Powered by Deep Web Technologies
Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Solar cell structure incorporating a novel single crystal silicon material  

DOE Patents (OSTI)

A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

1983-01-01T23:59:59.000Z

2

Technology Development for High-Efficiency Solar Cells and Modules Using Thin (<80 um) Single-Crystal Silicon Wafers Produced by Epitaxy: June 11, 2011 - April 30, 2013  

DOE Green Energy (OSTI)

Final technical progress report of Crystal Solar subcontract NEU-31-40054-01. The objective of this 18-month program was to demonstrate the viability of high-efficiency thin (less than 80 um) monocrystalline silicon (Si) solar cells and modules with a low-cost epitaxial growth process.

Ravi, T. S.

2013-05-01T23:59:59.000Z

3

Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010  

DOE Green Energy (OSTI)

In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

Kumar, A.; Ravi, K. V.

2011-06-01T23:59:59.000Z

4

Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010  

Science Conference Proceedings (OSTI)

In this program we have been developing a technology for fabricating thin (cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

Kumar, A.; Ravi, K. V.

2011-06-01T23:59:59.000Z

5

Single crystal silicon as a macro-world structural material : application to compact, lightweight high pressure vessels  

E-Print Network (OSTI)

Single crystal silicon has promising inherent structural properties which are attractive for weight sensitive applications. Single crystal silicon, however, is a brittle material which makes the usable strength that can ...

Garza, Tanya Cruz

2011-01-01T23:59:59.000Z

6

A variable capacitor made from single crystal silicon fracture surface pairs  

E-Print Network (OSTI)

Complementary and nano-smooth single-crystal-silicon surfaces have been fabricated by deliberately fracturing a weakened portion of a larger structure whose flexural mechanism refines and concentrates an externally applied ...

Sprunt, Alexander D. (Alexander Dalziel), 1977-

2005-01-01T23:59:59.000Z

7

Anisotropic dewetting in ultra-thin single-crystal silicon-on-insulator films  

E-Print Network (OSTI)

The single crystal silicon-on-insulator thin film materials system represents both an ideal model system for the study of anisotropic thin film dewetting as well as a technologically important system for the development ...

Danielson, David T. (David Thomas)

2008-01-01T23:59:59.000Z

8

High-Cycle Fatigue of Single-Crystal Silicon Thin Films  

E-Print Network (OSTI)

When subjected to alternating stresses, most materials degrade, e.g., suffer premature failure, due to a phenomenon known as fatigue. It is generally accepted that in brittle materials, such as ceramics, fatigue can only take place in toughened solids, i.e., premature fatigue failure would not be expected in materials such as single crystal silicon. The results of this study, however, appear to be at odds with the current understanding of brittle material fatigue. Twelve thin-film ( 20 m thick) single crystal silicon specimens were tested to failure in a controlled air environment (30 0.1 C, 50 2% relative humidity). Damage accumulation and failure of the notched cantilever beams were monitored electrically during the "fatigue life" test. Specimen lives ranged from about 10 s to 48 days, or 1 10 6 to 1 10 11 cycles before failure over stress amplitudes ranging from approximately 4 to 10 GPa. A variety of mechanisms are discussed in light of the fatigue life data and fracture surface evaluation. [642] Index Terms---Fatigue failure, MEMS devices, single-crystal silicon, thin films.

Christopher L. Muhlstein; Stuart B. Brown; Robert O. Ritchie

2001-01-01T23:59:59.000Z

9

Influence of ITO-silver wire electrode structure on the performance of single-crystal silicon solar cells  

Science Conference Proceedings (OSTI)

This study aimed to explore the effect of various electrode forms on single-crystal silicon solar cells by changing their front and back electrode structures. The high light penetration depth of the Indium Tin Oxide (ITO) and the high conductivity of ...

Wern-Dare Jheng

2012-01-01T23:59:59.000Z

10

Application of ITO/Al reflectors for increasing the efficiency of single-crystal silicon solar cells  

Science Conference Proceedings (OSTI)

It is shown that an increase in the efficiency and manufacturability of single-junction single-crystal silicon photoelectric converters of solar energy requires the use of a back-surface reflector based on conductive transparent indium-tin oxide (ITO) 0.25-2 {mu}m thick. To increase the efficiency and reduce the sensitivity to the angle of light incidence on the photoreceiving surface of multijunction photoelectric converters with vertical diode cells based on single-crystal silicon, ITO/Al reflectors with an ITO layer >1 {mu}m thick along vertical boundaries of diode cells should be fabricated. The experimental study of multijunction photoelectric converters with ITO/Al reflectors at diode cell boundaries shows the necessity of modernizing the used technology of ITO layers to achieve their theoretically calculated thickness.

Kopach, V. R.; Kirichenko, M. V., E-mail: kirichenko_mv@mail.ru; Khrypunov, G. S.; Zaitsev, R. V. [National Technical University, 'Kharkiv Poly technical Institute' (Ukraine)

2010-06-15T23:59:59.000Z

11

Advanced silicon photonic modulators  

E-Print Network (OSTI)

Various electrical and optical schemes used in Mach-Zehnder (MZ) silicon plasma dispersion effect modulators are explored. A rib waveguide reverse biased silicon diode modulator is designed, tested and found to operate at ...

Sorace, Cheryl M

2010-01-01T23:59:59.000Z

12

Method of forming single crystals of beta silicon carbide using liquid lithium as a solvent  

SciTech Connect

A method of growing single crystals of beta SiC from solution using molten lithium as a solvent for polycrystalline SiC feed material. Reasonable growth rates are accomplished at temperatures in the range of about 1330.degree. C. to about 1500.degree. C.

Lundberg, Lynn B. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

13

Atomistic Study of Crack-Tip Cleavage to Dislocation Emission Transition in Silicon Single Crystals  

E-Print Network (OSTI)

At low temperatures silicon is a brittle material that shatters catastrophically, whereas at elevated temperatures, the behavior of silicon changes drastically over a narrow temperature range and suddenly becomes ductile. ...

Sen, Dipanjan

14

Direct atomistic simulation of brittle-to-ductile transition in silicon single crystals  

E-Print Network (OSTI)

Silicon is an important material not only for semiconductor applications, but also for the development of novel bioinspired and biomimicking materials and structures or drug delivery systems in the context of nanomedicine. ...

Sen, Dipanjan

15

Multi-paradigm modeling of mode I&II dynamic fracture mechanisms in single crystal silicon  

E-Print Network (OSTI)

In addition to its semi-conducting properties, silicon has the ability to be manipulated with high precision at very small length- scales. This property makes it very useful in the design of Nano/Micro-Electromechanical ...

Cohen, Alan, S. B. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

16

Table 10.8 Photovoltaic Cell and Module Shipments by Type, Trade ...  

U.S. Energy Information Administration (EIA)

2 Includes all types of photovoltaic cells and modules (single-crystal silicon, cast silicon, ribbon silicon, ... Solar Collector Manufacturing Activity, ...

17

Fabrication of large-area ultra-thin single crystal silicon membranes  

SciTech Connect

Perfectly, crystalline, 55 nm thick silicon membranes have been fabricated over several square millimeters and used to observe transmission ion channeling patterns showing the early evolution of the axially channeled beam angular distribution for small tilts away from the [011] axis. The reduced multiple scattering through such thin layers allows fine angular structure produced by the highly non-equilibrium transverse momentum distribution of the channeled beam during its initial propagation in the crystal to be resolved. The membrane crystallinity and flatness were measured by using proton channeling measurements and the surface roughness of 0.4 nm using atomic force microscopy.

Dang, Z. Y.; Motapothula, M.; Ow, Y. S. [Center for Ion Beam Applications, Physics Department, National University of Singapore, Lower Kent Ridge Road, Singapore 117542 (Singapore); Venkatesan, T. [NanoCore, National University of Singapore, Singapore 117576 (Singapore); Breese, M. B. H. [Center for Ion Beam Applications, Physics Department, National University of Singapore, Lower Kent Ridge Road, Singapore 117542 (Singapore); Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Rana, M. A. [Physics Division, Directorate of Science, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Osman, A. [National Centre for Physics (NCP), Shahdara Valley Road, Islamabad (Pakistan)

2011-11-28T23:59:59.000Z

18

Photovoltaic Cz Silicon Module Improvements  

DOE Green Energy (OSTI)

Work focused on reducing the cost per watt of Cz silicon photovoltaic modules under Phase II of Siemens Solar Industries' DOE/NREL PVMaT 4A subcontract is described in this report. New module designs were deployed in this phase of the contract, improvements in yield of over 10% were realized, and further implementation of Statistical Process Control was achieved during this phase. Module configurations representing a 12% cost reduction per watt were implemented in small scale production under Phase II of this contract. Yield improvements are described in detail, yield sensitivity to wafer thickness is quantified, and the deployment of SPC in critical process steps is reported here.

Jester, T. L.

1998-09-01T23:59:59.000Z

19

Anisotropic Shock Propagation in Single Crystals  

Science Conference Proceedings (OSTI)

Most single-crystal shock experiments have been performed in high-symmetry directions while the nature of shock propagation in low-symmetry directions remains relatively unstudied. It is well known that small-amplitude, linear acoustic waves propagating in low-symmetry directions can focus and/or form caustics (Wolfe, 1995). In this report we provide evidence for similar focusing behavior in nonlinear (shock) waves propagating in single crystals of silicon and diamond. Using intense lasers, we have driven non-planar (divergent geometry) shock waves through single-crystals of silicon or diamond and into an isotropic backing plate. On recovery of the backing plates we observe a depression showing evidence of anisotropic plastic strain with well-defined crystallographic registration. We observe 4-, 2-, and 3-fold symmetric impressions for [100], [110], and [111] oriented crystals respectively.

Eggert, J; Hicks, D; Celliers, P; Bradley, D; Cox, J; Unites, W; Collins, G; McWilliams, R; Jeanloz, R; Bruygoo, S; Loubeyre, P

2005-05-26T23:59:59.000Z

20

SINGLE CRYSTAL NEUTRON DIFFRACTION.  

SciTech Connect

Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

KOETZLE,T.F.

2001-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cryogenic Silicon Microstrip Detector Modules for LHC  

E-Print Network (OSTI)

CERN is presently constructing the LHC, which will produce collisions of 7 TeV protons in 4 interaction points at a design luminosity of 1034 cm-2 s-1. The radiation dose resulting from the operation at high luminosity will cause a serious deterioration of the silicon tracker performance. The state-of-art silicon microstrip detectors can tolerate a fluence of about 3 1014 cm-2 of hadrons or charged leptons. This is insufficient, however, for long-term operation in the central parts of the LHC trackers, in particular after the possible luminosity upgrade of the LHC. By operating the detectors at cryogenic temperatures the radiation hardness can be improved by a factor 10. This work proposes a cryogenic microstrip detector module concept which has the features required for the microstrip trackers of the upgraded LHC experiments at CERN. The module can hold an edgeless sensor, being a good candidate for improved luminosity and total cross-section measurements in the ATLAS, CMS and TOTEM experiments. The design o...

Perea-Solano, B

2004-01-01T23:59:59.000Z

22

Czochralski Grown Ce,Gd:YAG Single Crystals  

Science Conference Proceedings (OSTI)

In this work we propose a new concept of white LED, based on the single crystal phosphor plates (SCPPs) of Czochralski grown Ce,Gd:YAG single crystal.

23

Test-to-Failure of Crystalline Silicon Modules: Preprint  

DOE Green Energy (OSTI)

Accelerated lifetime testing of five crystalline silicon module designs was carried out according to the Terrestrial Photovoltaic Module Accelerated Test-to-Failure Protocol. This protocol compares the reliability of various module constructions on a quantitative basis. The modules under test are subdivided into three accelerated lifetime testing paths: 85..deg..C/85% relative humidity with system bias, thermal cycling between ?40..deg..C and 85..deg..C, and a path that alternates between damp heat and thermal cycling. The most severe stressor is damp heat with system bias applied to simulate the voltages that modules experience when connected in an array. Positive 600 V applied to the active layer with respect to the grounded module frame accelerates corrosion of the silver grid fingers and degrades the silicon nitride antireflective coating on the cells. Dark I-V curve fitting indicates increased series resistance and saturation current around the maximum power point; however, an improvement in junction recombination characteristics is obtained. Shunt paths and cell-metallization interface failures are seen developing in the silicon cells as determined by electroluminescence, thermal imaging, and I-V curves in the case of negative 600 V bias applied to the active layer. Ability to withstand electrolytic corrosion, moisture ingress, and ion drift under system voltage bias are differentiated.

Hacke, P.; Terwilliger, K.; Glick, S.; Trudell, D.; Bosco, N.; Johnston, S.; Kurtz, S. R.

2010-10-01T23:59:59.000Z

24

Single-Crystal-to-Single-Crystal Transformations in One Dimensional Ag-Eu Helical System  

SciTech Connect

Single-crystal-to-single-crystal transformation of 1-D 4d-4f coordination polymers have been investigated for the first time. It displays high selectivity for Mg2+ and can be used as magnesium ion-selective luminescent probe. More importantly, we observed the transformation of meso-helical chain to rac-helical chain as a function of temperature.

Cai, Yue-Peng; Zhout, Xiu-Xia; Zhout, Zheng-Yuan; Zhu, Shi-Zheng; Thallapally, Praveen K.; Liu, Jun

2009-07-06T23:59:59.000Z

25

Back-Contact Crystalline-Silicon Solar Cells and Modules  

DOE Green Energy (OSTI)

This paper summarizes recent progress in the development of back-contact crystalline-silicon (c-Si) solar cells and modules at Sandia National Laboratories. Back-contact cells have potentially improved efficiencies through the elimination of grid obscuration and allow for significant simplifications in the module assembly process. Optimization of the process sequence has improved the efficiency of our back-contact cell (emitter wrap through) from around 12% to near 17% in the past 12 months. In addition, recent theoretical work has elucidated the device physics of emitter wrap-through cells. Finally, improvements in the assembly processing back-contact cells are described.

Bode, M.D.; Garrett, S.E.; Gee, J.M.; Jimeno, J.C.; Smith, D.D.

1999-03-10T23:59:59.000Z

26

Monolithic amorphous silicon modules on continuous polymer substrate  

DOE Green Energy (OSTI)

This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

Grimmer, D.P. (Iowa Thin Film Technologies, Inc., Ames, IA (United States))

1992-03-01T23:59:59.000Z

27

Platinum Nanoclusters Out-Perform Single Crystals  

NLE Websites -- All DOE Office Websites (Extended Search)

Platinum Nanoclusters Out-Perform Single Crystals Print Platinum Nanoclusters Out-Perform Single Crystals Print When it comes to metal catalysts, platinum is the standard. However, at about $2,000 an ounce, the high cost of the raw material presents major challenges for the future wide-scale use of platinum in fuel cells. Berkeley Lab research suggests that one possible way to meet these challenges is to think small. Researchers from Berkeley Lab's Materials Sciences Division have found that under high pressure-comparable to the pressures at which many industrial technologies operate-platinum surfaces can change their structure dramatically in response to the presence of high-coverage reactants. High-pressure scanning tunneling microscopes (STM) and ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) at ALS Beamlines 9.3.2 and 11.0.2 allowed researchers to study catalysts' structure and composition under realistic conditions.

28

Platinum Nanoclusters Out-Perform Single Crystals  

NLE Websites -- All DOE Office Websites (Extended Search)

Platinum Nanoclusters Out-Perform Single Crystals Print Platinum Nanoclusters Out-Perform Single Crystals Print When it comes to metal catalysts, platinum is the standard. However, at about $2,000 an ounce, the high cost of the raw material presents major challenges for the future wide-scale use of platinum in fuel cells. Berkeley Lab research suggests that one possible way to meet these challenges is to think small. Researchers from Berkeley Lab's Materials Sciences Division have found that under high pressure-comparable to the pressures at which many industrial technologies operate-platinum surfaces can change their structure dramatically in response to the presence of high-coverage reactants. High-pressure scanning tunneling microscopes (STM) and ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) at ALS Beamlines 9.3.2 and 11.0.2 allowed researchers to study catalysts' structure and composition under realistic conditions.

29

Platinum Nanoclusters Out-Perform Single Crystals  

NLE Websites -- All DOE Office Websites (Extended Search)

Platinum Nanoclusters Out-Perform Single Crystals Print Platinum Nanoclusters Out-Perform Single Crystals Print When it comes to metal catalysts, platinum is the standard. However, at about $2,000 an ounce, the high cost of the raw material presents major challenges for the future wide-scale use of platinum in fuel cells. Berkeley Lab research suggests that one possible way to meet these challenges is to think small. Researchers from Berkeley Lab's Materials Sciences Division have found that under high pressure-comparable to the pressures at which many industrial technologies operate-platinum surfaces can change their structure dramatically in response to the presence of high-coverage reactants. High-pressure scanning tunneling microscopes (STM) and ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) at ALS Beamlines 9.3.2 and 11.0.2 allowed researchers to study catalysts' structure and composition under realistic conditions.

30

Platinum Nanoclusters Out-Perform Single Crystals  

NLE Websites -- All DOE Office Websites (Extended Search)

Platinum Nanoclusters Out-Perform Single Crystals Print Platinum Nanoclusters Out-Perform Single Crystals Print When it comes to metal catalysts, platinum is the standard. However, at about $2,000 an ounce, the high cost of the raw material presents major challenges for the future wide-scale use of platinum in fuel cells. Berkeley Lab research suggests that one possible way to meet these challenges is to think small. Researchers from Berkeley Lab's Materials Sciences Division have found that under high pressure-comparable to the pressures at which many industrial technologies operate-platinum surfaces can change their structure dramatically in response to the presence of high-coverage reactants. High-pressure scanning tunneling microscopes (STM) and ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) at ALS Beamlines 9.3.2 and 11.0.2 allowed researchers to study catalysts' structure and composition under realistic conditions.

31

Platinum Nanoclusters Out-Perform Single Crystals  

NLE Websites -- All DOE Office Websites (Extended Search)

Platinum Nanoclusters Out-Perform Single Crystals Print Platinum Nanoclusters Out-Perform Single Crystals Print When it comes to metal catalysts, platinum is the standard. However, at about $2,000 an ounce, the high cost of the raw material presents major challenges for the future wide-scale use of platinum in fuel cells. Berkeley Lab research suggests that one possible way to meet these challenges is to think small. Researchers from Berkeley Lab's Materials Sciences Division have found that under high pressure-comparable to the pressures at which many industrial technologies operate-platinum surfaces can change their structure dramatically in response to the presence of high-coverage reactants. High-pressure scanning tunneling microscopes (STM) and ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) at ALS Beamlines 9.3.2 and 11.0.2 allowed researchers to study catalysts' structure and composition under realistic conditions.

32

Platinum Nanoclusters Out-Perform Single Crystals  

NLE Websites -- All DOE Office Websites (Extended Search)

Platinum Nanoclusters Out-Perform Single Crystals Print Platinum Nanoclusters Out-Perform Single Crystals Print When it comes to metal catalysts, platinum is the standard. However, at about $2,000 an ounce, the high cost of the raw material presents major challenges for the future wide-scale use of platinum in fuel cells. Berkeley Lab research suggests that one possible way to meet these challenges is to think small. Researchers from Berkeley Lab's Materials Sciences Division have found that under high pressure-comparable to the pressures at which many industrial technologies operate-platinum surfaces can change their structure dramatically in response to the presence of high-coverage reactants. High-pressure scanning tunneling microscopes (STM) and ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) at ALS Beamlines 9.3.2 and 11.0.2 allowed researchers to study catalysts' structure and composition under realistic conditions.

33

High Cycle Fatigue in a Single Crystal Superalloy: Time ...  

Science Conference Proceedings (OSTI)

Keywords: Single crystal superalloys, High cycle fatigue, Environmental coatings, Rupture ... modes were modeled separately and then combined into a damage.

34

Variation in Machinability of Single Crystal Materials in Micromechanical Machining  

E-Print Network (OSTI)

Single Crystal Cutting of Brass”, Annals of the CIRP, Vol.in microcutting of brass as a function of crystallographic

Lee, Dae-Eun; Min, Sangkee; Deichmueller, Manuel; Dornfeld, David

2006-01-01T23:59:59.000Z

35

Platinum Nanoclusters Out-Perform Single Crystals  

NLE Websites -- All DOE Office Websites (Extended Search)

Platinum Nanoclusters Out-Perform Single Platinum Nanoclusters Out-Perform Single Crystals Platinum Nanoclusters Out-Perform Single Crystals Print Wednesday, 27 October 2010 00:00 When it comes to metal catalysts, platinum is the standard. However, at about $2,000 an ounce, the high cost of the raw material presents major challenges for the future wide-scale use of platinum in fuel cells. Berkeley Lab research suggests that one possible way to meet these challenges is to think small. Researchers from Berkeley Lab's Materials Sciences Division have found that under high pressure-comparable to the pressures at which many industrial technologies operate-platinum surfaces can change their structure dramatically in response to the presence of high-coverage reactants. High-pressure scanning tunneling microscopes (STM) and ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) at ALS Beamlines 9.3.2 and 11.0.2 allowed researchers to study catalysts' structure and composition under realistic conditions.

36

Research on stable, high-efficiency amorphous silicon multijunction modules  

DOE Green Energy (OSTI)

This report describes research to improve the understanding of amorphous silicon alloys and other relevant non-semiconductor materials for use in high-efficiency, large-area multijunction modules. The research produced an average subcell initial efficiency of 8.8% over a 1-ft{sup 2} area using same-band-gap, dual-junction cells deposited over a ZnO/AlSi back reflector. An initial efficiency of 9.6% was achieved using a ZnO/Ag back reflector over smaller substrates. A sputtering machine will be built to deposit a ZnO/Ag back reflector over a 1-ft{sup 2} area so that a higher efficiency can also be obtained on larger substrates. Calculations have been performed to optimize the grid pattern, bus bars, and cell interconnects on modules. With our present state of technology, we expect a difference of about 6% between the aperture-area and active-area efficiencies of modules. Preliminary experiments show a difference of about 8%. We can now predict the performance of single-junction cells after long-term light exposure at 50{degree}C by exposing cells to short-term intense light at different temperatures. We find that single-junction cells deposited on a ZnO/Ag back reflector show the highest stabilized efficiency when the thickness of the intrinsic layers is about 2000 {angstrom}. 8 refs.

Guha, S. (United Solar Systems Corp., Troy, MI (United States))

1991-12-01T23:59:59.000Z

37

Research on stable, high-efficiency amorphous silicon multijunction modules  

DOE Green Energy (OSTI)

This report describes the progress made during Phase 1 of research and development program to obtain high-efficiency amorphous silicon alloy multijunction modules. Using a large-area deposition system, double-and triple-junction cells were made on stainless steel substrates of over 1 ft{sup 2} area with Ag and ZnO predeposited back reflector. Modules of over 1 ft{sup 2} were produced with between 9.2% and 9.9 initial aperture-area efficiencies as measured under a USSC Spire solar simulator. Efficiencies as measured under the NREL Spire solar simulator were found to be typically 15% to 18% lower. The causes for this discrepancy are now being investigated. The modules show about 15% degradation after 600 hours of one-sun illumination at 50{degrees}C. To optimize devices for higher stabilized efficiency, a new method was developed by which the performance of single-junction cells after long-term, one-sun exposure at 50{degrees}C can be predicted by exposing cells to short-term intense light at different temperatures. This method is being used to optimize the component cells of the multijunction structure to obtain the highest light-degraded efficiency.

Banerjee, A.; Chen, E.; Clough, R.; Glatfelter, T.; Guha, S.; Hammond, G.; Hopson, M.; Jackett, N.; Lycette, M.; Noch, J.; Palmer, T.; Pawlikiewicz, A.; Rosenstein, I.; Ross, R.; Wolf, D.; Xu, X.; Yang, J.; Younan, K.

1992-04-01T23:59:59.000Z

38

Research on stable, high-efficiency amorphous silicon multijunction modules  

DOE Green Energy (OSTI)

This report describes research on semiconductor and non-semiconductor materials to enhance the performance of multi-band-gap, multijunction panel with an area greater than 900 cm[sup 2] by 1992. Double-junction and triple-junction cells are mode on a Ag/ZnO back reflector deposited on stainless steel substrates. An a-SiGe alloy is used for the i-layer in the bottom and the middle cells; the top cell uses an amorphous silicon alloy. After the evaporation of an antireflection coating, silver grids and bus bars are put on the top surface and the panel is encapsulated in an ethylene vinyl acetate (EVA)/Tefzel structure to make a 1-ft[sup 2] monolithic module.

Guha, S. (United Solar Systems Corp., Troy, MI (United States))

1992-09-01T23:59:59.000Z

39

Femtosecond Laser Micromachining of Single-Crystal Superalloys  

Science Conference Proceedings (OSTI)

scale features in multi-layer material systems for aerospace and power generation components. Introduction. Multiple generations of single crystal superalloys ...

40

The Formation of SRZ on a Fourth Generation Single Crystal ...  

Science Conference Proceedings (OSTI)

4th generation nickel-base single crystal (SC) superalloy with aluminide coating ... Granular precipitates distributed in the upper part of SRZ, and needle-like ...

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Porosity Clusters and Recrystallization in Single Crystal Components  

Science Conference Proceedings (OSTI)

The influence of cross-section transients on dendritic single-crystal growth in the .... Ceramic accumulations in the transient region also influence heat transfer.

42

Undercooling Related Casting Defects in Single Crystal Turbine ...  

