (applied frequency, mineral phases present, water content, organic content and temperature) on oil shale dielectric properties. In this literature review on oil shale dielectric properties, we found that at low temperatures (<200 C) and constant oil shale grade, both the relative dielectric constant (?') and imaginary permittivity (?'') decrease with increased frequency and remain constant at higher frequencies. At low temperature and constant frequency, ?' decreases or remains constant with oil shale grade, while ?'' increases or shows no trend with oil shale grade. At higher temperatures (>200 C) and constant frequency, epsilon' generally increases with temperature regardless of grade while ?'' fluctuates. At these temperatures, maximum values for both ?' and ?'' differ based upon oil shale grade. Formation fluids, mineral-bound water, and oil shale varve geometry also affect measured dielectric properties. This review presents and synthesizes prior work on the influence of applied frequency, oil shale grade, water, and temperature on the dielectric properties of oil shales that can aid in the future development of frequency- and temperature-specific in situ retorting technologies and oil shale grade assay tools.

  14. ARM - Measurement - Soil moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture The moisture of the soil measured near the surface. This includes soil wetness and soil water potential. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  15. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, Larry A.; Mead, Keith E.; Smith, Henry M.

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  16. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  17. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  18. Moisture Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Moisture Control Moisture Control Controlling moisture can make your home more energy-efficient, less costly to heat and cool, more comfortable, and prevent mold growth. Controlling moisture can make your home more energy-efficient, less costly to heat and cool, more comfortable, and prevent mold growth. Properly controlling moisture in your home will improve the effectiveness of your air sealing and insulation efforts, and these efforts in turn will help control moisture. The best

  19. Distributed fiber optic moisture intrusion sensing system

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2003-06-24

    Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.

  20. Fiber optic moisture sensor

    DOE Patents [OSTI]

    Kirkham, R.R.

    1984-08-03

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  1. Multilayer moisture barrier

    DOE Patents [OSTI]

    Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy

    2015-04-21

    A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.

  2. Moisture Control Handbook: New, low-rise, residential construction

    SciTech Connect (OSTI)

    Lstiburek, J.; Carmody, J.

    1991-10-01

    Moisture problems are prevalent all over North America, almost independent of climate. They are viewed as one of the single largest factors limiting the useful service life of a building. Elevated levels of moisture in buildings also can lead to serious health effects for occupants. Until recently, very little consensus on moisture control existed in the building community. The information available was typically incomplete, contradictory, usually limited to specific regions, and in many cases misleading. A need to develop a document which presented the issues relating to moisture from a building science or ``systems`` approach existed. This handbook attempts to fill that need and illustrates that energy-efficient, tight envelope design is clearly part of the solution to healthy buildings when interior relative humidity, temperature, and pressure are controlled simultaneously. The first three chapters of the handbook present the basic principles of moisture problems and solutions in buildings. Chapter 1 -- Mold, Mildew, and Condensation, examines surface moisture problems. Chapter 2 -- Moisture Movement, examines how building assemblies get wet from both the exterior and interior. Chapter 3 -- Wetting and Drying of Building Assemblies, introduces the concepts of acceptable performance, moisture balance, and the redistribution of moisture within building assemblies. Chapters 4 through 6 apply the concepts outlined in the previous chapters and present specific moisture control practices for three basic US climate zones. The advantages and disadvantages of several wall, foundation, and roof assemblies are discussed for each climate zone.

  3. ARM - Measurement - Soil moisture flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture flux A quantity measured according to the formula B = {lambda}(dq/dz), where {lambda} is the conductivity of the soil that the moisture is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file

  4. Fiber optic moisture sensor with moisture-absorbing reflective target

    DOE Patents [OSTI]

    Kirkham, Randy R.

    1987-01-01

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  5. Results of experimental tests and calibrations of the surface neutron moisture measurement probe

    SciTech Connect (OSTI)

    Watson, W.T.; Bussell, J.H., Westinghouse Hanford

    1996-08-13

    The surface neutron moisture probe has been tested both to demonstrate that is is able to operate in the expected in-tank temperature and gamma-ray fields and to provide detector responses to known moisture concentration materials. The probe will properly function in a simultaneous high temperature (80 degrees C) and high gamma radiation field (210 rad/hr)environment. Comparisons between computer model predicted and experimentally measured detector responses to changes in moisture provide a basis for the probe calibration to in-tank moisture concentrations.

  6. Accelerated Laboratory Tests Using Simultaneous UV, Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV Encapsulants, Frontsheets, and Backsheets Accelerated Laboratory Tests Using Simultaneous UV, Temperature, ...

  7. THERMALLY SHIELDED MOISTURE REMOVAL DEVICE

    DOE Patents [OSTI]

    Miller, O.E.

    1958-08-26

    An apparatus is presented for removing moisture from the air within tanks by condensation upon a cartridge containing liquid air. An insulating shell made in two halves covers the cartridge within the evacuated system. The shell halves are hinged together and are operated by a system of levers from outside the tank with the motion translated through a sylphon bellows to cover and uncover the cartridge. When the condensation of moisture is in process, the insulative shell is moved away from the liquid air cartridge, and during that part of the process when there is no freezing out of moisture, the shell halves are closed on the cell so thnt the accumulated frost is not evaporated. This insulating shell greatly reduces the consumption of liquid air in this condensation process.

  8. Wet buildings: A moisture primer

    SciTech Connect (OSTI)

    Lotz, W.A.

    1998-01-01

    This article will attempt to clarify the various issues that must be solved when investigating the cause of a building moisture problem. Several classic errors that result in mechanical engineers and contractors defending themselves in lawsuits will be reviewed. Moisture from internal and external sources is the most frequent cause of building problems and subsequent legal action. Many reported roof leaks are, in reality, condensation problems that have nothing to do with the roofing contractor. Mechanical design engineers need to work closely with the building owner, architect, and contractors to insure a dry, durable building. The first issue to examine is if the moisture is coming from the outside--i.e. rain. Other leaks discussed are ice dams, groundwater leaks, and roof leaks. Also discussed are vapor barriers, continuity of insulation, humidification chilled water, warehouses, trash plants, indoor pools, and hot or humid climates.

  9. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect (OSTI)

    Arena, L.; Mantha, P.

    2013-05-01

    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  10. Moisture Durability with Vapor-Permeable Insulating Sheathing

    SciTech Connect (OSTI)

    Lepage, R.; Lstiburek, J.

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  11. Moisture retardation of micronized TATB pellets through Parylene coating

    SciTech Connect (OSTI)

    Stull, T.W.; Sandoval, J.

    1980-09-01

    Initial efforts to determine if Parylene coating of micronized TATB pellets is effective in retarding moisture adsorption are described. Machined and pressed pellets (2.5 cm diameter x 2.5 cm height) at densities of approximately 1.8 g/cc, both coated and uncoated, were placed in relative humidity desiccators at ambient temperature for a period of 13 weeks. Gain in weight and dimensional growth were monitored by periodic weighing and dimensional measurements. It was found that Parylene coating reduces the rate at which micronized TATB pellets adsorb moisture. This reduction is dependent on relative humidity. As humidity increases, the protection afforded by the Parylene coating decreases. At the end of the study two pellets were dried for 24 hours at 100/sup 0/C and their weights returned to slightly less than original. Moisture uptake therefore appears to be primarily surface adsorption. No significant dimensional growth occurred over the 13-week study.

  12. Moisture exposure to different layers in organic light-emitting diodes and the effect on electroluminescence characteristics

    SciTech Connect (OSTI)

    Liao, L. S.; Tang, C. W.

    2008-08-15

    Moisture effect on electroluminescence characteristics, including current density versus voltage, luminance versus voltage, luminous efficiency versus current density, dark spot formation, and operational stability of organic light-emitting diodes, has been systematically investigated by exposing each layer of the devices to moisture at room temperature. Moisture has a different effect on each of the interfaces or surfaces, and the influence increases as exposure time increases. There is a slight effect on the electroluminescence characteristics after the anode surface has been exposed to moisture. However, severe luminance decrease, dark spot formation, and operational stability degradation take place after the light-emitting layer or the electron-transporting layer is exposed to moisture. It is also demonstrated that the effect of moisture can be substantially reduced if the exposure to moisture is in a dark environment.

  13. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect (OSTI)

    Arena, Lois; Mantha, Pallavi

    2013-05-01

    In this project, the Consortium for Advanced Residential Buildings (CARB) team evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls. Wall assemblies evaluated included code minimum walls using spray foam insulation and fiberglass batts, high R-value walls at least 12 in. thick (R-40 and R-60 assemblies), and brick walls with interior insulation.

  14. Moisture Distribution and Flow During Drying of Wood and Fiber

    SciTech Connect (OSTI)

    Zink-Sharp, Audrey; Hanna, Robert B.

    2001-12-28

    New understanding, theories, and techniques for moisture flow and distribution were developed in this research on wood and wood fiber. Improved understanding of the mechanisms of flake drying has been provided. Observations of flake drying and drying rate curves revealed that rate of moisture loss consisted of two falling rate periods and no constant rate drying period was observed. Convective heat transfer controls the first period, and bound water diffusion controls the second period. Influence of lower drying temperatures on bending properties of wood flakes was investigated. Drying temperature was found to have a significant influence on bending stiffness and strength. A worksheet for calculation of the energy required to dry a single strandboard flake was developed but has not been tested in an industrial setting yet. A more complete understanding of anisotropic transverse shrinkage of wood is proposed based on test results and statistical analysis. A simplified mod el of a wood cell's cross-section was drawn for calculating differential transverse shrinkage. The model utilizes cell wall thickness and microfibrillar packing density and orientation. In spite of some phenomena of cell wall structure not yet understood completely, the results might explain anisotropic transverse shrinkage to a major extent. Boundary layer theory was found useful for evaluating external moisture resistance during drying. Simulated moisture gradients were quire comparable to the actual gradients in dried wood. A mathematical procedure for determining diffusion and surface emission coefficients was also developed. Thermal conductivity models of wood derived from its anatomical structure were created and tested against experimental values. Model estimations provide insights into changes in heat transfer parameters during drying. Two new techniques for measuring moisture gradients created in wood during drying were developed. A new technique that utilizes optical properties of cobalt

  15. Dew-Point Evaporative Comfort Cooling (Presentation)

    SciTech Connect (OSTI)

    Dean, J.

    2012-10-01

    Presentation on innovative indirect evaporative cooling technology developed by Coolerado Corporation given at the Rocky Mountain Chapter ASHRAE conference in April 2012.

  16. Porous Si structure as moisture sensor

    SciTech Connect (OSTI)

    Peterson, D.W.; Nguyen, L.T.

    1996-12-31

    Development and characterization of a capacitive moisture sensor made from porous Si is presented. The sensor development was in support of the DoD funded Plastic Package Availability program and was intended for the detection of pinholes and defects in moisture barrier coatings applied to ICs during fabrication or during the plastic encapsulation assembly process.

  17. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  18. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1. Final report

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  19. Moisture measurement for high-level-waste tanks using copper activation probe in cone penetrometer

    SciTech Connect (OSTI)

    Reeder, P.L.; Stromswold, D.C.; Brodzinski, R.L.; Reeves, J.H.; Wilson, W.E.

    1995-10-01

    Laboratory tests have established the feasibility of using neutron activation of copper as a means for measuring the moisture in Hanford`s high-level radioactive waste tanks. The performance of the neutron activation technique to measure moisture is equivalent to the neutron moisture gauges or neutron logs commonly used in commercial well-logging. The principle difference is that the activation of {sup 64}Cu (t{sub 1/2} = 12.7 h) replaces the neutron counters used in moisture gauges or neutron logs. For application to highly radioactive waste tanks, the Cu activation technique has the advantage that it is insensitive to very strong gamma radiation fields or high temperatures. In addition, this technique can be deployed through tortuous paths or in confined spaces such as within the bore of a cone penetrometer. However, the results are not available in ``real-time``. The copper probe`s sensitivity to moisture was measured using simulated tank waste of known moisture content. This report describes the preparation of the simulated waste mixtures and the experiments performed to demonstrate the capabilities of the neutron activation technique. These experiments included determination of the calibration curve of count rate versus moisture content using a single copper probe, measurement of the calibration curve based on ``near-field `` to ``far-field`` counting ratios using a multiple probe technique, and profiling the activity of the copper probe as a function of the vertical height within a simulated waste barrel.

  20. Building Integrated Heat and Moisture Exchange | Department of...

    Energy Savers [EERE]

    Integrated Heat and Moisture Exchange Building Integrated Heat and Moisture Exchange 1 of 2 Building-integrated heat and moisture exchanger, the AirFlow(tm) Panel, installed for ...

  1. Weatherization Installer/Technician Fundamentals 2.0 - Moisture Barriers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Moisture Barriers Weatherization Installer/Technician Fundamentals 2.0 - Moisture Barriers Moisture Barriers - Complete (2.34 MB) Lesson Plan: Moisture Barriers (107.22 KB) PowerPoint: Moisture Barriers (2.31 MB) More Documents & Publications Energy Auditor - Single Family 2.0: Moisture Assessment Weatherization Installer/Technician Fundamentals 2.0 - Roofing, Flashing, and Attic Ventilation Installation Needs Energy Auditor - Single Family 2.0: Building Shell

  2. Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating

    DOE Patents [OSTI]

    Tao, Shiquan; Singh, Jagdish P.; Winstead, Christopher B.

    2006-05-02

    An optical fiber moisture sensor that can be used to sense moisture present in gas phase in a wide range of concentrations is provided, as well techniques for making the same. The present invention includes a method that utilizes the light scattering phenomenon which occurs in a porous sol-gel silica by coating an optical fiber core with such silica. Thus, a porous sol-gel silica polymer coated on an optical fiber core forms the transducer of an optical fiber moisture sensor according to an embodiment. The resulting optical fiber sensor of the present invention can be used in various applications, including to sense moisture content in indoor/outdoor air, soil, concrete, and low/high temperature gas streams.

  3. Conquering Moisture and Humidity in Your Home

    Broader source: Energy.gov [DOE]

    Eliminating the threat of moisture and mold will not only make your home more comfortable and energy-efficient, but it will also help keep your family healthy and improve your home's structural durability.

  4. Using Whole-House Field Tests to Empirically Derive Moisture Buffering Model Inputs

    SciTech Connect (OSTI)

    Woods, J.; Winkler, J.; Christensen, D.; Hancock, E.

    2014-08-01

    Building energy simulations can be used to predict a building's interior conditions, along with the energy use associated with keeping these conditions comfortable. These models simulate the loads on the building (e.g., internal gains, envelope heat transfer), determine the operation of the space conditioning equipment, and then calculate the building's temperature and humidity throughout the year. The indoor temperature and humidity are affected not only by the loads and the space conditioning equipment, but also by the capacitance of the building materials, which buffer changes in temperature and humidity. This research developed an empirical method to extract whole-house model inputs for use with a more accurate moisture capacitance model (the effective moisture penetration depth model). The experimental approach was to subject the materials in the house to a square-wave relative humidity profile, measure all of the moisture transfer terms (e.g., infiltration, air conditioner condensate) and calculate the only unmeasured term: the moisture absorption into the materials. After validating the method with laboratory measurements, we performed the tests in a field house. A least-squares fit of an analytical solution to the measured moisture absorption curves was used to determine the three independent model parameters representing the moisture buffering potential of this house and its furnishings. Follow on tests with realistic latent and sensible loads showed good agreement with the derived parameters, especially compared to the commonly-used effective capacitance approach. These results show that the EMPD model, once the inputs are known, is an accurate moisture buffering model.

  5. Effects of soil moisture on the responses of soil temperatures...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Science (SC) Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES Word Cloud More Like This ...

  6. Investigations of Possible Low-Level Temperature and Moisture...

    Office of Scientific and Technical Information (OSTI)

    Authors: Long, CN ; Holdridge, DJ Publication Date: 2012-11-19 OSTI Identifier: 1056536 Report Number(s): DOESC-ARMTR-119 PNNL-22020 DOE Contract Number: DE-AC05-7601830 Resource ...

  7. ARM: Soil Temperature and Moisture Profiles (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    Authors: Brian Ermold ; David Cook Publication Date: 2016-02-22 OSTI Identifier: 1256098 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data ...

  8. Effect of process variables on the density and durability of the pellets made from high moisture corn stover

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru

    2014-03-01

    A flat die pellet mill was used to understand the effect of high levels of feedstock moisture content in the range of 28–38% (w.b.), with die rotational speeds of 40–60 Hz, and preheating temperatures of 30–110 °C on the pelleting characteristics of 4.8 mm screen size ground corn stover using an 8 mm pellet die. The physical properties of the pelletised biomass studied are: (a) pellet moisture content, (b) unit, bulk and tapped density, and (c) durability. Pelletisation experiments were conducted based on central composite design. Analysis of variance (ANOVA) indicated that feedstock moisture content influenced all of the physical properties at P < 0.001. Pellet moisture content decreased with increase in preheating temperature to about 110 °C and decreasing the feedstock moisture content to about 28% (w.b.). Response surface models developed for quality attributes with respect to process variables has adequately described the process with coefficient of determination (R2) values of >0.88. The other pellet quality attributes such as unit, bulk, tapped density, were maximised at feedstock moisture content of 30–33% (w.b.), die speeds of >50 Hz and preheating temperature of >90 °C. In case of durability a medium moisture content of 33–34% (w.b.) and preheating temperatures of >70 °C and higher die speeds >50 Hz resulted in high durable pellets. It can be concluded from the present study that feedstock moisture content, followed by preheating, and die rotational speed are the interacting process variables influencing pellet moisture content, unit, bulk and tapped density and durability.

  9. Intrinsically safe moisture blending system

    SciTech Connect (OSTI)

    Hallman Jr., Russell L.; Vanatta, Paul D.

    2012-09-11

    A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

  10. Effect of residential air-to-air heat and moisture exchangers on indoor humidity

    SciTech Connect (OSTI)

    Barringer, C.G.; McGugan, C.A. )

    1989-01-01

    A project was undertaken to develop guidelines for the selection of residential heat and moisture recovery ventilation systems (HRVs) in order to maintain an acceptable indoor humidity for various climatic conditions. These guidelines were developed from reviews on ventilation requirements, HRV performance specifications, and from computer modeling. Space conditions within three house/occupancy models for several types of HRV were simulated for three climatic conditions (Lake Charles, LA; Seattle, WA; and Winnipeg, MB) in order to determine the impact of the HRVs on indoor relative humidity and space-conditioning loads. Results show that when reduction of cooling cost is the main consideration, exchangers with moisture recovery are preferable to sensible HRVs. For reduction of heating costs, moisture recovery should be done for ventilation rates greater than about 15 L/s and average winter temperatures less than about (minus) 10{degrees}C if internal moisture generation rates are low. For houses with higher ventilation rates and colder average winter temperatures, exchangers with moisture recovery should be used.

  11. Method and apparatus for fuel gas moisturization and heating

    DOE Patents [OSTI]

    Ranasinghe, Jatila; Smith, Raub Warfield

    2002-01-01

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  12. Assessment of NGNP Moisture Ingress Events

    SciTech Connect (OSTI)

    Bill Landman

    2011-04-01

    An assessment of modular HTGR moisture ingress events, making use of a phenomena identification and ranking process, was conducted by a panel of experts in the related areas for the U.S. next generation nuclear plant (NGNP) design. Consideration was given mainly to the prismatic core gas-cooled reactor configurations incorporating a steam generator within the primary circuit.

  13. Analysis of Joint Masonry Moisture Content Monitoring

    SciTech Connect (OSTI)

    Ueno, Kohta

    2015-10-01

    Adding insulation to the interior side of walls of masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw, have known solutions, but wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated versus non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  14. Moisture Durability Assessment of Selected Well-insulated Wall Assemblies

    SciTech Connect (OSTI)

    Pallin, Simon B.; Boudreaux, Philip R.; Kehrer, Manfred; Hun, Diana E.; Jackson, Roderick K.; Desjarlais, Andre Omer

    2015-12-01

    This report presents the results from studying the hygrothermal performance of two well-insulated wall assemblies, both complying with and exceeding international building codes (IECC 2015 2014, IRC 2015). The hygrothermal performance of walls is affected by a large number of influential parameters (e.g., outdoor and indoor climates, workmanship, material properties). This study was based on a probabilistic risk assessment in which a number of these influential parameters were simulated with their natural variability. The purpose of this approach was to generate simulation results based on laboratory chamber measurements that represent a variety of performances and thus better mimic realistic conditions. In total, laboratory measurements and 6,000 simulations were completed for five different US climate zones. A mold growth indicator (MGI) was used to estimate the risk of mold which potentially can cause moisture durability problems in the selected wall assemblies. Analyzing the possible impact on the indoor climate due to mold was not part of this study. The following conclusions can be reached from analyzing the simulation results. In a hot-humid climate, a higher R-value increases the importance of the airtightness because interior wall materials are at lower temperatures. In a cold climate, indoor humidity levels increase with increased airtightness. Air leakage must be considered in a hygrothermal risk assessment, since air efficiently brings moisture into buildings from either the interior or exterior environment. The sensitivity analysis of this study identifies mitigation strategies. Again, it is important to remark that MGI is an indicator of mold, not an indicator of indoor air quality and that mold is the most conservative indicator for moisture durability issues.

  15. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings J. Woods, J. Winkler, and D. Christensen National Renewable Energy Laboratory Technical Report NREL/TP-5500-57441 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401

  16. Accelerated Laboratory Tests Using Simultaneous UV, Temperature, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moisture for PV Encapsulants, Frontsheets, and Backsheets | Department of Energy Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV Encapsulants, Frontsheets, and Backsheets Accelerated Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV Encapsulants, Frontsheets, and Backsheets Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps5_nist_gu.pdf (7.73 MB) More Documents & Publications Weathering

  17. Technology Solutions Case Study: Moisture Management of High-Walls

    SciTech Connect (OSTI)

    2013-12-01

    Moisture management of high-R walls is important to ensure optimal performance. This case study, developed by Building America team Building Science Corporation, focuses on how eight high-R walls handle the three main sources of moistureconstruction moisture, air leakage condensation, and bulk water leaks.

  18. Analysis of Joist Masonry Moisture Content Monitoring

    SciTech Connect (OSTI)

    Ueno, Kohta

    2015-10-08

    There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  19. Process for treating moisture laden coal fines

    DOE Patents [OSTI]

    Davis, Burl E.; Henry, Raymond M.; Trivett, Gordon S.; Albaugh, Edgar W.

    1993-01-01

    A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.

  20. Building-Integrated Heat & Moisture Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building-Integrated Heat & Moisture Exchange 2014 Building Technologies Office Peer Review John E. Breshears jbreshears@architecturalapplications.com Architectural Applications Project Summary Timeline: Start date: October, 2012 Planned end date: August, 2014 Key Milestones Mid- & Full-scale Lab Tests; June, 2013 Full-scale Demo; January, 2014 System Documentation; July, 2014 Budget: Total DOE $ to date: $1,037,812 Total future DOE $: $0 (committed to date) Target Market/Audience:

  1. Building-Integrated Heat & Moisture Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building-Integrated Heat & Moisture Exchange 2016 Building Technologies Office Peer Review John Breshears, President Architectural Applications jbreshears@architecturalapplications.com 2 Project Summary Timeline: Start date: June 17, 2011 Planned end date: July 27, 2016 Key Milestones 1: Demo. Manufacturing at Target Cost July'16 2: Alternate Design At 8% Lower Cost July'17 3: Assembly w/ 28% Fewer Parts July'17 Budget: Tot. Project $ to Date: * DOE: $1288590 * Cost Share: $878833 Total

  2. Assessing the relative influence of surface soil moisture and ENSO SST on precipitation predictability over the contiguous United States

    SciTech Connect (OSTI)

    Yoon, Jin-Ho; Leung, Lai-Yung R.

    2015-06-28

    This study assesses the relative influence of soil moisture memory and tropical sea surface temperature (SST) in seasonal rainfall over the contiguous United States. Using observed precipitation, the NINO3.4 index and soil moisture and evapotranspiration simulated by a land surface model for 61 years, analysis was performed using partial correlations to evaluate to what extent land surface and SST anomaly of El Niño and Southern Oscillation (ENSO) can affect seasonal precipitation over different regions and seasons. Results show that antecedent soil moisture is as important as concurrent ENSO condition in controlling rainfall anomalies over the U.S., but they generally dominate in different seasons with SST providing more predictability during winter while soil moisture, through its linkages to evapotranspiration and snow water, has larger influence in spring and early summer. The proposed methodology is applicable to climate model outputs to evaluate the intensity of land-atmosphere coupling and its relative importance.

  3. Surface moisture measurement system electromagnetic induction probe calibration technique

    SciTech Connect (OSTI)

    Crowe, R.D., Westinghouse Hanford

    1996-07-08

    The Surface Moisture Measurement System (SMMS) is designed to measure the moisture concentration near the surfaces of the wastes located in the Hanford Site tank farms. This document describes a calibration methodology to demonstrate that the Electromagnetic Induction (EMI) moisture probe meets relevant requirements in the `Design Requirements Document (DRD) for the Surface Moisture Measurement System.` The primary purpose of the experimental tests described in this methodology is to make possible interpretation of EMI in-tank surface probe data to estimate the surface moisture.