Science Conference Proceedings (OSTI)

ger problem during the single crystal solidification of turbine blades for stationary gas turbines. Hence the intention of tem- perature measurements during the ...

43

Determination of Atomistic Structure of Ni-Base Single Crystal ...  

Science Conference Proceedings (OSTI)

l-2-1, Sengen, Tsukuba Science City, 305, Japan. *Department of ... The atomic locations of alloying elements in some Ni-base single crystal superalloys have ...

44

Predicting Deformation of Single Crystal Niobium Using Crystal ...  

Science Conference Proceedings (OSTI)

... Nb. Crystal plasticity models capable of predicting shape changes in single crystal Nb dog bone samples having different orientations have been developed,  ...

45

Single Crystal PWA 1472 in High Pressure Hydrogen  

Science Conference Proceedings (OSTI)

SINGLE CRYSTAL PWA 1472. IN HIGH PRESSURE HYDROGEN. D. P. DeLUCA, R. W. HATALA. UNITED TECHNOLOGIES. PRATT & WHITNEY. P. 0.

46

Multiscale Modelling of Single Crystal Superalloys for Gas Turbine Blades  

E-Print Network (OSTI)

Multiscale Modelling of Single Crystal Superalloys for Gas Turbine Blades PROEFSCHRIFT ter Multiscale Modelling of Single Crystal Superalloys for Gas Turbine Blades / by Tiedo Tinga. ­ Eindhoven accumulation 120 5.5 Application 121 5.6 Summary and conclusions 128 6. Application to gas turbine parts 131 6

47

Cast polycrystalline silicon photovoltaic cell and module manufacturing technology improvements. Annual subcontract report, 1 December 1993--30 November 1994  

DOE Green Energy (OSTI)

This report describes work performed under a 3-y contract to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance, and expand Solarex`s commercial production capacities. Specific objectives are to reduce manufacturing cost for polycrstalline silicon PV modules to less than $1.20/W and to increase manufacturing capacity by a factor of 3. Solarex is working on casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1995-09-01T23:59:59.000Z

48

NETL: Gasification Systems - Single-Crystal Sapphire Optical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Crystal Sapphire Optical Fiber Sensor Instrumentation Virginia Polytechnic Institute Project No.: DE-FC26-99FT40685 Phase I - The Photonics Laboratory at Virginia Tech has...

49

A Single Crystal Niobium RF Cavity of the TESLA Shape  

DOE Green Energy (OSTI)

A fabrication method for single crystal niobium cavities of the TESLA shape was proposed on the basis of metallographic investigations and electron beam welding tests on niobium single crystals. These tests showed that a cavity can be produced without grain boundaries even in the welding area. An appropriate annealing allows the outgassing of hydrogen and stress relaxation of the material without destruction of the single crystal. A prototype single crystal single cell cavity was built. An accelerating gradient of 37.5 MV/m was reached after approximately 110 mu-m of Buffered Chanical Polishing (BCP) and in situ baking at 120°C for 6 hrs with a quality factor exceeding 2x1010 at 1.8 K. The developed fabrication method can be extended to fabrication of multi cell cavities.

W. Singer; X. Singer; P. Kneisel

2007-09-01T23:59:59.000Z

50

Fabrication of Ordered Array of Tips-pentacene Micro- and Nano-scale Single Crystals  

E-Print Network (OSTI)

As an important type of organic semiconductors, organic small molecule crystals have great potential for low-cost applications such as plastic solar cells (PSC), organic light emitting diodes (OLED) and organic field-effect transistors (OFET). Among numerous molecular crystals, 6, 13-Bis(triisopropylsilylethynyl)pentacene (Tips-pentacene) has aroused much attention because it combines good solubility in common solvents and strong ?-? stacking from self-assembly. However, the inability to achieve ordered array of Tips-pentacene prevents the fabrication of high-performance organic integrated circuits. In this work, two new fabrication methods to pattern Tips-pentacene micro- and nano-scale single crystals are proposed. Both methods are facilitated by nanofabrication techniques such as nanoimprint and photolithography. In the first method, the surface of a silicon substrate is treated by surfactant coating and Tips-pentacene single crystals are deposited in squared patterns. In the second method, we made an ordered array of Tips-pentacene single crystals confined in Teflon-AF patterns. In both techniques, the effects of solvent type, processing temperature and template pattern size on crystal morphology and size are systematically studied.

Xia, Ning

2013-05-01T23:59:59.000Z

51

Single crystal Processing and magnetic properties of gadolinium nickel  

SciTech Connect

GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd{sub 2}O{sub 3} W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.

Shreve, Andrew John [Ames Laboratory

2012-11-02T23:59:59.000Z

52

Study of photomodulated reflectance in 6H-SiC single crystals  

SciTech Connect

The effect of ultraviolet irradiation of the surface of silicon-carbide (6H-SiC) single crystals on their optical reflectivity in the visible and violet spectral regions is studied. It is shown that the photoreflection-signal intensity is maximal, if the light beam is incident at the Brewster angle and polarized parallel to the plane of incidence. The relative change induced in the refractive index of the surface layers of a crystal (10{sup -3}) upon exposure to nitrogen laser radiation, caused by the generation of nonequilibrium free charge carriers in the conduction band of the material, is established.

Gruzintsev, A. N., E-mail: gran@iptm.ru [Russian Academy of Sciences, Institute of Microelectronics Technology and Ultra-High-Purity Materials (Russian Federation)

2013-04-15T23:59:59.000Z

53

14th Workshop on Crystalline Silicon Solar Cells& Modules: Materials and Processes; Summary of Discussion Sessions  

DOE Green Energy (OSTI)

The 14th Workshop discussion sessions addressed funding needs for Si research and for R&D to enhance U.S. PV manufacturing. The wrap-up session specifically addressed topics for the new university silicon program. The theme of the workshop, Crystalline Silicon Solar Cells: Leapfrogging the Barriers, was selected to reflect the astounding progress in Si PV technology during last three decades, despite a host of barriers and bottlenecks. A combination of oral, poster, and discussion sessions addressed recent advances in crystal growth technology, new cell structures and doping methods, silicon feedstock issues, hydrogen passivation and fire through metallization, and module issues/reliability. The following oral/discussion sessions were conducted: (1) Technology Update; (2) Defects and Impurities in Si/Discussion; (3) Rump Session; (4) Module Issues and Reliability/Discussion; (5) Silicon Feedstock/Discussion; (6) Novel Doping, Cells, and Hetero-Structure Designs/Discussion; (7) Metallization/Silicon Nitride Processing/Discussion; (8) Hydrogen Passivation/Discussion; (9) Characterization/Discussion; and (10) Wrap-Up. This year's workshop lasted three and a half days and, for the first time, included a session on Si modules. A rump session was held on the evening of August 8, which addressed efficiency expectations and challenges of c Si solar cells/modules. Richard King of DOE and Daren Dance of Wright Williams& Kelly (formerly of Sematech) spoke at two of the luncheon sessions. Eleven students received Graduate Student Awards from funds contributed by the PV industry.

Sopori, B.; Tan, T.; Sinton, R.; Swanson, D.

2004-10-01T23:59:59.000Z

54

TOPAZ: the Single Crystal Diffractometer at SNS | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

TOPAZ-Single-Crystal Diffractometer TOPAZ-Single-Crystal Diffractometer TOPAZ instrument scientist Christina Hoffmann and scientific associate Matt Frost at TOPAZ. TOPAZ instrument scientist Christina Hoffmann and scientific associate Matt Frost at TOPAZ. TOPAZ is an elastic scattering instrument that allows for probing of material structures and responses under controlled environmental conditions. It enables neutron measurement of the same single-crystal samples that is possible with x-ray diffraction. Data are collected on samples of 0.1 mm3 or less. Resolution is such that an average unit cell size of [50 Ă— 50 Ă— 50] Ă…3 for compounds of moderate complexity can be easily accommodated. This includes inorganic large and porous framework and guest-host materials, metal (in-)organic cluster and

55

Photorefractive Properties of Stoichiometric Lithium Niobate Single Crystals  

SciTech Connect

The specific features of photorefractive light scattering in nominally pure stoichiometric (Li/Nb = 1) sin- gle crystals grown from a melt with 58.6 mol % Li{sub 2}O (LiNbO{sub 3}st) and in the stoichiometric single crystals grown from a melt of congruent composition in the presence of K{sub 2}O flux (LiNbO{sub 3}stK{sub 2}O) have been investi- gated. At an excitation power of 30 mW, LiNbO{sub 3}stK{sub 2}O single crystals are found to exhibit a stronger photo- refractive effect than LiNbO{sub 3}st single crystals.

Sidorov, N. V. [Russian Academy of Sciences, Institute of Chemistry and Technology of Rare Earth Elements and Mineral Raw Materials, Kola Scientific Center (Russian Federation); Antonycheva, E. A.; Syui, A. V. [Far Eastern State Transport University (Russian Federation); Palatnikov, M. N., E-mail: palat_mn@chemy.kolasc.net.ru [Russian Academy of Sciences, Institute of Chemistry and Technology of Rare Earth Elements and Mineral Raw Materials, Kola Scientific Center (Russian Federation)

2010-11-15T23:59:59.000Z

56

Degradation Analysis of Weathered Crystalline-Silicon PV Modules: Preprint  

DOE Green Energy (OSTI)

We present an analysis of the results of a solar weathering program that found a linear relationship between maximum power degradation and the total UV exposure dose for four different types of commercial crystalline Si modules. The average degradation rate for the four modules types was 0.71% per year. The analysis showed that losses of short-circuit current were responsible for the maximum power degradation. Judging by the appearance of the undegraded control modules, it is very doubtful that the short-circuit current losses were caused by encapsulation browning or obscuration. When we compared the quantum efficiency of a single cell in a degraded module to one from an unexposed control module, it appears that most of the degradation has occurred in the 800 - 1100 nm wave-length region, and not the short wavelength region.

Osterwald, C. R.; Anderberg, A.; Rummel, S.; Ottoson, L.

2002-05-01T23:59:59.000Z

57

Characterization of Multicrystalline Silicon Modules with System Bias Voltage Applied in Damp Heat  

DOE Green Energy (OSTI)

As it is considered economically favorable to serially connect modules to build arrays with high system voltage, it is necessary to explore potential long-term degradation mechanisms the modules may incur under such electrical potential. We performed accelerated lifetime testing of multicrystalline silicon PV modules in 85 degrees C/ 85% relative humidity and 45 degrees C/ 30% relative humidity while placing the active layer in either positive or negative 600 V bias with respect to the grounded module frame. Negative bias applied to the active layer in some cases leads to more rapid and catastrophic module power degradation. This is associated with significant shunting of individual cells as indicated by electroluminescence, thermal imaging, and I-V curves. Mass spectroscopy results support ion migration as one of the causes. Electrolytic corrosion is seen occurring with the silicon nitride antireflective coating and silver gridlines, and there is ionic transport of metallization at the encapsulant interface observed with damp heat and applied bias. Leakage current and module degradation is found to be highly dependent upon the module construction, with factors such as encapsulant and front glass resistivity affecting performance. Measured leakage currents range from about the same seen in published reports of modules deployed in Florida (USA) and is accelerated to up to 100 times higher in the environmental chamber testing.

Hacke, P.; Kempe, M.; Terwilliger, K.; Glick, S.; Call, N.; Johnston, S.; Kurtz, S.

2011-07-01T23:59:59.000Z

58

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, January 1, 1995--December 31, 1995  

DOE Green Energy (OSTI)

The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three.

Wohlgemuth, J. [Amoco/Enron Solar, Frederick, MD (United States)

1996-06-01T23:59:59.000Z

59

Decade of PV Industry R and D Advances in Silicon Module Manufacturing  

DOE Green Energy (OSTI)

The US Photovoltaic (PV) industry has made significant technical advances in crystalline silicon (Si) module manufacturing through the PV Manufacturing R and D Project during the past decade. Funded Si technologies in this project have been Czochralski, cast polycrystalline, edge-defined film-fed growth (EFG) ribbon, string ribbon, and Si-film. Specific R and D Si module-manufacturing categories that have shown technical growth and will be discussed are in crystal growth and processing, wafering, cell fabrication, and module manufacturing. These R and D advancements since 1992 have contributed to a 30% decrease in PV manufacturing costs and stimulated a sevenfold increase in PV production capacity.

Symko-Davis, M.; Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Laboratory; King, R. [U.S. Department of Energy; Ruby, D.S. [Sandia National Laboratories

2001-01-18T23:59:59.000Z

60

Single crystal to single crystal transition in (10, 3)-d framework with pyrazine-2-carboxylate ligand: Synthesis, structures and magnetism  

Science Conference Proceedings (OSTI)

Assembling of pyrazine-2-carboxylate (Pzc) acid with nickel chlorine under solvothermal condition with MeOH as solvent gave a porous complex 1 {l_brace}[Ni(Pzc)ClH{sub 2}O]{center_dot}MeOH{r_brace}{sub n} with 1D channels. In 1 the ligands and metal ions are connected by three of each other and a rare (10,3)-d topology net is gained. The MeOH molecules filled in the 1D channels as guests. It is interesting that 1 undergoes a single-crystal-to-single-crystal transformation to another complex 2 when the guest MeOH molecules in the channels are exchanged by water molecules. Magnetic study indicates anti-ferromagnetic couplings exist in the two complexes and the guest exchange in the complex has little influence on the magnetism. - Graphical abstract: A porous complex 1 with rare (10,3)-d net was gained, and 1 underwent a single-crystal-to-single-crystal transformation to another phase 2. Highlights: Black-Right-Pointing-Pointer New (10,3)-d net was obtained with pyrazine-2-carboxylate ligands as a triangular node. Black-Right-Pointing-Pointer The complex 1 has a 1D channel filled with methanol molecules as guests. Black-Right-Pointing-Pointer 1 could undergo SCSC structural transition to 2 after guests exchanged. Black-Right-Pointing-Pointer Antiferromagnetic interactions were found in 1 and 2.

Yang, Qian [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China) [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Department of Chemistry, Tianjin Key Lab on Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071 (China); Zhao, Jiong-Peng, E-mail: horryzhao@yahoo.com [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China)] [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Liu, Zhong-Yi [College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387 (China)] [College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387 (China)

2012-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Research on stable, high-efficiency, large-area amorphous silicon based modules -- Task B  

DOE Green Energy (OSTI)

This report documents progress in developing a stable, high- efficiency, four-terminal hybrid tandem module. The module consists of a semi-transparent, thin-film silicon:hydrogen alloy (TFS) top circuit and a copper indium diselenide (CuInSe{sub 2}) bottom circuit. Film deposition and patterning processes were successfully extended to 0.4-m{sup 2} substrates. A 33.2-W (8.4% efficient) module with a 3970-cm{sup 2} aperture area and a white back reflector was demonstrated; without the back reflector, the module produced 30.2 W (7.6% efficient). Placing a laminated, 31.6-W, 8.1%-efficient CuInSe{sub 2} module underneath this TFS module, with an air gap between the two, produces 11.2 W (2.9% efficient) over a 3883-cm{sup 2} aperture area. Therefore, the four-terminal tandem power output is 41.4 W, translating to a 10.5% aperture-area efficiency. Subsequently, a 37.8-W (9.7% aperture-area efficiency) CuInSe{sub 2} module was demonstrated with a 3905-cm{sup 2} aperture area. Future performances of single-junction and tandem modules of this size were modeled, and predicted power outputs exceed 50 W (13% efficient) for CuInSe{sub 2} and 65 W (17% efficient) for TFS/CuInSe{sub 2} tandem modules.

Mitchell, K.W.; Willet, D.R. (Siemens Solar Industries, Camarillo, CA (USA))

1990-10-01T23:59:59.000Z

62

Growth of large single crystals of MgO  

SciTech Connect

The progressive identification of new high-technology applications and requirements for MgO single crystals in the commercial realm, as well as in DOE and other government-agency project areas, has resulted in an increased demand and international market for this material. Specifically, the demand for MgO crystals in large sizes and quantities is presently increasing due to existing and developing applications that include: (a) MgO substrates for the formation of electro-optic thin films and devices, (b) epitaxial substrates for high-temperature thin-film superconducting devices MgO optical components - including high-temperature windows, lenses, and prisms, and (d) specialty MgO crucibles and evaporation sources for thin-film production. In the course of CRADA ORNL92-0091, carried out with Commercial Crystal Laboratories of Naples, Florida as the commercial participant, we have made major progress in increasing the size of single crystals of MgO produced by means of the submerged-arc-fusion technique-thereby increasing the commercial utility of this material. Prior to the accomplishments realized in the course of this CRADA, the only commercially available single crystals of MgO were produced in Japan, Israel, and Russia. The results achieved in the course of CRADA ORNL92-0091 have now led to the establishment of a domestic commercial source of MgO single-crystal substrates and components, and the U.S. is no longer totally dependent on foreign sources of this increasingly important material.

Boatner, L.A. [Oak Ridge National Lab., TN (United States); Urbanik, M. [Commercial Crystal Laboratories, Inc., Naples, FL (United States)

1997-06-12T23:59:59.000Z

63

Innovative Characterization of Amorphous and Thin-Film Silicon for Improved Module Performance: 1 February 2005 - 31 July 2008  

DOE Green Energy (OSTI)

Electron spin resonance and nuclear magnetic resonance was done on amorphous silicon samples (modules with a-Si:H and a-SixGe1-x:H intrinsic layer) to study defects that contribute to Staebler-Wronski effect.

Taylor, P. C.; Williams, G. A.

2009-09-01T23:59:59.000Z

64

17th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings  

DOE Green Energy (OSTI)

The National Center for Photovoltaics sponsored the 17th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 5-8, 2007. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'Expanding Technology for a Future Powered by Si Photovoltaics.'

Sopori, B. L.

2007-08-01T23:59:59.000Z

65

Light-trapped, interconnected, Silicon-Film{trademark} modules. Final technical status report  

DOE Green Energy (OSTI)

AstroPower has continued its development of an advanced thin-silicon-based photovoltaic module product. This module combines the performance advantages of thin light-trapped silicon layers with the capability of integration into a low-cost, monolithically interconnected module. This report summarized work carried out over a 3-year, cost-shared contract. Key results accomplished during this phase include an NREL-verified conversion efficiency of 12.5% on a 0.47-cm{sup 2} device. The device structure used an insulating substrate and an active layer less than 100 {micro}m thick. A new metalization scheme was designed using insulating crossovers. This technology was demonstrated on a 36-segment, 321-cm{sup 2}, interconnected module. That module was tested at NREL with an efficiency of 9.79%. Further advances in metalization have led to an advanced single back-contact design that will offer low cost through ease of processing and higher performance through reduced shading.

Hall, R.B.; Rand, J.A.; Ford, D.H.; Ingram, A.E. [AstroPower, Inc., Newark, DE (United States)

1998-04-01T23:59:59.000Z

66

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual subcontract report, January 1--June 30, 1995  

DOE Green Energy (OSTI)

The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. To achieve these objectives, Solarex is working in the following technical areas: casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling. Accomplishments reported include: Cast first successful larger ingot producing 73% larger volume of usable Si; Increased the size of the ingot even further and cast an ingot yielding nine 11.4 {times} 11.4 cm bricks, representing a 125% increase in usable Si from a single casting; Operated the wire-saw in a semi-operational mode, producing 459,000 wafers at 94.1% overall yield; Reduced the cost of wire-saw consumables, spare parts, and waste disposal; Developed a cost-effective back surface field process that increases cell efficiency by 5% and began production trials; Developed a plan for increasing the capacity in the module assembly area; Completed qualification testing of modules built using Spire`s automated tabbing and stringing machine; Selected, tested, and qualified a low-cost electrical termination system; Completed long-term UV testing of experimental back sheets; Qualified the structure and adhesive-tape system for mounting frameless modules; and ARRI completed a study of the fracture properties of cast polycrystalline Si wafers and provided the information necessary to calculate the maximum stresses allowable during wafer handling.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1996-02-01T23:59:59.000Z

67

Large pyramid shaped single crystals of BiFeO{sub 3} by solvothermal synthesis method  

SciTech Connect

Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO{sub 3}. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas; Sastry, V. Sankara [Condensed Matter Physics Division, Materials Science Group, Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India); Condensed Matter Physics Division, Materials Science Group (India)

2012-06-05T23:59:59.000Z

68

Acquisition of Single Crystal Growth and Characterization Equipment  

Science Conference Proceedings (OSTI)

Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering studies through efforts with numerous collaborators. These endeavors will assist the effort to explain various outstanding theoretical problems, such as order parameter symmetries and electron-pairing mechanisms in unconventional superconductors, the relationship between superconductivity and magnetic order in certain correlated electron systems, the role of disorder in non-Fermi liquid behavior and unconventional superconductivity, and the nature of interactions between localized and itinerant electrons in these materials. Understanding the mechanisms behind strongly correlated electron behavior has important technological implications.

Maple, M. Brian; Zocco, Diego A.

2008-12-09T23:59:59.000Z

69

ATMOSPHERIC EFFECTS ON THE PERFORMANCE OF CDZNTE SINGLE CRYSTAL DETECTORS  

Science Conference Proceedings (OSTI)

The production of high-quality ternary single-crystal materials for radiation detectors has progressed over the past 15 years. One of the more common materials being studied is CdZnTe (CZT), which can be grown using several methods to produce detector-grade materials. The work presented herein examines the effects of environmental conditions including temperature and humidity on detector performance [full-width at half-maximum (FWHM)] using the single pixel with guard detector configuration. The effects of electrical probe placement, reproducibility, and aging are also presented.

Washington, A.; Duff, M.; Teague, L.

2010-05-12T23:59:59.000Z

70

NETL: Gasification - Single-Crystal Sapphire Optical Fiber Sensor  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier Optimization and Plant Supporting Systems Gasifier Optimization and Plant Supporting Systems Single-Crystal Sapphire Optical Fiber Sensor Instrumentation Virginia Polytechnic Institute and State University Center for Photonics Technology Project Number: DE-FC26-99FT40685 Project Description Phase I - The Photonics Laboratory at Virginia Tech has successfully developed a novel temperature sensor capable of operating at temperatures up to 1600 °C and in harsh conditions. The sensor uses single-crystal sapphire to make an optically-based measurement and will fulfill the need for the real-time monitoring of high temperatures created in gasification processes. Phase II - Based on a successful Phase I laboratory demonstration of a Broadband Polarimetric Differential Interferometric (BPDI) temperature sensor, Virginia Tech's Phase II development objective is to further the development of the sensor for industrial use in slagging coal gasifiers. This will include ruggedizing the design of the sensor and creation of a suitable protective housing such that it can be placed into existing ports of coal gasifiers. The potential industrial use of the sensor will be determined through full-scale testing and development. The sensor design and fabrication has been completed and is undergoing testing. Overall performance and survivability of the sensor will be determined.

71

Strength anomaly in B2 FeAl single crystals  

Science Conference Proceedings (OSTI)

Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). The orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from -type to -type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.

Yoshimi, K.; Hanada, S.; Yoo, M.H. [Oak Ridge National Lab., TN (United States); Matsumoto, N. [Tohoku Univ. (Japan). Graduate School

1994-12-31T23:59:59.000Z

72

Bruker Workshop on Single Crystal X-Ray Diffraction  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnosis and Treatment of Problem Structures: Diagnosis and Treatment of Problem Structures: A Bruker Workshop on Single Crystal X-Ray Diffraction May 30, 2008 Chemistry Department University of Tennessee Knoxville, TN This meeting focuses on the scientific resources of four ORNL user facilities funded by the DOE Office of Basic Energy Sciences. Who Should Attend Synopsis Goals Scheduled Agenda Workshop Materials Confirmed Speakers Important Dates Registration - now open Location - Directions and Map Sponsors Organizing and Local Committee Contacts Relevant Literature, References, Websites Local Information Bruker - UT Workshop Who Should Attend? The Workshop is directed to the newcomer as well as the experienced user of a Bruker Apex / Apex-II system and SHELX software. It will concentrate on hard to solve and/or refine problem structures. We envision it to be

73

Dislocation nucleation in bcc Ta single crystals studied by nanoindentation  

SciTech Connect

The study of dislocation nucleation in closed-packed metals by nanoindentation has recently attracted much interest. Here, we address the peculiarities of the incipient plasticity in body centered cubic (bcc) metals using low index Ta single-crystals as a model system. The combination of nanoindentation with high-resolution atomic force microscopy provides us with experimental atomic-scale information on the process of dislocation nucleation and multiplication. Our results reveal a unique deformation behavior of bcc Ta at the onset of plasticity which is distinctly different from that of closed-packed metals. Most noticeable, we observe only one rather than a sequence of discontinuities in the load-displacement curves. This and other differences are discussed in context of the characteristic plastic deformation behavior of bcc metals.

Biener, M M; Biener, J; Hodge, A M; Hamza, A V

2007-08-08T23:59:59.000Z

74

Single crystal metal wedges for surface acoustic wave propagation  

DOE Patents (OSTI)

An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

Fisher, E.S.