  4. Reducing the moisture content of clean coals

    SciTech Connect (OSTI)

    Kehoe, D. )

    1992-12-01

    Coal moisture content can profoundly effect the cost of burning coal in utility boilers. Because of the large effect of coal moisture, the Empire State Electric Energy Research Corporation (ESEERCO) contracted with the Electric Power Research Institute to investigate advanced coal dewatering methods at its Coal Quality Development Center. This report contains the test result on the high-G solid-bowl centrifuge, the second of four devices to be tested. The high-G solid-bowl centrifuge removes water for coal by spinning the coal/water mixture rapidly in a rotating bowl. This causes the coal to cling to the sides of the bowl where it can be removed, leaving the water behind. Testing was performed at the CQDC to evaluate the effect of four operating variables (G-ratio, feed solids concentration, dry solids feed rate, and differential RPM) on the performance of the high-G solid-bowl centrifuge. Two centrifuges of different bowl diameter were tested to establish the effect of scale-up of centrifuge performance. Testing of the two centrifuges occurred from 1985 through 1987. CQDC engineers performed 32 tests on the smaller of the two centrifuges, and 47 tests on the larger. Equations that predict the performance of the two centrifuges for solids recovery, moisture content of the produced coal, and motor torque were obtained. The equations predict the observed data well. Traditional techniques of establishing the performance of centrifuge of different scale did not work well with the two centrifuges, probably because of the large range of G-ratios used in the testing. Cost of operating a commercial size bank of centrifuges is approximately $1.72 per ton of clean coal. This compares well with thermal drying, which costs $1.82 per ton of clean coal.

  5. Practical Considerations of Moisture in Baled Biomass Feedstocks

    SciTech Connect (OSTI)

    William A. Smith; Ian J. Bonner; Kevin L. Kenney; Lynn M. Wendt

    2013-01-01

    Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover and energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.

  6. The role of moisture transport between ground and atmosphere in global change

    SciTech Connect (OSTI)

    Rind, D.; Rosenzweig, C.; Stieglitz, M.

    1997-12-31

    Projections of the effect of climate change on future water availability are examined by reviewing the formulations used to calculate moisture transport between the ground and the atmosphere. General circulation models and climate change impact models have substantially different formulations for evapotranspiration, so their projections of future water availability often disagree, even though they use the same temperature and precipitation forecasts. General circulation models forecast little change in tropical and subtropical water availability, while impact models show severe water and agricultural shortages. A comparison of observations and modeling techniques shows that the parameterizations in general circulation models likely lead to an underestimate of the impacts of global warming on soil moisture and vegetation. Such errors would crucially affect the temperature and precipitation forecasts used in impact models. Some impact model evaporation formulations are probably more appropriate than those in general circulation models, but important questions remain. More observations are needed, especially in the vicinity of forests, to determine appropriate parameterizations.

  7. Investigation of transient, two-dimensional coupled heat and moisture flow in soils

    SciTech Connect (OSTI)

    Shen, L.S.W.

    1986-01-01

    A two-dimensional finite difference numerical model has been developed to study coupled heat and moisture flow in the soil surrounding an earth-sheltered construction. The model is based on a mechanistic approach formulated by Milly and developed from the work of Philip and deVries. Using soil temperatures and matric potentials as the dependent variables, the model is capable of simulating unsaturated/saturated flow conditions in heterogeneous soil domains. The model is a fully implicit, integrated finite difference approach based on the Patankar Spalding method. The numerical modeling of the governing heat and moisture equations was validated against a number of analytical and quasi-analytical solutions. An axisymmetric, two-dimensional experiment was then defined to which the numerical model could be compared. The experimental apparatus was composed of a cylinder filled with a dredged Mississippi River sand. A series of one and two dimensional heat and moisture flow experiments were run, using boundary conditions consistent with those that occur in the soil surrounding a building. Soil properties used in the model were either calculated from theoretical models or measured experimentally. Agreement between the model and experiments were good, with an error of 10-15% obtained for the two-dimensional coupled heat and moisture flow experiment.

  8. Building America Technology Solutions for New and Existing Homes: Moisture

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management of High-R Walls | Department of Energy Management of High-R Walls Building America Technology Solutions for New and Existing Homes: Moisture Management of High-R Walls This project by Building Science Corporation focuses on how eight high-R walls handle the three main sources of moisture-construction moisture, air leakage condensation, and bulk water leaks. Moisture Management of High-R Walls (1.05 MB) More Documents & Publications Building America Technology Solutions for New

  9. Moisture Management for High R-Value Walls

    SciTech Connect (OSTI)

    Lepage, R.; Schumacher, C.; Lukachko, A.

    2013-11-01

    This report explains the moisture-related concerns for high R-value wall assemblies and discusses past Building America research work that informs this study. In this project, hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones. The modeling program assessed the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage; the report presents results of the study.

  10. Building-Integrated Heat & Moisture Exchange (STTR Phase 1 and...

    Office of Environmental Management (EM)

    -- ETH Zurich - Zurich, Switzerland -- Membrane Technology & Research Inc. - Newark, CA ... Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) Membrane Technology Workshop ...

  11. Building Integrated Heat and Moisture Exchange | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building-integrated heat and moisture exchanger, the AirFlow(tm) Panel, installed for evaluation at Lawrence Berkeley National Lab. Image: Architectural Applications 2 of 2 A ...

  12. Moisture and Ventilation Solutions in Hot, Humid Climates: Florida...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    View other Top Innovations in the House-as-a-System Business Case category. Moisture and ... Standard Work Specifications for Single-Family Home Energy Upgrades Weatherization ...

  13. Moisture Management of High-R Walls (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.

  14. EFFECTS OF MOISTURE IN THE 9975 SHIPPING PACKAGE FIBERBOARD ASSEMBLY

    SciTech Connect (OSTI)

    Daugherty, W.; Dunn, K.; Murphy, J.; Hackney, B.

    2010-02-11

    The fiberboard assembly used in 9975 shipping packages as an impact-absorption and insulation component has the capacity to absorb moisture, with an accompanying change to its properties. While package fabrication requirements generally maintain the fiberboard moisture content within manufacturing range, there is the potential during use or storage for atypical handling or storage practices which result in the absorption of additional moisture. In addition to performing a transportation function, the 9975 shipping packages are used as a facility storage system for special nuclear materials at the Savannah River Site. A small number of packages after extended storage have been found to contain elevated moisture levels. Typically, this condition is accompanied by an axial compaction of the bottom fiberboard layers, and the growth of mold. In addition to potential atypical practices, fiberboard can exchange moisture with the surrounding air, depending on the ambient humidity. Laboratory data have been generated to correlate the equilibrium moisture content of cane fiberboard with the humidity of the surrounding air. These data are compared to measurements taken within shipping packages. With a reasonable measurement of the fiberboard moisture content, an estimate of the fiberboard properties can be made. Over time, elevated moisture levels will negatively impact performance properties, and promote fiberboard mold growth and resultant degradation.

  15. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    SciTech Connect (OSTI)

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  16. Moisture Management for High R-Value Walls

    SciTech Connect (OSTI)

    Lepage, R.; Schumacher, C.; Lukachko, A.

    2013-11-01

    The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.

  17. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    SciTech Connect (OSTI)

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  18. ARM - Evaluation Product - Oklahoma Mesonet Soil Moisture Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsOklahoma Mesonet Soil Moisture Product ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Oklahoma Mesonet Soil Moisture Product [ ARM research - evaluation data product ] Land surface and subsurface states (e.g., soil moisture) are critical for analyses of land-atmospheric interactions in climate

  19. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings

    SciTech Connect (OSTI)

    Woods, J.; Winkler, J.; Christensen, D.

    2013-01-01

    This study examines the effective moisture penetration depth (EMPD) model, and its suitability for building simulations. The EMPD model is a compromise between the simple, inaccurate effective capacitance approach and the complex, yet accurate, finite-difference approach. Two formulations of the EMPD model were examined, including the model used in the EnergyPlus building simulation software. An error in the EMPD model we uncovered was fixed with the release of EnergyPlus version 7.2, and the EMPD model in earlier versions of EnergyPlus should not be used.

  20. High moisture corn stover pelleting in a flat die pellet mill fitted with a 6 mm die: physical properties and specific energy consumption

    SciTech Connect (OSTI)

    Tumuluru, Jaya Shankar

    2015-06-15

    The quality and specific energy consumption (SEC) of the biomass pellets produced depend upon pelleting process conditions. The present study includes understanding the effect of feedstock moisture in the range of 28–38% (wet basis [w.b.]) and preheating in the range of 30–110°C at two die speeds of 40 and 60 Hz on the physical properties and SEC. A flat die pellet mill fitted with a 6 mm die was used in the present study. The physical properties of pellets such as moisture content, unit, bulk and tapped density, durability, and expansion ratio and SEC of the pelleting process are measured. The results indicate that the pellets produced have durability values in the range of 87–98%, and unit bulk and tapped density in the range of 670–1100, 375–575, and 420–620 kg/m³. Increasing the feedstock moisture content from 33% to 38% (w.b) decreased the unit, bulk and tapped density by about 30–40%. Increasing feedstock moisture content increased the expansion ratio and decreased the density values. A higher feedstock moisture content of 38% (w.b.) and higher preheating temperature of 110°C resulted in lower density and a higher expansion ratio, which can be attributed to flash off of moisture as the material extrudes out of the die. The SEC was in the range of 75–275 kWh/ton. Higher feedstock moisture content of 38% (w.b.) and a lower die speed of 40 Hz increased the SEC, whereas lower to medium preheating temperature (30–70°C), medium feedstock moisture content of 33% (w.b.), and a higher die speed of 60 Hz minimized the SEC to <100 kWh/ton.

  1. High moisture corn stover pelleting in a flat die pellet mill fitted with a 6 mm die: physical properties and specific energy consumption

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tumuluru, Jaya Shankar

    2015-06-15

    The quality and specific energy consumption (SEC) of the biomass pellets produced depend upon pelleting process conditions. The present study includes understanding the effect of feedstock moisture in the range of 28–38% (wet basis [w.b.]) and preheating in the range of 30–110°C at two die speeds of 40 and 60 Hz on the physical properties and SEC. A flat die pellet mill fitted with a 6 mm die was used in the present study. The physical properties of pellets such as moisture content, unit, bulk and tapped density, durability, and expansion ratio and SEC of the pelleting process are measured.more » The results indicate that the pellets produced have durability values in the range of 87–98%, and unit bulk and tapped density in the range of 670–1100, 375–575, and 420–620 kg/m³. Increasing the feedstock moisture content from 33% to 38% (w.b) decreased the unit, bulk and tapped density by about 30–40%. Increasing feedstock moisture content increased the expansion ratio and decreased the density values. A higher feedstock moisture content of 38% (w.b.) and higher preheating temperature of 110°C resulted in lower density and a higher expansion ratio, which can be attributed to flash off of moisture as the material extrudes out of the die. The SEC was in the range of 75–275 kWh/ton. Higher feedstock moisture content of 38% (w.b.) and a lower die speed of 40 Hz increased the SEC, whereas lower to medium preheating temperature (30–70°C), medium feedstock moisture content of 33% (w.b.), and a higher die speed of 60 Hz minimized the SEC to <100 kWh/ton.« less

  2. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    SciTech Connect (OSTI)

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Wärme und Feuchte instationär Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  3. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    SciTech Connect (OSTI)

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Warme und Feuchte instationar Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  4. ARM - Field Campaign - Scintillometry and Soil Moisture Remote...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Scintillometry and Soil Moisture Remote Sensing 2015.06.01 - 2015.10.31 Lead Scientist : Jan Hendrickx...

  5. Measurement of Moisture Content in Sand, Slag, and Crucible Materials

    SciTech Connect (OSTI)

    Gray, J.H.

    1999-09-20

    The deinventory process at Rocky Flats (RFETS) has included moisture content measurements of sand, slag, and crucible (SSC) materials by performing weight loss measurements at 210 degrees - 220 degrees Celsius on representative samples prior to packaging for shipment. Shipping requirements include knowledge of the moisture content. Work at the Savannah River Technology Center (SRTC) showed that the measurement at 210 degrees - 220 degrees Celsius did not account for all of the moisture. The objective of the work in this report was to determine if the measurement at 210 degrees - 220 degrees Celsius at RFETS could be used to set upper bounds on moisture content and therefore, eliminate the need for RFETS to unpack, reanalyze and repack the material.

  6. Innovative Drying Technology Extracts More Energy from High Moisture Coal

    Broader source: Energy.gov [DOE]

    An innovative coal-drying technology that will extract more energy from high moisture coal at less cost and simultaneously reduce potentially harmful emissions is ready for commercial use after successful testing at a Minnesota electric utility.

  7. Moisture and Ventilation Solutions in Hot, Humid Climates: Florida

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufactured Housing - Building America Top Innovation | Department of Energy Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing - Building America Top Innovation Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing - Building America Top Innovation Photo of workers on the roof of a home. This Top Innovation profile describes research by Building America Partnership for Improved Residential Construction team to diagnose

  8. Monitoring of Double Stud Wall Moisture Conditions in the Northeast

    SciTech Connect (OSTI)

    Ueno, K.

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing.; Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  9. Influence of Airflow on Laboratory Storage of High Moisture Corn Stover

    SciTech Connect (OSTI)

    Lynn M. Wendt; Ian J. Bonner; Amber N. Hoover; Rachel M. Emerson; William A. Smith

    2014-04-01

    Storing high moisture biomass for bioenergy use is a reality in many areas of the country where wet harvest conditions and environmental factors prevent dry storage from being feasible. Aerobic storage of high moisture biomass leads to microbial degradation and self-heating, but oxygen limitation can aid in material preservation. To understand the influence of oxygen presence on high moisture biomass (50 %, wet basis), three airflow rates were tested on corn stover stored in laboratory reactors. Temperature, carbon dioxide production, dry matter loss, chemical composition, fungal abundance, pH, and organic acids were used to monitor the effects of airflow on storage conditions. The results of this work indicate that oxygen availability impacts both the duration of self-heating and the severity of dry matter loss. High airflow systems experienced the greatest initial rates of loss but a shortened microbially active period that limited total dry matter loss (19 %). Intermediate airflow had improved preservation in short-term storage compared to high airflow systems but accumulated the greatest dry matter loss over time (up to 27 %) as a result of an extended microbially active period. Low airflow systems displayed the best performance with the lowest rates of loss and total loss (10 %) in storage at 50 days. Total structural sugar levels of the stored material were preserved, although glucan enrichment and xylan loss were documented in the high and intermediate flow conditions. By understanding the role of oxygen availability on biomass storage performance, the requirements for high moisture storage solutions may begin to be experimentally defined.

  10. Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy SBIR Phase 2B) Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) Lead Performer: Architectural Applications - Portland, Oregon Partner: Oregon State University - Corvallis, Oregon DOE Funding: $1,009,999 Cost

  11. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed

    SciTech Connect (OSTI)

    Sun, Rui; Ismail, Tamer M.; Ren, Xiaohan; Abd El-Salam, M.

    2015-05-15

    Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW.

  12. Modifications to WRFs dynamical core to improve the treatment of moisture for large-eddy simulations

    SciTech Connect (OSTI)

    Xiao, Heng; Endo, Satoshi; Wong, May; Skamarock, William C.; Klemp, Joseph B.; Fast, Jerome D.; Gustafson, Jr., William I.; Vogelmann, Andrew; Wang, Hailong; Liu, Yangang; Lin, Wuyin

    2015-10-29

    Yamaguchi and Feingold (2012) note that the cloud fields in their large-eddy simulations (LESs) of marine stratocumulus using the Weather Research and Forecasting (WRF) model exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in the acoustic sub-stepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical core by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1+1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic sub-steps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub-steps) are eliminated in both of the example stratocumulus cases. In conclusion, this modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical core formulations, and also permits the use of longer time steps than in the original code.

  13. Modifications to WRFs dynamical core to improve the treatment of moisture for large-eddy simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Heng; Endo, Satoshi; Wong, May; Skamarock, William C.; Klemp, Joseph B.; Fast, Jerome D.; Gustafson, Jr., William I.; Vogelmann, Andrew; Wang, Hailong; Liu, Yangang; et al

    2015-10-29

    Yamaguchi and Feingold (2012) note that the cloud fields in their large-eddy simulations (LESs) of marine stratocumulus using the Weather Research and Forecasting (WRF) model exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in themore » acoustic sub-stepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical core by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1+1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic sub-steps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub-steps) are eliminated in both of the example stratocumulus cases. In conclusion, this modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical core formulations, and also permits the use of longer time steps than in the original code.« less

  14. System design description for surface moisture measurement system (SMMS)

    SciTech Connect (OSTI)

    Vargo, G.F.

    1996-09-23

    The SMMS has been developed to measure moisture in the top few centimeters of tank waste. The SMMS development was initiated by the preliminary findings of SAR-033, and does not necessarily fulfill any established DQO. After the SAR-033 is released, if no significant changes are made, moisture measurements in the organic waste tanks will rapidly become a DQO. The SMMS was designed to be installed in any 4 inch or larger riser, and to allow maximum adjustability for riser lengths, and is used to deploy a sensor package on the waste surface within a 6 foot radius about the azimuth. The first sensor package will be a neutron probe.

  15. Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates

    SciTech Connect (OSTI)

    Widder, Sarah H.; Martin, Eric

    2013-03-15

    This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

  16. Changes in Moisture, Protein, and Fat Content of Fish and Rice Flour Coextrudates during Single-Screw Extrusion Cooking

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Sukumar Bandyopadhyay; A. S. Bawa

    2013-02-01

    Changes in proximate composition of fish and rice flour coextrudates like moisture, protein, and fat content were studied with respect to extrusion process v ariables like barrel temperature, x1 (100–200 degrees C); screw speed, x2 (70–110 rpm); fish content of the feed, x3 (5–45 percent); and feed moisture content, x4 (20–60 percent). Experiments were conducted at five levels of the process variables based on rotatable experimental design. Response surface models (RSM) were developed that adequately described the changes in moisture, protein, and fat content of the extrudates based on the coeff icient of determination (R2) values of 0.95, 0.99, and 0.94. ANOVA analysis indicated that extrudate moisture content was influenced by x4, protein content by x1 and x3, and fat content by x3 and x4 at P < 0.001. Trends based on response surf ace plots indicated that the x1 of about 200 degrees C, x2 of about 90 rpm, x3 of about 25%, and x4 of about 20% minimized the moisture in the extrudates. Protein content was maximized at x1 of 100 degrees C, x2 > 80 rpm, x3 of about 45 percent, and x4 > 50 percent, and fat content was minimized at x1 of about 200 degrees C, x2 of about 85–95 rpm, x3 < 15 percent, and x4 of about >50 percent. Optimized process variables based on a genetic algorithm (GA) for minimum moisture and fat content and maximum protein content were x1 = 199.86, x2 = 109.86, x3 = 32.45, x4 = 20.03; x1 = 199.71, x2 = 90.09, x3 = 15.27, x4 = 58.47; and x1 = 102.97, x2 = 107.67, x3 = 44.56, x4 = 59.54. The predicted values were 17.52 percent, 0.57 percent, and 46.65 percent. Based on the RSM and GA analy sis, extrudate moisture and protein content was influenced by x1, x3, and x4 and fat content by x2, x3, and x4.

  17. ARM - VAP Product - aeriprof3feltz

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Epoch seconds since 1970-1-1 0:00:00 0:00 basetime Cloud base height meters above ground level cloudBaseHeight ( time ) Atmospheric moisture Interpolated dewpoint...

  18. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Heating Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Vieira, R.; Parker, D.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.

    2013-09-01

    Two identical laboratory homes designed to model existing Florida building stock were sealed and tested to 2.5 ACH50. Then, one was made leaky with 70% leakage through the attic and 30% through windows, to a tested value of 9 ACH50. Reduced energy use was measured in the tighter home (2.5 ACH50) in the range of 15% to 16.5% relative to the leaky (9 ACH50) home. Internal moisture loads resulted in higher dew points inside the tight home than the leaky home. Window condensation and mold growth occurred inside the tight home. Even cutting internal moisture gains in half to 6.05 lbs/day, the dew point of the tight home was more than 15 degrees F higher than the outside dry bulb temperature. The homes have single pane glass representative of older Central Florida homes.

  19. The Measurement of the Moisture Concentration of Selected Test Model Ore

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zones (April 1977) | Department of Energy The Measurement of the Moisture Concentration of Selected Test Model Ore Zones (April 1977) The Measurement of the Moisture Concentration of Selected Test Model Ore Zones (April 1977) The Measurement of the Moisture Concentration of Selected Test Model Ore Zones (April 1977) The Measurement of the Moisture Concentration of Selected Test Model Ore Zones (April 1977) (2.31 MB) More Documents & Publications Field Calibration Facilities for

  20. Moisture and Structural Analysis for High Performance Hybrid Wall Assemblies

    SciTech Connect (OSTI)

    Grin, A.; Lstiburek, J.

    2012-09-01

    Based on past experience in the Building America program, BSC has found that combinations of materials and approachesin other words, systemsusually provide optimum performance. Integration is necessary, as described in this research project. The hybrid walls analyzed utilize a combination of exterior insulation, diagonal metal strapping, and spray polyurethane foam and leave room for cavity-fill insulation. These systems can provide effective thermal, air, moisture, and water barrier systems in one assembly and provide structure.

  1. Impact of Sequential Ammonia Fiber Expansion (AFEX) Pretreatment and Pelletization on the Moisture Sorption Properties of Corn Stover

    SciTech Connect (OSTI)

    Bonner, Ian J.; Thompson, David N.; Teymouri, Farzaneh; Campbell, Timothy; Bals, Bryan; Tumuluru, Jaya Shankar

    2015-05-01

    Combining ammonia fiber expansion (AFEX™) pretreatment with a depot processing facility is a promising option for delivering high-value densified biomass to the emerging bioenergy industry. However, because the pretreatment process results in a high moisture material unsuitable for pelleting or storage (40% wet basis), the biomass must be immediately dried. If AFEX pretreatment results in a material that is difficult to dry, the economics of this already costly operation would be at risk. This work tests the nature of moisture sorption isotherms and thin-layer drying behavior of corn (Zea mays L.) stover at 20°C to 60°C before and after sequential AFEX pretreatment and pelletization to determine whether any negative impacts to material drying or storage may result from the AFEX process. The equilibrium moisture content to equilibrium relative humidity relationship for each of the materials was determined using dynamic vapor sorption isotherms and modeled with modified Chung-Pfost, modified Halsey, and modified Henderson temperature-dependent models as well as the Double Log Polynomial (DLP), Peleg, and Guggenheim Anderson de Boer (GAB) temperature-independent models. Drying kinetics were quantified under thin-layer laboratory testing and modeled using the Modified Page's equation. Water activity isotherms for non-pelleted biomass were best modeled with the Peleg temperature-independent equation while isotherms for the pelleted biomass were best modeled with the Double Log Polynomial equation. Thin-layer drying results were accurately modeled with the Modified Page's equation. The results of this work indicate that AFEX pretreatment results in drying properties more favorable than or equal to that of raw corn stover, and pellets of superior physical stability in storage.

  2. Moisture absorption results for vertical calciner plutonium dioxide product

    SciTech Connect (OSTI)

    Compton, J.A., Westinghouse Hanford

    1996-07-03

    A sample of calcined plutonium dioxide was exposed to room air for one week. The sample was weighed daily to determine if the material absorbed moisture from the room air. A random variation of weight was observed after the first day; however, the sample returned to its original weight at the end of the week. The loss on ignition for the material increased from 0.439 to 0.544 weight percent during this time. This change is considered inconsequential as the material will normally be packaged for storage within hours of its production.

  3. Moisture absorption and bakeout characteristics of rigid-flexible multilayer printed wiring boards

    SciTech Connect (OSTI)

    Lula, J.W.

    1991-01-01

    Moisture absorption and bakeout characteristics of Allied-Signal Inc., Kansas City Division (KCD) rigid-flexible printed wiring boards were determined. It was found that test specimens had absorbed 0.95 weight percent moisture when equilibrated to a 50 percent RH, 25{degree}C environment. Heating those equilibrated specimens in a 120{degree}C static air oven removed 92 percent of this absorbed moisture in 24 h. Heating the samples in a 80{degree}C static air oven removed only 64 percent of the absorbed moisture at the end of 24 h. A 120{degree}C vacuum bake removed moisture at essentially the same rate with parylene slowed the absorption rate by approximately 50 percent but did not appreciably affect the equilibrium moisture content or the drying rate.

  4. Moisture Management of High-R Walls (Fact Sheet), Building America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management of High-R Walls PROJECT APPLICATION Construction: Existing homes with vapor open wall assemblies Type: Residential Climate Zones: All TECHNICAL PARAMETERS Moisture ...

  5. Evaluation residual moisture in lithium-ion battery electrodes and its effect on electrode performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Jianlin; Daniel, Claus; Wood, III, David L.; An, Seong Jin

    2016-01-11

    Removing residual moisture in lithium-ion battery electrodes is essential for desired electrochemical performance. In this manuscript, the residual moisture in LiNi0.5Mn0.3Co0.2O2 cathodes produced by conventional solvent-based and aqueous processing is characterized and compared. The electrochemical performance has also been investigated for various residual moisture contents. As a result, it has been demonstrated that the residual moisture lowers the first cycle coulombic efficiency, but its effect on short term cycle life is insignificant.

  6. NEC Hazardous classification and compliance regarding the surface moisture monitor measurement system

    SciTech Connect (OSTI)

    Bussell, J.H., WHC

    1996-06-12

    The National Electrical Code, NFPA 70, and National Fire Protection Association requirements for use of Surface Moisture Monitor Systems in classified locations are discussed. The design and configuration of the surface moisture monitor are analyzed with respect to how they comply with requirements of the National Electrical Code requirements, articles 500-504.

  7. Building America Top Innovations 2012: Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes work by Building America researchers who visited 24 manufactured home factories between 1996 and 2003 to investigate moisture problems while improving energy efficiency and identified insufficient air sealing and poor HVAC installation as the biggest culprits. One manufacturer reported zero moisture-related issues in 35,000 homes built after implementing Building America recommendations.

  8. Measuring seasonal variations of moisture in a landfill with the partitioning gas tracer test

    SciTech Connect (OSTI)

    Han, Byunghyun; Jafarpour, Behnam; Gallagher, Victoria N.; Imhoff, Paul T. . E-mail: imhoff@udel.edu; Chiu, Pei C.; Fluman, Daniel A.