1980-05-09T23:59:59.000Z

75

Single crystal metal wedges for surface acoustic wave propagation  

DOE Patents (OSTI)

An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

Fisher, Edward S. (Wheaton, IL)

1982-01-01T23:59:59.000Z

76

HYDROGEN CHEMISORPTION ON Pt SINGLE CRYSTAL SURFACES IN ACIDIC SOLUTIONS  

DOE Green Energy (OSTI)

Hydrogen chemisorption from dilute acidic solution onto Pt single crystal surfaces was examined using an electrochemical cell directly coupled to LEED/Auger analytical system. No pre-anodization was used prior to observing hydrogen adsorption by cyclic voltammetry so that clean surfaces having the ordered structures indicated by LEED were studied. The problem of contributions from non-ordered parts of the electrode like support wires and edges was solved by using a gold evaporation masking technique. The specific contribution of atomic imperfections to the voltammetry curve was deduced from the ordered and countable imperfections occurring on high Miller index single crystal surfaces that have a stepped structure. The H-Pt bond energy Has found to be structure sensitive, and sensitive both to local site geometry and long range order in the surface. The bond strength was found to vary systematically: n(111)x(100) > (100) > n(111)x(111) > (110) > (111). Distinct states for hydrogen at steps versus hydrogen on terraces could be distinguished. The (110) surface is shown to be a (111) vicinal, probably the [3(111) x 2(111)] microfacetted surface. The zero coverage heat of adsorption on the well-ordered (111) surface (48 kJ/mol) in solutions is the same as the value reported by Ertl and co-workers for adsorption on a (111) surface in vacuum. Adsorption Isotherms for hydrogen on the (111) and (100) surfaces is adequately fit by the classical model for immobile adsorption at single sites with nearest neighbor repulsive interaction.

Ross, Jr., Philip N.

1980-04-01T23:59:59.000Z

77

Monolithically interconnected Silicon-Film{trademark} module technology: Annual technical report, 25 November 1997--24 November 1998  

DOE Green Energy (OSTI)

AstroPower continued its development of an advanced thin-silicon-based photovoltaic module product. This module combines the performance advantages of thin, light-trapped silicon layers with the capability of integration into a low-cost, monolithically interconnected array. This report summarizes the work carried out over the first year of a three-year, cost-shared contract, which has yielded the following results: Development of a low-cost, insulating, ceramic substrate that provides mechanical support at silicon growth temperatures, is matched to the thermal expansion of silicon, provides the optical properties required for light trapping through random texturing, and can be formed in large areas on a continuous basis. Different deposition techniques have been investigated, and AstroPower has developed deposition processes for the back conductive layer, the p-type silicon layer, and the mechanical/chemical barrier layer. Polycrystalline films of silicon have been grown on ceramics using AstroPower's Silicon-Film{trademark} process. These films are from 50 to 75 {micro}m thick, with columnar grains extending through the thickness of the film. Aspect ratios from 5:1 to 20:1 have been observed in these films.

Hall, R.B.; Ford, D.H.; Rand, J.A.; Ingram, A.E.

1999-11-11T23:59:59.000Z

78

Surface and Edge Quality Variation in Precision Machining of Single Crystal and Polycrystalline Materials  

E-Print Network (OSTI)

single crystal cutting of b brass. Ann. CIRP, 1980, 8 Sato,micromilling of microgrooves on brass and stainless steelin microcutting of brass as a function of crystallographic

Min, Sangkee; Lee, D.E.; de Grave, A.; Valente, Carlos M. O.; Lin, J.; Dornfeld, David

2006-01-01T23:59:59.000Z

79

Surface and Edge Quality Variation in Precision Machining of Single Crystal and Polycrystalline Materials  

E-Print Network (OSTI)

Single Crystal Cutting of b Brass,” Annals of the CIRP, vol.in microcutting of brass as a function of crystallographicmicromilling of microgrooves on brass and stainless steel

Min, Sangkee; Lee, Dae-Eun; de Grave, Arnaud; De Oliveira Valente, Carlos M; Lin, Judy; Dornfeld, David A

2004-01-01T23:59:59.000Z

80

Rene' N4: A First Generation Single Crystal Turbine Airfoil Alloy with ...  

Science Conference Proceedings (OSTI)

GE Aircraft Engine's first generation single crystal (SX) turbine airfoil alloy, Rene N ..... Aircraft Engines, and Warren King who is now with GE Power. Generation ...

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Light-trapped interconnected, Silicon-Film{trademark} modules. Annual technical status report, 18 November 1995--18 November 1996  

DOE Green Energy (OSTI)

AstroPower is developing a module-manufacturing technology based on a film-silicon technology. AstroPower, as a Technology Partner in the Thin-Film PV Partnership, is employing its Silicon-Film{trademark} technology to develop an advanced thin-silicon-based product. This module will combine the design and process features of the most advanced thin-silicon solar cells with light-trapping. These cells will be integrated into a low-cost interconnected array. During the second year of the 3-year project, AstroPower`s emphasis was on developing key submodule fabrication processes. Key results of the work include developing a new thin-film growth concept process based on attaching the low-cost substrate to the thin silicon layer after film growth; developing a new technique to achieve light-trapping in thin layers of silicon based on pigmented high-temperature glass materials; and developing key submodule fabrication processes, including contact grid design, subelement isolation, and screen-printed interconnection.

Hall, R.B.; Rand, J.A.; Cotter, J.E.; Ford, D.H. [AstroPower, Inc., Newark, DE (United States)

1997-02-01T23:59:59.000Z

82

BEAM TEST of the ATLAS SILICON DETECTOR MODULES with BINARY READOUT in the CERN H8 BEAM in 1996 1  

E-Print Network (OSTI)

, Spain, 21 Univ. of Wisconsin, Madison, WI, USA ABSTRACT Results are reported from a beam testBEAM TEST of the ATLAS SILICON DETECTOR MODULES with BINARY READOUT in the CERN H8 BEAM in 1996 1 F readout. Readout will be AC­coupled from n­type implant strips in n­bulk crystals. After radiation induced

83

DEVELOPMENT OF PROTECTIVE COATINGS FOR SINGLE CRYSTAL TURBINE BLADES  

DOE Green Energy (OSTI)

Turbine blades in coal derived syngas systems are subject to oxidation and corrosion due to high steam temperature and pressure. Thermal barrier coatings (TBCs) are developed to address these problems. The emphasis is on prime-reliant design and a better coating architecture, having high temperature and corrosion resistance properties for turbine blades. In Phase I, UES Inc. proposed to develop, characterize and optimize a prime reliant TBC system, having smooth and defect-free NiCoCrAlY bond layer and a defect free oxide sublayer, using a filtered arc technology. Phase I work demonstrated the deposition of highly dense, smooth and defect free NiCoCrAlY bond coat on a single crystal CMSX-4 substrate and the deposition of alpha-alumina and yttrium aluminum garnet (YAG) sublayer on top of the bond coat. Isothermal and cyclic oxidation test and pre- and post-characterization of these layers, in Phase I work, (with and without top TBC layer of commercial EB PVD YSZ) revealed significant performance enhancement.

Amarendra K. Rai

2006-12-04T23:59:59.000Z

84

Crack tip plasticity in single crystal UO2: Atomistic simulations  

SciTech Connect

The fracture behavior of single crystal uranium dioxide is studied using molecular dynamics simulations at room temperature. Initially, an elliptical notch is created on either {111} or {110} planes, and tensile loading is applied normal to the crack planes. For cracks on both planes, shielding of crack tips by plastic deformation is observed, and crack extension occurs for crack on {111} planes only. Two plastic processes, dislocation emission and phase transformation are identified at crack tips. The dislocations have a Burgers vector of ?110?/2, and glide on {100} planes. Two metastable phases, the so-called Rutile and Scrutinyite phases, are identified during the phase transformation, and their relative stability is confirmed by separate density- functional-theory calculations. Examination of stress concentration near crack tips reveals that dislocation emission is not an effective shielding mechanism. The formation of new phases may effectively shield the crack provided all phase interfaces formed near the crack tips are coherent, as in the case of cracks residing on {110} planes.

Yongfeng Zhang; Paul C. Millett; Michael Tonks; Bulent Biner; Xiang-Yang Liu; David A. Andersson

2012-11-01T23:59:59.000Z

85

Arc-melting preparation of single crystal LaB.sub.6 cathodes  

DOE Patents (OSTI)

A method for preparing single crystals of lanthanum hexaboride (LaB.sub.6) by arc melting a rod of compacted LaB.sub.6 powder. The method is especially suitable for preparing single crystal LaB.sub.6 cathodes for use in scanning electron microscopes (SEM) and scanning transmission electron microscopes (STEM).

Gibson, Edwin D. (Ames, IA); Verhoeven, John D. (Ames, IA)

1977-06-21T23:59:59.000Z

86

Discontinuous surface cracks during stress corrosion cracking of stainless steel single crystal  

E-Print Network (OSTI)

Discontinuous surface cracks during stress corrosion cracking of stainless steel single crystal L Keywords: A. Stainless steel B. SEM C. Stress corrosion a b s t r a c t Single crystal 321 stainless steel, and the river-markings exhibited microshear facets along the {1 1 1} plane. Interaction between the main crack

Volinsky, Alex A.

87

Superconducting Proximity Effect in Single-Crystal Nanowires  

E-Print Network (OSTI)

This dissertation describes experimental studies of the superconducting proximity effect in single-crystal Pb, Sn, and Zn nanowires of lengths up to 60 um, with both ends of the nanowires in contact with macroscopic electrodes that are either superconducting (Sn or Pb) or non-superconducting (Au). The Pb, Sn, and Zn nanowires are fabricated using a template-based electrochemical deposition method. Electric contacts to the nanowires are formed in situ during electrochemical growth. This method produces high transparency contacts between a pair of macroscopic electrodes and a single nanowire, circumventing the formation of oxide or other poorly conducting interface layers. Extensive analyses of the structure and the composition of the nanowire samples are presented to demonstrate that (1) the nanowires are single crystalline and (2) the nanowires are clean without any observable mixing of the materials from the electrodes. The nanowires being investigated are significantly longer than the nanowires with which electrode-induced superconductivity was previously investigated by other groups. We have observed that in relatively short (~6 um) Sn and Zn nanowires, robust superconductivity is induced at the superconducting transition temperatures of the electrodes. When Sn and Pb nanowires are in contact with a pair of Au electrodes, superconductivity is suppressed completely. For nanowires of 60 um in length, although the suppression of superconductivity by Au electrodes is only partial, the induced superconductivity at the higher transition temperatures of the electrodes remains full and robust. Therefore, an anomalous superconducting proximity effect has been observed on a length scale which far exceeds the expected length based on the existing theories of the proximity effect. The measured current-voltage characteristic of the nanowires reveals more details such as hysteresis, multiple Andreev reflection, and phase-slip centers. An interesting relation between the proximity effect and the residual-resistance-ratio of the nanowires has also been observed. Possible mechanisms for this proximity effect are discussed based on these experimental observations.

Liu, Haidong

2009-05-01T23:59:59.000Z

88

High-efficiency one-sun photovoltaic module demonstration using solar-grade CZ silicon. Final report  

DOE Green Energy (OSTI)

This work was performed jointly by Sandia National Laboratories (Albuquerque, NM) and Siemens Solar Industries (Camarillo, CA) under a Cooperative Research and Development Agreement (CRADA 1248). The work covers the period May 1994 to March 1996. The purpose of the work was to explore the performance potential of commercial, photovoltaic-grade Czochralski (Cz) silicon, and to demonstrate this potential through fabrication of high-efficiency cells and a module. Fabrication of the module was omitted in order to pursue further development of advanced device structures. The work included investigation of response of the material to various fabrication processes, development of advanced cell structures using the commercial material, and investigation of the stability of Cz silicon solar cells. Some important achievements of this work include the following: post-diffusion oxidations were found to be a possible source of material contamination; bulk lifetimes around 75 pts were achieved; efficiencies of 17.6% and 15.7% were achieved for large-area cells using advanced cell structures (back-surface fields and emitter wrap-through); and preliminary investigations into photodegradation in Cz silicon solar cells found that oxygen thermal donors might be involved. Efficiencies around 20% should be possible with commercial, photovoltaic-grade silicon using properly optimized processes and device structures.

Gee, J.M.

1996-10-01T23:59:59.000Z

89

Research on stable, high-efficiency amorphous silicon multijunction modules. Final subcontract report, 1 January 1991--31 August 1994  

DOE Green Energy (OSTI)

The principal objective of this program is to conduct research on semiconductor materials and non-semiconductor materials to enhance the performance of multibandgap, multijunction, large-area amorphous silicon-based alloy modules. The goal for this program is to demonstrate stabilized module efficiency of 12% for multijunction modules of area greater than 900 cm{sup 2}. Double-junction and triple-junction cells are made on Ag/ZnO back reflector deposited on stainless steel substrates. The top cell uses a-Si alloy; a-SiGe alloy is used for the i layer in the middle and the bottom cells. After evaporation of antireflection coating, silver grids and bus bars are put on the top surface, and the panel is encapsulated in an ethylene vinyl acetate (EVA)/Tefzel structure to make a one-square-foot monolithic module.

Guha, S. [United Solar Systems Corp., Troy, MI (United States)

1994-10-01T23:59:59.000Z

90

Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Crystal Sapphire Optical Fiber Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers Description Accurate temperature measurement inside a coal gasifier is essential for safe, efficient, and cost-effective operation. However, current sensors are prone to inaccurate readings and premature failure due to harsh operating conditions like high temperature (1,200-1,600 °C), high pressure (up to 500 pounds per square inch gauge [psig]),

91

Tunable Visible and Near-IR Emission from Sub-10 nm Etched Single-Crystal Si  

E-Print Network (OSTI)

silicon devices in the form of light- emitting diode or laser structures. KEYWORDS Silicon nanowires

Heaton, Thomas H.

92

Testing and Analysis for Lifetime Prediction of Crystalline Silicon PV Modules Undergoing Degradation by System Voltage Stress: Preprint  

DOE Green Energy (OSTI)

Acceleration factors are calculated for crystalline silicon PV modules under system voltage stress by comparing the module power during degradation outdoors to that in accelerated testing at three temperatures and 85% relative humidity. A lognormal analysis is applied to the accelerated lifetime test data considering failure at 80% of the initial module power. Activation energy of 0.73 eV for the rate of failure is determined, and the probability of module failure at an arbitrary temperature is predicted. To obtain statistical data for multiple modules over the course of degradation in-situ of the test chamber, dark I-V measurements are obtained and transformed using superposition, which is found well suited for rapid and quantitative evaluation of potential-induced degradation. It is determined that shunt resistance measurements alone do not represent the extent of power degradation. This is explained with a two-diode model analysis that shows an increasing second diode recombination current and ideality factor as the degradation in module power progresses. Failure modes of the modules stressed outdoors are examined and compared to those stressed in accelerated tests.

Hacke, P.; Smith, R.; Terwiliger, K.; Glick, S.; Jordan, D.; Johnston, S.; Kempe, M.; Kurtz, S.

2012-07-01T23:59:59.000Z

93

New Boron and Silicon Free Single Crystal-Diffusion Brazing Alloys  

Science Conference Proceedings (OSTI)

Based on the activation energies for diffusion an increase in process temperature of ..... M. Nazmy et al., “Environmental effects on tensile and low cycle fatigue ...

94

Stretchable form of single crystal silicon for high performance electronics on rubber substrates  

DOE Patents (OSTI)

The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

University of Illinois (Urbana, IL)

2009-04-21T23:59:59.000Z

95

Stretchable form of single crystal silicon for high performance electronics on rubber substrates  

DOE Patents (OSTI)

The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

Rogers, John A. (Champaign, IL); Khang, Dahl-Young (Seoul, KR); Sun, Yugang (Naperville, IL); Menard, Etienne (Durham, NC)

2012-06-12T23:59:59.000Z

96

Low cost, single crystal-like substrates for practical, high efficiency solar cells  

Science Conference Proceedings (OSTI)

It is well established that high efficiency (20%) solar cells can be routinely fabricated using single crystal photovoltaic (PV) materials with low defect densities. Polycrystalline materials with small grain sizes and no crystallographic texture typically result in reduced efficiences. This has been ascribed primarily to the presence of grain boundaries and their effect on recombination processes. Furthermore, lack of crystallographic texture can result in a large variation in dopant concentrations which critically control the electronic properties of the material. Hence in order to reproducibly fabricate high efficiency solar cells a method which results in near single crystal material is desirable. Bulk single crystal growth of PV materials is cumbersome, expensive and difficult to scale up. We present here a possible route to achieve this if epitaxial growth of photovoltaic materials on rolling-assisted-biaxially textured-substrates (RABiTS) can be achieved. The RABiTS process uses well-established, industrially scaleable, thermomechanical processing to produce a biaxially textured or single-crystal-like metal substrate with large grains (50-100 {mu}m). This is followed by epitaxial growth of suitable buffer layers to yield chemically and structurally compatible surfaces for epitaxial growth of device materials. Using the RABiTS process it should be possible to economically fabricate single-crystal-like substrates of desired sizes. Epitaxial growth of photovoltaic devices on such substrates presents a possible route to obtaining low-cost, high performance solar cells.

Goyal, A.; Specht, E.D.; List, F.A. [and others

1997-09-01T23:59:59.000Z

97

High-silicon {sup 238}PuO{sub 2} fuel characterization study: Half module impact tests  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements. The modular GPHS design was developed to address both survivability during launch abort and return from orbit. Previous testing conducted in support of the Galileo and Ulysses missions documented the response of GPHSs to a variety of fragment- impact, aging, atmospheric reentry, and Earth-impact conditions. The evaluations documented in this report are part of an ongoing program to determine the effect of fuel impurities on the response of the heat source to conditions baselined during the Galileo/Ulysses test program. In the first two tests in this series, encapsulated GPHS fuel pellets containing high levels of silicon were aged, loaded into GPHS module halves, and impacted against steel plates. The results show no significant differences between the response of these capsules and the behavior of relatively low-silicon fuel pellets tested previously.

Reimus, M.A.H.

1997-01-01T23:59:59.000Z

98

High Volume Manufacturing of Silicon-Film Solar Cells and Modules; Final Subcontract Report, 26 February 2003 - 30 September 2003  

DOE Green Energy (OSTI)

The objective of the PV Manufacturing R&D subcontract was to continue to improve AstroPower's technology for manufacturing Silicon-Film* wafers, solar cells, and modules to reduce costs, and increase production yield, throughput, and capacity. As part of the effort, new technology such as the continuous back metallization screen-printing system and the laser scribing system were developed and implemented. Existing processes, such as the silicon nitride antireflection coating system and the fire-through process were optimized. Improvements were made to the statistical process control (SPC) systems of the major manufacturing processes: feedstock preparation, wafer growth, surface etch, diffusion, and the antireflection coating process. These process improvements and improved process control have led to an increase of 5% relative power, and nearly 15% relative improvement in mechanical and visual yield.

Rand, J. A.; Culik, J. S.

2005-10-01T23:59:59.000Z

99

Performance of a silicon photovoltaic module under enhanced illumination and selective filtration of incoming radiation with simultaneous cooling  

Science Conference Proceedings (OSTI)

A promising option to reduce the cost of silicon photovoltaic systems is to concentrate the sunlight incident on the solar cells to increase the output power. However, this leads to higher module temperatures which affects performance adversely and may also cause long term damage. Proper cooling is therefore necessary to operate the system under concentrated radiation. The present work was undertaken to circumvent the problem in practical manner. A suitable liquid, connected to a heat exchanger, was placed in the housing of the photovoltaic module and unwanted wavelengths of solar radiation were filtered out to minimise overheating of the cells. The selection of the liquid was based on factors such as boiling point, transparency towards visible radiation, absorption of infrared and ultraviolet radiation, stability, flow characteristics, heat transfer properties, and electrical nonconductivity. Using a square parabolic type reflector, more than two fold increase in output power was realised on a clear sunny day employing a 0.13 m{sup 2} silicon solar module. Without the cooling arrangement the panel temperature rose uncontrollably. (author)

Maiti, Subarna; Vyas, Kairavi; Ghosh, Pushpito K. [Process Design and Engineering Cell, Central Salt and Marine Chemicals Research Institute (Council of Scientific and Industrial Research), G.B. Marg, Bhavnagar 364002, Gujarat (India)

2010-08-15T23:59:59.000Z

100

Polymorphic single crystal {r_reversible} single crystal transition in K{sub 0.975}Rb{sub 0.025}NO{sub 3}  

Science Conference Proceedings (OSTI)

Polymorphic transformations in K{sub 0.975}Rb{sub 0.025}NO{sub 3} single crystals have been investigated by optical microscopy and X-ray diffraction. The equilibrium temperature between modifications II and III has been determined. It is established that the crystal growth at II {r_reversible} III polymorphic transitions is accompanied by the formation and growth of daughter-modification nuclei in the matrix crystal.

Asadov, Yu. G., E-mail: yusifasadov@rambler.ru; Nasirov, E. V. [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan)

2010-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Single-crystal micro/nanostructures and thin films of lamellar molybdenum oxide by solid-state pyrolysis of organometallic derivatives of a cyclotriphosphazene  

Science Conference Proceedings (OSTI)

The solid-state pyrolysis of organometallic derivatives of a cyclotriphosphazene is demonstrated to be a new, simple and versatile solid-state templating method for obtaining single-crystal micro- and nanocrystals of transition and valve metal oxides. The technique, when applied to Mo-containing organometallics N{sub 3}P{sub 3}[OC{sub 6}H{sub 4}CH{sub 2}CN.Mo(CO){sub 5}]{sub 6} and N{sub 3}P{sub 3}[OC{sub 6}H{sub 4}CH{sub 2}CN.Mo(CO){sub 4} py]{sub 6}, results in stand-alone and surface-deposited lamellar MoO{sub 3} single crystals, as determined by electron and atomic force microscopies and X-ray diffraction. The size and morphology of the resulting crystals can be tuned by the composition of the precursor. X-ray photoelectron and infrared spectroscopies indicate that the deposition of highly lamellar MoO{sub 3} directly on an oxidized (400 nm SiO{sub 2}) surface or (100) single-crystal silicon surfaces yields a layered uniphasic single-crystal film formed by cluster diffusion on the surface during pyrolysis of the metal-carbonyl derivatives. For MoO{sub 3} in its layered form, this provides a new route to an important intercalation material for high energy density battery materials. - Graphical abstract: Lamellar MoO{sub 3} micro- and nanocrystals are prepared by pyrolysis of the organometallics N{sub 3}P{sub 3}[OC{sub 6}H{sub 4}CH{sub 2}CN.Mo(CO){sub 5}]{sub 6} (I) and N{sub 3}P{sub 3}[OC{sub 6}H{sub 4}CH{sub 2}CN.Mo(CO){sub 4} py]{sub 6} (II), in air at 800 {sup o}C. The single-crystal products exhibit a high degree of turbostratic layering (see image). Deposition and subsequent pyrolysis of uniphasic MoO{sub 3} from the precursors is also possible on suitable substrates and supports.

Diaz, Carlos, E-mail: cdiaz@uchile.c [Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Lavayen, Vladimir [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Valparaiso 2390123 (Chile); O'Dwyer, Colm, E-mail: colm.odwyer@ul.i [Department of Physics and Materials and Surface Science Institute, University of Limerick, Limerick (Ireland)

2010-07-15T23:59:59.000Z

102

Aero engine test experience with CMSX-4{reg_sign} alloy single-crystal turbine blades  

SciTech Connect

A team approach involving a turbine engine company (Rolls-Royce), its single-crystal casting facilities, and a superalloy developer and ingot manufacturer (Cannon-Muskegon), utilizing the concepts of simultaneous engineering, has been used to develop CMSX-4 alloy successfully for turbine blade applications. CMSX-4 alloy is a second-generation nickel-base single-crystal superalloy containing 3 percent (wt) rhenium (Re) and 70 percent volume fraction of the coherent {gamma}{prime} precipitate strengthening phase. The paper details the single-crystal casting process and heat treatment manufacturing development for turbine blades in CMSX-4 alloy. Competitive single-crystal casting yields are being achieved in production and extensive vacuum heat treatment experience confirms CMSX-4 alloy to have a practical production solution heat treat/homogenization ``window.`` The creep-rupture data-base on CMSX-4 alloy now includes 325 data points from 17 heats including 3,630 kg (8,000 lb) production size heats. An appreciable portion of this data was machined-from-blade (MFB) properties, which indicate turbine blade component capabilities based on single-crystal casting process, component configuration, and heat treatment. The use of hot isostatic pressing (HIP) has been shown to eliminate single-crystal casting micropores, which along with the essential absence of {gamma}/{gamma}{prime} eutectic phase, carbides, stable oxide, nitride and sulfide inclusions, results in remarkably high mechanical fatigue properties, with smooth and particularly notched specimens. The Re addition has been shown not only to benefit creep and mechanical fatigue strength, but also bare oxidation, hot corrosion, and coating performance. The high level of balanced properties determined by extensive laboratory evaluation has been confirmed during engine testing of the Rolls-Royce Pegasus turbofan.

Fullagar, K.P.L.; Broomfield, R.W.; Hulands, M. [Rolls-Royce PLC, Derby (United Kingdom). Aerospace Group; Harris, K.; Erickson, G.L.; Sikkenga, S.L. [Cannon-Muskegon Corp., Muskegon, MI (United States). SPS Technologies

1996-04-01T23:59:59.000Z

103

Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type and an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers.

Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.

1996-12-31T23:59:59.000Z

104

Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers. 12 figs.

Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.

1998-06-23T23:59:59.000Z

105

Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVsingle crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers.