    2006-07-01

    Seven pilot-scale partitioning gas tracer tests (PGTTs) were conducted to assess the accuracy and reproducibility of this method for measuring water in municipal solid waste landfills. Tests were conducted in the same location over a 12-month period, and measured moisture conditions ranged from possible dry waste to refuse with a moisture content of 24.7%. The final moisture content of 24.7% was in reasonable agreement with gravimetric measurements of excavated refuse, where the moisture content was 26.5 {+-} 6.0CI%. Laboratory tests were used to assess the utility of the PGTT for measuring water in small pores, water sorbed to solid surfaces, and the influence of dry waste on PGTTs. These experiments indicated that when refuse surfaces are not completely solvated with water, PGTTs may produce misleading results (negative estimates) of water saturation and moisture content.

  9. Agriculture intensifies soil moisture decline in Northern China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Yaling; Pan, Zhihua; Zhuang, Qianlai; Miralles, Diego; Teuling, Adriann; Zhang, Tonglin; An, Pingli; Dong, Zhiqiang; Zhang, Jingting; He, Di; et al

    2015-07-09

    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50 cm) volumetric water content during the growing season has declined significantly (p<0.01), with a trend of -0.011 to -0.015 m3 m-3 per decade. Observed discharge declines for the three large river basins are consistentmore » with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system.« less

  10. Agriculture intensifies soil moisture decline in Northern China

    SciTech Connect (OSTI)

    Liu, Yaling; Pan, Zhihua; Zhuang, Qianlai; Miralles, Diego; Teuling, Adriann; Zhang, Tonglin; An, Pingli; Dong, Zhiqiang; Zhang, Jingting; He, Di; Wang, Liwei; Pan, Xuebiao; Bai, Wei; Niyogi, Dev

    2015-07-09

    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50 cm) volumetric water content during the growing season has declined significantly (p<0.01), with a trend of -0.011 to -0.015 m3 m-3 per decade. Observed discharge declines for the three large river basins are consistent with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system.

  11. Temperature System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Soil Water and Temperature System SWATS In the realm of global climate modeling, ... An example is the soil water and temperature system (SWATS) (Figure 1). A SWATS is located ...

  12. Long-Term Degradation Testing of High-Temperature Electrolytic Cells

    SciTech Connect (OSTI)

    C.M. Stoots; J.E. O'Brien; J.S. Herring; G.K. Housley; D.G. Milobar; M.S. Sohal

    2009-08-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This report presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  13. Vadose Zone Soil Moisture Wicking Using Super Absorbent Polymers

    SciTech Connect (OSTI)

    Oostrom, Martinus; Smoot, Katherine V.; Wietsma, Thomas W.; Truex, Michael J.; Benecke, Mark W.; Chronister, Glen B.

    2012-11-19

    Super-absorbent polymers (SAPs) have the potential to remove water and associated contaminants from unsaturated sediments in the field. Column and flow cell experiment were conducted to test the ability of four types of SAPs to remove water from unsaturated porous media. Column experiments, with emplacement of a layer of polymer on top of unsaturated porous media, showed the ability of the SAPs to extract up to 80% of the initially emplaced water against gravity into the sorbent over periods up to four weeks. In column experiments where the sorbent was emplaced between layers of unsaturated porous media, gel formation was observed at both the sorbent-porous medium interfaces. The extraction percentages over four weeks of contact time were similar for both column configurations and no obvious differences were observed for the four tested SAPs. Two different flow cells were used to test the wicking behavior of SAPs in two dimensions using three configurations. The largest removal percentages occurred for the horizontal sorbent layer configuration which has the largest sorbent-porous medium interfacial area. In a larger flow cell, a woven nylon sock was packed with sorbent and subsequently placed between perforated metal plates, mimicking a well configuration. After one week of contact time the sock was removed and replaced by a fresh sock. The results of this experiment showed that the sorbent was able to continuously extract water from the porous media, although the rate decreased over time. The declining yield during both periods is associated with the sharp reduction in water saturation and relative permeability near the sorbent. It was also observed that the capillary pressure continued to increase over the total contact time of 14 days, indicating that the sorbent remained active over that period. This work has demonstrated the potential of soil moisture wicking using SAPs at the proof-of-principle level.

  14. Effect of moisture on leaf litter decomposition and its contribution to soil respiration in a temperate forest

    SciTech Connect (OSTI)

    Cisneros-Dozal, Luz Maria; Trumbore, Susan E.; Hanson, Paul J

    2007-01-01

    The degree to which increased soil respiration rates following wetting is caused by plant (autotrophic) versus microbial (heterotrophic) processes, is still largely uninvestigated. Incubation studies suggest microbial processes play a role but it remains unclear whether there is a stimulation of the microbial population as a whole or an increase in the importance of specific substrates that become available with wetting of the soil. We took advantage of an ongoing manipulation of leaf litter 14C contents at the Oak Ridge Reservation, Oak Ridge, Tennessee, to (1) determine the degree to which an increase in soil respiration rates that accompanied wetting of litter and soil, following a short period of drought, could be explained by heterotrophic contributions; and (2) investigate the potential causes of increased heterotrophic respiration in incubated litter and 0-5 cm mineral soil. The contribution of leaf litter decomposition increased from 6 3 mg C m 2 hr 1 during a transient drought, to 63 18 mg C m 2 hr 1 immediately after water addition, corresponding to an increase in the contribution to soil respiration from 5 2% to 37 8%. The increased relative contribution was sufficient to explain all of the observed increase in soil respiration for this one wetting event in the late growing season. Temperature (13 C versus 25 C) and moisture (dry versus field capacity) conditions did not change the relative contributions of different decomposition substrates in incubations, suggesting that more slowly cycling C has at least the same sensitivity to decomposition as faster cycling organic C at the temperature and moisture conditions studied.

  15. BTO Awards Small Business Grants for Lighting, Building-Integrated Heat and Moisture Exchange Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Science has awarded four Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) and building-integrated heat and moisture exchange technology.

  16. Investigation of SGP Atmospheric Moisture Budget for CLASIC … Recycling Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP Atmospheric Moisture Budget for CLASIC - Recycling Study Contributors Peter Lamb, Diane Portis, Daniel Hartsock Background * Motivation: to provide larger-scale background for the interpretation of the results of CLASIC * Moisture budgets and related variables are analyzed over a large area encompassing the CLASIC field study for May-June periods with contrasting precipitation regimes * Emphasis will be given to the relative contribution to regional precipitation from local vs advective

  17. Monitoring of Double-Stud Wall Moisture Conditions in the Northeast

    SciTech Connect (OSTI)

    Ueno, K.

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double-stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double-stud walls were monitored in Zone 5A (Massachusetts); three double-stud assemblies were compared.

  18. Building-Integrated Heat & Moisture Exchange (STTR Phase 1 and 2) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy STTR Phase 1 and 2) Building-Integrated Heat & Moisture Exchange (STTR Phase 1 and 2) 1 of 2 Building-integrated heat and moisture exchanger, the AirFlow(tm) Panel, installed for evaluation at Lawrence Berkeley National Lab. Image: Architectural Applications 2 of 2 A schematic of the AirFlow(tm) Panel developed by Architectural Applications. Image: Architectural Applications Lead Performer: Architectural Applications - Portland, OR Partners: -- Lawrence Berkeley

  19. Field measurement of moisture-buffering model inputs for residential buildings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Woods, Jason; Winkler, Jon

    2016-02-05

    Moisture adsorption and desorption in building materials impact indoor humidity. This effect should be included in building-energy simulations, particularly when humidity is being investigated or controlled. Several models can calculate this moisture-buffering effect, but accurate ones require model inputs that are not always known to the user of the building-energy simulation. This research developed an empirical method to extract whole-house model inputs for the effective moisture penetration depth (EMPD) model. The experimental approach was to subject the materials in the house to a square-wave relative-humidity profile, measure all of the moisture-transfer terms (e.g., infiltration, air-conditioner condensate), and calculate the onlymore » unmeasured term—the moisture sorption into the materials. We validated this method with laboratory measurements, which we used to measure the EMPD model inputs of two houses. After deriving these inputs, we measured the humidity of the same houses during tests with realistic latent and sensible loads and demonstrated the accuracy of this approach. Furthermore, these results show that the EMPD model, when given reasonable inputs, is an accurate moisture-buffering model.« less

  20. Heating of solid earthen material, measuring moisture and resistivity

    DOE Patents [OSTI]

    Heath, W.O.; Richardson, R.L.; Goheen, S.C.

    1994-07-19

    The present invention includes a method of treating solid earthen material having volatile, semi-volatile, and non-volatile contaminants. Six electrodes are inserted into a region of earthen material to be treated in a substantially equilateral hexagonal arrangement. Six phases of voltages are applied to corresponding electrodes. The voltages are adjusted within a first range of voltages to create multiple current paths between pairs of the electrodes. The current paths are evenly distributed throughout the region defined by the electrodes and therefore uniformly heat the region. The region of earthen material is heated to a temperature sufficient to substantially remove volatile and semi-volatile contaminants by promoting microbial action. This temperature is less than a melting temperature of the earthen material. 13 figs.

  1. Heating of solid earthen material, measuring moisture and resistivity

    DOE Patents [OSTI]

    Heath, William O.; Richardson, Richard L.; Goheen, Steven C.

    1994-01-01

    The present invention includes a method of treating solid earthen material having volatile, semi-volatile, and non-volatile contaminants. Six electrodes are inserted into a region of earthen material to be treated in a substantially equilateral hexagonal arrangement. Six phases of voltages are applied to corresponding electrodes. The voltages are adjusted within a first range of voltages to create multiple current paths between pairs of the electrodes. The current paths are evenly distributed throughout the region defined by the electrodes and therefore uniformly heat the region. The region of earthen material is heated to a temperature sufficient to substantially remove volatile and semi-volatile contaminants by promoting microbial action. This temperature is less than a melting temperature of the earthen material.

  2. Beamline Temperatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperatures Energy: 3.0000 GeV Current: 495.5347 mA Date: 09-Jan-2016 04:18:38 Beamline Temperatures Energy 3.0000 GeV Current 495.5 mA 09-Jan-2016 04:18:38 LN:MainTankLevel 112.0...

  3. Treating of solid earthen material and a method for measuring moisture content and resistivity of solid earthen material

    DOE Patents [OSTI]

    Heath, William; Richardson, Richard; Goheen, Steven

    1994-01-01

    The present invention includes a method of treating solid earthen material having volatile, semi-volatile and non-volatile contaminants. Six electrodes are inserted into a region of earthen material to be treated in a substantially equilateral hexagonal arrangement. Six phases of voltages are applied to corresponding electrodes. The voltages are adjusted within a first range of voltages to create multiple current paths between pairs of the electrodes. The current paths are evenly distributed throughout the region defined by the electrodes and therefore uniformly heat the region. The region of earthen material is heated to a temperature sufficient to substantially remove volatile and semi-volatile contaminants. This temperature is less than a melting temperature of the earthen material. The voltages are then increased to a second range of voltages effective to create dry regions around the electrodes. The dry regions have a perimeter which define a boundary between the dry regions and the earthen material exterior to the dry regions. Corona discharge occurs at the boundaries of the dry regions. As voltages are increased further, the dry regions move radially outward from the electrodes through the entire region. The corona boundaries decompose the non-volatilized contaminants remaining in the region. The hexagonal arrangement of electrodes is also preferable for measuring resistivity and moisture content of the earthen material. The electric field created between the electrodes is readily discernable and therefore facilitates accurate measurements.

  4. FINAL REPORT FOR MOISTURE EFFECTS ON COMPACTION OF FIBERBOARD IN A 9975 SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Stefek, T.; Daugherty, W.; Estochen, E.

    2013-09-17

    Compaction of lower layers in the fiberboard assembly has been observed in 9975 packages that contain elevated moisture. Lab testing has resulted in a better understanding of the relationship between the fiberboard moisture level and compaction of the lower fiberboard assembly, and the behavior of the fiberboard during transport. In laboratory tests of cane fiberboard, higher moisture content has been shown to correspond to higher total compaction, greater rate of compaction, and continued compaction over a longer period of time. In addition, laboratory tests have shown that the application of a dynamic load results in higher fiberboard compaction compared to a static load. The test conditions and sample geometric/loading configurations were chosen to simulate the regulatory requirements for 9975 package input dynamic loading. Dynamic testing was conducted to acquire immediate and cumulative changes in geometric data for various moisture levels. Two sample sets have undergone a complete dynamic test regimen, one set for 27 weeks, and the second set for 47 weeks. The dynamic input, data acquisition, test effects on sample dynamic parameters, and results from this test program are summarized and compared to regulatory specifications for dynamic loading. Compaction of the bottom fiberboard layers due to the accumulation of moisture is one possible cause of an increase in the axial gap at the top of the package. The net compaction of the bottom layers will directly add to the axial gap. The moisture which caused this compaction migrated from the middle region of the fiberboard assembly (which is typically the hottest). This will cause the middle region to shrink axially, which will also contribute directly to the axial gap. Measurement of the axial gap provides a screening tool for identifying significant change in the fiberboard condition. The data in this report provide a basis to evaluate the impact of moisture and fiberboard compaction on 9975 package performance

  5. Investigation of the proposed solar-driven moisture phenomenon in asphalt shingle roofs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boudreaux, Philip; Pallin, Simon; Jackson, Roderick

    2016-01-19

    We report that unvented, sealed or conditioned attics are an energy efficiency measure to reduce the thermal load of the home and decrease the space conditioning energy consumption. This retrofit is usually done by using spray polyurethane foam underneath the roof sheathing and on the gables and soffits of an attic to provide a thermal and air barrier. Unvented attics perform well from this perspective but from a moisture perspective sometimes the unvented attic homes have high interior humidity or moisture damage to the roof. As homes become more air tight and energy efficient, an understanding of the hygrothermal dynamicsmore » of the home become more important. One proposed reason for high unvented attic humidity has been that moisture can come through the asphalt shingle roof system and increase the moisture content of the roof sheathing and attic air. This has been called solar driven moisture. Oak Ridge National Laboratory (ORNL) investigated this proposed phenomenon by examining the physical properties of a roof and the physics required for the phenomenon. Results showed that there are not favorable conditions for solar driven moisture to occur. ORNL also conducted an experimental study on an unvented attic home and compared the humidity below the roof sheathing before and after a vapor impermeable underlayment was installed. There was no statistically significant difference in absolute humidity before and after the vapor barrier was installed. Finally, the outcome of the theoretical and experimental study both suggest that solar driven moisture does not occur in any significant amount.« less

  6. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    SciTech Connect (OSTI)

    Seong W. Lee

    2004-04-01

    The systematic tests of the gasifier simulator were conducted in this reporting period. In the systematic test, two (2) factors were considered as the experimental parameters, including air injection rate and water injection rate. Each experimental factor had two (2) levels, respectively. A special water-feeding device was designed and installed to the gasifier simulator. Analysis of Variances (ANOVA) was applied to the results of the systematic tests. The ANOVA shows that the air injection rate did have the significant impact to the temperature measurement in the gasifier simulator. The ANOVA also shows that the water injection rate did not have the significant impact to the temperature measurements in the gasifier simulator. The ANOVA analysis also proves that the thermocouple assembly we proposed was immune to the moisture environment, the temperature measurement remained accurate in moisture environment. Within this reporting period, the vibration application for cleaning purpose was explored. Both ultrasonic and sub-sonic vibrations were considered. A feasibility test was conducted to prove that the thermocouple vibration did not have the significant impact to the temperature measurements in the gasifier simulator. This feasibility test was a 2{sup 2} factorial design. Two factors including temperature levels and motor speeds were set to two levels respectively. The sub-sonic vibration tests were applied to the thermocouple to remove the concrete cover layer (used to simulate the solid condensate in gasifiers) on the thermocouple tip. It was found that both frequency and amplitude had significant impacts on removal performance of the concrete cover layer.

  7. Atmospheric Moisture Budget and Spatial Resolution Dependence of Precipitation Extremes in Aquaplanet Simulations

    SciTech Connect (OSTI)

    Yang, Qing; Leung, Lai-Yung R.; Rauscher, Sara; Ringler, Todd; Taylor, Mark

    2014-05-01

    This study investigates the resolution dependency of precipitation extremes in an aqua-planet framework. Strong resolution dependency of precipitation extremes is seen over both tropics and extra-tropics, and the magnitude of this dependency also varies with dynamical cores. Moisture budget analyses based on aqua-planet simulations with the Community Atmosphere Model (CAM) using the Model for Prediction Across Scales (MPAS) and High Order Method Modeling Environment (HOMME) dynamical cores but the same physics parameterizations suggest that during precipitation extremes moisture supply for surface precipitation is mainly derived from advective moisture convergence. The resolution dependency of precipitation extremes mainly originates from advective moisture transport in the vertical direction. At most vertical levels over the tropics and in the lower atmosphere over the subtropics, the vertical eddy transport of mean moisture field dominates the contribution to precipitation extremes and its resolution dependency. Over the subtropics, the source of moisture, its associated energy, and the resolution dependency during extremes are dominated by eddy transport of eddies moisture at the mid- and upper-troposphere. With both MPAS and HOMME dynamical cores, the resolution dependency of the vertical advective moisture convergence is mainly explained by dynamical changes (related to vertical velocity or omega), although the vertical gradients of moisture act like averaging kernels to determine the sensitivity of the overall resolution dependency to the changes in omega at different vertical levels. The natural reduction of variability with coarser resolution, represented by areal data averaging (aggregation) effect, largely explains the resolution dependency in omega. The thermodynamic changes, which likely result from non-linear feedback in response to the large dynamical changes, are small compared to the overall changes in dynamics (omega). However, after excluding the

  8. ANALYSIS OF THE AXIAL GAP VS FIBERBOARD MOISTURE CONTENT IN A 9975 SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Daugherty, W.

    2013-09-30

    The fiberboard assembly within a 9975 shipping package contains a modest amount of moisture, which can migrate to the cooler regions of the package when an internal heat load is present. Typically, this leads to increased moisture levels in the bottom fiberboard layers, along with elevated chloride levels which can leach from the fiberboard. Concerns have been raised that this condition could lead to corrosion of the stainless steel drum. It has been postulated that checking the axial gap at the top of the package against the current 1 inch maximum criterion provides a sufficient indication regarding the integrity of the fiberboard and drum. This report estimates the increase in axial gap that might be expected for a given moisture increase in the bottom fiberboard layers, and the likelihood that the increase will create a nonconforming condition that will lead to identification of the moisture increase. Using data relating the fiberboard moisture content with the degree of compaction under load, the present analysis indicates that the axial gap will increase by 0.282 inch as the bottom fiberboard layers approach the saturation point. This increase will cause approximately 58% of packages with otherwise nominal package component dimensions to fail the axial gap criterion, based on a survey of axial gap values recorded in K-Area surveillance activities. As the moisture content increases above saturation, the predicted increase in axial gap jumps to 0.405 inch, which would result in 92% or more of all packages failing the axial gap criterion. The data and analysis described in this report are specific to cane fiberboard. While it is expected that softwood fiberboard will behave similarly, such behavior has not yet been demonstrated.

  9. Note on Graphite Oxidation by Oxygen and Moisture

    SciTech Connect (OSTI)

    Wichner, Robert; Burchell, Timothy D; Contescu, Cristian I

    2009-02-01

    Simplified equations of graphite oxidation are reviewed for semi-infinite slab, finite slab, and cylinder geometries, using the principal assumptions of linearized oxidation kinetics and quasi-steady state oxidation profile. All equations are coupled to a general surface mass transfer boundary condition. The equations include those for oxidant concentration distribution, surface oxidation rate, burnoff profile, and oxidation efficiency. This review also covers some areas that may not be well recognized. The key role of the effective diffusivity is highlighted, with a brief review of measured values. The temperature-dependence of the surface oxidation rate is shown to be more complex than usually shown for the diffusion-affected zone. Assumption of linear kinetics permits ready estimation of equilibration time for development of the quasi-steady burnoff profile. In addition, approximations for the time-steady hydrogen concentration profiles are developed for the case of oxidation by H2O. All cited methods can be readily evaluated by spreadsheet calculation.

  10. Hydrogen and moisture getter and absorber for sealed devices

    DOE Patents [OSTI]

    Smith, H.M.; Schicker, J.R.

    1999-03-30

    The present invention is a hydrogen getter and method for formulating and using the getter. This getter effectively removes hydrogen gas typically present in many hermetically-sealed electronic applications where the presence of such gas would otherwise be harmful to the electronics. The getter is a non-organic composition, usable in a wide range of temperatures as compared to organic getters. Moreover, the getter is formulated to be used without the need for the presence of oxygen. The getter is comprised of effective amounts of an oxide of a platinum group metal, a desiccant, and a gas permeable binder which preferably is cured after composition in an oxygen-bearing environment at about 150 to about 205 degrees centigrade.

  11. Modeling studies of gas movement and moisture migration at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Tsang, Y.W.; Pruess, K.

    1991-06-01

    Modeling studies on moisture redistribution processes that are mediated by gas phase flow and diffusion have been carried out. The problem addressed is the effect of a lowered humidity of the soil gas at the land surface on moisture removal from Yucca Mountain, the potential site for a high-level nuclear waste repository. At the land surface, humid formation gas contacts much drier atmospheric air. Near this contact, the humidity of the soil gas may be considerably lower than at greater depth, where the authors expect equilibrium with the liquid phase and close to 100% humidity. The lower relative humidity of the soil gas may be modeled by imposing, at the land surface, an additional negative capillary suction corresponding to vapor pressure lowering according to Kelvin`s Equation, thus providing a driving force for the upward movement of moisture in both the vapor and liquid phases. Sensitivity studies show that moisture removal from Yucca Mountain arising from the lowered-relative-humidity boundary condition is controlled by vapor diffusion. There is much experimental evidence in the soil literature that diffusion of vapor is enhanced due to pore-level phase change effects by a few orders of magnitude. Modeling results presented here will account for this enhancement in vapor diffusion.

  12. Feasibility study of prompt gamma neutron activation for NDT measurement of moisture in stone and brick

    SciTech Connect (OSTI)

    Livingston, R. A.; Al-Sheikhly, M.; Grissom, C.; Aloiz, E.; Paul, R.

    2014-02-18

    The conservation of stone and brick architecture or sculpture often involves damage caused by moisture. The feasibility of a NDT method based on prompt gamma neutron activation (PGNA) for measuring the element hydrogen as an indication of water is being evaluated. This includes systematic characterization of the lithology and physical properties of seven building stones and one brick type used in the buildings of the Smithsonian Institution in Washington, D.C. To determine the required dynamic range of the NDT method, moisture-related properties were measured by standard methods. Cold neutron PGNA was also used to determine chemically bound water (CBW) content. The CBW does not damage porous masonry, but creates an H background that defines the minimum level of detection of damaging moisture. The CBW was on the order of 0.5% for all the stones. This rules out the measurement of hygric processes in all of the stones and hydric processed for the stones with fine scale pore-size distributions The upper bound of moisture content, set by porosity through water immersion, was on the order of 5%. The dynamic range is about 1020. The H count rates were roughly 13 cps. Taking into account differences in neutron energies and fluxes and sample volume between cold PGNA and a portable PGNA instrument, it appears that it is feasible to apply PGNA in the field.

  13. CRADA with the Belhaven group and Pacific Northwest National Laboratory (PNL-081): Automated soil moisture measuring systems. Final project report

    SciTech Connect (OSTI)

    Ramesh, K.S.

    1996-08-01

    The objectives of this project were to (1) develop an improved, full- scale, inexpensive, soil moisture sensor, using innovative porous ceramic materials as the moisture wicking component and (2) demonstrate the performance of the sensor in the laboratory and in field to determine its reliability and accuracy. The opportunity for this project arose as a result of an inquiry from Belhaven to whom the soil moisture sensor developed at PNNL by John Cary was licensed. The existing Cary sensor needed research and development effort in order to create the type of soil moisture sensor envisioned by the Belhaven for use in an integrated soil moisture systems in the field. PNNL was identified as being uniquely qualified to participate in this Collaborative project.

  14. A Field Study Comparison of the Energy and Moisture Performance Characteristics of Ventilated Versus Sealed Crawl Spaces in the South

    SciTech Connect (OSTI)

    Bruce Davis; Cyrus Dastur; William E. Warren; Shawn Fitzpatrick; Christine Maurer; Rob Stevens; Terry Brennan; William Rose

    2005-06-22

    This study compared the performance of closed crawl spaces, which had sealed foundation wall vents, a sealed polyethylene film liner and various insulation and drying strategies, to traditional wall-vented crawl spaces with perimeter wall vents and polyethylene film covering 100% of the ground surface. The study was conducted at 12 owner-occupied, all electric, single-family detached houses with the same floor plan located on one cul-de-sac in the southeastern United States. Using the matched pairs approach, the houses were divided into three study groups of four houses each. Comparative data was recorded for each house to evaluate sub-metered heat pump energy consumption, relative humidity, wood moisture content, duct infiltration, house infiltration, temperature, radon, and bioaerosol levels. Findings indicated that in the humid conditions of the southeastern United States, a properly closed crawl space is a robust construction measure that produces a substantially drier crawl space and significantly reduces occupied space conditioning energy use on an annual basis.

  15. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O.; Aubrey, Doug P.

    2016-06-24

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by

  16. Size reduction of high- and low-moisture corn stalks by linear knife grid system

    SciTech Connect (OSTI)

    Womac, A.R. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Sokhansanj, Shahabaddine [ORNL; Narayan, S. [First American Scientific Co.