Charache, Greg W. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY); Nichols, Greg J. (Burnt Hills, NY)

1998-01-01T23:59:59.000Z

106

Carousel Trackers with 1-Sun or 3-Sun Modules for Commercial Building Rooftops  

Science Conference Proceedings (OSTI)

The goal is lower cost solar electricity. Herein, two evolutional steps are described toward achieving this goal. The first step is to follow the sun with a solar tracker. Herein, a carousel tracker is described for mounting on commercial building flat rooftops in order to produce more kWh per kW relative to fixed PV modules. The second evolutionary improvement is to produce lower cost 3-sun CPV modules where two thirds of the expensive single crystal silicon material is replaced by less expensive mirror material. This paper describes the performance and durability of two prototype installations demonstrating these evolutionary innovations. In the first case, the installation and operation of 2 carousels equipped with traditional flat plate modules is described. In the second case, the operation of a carousel equipped with new 3-sun CPV modules is described. Both systems have been operating as expected for several months through the winter of 2007.

Gehl, Anthony C [ORNL; Maxey, L Curt [ORNL; Fraas, Dr. Lewis [JX Crystals, Inc.; Avery, James E. [JX Crystals, Inc.; Minkin, Leonid M [ORNL; Huang, H, [JX Crystals, Inc.

2008-01-01T23:59:59.000Z

107

18th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings, 3-6 August 2008, Vail, Colorado  

DOE Green Energy (OSTI)

The National Center for Photovoltaics sponsored the 18th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 3-6, 2008. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'New Directions for Rapidly Growing Silicon Technologies.'

Sopori, B. L.

2008-09-01T23:59:59.000Z

108

CO HYDROGENATION OVER CLEAN AND OXIDIZED RHODIUM FOIL AND SINGLE CRYSTAL CATALYSTS. CORRELATIONS OF CATALYST ACTIVITY, SELECTIVITY AND SURFACE COMPOSITION  

E-Print Network (OSTI)

AND OXIDIZED RHODIUM FOIL AND SINGLE CRYSTAL CATALYSTS.CORRELATIONS OF CATALYST ACTIVITY, SELECTIVITY AND SURFACEobserved over the clean Rh catalysts during the catalyzed

Castner, D.G.

2012-01-01T23:59:59.000Z

109

15th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Extended Abstracts and Papers  

DOE Green Energy (OSTI)

The National Center for Photovoltaics sponsored the 15th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 7-10, 2005. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The workshop addressed the fundamental properties of PV silicon, new solar cell designs, and advanced solar cell processing techniques. A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell designs, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The theme of this year's meeting was 'Providing the Scientific Basis for Industrial Success.' Specific sessions during the workshop included: Advances in crystal growth and material issues; Impurities and defects in Si; Advanced processing; High-efficiency Si solar cells; Thin Si solar cells; and Cell design for efficiency and reliability module operation. The topic for the Rump Session was ''Si Feedstock: The Show Stopper'' and featured a panel discussion by representatives from various PV companies.

Sopori, B. L.

2005-11-01T23:59:59.000Z

110

Development of large-area monolithically integrated silicon-film photovoltaic modules  

DOE Green Energy (OSTI)

This report describes work to develop Silicon-Film Product III into a low-cost, stable device for large-scale terrestrial power applications. The Product III structure is a thin (< 100 {mu}m) polycrystalline silicon layer on a non-conductive supporting ceramic substrate. The presence of the substrate allows cells to be isolated and in interconnected monolithically in various series/parallel configurations. The long-term goal for the product is efficiencies over 18% on areas greater than 1200 cm{sup 2}. The high efficiency is made possible through the benefits of using polycrystalline thin silicon incorporated into a light-trapping structure with a passivated back surface. Short-term goals focused on the development of large-area ceramics, a monolithic interconnection process, and 100 cm{sup 2} solar cells. Critical elements of the monolithically integrated device were developed, and an insulating ceramic substrate was developed and tested. A monolithic interconnection process was developed that will isolate and interconnect individual cells on the ceramic surface. Production-based, low-cost process steps were used, and the process was verified using free-standing silicon wafers to achieve an open-circuit voltage (V{sub oc}) of 8.25 V over a 17-element string. The overall efficiency of the silicon-film materials was limited to 6% by impurities. Improved processing and feedstock materials are under investigation.

Rand, J.A.; Bacon, C.; Cotter, J.E.; Lampros, T.H.; Ingram, A.E.; Ruffins, T.R.; Hall, R.B.; Barnett, A.M. (AstroPower, Inc., Newark, DE (United States))

1992-07-01T23:59:59.000Z

111

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual technical report, 1 January 1996--30 June 1996  

DOE Green Energy (OSTI)

Two specific objectives of Solarex`s program are to reduce the manufacturing cost for polycrystalline silicon photovoltaic modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. This report highlights accomplishments during the period of January 1 through June 30, 1996. Accomplishments include: began the conversion of production casting stations to increase ingot size; operated the wire saw in a production mode with higher yields and lower costs than achieved on the ID saws; developed and qualified a new wire guide coating material that doubles the wire guide lifetime and produces significantly less scatter in wafer thickness; completed a third pilot run of the cost-effective Al paste back-surface-field (BSF) process, verifying a 5% increase in cell efficiency and demonstrating the ability to process and handle the BSF paste cells; completed environmental qualification of modules using cells produced by an all-print metallization process; optimized the design of the 15.2-cm by 15.2-cm polycrystalline silicon solar cells; demonstrated the application of a high-efficiency process in making 15.2-cm by 15.2-cm solar cells; demonstrated that cell efficiency increases with decreasing wafer thickness for the Al paste BSF cells; qualified a vendor-supplied Tedlar/ethylene vinyl acetate (EVA) laminate to replace the combination of separate sheets of EVA and Tedlar backsheet; demonstrated the operation of a prototype unit to trim/lead attach/test modules; and demonstrated the operation of a wafer pull-down system for cassetting wet wafers.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1997-01-01T23:59:59.000Z

112

Research on stable, high-efficiency amorphous silicon multijunction modules. Semiannual subcontract report, 1 January 1990--30 June 1991  

DOE Green Energy (OSTI)

This report describes research to improve the understanding of amorphous silicon alloys and other relevant non-semiconductor materials for use in high-efficiency, large-area multijunction modules. The research produced an average subcell initial efficiency of 8.8% over a 1-ft{sup 2} area using same-band-gap, dual-junction cells deposited over a ZnO/AlSi back reflector. An initial efficiency of 9.6% was achieved using a ZnO/Ag back reflector over smaller substrates. A sputtering machine will be built to deposit a ZnO/Ag back reflector over a 1-ft{sup 2} area so that a higher efficiency can also be obtained on larger substrates. Calculations have been performed to optimize the grid pattern, bus bars, and cell interconnects on modules. With our present state of technology, we expect a difference of about 6% between the aperture-area and active-area efficiencies of modules. Preliminary experiments show a difference of about 8%. We can now predict the performance of single-junction cells after long-term light exposure at 50{degree}C by exposing cells to short-term intense light at different temperatures. We find that single-junction cells deposited on a ZnO/Ag back reflector show the highest stabilized efficiency when the thickness of the intrinsic layers is about 2000 {angstrom}. 8 refs.

Guha, S. [United Solar Systems Corp., Troy, MI (United States)

1991-12-01T23:59:59.000Z

113

Research on stable, high-efficiency amorphous silicon multijunction modules. Annual subcontract report, 1 January 1991--31 December 1991  

DOE Green Energy (OSTI)

This report describes the progress made during Phase 1 of research and development program to obtain high-efficiency amorphous silicon alloy multijunction modules. Using a large-area deposition system, double-and triple-junction cells were made on stainless steel substrates of over 1 ft{sup 2} area with Ag and ZnO predeposited back reflector. Modules of over 1 ft{sup 2} were produced with between 9.2% and 9.9 initial aperture-area efficiencies as measured under a USSC Spire solar simulator. Efficiencies as measured under the NREL Spire solar simulator were found to be typically 15% to 18% lower. The causes for this discrepancy are now being investigated. The modules show about 15% degradation after 600 hours of one-sun illumination at 50{degrees}C. To optimize devices for higher stabilized efficiency, a new method was developed by which the performance of single-junction cells after long-term, one-sun exposure at 50{degrees}C can be predicted by exposing cells to short-term intense light at different temperatures. This method is being used to optimize the component cells of the multijunction structure to obtain the highest light-degraded efficiency.

Banerjee, A.; Chen, E.; Clough, R.; Glatfelter, T.; Guha, S.; Hammond, G.; Hopson, M.; Jackett, N.; Lycette, M.; Noch, J.; Palmer, T.; Pawlikiewicz, A.; Rosenstein, I.; Ross, R.; Wolf, D.; Xu, X.; Yang, J.; Younan, K.

1992-04-01T23:59:59.000Z

114

Performance of 3-Sun Mirror Modules on Sun Tracking Carousels on Flat Roof Buildings  

Science Conference Proceedings (OSTI)

Commercial buildings represent a near term market for cost competitive solar electric power provided installation costs and solar photovoltaic module costs can be reduced. JX Crystals has developed a carousel sun tracker that is prefabricated and can easily be deployed on building flat roof tops without roof penetration. JX Crystals is also developing 3-sun PV mirror modules where less expensive mirrors are substituted for two-thirds of the expensive single crystal silicon solar cell surface area. Carousels each with four 3-sun modules have been set up at two sites, specifically at Oak Ridge National Lab and at the University of Nevada in Las Vegas. The test results for these systems are presented.

Fraas, Dr. Lewis [JX Crystals, Inc.; Avery, James E. [JX Crystals, Inc.; Minkin, Leonid M [ORNL; Maxey, L Curt [ORNL; Gehl, Anthony C [ORNL; Hurt, Rick A [ORNL; Boehm, Robert F [ORNL

2008-01-01T23:59:59.000Z

115

Research on stable, high-efficiency amorphous silicon multijunction modules. Semiannual subcontract report, 1 January 1992--30 June 1992  

DOE Green Energy (OSTI)

This report describes research on semiconductor and non-semiconductor materials to enhance the performance of multi-band-gap, multijunction panel with an area greater than 900 cm{sup 2} by 1992. Double-junction and triple-junction cells are mode on a Ag/ZnO back reflector deposited on stainless steel substrates. An a-SiGe alloy is used for the i-layer in the bottom and the middle cells; the top cell uses an amorphous silicon alloy. After the evaporation of an antireflection coating, silver grids and bus bars are put on the top surface and the panel is encapsulated in an ethylene vinyl acetate (EVA)/Tefzel structure to make a 1-ft{sup 2} monolithic module.

Guha, S. [United Solar Systems Corp., Troy, MI (United States)

1992-09-01T23:59:59.000Z

116

16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Program, Extended Abstracts, and Papers  

DOE Green Energy (OSTI)

The National Center for Photovoltaics sponsored the 16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes held August 6-9, 2006 in Denver, Colorado. The workshop addressed the fundamental properties of PV-Si, new solar cell designs, and advanced solar cell processing techniques. It provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The Workshop Theme was: "Getting more (Watts) for Less ($i)". A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell structures, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The special sessions included: Feedstock Issues: Si Refining and Purification; Metal-impurity Engineering; Thin Film Si; and Diagnostic Techniques.

Sopori, B. L.

2006-08-01T23:59:59.000Z

117

Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays  

DOE Patents (OSTI)

The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.

Vertes, Akos; Walker, Bennett N.

2013-09-10T23:59:59.000Z

118

Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays  

Science Conference Proceedings (OSTI)

The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.

Vertes, Akos (Reston, VA); Walker, Bennett N. (Washington, DC)

2012-02-07T23:59:59.000Z

119

Structural Characterization of Doped GaSb Single Crystals by X-ray Topography  

Science Conference Proceedings (OSTI)

We characterized GaSb single crystals containing different dopants (Al, Cd and Te), grown by the Czochralski method, by x-ray topography and high angular resolution x-ray diffraction. Lang topography revealed dislocations parallel and perpendicular to the crystal's surface. Double-crystal GaSb 333 x-ray topography shows dislocations and vertical stripes than can be associated with circular growth bands. We compared our high-angular resolution x-ray diffraction measurements (rocking curves) with the findings predicted by the dynamical theory of x-ray diffraction. These measurements show that our GaSb single crystals have a relative variation in the lattice parameter ({Delta}d/d) on the order of 10{sup -5}. This means that they can be used as electronic devices (detectors, for example) and as x-ray monochromators.

Honnicke, M.G.; Mazzaro, I.; Manica, J.; Benine, E.; M da Costa, E.; Dedavid, B. A.; Cusatis, C.; Huang, X. R.

2009-09-13T23:59:59.000Z

120

Thermal Degradation of Single Crystal Zinc Oxide and the Growth of Nanostructures  

SciTech Connect

Heat treatment of (0001) single crystal zinc oxide (ZnO) seems to degrade the surface morphology at high temperature. The degradation, however, does not suppress the growth of ZnO nanostructures on selective regions of the single crystal ZnO that have been sputtered with metallic zinc (Zn) and annealed at 800 degree sign C. On the uncoated regions, no growth occurs but the presence of pits suggests material loss from the surface. The formation of ZnO nanostructures on the selective regions could be aided by the preferential loss of oxygen as well as zinc suboxides from the uncoated regions. Indirect evidence of the role of oxygen and zinc suboxides can be inferred from the formation of nickel zinc oxide Ni{sub 0.9}Zn{sub 0.1}O and nickel oxide NiO{sub 2} when Zn is replaced by Ni and annealed under similar conditions.

Saw, K. G.; Tan, G. L. [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 Penang (Malaysia); Hassan, Z.; Yam, F. K.; Ng, S. S. [Schools of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

2010-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Method for preparing homogeneous single crystal ternary III-V alloys  

DOE Patents (OSTI)

A method for producing homogenous single crystal III--V ternary alloys of high crystal perfection using a floating crucible system in which the outer crucible holds a ternary alloy of the composition desired to be produced in the crystal and an inner floating crucible having a narrow, melt-passing channel in its bottom wall holds a small quantity of melt of a pseudo-binary liquidus composition which would freeze into the desired crystal composition. The alloy of the floating crucible is maintained at a predetermined lower temperature than the alloy of the outer crucible, and a single crystal of the desired homogeneous alloy is pulled out of the floating crucible melt, as melt from the outer crucible flows into a bottom channel of the floating crucible at a rate that corresponds to the rate of growth of the crystal.

Ciszek, T.F.

1990-08-14T23:59:59.000Z

122

Oxygen and hydrogen evolution reaction on oriented single crystals of ruthenium dioxide  

DOE Green Energy (OSTI)

A novel design for water electrolysis using a solid polymer electrolyte is being developed by General Electric. Ruthenium is one of the best electrocatalysts for the oxygen evolution reaction. There are problems connected with the significant loss in electrocatalytic activity with time. This performance degradation is presumably due to the gradual formation of an RuO/sub 2/ film. We have performed electrochemical measurements on (100), (110) and (111) oriented single crystals of RuO/sub 2/ in order to elucidate the mechanism of the electrocatalytic process. Large single crystals were grown by the vapor transport method. Our investigation has revealed several interesting differences for the various orientations. This study indicates that RuO/sub 3/ may be an important intermediate species prior to oxygen evolution and that the formation of the RuO/sub 3/ is the rate limiting process. Similar results were previously obtained for IrO/sub 2/.

Berger, L I; Pollak, F H; Canivez, Y; O'Grady, W

1979-01-01T23:59:59.000Z

123

Single crystal growth and superconductivity of Ca(Fe1-xCox)2As2  

SciTech Connect

We report the single crystal growth of Ca(Fe1-xCox)2As2 (0 <= x <= 0.082) from Sn flux. The temperature-composition phase diagram is mapped out based on the magnetic susceptibility and electrical transport measurements. Phase diagram of Ca(Fe1-xCox)2As2 is qualitatively different from those of Sr and Ba, it could be due to both the charge doping and structural tuning effects associated with Co substitution.

Hu, Rongwei; Ran, Sheng; Budko, Serguei; Straszheim, Warren E.; Canfield, Paul C.

2012-05-18T23:59:59.000Z

124

Thermographic analyses of the growth of Cd1-xZnxTe single crystals  

SciTech Connect

Bulk Cd1-xZnxTe (0single crystals for gamma-ray detectors are grown mainly from near-stoichiometric melts. We discuss the influence of the thermal pre-history of the melts (superheating, thermo-cycling, and cooling rate) on various physical properties based on our thermographic analyses, electrical conductivity and viscosity measurements. Increasing the Zn content causes non-monotonic dependencies in the quality of the crystals structure.

Kopach, O.V.; Bolotnikov, A.; Shcherbak, Larysa P.; Fochuk, Petro M.; and James, Ralph B.

2010-08-01T23:59:59.000Z

125

A Comparison of Cocrystal Structure Solutions from Powder and Single Crystal Techniques  

DOE Green Energy (OSTI)

We demonstrate the effectiveness and accuracy of high resolution powder diffraction for determination of cocrystal structures through a double-blind study. Structures of 10 cocrystals of varying complexity were determined independently using single crystal and powder techniques. The two methodologies give identical molecular packing and hydrogen bond topology, and an rms difference in covalent bond lengths of 0.035 {angstrom}. Powder techniques are clearly sufficient to establish a complete characterization of cocrystal geometry.

S Lapidus; P Stephens; K Arora; T Shattock; M Zaworotko

2011-12-31T23:59:59.000Z

126

Considerations for a Standardized Test for Potential-Induced Degradation of Crystalline Silicon PV Modules (Presentation)  

DOE Green Energy (OSTI)

Over the past decade, there have been observations of module degradation and power loss because of the stress that system voltage bias exerts. This results in part from qualification tests and standards note adequately evaluating for the durability of modules to the long-term effects of high voltage bias that they experience in fielded arrays. This talk deals with factors for consideration, progress, and information still needed for a standardized test for degradation due to system voltage stress.

Hacke, P.

2012-03-01T23:59:59.000Z

127

Magnetic and electrical properties of UCr{sub 2}Al{sub 20} single crystals  

Science Conference Proceedings (OSTI)

Single crystals of UCr{sub 2}Al{sub 20} have been grown by flux method and characterized by means of X-ray diffraction, magnetic, heat capacity and electrical transport measurements. The compound exhibits weakly temperature-dependent, moderately exchange-enhanced Pauli paramagnetism and shows regular metallic conductivity. - Graphical abstract: Pauli-like temperature dependence of the molar magnetic susceptibility of single-crystalline UCr{sub 2}Al{sub 20}. Inset: field variation of the magnetization in UCr{sub 2}Al{sub 20} taken at 1.8 K. Highlights: Black-Right-Pointing-Pointer High quality single crystals of UCr{sub 2}Al{sub 20} have been grown. Black-Right-Pointing-Pointer Crystal structure of UCr{sub 2}Al{sub 20} has been refined from the single crystal X-ray diffraction data. Black-Right-Pointing-Pointer Magnetic, heat capacity and electrical transport data have been collected for single crystalline UCr{sub 2}Al{sub 20}. Black-Right-Pointing-Pointer Previous literature report on UCr{sub 2}Al{sub 20} has been corrected and supplemented with new data.

Swatek, P., E-mail: P.Swatek@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P. O. Box 1410, 50-950 Wroclaw (Poland); Kaczorowski, D., E-mail: D.Kaczorowski@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P. O. Box 1410, 50-950 Wroclaw (Poland)

2012-07-15T23:59:59.000Z

128

Recent progress in large grain/single crystal high RRR niobium  

DOE Green Energy (OSTI)

High RRR bulk niobium Superconducting Radio Frequency (SRF) cavity technology is chosen for the International Linear Collider (ILC). The SRF community was convinced until now that fine grain polycrystalline RRR niobium sheets obtained via forging and cross rolling are essential for forming the SRF Cavities. However, it was recently discovered under a joint Reference Metals Company, Inc., - JLAB CRADA that large grain/single crystal RRR niobium sliced directly from ingots is highly ductile reaching 100 percent elongation. This discovery led to the successful fabrication of several SRF single and/or multi cell structures, formed with sliced RRR discs from the ingots, operating at 2.3, 1.5 and 1.3 GHz. This new exciting development is expected to offer high performance accelerator structures not only at reduced costs but also with simpler fabrication and processing conditions. As a result there is a renewed interest in the evaluation and understanding of the large grain and single crystal niobium with respect to their mechanical & physical properties as well as the oxidation behavior and the influence of impurities such as hydrogen and Ta. In this paper the results of many collaborative studies on large grain and single crystal high RRR niobium between JLAB, Universities and Industry are presented.

Ganapati Rao Myneni; Peter Kneisel; Tadeu Carneiro; S.R. Agnew; F. Stevie

2005-11-07T23:59:59.000Z

129

Thermo-mechanical fatigue of polycrystalline, directionally solidified and single crystal nickel base superalloys repaired by laser beam welding.  

E-Print Network (OSTI)

??The low cycle thermo-mechanical fatigue of laser beam welded conventionally cast Inconel 738, directionally solidified René 80 and single crystal René N5 has been evaluated.… (more)

Durocher, Jonathan

2013-01-01T23:59:59.000Z

130

Millimeter size single crystals of superconducting YBa[sub 2]Cu[sub 3]O[sub x  

DOE Patents (OSTI)

A method of growing large, up to 1 mm size single crystals of superconducting YBa[sub 2]Cu[sub 3]O[sub x], wherein x equals from 6.5 to 7.2 is disclosed.

Damento, M.A.; Gschneidner, K.A. Jr.

1989-04-25T23:59:59.000Z

131

Structural / magnetic phase transitions and superconductivity in Ba(Fe1-xTMx)2As2 single crystals.  

E-Print Network (OSTI)

??BaFe2As2 single crystal undergoes strongly coupled tetragonal to orthorhombic / paramagnetic to antiferromagnetic phase transitions at 134 K and can become superconducting under doping. To… (more)

Ni, Ni

2009-01-01T23:59:59.000Z

132

Millimeter size single crystals of superconducting YBa.sub.2 Cu.sub.3 O.sub .  

DOE Patents (OSTI)

A method of growing large, up to 1 mm size single crystals of superconducting YBa.sub.2 Cu.sub.3 O.sub.x, wherein x equals from 6.5 to 7.2.

Damento, Michael A. (Ames, IA); Gschneidner, Jr., Karl A. (Ames, IA)

1989-04-25T23:59:59.000Z

133

Photovoltaic Silicon Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Silicon Cell Basics Silicon Cell Basics Photovoltaic Silicon Cell Basics August 20, 2013 - 2:19pm Addthis Silicon-used to make some the earliest photovoltaic (PV) devices-is still the most popular material for solar cells. Silicon is also the second-most abundant element in the Earth's crust (after oxygen). However, to be useful as a semiconductor material in solar cells, silicon must be refined to a purity of 99.9999%. In single-crystal silicon, the molecular structure-which is the arrangement of atoms in the material-is uniform because the entire structure is grown from the same crystal. This uniformity is ideal for transferring electrons efficiently through the material. To make an effective PV cell, however, silicon has to be "doped" with other elements to make n-type and p-type layers.

134

A Computational Approach to Homogenizing Nickel-Based Single Crystal Alloys  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Approach to Homogenizing Nickel-Based Computational Approach to Homogenizing Nickel-Based Single Crystal Alloys Contact NETL Technology Transfer Group techtransfer@netl.doe.gov May 2013 Significance * Provides significantly diminished processing costs, including reduced energy consumption and throughput times, and increased availability of capital equipment such as furnaces, due to shorter heat treatments * Generates superior Ni-based superalloys with improved performance in downstream applications * Provides extreme flexibility, allowing for modification to meet the differing constraints of individual production facilities and the level of homogenization desired

135

The effect of interelement dipole coupling in patterned ultrathin single crystal Fe square arrays  

SciTech Connect

The correlation between the magnetic properties and the interelement separation in patterned arrays of ultrathin single crystal Fe films of 12 monolayers (ML) grown on GaAs(100) has been studied. The critical condition to form single domain remanent states in the square elements was found to be 10 {mu}m in size and 20 {mu}m for the interelement separation. The coercivity was also found to increase with the increasing interelement separation in the patterned arrays. These results are attributed to the competition between the large in-plane uniaxial anisotropy, the demagnetizing field, and interelement dipole coupling as determined semiqualitatively by the ferromagnetic resonance measurements.

Sun Li; Zhai Ya [Department of Physics, Southeast University, Nanjing 211189 (China); Department of Electronics, Spintronics and Nanodevice Laboratory, University of York, York YO10 5DD (United Kingdom); Wong Pingkwanj; Zhang Wen; Xu Yongbing [Department of Electronics, Spintronics and Nanodevice Laboratory, University of York, York YO10 5DD (United Kingdom); Zou Xiao; Wu Jing [Department of Physics, University of York, York YO10 5DD (United Kingdom); Luo Linqiang; Zhai Hongru [National Laboratory of Solid Microstructures, Nanjing University, Nanjing 210093 (China)

2011-02-01T23:59:59.000Z

136

Electrical properties of PbTe single crystals with excess tellurium  

Science Conference Proceedings (OSTI)

The effects of excess (up to 0.1 at %) Te atoms and heat treatment at 473 and 573 K for 120 h on the conductivity {sigma}, thermopower {alpha}, and Hall coefficient R of PbTe single crystals are studied. It is shown that excess Te atoms and annealing strongly affect the values and character of the temperature dependences of these parameters and the signs of {alpha} and R at low temperatures, which is caused by the acceptor effect of these atoms and the formation of antisite defects due to localization of Te in vacancies of the lead sublattice upon annealing.