    2009-04-01

    High- and low-moisture corn stalks were tested using a linear knife grid size reduction device developed for first-stage size reduction. The device was used in conjunction with a universal test machine that quantified shearing stress and energy characteristics for forcing a bed of corn stalks through a grid of sharp knives. No published engineering performance data for corn stover with similar devices are available to optimize performance; however, commercial knife grid systems exist for forage size reduction. From the force displacement data, mean and maximum ultimate shear stresses, cumulative and peak mass-based cutting energies for corn stalks, and mean new surface area-based cutting energies were determined from 4 5 refill runs at two moisture contents (78.8% and 11.3% wet basis), three knife grid spacings (25.4, 50.8, and 101.6 mm), and three bed depths (50.8, 101.6, and 152.4 mm). In general, the results indicated that peak failure load, ultimate shear stress, and cutting energy values varied directly with bed depth and inversely with knife grid spacing. Mean separation analysis established that high- and low-moisture conditions and bed depths 101.6 mm did not differ significantly (P < 0.05) for ultimate stress and cutting energy values, but knife grid spacing were significantly different. Linear knife grid cutting energy requirements for both moisture conditions of corn stalks were much smaller than reported cutting energy requirements. Ultimate shear stress and cutting energy results of this research should aid the engineering design of commercial scale linear knife gird size reduction equipment for various biomass feedstocks.

  17. Tertiary nitrogen heterocyclic material to reduce moisture-induced damage in asphalt-aggregate mixtures

    DOE Patents [OSTI]

    Plancher, Henry; Petersen, Joseph C.

    1982-01-01

    Asphalt-aggregate roads crack when subjected to freezing and thawing cycles. Herein, the useful life of asphalts are substantially improved by a minor amount of a moisture damage inhibiting agent selected from compounds having a pyridine moiety, including acid salts of such compounds. A shale oil fraction may serve as the source of the improving agent and may simply be blended with conventional petroleum asphalts.

  18. Development of Optical Technologies for Monitoring Moisture and Particulate in Geothermal Steam

    SciTech Connect (OSTI)

    J. K. Partin

    2006-08-01

    The results of an investigation directed at evaluating the feasibility of using optical measurements for the real-time monitoring moisture and particulate in geothermal steam is described. The measurements exploit new technologies that have been developed for the telecommunications industry and includes new solid state laser devices, large-bandwidth, high-sensitivity detectors and low loss optical fiber compo-nents. In particular, the design, fabrication, and in-plant testing of an optical steam monitor for the detection of moisture is presented. The measurement principle is based upon the selective absorption of infrared energy in response to the presence of moisture. Typically, two wavelengths are used in the measurements: a wavelength that is strongly absorbed by water and a reference wavelength that is minimally influenced by water and steam which serves as a reference to correct for particulate or droplet scattering. The two wavelengths are chosen to be as close as possible in order to more effectively correct for scattering effects. The basic instrumentation platform developed for the in-situ monitoring of steam moisture can be modified and used to perform other measurements of interest to plant operators. An upgrade that will allow the instrument to be used for the sensitive detection of particulate in process streams has been investigated. The new monitor design involves the use of laser diodes that are much less sensitive to water and water vapor and more sensitive to scattering phenomena, as well as new processing techniques to recover these signals. The design reduces the averaging time and sampling volume, while increasing the laser probe power, enhancing particulate detection sensitivity. The design concept and initial laboratory experiments with this system are also reported.

  19. Moisture performance of sealed attics in the mixed-humid climate

    SciTech Connect (OSTI)

    Boudreaux, Philip R; Pallin, Simon B; Jackson, Roderick K

    2013-12-01

    Oak Ridge National Laboratory studied 8 homes in the mixed-humid climate, 4 with vented attics and 4 with sealed attics. ORNL wanted to understand the moisture performance of the sealed attic and how it affected the interior environment. We found that the attic and interior of sealed attic homes were more humid than the attic and interior observed in vented attic homes. This is due to the lack of ventilation in the sealed attic. Historically attics have been vented to dehumidify the attic and interior of the home. A sealed attic design greatly reduces the venting potential and thus this drying pathway and can cause elevated interior moisture over a vented attic home. Despite the elevated attic and interior moisture in the sealed attic homes, so far no mold or material degradation has been found. The roof sheathing moisture content has stayed below 20%, indicating low potential for material degradation. Also the relative humidity at the roof sheathing has stayed within the ASHRAE 160 design criteria except for a short time during the 2011/2012 winter. This was due to a combination of the sealed attic design (minimal venting to the outside) and the duct work not being operated in the attic which usually provides a dehumidification pathway. It was also found that when the humidity was controlled using the HVAC system, it resulted in 7% more cooling energy consumption. In the mixed-humid climate this reduces the cost effectiveness of the sealed attic design as a solution for bringing ducts into a semi-conditioned space. Because of this we are recommending the other alternatives be used to bringing ducts into the conditioned space in both new construction and retrofit work in the mixed-humid climate.

  20. Summary of fiscal year 1994 near-infrared spectroscopy moisture sensing activities

    SciTech Connect (OSTI)

    Reich, F.R.; Johnson, R.E.; Philipp, B.L.; Duncan, J.B.; Schutzenhofer, G.L.

    1995-01-01

    This report summarizes the work to develop and deploy near-infrared (NIR) moisture sensing technology for application to the Hanford Site`s high-level nuclear waste materials. This work is jointly supported by the U.S. Department of Energy`s (DOE) EM-50 Office of Technology Development Support and the EM-30 Tank Waste Safety and Tank Waste Remediation Systems Programs. A basic NIR system was developed at the Savannah River Laboratory (SRL) with support from DOE`s EM-50 Office. The application of this technology to Hanford`s high-level wastes (HLW). Including deployment, is supported by DOE`s EM-30 Systems Programs. The need to know the moisture content in HLW is driven by concerns for the safety of underground storage tanks that contain or are suspected of containing ferrocyanide and organic types of materials. The NIR technology has application for both ex situ (hot cell core measurements) and in situ waste tank moisture sensing. The cold test/calibration data in this report was generated as part of the total life cycle development path being followed in the development and deployment of the NIR technology at the Hanford Site.

  1. Technology Solutions Case Study: Monitoring of Double Stud Wall Moisture Conditions in the Northeast, Devens, Massachusetts

    SciTech Connect (OSTI)

    2015-03-01

    Double stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. In this project, Building Science Corporation monitored moisture conditions in double-stud walls from 2011 through 2014 at a new production house located in Devens, Massachusetts. The builder, Transformations, Inc., has been using double-stud walls insulated with 12 in. of open cell polyurethane spray foam (ocSPF); however, the company has been considering a change to netted and blown cellulose insulation for cost reasons. Cellulose is a common choice for double-stud walls because of its lower cost (in most markets). However, cellulose is an air-permeable insulation, unlike spray foams, which increases interior moisture risks. The team compared three double-stud assemblies: 12 in. of ocSPF, 12 in. of cellulose, and 5-½ in. of ocSPF at the exterior of a double-stud wall (to approximate conventional 2 × 6 wall construction and insulation levels, acting as a control wall). These assemblies were repeated on the north and south orientations, for a total of six assemblies.

  2. Effects of Compressive Force, Particle Size and Moisture Content on Mechanical Properties of Biomass Grinds

    SciTech Connect (OSTI)

    Mani, Sudhagar; Tabil, Lope Jr.; Sokhansanj, Shahabaddine

    2006-03-01

    Chemical composition, moisture content, bulk and particle densities, and geometric mean particle size were determined to characterize grinds from wheat and barley straws, corn stover and switchgrass. The biomass grinds were compressed for five levels of compressive forces (1000, 2000, 3000, 4000, 4400 N) and three levels of particle sizes (3.2, 1.6 and 0.8 mm) at two levels of moisture contents (12% and 15% (wb) to establish the compression and relaxation data. Corn stover grind produced the highest compact density at low pressure during compression. Compressive force, particle size and moisture content of grinds significantly affected the compact density of barley straw, corn stover and switchgrass grinds. However, different particle sizes of wheat straw grind did not produce any significant difference on compact density. Barley straw grind had the highest asymptotic modulus among all other biomass grinds indicating that compact from barley straw grind were more rigid than those of other compacts. Asymptotic modulus increased with an increase in maximum compressive pressure. The trend of increase in asymptotic modulus (EA) with the maximum compressive pressure ( 0) was fitted to a second order polynomial equation. Keywords: Biomass grinds, chemical composition, compact density and asymptotic modulus

  3. An analysis of moisture accumulation in the roof cavities of manufactured housing

    SciTech Connect (OSTI)

    Burch, D.

    1995-09-01

    A detailed computer analysis is conducted to investigate whether moisture problems occur in the roof cavity of manufactured homes constructed in compliance with the current Department of Housing and Urban Development (HUD) Standards for manufactured housing. The current HUD Standards require a ceiling vapor retarder, but do not require outdoor ventilation of the roof cavity. In cold climates, the analysis revealed that moisture accumulates at lower roof surface and poses a risk of material degradation. The analysis found the following combination of passive measures to be effective in preventing detrimental winter moisture accumulation at lower surface of the roof: (1) providing a ceiling vapor retarder; (2) sealing penetrations and openings in the ceiling construction, and (3) providing natural ventilation openings in the roof cavity. In addition, the performance of a roof cavity exposed to a hot and humid climate is investigated. The analysis revealed that outdoor ventilation of the roof cavity causes the monthly mean relative humidity at the upper surface of the vapor retarder to exceed 80%. This condition is conducive to mold and mildew growth.

  4. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    DOE Patents [OSTI]

    Sikka, Vinod K.

    1992-01-01

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  5. Precipitation and soil impacts on partitioning of subsurface moisture in Avena barbata: Observations from a greenhouse experiment

    SciTech Connect (OSTI)

    Salve, R.; Torn, M.S.

    2011-03-01

    The primary objective of this study was to assess the impact of two grassland soils and precipitation regimes on soil-moisture dynamics. We set up an experiment in a greenhouse, and monitored soil moisture dynamics in mesocosms planted with Avena barbata, an annual species found in California grasslands. By repeating the precipitation input at regular intervals, we were able to observe plant manipulation of soil moisture during well-defined periods during the growing season. We found that the amount of water partitioned to evapotranspiration, seepage, and soil storage varied among different growth stages. Further, both soil type and precipitation regimes had a significant impact on redistributing soil moisture. Whereas in the low-precipitation treatments most water was released to the atmosphere as evapotranspiration, major losses from the high-precipitation treatment occurred as gravity drainage. Observations from this study emphasize the importance of understanding intra-seasonal relationships between vegetation, soil, and water.

  6. Moisture Flux Convergence in Regional and Global Climate Models: Implications for Droughts in the Southwestern United States Under Climate Change

    SciTech Connect (OSTI)

    Gao, Yanhong; Leung, Lai-Yung R.; Salathe, E.; Dominguez, Francina; Nijssen, Bart; Lettenmaier, D. P.

    2012-05-10

    The water cycle of the southwestern United States (SW) is dominated by winter storms that maintain a positive annual net precipitation. Analysis of the control and future climate from four pairs of regional and global climate models (RCMs and GCMs) shows that the RCMs simulate a higher fraction of transient eddy moisture fluxes because the hydrodynamic instabilities associated with flow over complex terrain are better resolved. Under global warming, this enables the RCMs to capture the response of transient eddies to increased atmospheric stability that allows more moisture to converge on the windward side of the mountains by blocking. As a result, RCMs simulate enhanced transient eddy moisture convergence in the SW compared to GCMs, although both robustly simulate drying due to enhanced moisture divergence by the divergent mean flow in a warmer climate. This enhanced convergence leads to reduced susceptibility to hydrological change in the RCMs compared to GCMs.

  7. Building America Case Study: Monitoring of Double Stud Wall Moisture Conditions in the Northeast, Devens, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  8. Ambient temperature thermal battery

    SciTech Connect (OSTI)

    Fletcher, A. N.; Bliss, D. E.; McManis III

    1985-11-26

    An ambient temperature thermal battery having two relatively high temperature melting electrolytes which form a low melting temperature electrolyte upon activation.

  9. Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications

    SciTech Connect (OSTI)

    David M. Dean

    2012-10-30

    Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is the key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.

  10. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    DOE Patents [OSTI]

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  11. International H2O Project (IHOP) 2002: Datasets Related to Atmospheric Moisture and Rainfall Prediction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schanot, Allen [IHOP 2002 PI; Friesen, Dick [IHOP 2002 PI

    IHOP 2002 was a field experiment that took place over the Southern Great Plains of the United States from 13 May to 25 June 2002. The chief aim of IHOP_2002 was improved characterization of the four-dimensional (4-D) distribution of water vapor and its application to improving the understanding and prediction of convection. The region was an optimal location due to existing experimental and operational facilities, strong variability in moisture, and active convection [copied from http://www.eol.ucar.edu/projects/ihop/]. The project's master list of data identifies 146 publicly accessible datasets.

  12. GRIZZLY Model of Multi-Reactive Species Diffusion, Moisture/Heat Transfer and Alkali-Silica Reaction for Simulating Concrete Aging and Degradation

    SciTech Connect (OSTI)

    Huang, Hai; Spencer, Benjamin W.; Cai, Guowei

    2015-09-01

    /heat transfer module was implemented to simulate long-term spatial and temporal evolutions of the moisture and temperature fields within concrete structures at both room and elevated temperatures. The ASR swelling model implemented in GRIZZLY code can simulate anisotropic expansions of ASR gel under either uniaxial, biaxial and triaxial stress states, and can be run simultaneously with the moisture/heat transfer model and coupled with various elastic/inelastic solid mechanics models that were implemented in GRIZZLY code previously. This report provides detailed descriptions of the governing equations, constitutive equations and numerical algorithms of the three modules implemented in GRIZZLY during FY15, simulation results of example problems and model validation results by comparing simulations with available experimental data reported in the literature. The close match between the experiments and simulations clearly demonstrate the potential of GRIZZLY code for reliable evaluation and prediction of long-term performance and response of aged concrete structures in nuclear power plants.

  13. Retrieving moisture profiles from precipitable water measurements using a variational data assimilation approach

    SciTech Connect (OSTI)

    Guo, Y.R.; Zou, X.; Kuo, Y.H.

    1996-04-01

    Atmospheric moisture distribution is directly related to the formation of clouds and precipitation and affects the atmospheric radiation and climate. Currently, several remote sensing systems can measure precipitable water (PW) with fairly high accuracy. As part of the development of an Integrated Data Assimilation and Sounding System in support of the Atmospheric Radiation Measurement Program, retrieving the 3-D water vapor fields from PW measurements is an important problem. A new four dimensional variational (4DVAR) data assimilation system based on the Penn State/National Center for Atmospheric Research (NCAR) mesoscale model (MM5) has been developed by Zou et al. (1995) with the adjoint technique. In this study, we used this 4DVAR system to retrieve the moisture profiles. Because we do not have a set of real observed PW measurements now, the special soundings collected during the Severe Environmental Storm and Mesoscale Experiment (SESAME) in 1979 were used to simulate a set of PW measurements, which were then assimilated into the 4DVAR system. The accuracy of the derived water vapor fields was assessed by direct comparison with the detailed specific humidity soundings. The impact of PW assimilation on precipitation forecast was examined by conducting a series of model forecast experiments started from the different initial conditions with or without data assimilation.

  14. Radius of influence for a cosmic-ray soil moisture probe : theory and Monte Carlo simulations.

    SciTech Connect (OSTI)

    Desilets, Darin

    2011-02-01

    The lateral footprint of a cosmic-ray soil moisture probe was determined using diffusion theory and neutron transport simulations. The footprint is radial and can be described by a single parameter, an e-folding length that is closely related to the slowing down length in air. In our work the slowing down length is defined as the crow-flight distance traveled by a neutron from nuclear emission as a fast neutron to detection at a lower energy threshold defined by the detector. Here the footprint is defined as the area encompassed by two e-fold distances, i.e. the area from which 86% of the recorded neutrons originate. The slowing down length is approximately 150 m at sea level for neutrons detected over a wide range of energies - from 10{sup 0} to 10{sup 5} eV. Both theory and simulations indicate that the slowing down length is inversely proportional to air density and linearly proportional to the height of the sensor above the ground for heights up to 100 m. Simulations suggest that the radius of influence for neutrons >1 eV is only slightly influenced by soil moisture content, and depends weakly on the energy sensitivity of the neutron detector. Good agreement between the theoretical slowing down length in air and the simulated slowing down length near the air/ground interface support the conclusion that the footprint is determined mainly by the neutron scattering properties of air.

  15. Response of the regional water cycle to an increase of atmosphere moisture related to global warming

    SciTech Connect (OSTI)

    Frei, C.; Widmann, M.; Luethi, D.

    1997-11-01

    This study examines the sensitivity of the mid-latitude regional hydrological cycle to an imposed warming. Mesoscale limited-area climate simulations over Europe are performed. The modelling study is complemented with a detailed analysis of the observed precipitation and circulation trends in the same region. It is demonstrated that an increase of the moisture content leads to an enhancement of the model`s water cycle during the synoptically active seasons. The simulations suggest that this mechanism may contribute towards an increase in mean precipitation and more frequency occurrence of heavy precipitation events. Observational analysis results illustrate that the relationship between precipitation and atmospheric moisture seen in the climate simulations constitutes a possible physical mechanism relevant for the interpretation of the observed trends. A key feature of the model results is the pronounced increase in the frequency of strong precipitation events associated with the intensification of the water cycle. This large sensitivity highlights the vulnerability of the precipitation climate with respect to global climate change. 19 refs., 2 figs., 1 tab.

  16. Spokane Wall Insulation Project: a field study of moisture damage in walls insulated without a vapor barrier

    SciTech Connect (OSTI)

    Tsongas, G.

    1985-09-01

    Considerable uncertainty has existed over whether or not the addition of wall insulation without a vapor barrier might increase the risk of moisture damage to the structure. Although it was concluded from a 1979 field study that there is no such risk in mild climates like that of Portland, Oregon (4792 degree-days), it was not clear if a problem might exist in colder climates. Thus, a second major field study was undertaken in Spokane, Washington (6835 degree-days) aimed at finding out if such a moisture problem really exists. This report describes that study and its results and conclusions. During the study the exterior walls of 103 homes were opened, of which 79 had retrofitted cellulose, rock wool, or fiberglass, and 24 were uninsulated as a control group. Field and laboratory test results are presented which, contrary to diffusion theory predictions, show the absence of moisture accumulation and consequent moisture damage caused by the addition of retrofitted wall insulation. Infrared thermography results giving the percentage of wall insulation void area for 30 of the test homes are also presented. The study strongly concludes that the addition of wall insulation without a vapor barrier does not cause moisture problems in existing homes in climates similar to that of Spokane. Future research needs are described, and the overall advisability of future retrofitting of wall insulation is discussed. 23 refs., 7 figs., 16 tabs.

  17. Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction- August 13, 2014- Moisture Monitoring Results in an R-40 Wall

    Broader source: Energy.gov [DOE]

    This presentation, Moisture Monitoring Results in an R-40 Wall, was presented at the Building America webinar, High Performance Enclosure Strategies, Part II, on August 13, 2014.

  18. Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

    SciTech Connect (OSTI)

    Karagiozis, A.N.

    2007-05-15

    This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

  19. Field study of moisture damage in walls insulated without a vapor barrier. Final report for the Oregon Department of Energy

    SciTech Connect (OSTI)

    Tsongas, G.A.

    1980-05-01

    Considerable uncertainty has existed over whether or not wall insulation installed without a vapor barrier causes an increased risk of moisture damage (wood decay) within walls. This report describes the results of one of the first major studies in the country aimed at finding out if such a moisture problem really exists. The exterior walls of a total of 96 homes in Portland, Oregon were opened, of which 70 had retrofitted insulation and 26 were uninsulated and were a control group. The types of insulation included urea-formaldehyde foam (44), mineral wool (16), and cellulose (10). In each opened wall cavity the moisture content of wood was measured and insulation and wood samples were taken for laboratory analysis of moisture content and for the determination of the presence of absence of decay fungi. Foam shrinkage was also measured. To evaluate the possible influence of the relative air tightness of the homes, fan depressurization tests were run using a door blower unit. The field and laboratory test results indicating the lack of a moisture damage problem in existing homes with wood siding in climates similar to that of western Oregon are described along with results of a statistical analysis of the data. Related problems of interest to homeowners and insulation installers are noted. The standard operating procedures used throughout the study are discussed, including the home selection process, quantitative and qualitative techniques used to identify wall locations with the highest moisture content, wall opening and data/sample collection methodology, laboratory analysis of samples, data processing and analysis, and applicability of the results. Recommendations for furutre tests are made. Finally, the potential and desirability for future retrofitting of wall insulation is explored.

  20. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

    2014-05-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  1. Wetting of Sodium on ??-Al2O3/YSZ Composites for Low Temperature Planar Sodium-Metal Halide Batteries

    SciTech Connect (OSTI)

    Reed, David M.; Coffey, Greg W.; Mast, Eric S.; Canfield, Nathan L.; Mansurov, Jirgal; Lu, Xiaochuan; Sprenkle, Vincent L.

    2013-04-01

    Wetting of Na on B-Al2O3/YSZ composites was investigated using the sessile drop technique. The effects of moisture and surface preparation were studied at low temperatures. Electrical conductivity of Na/B-Al2O3-YSZ/Na cells was also investigated at low temperatures and correlated to the wetting behavior. The use of planar B-Al2O3 substrates at low temperature with low cost polymeric seals is realized due to improved wetting at low temperature and conductivity values consistent with the literature.

  2. Acoustic wave (AW) based moisture sensor for use with corrosive gases

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Frye, Gregory C. (Cedar Crest, NM); Schneider, Thomas W. (Albuquerque, NM)

    1996-01-01

    Moisture corrosive gas stream is measured as a function of the difference in resonant frequencies between two acoustic wave (AW) devices, each with a film which accepts at least one of the components of the gas stream. One AW is located in the gas stream while the other is located outside the gas stream but in the same thermal environment. In one embodiment, the film is a hydrophilic material such as SiO.sub.2. In another embodiment, the SiO.sub.2 is covered with another film which is impermeable to the corrosive gas, such that the AW device in the gas stream measures only the water vapor. In yet another embodiment, the film comprises polyethylene oxide which is hydrophobic and measures only the partial pressure of the corrosive gas. Other embodiments allow for compensation of drift in the system.

  3. Hygric Redistribution in Insulated Assemblies. Retrofitting Residential Envelopes Without Creating Moisture Issues

    SciTech Connect (OSTI)

    Smegal, J.; Lstiburek, J.

    2013-01-01

    The Building America program has recognized that most of the current housing stock is in need of energy related retrofits. One of the best ways of reducing the space conditioning energy consumption is to improve the thermal performance of the enclosure by adding exterior board foam insulation. This report quantifies the amount of water that can become trapped in the drainage cavity of typical wall systems, and measures the effect of water trapped in the drainage cavity on the moisture content of the sheathing. This study also attempts to explain the discrepancy between hygrothermal simulations and field performance of low permeance, low R-value exterior insulation (e.g. -in. foil faced polyisocyanurate) in cold climates.

  4. Product analysis from direct liquefaction of several high-moisture biomass feedstocks

    SciTech Connect (OSTI)

    Elliott, D.C.; Sealock, L.J. Jr.; Butner, R.S.

    1987-04-01

    Product analysis in support of the process development research in biomass direct liquefaction began at rudimentary level of determining solvent-soluble portions of the product. Analysis was soon extended to elemental analyses and proximate analyses, such as ash and moisture. Later, spectrometric analyses were performed followed by detailed chemical analyses used in conjunction with chromatographic separation techniques. At all stages of development, the significant differences in composition between the products of flash pyrolysis and high-pressure processing have been evident. While polar solvents are most effective for both products, less polar solvents such as methylene chloride and even benzene and toluene have been used as extractants for high-pressure product oils.

  5. Sidewall tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2001-01-01

    A sidewall tensiometer to in situ determine below-grade soil moisture potential of earthen soil includes, a) a body adapted for insertion into an opening in earthen soil below grade, the body having lateral sidewalls; b) a laterally oriented porous material provided relative to the body lateral sidewalls, the laterally oriented porous material at least in part defining a fluid chamber within the body; c) a pressure a sensor in fluid communication with the fluid chamber; and d) sidewall engaging means for engaging a portion of a sidewall of an earth opening to laterally urge the porous material into hydraulic communication with earthen soil of another portion of the opening sidewall. Methods of taking tensiometric measurements are also disclosed.

  6. Acoustic wave (AW) based moisture sensor for use with corrosive gases

    DOE Patents [OSTI]

    Pfeifer, K.B.; Frye, G.C.; Schneider, T.W.

    1996-11-05

    Moisture corrosive gas stream is measured as a function of the difference in resonant frequencies between two acoustic wave (AW) devices, each with a film which accepts at least one of the components of the gas stream. One AW is located in the gas stream while the other is located outside the gas stream but in the same thermal environment. In one embodiment, the film is a hydrophilic material such as SiO{sub 2}. In another embodiment, the SiO{sub 2} is covered with another film which is impermeable to the corrosive gas, such that the AW device in the gas stream measures only the water vapor. In yet another embodiment, the film comprises polyethylene oxide which is hydrophobic and measures only the partial pressure of the corrosive gas. Other embodiments allow for compensation of drift in the system. 8 figs.

  7. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  8. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-01-01

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  9. Building America Technology Solutions for New and Existing Homes: Monitoring of Double-Stud Wall Moisture Conditions in the Northeast, Devens, Massachusetts

    Broader source: Energy.gov [DOE]

    Double stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. In this project, Building Science Corporation monitored moisture conditions in double-stud walls from 2011 through 2014 at a new production house; three double stud assemblies were compared.

  10. Variation in soil moisture and N availability modulates carbon and water exchange in a California grassland experiment

    SciTech Connect (OSTI)

    St. Clair, S.B.; Sudderth, E.; Fischer, M.L.; Torn, M.S.; Stuart, S.; Salve, R.; Eggett, D.; Ackerly, D.

    2009-03-15

    Variability in the magnitude and timing of precipitation is predicted to change under future climate scenarios. The primary objective of this study was to understand how variation in precipitation patterns consisting of soil moisture pulses mixed with intermittent dry down events influence ecosystem gas fluxes. We characterized the effects of precipitation amount and timing, N availability, and plant community composition on whole ecosystem and leaf gas exchange in a California annual grassland mesocosm study system that allowed precise control of soil moisture conditions. Ecosystem CO2 and fluxes increased significantly with greater precipitation and were positively correlated with soil moisture. A repeated 10 day dry down period following 11 days of variable precipitation inputs strongly depressed net ecosystem CO2 exchange (NEE) across a range of season precipitation totals, and plant community types. Ecosystem respiration (Re), evapotranspiration (ET) and leaf level photosynthesis (Amax) showed greatest sensitivity to dry down periods in low precipitation plots. Nitrogen additions significantly increased NEE, Re and Amax, particularly as water availability was increased. These results demonstrate that N availability and intermittent periods of soil moisture deficit (across a wide range of cumulative season precipitation totals) strongly modulate ecosystem gas exchange.

  11. High temperature furnace

    DOE Patents [OSTI]

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  12. Indoor climate and moisture durability performances of houses with unvented attic roof constructions in a mixed-humid climate.

    SciTech Connect (OSTI)

    Pallin, Simon B.; Boudreaux, Philip R.; Jackson, Roderick K.

    2014-10-01

    A sealed or unvented attic is an energy-efficient envelope component that can reduce the amount of energy a house consumes for space conditioning if the air handler and/or ducts are located in the attic. The attic is typically sealed by using spray foam on the underside of the roof deck and covering the soffit, ridge and gable vents to minimize air leakage from the attic to the outside. This approach can save up to 10% in space-conditioning energy when ducts are located in the attic (DOE 2013). Past research done by ORNL and Florida Solar Energy Center suggests that in more hot, humid climates, an unvented attic could potentially create a more humid, uncomfortable living environment than a vented attic (Colon 2011, Boudreaux, Pallin et al. 2013). Research showed that controlling the higher indoor humidity could reduce the energy savings from the sealed, unvented attic, which in turn would decrease the energy savings payback. Research also showed that the roof assembly (5.5 inches of open-cell foam, 1inch of closed-cell foam, OSB, felt paper, and asphalt shingles) stored moisture, thus acting as a moisture buffer. During the fall and winter, the roof assembly stored moisture and during the spring and summer it released moisture. This phenomenon is not seen in a vented attic, in which the air exchange rate to the outside is greater and, in the winter, helps to dehumidify the attic air. It was also seen that in a vented attic, the direction of water vapor diffusion is on average from the attic to the interior of the house. Air leakage from the attic to the interior also occurs during more of the year in a house with an unvented attic than in one with a vented attic. These discoveries show that the moisture dynamics in a house with an unvented attic are much different from those in a house with a vented attic. This study reports on a series of computer model investigations completed to determine the key variables impacting indoor comfort and the durability of roof

  13. Multi-temperature method for high-pressure sorption measurements on moist shales

    SciTech Connect (OSTI)

    Gasparik, Matus; Ghanizadeh, Amin; Gensterblum, Yves; Krooss, Bernhard M.

    2013-08-15

    A simple and effective experimental approach has been developed and tested to study the temperature dependence of high-pressure methane sorption in moist organic-rich shales. This method, denoted as multi-temperature (short multi-T) method, enables measuring multiple isotherms at varying temperatures in a single run. The measurement of individual sorption isotherms at different temperatures takes place in a closed system ensuring that the moisture content remains constant. The multi-T method was successfully tested for methane sorption on an organic-rich shale sample. Excess sorption isotherms for methane were measured at pressures of up to 25 MPa and at temperatures of 318.1 K, 338.1 K, and 348.1 K on dry and moisture-equilibrated samples. The measured isotherms were parameterized with a 3-parameter Langmuir-based excess sorption function, from which thermodynamic sorption parameters (enthalpy and entropy of adsorption) were obtained. Using these, we show that by taking explicitly into account water vapor as molecular species in the gas phase with temperature-dependent water vapor pressure during the experiment, more meaningful results are obtained with respect to thermodynamical considerations. The proposed method can be applied to any adsorbent system (coals, shales, industrial adsorbents) and any supercritical gas (e.g., CH{sub 4}, CO{sub 2}) and is particularly suitable for sorption measurements using the manometric (volumetric) method.

  14. How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem?

    SciTech Connect (OSTI)

    Dermody, Orla [University of Tennessee, Knoxville (UTK); Weltzin, Jake [University of Tennessee, Knoxville (UTK); Engel, Elizabeth C. [University of Tennessee, Knoxville (UTK); Allen, Phillip [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL

    2007-01-01

    Soil moisture content and leaf area index (LAI) are properties that will be particularly important in mediating whole system responses to the combined effects of elevated atmospheric [CO2], warming and altered precipitation. Warming and drying will likely reduce soil moisture, and this effect may be exacerbated when these factors are combined. However, elevated [CO2] may increase soil moisture contents and when combined with warming and drying may partially compensate for their effects. The response of LAI to elevated [CO2] and warming will be closely tied to soil moisture status and may mitigate or exacerbate the effects of global change on soil moisture. Using open-top chambers (4-m diameter), the interactive effects of elevated [CO2], warming, and differential irrigation on soil moisture availability were examined in the OCCAM (Old-Field Community Climate and Atmospheric Manipulation) experiment at Oak Ridge National Laboratory in eastern Tennessee. Warming consistently reduced soil moisture contents and this effect was exacerbated by reduced irrigation. However, elevated [CO2] partially compensated for the effects of warming and drying on soil moisture. Changes in LAI were closely linked to soil moisture status. LAI was determined using an AccuPAR ceptometer and both the leaf area duration (LAD) and canopy size were increased by irrigation and elevated [CO2]. The climate of the southeastern United States is predicted to be warmer and drier in the future. This research suggests that although elevated [CO2] will partially ameliorate the effects of warming and drying, losses of soil moisture will increase from old field ecosystems in the future.

  15. Enzymatic temperature change indicator

    DOE Patents [OSTI]

    Klibanov, Alexander M.; Dordick, Jonathan S.

    1989-01-21

    A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.

  16. High temperature measuring device

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  17. Temperature-profile detector

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.

  18. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.

  19. High temperature sensor

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  20. Tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    1997-01-01

    A portable tensiometer to in situ determine below-grade soil moisture potential of earthen soil includes, a) a body having opposing first and second ends and being adapted for complete insertion into earthen soil below grade; b) a porous material provided at the first body end, the porous material at least in part defining a fluid chamber within the body at the first body end, the fluid chamber being fluidically sealed within the body but for the porous material; c) a degassed liquid received within the fluid chamber; d) a pressure transducer mounted in fluid communication with the fluid chamber; e) the body, pressure transducer and degassed liquid having a combined mass; f) a flexible suspension line connected to the body adjacent the second body end, the flexible line being of sufficient strength to gravitationally freely self suspend the combined mass; and c) the combined mass being sufficient to effectively impart hydraulic communication between below-grade earthen soil contacted by the porous material under the weight of the combined mass. Tensiometers configured to engage the sidewalls of an earthen opening are also disclosed. Methods of taking tensiometric measurements are also disclosed.

  1. Tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOE Patents [OSTI]

    Hubbell, J.M.; Sisson, J.B.

    1997-07-08

    A portable tensiometer to in-situ determine below-grade soil moisture potential of earthen soil includes, (a) a body having opposing first and second ends and being adapted for complete insertion into earthen soil below grade; (b) a porous material provided at the first body end, the porous material at least in part defining a fluid chamber within the body at the first body end, the fluid chamber being fluidically sealed within the body but for the porous material; (c) a degassed liquid received within the fluid chamber; (d) a pressure transducer mounted in fluid communication with the fluid chamber; (e) the body, pressure transducer and degassed liquid having a combined mass; (f) a flexible suspension line connected to the body adjacent the second body end, the flexible line being of sufficient strength to gravitationally freely self suspend the combined mass; and (g) the combined mass being sufficient to effectively impart hydraulic communication between below-grade earthen soil contacted by the porous material under the weight of the combined mass. Tensiometers configured to engage the sidewalls of an earthen opening are also disclosed. Methods of taking tensiometric measurements are also disclosed. 12 figs.

  2. Tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOE Patents [OSTI]

    Hubbell, J.M.; Mattson, E.D.; Sisson, J.B.

    1998-06-02

    A tensiometer to in-situ determine below-grade soil moisture, potential of earthen soil includes, (a) an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and, comprising; (b) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; (c) a first fluid conduit extending outwardly of the first fluid chamber; (d) a first controllable isolation valve provided within the first fluid conduit, the first controllable isolation valve defining a second fluid chamber in fluid communication with the first fluid chamber through the first fluid conduit and the isolation valve, the first controllable isolation valve being received within the below-grade portion; and (e) a pressure transducer in fluid communication with the first fluid chamber, the pressure transducer being received within the below-grade portion. An alternate embodiment includes an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and including: (1) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; and (2) a pressure sensing apparatus in fluid communication with the first fluid chamber, the pressure sensing apparatus being entirely received within the below-grade portion. A method is also disclosed using the above and other apparatus. 6 figs.

  3. Tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOE Patents [OSTI]

    Hubbell, Joel M.; Mattson, Earl D.; Sisson, James B.

    1998-01-01

    A tensiometer to in situ determine below-grade soil moisture, potential of earthen soil includes, a) an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and, comprising; b) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; c) a first fluid conduit extending outwardly of the first fluid chamber; d) a first controllable isolation valve provided within the first fluid conduit, the first controllable isolation valve defining a second fluid chamber in fluid communication with the first fluid chamber through the first fluid conduit and the isolation valve, the first controllable isolation valve being received within the below-grade portion; and e) a pressure transducer in fluid communication with the first fluid chamber, the pressure transducer being received within the below-grade portion. An alternate embodiment includes an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and including: i) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; and ii) a pressure sensing apparatus in fluid communication with the first fluid chamber, the pressure sensing apparatus being entirely received within the below-grade portion. A method is also disclosed using the above and other apparatus.

  4. Effect of moisture on the traction-separation behavior of cellulose nanocrystal interfaces

    SciTech Connect (OSTI)

    Sinko, Robert; Keten, Sinan

    2014-12-15

    Interfaces and stress transfer between cellulose nanocrystals (CNCs) dictate the mechanical properties of hierarchical cellulose materials such as neat films and nanocomposites. An interesting question that remains is how the behavior of these interfaces changes due to environmental stimuli, most notably moisture. We present analyses on the traction-separation behavior between I? CNC elementary fibrils, providing insight into how the presence of a single atomic layer of water at these interfaces can drastically change the mechanical behavior. We find that molecular water at the interface between hydrophilic CNC surfaces has a negligible effect on the tensile separation adhesion energy. However, when water cannot hydrogen bond easily to the surface (i.e., hydrophobic surface), it tends to maintain hydrogen bonds with other water molecules across the interface and form a capillary bridge that serves to increase the energy required to separate the crystals. Under shear loading, water lowers the energy barriers to sliding by reducing the atomic friction and consequently the interlayer shear modulus between crystals. Our simulations indicate that these nanoscale interfaces and physical phenomena such as interfacial adhesion, interlayer shear properties, and stick-slip friction behavior can be drastically altered by the presence of water.

  5. Water vapor and temperature inversions near the 0 deg C level over the tropical western Pacific. Master's thesis

    SciTech Connect (OSTI)

    Hart, K.A.

    1994-01-01

    During the Intensive Observation Period (IOP), several periods of water vapor and temperature inversions near the 0 deg C level were observed. Satellite and radiosonde data from TOGA COARE are used to document the large-scale conditions and thermodynamic and kinematic structures present during three extended periods in which moisture and temperature inversions near the freezing level were very pronounced. Observations from each case are synthesized into schematics which represent typical structures of the inversion phenomena. Frequency distributions of the inversion phenomena along with climatological humidity and temperature profiles are calculated for the four-month IOP.

  6. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  7. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  8. Correlation between ERMI values and other Moisture and Mold Assessments of Homes in the American Healthy Home Survey

    SciTech Connect (OSTI)

    Vesper, Sephen J.; McKinstry, Craig A.; Cox, David J.; DeWalt, Gary

    2009-11-30

    Objective: The objective of this study was to determine the correlation between ERMI values in the HUD American Healthy Home Survey (AHHS) homes and either inspector reports or occupant assessments of mold and moisture. Methods: In the AHHS, moisture and mold were assessed by a pair of inspectors and with an occupant questionnaire. These results were compared to the results of the Environmental Relative Moldiness Index (ERMI) values for each home. Results: Homes in the highest ERMI quartile were most often in agreement with visual inspection and/or occupant assessment. However, in 52% of the fourth quartile ERMI homes, the inspector and occupant assessment did not indicate water or mold problems. Yet the concentrations of each ERMI panel mold species detected in all fourth quartile homes were statistically indistinguishable. Conclusions: About 50% of water-damaged, moldy homes were not detected by inspection or questioning of the occupant about water and mold.

  9. Calibration of a Neutron Hydroprobe for Moisture Measurements in Small-Diameter Steel-Cased Boreholes

    SciTech Connect (OSTI)

    Ward, Anderson L.; Wittman, Richard S.

    2009-08-01

    Computation of soil moisture content from thermalized neutron counts for the T-Farm Interim cover requires a calibration relationship but none exists for 2-in tubes. A number of calibration options are available for the neutron probe, including vendor calibration, field calibration, but none of these methods were deemed appropriate for the configuration of interest. The objective of this work was to develop a calibration relation for converting neutron counts measured in 2-in access tubes to soil water content. The calibration method chosen for this study was a computational approach using the Monte Carlo N-Particle Transport Code (MCNP). Model calibration was performed using field measurements in the Hanford calibration models with 6-in access tubes, in air and in the probe shield. The bet-fit model relating known water content to measured neutron counts was an exponential model that was essentially equivalent to that currently being used for 6-in steel cased wells. The MCNP simulations successfully predicted the neutron count rate for the neutron shield and the three calibration models for which data were collected in the field. However, predictions for air were about 65% lower than the measured counts . This discrepancy can be attributed to uncertainties in the configuration used for the air measurements. MCNP-simulated counts for the physical models were essentially equal to the measured counts with values. Accurate prediction of the response in 6-in casings in the three calibration models was motivation to predict the response in 2-in access tubes. Simulations were performed for six of the seven calibration models as well as 4 virtual models with the entire set covering a moisture range of 0 to 40%. Predicted counts for the calibration models with 2-in access tubes were 40 to 50% higher than in the 6-inch tubes. Predicted counts for water were about 60% higher in the 2-in tube than in the 6-in tube. The discrepancy between the 2-in and 6-in tube can be

  10. Decreases in Soil Moisture and Organic Matter Quality Suppress Microbial Decomposition Following a Boreal Forest Fire

    SciTech Connect (OSTI)

    Holden, Sandra R.; Berhe, Asmeret A.; Treseder, Kathleen K.

    2015-08-01

    Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burned boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.

  11. Magnetic nanoparticle temperature estimation

    SciTech Connect (OSTI)

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  12. High-temperature sensor

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  13. High temperature refrigerator

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  14. Automatic temperature adjustment apparatus

    DOE Patents [OSTI]

    Chaplin, James E.

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  15. Field-scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as an oxygen source with moisture and nutrient addition. Appendices. Doctoral thesis

    SciTech Connect (OSTI)

    Miller, R.N.

    1990-01-01

    This document contains appendices regarding a reprint on a field scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as a oxygen source with moisture and nutrient addition.

  16. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Zenon F.

    1989-01-01

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperature of 77 degrees Kelvin.

  17. Temperature and productivity

    Office of Scientific and Technical Information (OSTI)

    ... and performance of office work under combined exposure to temperature, noise and air pollution. PhD Thesis. International Centre for Indoor Environment and Energy, Department of ...

  18. ARM - Word Seek: Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Word Seek: Temperature

  19. Fiber optic temperature sensor

    SciTech Connect (OSTI)

    Rabold, D.

    1995-12-01

    Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

  20. High Temperature ESP Monitoring

    SciTech Connect (OSTI)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 C based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 C system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 C.

  1. High temperature probe

    DOE Patents [OSTI]

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  2. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  3. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, Tomas B.

    1985-01-01

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime.

  4. ARM - Measurement - Virtual temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVirtual temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv = T(1 + rv/{epsilon}), where rv is the mixing ratio, and {epsilon} is the ratio of the gas constants of air and water vapor ( 0.622). Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to

  5. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1985-09-24

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.

  6. Reducing the moisture content of clean coals. Volume 2, High-G solid-bowl centrifuge: Final report

    SciTech Connect (OSTI)

    Kehoe, D.

    1992-12-01

    Coal moisture content can profoundly effect the cost of burning coal in utility boilers. Because of the large effect of coal moisture, the Empire State Electric Energy Research Corporation (ESEERCO) contracted with the Electric Power Research Institute to investigate advanced coal dewatering methods at its Coal Quality Development Center. This report contains the test result on the high-G solid-bowl centrifuge, the second of four devices to be tested. The high-G solid-bowl centrifuge removes water for coal by spinning the coal/water mixture rapidly in a rotating bowl. This causes the coal to cling to the sides of the bowl where it can be removed, leaving the water behind. Testing was performed at the CQDC to evaluate the effect of four operating variables (G-ratio, feed solids concentration, dry solids feed rate, and differential RPM) on the performance of the high-G solid-bowl centrifuge. Two centrifuges of different bowl diameter were tested to establish the effect of scale-up of centrifuge performance. Testing of the two centrifuges occurred from 1985 through 1987. CQDC engineers performed 32 tests on the smaller of the two centrifuges, and 47 tests on the larger. Equations that predict the performance of the two centrifuges for solids recovery, moisture content of the produced coal, and motor torque were obtained. The equations predict the observed data well. Traditional techniques of establishing the performance of centrifuge of different scale did not work well with the two centrifuges, probably because of the large range of G-ratios used in the testing. Cost of operating a commercial size bank of centrifuges is approximately $1.72 per ton of clean coal. This compares well with thermal drying, which costs $1.82 per ton of clean coal.

  7. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Heating Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    2013-09-01

    Two identical laboratory homes designed to model existing Florida building stock were sealed and tested to 2.5 ACH50. Then, one was made leaky with 70% leakage through the attic and 30% through windows, to a tested value of 9 ACH50. Reduced energy use was measured in the tighter home (2.5 ACH50) in the range of 15% to 16.5% relative to the leaky (9 ACH50) home. Internal moisture loads resulted in higher dew points inside the tight home than the leaky home. Window condensation and mold growth occurred inside the tight home.

  8. Penrose Well Temperatures

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  9. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  10. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Z.F.

    1988-04-12

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperatures of 77 degrees Kelvin, is discussed. 3 figs.

  11. Temperature | Open Energy Information

    Open Energy Info (EERE)

    C Property:Combustion Intake Air Temperature F Property:FirstWellTemp G Property:GeochemReservoirTemp Property:GeofluidTemp M Property:MeanReservoirTemp R...

  12. Temperature measuring device

    DOE Patents [OSTI]

    Lauf, Robert J.; Bible, Don W.; Sohns, Carl W.

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  13. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  14. ARM - Temperature Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsTemperature Converter Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Temperature Converter The Fahrenheit scale, invented by German physicist Daniel Gabriel Fahrenheit (1686-1736), is based on 32 °F for the freezing point of water and 212 °F for the boiling point of water. The

  15. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Bionta, Richard M. (Livermore, CA)

    1995-01-01

    The joining technique requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process.

  16. Numerical prediction of energy consumption in buildings with controlled interior temperature

    SciTech Connect (OSTI)

    Jarošová, P.; Št’astník, S.

    2015-03-10

    New European directives bring strong requirement to the energy consumption of building objects, supporting the renewable energy sources. Whereas in the case of family and similar houses this can lead up to absurd consequences, for building objects with controlled interior temperature the optimization of energy demand is really needed. The paper demonstrates the system approach to the modelling of thermal insulation and accumulation abilities of such objetcs, incorporating the significant influence of additional physical processes, as surface heat radiation and moisture-driven deterioration of insulation layers. An illustrative example shows the numerical prediction of energy consumption of a freezing plant in one Central European climatic year.

  17. Reaction kinetics for the high temperature oxidation of Pu--1wt%Ga in water vapor

    SciTech Connect (OSTI)

    Stakebake, J L; Saba, M A

    1988-01-01

    Oxidation of plutonium metal is greatly accelerated by the presence of water vapor. The magnitude of the effect of water vapor on oxidation kinetics is determined by temperature, water concentration, and oxygen concentration. Most of the previous work has been directed toward evaluating the effect of moisture on the atmospheric oxidation of plutonium. Work on the isolation and characterization of the water reaction with plutonium has been very limited. The present work was undertaken to determine the kinetics of the plutonium--water reaction over a wide range of temperature and pressure. Reaction kinetics were measured using a vacuum microbalance system. The temperature range investigated was 100--500/degree/C. The effect of water vapor pressure on reaction kinetics was determined at 300/degree/C by varying the water pressure from 0.1 to 15 Torr. 2 figs.

  18. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  19. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  20. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, R.D.

    1983-10-11

    Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

  1. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  2. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, Robert W.; Shell, Thomas E.

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  3. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  4. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  5. Fluorescent temperature sensor

    DOE Patents [OSTI]

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  6. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, D.M.; Bionta, R.M.

    1995-01-17

    The joining technique is disclosed that requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process. 5 figures.

  7. Reservoir Temperature Estimator

    Energy Science and Technology Software Center (OSTI)

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of themore » weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.« less

  8. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G.; Gurary, Alexander I.; Boguslavskiy, Vadim

    2002-01-01

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  9. Ch. VII, Temperature, heat flow maps and temperature gradient...

    Open Energy Info (EERE)

    Report: Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  10. Temperature, heat flow maps and temperature gradient holes |...

    Open Energy Info (EERE)

    to library Report: Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Organization Colorado Geological Survey in Cooperation with the U.S....

  11. Temperature differential detection device

    DOE Patents [OSTI]

    Girling, Peter M.

    1986-01-01

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

  12. Temperature differential detection device

    DOE Patents [OSTI]

    Girling, P.M.

    1986-04-22

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

  13. ARM - Measurement - Sea surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sea surface temperature The temperature of sea water near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  14. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season. ​

  15. Technology Solutions Case Study: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate

    SciTech Connect (OSTI)

    2014-04-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  16. Localized temperature stability of low temperature cofired ceramics

    DOE Patents [OSTI]

    Dai, Steven Xunhu

    2013-11-26

    The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

  17. Zero Temperature Hope Calculations

    SciTech Connect (OSTI)

    Rozsnyai, B F

    2002-07-26

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the

  18. Engine Cylinder Temperature Control

    DOE Patents [OSTI]

    Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  19. HIGH TEMPERATURE THERMOCOUPLE

    DOE Patents [OSTI]

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  20. Low Temperature Proton Conductivity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and MEAs at Freezing Temperatures Thomas A. Zawodzinski, Jr. Case Western Reserve University Cleveland, Ohio 2 Freezing Fuel Cells: Impact on MEAS Below 0 o C *Transport processes/motions slow down: questions re: lower conductivity,water mobility etc *Residual water will have various physical effects in different portions of the MEA questions re: durability of components 3 3 'States' of Water in Proton Conductors ? Freezing (bulk), bound freezable, bound non freezable water states claimed based

  1. Relations between rainfall amount, soil moisture and landslides in Hamilton County, Ohio, measured by strain survey and tensiometers

    SciTech Connect (OSTI)

    Bechtel, B.; Mayer, L. . Dept. of Geology)

    1993-03-01

    The movement of water through fill material and natural colluvium in a cut slope is being monitored at two sites with past landslide activity adjacent to I-275 in Hamilton County, Ohio. Quadrilaterals and an array of wooden stakes were placed immediately adjacent to the slide area to monitor movement of the slope at Site 1. To correlate any movement with soil moisture levels, rain gauges were installed. Changes in line-length measurements over a 3-month period are < 14 mm, and most differences average about 4 mm. Since measurement errors of up to 5--6 mm can be expected using a steel tape, more measurements over time will be needed to determine if significant displacement is occurring. Tensiometers were placed at 12 and 36 inches depth in the soil from mid-September through early November 1992, in order to measure matric suction. The 36 inch tensiometer indicated that the soil remained saturated at that depth. The 12 inch tensiometer measured 8 centibars, which occurred following a week of rain-free weather. Gravimetric measurements of soil samples show that surface soil moisture ranges from 14--39% immediately following a storm to 7--29% following at least 10 days of dry weather. At Site 2, quadrilaterals were set up in mid-August 1992; resurveys of the quadrilaterals shows very little, if any, movement. Movement of 38 mm occurred in one quadrilateral; movement in other quadrilaterals averaged close to 5 mm. The slide is not steadily moving, and may be following a pattern, where slides in Hamilton County were more likely to move in late winter or early spring.

  2. Thermionic converter temperature controller

    DOE Patents [OSTI]

    Shaner, Benjamin J.; Wolf, Joseph H.; Johnson, Robert G. R.

    2001-04-24

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  3. Drexel University Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) Drexel University Project 31091 irradiation. The objective of this test was to assess the radiation performance of new ceramic materials for advanced reactor applications. Accordingly, irradiations of transition metal carbides and nitrides were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in static capsules inserted into the A-3 and East Flux Trap Position 5 locations of the ATR.