Bagiyeva, G. Z., E-mail: bagieva-gjulandam@rambler.ru; Mustafayev, N. B.; Abdinova, G. Dj.; Abdinov, D. Sh. [National Academy of Sciences of Azerbaijan, Abdullaev Institute of Physics (Azerbaijan)

2011-11-15T23:59:59.000Z

137

Effect of annealing on the electrical properties of thallium-doped PbTe single crystals  

Science Conference Proceedings (OSTI)

It is found that electrical parameters of PbTe single crystals, the character of the dependences of these parameters on temperature and Tl impurity concentration, and the conductivity type (signs of {alpha} and R) are governed to a great extent by the temperature of preliminary annealing. The cause of this effect is that the concentration of doubly charged vacancies in the tellurium sublattice increases with an increase in the annealing temperature, as a result of which the formation of electrically neutral or singly charged complexes of impurity-vacancy type becomes more likely.

Ahmedova, G. A., E-mail: gulgunahmed@yahoo.com; Abdinova, G. J.; Abdinov, J. Sh. [National Academy of Sciences of Azerbaijan, Abdullaev Institute of Physics (Azerbaijan)

2011-02-15T23:59:59.000Z

138

ULTRASONIC MEASUREMENT OF POLARIZATION SWITCHING PROCESSES IN BARIUM- TITANATE SINGLE CRYSTAL  

SciTech Connect

A prevlously developed nondestructive piezoelectric method for studying the state of polarization of ferroelectric crystals is applied to study polarization switching in barium titanate single crystals. Three polarization processes are proposed. The first and second processes were designated nucleation and growth by Merz. The third process cannot be measured by conventional pulse methods, and hss a very slow polarizing velocity. Thls indicates the existence of layers which lie between the surface layer and inner layer. Switching time results ars considered in the light of the above experiments. (auth)

Husimi, K.; Kataoka, K.

1958-08-01T23:59:59.000Z

139

Sound velocity and attenuation in single-crystal C sub 60  

SciTech Connect

We report the studies of the elasticity of O{sub 60} single crystals. For sublimed fcc crystals, Young's modulus has an 8% jump at the first-order transition at 260 K. At {similar to}160 K there is a frequency-dependent elastic anomaly resulting from time dependent stress relaxation. Comparison with rotation rates seen in NMR suggests that the dynamics below 260 K is more complex than jumps between equivalent molecular configurations. Solvent grown monoclinic crystals have a second-order transition at 242 K, while the 160-K glass transition remains unchanged.

Shi, X.D.; Kortan, A.R.; Williams, J.M.; Kini, A.M.; Savall, B.M.; Chaikin, P.M. (Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States) Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States) Argonne National Laboratory, Argonne, Illinois 60439 (United States) / AT T Bell Laboratory, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (United States))

1992-02-10T23:59:59.000Z

140

Metal oxide superconducting powder comprised of flake-like single crystal particles  

DOE Patents (OSTI)

Powder of a ceramic superconducting material is synthesized such that each particle of the powder is a single crystal having a flake-like, nonsymmetric morphology such that the c-axis is aligned parallel to the short dimension of the flake. Nonflake powder is synthesized by the normal methods and is pressed into pellets or other shapes and fired for excessive times to produce a coarse grained structure. The fired products are then crushed and ground producing the flake-like powder particles which exhibit superconducting characteristics when aligned with the crystal lattice. 3 figs.

Capone, D.W.; Dusek, J.

1994-10-18T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Metal oxide superconducting powder comprised of flake-like single crystal particles  

DOE Patents (OSTI)

Powder of a ceramic superconducting material is synthesized such that each particle of the powder is a single crystal having a flake-like, nonsymmetric morphology such that the c-axis is aligned parallel to the short dimension of the flake. Nonflake powder is synthesized by the normal methods and is pressed into pellets or other shapes and fired for excessive times to produce a coarse grained structure. The fired products are then crushed and ground producing the flake-like powder particles which exhibit superconducting characteristics when aligned with the crystal lattice.

Capone, Donald W. (Bolingbrook, IL); Dusek, Joseph (Downers Grove, IL)

1994-01-01T23:59:59.000Z

142

Modelling off Hugoniot Loading Using Ramp Compression in Single Crystal Copper  

SciTech Connect

The application of a ramp load to a sample is a method by which the thermodynamic variables of the high pressure state can be controlled. The faster the loading rate, the higher the entropy and higher the temperature. This paper describes moleculer dynamics (MD) simulations with 25 million atoms which investigate ramp loading of single crystal copper. The simulations followed the propagation of a 300ps ramp load to 3Mbar along the [100] direction copper. The simulations were long enough to allow the wave front to steepen into a shock, at which point the simulated copper sample shock melted.

Hawreliak, J; Remington, B A; Lorenzana, H; Bringa, E; Wark, J

2010-11-29T23:59:59.000Z

143

In-Situ Measurement of Crystalline Silicon Modules Undergoing Potential-Induced Degradation in Damp Heat Stress Testing for Estimation of Low-Light Power Performance  

DOE Green Energy (OSTI)

The extent of potential-induced degradation of crystalline silicon modules in an environmental chamber is estimated using in-situ dark I-V measurements and applying superposition analysis. The dark I-V curves are shown to correctly give the module power performance at 200, 600 and 1,000 W/m2 irradiance conditions, as verified with a solar simulator. The onset of degradation measured in low light in relation to that under one sun irradiance can be clearly seen in the module design examined; the time to 5% relative degradation measured in low light (200 W/m2) was 28% less than that of full sun (1,000 W/m2 irradiance). The power of modules undergoing potential-induced degradation can therefore be characterized in the chamber, facilitating statistical analyses and lifetime forecasting.

Hacke, P.; Terwilliger, K.; Kurtz, S.

2013-08-01T23:59:59.000Z

144

Photovoltaic manufacturing technology monolithic amorphous silicon modules on continuous polymer substrates: Final technical report, July 5, 1995--December 31, 1999  

DOE Green Energy (OSTI)

Iowa Thin Film Technologies is completing a three-phase program that has increased throughput and decreased costs in nearly all aspects of its thin-film photovoltaic manufacturing process. The overall manufacturing costs have been reduced by 61 percent through implementation of the improvements developed under this program. Development of the ability to use a 1-mil substrate, rather than the standard 2-mil substrate, results in a 50 percent cost-saving for this material. Process development on a single-pass amorphous silicon deposition system has resulted in a 37 percent throughput improvement. A wide range of process and machine improvements have been implemented on the transparent conducting oxide deposition system. These include detailed parameter optimization of deposition temperatures, process gas flows, carrier gas flows, and web speeds. An overall process throughput improvement of 275 percent was achieved based on this work. The new alignment technique was developed for the laser scriber and printer systems, which improved registration accuracy from 100 microns to 10 microns. The new technique also reduced alignment time for these registration systems significantly. This resulted in a throughput increase of 75 percent on the scriber and 600 percent on the printer. Automated techniques were designed and implemented for the module assembly processes. These include automated busbar attachment, roll-based lamination, and automated die cutting of finished modules. These processes were previously done by hand labor. Throughput improvements ranged from 200 percent to 1200 percent, relative to hand labor rates. A wide range of potential encapsulation materials were evaluated for suitability in a roll lamination process and for cost-effectiveness. A combination material was found that has a cost that is only 10 percent of the standard EVA/Tefzel cost and is suitable for medium-lifetime applications. The 20-year lifetime applications still require the more expensive material.

Jeffrey, F.

2000-03-28T23:59:59.000Z

145

Thermally Processed High-Mobility MOS Thin-Film Transistors on Transferable Single-Crystal Elastically Strain-Sharing Si/SiGe/Si Nanomembranes  

DOE Green Energy (OSTI)

Demonstration of high-performance MOS thin-film transistors (TFTs) on elastically strain-sharing single-crystal Si/SiGe/Si nanomembranes (SiNMs) that are transferred to foreign substrates is reported. The transferable SiNMs are realized by first growing pseudomorphic SiGe and Si layers on silicon-on-insulator (SOI) substrates, and then, selectively removing the buried oxide (BOX) layer from the SOI. Before the release, only the SiGe layer is compressively strained. Upon release, part of the compressive strain in the SiGe layer is transferred to the thin Si layers, and the Si layers, thus, become tensile strained. Both the initial compressive strain state in the SiGe layer and the final strain sharing state between the SiGe and the Si layers are verified with X-ray diffraction measurements. The TFTs are fabricated employing the conventional high-temperature MOS process on the strain-shared SiNMs that are transferred to an oxidized Si substrate. The transferred strained-sharing SiNMs show outstanding thermal stability and can withstand the high-temperature TFT process on the new host substrate. The strained-channel TFTs fabricated on the new host substrate show high current drive capability and an average electron effective mobility of 270 cm{sup 2}/V ldr s. The results suggest that transferable and thermally stable single-crystal elastically strain- sharing SiNMs can serve as excellent active material for high-speed device application with a simple and scalable transfer method. The demonstration of MOS TFTs on the transferable nanomembranes may create the opportunity for future high-speed Si CMOS heterogeneous integration on any substrate.

Yuan, H.-C.; Kelly, M. M.; Savage, D. E.; Lagally, M. G.; Celler, G. K.; Zhenqiang, M.

2008-03-01T23:59:59.000Z

146

Development of a commercial photovoltaic concentrator module  

DOE Green Energy (OSTI)

The ojective of this work was to develop the design and prototype of a commercial high-concentration photovoltaic (PV) module. The design is for a 282-sun point-focus concentrating module. Most of the components, subassemblies, and design features incorporate simplifications and ease of manufacturing. The Solar Kinetics, Inc. (SKI) module is designed to incorporate high-efficiency, single-crystal silicon PV cells. The housing is made with aluminum laminated for voltage stand-off and simultaneously providing high thermal conductivity. The Fresnel lens injection molded by American Optical (AO) as singles. The cell assembly consists of a copper heat spreader, a photovoltaic cell soldered, a top and bottom contact, and a reflective secondary optical element (SOE). The cell assemblies passed all of the initial electrical characterization and high-potential tests. Under environmental cycling, the only bond that failed was the PV cell-to-heat spreader interface. The other components (top contact, bottom contact, SOE) passed all the environmental cycling tests. The cell assemblies were designed to be mounted onto the receiver section with a thermally conductive RTV. This geometry was subjected to environmental testing. There was no delamination of this bond nor was there electrical breakdown when the assemblies were subjected to the hi-pot test. A mock module was fabricated for environmental evaluation. This module was subjected to the humidity/freeze cycling to assess the performance of the lens mounting design. This module was also subjected to the rain test after the humidity/freeze cycling and checked for water leaks. The lens showed small displacement from its original position after the environmental cycling. One tablespoon of water did collect inside the module.

Saifee, S.T.; Hutchison, G. [Solar Kinetics, Inc., Dallas, TX (United States)

1992-09-01T23:59:59.000Z

147

Silicon Fresnel zone plates for high heat load X-ray microscopy  

Science Conference Proceedings (OSTI)

A technique to produce diffractive X-ray lenses optimized for high heat load applications is demonstrated. The lenses are made from single crystal silicon membranes, which have uniform thermal conductivity and homogeneous thermal expansion. Silicon Fresnel ... Keywords: Electron beam lithography, Fresnel zone plate, Reactive ion etching, X-ray microscopy

J. Vila-Comamala; K. Jefimovs; J. Raabe; B. Kaulich; C. David

2008-05-01T23:59:59.000Z

148

Time-dependent Protein-directed Growth of Gold Nanoparticles within a Single Crystal of Lysozyme  

SciTech Connect

Gold nanoparticles are useful in biomedical applications due to their distinct optical properties and high chemical stability. Reports of the biogenic formation of gold colloids from gold complexes has also led to an increased level of interest in the biomineralization of gold. However, the mechanism responsible for biomolecule-directed gold nanoparticle formation remains unclear due to the lack of structural information about biological systems and the fast kinetics of biomimetic chemical systems in solution. Here we show that intact single crystals of lysozyme can be used to study the time-dependent, protein-directed growth of gold nanoparticles. The protein crystals slow down the growth of the gold nanoparticles, allowing detailed kinetic studies to be carried out, and permit a three-dimensional structural characterization that would be difficult to achieve in solution. Furthermore, we show that additional chemical species can be used to fine-tune the growth rate of the gold nanoparticles.

H Wei; Z Wang; J Zhang; S House; Y Gao; L Yang; H Robinson; L Tan; H Xing; C Hou

2011-12-31T23:59:59.000Z

149

Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme  

SciTech Connect

Gold nanoparticles are useful in biomedical applications due to their distinct optical properties and high chemical stability. Reports of the biogenic formation of gold colloids from gold complexes has also led to an increased level of interest in the biomineralization of gold. However, the mechanism responsible for biomolecule-directed gold nanoparticle formation remains unclear due to the lack of structural information about biological systems and the fast kinetics of biomimetic chemical systems in solution. Here we show that intact single crystals of lysozyme can be used to study the time-dependent, protein-directed growth of gold nanoparticles. The protein crystals slow down the growth of the gold nanoparticles, allowing detailed kinetic studies to be carried out, and permit a three-dimensional structural characterization that would be difficult to achieve in solution. Furthermore, we show that additional chemical species can be used to fine-tune the growth rate of the gold nanoparticles.

Wei, H.; Robinson, H.; Wang, Z.; Zhang, J.; House, S.; Gao, Y.-G.; Yang, L.; Tan, L. H.; Xing, H.; Hou, C.; Robertson, I. M.; Zuo, J.-M.; Lu, Y.

2011-01-30T23:59:59.000Z

150

Laser interactions with embedded Ca metal nanoparticles in single crystal CaF{sub 2}  

SciTech Connect

Single crystal calcium fluoride (CaF{sub 2}) is an important material for vacuum-ultraviolet optics. Nevertheless, prolonged exposure to energetic radiation can color the material by producing calcium metal nanoparticles. We compare the effectiveness of laser conditioning treatments at wavelengths ranging from the near infrared to the deep ultraviolet in removing this coloration. Treatments at 157, 532, and 1064 nm can significantly reduce the visible coloration due to nanoparticles. In contrast, irradiation at 248 nm has little effect at fluences below the damage threshold for the material employed in this work. We present evidence that the effect of laser irradiation on coloration is principally thermal and is largely confined to the first 50 ns after each laser pulse. We attribute the wavelength dependence of the bleaching process to the wavelength dependence associated with Mie absorption by metal nanoparticles. The consequences of these observations with regard to laser conditioning processes in bulk optical materials are discussed.

Cramer, L.P.; Schubert, B.E.; Petite, P.S.; Langford, S.C.; Dickinson, J.T. [Materials Science Program and Physics Department, Washington State University, Pullman, Washington 99164-2814 (United States)

2005-04-01T23:59:59.000Z

151

Aniline hydrogenolysis on the Pt(111) single crystal surface: Mechanisms for C-N bond activation  

SciTech Connect

Hydrogenolysis of C-N bond on transition metals is a crucial step in hydrodenitrogenation (HDN) reactions. Despite the overall complexity of HDN processes, the details of important surface reactions can be characterized using model reactions of organonitrogen compounds on single crystal model catalysts. The structure and reactivity of well characterized aniline monolayers on the Pt(111) surface both in vacuum and in the presence of hydrogen is discussed here. Adsorption and reactions of aniline were studied by Gland and Somorjai on the Pt(111) and Pt(100) surfaces, and more recently by Benziger`s group on the Ni(111) and Ni(100) surfaces. On both Pt and Ni surfaces, aniline {pi} bonds through the aromatic ring with its ring parallel to the substrate surface.

Huang, S.X.; Gland, J.L. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemistry; Fischer, D.A. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemistry]|[National Inst. of Standards and Technology, Gaithersburg, MD (United States). Materials Dept.

1993-12-31T23:59:59.000Z

152

Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications  

Science Conference Proceedings (OSTI)

Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2010, and the LHC upgrades expected in 2015, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed and operational in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

Rainer Wallny

2012-10-15T23:59:59.000Z

153

Mo-6%Nb single crystal alloy creep strength demonstration for long life thermionic power systems  

DOE Green Energy (OSTI)

Experimental results of one- and two-dimensional creep testing for single crystal Mo-6%Nb alloy are presented. Three 1-D specimens were creep-tested for up to 3000 hours at 1873 to 1973 K and 5 to 15 MPa. One 2-D specimen tube was creep-tested for 2000 hours at 1873 K/15MPa. Results confirm the high creep strength of Mo-6%Nb for long life (10 to 15 year) TFE emitter application in thermionic space nuclear power systems. After the initial transition stage (about 1000 hours), quasi-steady state 1-D and 2-D creep rates were within 20% of each other suggesting little significant effect of anisotropy. More data points will be needed to define the Sherby-Dom parameters with statistical accuracy. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

Rhee, H.S.; Zheng, C.; Kent Koester, J. [Space Power, Inc., 621 River Oaks Parkway, San Jose, California 95134 (United States); Yastrebkov, A.; Nikolaev, Y.; Gontar, A. [Scientific Industrial Association Lutch, Podolsk, Moscow Region (Russian Federation)

1995-01-20T23:59:59.000Z

154

Single shot ultrafast dynamic ellipsometry (UDE) of laser-driven shocks in single crystal explosives  

SciTech Connect

We report on the first experiments to measure states in shocked energetic single crystals with dynamic ellipsometry. We demonstrate that these ellipsometric techniques can produce reasonable Hugoniot values using small amounts of crystalline RDX and PETN. Pressures, particle velocities and shock velocities obtained using shocked ellipsometry are comparable to those found using gas-gun flyer plates and molecular dynamics calculations. The adaptation of the technique from uniform thin films of polymers to thick non-perfect crystalline materials was a significant achievement. Correct sample preparation proved to be a crucial component. Through trial and error, we were able to resolve polishing issues, sample quality problems, birefringence effects and mounting difficulties that were not encountered using thin polymer films.

Whitley, Von H [Los Alamos National Laboratory; Mcgrane, Shawn D [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory; Eakins, Dan E [Los Alamos National Laboratory; Bolme, Cindy A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

155

Type-I superconductivity in YbSb2 single crystals  

SciTech Connect

We present evidence of type-I superconductivity in YbSb2 single crystals from dc and ac magnetization, heat capacity, and resistivity measurements. The critical temperature and critical field are determined to be Tc? 1.3 K and Hc? 55 Oe. A small Ginzburg-Landau parameter ?= 0.05, together with typical magnetization isotherms of type-I superconductors, small critical field values, a strong differential paramagnetic effect signal, and a field-induced change from second- to first-order phase transition, confirms the type-I nature of the superconductivity in YbSb2. A possible second superconducting state is observed in the radio-frequency susceptibility measurements, with Tc(2)? 0.41 K and Hc(2)? 430 Oe.

Zhao, Liang L.; Lausberg, Stefan; Kim, Hyunsoo; Tanatar, Makariy A.; Brando, Manuel; Prozorov, Ruslan; Morosan, E.

2012-06-25T23:59:59.000Z

156

High Efficiency Single Crystal CdTe Solar Cells: November 19, 2009 - January 31, 2011  

DOE Green Energy (OSTI)

The goal of the program was to develop single crystal CdTe-based top cells grown on Si solar cells as a platform for the subsequent manufacture of high efficiency tandem cells for CPV applications. The keys to both the single junction and the tandem junction cell architectures are the ability to grow high quality single-crystal CdTe and CdZnTe layers on p-type Si substrates, to dope the CdTe and CdZnTe controllably, both n and p-type, and to make low resistance ohmic front and back contacts. EPIR demonstrated the consistent MBE growth of CdTe/Si and CdZnTe/Si having high crystalline quality despite very large lattice mismatches; epitaxial CdTe/Si and CdZnTe/Si consistently showed state-of-the-art electron mobilities and good hole mobilities; bulk minority carrier recombination lifetimes of unintentionally p-doped CdTe and CdZnTe grown by MBE on Si were demonstrated to be consistently of order 100 ns or longer; desired n- and p-doping levels were achieved; solar cell series specific resistances <10 ?-cm2 were achieved; A single-junction solar cell having a state-of-the-art value of Voc and a unverified 16.4% efficiency was fabricated from CdZnTe having a 1.80 eV bandgap, ideal for the top junction in a tandem cell with a Si bottom junction.

Carmody, M.; Gilmore, A.

2011-05-01T23:59:59.000Z

157

Development of large-area monolithically integrated Silicon-Film{trademark} photovoltaic modules. Annual subcontract report, 1 January 1993--31 December 1993  

DOE Green Energy (OSTI)

This report describes work performed under a program to develop Silicon-Film{trademark} Product III into a low-cost, stable solar cell for large-scale terrestrial power applications. The Product III structure is a thin polycrystalline layer of silicon on a durable, insulating, ceramic) substrate. The insulating substrate allows the silicon layer to be isolated and metallized to form a monolithically interconnected array of solar cells. High efficiency is achievable with the use of light trapping and a passivated back surface. The long-term goal for the product is a 1200-cm{sup {minus}2}, 18%-efficient solar module. This report discusses material quality improvements due to the use of new metallurgical barrier technologies. The barrier is essential in preventing impurity interaction between the silicon film and the low-cost substate. Also, a new filament-based fabric substate material was investigated. Efficiencies greater than 10% were achieved on 1.0-cm{sup 2} devices made on these substrates. We also demonstrated the monolithic fabrication sequence by the fabrication of a prototype array using the device processing sequences developed during Phase 11 of this program.

Rand, J.A.; Cotter, J.E.; Ingram, A.E.; Ruffins, T.R.; Thomas, C.J.; Hall, R.B.; Barnett, A.M. [AstroPower, Inc., Newark, DE (United States)

1994-06-01T23:59:59.000Z

158

Crack resistance and atomic structure of Li{sub 2}B{sub 4}O{sub 7} single crystals  

SciTech Connect

The nature of destruction of single crystals of lithium tetraborate Li{sub 2}B{sub 4}O{sub 7} under the action of a concentrated load is investigated. It is established that planes of easy crack propagation in Li{sub 2}B{sub 4}O{sub 7} single crystals are the (100), (010), (001), and {l_brace}111{r_brace} planes. It is found that crack propagation occurs in each case along the atomic layers that are linked by bridge oxygen atoms between main structural units (B{sub 4}O{sub 9}) and, therefore, are most weakly bound.

Dolzhenkova, E. F., E-mail: dol@isc.kharkov.ua; Baumer, V. N.; Tolmachev, A. V. [National Academy of Sciences of Ukraine, Institute for Single Crystals (Ukraine)

2006-03-15T23:59:59.000Z

159

Development of large-area monolithically integrated silicon-film{trademark} photovoltaic modules. Final subcontract report, May 1, 1991--December 31, 1994  

DOE Green Energy (OSTI)

The objective of this program is to develop Silicon Film{trademark} Product III into a low-cost, stable solar cell for large-scale terrestrial power applications. The Product III structure is a thin (<100 {mu}m) polycrystalline layer of silicon on a durable, insulating, ceramic substrate. The insulating substrate allows the silicon layer to be isolated and metallized to form a monolithically interconnected array of solar cells. High efficiency is achieved by the use of light trapping and passivated surfaces. This project focused on the development of five key technologies associated with the monolithic sub-module device structure: (1) development of the film deposition and growth processes; (2) development of the low-cost ceramic substrate; (3) development of a metallurgical barrier technology; (4) development of sub-element solar cell processing techniques; and (5) development of sub-module (isolation and interconnection) processes. This report covers the development approaches and results relating to these technologies. Significant progress has been made in the development of all of the related technologies. This is evidenced by the fabrication of a working 12.0 cm{sup 2} prototype sub-module consisting of 7 elements and testing with an open circuit voltage of 3.9 volts, a short circuit current of 35.2 mA and a fill factor of 63% and an overall efficiency of 7.3%. Another significant result achieved is a 13.4% (NREL verified), 1.0 cm{sup 2} solar cell fabricated from material deposited and grown on a graphite cloth substrate. The significant technological hurdle of the program was and remains the low quality of the photovoltaic layer which is caused by contamination of the photovoltaic layer from the low-cost ceramic substrate by trace impurities found in the substrate precursor materials. The ceramic substrate and metallurgical barrier are being developed specifically to solve this problem.

Hall, R.B.; Rand, J.A.; Cotter, J.E. [AstroPower, Inc., Newark, DE (United States)

1995-04-01T23:59:59.000Z

160

Faraday Discuss. Chem. SOC.,1989, 87, 337-344 Butane Hydrogenolysis over Single-crystal Rhodium Catalysts  

E-Print Network (OSTI)

Faraday Discuss. Chem. SOC.,1989, 87, 337-344 Butane Hydrogenolysis over Single-crystal Rhodium&M University, College Station, Texas 77843, U.S.A. Hydrogenolysis of n-butane has been studied over the (110 of surface composition and geometry.' For example, in our laboratories, the activity for ethane' and butane

Goodman, Wayne

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Delayed fracture of silicon. Silicon sheet growth development for the Large Area Silicon Sheet Task of the Low Cost Silicon Solar Array Project. Final report  

DOE Green Energy (OSTI)

Bar specimens were cut from ingots of single crystal silicon, and acid-etched prior to testing. Artificial surface flaws were introduced in specimens by indentation with a Knoop hardness tester. The specimens were loaded in four-point bending to 95% of the nominal fracture stress, while keeping the surface area, containing the flaw, wet with test liquids. No evidence of delayed fracture, and, therefore stress corrosion, of single crystal silicon was observed for liquid environments including water, acetone and aqueous solutions of NaCl, NH/sub 4/OH, and HNO/sub 3/, when tested with a flaw parallel to a (110) surface. The fracture toughness was calculated to be K/sub IC/ = 0.591 x 10/sup 6/ N/m/sup 3/2/.

Chen, T.J.; Knapp, W.J.