  4. High temperature detonator

    DOE Patents [OSTI]

    Johnson, James O. (Los Alamos, NM); Dinegar, Robert H. (Los Alamos, NM)

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  5. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures

    SciTech Connect (OSTI)

    Kong, Daniel L.Y.; Sanjayan, Jay G. Sagoe-Crentsil, Kwesi

    2007-12-15

    This paper presents the results of a study on the effect of elevated temperatures on geopolymers manufactured using metakaolin and fly ash of various mixture proportions. Both types of geopolymers (metakaolin and fly ash) were synthesized with sodium silicate and potassium hydroxide solutions. The strength of the fly ash-based geopolymer increased after exposure to elevated temperatures (800 deg. C). However, the strength of the corresponding metakaolin-based geopolymer decreased after similar exposure. Both types of geopolymers were subjected to thermogravimetric, scanning electron microscopy and mercury intrusion porosimetry tests. The paper concludes that the fly ash-based geopolymers have large numbers of small pores which facilitate the escape of moisture when heated, thus causing minimal damage to the geopolymer matrix. On the other hand, metakaolin geopolymers do not possess such pore distribution structures. The strength increase in fly ash geopolymers is also partly attributed to the sintering reactions of un-reacted fly ash particles.

  6. The Low-Level Jet over the Southern Great Plains Determined from Observations and Reanalyses and Its Impact on Moisture Transport

    SciTech Connect (OSTI)

    Berg, Larry K.; Riihimaki, Laura D.; Qian, Yun; Yan, Huiping; Huang, Maoyi

    2015-09-01

    This study utilizes five commonly used reanalysis products, including the NCEP-DOE Reanalysis 2 (NCEP2), ECMWF Re-Analysis (ERA)-Interim, Japanese 25-year Reanalysis (JRA-25), Modern-Era Retrospective Analysis for Research and Applications (MERRA), and North American Regional Reanalysis (NARR) to evaluate features of the Southern Great Plains Low Level Jet (LLJ) above the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains site. Two sets of radiosonde data are utilized: the six-week Midlatitude Continental Convective Clouds Experiment (MC3E), and a ten-year period spanning 2001-2010. All five reanalysis are compared to MC3E data, while only the NARR and MERRA are compared to the ten-year data. Each reanalysis is able to represent most aspects of the composite LLJ profile, although there is a tendency for each reanalysis to overestimate the wind speed between the nose of the LLJ and 700 mb. There are large discrepancies in the number of LLJ observed and derived from the reanalysis, particularly for strong LLJs that leads to an underestimate of the water vapor transport associated with LLJs. When the ten-year period is considered, the NARR overestimates and MERRA underestimates the total moisture transport, but both underestimate the transport associated with strong LLJs by factors of 2.0 and 2.7 for the NARR and MERR, respectively. During MC3E there were differences in the patterns of moisture convergence and divergence, with the MERRA having an area of moisture divergence over Oklahoma, while the NARR has moisture convergence. The patterns of moisture convergence and divergence are more consistent during the ten-year period.

  7. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  8. Modular High-Temperature Gas-Cooled Reactor short term thermal response to flow and reactivity transients

    SciTech Connect (OSTI)

    Cleveland, J.C.

    1988-01-01

    The analyses reported here have been conducted at the Oak Ridge National Laboratory (ORNL) for the US Nuclear Regulatory Commission's (NRC's) Division of Regulatory Applications of the Office of Nuclear Regulatory Research. The short-term thermal response of the Modular High-Temperature Gas-Cooled Reactor (MHTGR) is analyzed for a range of flow and reactivity transients. These include loss of forced circulation (LOFC) without scram, moisture ingress, spurious withdrawal of a control rod group, hypothetical large and rapid positive reactivity insertion, and a rapid core cooling event. The coupled heat transfer-neutron kinetics model is also described.

  9. Temperature, humidity and air flow in the emplacement drifts using convection and dispersion transport models

    SciTech Connect (OSTI)

    Danko, G.; Birkholzer, J.T.; Bahrami, D.; Halecky, N.

    2009-10-01

    A coupled thermal-hydrologic-airflow model is developed, solving for the transport processes within a waste emplacement drift and the surrounding rockmass together at the proposed nuclear waste repository at Yucca Mountain. Natural, convective air flow as well as heat and mass transport in a representative emplacement drift during post-closure are explicitly simulated, using the MULTIFLUX model. The conjugate, thermal-hydrologic transport processes in the rockmass are solved with the TOUGH2 porous-media simulator in a coupled way to the in-drift processes. The new simulation results show that large-eddy turbulent flow, as opposed to small-eddy flow, dominate the drift air space for at least 5000 years following waste emplacement. The size of the largest, longitudinal eddy is equal to half of the drift length, providing a strong axial heat and moisture transport mechanism from the hot to the cold drift sections. The in-drift results are compared to those from simplified models using a surrogate, dispersive model with an equivalent dispersion coefficient for heat and moisture transport. Results from the explicit, convective velocity simulation model provide higher axial heat and moisture fluxes than those estimated from the previously published, simpler, equivalent-dispersion models, in addition to showing differences in temperature, humidity and condensation rate distributions along the drift length. A new dispersive model is also formulated, giving a time- and location-variable function that runs generally about ten times higher in value than the highest dispersion coefficient currently used in the Yucca Mountain Project as an estimate for the equivalent dispersion coefficient in the emplacement drift. The new dispersion coefficient variation, back-calculated from the convective model, can adequately describe the heat and mass transport processes in the emplacement drift example.

  10. Low temperature methanol process

    SciTech Connect (OSTI)

    O'Hare, T.E.; Sapienza, R.S.; Mahajan, D.; Skaperdas, G.T.

    1986-06-01

    The world's abundant natural gas resources could provide methanol in fuel quantities to the utility system. Natural gas liquefaction is the current major option available for international export transport of natural gas. Gas production is on the increase and international trade even more so, with LNG making most progress. The further penetration of natural gas into distant markets can be substantially increased by a new methanol synthesis process under development. The new methanol process is made possible by the discovery of a catalyst that drops synthesis temperatures from about 275/sup 0/C to about 100/sup 0/C. Furthermore, the new catalyst is a liquid phase system, which permits the synthesis reaction to proceed at fully isothermal conditions. Therefore, the new low temperature liquid catalyst can convert synthesis gas completely to methanol in a single pass through the methanol synthesis reactor. This characteristic leads to a further major improvement in the methanol plant. Atmospheric nitrogen can be tolerated in the synthesis gas, and still the volume of gas fed to the reactor can be smaller than the volume of gas that must be fed to the reactor when accommodating the very low conversions furnished by the best of currently available catalysts. The energy disadvantage of the methanol option must be balanced against the advantage of a much lower capital investment requirement made possible by the new BNL synthesis. Preliminary estimates show that methanol conversion and shipping require an investment for liquefaction to methanol, and shipping liquefied methanol that can range from 35 to 50% of that needed for the LNG plant and LNG shipping fleet.

  11. High-temperature-measuring device

    DOE Patents [OSTI]

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  12. ARM - Measurement - Surface skin temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    skin temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface skin temperature The radiative surface skin temperature, from an IR thermometer measuring the narrowband radiating temperature of the ground surface in its field of view. Categories Surface Properties, Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the

  13. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  14. Changes in Moisture Flux Over the Tibetan Plateau During 1979-2011: Insights from a High Resolution Simulation

    SciTech Connect (OSTI)

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin; Cuo, Lan

    2015-05-01

    Net precipitation (precipitation minus evapotranspiration, P-E) changes from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. Improvement in simulating precipitation changes at high elevations contributes dominantly to the improved P-E changes. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.

  15. Changes in Moisture Flux over the Tibetan Plateau during 1979-2011: Insights from a High Resolution Simulation

    SciTech Connect (OSTI)

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin; Cuo, Lan

    2015-05-15

    Net precipitation (precipitation minus evapotranspiration, P-E) changes between 1979 and 2011 from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The high resolution simulation better resolves precipitation changes than its coarse resolution forcing, which contributes dominantly to the improved P-E change in the regional simulation compared to the global reanalysis. Hence, the former may provide better insights about the drivers of P-E changes. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.

  16. Using electromagnetic sensors (magnetometers and dielectrometers) to detect corrosion beneath and moisture within paint coatings on aircraft

    SciTech Connect (OSTI)

    Goldfine, N.; Greig, N.A.

    1994-12-31

    Current nondestructive inspection (NDI) techniques, such as visual inspection, ultrasonic testing, and eddy current testing, do not adequately detect the early stages of hidden corrosion under paint in critical structures such as airframes. This paper proposes a sensor system that uses meandering winding magnetometers (MWMs) and interdigital electrode dielectrometers (IDEDs) to detect hidden corrosion under paint and to measure the depth of moisture within barrier paint coatings. The MWM uses magnetic fields and inductive coupling to measure profiles of the properties of conducting media (such as the reduced conductivity near a metal surface caused by an oxygen diffusion layer resulting from early-stage corrosion). The IDED uses electric fields and capacitive coupling to measure the properties of multiple-layered insulating media, such as paint or the metal oxides formed during corrosion. MWM and IDED sensor designs permit Cartesian coordinate modal continuum modeling, which takes advantage of sensor geometries to provide more precise response predictions than are generally possible with conventional eddy current probes. Data are presented to describe the limitations of current NDI techniques, address the need for a new type of corrosion-detection system and discuss the underlying theory and potential of using MWMs and IDEDs to detect corrosion.

  17. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  18. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  19. High temperature interfacial superconductivity

    DOE Patents [OSTI]

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  20. Method of CO.sub.2 removal from a gasesous stream at reduced temperature

    DOE Patents [OSTI]

    Fisher, James C; Siriwardane, Ranjani V; Berry, David A; Richards, George A

    2014-11-18

    A method for the removal of H.sub.2O and CO.sub.2 from a gaseous stream comprising H.sub.2O and CO.sub.2, such as a flue gas. The method initially utilizes an H.sub.2O removal sorbent to remove some portion of the H.sub.2O, producing a dry gaseous stream and a wet H.sub.2O removal sorbent. The dry gaseous stream is subsequently contacted with a CO.sub.2 removal sorbent to remove some portion of the CO.sub.2, generating a dry CO.sub.2 reduced stream and a loaded CO.sub.2 removal sorbent. The loaded CO.sub.2 removal sorbent is subsequently heated to produce a heated CO.sub.2 stream. The wet H.sub.2O removal sorbent and the dry CO.sub.2 reduced stream are contacted in a first regeneration stage, generating a partially regenerated H.sub.2O removal sorbent, and the partially regenerated H.sub.2O removal sorbent and the heated CO.sub.2 stream are subsequently contacted in a second regeneration stage. The first and second stage regeneration typically act to retain an initial monolayer of moisture on the various removal sorbents and only remove moisture layers bound to the initial monolayer, allowing for relatively low temperature and pressure operation. Generally the applicable H.sub.2O sorption/desorption processes may be conducted at temperatures less than about 70.degree. C. and pressures less than 1.5 atmospheres, with certain operations conducted at temperatures less than about 50.degree. C.

  1. High Temperature Fuel Cell Performance High Temperature Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers | Department of Energy Cell Performance High Temperature Fuel Cell Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers High Temperature Fuel Cell Performance High Temperature Fuel Cell Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers Presentation

  2. High-temperature Pump Monitoring - High-temperature ESP Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE 2010 Geothermal Technologies Program Peer Review hightemp018dhruva.pdf (188.95 KB) More Documents & Publications Development of Tools for Measuring Temperature, Flow, ...

  3. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect (OSTI)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  4. Effects of moisture on the life of power plant cables: Part 1, Medium-voltage cables; Part 2, Low-voltage cables. Final report

    SciTech Connect (OSTI)

    Toman, G.J.; Morris, G.W.; Holzman, P.

    1994-08-01

    Motivated by the concern that in-service moisture may decrease the useful life of medium and low-voltage electrical cables in power plants, EPRI investigators surveyed plant operators, examined cable failure experience, and assessed the need to develop unproved life prediction techniques. The survey revealed that only 34 medium-voltage cable failures have occurred in the more than 1000 plant-years of experience represented. In addition, moisture effects such as voltage-induced water-freeing have not been the primary cause of the failures but are one contributor among several, including manufacturing defects, installation damage, and inadvertent damage to cable by field equipment the study concludes that medium-voltage cables are rehable and there is insufficient interest on the part of surveyed utilities to warrant further R&D on cable condition evaluation techniques at this time. In addition, moisture-related degradation is not a significant concern for low-voltage cables. This two-part report discusses,the limitations of existing cable field testing techniques and highlights measures for maximizing the useful life of medium- and low-voltage power plant cables.

  5. ARM - Measurement - Soil surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil surface temperature The temperature of the soil measured near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  6. Sensors for low temperature application

    DOE Patents [OSTI]

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A method and apparatus for low temperature sensing which uses gas filled micro-size hollow glass spheres that are exposed in a confined observation area to a low temperature range (Kelvin) and observed microscopically to determine change of state, i.e., change from gaseous state of the contained gas to condensed state. By suitable indicia and classification of the spheres in the observation area, the temperature can be determined very accurately.

  7. Test Plan for Evaluating Hammer and Fixed Cutter Grinders Using Multiple Varieties and Moistures of Biomass Feedstock

    SciTech Connect (OSTI)

    Not listed

    2007-07-01

    -ton batches of different feedstock varieties and moistures. This test will focus on identifying the performance parameters of the grinding system specific to the feed, fractionation, and screen separation components and their affect on machine capacity and efficiency.

  8. Temperature, Water Vapor, and Clouds"

    Office of Scientific and Technical Information (OSTI)

    Radiometric Studies of Temperature, Water Vapor, and Clouds" Project ID: 0011106 ... measurements of column amounts of water vapor and cloud liquid has been well ...

  9. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  10. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  11. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect (OSTI)

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  12. High Temperature Thermoelectric Materials Characterization for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the High Temperature Materials Laboratory (HTML) User Program High Temperature ... the High Temperature Materials Laboratory (HTML) User Program 2009 DOE Hydrogen Program ...

  13. Ultra High Temperature | Open Energy Information

    Open Energy Info (EERE)

    Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High...

  14. ARM - Measurement - Atmospheric moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Measurements associated with the Aerosol Observing System UAV-MET-OTTER : Meteorology from UAV-Twin Otter MFRSR-WV1MICH : MFRSR-WV-Michalsky1 MWRP : Microwave ...

  15. High-Temperature Galling Characteristics of Ti-6Al-4V with and without Surface Treatments

    SciTech Connect (OSTI)

    Blau, Peter Julian; ERDMAN III, DONALD L; Ohriner, Evan Keith; Jolly, Brian C

    2011-01-01

    Galling is a severe form of surface damage in metals and alloys that typically arises under relatively high normal force, low-sliding speed, and in the absence of effective lubrication. It can lead to macroscopic surface roughening and seizure. The occurrence of galling can be especially problematic in high-temperature applications like diesel engine exhaust gas recirculation system components and adjustable turbocharger vanes, because suitable lubricants may not be available, moisture desorption promotes increased adhesion, and the yield strength of metals decreases with temperature. Oxidation can counteract these effects to some extent by forming lubricative oxide films. Two methods to improve the galling resistance of titanium alloy Ti-6Al-4V were investigated: (a) applying an oxygen diffusion treatment, and (b) creating a metal-matrix composite with TiB2 using a high-intensity infrared heating source. A new, oscillating three-pin-on-flat, high-temperature test method was developed and used to characterize galling behavior relative to a cobalt-based alloy (Stellite 6B ). The magnitude of the oscillating torque, the surface roughness, and observations of surface damage were used as measures of galling resistance. Owing to the formation of lubricative oxide films, the galling resistance of the Ti-alloy at 485o C, even non-treated, was considerably better than it was at room temperature. The IR-formed composite displayed reduced surface damage and lower torque than the substrate titanium alloy.

  16. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  17. Pion dynamics at finite temperature

    SciTech Connect (OSTI)

    Toublan, D.

    1997-11-01

    The pion decay constant and mass are computed at low temperature within chiral perturbation theory to two loops. The effects of the breaking of Lorentz symmetry by the thermal equilibrium state are discussed. The validity of the Gell-Mann{endash}Oakes{endash}Renner relation at finite temperature is examined. {copyright} {ital 1997} {ital The American Physical Society}

  18. Treatability studies with low-temperature thermal desorption on low-level mixed-waste solids

    SciTech Connect (OSTI)

    Bloom, R.; Stelmach, J.

    1995-12-31

    Under a program sponsored by the U.S. Department of Energy Albuquerque 0perations Office (DOE-AL), the DOE Grand Junction Projects Office, (GJPO) conducted treatability studies with a low-temperature, vacuum-assisted thermal desorption unit on low-level mixed-waste solids generated at Los Alamos National Laboratory, Kansas City Plant, Sandia National Laboratories/New Mexico and GJPO. The process extracts the volatile compounds from the matrix and condenses them into a treatable nonmixed waste liquid stream yielding a treated matrix that may be managed as a radioactive waste. The feed streams consisted of soils, sludge, and organic debris with various amount of moisture and organic compounds. The treatability test results indicate that Land Disposal Restriction standards for Resource Conservation and Recovery Act-listed compounds were met. These results are being used to design 3 mobile treatment unit for use at DOE-AL sites.

  19. Linkages of Remote Sea Surface Temperatures and Atlantic Tropical Cyclone Activity Mediated by the African Monsoon

    SciTech Connect (OSTI)

    Taraphdar, Sourav; Leung, Lai-Yung R.; Hagos, Samson M.

    2015-01-28

    Warm sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations show that the NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower atmosphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main development region (50W20E; 10N20N) of Atlantic TC. By modulating multiple processes associated with the African monsoon, this study demonstrates that warm NAMED SST explains 8% of interannual variability of Atlantic TC frequency. Thus NAME SST may provide useful predictability for Atlantic TC activity on seasonal-to-interannual time scale.

  20. Fish Producers Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Fish Producers Aquaculture Low Temperature Geothermal Facility Facility Fish Producers...

  1. Jackson Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Jackson...

  2. Aqua Farms International Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Farms International Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Aqua Farms International Aquaculture Low Temperature Geothermal Facility...

  3. Flint Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Flint Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Flint...

  4. Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility Facility...

  5. Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility Facility...

  6. Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility Facility...

  7. Duckwater Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Duckwater Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Duckwater Aquaculture Low Temperature Geothermal Facility Facility Duckwater Sector...

  8. Castlevalley Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility...

  9. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy...

    Office of Scientific and Technical Information (OSTI)

    Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency Title: Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic ...

  10. Encapsulation of High Temperature Thermoelectric Modules | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Encapsulation of High Temperature Thermoelectric Modules Encapsulation of High Temperature Thermoelectric Modules Presents concept for hermetic encapsulation of TE modules ...

  11. Method for measuring surface temperature

    DOE Patents [OSTI]

    Baker, Gary A.; Baker, Sheila N.; McCleskey, T. Mark

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  12. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  13. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  14. Moderate Temperature | Open Energy Information

    Open Energy Info (EERE)

    temperature level. Thus, reservoirs in the 190 to 230C range should have liquid water as the mobile fluid phase, and as such, this class is reasonably well constrained....

  15. Fuel Temperature Coefficient of Reactivity

    SciTech Connect (OSTI)

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  16. Investigating the Effects of Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating the Effects of Temperature on Power Output Objective: Students will use concepts learned in class to explore the many variables that effect the efficiency of solar panels in regards to power output. Materials: * PV Array or Solar Panel * 2 Multimeter * Frozen Ice Packs * Low Power DC Bulb * Halogen Lamp (500 Watts) * 4 or 5 Alligator clip wires * Timer Investigative Question: How does the power output change as the temperature of the PV system changes. Procedure: 1) Attach the

  17. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  18. Temperature sensors for OTEC applications

    SciTech Connect (OSTI)

    Seren, L.; Panchal, C.B.; Rote, D.M.

    1984-05-01

    Ocean thermal energy conversion (OTEC) applications require accurate measurement of temperatures in the 0 to 30/sup 0/C range. This report documents an experimental examination of commercially available quartz-crystal thermometers and thermistors. Three fixed-point baths were used for temperature measurements: the distilled-water/distilled-ice-water slurry, the triple-point-of-water cell, and the gallium melting-point cell. The temperature of carefully prepared ice-water slurries was verified routinely as 0.001 +- 0.003/sup 0/C. Quartz-crystal probes proved accurate to about 1 to 2 mK, with drift errors of the same order over a few days. Bead- and disk-type thermistor probes were found to be about equally stable with time in the 0 to 30/sup 0/C range. The overall probable error of using thermistors was found to be +-4 mK. A solid-block temperature bath suitable for on-site calibrations in OTEC work was used in the temperature-sweeping mode. Various polynomial fits were examined for the purpose of thermistor calibration; fits of order two and higher yielded about equally accurate calculated temperatures.

  19. A summary of volatile impurity measurements and gas generation studies on MISSTD-1, a high-purity plutonium oxide produced by low-temperature calcination of plutonium oxalate

    SciTech Connect (OSTI)

    Berg, John M.; Narlesky, Joshua E.; Veirs, Douglas K.

    2012-06-08

    Plutonium dioxide of high specific surface area was subjected to long-term tests of gas generation in sealed containers. The material preparation and the storage conditions were outside the bounds of acceptable parameters defined by DOE-STD-3013-2012 in that the material was stabilized to a lower temperature than required and had higher moisture content than allowed. The data provide useful information for better defining the bounding conditions for safe storage. Net increases in internal pressure and transient increases in H{sub 2} and O{sub 2} were observed, but were well within the bounds of gas compositions previously shown to not threaten integrity of 3013 containers.

  20. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  1. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  2. Apparatus and method for high temperature viscosity and temperature measurements

    DOE Patents [OSTI]

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  3. Low to moderate temperature nanolaminate heater

    DOE Patents [OSTI]

    Eckels, J. Del; Nunes, Peter J.; Simpson, Randall L.; Hau-Riege, Stefan; Walton, Chris; Carter, J. Chance; Reynolds, John G.

    2011-01-11

    A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.

  4. Varying cadmium telluride growth temperature during deposition to increase solar cell reliability

    DOE Patents [OSTI]

    Albin, David S.; Johnson, James Neil; Zhao, Yu; Korevaar, Bastiaan Arie

    2016-04-26

    A method for forming thin films or layers of cadmium telluride (CdTe) for use in photovoltaic modules or solar cells. The method includes varying the substrate temperature during the growth of the CdTe layer by preheating a substrate (e.g., a substrate with a cadmium sulfide (CdS) heterojunction or layer) suspended over a CdTe source to remove moisture to a relatively low preheat temperature. Then, the method includes directly heating only the CdTe source, which in turn indirectly heats the substrate upon which the CdTe is deposited. The method improves the resulting CdTe solar cell reliability. The resulting microstructure exhibits a distinct grain size distribution such that the initial region is composed of smaller grains than the bulk region portion of the deposited CdTe. Resulting devices exhibit a behavior suggesting a more n-like CdTe material near the CdS heterojunction than devices grown with substrate temperatures held constant during CdTe deposition.

  5. SRNL PHASE II SHELF LIFE STUDIES - SERIES 1 ROOM TEMPERATURE AND HIGH RELATIVE HUMIDITY

    SciTech Connect (OSTI)

    Mickalonis, J.; Duffey, J.

    2012-09-12

    The Savannah River National Laboratory (SRNL) Phase II, Series 1 shelf-life corrosion testing for the Department of Energy Standard 3013 container is presented and discussed in terms of the localized corrosion behavior of Type 304 stainless steel in contact with moist plutonium oxide and chloride salt mixtures and the potential impact to the 3013 inner container. This testing was designed to address the influence of temperature, salt composition, initial salt moisture, residual stress and type of oxide/salt contact on the relative humidity inside a 3013 container and the initiation and propagation of localized corrosion, especially stress corrosion cracking. The integrated plan is being conducted by Los Alamos National Laboratory and SRNL. SRNL is responsible for conducting a corrosion study in small scale vessels containing plutonium oxide and chloride salts under conditions of humidity, temperature and oxide/salt compositions both within the limits of 3013 storage conditions as well as beyond the 3013 storage requirements to identify margins for minimizing the initiation of stress corrosion cracking. These worst case conditions provide data that bound the material packaged in 3013 containers. Phase I of this testing was completed in 2010. The Phase II, Series 1 testing was performed to verify previous results from Phase I testing and extend our understanding about the initiation of stress corrosion cracking and pitting that occur in 304L under conditions of room temperature, high humidity, and a specific plutonium oxide/salt chemistry. These results will aid in bounding the safe storage conditions of plutonium oxides in 3013 containers. A substantial change in the testing was the addition of the capability to monitor relative humidity during test exposure. The results show that under conditions of high initial moisture ({approx}0.5 wt%) and room temperature stress corrosion cracking occurred in 304L teardrop coupons in contact with the oxide/salt mixture at times

  6. Integrated Emissivity And Temperature Measurement

    DOE Patents [OSTI]

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  7. Thermal disconnect for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  8. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  9. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  10. Crystal face temperature determination means

    DOE Patents [OSTI]

    Nason, D.O.; Burger, A.

    1994-11-22

    An optically transparent furnace having a detection apparatus with a pedestal enclosed in an evacuated ampule for growing a crystal thereon is disclosed. Temperature differential is provided by a source heater, a base heater and a cold finger such that material migrates from a polycrystalline source material to grow the crystal. A quartz halogen lamp projects a collimated beam onto the crystal and a reflected beam is analyzed by a double monochromator and photomultiplier detection spectrometer and the detected peak position in the reflected energy spectrum of the reflected beam is interpreted to determine surface temperature of the crystal. 3 figs.

  11. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  12. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  13. High temperature two component explosive

    DOE Patents [OSTI]

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  14. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  15. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  16. West Flank Downhole Temperature Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Doug Blankenship

    2008-03-01

    Downhole temperature data for the three wells inside the West Flank FORGE footprint; 83-11, TCH 74-2 and TCH 48-11. TCH 74-2 and TCH 48-11 were both collected before 1990 and 83-11 was collected in 2009. The are compiled into one spreadsheet for ease of visualization.