1978-03-31T23:59:59.000Z

162

Zinc ion and neutral emission from single crystal zinc oxide during 193-nm excimer laser exposure  

SciTech Connect

Mass resolved time-of-flight measurements on neutral zinc atoms and zinc ions show energetic ions and neutrals during 193-nm irradiation of single crystals of semiconducting zinc oxide. Typical Zn+ kinetic energies are 3-5 eV. At fluences (energy per unit area per pulse) below 200 mJ/cm2, the ion intensities (per laser pulse) decrease monotonically to low values with laser pulse number. The depletion kinetics change from exponential to second order near 50 mJ/cm2. We attribute this change to the annihilation of defects yielding Zn+ emission when Zn+ or other surface defects become mobile. At fluences between 200 and 300 mJ/cm2, Zn+ emission becomes more sustained due to defects created by the laser. In this same fluence range, we observe the onset of detectable neutral atomic zinc emission. These neutral atoms display Maxwell-Boltzmann kinetic energy distributions w th effective surface temperatures that approach 5000 K as the fluence is raised to 350 mJ/cm2. These high surface temperatures are remarkable given the low etch rates observed at these fluences, suggesting that heated layer is extremely thin. We propose emission mechanisms and experiments to resolve outstanding questions.

Kahn, E. H. [Washington State University; Langford, S. C. [Washington State University; Boatner, Lynn A [ORNL; Dickinson, J. T. [Washington State University

2011-01-01T23:59:59.000Z

163

Conductivity anisotropy in the doped Bi{sub 2}Te{sub 3} single crystals  

Science Conference Proceedings (OSTI)

Temperature dependences (temperature range T = 0.5-300 K) of resistivity in the plane of layers and in the direction perpendicular to the layers, and the galvanomagnetic effects in undoped and doped Bi{sub 2}Te{sub 3} single crystals are studied (magnetic field H < 80 kOe, T = 0.5-4.2 K). It is shown that upon doping of Bi{sub 2}Te{sub 3} with the Group III atoms (In and B), conductivity anisotropy increases mainly due to an increase in resistivity in the direction perpendicular to the layers. This fact makes it possible to assume that the atoms of these impurities are incorporated mainly into the van der Waal gaps between the layers upon doping. It is also revealed that, upon doping of Bi{sub 2}Te{sub 3} with In and B, the temperature dependence of conductivity becomes weaker, which indicates an increase in the role of scattering by defects in scattering mechanisms. The concentrations and mobilities of charge carriers, values of the Hall factor conditioned by the anisotropy of effective masses and orientation of ellipsoids with respect to crystallographic axes, areas of the extreme section of the Fermi surface by the plane perpendicular to the direction of the magnetic field, and the Fermi energy are evaluated.

Abdullaev, N. A., E-mail: anadir@azintex.com; Kakhramanov, S. Sh.; Kerimova, T. G.; Mustafayeva, K. M. [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan); Nemov, S. A. [St. Petersburg State Polytechnical University (Russian Federation)

2009-02-15T23:59:59.000Z

164

Luminescence from self-trapped holes in manganese-doped calcium fluoride single crystals  

SciTech Connect

Thermally stimulated luminescence (TSL) and electron spin resonance (ESR) measurements on x-irradiated CaF/sub 2/:Mn (0.1 wt %) single crystals have been conducted in the interval 70 to 300 K. Prominent TSL peaks occur near 150 K (345- and 495-nm emission) and 200 K (predominantly 495-nm emission) with thermal decay of ESR centers at these same temperatures. Taken collectively the data suggest that 150 K TSL emission is due to mobile holes from V/sub K/ centers recombining with both trapped electrons and Mn/sup +/ ions, i.e., V/sub K/ + e/sup -/ ..-->.. 345-nm emission, and V/sub K/ + Mn/sup +/ ..-->.. (Mn/sup 2 +/)* + hv (495-nm emission). Additionally, H centers are formed by transformation of V/sub K/ centers. At 200 K, holes from H centers recombine with Mn/sup +/ to produce excited-state (Mn/sup 2 +/)* which decays by emitting 495-nm radiation.

Jahan, M.S.; Cooke, D.W.; Alexander, C. Jr.

1987-01-01T23:59:59.000Z

165

Time-Resolved Femtosecond Laser Desorption from Wide-BandGap Single Crystals  

Science Conference Proceedings (OSTI)

We have used femtosecond laser pulse pairs to measure the positive ion yield, from wide band-gap single crystals, as a function of time-delay between pulses. Two-pulse correlation allows direct observation of solid state and surface dynamics on an ultrafast timescale. The ion yield, from 265 nm irradiated MgO and KBr, depends critically on the time delay between two sub-threshold pulses. For example, the Mg+ desorption yield displays three distinct features; a coherence peak, followed by rise, and decay features. In contract, the yield of K+ from KBr displays only the coherence peak and picosecond decay features. The data suggest, that although the nanosecond ion desorption mechanism is dominated by defect photoabsorption, significant electron-hole pair production may contribute to the desorption mechanism following femtosecond excitation. Nanosecond photoexcitation of KBr near 6.4 eV leads to desorption of hyperthermal neutral bromine atoms without a significant thermal velocity component. Two-photon femtosecond excitation at 3.2 eV produces very similar results. Multiphoton femtosecond excitation provides an efficient excitation mechanism of the wide-gap material. These results are likely general for ionic crystals and are consistent with a recently described theoretical model.

Hess, Wayne P. (BATTELLE (PACIFIC NW LAB)); Joly, Alan G. (BATTELLE (PACIFIC NW LAB)); Beck, Kenneth M. (University of Central Florida ); Dickinson, J T. (8392); Claude R. Phipps

2002-09-01T23:59:59.000Z

166

Polarized Neutron Studies on Antiferromagnetic Single Crystals: Technical Report No. 4  

DOE R&D Accomplishments (OSTI)

The theory of neutron scattering by magnetic crystals as given by Halpern and Johnson predicts changes in the polarization state of the neutron beam upon scattering which depend upon the relative orientation of the neutron polarization vector and the crystal magnetic axis. This was investigated experimentally with a polarized beam spectrometer using single crystals of Cr{sub 2}O{sub 3} and alpha - Fe{sub 2}O{sub 3} in which reside unique antiferromagnetic axes. Studies were made on several different reflections in both crystals for a number of different temperatures both below and above the Neel point. Results support the theoretical predictions and indicate directions for the moments in these crystals consistent with previous work. A more detailed study of the polarization changes in the (111) reflection in alpha - Fe{sub 2}O{sub 3} at room temperature on application of a magnetic field was carried out, The results indicate that the principal source of the parasitic ferromagnetism in hematite is essentially independent of the orientation of the antiferromagnetic domains within the crystal.

Nathans, R.; Riste, T.; Shirane, G.; Shull, C.G.

1958-11-26T23:59:59.000Z

167

TEM and SIMS Analysis of (100), (110), and (111) Single Crystal Niobium  

DOE Green Energy (OSTI)

Single crystal niobium specimens of (100), (110) and (111) crystal orientations have been analyzed using TEM and SIMS. The TEM specimens were prepared using Focused Ion Beam (FIB) and show niobium oxide thicknesses ranging from 4.9 to 8.3 nm for the three specimens after buffer chemical polishing. The oxide layers appear uniform and no significant sub-oxide region was noted. SIMS analysis was made for all three orientations on hydrogen, carbon, and oxygen before and after heat treatments at 90, 600, and 1250şC. Hydrogen is at a high level between the oxide layer and niobium, but at a relatively low level in the oxide. No high oxygen concentration region was noted in the niobium below the oxide. C contamination on the surface is detected mainly at the surface. Analysis after heat treatments showed some decrease in hydrogen after the 600şC heat treatment, and significant oxidation of the niobium after the 1250şC heat treatment.

A. D. Batchelor; D. N. Leonard; P. E. Russell; F. A. Stevie; D. P. Griffis; G. R. Myneni

2006-10-30T23:59:59.000Z

168

Welding and weldability of directionally solidified single crystal nickel-base super-alloys  

DOE Green Energy (OSTI)

The objective of this CRADA project was to investigate the weldability of polycrystalline, directionally-solidified, and single-crystal, nickel-base super-alloys. These materials are used extensively in turbine engine components. The ability to weld these materials is highly desirable in that it would greatly facilitate component fabrication. Welding of these materials would also have the potential benefit of allowing for the repair of cracked or worn components. Specifically, the program had four objectives: (1) to evaluate the weldability of nickel-base super-alloys; (2) to characterize the solidification microstructure of the welds; (3) to evaluate the phase stability of the weldments during exposure to service conditions; and (4) to determine the mechanical properties of the welds. Westinghouse Electric Corporation was to supply material for the program, in both as-case and heat-treated form. This was to include commercially available as well as experimental alloys developed at Westinghouse. ORNL was to perform weldability tests on the materials using a variety of welding procedures.

vitek, j.m.

1996-09-01T23:59:59.000Z

169

High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules; Final Technical Progress Report, 30 May 2002--31 May 2005  

DOE Green Energy (OSTI)

The principal objective of this R&D program is to expand, enhance, and accelerate knowledge and capabilities for development of high-efficiency hydrogenated amorphous silicon (a-Si:H) and amorphous silicon-germanium alloy (a-SiGe:H) related thin-film multijunction solar cells and modules with low manufacturing cost and high reliability. Our strategy has been to use the spectrum-splitting triple-junction structure, a-Si:H/a-SiGe:H/a-SiGe:H, to improve solar cell and module efficiency, stability, and throughput of production. The methodology used to achieve the objectives included: (1) explore the highest stable efficiency using the triple-junction structure deposited using RF glow discharge at a low rate, (2) fabricate the devices at a high deposition rate for high throughput and low cost, and (3) develop an optimized recipe using the R&D batch large-area reactor to help the design and optimization of the roll-to-roll production machines. For short-term goals, we have worked on the improvement of a-Si:H and a-SiGe:H alloy solar cells. a-Si:H and a-SiGe:H are the foundation of current a-Si:H based thin-film photovoltaic technology. Any improvement in cell efficiency, throughput, and cost reduction will immediately improve operation efficiency of our manufacturing plant, allowing us to further expand our production capacity.

Guha, S.; Yang, J.

2005-10-01T23:59:59.000Z

170

Influence of composition on microstructural parameters of single crystal nickel-base superalloys  

Science Conference Proceedings (OSTI)

Fourteen nickel-base superalloy single crystals containing a range of chromium (Cr), cobalt (Co), molybdenum (Mo), and rhenium (Re) levels, and fixed amounts of aluminum (Al) and tantalum (Ta), were examined to determine the effect of bulk composition on basic microstructural parameters, including {gamma} Prime solvus, {gamma} Prime volume fraction, topologically close-packed (TCP) phases, {gamma} and {gamma} Prime phase chemistries, and {gamma}-{gamma} Prime lattice mismatch. Regression models describing the influence of bulk alloy composition on each of the microstructural parameters were developed and compared to predictions by a commercially-available software tool that used computational thermodynamics. Co produced the largest change in {gamma} Prime solvus over the wide compositional range explored and Mo produced the biggest effect on the {gamma} lattice parameter over its range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had an impact on their concentrations in the {gamma} matrix and to a smaller extent in the {gamma} Prime phase. The software tool under-predicted {gamma} Prime solvus temperatures and {gamma} Prime volume fractions, and over-predicted TCP phase volume fractions at 982 Degree-Sign C. However, the statistical regression models provided excellent estimations of the microstructural parameters and demonstrated the usefulness of such formulas. - Highlights: Black-Right-Pointing-Pointer Effects of Cr, Co, Mo, and Re on microstructure in new low density superalloys Black-Right-Pointing-Pointer Co produced a large change in {gamma} Prime solvus; Mo had a large effect on lattice mismatch. Black-Right-Pointing-Pointer Re exhibited very potent influence on all microstructural parameters was investigated. Black-Right-Pointing-Pointer {gamma} and {gamma} Prime phase chemistries both varied with temperature and alloy composition. Black-Right-Pointing-Pointer Computational thermodynamic modeling tool did not accurately predict microstructure.

MacKay, R.A., E-mail: Rebecca.A.MacKay@nasa.gov [NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States); Gabb, T.P. [NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States); Garg, A. [NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States); University of Toledo, 2801 W. Bancroft, Toledo, Ohio 43606 (United States); Rogers, R.B.; Nathal, M.V. [NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States)

2012-08-15T23:59:59.000Z

171

Growth of single-crystal {alpha}-MnO{sub 2} nanorods on multi-walled carbon nanotubes  

Science Conference Proceedings (OSTI)

Single-crystal {alpha}-MnO{sub 2} nanorods were grown on multi-walled carbon nanotubes (MWNTs) in H{sub 2}SO{sub 4} aqueous solution. The morphology and microstructure of the composites were examined by transmission electron microscopy, high-resolution transmission electron microscopy (HRTEM), X-ray diffractometry and energy dispersive spectroscopy (EDS). The results show that {alpha}-MnO{sub 2} single-crystal nanorods with a mean diameter of 15 nm were densely grown on the surface of MWNTs. Those MWNTs/MnO{sub 2} composites were used as an electrode material for supercapacitors, and it was found that the supercapacitor performance using MWNTs/MnO{sub 2} composites was improved largely compared to that using pure MWNTs and {alpha}-MnO{sub 2} nanorod mechanically mixed with MWNTs.

Chen Yong [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Key Laboratory of Tropic Biological Resources, MOE, Hainan University, 58 Renmin Road, Haikou 570228 (China); Liu Chenguang; Liu Chang [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Lu Gaoqing [ARC Centre for Functional Nanomaterials, Australian Institute of Bioengineering and Nanotechnology, University of Queensland, QLD 4072 (Australia); Cheng Huiming [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)], E-mail: cheng@imr.ac.cn

2007-11-06T23:59:59.000Z

172

The crystal structure of {pi}-ErBO{sub 3}: New single-crystal data for an old problem  

Science Conference Proceedings (OSTI)

Single crystals of the orthoborate {pi}-ErBO{sub 3} were synthesized from Er{sub 2}O{sub 3} and B{sub 2}O{sub 3} under high-pressure/high-temperature conditions of 2 GPa and 800 {sup o}C in a Walker-type multianvil apparatus. The crystal structure was determined on the basis of single-crystal X-ray diffraction data, collected at room temperature. The title compound crystallizes in the monoclinic pseudowollastonite-type structure, space group C2/c, with the lattice parameters a=1128.4(2) pm, b=652.6(2) pm, c=954.0(2) pm, and {beta}=112.8(1){sup o} (R{sub 1}=0.0124 and wR{sub 2}=0.0404 for all data). -- graphical abstract: The first satisfying single-crystal structure determination of {pi}-ErBO{sub 3} sheds light on the extensively discussed structure of {pi}-orthoborates. The application of light pressure during the solid state synthesis yielded in high-quality crystals, due to pressure-induced crystallization. Research highlights: {yields} High-quality single crystals of {pi}-ErBO{sub 3} were prepared via high-pressure-induced crystallization. {yields} At least five different space groups for the rare-earth {pi}-orthoborates are reported. {yields} {pi}-ErBO{sub 3} is isotypic to the pseudowollastonite-type CaSiO{sub 3}. {yields} Remaining ambiguities regarding the structure of the rare-earth {pi}-orthoborates are resolved.

Pitscheider, Almut [Institut fuer Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universitaet Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria); Kaindl, Reinhard [Institut fuer Mineralogie und Petrographie, Leopold-Franzens-Universitaet Innsbruck, Innrain 52, A-6020 Innsbruck (Austria); Oeckler, Oliver [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5-13, D-81377 Muenchen (Germany); Huppertz, Hubert, E-mail: Hubert.Huppertz@uibk.ac.a [Institut fuer Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universitaet Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria)

2011-01-15T23:59:59.000Z

173

Fundamental Studies of Tl-Ba-Ca-Cu-O Single Crystals and New High-Temperature Superconducting Compounds  

Science Conference Proceedings (OSTI)

Experimental studies in creating new compounds may lead to a better understanding of high-temperature superconductors. Flux creep activation energies (minimum energies that cause magnetic flux motion) were designed in one new compound, single crystals of laboratory-grown Tl2Ba2CaCu2Ox, using an ac-susceptibility technique. Investigations also measured crystal resistivity and used a new processing technique to form high-quality Tl-based thin films.

1992-07-01T23:59:59.000Z

174

Performance Test of Amorphous Silicon Modules in Different Climates - Year Four: Progress in Understanding Exposure History Stabilization Effects; Preprint  

DOE Green Energy (OSTI)

The four-year experiment involved three identical sets of thin-film a-Si modules from various manufacturers deployed outdoors simultaneously in three sites with distinct climates. Each PV module set spent a one-year period at each site before a final period at the original site where it was first deployed.

Ruther, R.; Montenegro, A. A.; del Cueto, J.; Rummel, S.; Anderberg, A.; von Roedern, B.; Tamizh-Mani, G.

2008-05-01T23:59:59.000Z

175

Research on stable, high-efficiency, amorphous silicon multijunction modules. Annual subcontract report, 1 May 1991--30 April 1992  

DOE Green Energy (OSTI)

This report describes work to demonstrate a multijunction module with a ``stabilized`` efficiency (600 h, 50{degrees}C, AM1.5) of 10.5%. Triple-junction devices and modules using a-Si:H alloys with carbon and germanium were developed to meet program goals. ZnO was used to provide a high optical transmission front contact. Proof of concept was obtained for several important advances deemed to be important for obtaining high (12.5%) stabilized efficiency. They were (1) stable, high-quality a-SiC:H devices and (2) high-transmission, textured ZnO. Although these developments were not scaled up and included in modules, triple-junction module efficiencies as high as 10.85% were demonstrated. NREL measured 9.62% and 9.00% indoors and outdoors, respectively. The modules are expected to lose no more than 20% of their initial performance. 28 refs.

Catalano, A.; Bennett, M.; Chen, L.; D`Aiello, R.; Fieselmann, B.; Li, Y.; Newton, J.; Podlesny, R.; Yang, L. [Solarex Corp., Newtown, PA (United States). Thin Film Div.

1992-08-01T23:59:59.000Z

176

Method of forming crystalline silicon devices on glass  

DOE Patents (OSTI)

A method for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics.

McCarthy, Anthony M. (Menlo Park, CA)

1995-01-01T23:59:59.000Z

177

Model catalytic studies of single crystal, polycrystalline metal, and supported catalysts  

E-Print Network (OSTI)

This dissertation is focused on understanding the structure-activity relationship in heterogeneous catalysis by studying model catalytic systems. The catalytic oxidation of CO was chosen as a model reaction for studies on a variety of catalysts. A series of Au/TiO2 catalysts were prepared from various metalorganic gold complexes. The catalytic activity and the particle size of the gold catalysts were strongly dependent on the gold complexes. The Au/TiO2 catalyst prepared from a tetranuclear gold complex showed the best performance for CO oxidation, and the average gold particle size of this catalyst was 3.1 nm. CO oxidation was also studied over Au/MgO catalysts, where the MgO supports were annealed to various temperatures between 900 and 1300 K prior to deposition of Au. A correlation was found between the activity of Au clusters for the catalytic oxidation of CO and the F-center concentration in the MgO support. In addition, the catalytic oxidation of CO was studied in a batch reactor over supported Pd/Al2O3 catalysts, a Pd(100) single crystal, as well as polycrystalline metals of rhodium, palladium, and platinum. A hyperactive state, corresponding to an oxygen covered surface, was observed at high O2/CO ratios at elevated pressures. The reaction rate at this state was significantly higher than that on CO-covered surfaces at stoichiometric conditions. The oxygen chemical potential required to achieve the hyperactive state depends on the intrinsic properties of the metal, the particle size, and the reaction temperature. A well-ordered ultra-thin titanium oxide film was synthesized on the Mo(112) surface as a model catalyst support. Two methods were used to prepare this Mo(112)- (8x2)-TiOx film, including direct growth on Mo(112) and indirect growth by deposition of Ti onto monolayer SiO2/Mo(112). The latter method was more reproducible with respect to film quality as determined by low-energy electron diffraction and scanning tunneling microscopy. The thickness of this TiOx film was one monolayer and the oxidation state of Ti was +3 as determined by Auger spectroscopy, high-resolution electron energy loss spectroscopy, and X-ray photoelectron spectroscopy.

Yan, Zhen

2007-12-01T23:59:59.000Z

178

Research on stable, high efficiency amorphous silicon multijunction modules. Semiannual technical progress report, 1 May 1991--31 October 1991  

DOE Green Energy (OSTI)

Improvements towards a goal of a 12.5% initial triple-junction module efficiency require the use of a wide gap top-layer for improved open circuit voltage, higher transmission from the transparent front contact and more highly transmitting doped layers. To address the first issue, there has been continued development of a-SiC:H with the utilization of several novel feedstocks to control the atomic structure of the solid. These films have transport properties superior to the best results reported for a-SiC:H. Preliminary results with devices exhibits a stability comparable to a-Si:H, while previous results with a-SiC:H have generally shown for higher rates of degradation. Module fabrication has been refined to the extent that comparable module and small area device efficiencies are readily obtained. Despite the high initial efficiencies (9%--10%) obtained in 935 cm{sup 2} modules employing devices with 4000{Angstrom} thick middle junctions, higher than expected rates of degradation were found. The cause of the anomalous degradation was traced to shunts present in the device arising from defects in the tin oxide coating. NREL degradation results of triple-junction modules showed stabilized performance of the initial efficiency for modules prepared during the period in which shunts were a problem. 20 refs.

Catalano, A.; Arya, R.R.; Bennett, M.; Chen, L.; D`Aiello, R.; Fieselmann, B.; Li, Y.; Newton, J.; Podlesny, R.; Wiedeman, S.; Yang, L. [Solarex Corp., Newtown, PA (United States). Thin Film Div.

1992-02-01T23:59:59.000Z

179

Regular pattern formation through the retraction and pinch-off of edges during solid-state dewetting of patterned single crystal films  

E-Print Network (OSTI)

We report the formation of regular patterns of metal lines via solid-state dewetting of lithographically patterned single-crystal Ni(110) films with square and cross shapes. During the solid-state dewetting, valleys develop ...

Ye, Jongpil

180

Annealing as grown large volume CZT single crystals increased spectral resolution  

Science Conference Proceedings (OSTI)

The spectroscopic performance of current large-volume Cadmium 10% Zinc Telluride, Cd{sub 0.9}Zn{sub 0.1}Te, (CZT) detectors is impaired by cumulative effect of tellurium precipitates (secondary phases) presented in CZT single-crystal grown by low-pressure Bridgman techniques(1). This statistical effect may limit the energy resolution of large-volume CZT detectors (typically 2-5% at 662 keV for 12-mm thick devices). The stochastic nature of the interaction prevents the use of any electronic or digital charge correction techniques without a significant reduction in the detector efficiency. This volume constraint hampers the utility of CZT since the detectors are inefficient at detecting photons >1MeV and/or in low fluency situations. During the project, seven runs CZT ingots have been grown, in these ingots the indium dopant concentrations have been changed in the range between 0.5ppm to 6ppm. The I-R mapping imaging method has been employed to study the Te-precipitates. The Teprecipitates in as-grown CZT wafers, and after annealing wafers have been systematically studied by using I-R mapping system (home installed, resolution of 1.5 {micro}m). We employed our I-R standard annealing CZT (Zn=4%) procedure or two-steps annealing into radiation CZT (Zn=10%), we achieved the 'non'-Te precipitates (size CZT n+-type with resistivity > 10{sup 9-10} {Omega}-cm. We believe that the Te-precipitates are the p-type defects, its reducing number causes the CZT became n+-type, therefore we varied or reduced the indium dapant concentration during the growth and changed the Te-precipitates size and density by using different Cd-temperature and different annealing procedures. We have made the comparisons among Te-precipitates size, density and Indium dopant concentrations, and we found that the CZT with smaller size of Te-precipitates is suitable for radiation uses but non-Te precipitates is impossible to be used in the radiation detectors, because the CZT would became un-dopant or 'intrinsic' with non radiation affection (we have studied before). We used 3 weeks annealing time for 3-5 mm thickness CZT wafres, if the thickness increased to 10-15mm, the annealing time would be increased to many months, which is very unpractical and very difficult to control the CZT property. We have obtained as-grown CZT by using adding the extra Cd before growth, which showed the smaller size of Te-precipitates and excellent radiation performance. These CZT has very high {micro}{tau}(e) >1 x 10{sup -2}cm{sup 2}/V, {rho} > 2 x 10{sup 10} {Omega}-cm, and the thickness could be up to 80-100mm. The energy resolution of the detector (thickness>10mm) at 662 keV is about 1.2% without any correction (2) and according to Aquila, the 0.5-0.8% resolution at 662 keV would be expected by using appropriated electronic correction.

Dr. Longxia Li

2008-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Light-trapped, interconnected, silicon-film {trademark} modules. Annual subcontract report, 18 November 1994--18 November 1995  

SciTech Connect

This report describes the first year of work performed by AstroPower, Inc., of Newark, Delaware, under the Thin-Film PV Partnership Program. The work led to the development of a new barrier-coated substrate that has enabled high-quality thin-layer polycrystalline silicon to be grown on a low-cost substrate. High diffusion lengths were measured after external phosphorous gettering. This led to a confirmed efficiency for a 0.57cm{sup 2}, thin-layer solar cell grown on a low-cost substrate.

Hall, R.B.; Rand, J.A.; Cotter, J.E.; Ford, D.H. [AstroPower, Inc., Newark, DE (United States)

1996-03-01T23:59:59.000Z

182

Effect of surface treatments on self-trapped exciton luminescence in single-crystal CaF{sub 2}  

SciTech Connect

We show that near-surface defects produced by mechanical treatments and electron irradiation can significantly enhance the intensity of luminescence due to the decay of self-trapped excitons (STEs) in single-crystal calcium fluoride during 157- and 193-nm irradiation. For example, polishing can double the intensity of the STE luminescence. Defects produced by mechanical indentation can either increase or decrease the luminescence intensity, depending on the indentation force. Electron irradiation also enhances subsequent STE luminescence. When electron-irradiated samples are annealed, additional increases in luminescence intensity are observed. Plausible mechanisms for the observed effects on STE luminescence intensity are discussed.

Cramer, L.P.; Cumby, T.D.; Leraas, J.A.; Langford, S.C.; Dickinson, J.T. [Department of Physics and Materials Science Program, Washington State University, Pullman, Washington 99164-2814 (United States)

2005-05-15T23:59:59.000Z

183

Hybrid Silicon Photonic Integrated Circuit Technology  

E-Print Network (OSTI)

modulators for sili- con photonics,” in Proc. IEEE Photon.J.E. Bowers, “Hybrid silicon photonics for optical Intercon-The evolution of silicon photonics as an enabling technology

2013-01-01T23:59:59.000Z

184

Single-crystal sup 40 Ar/ sup 39 Ar dating of the Olorgesailie Formation, southern Kenya rift  

SciTech Connect

Single-crystal laser fusion {sup 40}Ar/{sup 39}Ar analyses and several conventional bulk fusion {sup 40}K- {sup 40}Ar dates have been used to determine the age of volcaniclastic strata within the Olorgesailie Formation and of associated volcanic and sedimentary units of the southern Kenya rift. In the principal exposures along the southern edge of the Legemunge Plain, the formation spans the interval from approximately 500 to 1,000 ka. Deposition continued to the east along the Ol Keju Nyiro river where a tuff near the top of the formation has been dated at 215 ka. In these exposures, the formation is unconformably overlain by sediments dated at 49 ka. A possible source for the Olorgesailie tephra, the Ol Doinyo Nyokie volcanic complex, contains as ash flow dated at {approximately} 1 Ma, extending the known age range of this complex to encompass that of virtually the entire Olorgesailie Formation in the Legemunge Plain. These geologic examples illustrate the importance of the single-crystal {sup 40}Ar/{sup 39}Ar dating technique whereby contaminant, altered, or otherwise aberrant grains can be identified and eliminated from the determination of eruptive ages for reworked or altered pyroclastic deposits. The authors have presented a computer-modeling procedure based on an inverse-isochron analysis that promotes a more objective approach to trimming {sup 40}Ar/{sup 39}Ar isotope data sets of this type.

Deino, A. (Geochronology Center of the Inst. of Human Origins, Berkeley, CA (United States)); Potts, R. (Smithsonian Institution, Washington, DC (United States))

1990-06-10T23:59:59.000Z

185

Mid- and Far-Infrared Reflection/Absorption Spectroscopy (IRAS) Studies of NO on Rh Single Crystal Surfaces  

DOE Green Energy (OSTI)

The NO/CO reaction over Rh metal in automobile catalytic converters is critical to the control of emissions of these pollutant molecules. As part of a program to determine the elementary mechanism(s) of this reaction, we have been performing mid- and far-infrared reflection/absorption spectroscopic (IRAS) measurements of the adsorption and co-adsorption and co-adsorption of NO and CO on Rh single crystal surfaces. Of particular interest is the low-frequency range of the IRAS spectra where we hoped to observe features due to metal-N stretching and/or bending vibrational motions. In particular, we hoped to obtain information regarding the site-requirements for the dissociation of the NO molecule on various Rh single crystal surfaces. An important result from our earlier work is that the selectivity of the reaction for the two nitrogen-containing products, N2 and N2O, is a strong function of the Rh surface structure. On the basis of ancillary data, we suggested that the location of adsorbed NO and N-atoms (formed from dissociation of adsorbed NO) on various Rh surfaces could, perhaps account for the selectivity differences.

Peden, Charles HF; He, Ting; Pilling, M.; Hirschmugl, Carol J.; Gardner, P.

2001-02-01T23:59:59.000Z

186

In Situ Tensile Testing of Single Crystal Molybdenum Alloy Fibers with Various Dislocation Densities in a Scanning Electron Microscope  

SciTech Connect

In-situ tensile tests have been performed in a dual beam focused ion beam and scanning electron microscope on as-grown and prestrained single-crystal molybdenum-alloy (Mo-alloy) fibers. The fibers had approximately square cross sections with submicron edge lengths and gauge lengths in the range of 9-41 {mu}m. In contrast to previously observed yield strengths near the theoretical strength of 10 GPa in compression tests of {approx}1-3-{mu}m long pillars made from similar Mo-alloy single crystals, a wide scatter of yield strengths between 1 and 10 GPa was observed in the as-grown fibers tested in tension. Deformation was dominated by inhomogeneous plastic events, sometimes including the formation of Lueders bands. In contrast, highly prestrained fibers exhibited stable plastic flow, significantly lower yield strengths of {approx}1 GPa, and stress-strain behavior very similar to that in compression. A simple, statistical model incorporating the measured dislocation densities is developed to explain why the tension and compression results for the as-grown fibers are different.

George, Easo P [ORNL; Johanns, K. [University of Tennessee, Knoxville (UTK); Sedlmayr, A. [Karlsruhe Institute of Technology, Karlsruhe, Germany; Phani, P. Sudharshan [University of Tennessee, Knoxville (UTK); Monig, R. [Karlsruhe Institute of Technology, Karlsruhe, Germany; Kraft, O. [Karlsruhe Institute of Technology, Karlsruhe, Germany; Pharr, George M [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

187

Growth of Bi doped cadmium zinc telluride single crystals by Bridgman oscillation method and its structural, optical, and electrical analyses  

Science Conference Proceedings (OSTI)

The II-VI compound semiconductor cadmium zinc telluride (CZT) is very useful for room temperature radiation detection applications. In the present research, we have successfully grown Bi doped CZT single crystals with two different zinc concentrations (8 and 14 at. %) by the Bridgman oscillation method, in which one experiment has been carried out with a platinum (Pt) tube as the ampoule support. Pt also acts as a cold finger and reduces the growth velocity and enhances crystalline perfection. The grown single crystals have been studied with different analysis methods. The stoichiometry was confirmed by energy dispersive by x-ray and inductively coupled plasma mass spectroscopy analyses and it was found there is no incorporation of impurities in the grown crystal. The presence of Cd and Te vacancies was determined by cathodoluminescence studies. Electrical properties were assessed by I-V analysis and indicated higher resistive value (8.53x10{sup 8} {Omega} cm) for the crystal grown with higher zinc concentration (with Cd excess) compare to the other (3.71x10{sup 5} {Omega} cm).

Carcelen, V.; Rodriguez-Fernandez, J.; Dieguez, E. [Dpto. Fisica de Materiales, Laboratorio de Crecimiento de Cristales, Facultad de Ciencias, Univ. Autonoma de Madrid, 28049 Cantoblanco (Spain); Hidalgo, P. [Dpto. Fisica de Materiales, Facultad de Ciencias Fisicas, Univ. Complutense de Madrid, 28040 Madrid (Spain)

2010-05-15T23:59:59.000Z

188

Large single crystal quaternary alloys of IB-IIIA-Se/sub 2/ and methods of synthesizing the same  

DOE Patents (OSTI)

New alloys of Cu/sub x/Ag/sub (1-x)/InSe/sub 2/ (where x ranges between 0 and 1 and preferably has a value of about 0.75) and CuIn/sub y/Ga/sub (1-y)/Se/sub 2/ (where y ranges between 0 and 1 and preferably has a value of about 0.90) in the form of single crystals with enhanced structure perfection, which crystals are substantially free of fissures, are disclosed. Processes are disclosed for preparing the new alloys of Cu/sub x/Ag/sub (1-x)/InSe/sub 2/. The process includes placing stoichiometric quantities of a Cu, Ag, In, and Se reaction mixture or stoichiometric quantities of a Cu, In, Ga, and Se reaction mixture in a refractory crucible in such a manner that the reaction mixture is surrounded by B/sub 2/O/sub 3/, placing the thus loaded crucible in a chamber under a high pressure atmosphere of inert gas to confine the volatile Se to the crucible, and heating the reaction mixture to its melting point. The melt can then be cooled slowly to form, by direct solidification, a single crystal with enhanced structure perfection, which crystal is substantially free of fissures.

Ciszek, T.F.

1986-07-15T23:59:59.000Z

189

Large single crystal quaternary alloys of IB-IIIA-SE.sub.2 and methods of synthesizing the same  

DOE Patents (OSTI)

New alloys of Cu.sub.x Ag.sub.(1-x) InSe.sub.2 (where x ranges between 0 and 1 and preferably has a value of about 0.75) and CuIn.sub.y Ga.sub.(1-y) Se.sub.2 (where y ranges between 0 and 1 and preferably has a value of about 0.90) in the form of single crystals with enhanced structure perfection, which crystals are substantially free of fissures are disclosed. Processes are disclosed for preparing the new alloys of Cu.sub.x Ag.sub.(1-x) InSe.sub.2. The process includes placing stoichiometric quantities of a Cu, Ag, In, and Se reaction mixture or stoichiometric quantities of a Cu, In, Ga, and Se reaction mixture in a refractory crucible in such a manner that the reaction mixture is surrounded by B.sub.2 O.sub.3, placing the thus loaded crucible in a chamber under a high pressure atmosphere of inert gas to confine the volatile Se to the crucible, and heating the reaction mixture to its melting point. The melt can then be cooled slowly to form, by direct solidification, a single crystal with enhanced structure perfection, which crystal is substantially free of fissures.

Ciszek, Theodore F. (Evergreen, CO)

1988-01-01T23:59:59.000Z

190

Research on stable, high-efficiency amorphous silicon multijunction modules. Annual subcontract report, 1 January 1992--28 February 1993  

DOE Green Energy (OSTI)

This report describes the progress made during Phase 2 of the R&D program to obtain high-efficiency amorphous alloy multijunction PV (photovoltaic) modules. The highlight of the work includes: (1) demonstration of world-record small-area efficiency of 11.2% after one-sun light-soaking at 50{degrees}C for 600 h using a dual band gap, double-junction structure; and (2) demonstration of initial module efficiency of 10.6% over 0.09-m{sup 2} (1-ft{sup 2}) area using the same double-junction approach. In addition, fundamental studies on material properties and cell performance have shown an interesting correlation between microstructure in the material and cell efficiency both in the initial and light-degraded conditions.

Guha, S. [United Solar Systems Corp., Troy, MI (US)

1993-07-01T23:59:59.000Z

191

High-performance porous silicon solar cell development. Final report, October 1, 1993--September 30, 1995  

DOE Green Energy (OSTI)

The goal of the program was to demonstrate use of porous silicon in new solar cell structures. Porous silicon technology has been developed at Spire for producing visible light-emitting diodes (LEDs). The major aspects that they have demonstrated are the following: porous silicon active layers have been made to show photovoltaic action; porous silicon surface layers can act as antireflection coatings to improve the performance of single-crystal silicon solar cells; and porous silicon surface layers can act as antireflection coatings on polycrystalline silicon solar cells. One problem with the use of porous silicon is to achieve good lateral conduction of electrons and holes through the material. This shows up in terms of poor blue response and photocurrents which increase with increasing reverse bias applied to the diode.

Maruska, P. [Spire Corp., Bedford, MA (United States)

1996-09-01T23:59:59.000Z

192

4765Federal Register / Vol. 77, No. 20 / Tuesday, January 31, 2012 / Notices 1 See Crystalline Silicon Photovoltaic Cells,  

E-Print Network (OSTI)

Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China

193

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, 1 January 1996--31 December 1996  

DOE Green Energy (OSTI)

This report describes Solarex`s accomplishments during this phase of the Photovoltaic Manufacturing Technology (PVMaT) program. During this reporting period, Solarex researchers converted 79% of production casting stations to increase ingot size and operated them at equivalent yields and cell efficiencies; doubled the casting capacity at 20% the cost of buying new equipment to achieve the same capacity increase; operated the wire saws in a production mode with higher yields and lower costs than achieved on the ID saws; purchased additional wire saws; developed and qualified a new wire-guide coating material that doubles the wire-guide lifetime and produces significantly less scatter in wafer thickness; ran an Al paste back-surface-field process on 25% of all cells in manufacturing; completed environmental qualification of modules using cells produced by an all-print metallization process; qualified a vendor-supplied Tedlar/ethylene vinyl acetate (EVA) laminate to replace the combination of separate sheets of EVA and Tedlar backsheet; substituted RTV adhesive for the 3M Very High Bond tape after several field problems with the tape; demonstrated the operation of a prototype unit to trim/lead attach/test modules; demonstrated the use of light soldering for solar cells; demonstrated the operation of a wafer pull-down system for cassetting wet wafers; and presented three PVMaT-related papers at the 25th IEEE Photovoltaic Specialists Conference.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1997-10-01T23:59:59.000Z

194

NREL Core Program (NCPV), Session: Film Silicon (Presentation)  

DOE Green Energy (OSTI)

This project supports the Solar America Initiative by: R and D that contributes to goal of grid parity by 2015; research to fill the industry R and D pipeline for next-generation low-cost scalable products; development of industry collaborative research; and improvement of NREL tools and capabilities for film silicon research. The project addresses both parts of film silicon roadmap: (1) amorphous-silicon-based thin film PV--amorphous and nanocrystalline materials, present '2nd generation' technology, 4% of world PV sales in 2007; (2) advanced R and D toward film crystal silicon--definition, large-grained or single-crystal silicon < 100 {micro}m thick; 3-8 year horizon; and goal of reaching 15% cells at area costs approaching thin films.

Branz, H. M.

2008-04-01T23:59:59.000Z

195

Silicon-germanium/gallium phosphide material in high power density thermoelectric modules. Final report, February 1980--September 1981  

DOE Green Energy (OSTI)

This is the final report of work on the characterization of an improved Si-Ge alloy and the fabrication of thermoelectric devices. The improved Si-Ge alloy uses a small addition of GaP in n- and p- type 80 at.% Si-20 at.% Ge; this addition reduces the thermal conductivity, thereby increasing its figure of merit and conversion efficiency. The thermoelectric devices fabricated include multicouples intended for use in Radioisotope Thermoelectric Generators (RTGs) and ring-type modules intended for use with nuclear reactor heat sources. This report summarizes the effort in the material as well as the device areas and discusses individual phases of each area. Results should form basis for further effort.

Not Available

1981-12-31T23:59:59.000Z

196

Synthesis of Room-Temperature Ferromagnetic Cr-doped TiO?(110) Rutile Single Crystals using Ion Implantation  

SciTech Connect

Ferromagnetic Cr-doped rutile TiO? single crystals were synthesized by high-temperature ion implantation. The associated structural, compositional and magnetic properties were studied by x-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, proton induced x-ray emission, x-ray diffraction, Cr K- and L-shell near-edge x-ray absorption spectroscopy, and vibrating sample magnetometry. Cr was distributed uniformly to the depth of about 300 nm with an average concentration of ~1 at. %. The samples are semiconducting and ferromagnetic as implanted, with a saturation magnetization of 0.29???B/Cr atom at room temperature. Cr is in a formal oxidation state of +3 throughout the implanted region, and no CrO? is detected.

Shutthanandan, V.; Thevuthasan, Suntharampillai; Droubay, Timothy; Heald, Steve M.; Engelhard, Mark H.; McCready, David E.; Chambers, Scott A.; Nachimuthu, Ponnusamy; Mun, B. S.

2006-01-01T23:59:59.000Z

197

Photoconductivity and luminescence of CuInSe{sub 2} single crystals at a high level of optical excitation  

Science Conference Proceedings (OSTI)

The luminance-current and spectral characteristics of photoluminescence of the CuInSe{sub 2} single crystals are studied. The superlinear portion of the excitation-intensity dependence of photoconductivity at low excitation intensities in compensated p-CuInSe{sub 2} crystals is explained on the basis of a recombination model. The emission band that peaked at 0.98 eV in the n-CuInSe{sub 2} photoluminescence spectrum corresponds to radiative recombination of electrons at the donor level with a depth of 0.04 eV. The maximum in the band intensity corresponds to the energy gap between the trap level and the valence band.

Guseinov, A. G.; Salmanov, V. M.; Mamedov, R. M. [Baku State University (Azerbaijan)], E-mail: rovshan63@rambler.ru

2006-04-15T23:59:59.000Z

198

Electroluminescence and phototrigger effect in single crystals of GaS{sub x}Se{sub 1-x} alloys  

Science Conference Proceedings (OSTI)

The effects of switching and electroluminescence as well as the interrelation between these effects in single crystals of GaS{sub x}Se{sub 1-x} alloys are detected and studied. It is established that the threshold voltage for switching depends on temperature, resistivity, and composition of alloys, and also on the intensity and spectrum of photoactive light. As a result, a phototrigger effect is observed; this effect arises under irradiation with light from the fundamental-absorption region. Electroluminescence is observed in the subthreshold region of the current-voltage characteristic; the electroluminescence intensity decreases drastically to zero as the sample is switched from a high-resistivity state to a low-resistivity state. Experimental data indicating that the electroluminescence and the switching effect are based on the injection mechanism (as it takes place in other layered crystals of the III-V type) are reported.

Kyazym-Zade, A. G., E-mail: bsu_aydin@yahoo.com; Salmanov, V. M.; Mokhtari, A. G.; Dadashova, V. V.; Agaeva, A. A. [Baku State University (Azerbaijan)

2008-05-15T23:59:59.000Z

199

The formation of metallic nanoparticles in single crystal CaF{sub 2} under 157 nm excimer laser irradiation  

SciTech Connect

Single crystal calcium fluoride (CaF{sub 2}) is an important material for vacuum-ultraviolet optical components. Unfortunately, all metal halides tend to form defects when exposed to energetic particles and laser radiation, and these defects can degrade optical performance. Here we examine the consequences of exposing CaF{sub 2} to 157 nm excimer laser radiation and show that several tens of thousands of pulses at fluences near 1 J/cm{sup 2} can color the material. Absorption spectra of the exposed material confirm the formation of metallic calcium nanoparticles similar to those produced by other forms of energetic radiation. The rate of nanoparticle formation depends on the bulk temperature and displays a local maximum near 50 deg. C. Absorption measurements at 157 nm display a transient absorption component that grows during prolonged irradiation and disappears on time scales of several minutes after irradiation ceases. The implications of these effects in optical components are discussed.

Cramer, L.P.; Langford, S.C.; Dickinson, J.T. [Physics Department, Washington State University, Pullman, Washington 99164-2814 (United States)

2006-03-01T23:59:59.000Z

200

Detection of charge transfer processes in Cr-doped SrTiO{sub 3} single crystals  

SciTech Connect

An insulator-to-metal transition is observed in Cr-doped SrTiO{sub 3} single crystals upon extended exposure to a high electric field, namely, electroconditioning (EC). Electron paramagnetic resonance (EPR) and transport measurements under laser irradiation show anticorrelation between the Cr{sup 3+} EPR signal and the electrical current. This proves that the Cr{sup 3+} ions are responsible for the photocurrent that initiates the EC process. We observe the presence of Cr{sup 3+}/Cr{sup 4+} mixed valencies in the bulk in the conducting state. The EPR characterization of the spectra in the conducting state excludes the possibility of a Cr{sup 3+}-oxygen vacancy complex in the bulk as a result of the EC.

La Mattina, F. [Physik-Institut der Universitaet Zuerich, Winterthurerstr. 190, CH-8057 Zuerich (Switzerland); IBM Research, Zurich Research Laboratory, Saeumerstr. 4, CH-8803 Rueschlikon (Switzerland); Bednorz, J. G.; Alvarado, S. F. [IBM Research, Zurich Research Laboratory, Saeumerstr. 4, CH-8803 Rueschlikon (Switzerland); Shengelaya, A. [Physics Institute of Tbilisi State University, Chavchavadze 3, GE-0128, Tbilisi (Georgia); Keller, H. [Physik-Institut der Universitaet Zuerich, Winterthurerstr. 190, CH-8057 Zuerich (Switzerland)

2008-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

In-Plane Electronic Anisotropy of Underdoped ___122___ Fe-Arsenide Superconductors Revealed by Measurements of Detwinned Single Crystals  

SciTech Connect

The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and ARPES measurements of detwinned single crystals of underdoped Fe arsenide superconductors in the '122' family of compounds.

Fisher, Ian Randal

2012-05-08T23:59:59.000Z

202

Microsoft Word - 41344_Texas A&M_Mech of Single Crystal Blades_Factsheet_Rev01_10-03.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation into the Mechanics of Single Crystal Turbine Blades Investigation into the Mechanics of Single Crystal Turbine Blades with a View Toward Enhancing Turbine Efficiency October 8, 2003 DE-FC26-01NT41344 1 FACT SHEET I. PROJECT PARTICIPANTS PI: K.R.Rajagopal, Texas A & M University Co-PI: I.J.Rao, New Jersey Institute of Technology II. PROJECT DESCRIPTION A. Objective(s) To model the behavior of single crystal turbine blades within a full thermodynamic framework, accounting for the evolving anisotropy of the material as it deforms and the creep behavior at different temperatures. B. Background/Relevancy The preferred solution to the generation of electric power is by means of gas turbines as they are cheaper and produce considerably less carbon monoxide than conventional methods of power

203

Dip coating process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project. Quarterly report No. 6, March 22, 1977--June 24, 1977  

DOE Green Energy (OSTI)

The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in silicon on ceramic (SOC) solar cell performance. SOC cells having 1 cm/sup 2/ active areas demonstrated measured conversion efficiencies as high as 7.2 percent. Typical open circuit voltages (V/sub oc/) and short circuit current densities (J/sub sc/) were 0.51 volt and 20 mA/cm/sup 2/ respectively. Since the active surface of these solar cells is a highly reflective ''as-grown'' surface, one can expect improvement in J/sub sc/ after an anti-reflection (AR) coating is applied. It is significant that single-crystal comparison cells, also measured without benefit of an AR coating, had efficiencies in the 8.5 percent range with typical V/sub oc/'s and J/sub sc/'s of 0.54 volt and 23 mA/cm/sup 2/, respectively. Therefore, improvement in cell design and junction diffusion techniques should increase the efficiency of both the SOC and single-crystal cells. During this quarter the dip coating facility was inadvertently contaminated, but has since been restored to a purity level exceeding its original state. With this facility, silicon coatings were grown with a single-crystal seed attached to the substrate. Single-crystal silicon was not forthcoming, but the results were nonetheless encouraging. Several of the carbon coating types tried appear promising, including one which has high purity and can be applied uniformly by swab or airbrush.

Zook, J.D.; Heaps, J.D.; Maciolek, R.B.; Koepke, B.; Butter, C.D.; Schuldt, S.B.

1977-06-30T23:59:59.000Z

204

In situ transmission electron microscopy study of electric-field-induced microcracking in single crystal Pb,,Mg13Nb23...O3 PbTiO3  

E-Print Network (OSTI)

In situ transmission electron microscopy study of electric-field-induced microcracking in single March 2000; accepted for publication 2 May 2000 In this letter, we report in situ transmission electron microscopy TEM study of effect of a cyclic electric field on microcracking in a single crystal piezoelectric

Chen, Haydn H.

205

Rapid Charge Transport in Dye-Sensitized Solar Cells Made from Vertically Aligned Single-Crystal Rutile TiO2 Nanowires  

Science Conference Proceedings (OSTI)

A rapid solvothermal approach was used to synthesize aligned 1D single-crystal rutile TiO2 nanowire (NW) arrays on transparent conducting substrates as electrodes for dye-sensitized solar cells. The NW arrays showed a more than 200 times faster charge transport (see picture) and a factor four lower defect state density than conventional rutile nanoparticle films.

Feng, X.; Zhu, K.; Frank, A. J.; Grimes, C. A.; Mallouk, T. E.

2012-03-12T23:59:59.000Z

206

The Role of -Al2O3 Single Crystal Support to Pt Nanoparticles Construction Zhongfan Zhang*, Long Li*, Lin-lin Wang**, Sergio I. Sanchez***, Qi Wang****,  

E-Print Network (OSTI)

The Role of -Al2O3 Single Crystal Support to Pt Nanoparticles Construction Zhongfan Zhang*, Long Li the preparation of a model Pt/-Al2O3 catalyst and its characterization by a cross-sectional high-resolution electron microscopy (XHREM) method. Pt/-Al2O3 is the most important technologically-relevant heterogeneous

Frenkel, Anatoly

207

Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006  

DOE Green Energy (OSTI)

The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

Wohlgemuth, J.; Narayanan, M.

2006-07-01T23:59:59.000Z

208

Schottky barrier height behavior of Pt-Ru alloy contacts on single-crystal n-ZnO  

SciTech Connect

We investigated the Schottky barrier height (SBH) behavior of binary alloy Schottky contacts on n-type zinc oxide (n-ZnO) single crystals. Pt-Ru alloy electrodes were deposited on the Zn-polar and O-polar faces of ZnO substrates by combinatorial ion-beam deposition under identical conditions. The crystal structures of the Pt-Ru alloy film changed from the Pt phase (cubic structure) to the Ru phase (hexagonal structure) in the Pt-Ru alloy phase diagram with decreasing Pt content. The SBH, determined from current-voltage measurements, decreased with decreasing Pt content, indicating that the SBH behavior also followed the Pt-Ru alloy phase diagram. The alloy electrodes on the Zn-polar face showed better Schottky properties than those on the O-polar face. Hard x-ray photoelectron spectroscopy revealed a difference in the interface oxidization of the Pt-Ru alloy: the interface of the O-polar face and Pt-Ru mixed phase with poor crystallinity had a more oxidized layer than that of the Zn-polar face. As a result of this oxidization, the O-polar face, Pt-Ru mixed, and Ru phases showed poor Schottky properties.