  17. Catalysts for low temperature oxidation

    DOE Patents [OSTI]

    Toops, Todd J.; Parks, III, James E.; Bauer, John C.

    2016-03-01

    The invention provides a composite catalyst containing a first component and a second component. The first component contains nanosized gold particles. The second component contains nanosized platinum group metals. The composite catalyst is useful for catalyzing the oxidation of carbon monoxide, hydrocarbons, oxides of nitrogen, and other pollutants at low temperatures.

  18. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  19. High temperature electronic gain device

    DOE Patents [OSTI]

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  20. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A.

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  1. Temperature controlled high voltage regulator

    DOE Patents [OSTI]

    Chiaro, Jr., Peter J.; Schulze, Gerald K.

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  2. Temperature and RH Targets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature and RH Targets Temperature and RH Targets Presented by Vishal O Mittal of the Florida Solar Energy Center at the High Temperature Membrane Working Group Meeting, San Francisco, September 14, 2006. htmwg_mittal.pdf (158.62 KB) More Documents & Publications High Temperature Membrane with HUmidification-Independent Cluster Structure Lead Research and Development Activity for High Temperature, Low Relative Humidity Membrane Program High Temperature Membrane Working Group, Minutes of

  3. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Litchfield Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature...

  4. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  5. Room Temperature Dispenser Photocathode Using Elemental Cesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room Temperature Dispenser Photocathode Using Elemental Cesium Room Temperature Dispenser Photocathode Using Elemental Cesium Los Alamos National Laboratory (LANL) researchers have...

  6. Thermodynamic Advantages of Low Temperature Combustion Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use ...

  7. Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal Facility...

  8. ARM - Lesson Plans: Air Density and Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teachers' Toolbox Lesson Plans Lesson Plans: Air Density and Temperature Objective The objective of this activity is to investigate the effect of temperature on the density of air. ...

  9. Warm Springs Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility...

  10. Belmont Springs Hatchery Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Hatchery Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Belmont Springs Hatchery Aquaculture Low Temperature Geothermal Facility Facility...

  11. Extremely Low Temperature | Open Energy Information

    Open Energy Info (EERE)

    Extremely Low Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in...

  12. Temperature effects on airgun signatures (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    Search Title: Temperature effects on airgun signatures Experiments in an 850 liter water tank were performed in order to study temperature effects on airgun signatures, and to...

  13. Lakeview Residences Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Lakeview Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lakeview Residences Space Heating Low Temperature Geothermal Facility...

  14. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste ...

  15. Temperature of Multibubble Sonoluminescence in Water (Journal...

    Office of Scientific and Technical Information (OSTI)

    Temperature of Multibubble Sonoluminescence in Water Citation Details In-Document Search Title: Temperature of Multibubble Sonoluminescence in Water No abstract prepared. Authors: ...

  16. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Materials Laboratory (HTML) User Program Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories ...

  17. Hyder Valley Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Valley Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hyder Valley Aquaculture Low Temperature Geothermal Facility Facility Hyder Valley Sector...

  18. Countryman Well Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Countryman Well Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Countryman Well Greenhouse Low Temperature Geothermal Facility Facility Countryman...

  19. Wards Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Wards Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Wards Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Wards...

  20. Express Farms Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Express Farms Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Express Farms Greenhouse Low Temperature Geothermal Facility Facility Express Farms...

  1. Hyder Ranch Aquaculture Low Temperature Geothermal Facility ...

    Open Energy Info (EERE)

    Hyder Ranch Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hyder Ranch Aquaculture Low Temperature Geothermal Facility Facility Hyder Ranch Sector...

  2. Manzanita Estates District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Manzanita Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manzanita Estates District Heating Low Temperature Geothermal Facility...

  3. Opline Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Opline Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Opline Farms Aquaculture Low Temperature Geothermal Facility Facility Opline Farms...

  4. Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Liskey...

  5. Summer Lake Aquaculture Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility...

  6. Marana Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Marana Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Marana Aquaculture Low Temperature Geothermal Facility Facility Marana Sector Geothermal...

  7. The Greenhouse Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name The Greenhouse Greenhouse Low Temperature Geothermal Facility Facility The Greenhouse Sector...

  8. Bliss Greenhouse Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Bliss Greenhouse Greenhouse Low Temperature Geothermal Facility Facility Bliss Greenhouse...

  9. Jackpot Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Jackpot Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Jackpot Aquaculture Low Temperature Geothermal Facility Facility Jackpot Sector Geothermal...

  10. Safford Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Safford Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Safford Aquaculture Low Temperature Geothermal Facility Facility Safford Sector Geothermal...

  11. Room Temperature Ferrimagnetism and Ferroelectricity in Strained...

    Office of Scientific and Technical Information (OSTI)

    The demonstration of strain induced, high temperature multiferroism is a prom- ising development for future spintronic and memory applications at room temperature and above. 1. ...

  12. Room temperature ferrimagnetism and ferroelectricity in strained...

    Office of Scientific and Technical Information (OSTI)

    The demonstration of strain induced, high temperature multiferroism is a promising development for future spintronic and memory applications at room temperature and above. Authors: ...

  13. High-Temperature Superconductivity Cable Demonstration Projects...

    Energy Savers [EERE]

    High-Temperature Superconductivity Cable Demonstration Projects High-Temperature Superconductivity Cable Demonstration Projects A National Effort to Introduce New Technology into ...

  14. Improved Martensitic Steel for High Temperature Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Martensitic Steel for High Temperature Applications A stainless steel composition and heat treatment process for a high-temperature, titanium alloyed 9 Cr-1 molybdenum ...

  15. Savings Project: Lower Water Heating Temperature | Department...

    Energy Savers [EERE]

    Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings 12-30 annually for each 10F reduction Time to ...

  16. Gone Fishing Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Gone Fishing Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Gone Fishing Aquaculture Low Temperature Geothermal Facility Facility Gone Fishing...

  17. High-Temperature Thermoelectric Materials Characterization for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  18. Oregon Trail Mushrooms Industrial Low Temperature Geothermal...

    Open Energy Info (EERE)

    Mushrooms Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Trail Mushrooms Industrial Low Temperature Geothermal Facility Facility Oregon...

  19. Ennis Laundry Industrial Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Ennis Laundry Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Ennis Laundry Industrial Low Temperature Geothermal Facility Facility Ennis Laundry...

  20. Low-temperature central heating

    SciTech Connect (OSTI)

    Colonna, A.; Dore, B.

    1982-01-01

    As more efficient condensing boilers are introduced and as more homeowners install effective insulation, engineers should consider two possibilities when designing new central-heating systems - the use of properly sized radiators operating at moderate water temperatures (100-120/sup 0/F) and the installation of heating systems under the floor, which ensures that the space heat is evenly distributed. In field tests, low-temperature radiators performed better than conventional models, with no significant adverse effect on comfort levels. G.D.F. also examined floating-late floor heaters, which incorporate an insulated concrete plate supporting a coiled, imbedded network of tubes with a floating concrete plate on top. Their essential advantages is the freeing of more living space to the occupants. Their use is recommended in multifamily dwelling rather than individual homes.

  1. Means of determining extrusion temperatures

    DOE Patents [OSTI]

    McDonald, Robert E.; Canonico, Domenic A.

    1977-01-01

    In an extrusion process comprising the steps of fabricating a metal billet, heating said billet for a predetermined time and at a selected temperature to increase its plasticity and then forcing said heated billet through a small orifice to produce a desired extruded object, the improvement comprising the steps of randomly inserting a plurality of small metallic thermal tabs at different cross sectional depths in said billet as a part of said fabricating step, and examining said extruded object at each thermal tab location for determining the crystal structure at each extruded thermal tab thus revealing the maximum temperature reached during extrusion in each respective tab location section of the extruded object, whereby the thermal profile of said extruded object during extrusion may be determined.

  2. Crystal face temperature determination means

    DOE Patents [OSTI]

    Nason, Donald O.; Burger, Arnold

    1994-01-01

    An optically transparent furnace (10) having a detection apparatus (29) with a pedestal (12) enclosed in an evacuated ampule (16) for growing a crystal (14) thereon. Temperature differential is provided by a source heater (20), a base heater (24) and a cold finger (26) such that material migrates from a polycrystalline source material (18) to grow the crystal (14). A quartz halogen lamp (32) projects a collimated beam (30) onto the crystal (14) and a reflected beam (34) is analyzed by a double monochromator and photomultiplier detection spectrometer (40) and the detected peak position (48) in the reflected energy spectrum (44) of the reflected beam (34) is interpreted to determine surface temperature of the crystal (14).

  3. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  4. Battery system with temperature sensors

    SciTech Connect (OSTI)

    Wood, Steven J; Trester, Dale B

    2014-02-04

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  5. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOE Patents [OSTI]

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  6. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  7. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  8. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  9. Overview of low temperature sensitization

    SciTech Connect (OSTI)

    Fox, M.J.; McCright, R.D.

    1983-12-01

    A review of the literature on low temperature sensitization (LTS) has been conducted to determine if LTS-related microstructural changes can occur in Type 304L stainless steel within the times and temperatures associated with nuclear waste storage. It was found that Type 304L stainless steel is susceptible to sensitization and LTS, and that cold work plays an important role in determining the rate of LTS. Severely cold worked Type 304L stainless steel would clearly develop LTS-related microstructural changes within the times and temperatures associated with nuclear waste storage. These changes could lead to increased susceptibility to corrosion. Significant improvements in the long-term resistance to sensitization, LTS and corrosion can be achieved by modest changes in alloy composition and fabrication practices. Therefore, Type 304L would not be the preferred alloy of construction for nuclear waste storage canisters. The final qualification of an alternate canister alloy should involve corrosion experiments on actual canisters. Suggestions for alternate canister alloys are 316L, 316LN, 316ELC, 347, and XM-19. 47 references, 4 figures.

  10. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, Xiaonan; Sheldon, Peter

    1998-01-01

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  11. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  12. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage Low-Moisture Switchgrass Feedstock

    SciTech Connect (OSTI)

    Womac, Alvin; Groothuis, Mitch; Westover, Tyler; Phanphanich, Manunya; Webb, Erin; Sokhansanj, Shahab; Turhollow, Anthony

    2013-09-24

    This project evaluates and compares comprehensive feedstock logistics systems (FLS), where a FLS is defined to comprehensively span from biomass material standing in a field to conveyance of a uniform, industrial-milled product into the throat of a biomass conversion facility (BCF). Elements of the bulk-format FLS evaluated in this project include: field-standing switchgrass dry chopped into bulk format on the farm, hauled (either loose or bulk compacted) to storage, stored with confining overburden in a protective facility, reclaimed and conveyed to bulk-format discharge, bulk compacted into an ejector trailer, and conveyed as bulk flow into the BCF. In this FLS evaluation, bulk storage bins served as a controlled and sensored proxy for large commercial stacks protected from moisture with a membrane cover.

  13. Characterization of Superhydrophobic Surfaces for Anti-icing in a Low-Temperature Wind Tunnel

    SciTech Connect (OSTI)

    Swarctz, Christopher; Alijallis, Elias; Hunter, Scott Robert; Simpson, John T; Choi, Chang-Hwan

    2010-01-01

    In this study, a closed loop low-temperature wind tunnel was custom-built and uniquely used to investigate the anti-icing mechanism of superhydrophobic surfaces in regulated flow velocities, temperatures, humidity, and water moisture particle sizes. Silica nanoparticle-based hydrophobic coatings were tested as superhydrophobic surface models. During tests, images of ice formation were captured by a camera and used for analysis of ice morphology. Prior to and after wind tunnel testing, apparent contact angles of water sessile droplets on samples were measured by a contact angle meter to check degradation of surface superhydrophobicity. A simple peel test was also performed to estimate adhesion of ice on the surfaces. When compared to an untreated sample, superhydrophobic surfaces inhibited initial ice formation. After a period of time, random droplet strikes attached to the superhydrophobic surfaces and started to coalesce with previously deposited ice droplets. These sites appear as mounds of accreted ice across the surface. The appearance of the ice formations on the superhydrophobic samples is white rather than transparent, and is due to trapped air. These ice formations resemble soft rime ice rather than the transparent glaze ice seen on the untreated sample. Compared to untreated surfaces, the icing film formed on superhydrophobic surfaces was easy to peel off by shear flows.

  14. Long-term, low-temperature oxidation of PWR spent fuel: Interim transition report

    SciTech Connect (OSTI)

    Einziger, R.E.; Buchanan, H.C.

    1988-05-01

    Since some of the fuel rods will be breached and eventually most of the cladding will corrode, exposing fuel, one factor influencing the ability of spent fuel to retain radionuclides is its oxidation state in the expected moist air atmosphere. Oxidation of the fuel could split the cladding, exposing additional fuel and changing the leaching characteristics. Thermodynamically, there is no reason why UO{sub 2} should not oxidize completely to UO{sub 3} at repository temperatures. The underlying uncertainty is the rate of oxidation. Extrapolation of higher temperature data indicates that insufficient oxidation to convert all of the fuel to U{sub 3}O{sub 8} will occur during the first 10,000 years. However, lower oxidation states, such as U{sub 4}O{sub 9} and U{sub 3}O{sub 7}, might form. To date, the tests have run between 3200 and 4100 hours out of a planned 16,000-hour duration. Some preliminary conclusions can be drawn: (1) Moisture content of the air has no significant effect on oxidation rate, (2) the data have an uncertainty of 15 to 20%, which must be accounted for in the interpretation of single sample tests, and (3) below 175{degree}C, the oxidation rate is dependent on the particle size in the sample. The smaller particles oxidize more rapidly. 19 refs., 23 figs., 7 tabs.

  15. Method and apparatus for optical temperature measurements

    DOE Patents [OSTI]

    Angel, S. Michael; Hirschfeld, Tomas B.

    1988-01-01

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illuminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature.

  16. Method and apparatus for optical temperature measurements

    DOE Patents [OSTI]

    Angel, S.M.; Hirschfeld, T.B.

    1986-04-22

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illiminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature. 3 figs.

  17. Fuel processor temperature monitoring and control

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2002-01-01

    In one embodiment, the method of the invention monitors one or more of the following conditions: a relatively low temperature value of the gas stream; a relatively high temperature value of the gas stream; and a rate-of-change of monitored temperature. In a preferred embodiment, the rate of temperature change is monitored to prevent the occurrence of an unacceptably high or low temperature condition. Here, at least two temperatures of the recirculating gas stream are monitored over a period of time. The rate-of-change of temperature versus time is determined. Then the monitored rate-of-change of temperature is compared to a preselected rate-of-change of value. The monitoring of rate-of-change of temperature provides proactive means for preventing occurrence of an unacceptably high temperature in the catalytic reactor.

  18. Quantifying Temperature Effects on Fall Chinook Salmon

    SciTech Connect (OSTI)

    Jager, Yetta

    2011-11-01

    The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

  19. Localized temperature stability in Low Temperature Cofired Ceramics (LTCC).

    SciTech Connect (OSTI)

    Dai, Steven Xunhu; Hsieh, Lung-Hwa.

    2012-04-01

    The base dielectrics of commercial low temperature cofired ceramics (LTCC) systems have a temperature coefficient of resonant frequency ({tau}{sub f}) in the range -50 {approx} -80 ppm/C. In this research we explored a method to realize zero or near zero {tau}{sub f} resonators by incorporating {tau}{sub f} compensating materials locally into a multilayer LTCC structure. To select composition for {tau}{sub f} adjustment, {tau}{sub f} compensating materials with different amount of titanates were formulated, synthesized, and characterized. Chemical interactions and physical compatibility between the {tau}{sub f} modifiers and the host LTCC dielectrics were investigated. Studies on stripline (SL) resonator panels with multiple compensating dielectrics revealed that: 1) compositions using SrTiO{sub 3} provide the largest {tau}{sub f} adjustment among titanates, 2) the {tau}{sub f} compensation is proportional to the amount of SrTiO{sub 3} in compensating materials, as well as the thickness of the compensating layer, and 3) the most effective {tau}{sub f} compensation is achieved when the compensating dielectric is integrated next to the SL. Using the effective dielectric constant of a heterogeneous layered dielectric structure, results from Method of Momentum (MoM) electromagnetic simulations are consistent with the experimental observations.

  20. High temperature sealed electrochemical cell

    DOE Patents [OSTI]

    Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.

    2015-10-06

    A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.

  1. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    DOE Patents [OSTI]

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  2. University of Illinois Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) University of Illinois Project 29609 irradiation. The objective of this test was to assess the radiation performance of ferritic alloys for advanced reactor applications. The FeCr-based alloy system is considered the lead alloy system for a variety of advanced reactor components and applications. Irradiations of FeCr alloy samples were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in a static capsule in the A-11 position of the ATR.

  3. Spin Hall magnetoresistance at high temperatures

    SciTech Connect (OSTI)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-02-02

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface.

  4. Method and apparatus for optical temperature measurement

    DOE Patents [OSTI]

    O'Rourke, Patrick E.; Livingston, Ronald R.; Prather, William S.

    1994-01-01

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped boresilicate glass, accurate to .+-.0.5.degree. C. over an operating temperature range of about -196.degree. C. to 400.degree. C.; and a mixture of D.sub.2 O and H.sub.2 O, accurate to .+-.0.1.degree. C. over an operating range of about 5.degree. C. to 90.degree. C.

  5. Method and apparatus for optical temperature measurement

    DOE Patents [OSTI]

    O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

    1994-09-20

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

  6. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2003-03-31

    This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.

  7. Theoretical prediction of physical and chemical characteristics of the first drop'' of condensate from superheated geothermal steam: Implications for corrosion and scaling in turbines

    SciTech Connect (OSTI)

    Andreussi, P. (Univ. degli Studi di Udine (Italy). Dipartimento Scienze e Tecnologie Chimiche); Corsi, R. (STEAM srl, Pisa (Italy)); Guidi, M.; Marini, L. (Geotermica Italiana srl, Pisa (Italy))

    1994-06-01

    This paper describes a method for computing: (1) the chemical composition of the first drop of condensate which forms at dew-point temperature through expansion of superheated steam, and (2) the saturation index of the drop with respect to relevant solid phases, such as halite, amorphous silica, boric acid, borax and sal ammoniac. Boiling-point elevation is taken into account in these calculations. Preliminary application to some wells in the Larderello geothermal field indicate that: (1) the high concentration of HCl in the steam causes both the low pH and very high TDS of the first drop; (2) the lower the dew-point temperature, the higher the TDS of the first drop; (3) for a given chemical composition, the lower the steam pressure, the higher the risk of corrosion and scaling in the steam path.

  8. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  9. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  10. High temperature control rod assembly

    SciTech Connect (OSTI)

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  11. High Temperature ESP Monitoring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The purpose of the High Temperature ESP Monitoring project is to develop a down-hole monitoring system to be used in wells with bottom hole temperature up to 300 C for measuring ...

  12. High-temperature thermocouples and related methods

    DOE Patents [OSTI]

    Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.; Wilkins, S. Curt

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  13. Understanding the Temperature and Humidity Environment Inside a PV Module (Presentation)

    SciTech Connect (OSTI)

    Kempe, M.

    2013-06-01

    This presentation addresses moisture-driven degradation processes in PV modules and the conditions to use for accelerated stress testing. Here we show that by choosing humidity conditions that more closely match the use environment, one can minimize the uncertainty associated with moisture induced degradation modes.

  14. Oceanridge Fisheries Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Oceanridge Fisheries Sector Geothermal energy Type Aquaculture Location Mecca, California Coordinates 33.571692,...

  15. Arrowhead Fisheries Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Arrowhead Fisheries Sector Geothermal energy Type Aquaculture Location Susanville, California Coordinates...

  16. Dashun Fisheries Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Dashun Fisheries Sector Geothermal energy Type Aquaculture Location Mecca, California Coordinates 33.571692,...

  17. Pacific Aquafarms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Pacific Aquafarms Sector Geothermal energy Type Aquaculture Location Niland, California Coordinates 33.2400366,...

  18. Tsuji Nurseries Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Nurseries Greenhouse Low Temperature Geothermal Facility Facility Tsuji Nurseries Sector Geothermal energy Type Greenhouse Location Susanville, California Coordinates...

  19. Low Temperature Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Geothermal Energy Low Temperature Geothermal Energy Presented at the Technology Planning Workshop for Low-Temperature, Coproduced, and Geopressured Geothermal Energy, July 13-14, 2010, Golden, Colorado 20100713_lowtemp_blackwell.pdf (4.32 MB) More Documents & Publications Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP) AAPG Low-Temperature Webinar Power Plays: Geothermal Energy In Oil and Gas Field

  20. Andreev current for low temperature thermometry

    SciTech Connect (OSTI)

    Faivre, T. Pekola, J. P.; Golubev, D. S.

    2015-05-04

    We demonstrate experimentally that disorder enhanced Andreev current in a tunnel junction between a normal metal and a superconductor provides a method to measure electronic temperature, specifically at temperatures below 200 mK when aluminum is used. This Andreev thermometer has some advantages over conventional quasiparticle thermometers: For instance, it does not conduct heat and its reading does not saturate until at lower temperatures. Another merit is that the responsivity is constant over a wide temperature range.

  1. High Temperature Superconductivity Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Superconductivity Partners Map showing DOE's partnersstakeholders in the ... More Documents & Publications DOE Superconductivity Program Stakeholders DOE Provides up ...

  2. Determining Outdoor CPV Cell Temperature: Preprint

    SciTech Connect (OSTI)

    Muller, M.; Deline, C.; Marion, B.; Kurtz, S.; Bosco, N.

    2011-07-01

    An accurate method is needed for determining cell temperature when measuring CPV modules outdoors. It has been suggested that cell temperature can be calculated though a procedure that shutters sunlight to the cells while measuring the transients in open-circuit voltage (Voc) and heat sink temperature. This paper documents application of this shutter procedure to multiple CPV modules at NREL. The challenges and limitations are presented along with an alternate approach to measuring CPV cell operating temperature.

  3. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Materials Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials 2011 DOE Hydrogen and Fuel Cells ...

  4. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories Materials Characterization ...

  5. Carbon nanotube temperature and pressure sensors

    DOE Patents [OSTI]

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  6. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1998-06-30

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.

  7. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W.

    1996-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.

  8. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1996-08-20

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit. 7 figs.

  9. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W.

    1998-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.

  10. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratorys Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  11. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  12. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  13. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-01-01

    Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

  14. March

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March March We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. Surface climate anomalies in 2011 for precipitation, daily maximum temperature, and dewpoint. Maps show spatial distributions of anomalies as standard deviations from the 1895-2014 mean. Yellow areas indicate locations of 2011 fires Researchers explore correlation between climate and wildfires in the Southwest The

  15. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  16. High Temperature Superconducting Underground Cable

    SciTech Connect (OSTI)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  17. Topological Insulators at Room Temperature

    SciTech Connect (OSTI)

    Zhang, Haijun; Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-25

    Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for Sb{sub 2}Te{sub 3}, Sb{sub 2}Se{sub 3}, Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystals. Our calculations predict that Sb{sub 2}Te{sub 3}, Bi{sub 2}T e{sub 3} and Bi{sub 2}Se{sub 3} are topological insulators, while Sb{sub 2}Se{sub 3} is not. In particular, Bi{sub 2}Se{sub 3} has a topologically non-trivial energy gap of 0.3eV , suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the {Lambda} point.

  18. Temperature monitoring device and thermocouple assembly therefor

    DOE Patents [OSTI]

    Grimm, Noel P.; Bauer, Frank I.; Bengel, Thomas G.; Kothmann, Richard E.; Mavretish, Robert S.; Miller, Phillip E.; Nath, Raymond J.; Salton, Robert B.

    1991-01-01

    A temperature monitoring device for measuring the temperature at a surface of a body, composed of: at least one first thermocouple and a second thermocouple; support members supporting the thermocouples for placing the first thermocouple in contact with the body surface and for maintaining the second thermocouple at a defined spacing from the body surface; and a calculating circuit connected to the thermocouples for receiving individual signals each representative of the temperature reading produced by a respective one of the first and second thermocouples and for producing a corrected temperature signal having a value which represents the temperature of the body surface and is a function of the difference between the temperature reading produced by the first thermocouple and a selected fraction of the temperature reading provided by the second thermocouple.

  19. Low temperature sodium-beta battery

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-11-19

    A battery that will operate at ambient temperature or lower includes an enclosure, a current collector within the enclosure, an anode that will operate at ambient temperature or lower within the enclosure, a cathode that will operate at ambient temperature or lower within the enclosure, and a separator and electrolyte within the enclosure between the anode and the cathode. The anode is a sodium eutectic anode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower. The cathode is a low melting ion liquid cathode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower.

  20. Temperature and electrical memory of polymer fibers

    SciTech Connect (OSTI)

    Yuan, Jinkai; Zakri, Ccile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe

    2014-05-15

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  1. Al{sub 2}O{sub 3} multi-density layer structure as a moisture permeation barrier deposited by radio frequency remote plasma atomic layer deposition

    SciTech Connect (OSTI)

    Jung, Hyunsoo [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 (Korea, Republic of); Jeon, Heeyoung [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Choi, Hagyoung; Ham, Giyul; Shin, Seokyoon [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-02-21

    Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition have been used for thin film encapsulation of organic light emitting diode. In this study, a multi-density layer structure consisting of two Al{sub 2}O{sub 3} layers with different densities are deposited with different deposition conditions of O{sub 2} plasma reactant time. This structure improves moisture permeation barrier characteristics, as confirmed by a water vapor transmission rate (WVTR) test. The lowest WVTR of the multi-density layer structure was 4.7 10{sup ?5} gm{sup ?2} day{sup ?1}, which is one order of magnitude less than WVTR for the reference single-density Al{sub 2}O{sub 3} layer. This improvement is attributed to the location mismatch of paths for atmospheric gases, such as O{sub 2} and H{sub 2}O, in the film due to different densities in the layers. This mechanism is analyzed by high resolution transmission electron microscopy, elastic recoil detection, and angle resolved X-ray photoelectron spectroscopy. These results confirmed that the multi-density layer structure exhibits very good characteristics as an encapsulation layer via location mismatch of paths for H{sub 2}O and O{sub 2} between the two layers.

  2. Rate and peak concentrations of off-gas emissions in stored wood pellets sensitivities to temperature, relative humidity, and headspace volume

    SciTech Connect (OSTI)

    Kuang, Xingya; Shankar, T.J.; Bi, X.T.; Lim, C. Jim; Sokhansanj, Shahabaddine; Melin, Staffan

    2009-08-01

    Wood pellets emit CO, CO2, CH4 and other volatiles during storage. Increased concentration of these gases in a sealed storage causes depletion of concentration of oxygen. The storage environment becomes toxic to those who operate in and around these storages. The objective of this study was to investigate the effects of temperature, moisture and storage headspace on emissions from wood pellets in an enclosed space. Twelve 10-liter plastic containers were used to study the effects of headspace ratio (25%, 50%, and 75% of container volume) and temperatures (10-50oC). Another eight containers were set in uncontrolled storage relative humidity and temperature. Concentrations of CO2, CO and CH4 were measured by a gas chromatography (GC). The results showed that emissions of CO2, CO and CH4 from stored wood pellets are most sensitive to storage temperature. Higher peak emission factors are associated with higher temperatures. Increased headspace volume ratio increases peak off-gas emissions because of the availability of oxygen for pellet decomposition. Increased relative humidity in the enclosed container increases the rate of off-gas emissions of CO2, CO and CH4 and oxygen depletion.

  3. High temperature solar selective coatings

    DOE Patents [OSTI]

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  4. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  5. Variable temperature seat climate control system

    DOE Patents [OSTI]

    Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.

    1997-05-06

    A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

  6. The influence of the drying medium on high temperature convective drying of single wood chips

    SciTech Connect (OSTI)

    Johansson, A.; Rasmuson, A.

    1997-10-01

    High temperature convective drying of single wood chips with air and superheated steam respectively is studied theoretically. The two-dimensional model presented describes the coupled transport of water, vapor, air and heat. Transport mechanisms included are the convection of gas and liquid, intergas as well as bound water diffusion. In the initial part of the drying process, moisture is transported to the surface mainly due to capillary forces in the transversal direction where evaporation occurs. As the surface becomes dry, the drying front moves towards the center of the particle and an overpressure is simultaneously built up which affects the drying process. The differences between drying in air and steam respectively can be assigned to the physical properties of the drying medium. The period of constant drying rate which does not exist (or is very short) in air drying becomes more significant with decreasing amounts of air in the drying medium and is clearly visible in pure superheated steam drying. The maximal drying rate is larger in air drying, and shorter drying times are obtained since the heat flux to the wood chip particle increases with increasing amounts of air in the drying medium. The period of falling drying rate can be divided into two parts: in the first, the drying rate is dependent upon the humidity of the drying medium whereas in the second, there is no such correlation.

  7. Correlations of Polyimides and Blended Polyimides for High Temperature Gas Separations

    SciTech Connect (OSTI)

    John R. Klaehn; Christopher J. Orme; Thomas A. Luther; Eric S. Peterson; Jagoda M. Urban-Klaehn

    2002-03-01

    High performance polymers are of interest for high temperature gas separations, especially for the sequestration of carbon dioxide. A new family of high performance imide polymers has been identified as a successful membrane capture material. VTEC polyimides possess desired thermal properties (up to 500 °C) along with being robust and flexible even after multiple thermal cycles (up to 400 °C). Polyimides (PI) are excellent materials for high selectivity for smaller kinetic diameter gases such as H2 and CO2; however, they have low fluxes. We blended small amounts of different polymers with VTEC polyimide, which changes the fluxes. Another critical problem when working with glassy polymers is their moisture content. It has been found that water entrapped within the polymer matrix (left over from the solvent, or physisorbed) can also cause the polymer to change dramatically. Additionally presence of molecular water in the polymer’s void volume has been validated through Positron Annihilation Lifetime (PAL) spectroscopy. In this presentation, polymer characterization and gas-separation testing results will be discussed.

  8. High-temperature Pump Monitoring - High-temperature ESP Monitoring; 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technology Program Peer Review Report | Department of Energy temperature Pump Monitoring - High-temperature ESP Monitoring; 2010 Geothermal Technology Program Peer Review Report High-temperature Pump Monitoring - High-temperature ESP Monitoring; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review hightemp_018_dhruva.pdf (188.95 KB) More Documents & Publications Development of Tools for Measuring Temperature, Flow,

  9. Temperature Control Diagnostics for Sample Environments

    SciTech Connect (OSTI)

    Santodonato, Louis J; Walker, Lakeisha MH; Church, Andrew J; Redmon, Christopher Mckenzie

    2010-01-01

    In a scientific laboratory setting, standard equipment such as cryocoolers are often used as part of a custom sample environment system designed to regulate temperature over a wide range. The end user may be more concerned with precise sample temperature control than with base temperature. But cryogenic systems tend to be specified mainly in terms of cooling capacity and base temperature. Technical staff at scientific user facilities (and perhaps elsewhere) often wonder how to best specify and evaluate temperature control capabilities. Here we describe test methods and give results obtained at a user facility that operates a large sample environment inventory. Although this inventory includes a wide variety of temperature, pressure, and magnetic field devices, the present work focuses on cryocooler-based systems.

  10. Temperature detection in a gas turbine

    DOE Patents [OSTI]

    Lacy, Benjamin; Kraemer, Gilbert; Stevenson, Christian

    2012-12-18

    A temperature detector includes a first metal and a second metal different from the first metal. The first metal includes a plurality of wires and the second metal includes a wire. The plurality of wires of the first metal are connected to the wire of the second metal in parallel junctions. Another temperature detector includes a plurality of resistance temperature detectors. The plurality of resistance temperature detectors are connected at a plurality of junctions. A method of detecting a temperature change of a component of a turbine includes providing a temperature detector include ing a first metal and a second metal different from the first metal connected to each other at a plurality of junctions in contact with the component; and detecting any voltage change at any junction.

  11. Manufacturing Barriers to High Temperature PEM Commercialization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. Manufacturing Barriers to High Temperature PEM Commercialization (785.02 KB) More Documents & Publications PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update MCFC and PAFC R&D Workshop Summary Report 2012 Pathways to

  12. Low-temperature geothermal database for Oregon

    SciTech Connect (OSTI)

    Black, G.

    1994-11-01

    The goals of the low-temperature assessment project, performed by the Oregon Department of Geology and Mineral Industries (DOGAMI) is aimed primarily at updating the inventory of the nation's low and moderate temperature geothermal resources. The study has begun in Oregon, where the areas of Paisley, Lakeview, Burns/Hines, Lagrande, and Vale were identified over 40 sites as having potential for direct heat utilization. Specifics sites are outlined, detailing water temperature, flow, and current uses of the sites.

  13. ARM - Measurement - Longwave narrowband brightness temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    narrowband brightness temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave narrowband brightness temperature A descriptive measure of radiation in terms of the temperature of a hypothetical black body emitting an identical amount of radiation in the same narrow band of wavelengths. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the

  14. ARM - Measurement - Longwave spectral brightness temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectral brightness temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave spectral brightness temperature A descriptive measure of radiation in terms of the temperature of a hypothetical black body emitting an identical amount of radiation at the same spectrally resolved wavelengths. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the

  15. Taking an engine`s temperature

    SciTech Connect (OSTI)

    Allison, S.W.; Beshears, D.L.; Cates, M.R.; Noel, B.W.; Turley, W.D.

    1997-01-01

    Ceramic and ceramic-coated components will be of increasing importance in the advanced engines now under development. Ceramics enable engines to run at much higher temperatures than the superalloys in more conventional engines can. The two options for noncontact high-temperature measurements of ceramic components are pyrometry and phosphor thermometry. This article describes how when properly applied as a thin coating, thermally sensitive phosphors can monitor the temperature of ceramic surfaces inside an engine.

  16. Deep Trek High Temperature Electronics Project

    SciTech Connect (OSTI)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  17. Electrolysis - High Temperature - Hydrogen - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolysis - High Temperature - Hydrogen Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL has developed a high-temperature process the utilizes solid oxide fuel cells that are operated in the electrolytic mode. The first process includes combining a high-temperature heat source (e.g. nuclear reactor) with a hydrogen production facility by taking a stream of water and heating it and then splitting the water into hydrogen and oxygen product streams. A

  18. Optical temperature indicator using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-01-01

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  19. Optical temperature indicator using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W.

    1996-01-01

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  20. Low Temperature Projects | Department of Energy

    Energy Savers [EERE]

    to Generate Electricity Using Geothermal Water Resources, Brian Brown, Brian Brown ... Power Demonstration of a Variable Phase Turbine Power System for Low Temperature ...

  1. Advanced Low Temperature Absorption Chiller Module Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - ...

  2. Low Temperature/Coproduced/Geopressured Subprogram Overview ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications AAPG Low-Temperature Webinar SMU Geothermal Conference 2011 - Geothermal Technologies Program Geothermal Energy Production with Co-produced and ...

  3. Pressure Temperature Log | Open Energy Information

    Open Energy Info (EERE)

    to reach equilibrium with the surrounding formation is going to provide the most accurate reservoir temperature (Blackwell, et al., 2010). Potential Pitfalls Fluids are being...

  4. High-temperature superconductivity: A conventional conundrum...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High-temperature superconductivity: A conventional conundrum Citation ... OSTI Identifier: 1245373 Report Number(s): BNL--111729-2016-JA Journal ID: ISSN 1745-2473; ...

  5. Low Temperature Material Bonding Techniq Ue

    DOE Patents [OSTI]

    Ramsey, J. Michael; Foote, Robert S.

    2002-08-06

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  6. Relativistic Random Phase Approximation At Finite Temperature

    SciTech Connect (OSTI)

    Niu, Y. F.; Paar, N.; Vretenar, D.; Meng, J.

    2009-08-26

    The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.

  7. Hydrothermal Convection Systems with Reservoir Temperatures greater...

    Open Energy Info (EERE)

    Systems with Reservoir Temperatures greater than or equal to 90 degrees C Authors Brook, Mariner, Mabey, Swanson, Guffanti and Muffler Published Journal Assessment of...

  8. Understanding the Temperature and Humidity Environment Inside...

    Broader source: Energy.gov (indexed) [DOE]

    Understanding the Temperature and Humidity Environment Inside a PV Module aims to show that by choosing humidity conditions that more closely match the use environment, one can ...

  9. understanding the low-temperature combustion chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low-temperature combustion chemistry - Sandia Energy Energy Search Icon Sandia Home ... EnergyWater History Water Monitoring & Treatment Technology Decision Models for ...

  10. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories 2012 DOE ...

  11. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success ...

  12. Quantitative Modeling of High Temperature Magnetization Dynamics

    SciTech Connect (OSTI)

    Zhang, Shufeng

    2009-03-01

    Final Technical Report Project title: Quantitative Modeling of High Temperature Magnetization Dynamics DOE/Office of Science Program Manager Contact: Dr. James Davenport

  13. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems ... with the Office of Fossil Energy (FE) to demonstrate the ...

  14. Temperature dependence of sapphire fiber Raman scattering

    SciTech Connect (OSTI)

    Liu, Bo; Yu, Zhihao; Tian, Zhipeng; Homa, Daniel; Hill, Cary; Wang, Anbo; Pickrell, Gary

    2015-04-27

    Anti-Stokes Raman scattering in sapphire fiber has been observed for the first time. Temperature dependence of Raman peaks’ intensity, frequency shift, and linewidth were also measured. Three anti-Stokes Raman peaks were observed at temperatures higher than 300°C in a 0.72-m-long sapphire fiber excited by a second-harmonic Nd YAG laser. The intensity of anti-Stokes peaks are comparable to that of Stokes peaks when the temperature increases to 1033°C. We foresee the combination of sapphire fiber Stokes and anti-Stokes measurement in use as a mechanism for ultrahigh temperature sensing.

  15. Group 3: Humidity, Temperature, and Voltage (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2013-05-01

    Group 3 is chartered to develop accelerated stress tests that can be used as comparative predictors of module lifetime versus stresses associated with humidity, temperature and voltage.

  16. Low temperature proton conducting oxide devices

    DOE Patents [OSTI]

    Armstrong, Timothy R.; Payzant, Edward A.; Speakman, Scott A.; Greenblatt, Martha

    2008-08-19

    A device for conducting protons at a temperature below 550.degree. C. includes a LAMOX ceramic body characterized by an alpha crystalline structure.

  17. Static Temperature Survey | Open Energy Information

    Open Energy Info (EERE)

    2003. Estimation of static formation temperatures in geothermal wells. Energy conversion and management. 44(8):1343-1355. Page Area Activity Start Date Activity...

  18. Hawaii Water Well Temperature and Hydraulic Head

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2014-12-01

    .csv file consisting of the water well temperature and water table elevation for wells in the State of Hawaii. Data source, Hawaii Commission of Water Resources Management.

  19. Posters Comparisons of Brightness Temperature Measurements and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (GSFC) Raman lidar, 3) ETL's radio acoustic sounding system (RASS), and 4) frequent ... Information on temperature profiles was also obtained from composite data from radiosondes ...

  20. Sound beam manipulation based on temperature gradients

    SciTech Connect (OSTI)

    Qian, Feng; Quan, Li; Liu, Xiaozhou Gong, Xiufen

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  1. Low Temperature Direct Use Aquaculture Geothermal Facilities...

    Open Energy Info (EERE)

    Low Temperature Direct Use Aquaculture Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYB...

  2. Low Temperature Direct Use Greenhouse Geothermal Facilities ...

    Open Energy Info (EERE)

    Low Temperature Direct Use Greenhouse Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBR...

  3. Americulture Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Americulture Sector Geothermal energy Type Aquaculture Location Animas, New Mexico Coordinates 31.9489799, -108.8072777...

  4. High-temperature brazed ceramic joints

    DOE Patents [OSTI]

    Jarvinen, Philip O.

    1986-01-01

    High-temperature joints formed from metallized ceramics are disclosed wherein the metal coatings on the ceramics are vacuum sputtered thereon.

  5. Geothermal Energy Production from Low Temperature Resources,...

    Open Energy Info (EERE)

    Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded...

  6. Low-Temperature Geothermal Projects Nationwide

    SciTech Connect (OSTI)

    DOE Geothermal Technologies

    2013-04-01

    Poster of low-temperature and co-produced geothermal projects nationwide. This map poster summarizes completed, ongoing and proposed projects for FY14.

  7. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. PDF icon lm028laracurzio2010o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and...

  8. Low Temperature Direct Use Industrial Geothermal Facilities ...

    Open Energy Info (EERE)

    Low Temperature Direct Use Industrial Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBR...

  9. Temperature dependent terahertz properties of energetic materials...

    Office of Scientific and Technical Information (OSTI)

    Title: Temperature dependent terahertz properties of energetic materials Authors: Azad, Abul Kalam 1 ; Whitley, Von Howard 1 ; Brown, Kathryn Elizabeth 1 ; Ahmed, Towfiq 1 ...

  10. Edward's Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    of Technology's Geo-Heat Center Retrieved from "http:en.openei.orgwindex.php?titleEdward%27sGreenhousesGreenhouseLowTemperatureGeothermalFacility&oldid305261" ...

  11. The baryonic susceptibility near critical temperature (Journal...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; BARYONS; CHIRALITY; CRITICAL TEMPERATURE; ENERGY-LEVEL DENSITY; ...

  12. Temperature Measurements in the Magnetic Measurement Facility

    SciTech Connect (OSTI)

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the

  13. Managing Swimming Pool Temperature for Energy Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Swimming Pool Temperature for Energy Efficiency Managing Swimming Pool Temperature for Energy Efficiency May 29, 2012 - 7:42pm Addthis Managing Swimming Pool Temperature...

  14. Low-Temperature and Coproduced Geothermal Projects Poster | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature and Coproduced Geothermal Projects Poster Low-Temperature and Coproduced Geothermal Projects Poster This map poster illustrates low-temperature and co-produced ...

  15. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low temperature combustion ...

  16. Static Temperature Survey At Vale Hot Springs Area (Combs, Et...

    Open Energy Info (EERE)

    temperature gradient. After the hole reached TD, a pressure-temperature storage ("memory") tool was also used to compare temperature data with that previously taken by the PRT...

  17. Develop NREL Center for Low Temperature Research/Project Data...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop NREL Center for Low Temperature ResearchProject Data Collection Develop NREL Center for Low Temperature ResearchProject Data Collection Project objective: Low-Temperature ...

  18. ARM: Temperature Profiles from Raman Lidar at 10-min averaging...

    Office of Scientific and Technical Information (OSTI)

    Temperature Profiles from Raman Lidar at 10-min averaging interval Title: ARM: Temperature Profiles from Raman Lidar at 10-min averaging interval Temperature Profiles from Raman ...

  19. Category:Static Temperature Survey | Open Energy Information

    Open Energy Info (EERE)

    Static Temperature Survey Jump to: navigation, search Geothermalpower.jpg Looking for the Static Temperature Survey page? For detailed information on Static Temperature Survey,...

  20. Category:Geothermal Low Temperature Direct Use Facilities | Open...

    Open Energy Info (EERE)

    Geothermal Low Temperature Direct Use Facilities Jump to: navigation, search Low Temperature Direct Use Geothermal Facilities. Add a Low Temperature Geothermal Facility Pages in...

  1. Development of a 500 Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a 500 Watt High Temperature Thermoelectric Generator Development of a 500 Watt High Temperature Thermoelectric Generator A low temperature TEG has been built and tested providing ...

  2. Development of a 100-Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a 100-Watt High Temperature Thermoelectric Generator Development of a 100-Watt High Temperature Thermoelectric Generator Test results for low and high temperature thermoelectric ...

  3. Wide temperature range seal for demountable joints

    DOE Patents [OSTI]

    Sixsmith, H.; Valenzuela, J.A.; Nutt, W.E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof. 6 figures.

  4. Temperature for Spent Fuel Dry Storage

    Energy Science and Technology Software Center (OSTI)

    1992-07-13

    DATING (Determining Allowable Temperatures in Inert and Nitrogen Gases) calculates allowable initial temperatures for dry storage of light-water-reactor spent fuel and the cumulative damage fraction of Zircaloy cladding for specified initial storage temperature and stress and cooling histories. It is made available to ensure compliance with NUREG 10CFR Part 72, Licensing Requirements for the Storage of Spent Fuel in an Independent Spent Fuel Storage Installation (ISFSI). Although the program''s principal purpose is to calculate estimatesmore » of allowable temperature limits, estimates for creep strain, annealing fraction, and life fraction as a function of storage time are also provided. Equations for the temperature of spent fuel in inert and nitrogen gas storage are included explicitly in the code; in addition, an option is included for a user-specified cooling history in tabular form, and tables of the temperature and stress dependencies of creep-strain rate and creep-rupture time for Zircaloy at constant temperature and constant stress or constant ratio of stress/modulus can be created. DATING includes the GEAR package for the numerical solution of the rate equations and DPLOT for plotting the time-dependence of the calculated cumulative damage-fraction, creep strain, radiation damage recovery, and temperature decay.« less

  5. Effect of processor temperature on film dosimetry

    SciTech Connect (OSTI)

    Srivastava, Shiv P.; Das, Indra J.

    2012-07-01

    Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d{sub max.}, 10 Multiplication-Sign 10 cm{sup 2}, 100 cm) to a given dose. An automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4-40.6 Degree-Sign C (85-105 Degree-Sign F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.

  6. High temperature ceramic/metal joint structure

    DOE Patents [OSTI]

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  7. Temperature for Spent Fuel Dry Storage

    Energy Science and Technology Software Center (OSTI)

    1992-07-13

    DATING (Determining Allowable Temperatures in Inert and Nitrogen Gases) calculates allowable initial temperatures for dry storage of light-water-reactor spent fuel and the cumulative damage fraction of Zircaloy cladding for specified initial storage temperature and stress and cooling histories. It is made available to ensure compliance with NUREG 10CFR Part 72, Licensing Requirements for the Storage of Spent Fuel in an Independent Spent Fuel Storage Installation (ISFSI). Although the program''s principal purpose is to calculate estimatesmore »of allowable temperature limits, estimates for creep strain, annealing fraction, and life fraction as a function of storage time are also provided. Equations for the temperature of spent fuel in inert and nitrogen gas storage are included explicitly in the code; in addition, an option is included for a user-specified cooling history in tabular form, and tables of the temperature and stress dependencies of creep-strain rate and creep-rupture time for Zircaloy at constant temperature and constant stress or constant ratio of stress/modulus can be created. DATING includes the GEAR package for the numerical solution of the rate equations and DPLOT for plotting the time-dependence of the calculated cumulative damage-fraction, creep strain, radiation damage recovery, and temperature decay.« less

  8. Superconducting transition temperature in anodized aluminum

    SciTech Connect (OSTI)

    Leemann, C.; Elliott, J.H.; Deutscher, G.; Orbach, R.; Wolf, S.A.

    1983-08-01

    We have measured the superconducting transition temperature of anodized aluminum films of grain sizes ranging from less than 100 to 3000 A. The transition temperature is 1.8 K for films of grain size 100 A and decreases monotonically with increasing grain size to 1.2 K for 3000-A grains. The effect depends only on the volume of the grains.

  9. Wide temperature range seal for demountable joints

    DOE Patents [OSTI]

    Sixsmith, Herbert; Valenzuela, Javier A.; Nutt, William E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof.

  10. High temperature hot water systems: A primer

    SciTech Connect (OSTI)

    Govan, F.A.

    1998-01-01

    The fundamental principles of high temperature water (HTW) system technology and its advantages for thermal energy distribution are presented. Misconceptions of this technology are also addressed. The paper describes design principles, applications, HTW properties, HTW system advantages, selecting the engineer, load diversification, design temperatures, system pressurization, pump considerations, constant vs. VS pumps, HTW generator types, and burners and controls.

  11. Sandia_HighTemperatureComponentEvaluation_2015.

    SciTech Connect (OSTI)

    Cashion, Avery T.

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  12. Effect of low and high storage temperatures on head space gas concentrations and physical properties of wood pellets

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; C. Jim Lim; Tony Bi; Xingya Kuang; Staffan Melin

    2013-11-01

    Headspace gas concentrations and wood pellet properties were studied in sealed glass canisters at 5–40 degrees C storage temperatures. CO2 and CO concentrations at 5, 10, 20 and 40 degrees C at the end of 23–28 days of storage were 1600 and 200, 4700 and 1200, and 31 200 and 15 800 parts per million by volume (ppmv) respectively. Corresponding O2 concentration was about 19•49, 19•20, 18•0 and 2•07% respectively. Non-linear regression equations adequately described the gas concentrations in the storage container as a function of time. Safe level estimation functions developed were linear for O2 and logarithmic for CO and CO2 concentrations. Measured pellet properties moisture, length, diameter, unit, bulk and tapped density, durability, calorific value, ash content and per cent fines were in the range of 4•6–5•02%, 14–15 mm, 6•4–6•5 mm, 1125–1175 kg m-3, 750–770 kg m-3, 825–840 kg m-3, 73–74%, 18•32–18•78 MJ kg-1, 0•65–0•74% and 0•13–0•15%. Durability values of pellets decreased by 13% at 40 degrees C storage temperature and other properties changed marginally.

  13. Drying rate and temperature profile for superheated steam vacuum drying and moist air drying of softwood lumber

    SciTech Connect (OSTI)

    Pang, S.; Dakin, M. [New Zealand Forest Research Inst., Ltd., Rotorua (New Zealand). Mfg. Technologies Portfolio

    1999-07-01

    Two charges of green radiata pine sapwood lumber were dried, ether using superheated steam under vacuum (90 C, 0.2 bar abs.) or conventionally using hot moist air (90/60 C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air. The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying.

  14. Moisture Barrier - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    devices, batteries, sensors, actuators, flat panel displays, food, and pharmaceuticals. ... NREL scientists have developed a unique method to increase the desirable properties of the ...

  15. Moisture Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... cracks, and other discontinuities into the home's basement walls or water wicking into the cracks and pores of porous building materials, such as masonry blocks, concrete, or wood. ...

  16. Dynamic temperature measurements with embedded optical sensors.

    SciTech Connect (OSTI)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, %5CDynamic Temperature Measurements with Embedded Optical Sensors%22. The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  17. Differential temperature integrating diagnostic method and apparatus

    DOE Patents [OSTI]

    Doss, James D.; McCabe, Charles W.

    1976-01-01

    A method and device for detecting the presence of breast cancer in women by integrating the temperature difference between the temperature of a normal breast and that of a breast having a malignant tumor. The breast-receiving cups of a brassiere are each provided with thermally conductive material next to the skin, with a thermistor attached to the thermally conductive material in each cup. The thermistors are connected to adjacent arms of a Wheatstone bridge. Unbalance currents in the bridge are integrated with respect to time by means of an electrochemical integrator. In the absence of a tumor, both breasts maintain substantially the same temperature, and the bridge remains balanced. If the tumor is present in one breast, a higher temperature in that breast unbalances the bridge and the electrochemical cells integrate the temperature difference with respect to time.

  18. Thermoelectric refrigerator having improved temperature stabilization means

    DOE Patents [OSTI]

    Falco, Charles M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  19. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect (OSTI)

    Sevilla, J.; Welch, J.; ,

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  20. Ultra-High Temperature Distributed Wireless Sensors

    SciTech Connect (OSTI)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O'Donnell, Alan; Bresnahan, Peter

    2013-03-31

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.