Nagata, T.; Haemori, M.; Hayakawa, R.; Yoshitake, M.; Chikyow, T. [Advanced Electronic Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Volk, J. [Research Institute for Technical Physics and Materials Science, H-1121 Budapest, Konkoly Thege Miklos ut 29-33 (Hungary); Yamashita, Y. [Advanced Electronic Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); NIMS Beamline Station at SPring-8, National Institute for Materials Science, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Yoshikawa, H.; Ueda, S.; Kobayashi, K. [NIMS Beamline Station at SPring-8, National Institute for Materials Science, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

2010-05-15T23:59:59.000Z

209

Thermal chemistry of copper(I)-N,N '-di-sec-butylacetamidinate on Cu(110) single-crystal surfaces  

Science Conference Proceedings (OSTI)

The surface chemistry of copper(I)-N,N'-di-sec-butylacetamidinate on Cu(110) single-crystal surfaces has been characterized under ultrahigh vacuum by temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy. A series of thermal stepwise conversions were identified, starting with the partial dissociative adsorption of the copper acetamidinate dimers into a mixture of monomers and dimers on the surface. An early dissociation of a C-N bond leads to the production of N-sec-butylacetamidine, which is detected in TPD experiments in three temperature regimes, the last one centered around 480 K. Butene, and a small amount of butane, is also detected above approximately 500 K, and hydrogen production, an indication of dehydrogenation of surface fragments, is observed at 460, 550 and 670 K. In total, only about 10% of the initial copper(I)-N,N'-di-sec-butylacetamidinate adsorbed monolayer decomposes, and only about {approx}3% of carbon is left behind on the surface after heating to high temperatures. The implications of this surface chemistry to the design of chemical film growth processes using copper acetamidinates as precursors are discussed.

Ma Qiang; Zaera, Francisco; Gordon, Roy G. [Department of Chemistry, University of California, Riverside, California 92521 (United States); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)

2012-01-15T23:59:59.000Z

210

Thermal transport of the single-crystal rare-earth nickel borocarbides RNi2B2C  

E-Print Network (OSTI)

The quaternary intermetallic rare-earth nickel borocarbides RNi2B2C are a family of compounds that show magnetic behavior, superconducting behavior, and/or both. Thermal transport measurements reveal both electron and phonon scattering mechanisms, and can provide information on the interplay of these two long-range phenomena. In general the thermal conductivity kappa is dominated by electrons, and the high temperature thermal conductivity is approximately linear in temperature and anomalous. For R=Tm, Ho, and Dy the low-temperature thermal conductivity exhibits a marked loss of scattering at the antiferromagnetic ordering temperature T-N. Magnon heat conduction is suggested for R=Tm. The kappa data for R=Ho lends evidence for gapless superconductivity in this material above T-N. Unlike the case for the non-magnetic superconductors in the family, R=Y and Lu, a phonon peak in the thermal conductivity below T-c is not observed down to T=1.4 K for the magnetic superconductors. Single-crystal quality seems to have a strong effect on kappa. The electron-phonon interaction appears to weaken as one progresses from R=Lu to R=Gd. The resistivity data shows the loss of scattering at T-N for R=Dy, Tb, and Gd; and the thermoelectric power for all three of these materials exhibits an enhancement below T-N.

Hennings, BD; Naugle, Donald G.; Canfield, PC.

2002-01-01T23:59:59.000Z

211

System and method for liquid silicon containment  

SciTech Connect

This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding member adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.

Cliber, James A; Clark, Roger F; Stoddard, Nathan G; Von Dollen, Paul

2013-05-28T23:59:59.000Z

212

Silicon web process development. Low Cost Solar Array Project: Large Area Silicon Test Task. Annual report, April 1978-April 1979  

DOE Green Energy (OSTI)

Silicon dendritic web is a unique mode of ribbon growth in which crystallographic and surface tension forces, rather than shaping dies, are used to control crystal form. The single crystal webs, typically 2-4 cm wide, have been made into solar cells which exhibit AMl conversion efficiencies as high as 15.5%. During crystallization, silicon webs effectively segregate metal impurities to the melt (k/sub eff/ approx. 10/sup -5/) so that the use of cheaper, less pure silicon as feedstock for crystal growth appears feasible. A research program to significantly increase web output rate and to show the feasibility for simultaneous melt replenishment and growth is described. Also, an economic analysis of the silicon web process is presented. (WHK)

Duncan, C.S.; Hopkins, R.H.; Seidensticker, R.G.; McHugh, J.P.; Hill, F.E.; Heimlich, M.E.; Driggers, J.M.

1979-01-01T23:59:59.000Z

213

Cost Effective Single Crystals  

Science Conference Proceedings (OSTI)

three relevant technologies, namely casting, alloy development and orientation measurement, developed by Rolls-Royce to enable the cost effective production.

214

Serial Powering of Silicon Sensors  

E-Print Network (OSTI)

Serial powering is a technique to provide power to a number of serially chained detector modules. It is an alternative option to independent powering that is particularly attractive when the number of modules is high, as in largescale silicon tracking detectors for particle physics. It uses a single power cable and a constant current source. On each module power is derived using local shunt regulators. Design aspects of local shunt regulators and system aspects of serial powering will be discussed. Test results and measurements obtained with a silicon strip supermodule will be presented. Specifications of radiation-hard custom serial powering circuitry will be discussed.

Villani, E G; Tyndel, M; Apsimon, R

2007-01-01T23:59:59.000Z

215

Nd:YAG single-crystal fiber laser: Room-temperature cw operation using a single LED as an end pump  

SciTech Connect

cw laser action has been obtained using as-grown single-crystal Nd:YAG fibers end-pumped by a single high-radiance LED. The fibers were 0.5 cm long and 80 ..mu..m in dia; the diameter of the LED luminous area was 85 ..mu..m. The lowest cw laser threshold was observed at a diode drive current of 45 mA. (AIP)

Stone, J.; Burrus, C.A.; Dentai, A.G.; Miller, B.I.

1976-07-01T23:59:59.000Z

216

Development of large-area monolithically integrated Silicon-Film photovoltaic modules. Annual subcontract report, 16 November 1991--31 December 1992  

DOE Green Energy (OSTI)

This report describes work to develop Silicon-Film{trademark} Product III into a low-cost, stable solar cell for large-scale terrestrial power applications. The Product III structure is a thin (< 100-{mu}m) polycrystalline layer of silicon on a durable, insulating, ceramic substrate. The insulating substrate allows the silicon layer to be isolated and metallized to form a monolithically interconnected array of solar cells. High efficiency is achievable with the use of light trapping and a passivated back surface. The long-term goal for the product is a 1200-cm{sup 2}, 18%-efficient, monolithic array. The short-term objectives are to improve material quality and to fabricate 100 cm{sup 2} monolithically interconnected solar cell arrays. Low minority-carrier diffusion length in the silicon film and series resistance in the interconnected device structure are presently limiting device performance. Material quality is continually improving through reduced impurity contamination. Metallization schemes, such as a solder-dipped interconnection process, have been developed that will allow low-cost production processing and minimize R{sub s} effects. Test data for a nine-cell device (16 cm{sup 2}) indicated a V{sub oc} of 3.72 V. These first-reported monolithically interconnected multicrystalline silicon-on-ceramic devices show low shunt conductance (< 0.1 mA/cm{sup 2}) due to limited conduction through the ceramic and no process-related metallization shunts.

Rand, J.A.; Cotter, J.E.; Ingram, A.E.; Ruffins, T.R.; Shreve, K.P.; Hall, R.B.; Barnett, A.M. [AstroPower, Inc., Newark, DE (United States)

1993-06-01T23:59:59.000Z

217

Development of large-area monolithically integrated silicon-film photovoltaic modules. Annual subcontract report, 1 May 1991--15 November 1991  

DOE Green Energy (OSTI)

This report describes work to develop Silicon-Film Product III into a low-cost, stable device for large-scale terrestrial power applications. The Product III structure is a thin (< 100 {mu}m) polycrystalline silicon layer on a non-conductive supporting ceramic substrate. The presence of the substrate allows cells to be isolated and in interconnected monolithically in various series/parallel configurations. The long-term goal for the product is efficiencies over 18% on areas greater than 1200 cm{sup 2}. The high efficiency is made possible through the benefits of using polycrystalline thin silicon incorporated into a light-trapping structure with a passivated back surface. Short-term goals focused on the development of large-area ceramics, a monolithic interconnection process, and 100 cm{sup 2} solar cells. Critical elements of the monolithically integrated device were developed, and an insulating ceramic substrate was developed and tested. A monolithic interconnection process was developed that will isolate and interconnect individual cells on the ceramic surface. Production-based, low-cost process steps were used, and the process was verified using free-standing silicon wafers to achieve an open-circuit voltage (V{sub oc}) of 8.25 V over a 17-element string. The overall efficiency of the silicon-film materials was limited to 6% by impurities. Improved processing and feedstock materials are under investigation.

Rand, J.A.; Bacon, C.; Cotter, J.E.; Lampros, T.H.; Ingram, A.E.; Ruffins, T.R.; Hall, R.B.; Barnett, A.M. [AstroPower, Inc., Newark, DE (United States)

1992-07-01T23:59:59.000Z

218

Metal organic chemical vapor deposition of 111-v compounds on silicon  

DOE Patents (OSTI)

Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

Vernon, Stanley M. (Wellesley, MA)

1986-01-01T23:59:59.000Z

219

Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric  

SciTech Connect

ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

None

2010-09-14T23:59:59.000Z

220

40 kW of solar cell modules for the Large Scale Production Task, a Low Cost Silicon Solar Array Project. Final technical report  

SciTech Connect

Forty kilowatts of solar cell modules was produced in this program. This is equivalent to 4123 modules. The average power output per module was 9.7 watts at 16.5 volts, 60/sup 0/C and 100 mW/cm/sup 2/. The peak production rate was 200 modules per week which is equal to 1.9 kW per week. This rate was sustained for over four and one-half months and is equivalent to 100 kW per year. The solar cell module design, electrical and power performance, module preproduction environmental test results, production and shipping schedule, program summary, and delivery are described. A cost analysis section is written. Particular emphasis on the percentage of labor and material utilized in constructing a solar cell module is presented. Also included are cost reduction recommendations. It was concluded from this program that volume production on the order of hundreds of kilowatts per year per company as a minimum is required to significantly reduce the price per watt for solar cell modules. Sensor Technology more than doubled its solar cell module manufacturing facilities since the completion of the JPL Block II procurement. Plans are being made for large scale expansion of our facilities to meet growing JPL/DOE procurements.

Jones, G.T.

1977-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Utility-Scale Silicon Carbide Power Transistors: 15 kV SiC IGBT Power Modules for Grid Scale Power Conversion  

SciTech Connect

ADEPT Project: Cree is developing silicon carbide (SiC) power transistors that are 50% more energy efficient than traditional transistors. Transistors act like a switch, controlling the electrical energy that flows through an electrical circuit. Most power transistors today use silicon semiconductors to conduct electricity. However, transistors with SiC semiconductors operate at much higher temperatures, as well as higher voltage and power levels than their silicon counterparts. SiC-based transistors are also smaller and require less cooling than those made with traditional silicon power technology. Cree's SiC transistors will enable electrical circuits to handle higher power levels more efficiently, and they will result in much smaller and lighter electrical devices and power converters. Cree, an established leader in SiC technology, has already released a commercially available SiC transistor that can operate at up to 1,200 volts. The company has also demonstrated a utility-scale SiC transistor that operates at up to 15,000 volts.

None

2010-09-01T23:59:59.000Z

222

Energy Basics: Flat-Plate Photovoltaic Modules  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PV module must have a high transmission in the wavelengths that can be used by the solar cells in the module. For example, for silicon solar cells, the top surface must have...

223

In situ dehydration behavior of zeolite-like pentagonite: A single-crystal X-ray study  

SciTech Connect

The structural modifications upon heating of pentagonite, Ca(VO)(Si{sub 4}O{sub 10}){center_dot}4H{sub 2}O (space group Ccm2{sub 1}, a=10.3708(2), b=14.0643(2), c=8.97810(10) A, V=1309.53(3) A{sup 3}) were investigated by in situ temperature dependent single-crystal X-ray structure refinements. Diffraction data of a sample from Poona district (India) have been measured in steps of 25 up to 250 Degree-Sign C and in steps of 50 Degree-Sign C between 250 and 400 Degree-Sign C. Pentagonite has a porous framework structure made up by layers of silicate tetrahedra connected by V{sup 4+}O{sub 5} square pyramids. Ca and H{sub 2}O molecules are extraframework occupants. Room temperature diffraction data allowed refinement of H positions. The hydrogen-bond system links the extraframework occupants to the silicate layers and also interconnects the H{sub 2}O molecules located inside the channels. Ca is seven-fold coordinated forming four bonds to O of the tetrahedral framework and three bonds to extraframework H{sub 2}O. The H{sub 2}O molecule at O9 showing a high displacement parameter is not bonded to Ca. The dehydration in pentagonite proceeds in three steps. At 100 Degree-Sign C the H{sub 2}O molecule at O8 was released while O9 moved towards Ca. As a consequence the displacement parameter of H{sub 2}O at O9 halved compared to that at room temperature. The unit-cell volume decreased to 1287.33(3) A{sup 3} leading to a formula with 3H{sub 2}O per formula unit (pfu). Ca remained seven-fold coordinated. At 175 Degree-Sign C Ca(VO)(Si{sub 4}O{sub 10}){center_dot}3H{sub 2}O transformed into a new phase with 1H{sub 2}O molecule pfu characterized by doubling of the c axis and the monoclinic space group Pn. Severe bending of specific T--O--T angles led to contraction of the porous three-dimensional framework. In addition, H{sub 2}O at O9 was expelled while H{sub 2}O at O7 approached a position in the center of the channel. The normalized volume decreased to 1069.44(9) A{sup 3}. The Ca coordination reduced from seven- to six-fold. At 225 Degree-Sign C a new anhydrous phase with space group Pna2{sub 1} but without doubling of c had formed. Release of H{sub 2}O at O7 caused additional contraction of T--O--T angles and volume reduction (V=1036.31(9) A{sup 3}). Ca adopted five-fold coordination. During heating excursion up to 400 Degree-Sign C this anhydrous phase remained preserved. Between room temperature and 225 Degree-Sign C the unit-cell volume decreased by 21% due to dehydration. The dehydration steps compare well with the thermo-gravimetric data reported in the literature. - Graphical abstract: Pentagonite structure at room temperature and at 225 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer We investigate the relationship between the removal of H{sub 2}O molecules and structural modifications of the framework of pentagonite. Black-Right-Pointing-Pointer Pentagonite undergoes phase transitions upon heating. Black-Right-Pointing-Pointer We analyze similarities and differences between pentagonite and related structures.

Danisi, Rosa Micaela, E-mail: rosa.danisi@krist.unibe.ch [Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, Bern CH-3012 (Switzerland); Armbruster, Thomas; Lazic, Biljana [Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, Bern CH-3012 (Switzerland)

2013-01-15T23:59:59.000Z

224

Preparation and properties of evaporated CdTe films compared with single-crystal CdTe. Progress report No. 5, November 1, 1981-January 31, 1982  

DOE Green Energy (OSTI)

The hot-wall vacuum evaporator system has been put into use with successful deposition of seven thin films of n-type CdTe on glass. Microprobe analysis indicated that the films were stoichiometric CdTe. Optical transmission showed a well-defined absorption edge. Film resistivities on glass were reduced from 1.7 x 10/sup 8/ ohm-cm, to 6 x 10/sup 4/ ohm-cm by In doping; film resistivities under AM1.5 illumination are 2.0 x 10/sup 4/ and 5 x 10/sup 2/ ohm-cm, respectively compared to the dark values given above. Temperature dependence of the dark conductivity of the undoped CdTe film indicates an activation energy of 0.79 eV; in the light the activation energy was reduced to 0.1 eV. The high dark resistivity and activation energy indicate high intergrain potential barriers, which could produce the high resistivities observed even with fairly high free electron densities in the grains. Comparison will be sought between these results and those found for films deposited epitaxially on single crystal substrates. A detailed summary of absorption constant vs wavelength data for CdTe has been assembled for both single crystal and thin film materials. The absorption constant for thin film material appears to vary from 2 x 10/sup 4/ cm/sup -1/ at 8000A to 10/sup 5/ cm/sup -1/ at 5000A; single crystal values may be slightly higher. EBIC and light scanning techniques are being developed for characterizing grain boundary effects in bicrystals, and to evaluate the effects of passivation techniques. Defect densities at a grain boundary in a p-type bicrystal were found to range from 2 x 10/sup 12/ to 8 x 10/sup 12/ cm/sup -2/eV/sup -1/, using data derived from the J-V dependence of the grain boundary.

Bube, R H

1982-01-01T23:59:59.000Z

225

In-Situ Observation of the Stress-Induced Stochastic Twin Boundary Motion in off Stoichiometric NiMnGa Single Crystal  

Science Conference Proceedings (OSTI)

Stochastic motion of the type II twin boundary in off stoichiometric NiMnGa single crystal is confirmed by in-situ X-ray microdiffraction during external stress field loading. Assymmetry between tensile and compressive parts of the loading and large hysteresis loop is found. Formation of local strained regions is predecessing each boundary movement. The location of strained regions adjusts to the position of the twin boundary. Abrupt motion of the boundary correlates with the corresponding spikes at the load/displacement curve.

Barabash, Rozaliya [ORNL; Kirchlechner, Christoph [Max-Planck-Institut fur Eisenforschung, Germany; Robach, Odile [European Synchrotron Radiation Facility (ESRF); Sozinov, Alexei [AdaptaMat, Finland

2013-01-01T23:59:59.000Z

226

Neutron transmutation doping of polycrystalline silicon  

DOE Green Energy (OSTI)

Chemical vapor deposition (CVD) of doped silane has been used by others to deposit a polycrytalline silicon film (polysil) on metal or graphite substrates, but dopant migration to grain boundaries during deposition apparently prohibits attaining a uniform or desired dopant concentration. In contrast, we have used neutron transmutation doping to introduce a uniform phosphorus dopant concentration in commercially available undoped CVD polysil at doping concentrations greater than or equal to 2 x 10/sup 15/ cm/sup -3/. Radiation damage annealing to 800/sup 0/C did not indicate dopant migration. Carrier mobility increased with doping concentration and the minority carrier lifetime (MCL) appears to be comparable to that of neutron transmutation doped (NTD) single crystal Si. Application of this technique to photovoltaic solar cell fabrication is discussed.

Cleland, J.W.; Westbrook, R.D.; Wood, R.F.; Young, R.T.

1976-04-01T23:59:59.000Z

227

Features of the charge-transport mechanism in layered Bi{sub 2}Te{sub 3} single crystals doped with chlorine and terbium  

Science Conference Proceedings (OSTI)

The temperature dependences (T = 5-300 K) of the resistivity in the plane of layers and in the direction perpendicular to the layers, as well as the Hall effect and the magnetoresistance (H < 80 kOe, T = 0.5-4.2 K) in Bi{sub 2}Te{sub 3} single crystals doped with chlorine and terbium, are investigated. It is shown that the doping of Bi{sub 2}Te{sub 3} with terbium atoms results in p-type conductivity and in increasing hole concentration. The doping of Bi{sub 2}Te{sub 3} with chlorine atoms modifies also the character of its conductivity instead of changing only the type from p to n. In the temperature dependence of the resistivity in the direction perpendicular to layers, a portion arises with the activation conductivity caused by the hopping between localized states. The charge-transport mechanism in Bi{sub 2}Te{sub 3} single crystals doped with chlorine is proposed.

Abdullaev, N. A., E-mail: anadir@azintex.com; Abdullaev, N. M.; Aliguliyeva, H. V.; Kerimova, T. G.; Mehdiyev, G. S. [National Academy of Sciences of Azerbaijan, Abdullaev Institute of Physics (Azerbaijan); Nemov, S. A. [St. Petersburg State Polytechnic University (Russian Federation)

2011-01-15T23:59:59.000Z

228

Magnetic Field Induced Phase Transitions in Gd5(Si1.95Ge2.05)Single Crystal and the Anisotropic Magnetocaloric Effect  

Science Conference Proceedings (OSTI)

The magnetization measurements using a Gd{sub 5}(Si{sub 1.95}Ge{sub 2.05}) single crystal with the magnetic field applied along three crystallographic directions, [001], [010] and [100], were carried out as function of applied field (0-56 kOe) at various temperatures ({approx}5-320 K). The magnetic-field induced phase transformations at temperature above the zero-field critical temperature, i.e. the paramagnetic (PM) {leftrightarrow} ferromagnetic (FM) transitions with application or removal of magnetic field, are found to be temperature dependent and hysteretic. The corresponding critical fields increase with increasing temperature. The magnetic field (H)-temperature (T) phase diagrams have been constructed for the Gd{sub 5}(Si{sub 1.95}Ge{sub 2.05}) single crystal with field along the three directions. A small anisotropy has been observed. The magnetocaloric effect (MCE) has been calculated from the isothermal magnetization data, and the observed anisotropy correlates with H-T phase diagrams. The results are discussed in connection with the magnetic-field induced martensitic-like structural transition observed in the Gd{sub 5}(Si{sub 2}Ge{sub 2})-type compounds.

H. Tang; V.K. Pecharsky; A.O. Pecharsky; D.L. Schlagel; T.A. Lograsso; K.A. Gschneidner,jr.

2004-09-30T23:59:59.000Z

229

Preparation and properties of evaporated CdTe films compared with single-crystal CdTe. Progress report no. 6, February 1, 1982-April 30, 1982  

DOE Green Energy (OSTI)

Films of n-type CdTe:In have been deposited by hot-wall vacuum evaporation (HWVE) on 7059 glass substrates, BaF/sub 2/ single crystal substrates, metal (Pt, Cr, Mo, Al) coated glass substrates, and single crystal p-type CdTe substrates. Films deposited on 7059 glass show typically a dark resistivity of 2 x 10/sup 5/ ohm-cm and a light resistivity of 3 x 10/sup 2/ ohm-cm. With increasing In source temperature, the resistivity decreases, but actually increases slightly again if the T/sub In/ is raised above 600/sup 0/C. Photoexcitation increases the electron density but does not affect the electron mobility. It appears that the grains are depleted in the dark. Films deposited on BaF/sup 2/ show dark resistivity of about 5 ohm-cm and light resistivity of about 2 ohm-cm, corresponding to electron densities of about 3 x 10/sup 16/ cm/sup -3/ and electron mobilities of about 30 cm/sup 2//V-sec. For doping levels abpove 10/sup 16/ cm/sup -3/ photoexcitation increases the mobility, but not the electron density; it appears that the grains are not depleted in the dark in this case. Cr coated 7059 glass makes an ohmic contact to n-type CdTe films. A Schottky diode formed with a 100A thick Au layer showed V/sub oc/ = 0.46 V, J/sub sc/ = 9 mA/cm/sup 2/ and a solar efficiency of about 2%. An n/p homojunction device was made by HWVE deposition of a 1.5 ..mu..m thick n-type CdTe layer on a p-type CdTe single crystal substrate. Values of V/sub oc/ = 0.73 V and J/sub sc/ = 0.24 mA/cm/sup 2/ were obtained. Grain boundary investigations showed the additive quality of two independent grain boundaries when measured in series, and tested the effects of passivation by Au, Cu, Li and H/sub 2/ in p-type CdTe grain boundaries, and In in n-type CdTe grain boundaries. Marked decreases in grain boundary resistance were observed after Li diffusion and H/sub 2/ diffusion in p-type CdTe.

Bube, R H

1982-01-01T23:59:59.000Z

230

Low Cost Solar Array Project cell and module formation research area. Process research of non-CZ silicon material. Final report, November 26, 1980-September 30, 1983  

DOE Green Energy (OSTI)

The primary objective of the work reported was to investigate high-risk, high-payoff research areas associated with the Westinghouse process for producing photovoltaic modules using non-Czochralski sheet material. These tasks were addressed: technical feasibility study of forming front and back junctions using liquid dopant techniques, liquid diffusion mask feasibility study, application studies of antireflective material using a meniscus coater, ion implantation compatibility/feasibility study, and cost analysis. (LEW)

Campbell, R.B.

1983-01-01T23:59:59.000Z

231

Bridgman Growth of Large SrI2:Eu2+ Single Crystals: A High-performance Scintillator for Radiation Detection Applications  

SciTech Connect

Single-crystal strontium iodide (SrI2) doped with relatively high levels (e.g., 3 - 6 %) of Eu2+ exhibits characteristics that make this material superior, in a number of respects, to other scintillators that are currently used for radiation detection. Specifically, SrI2:Eu2+ has a light yield that is significantly higher than LaBr3:Ce3+ -a currently employed commercial high-performance scintillator. Additionally, SrI2:Eu2+ is characterized by an energy resolution as high as 2.6% at the 137Cs gamma-ray energy of 662 keV, and there is no radioactive component in SrI2:Eu2+ - unlike LaBr3:Ce3+ that contains 138La. The Ce3+-doped LaBr3 decay time is, however, faster (30 nsec) than the 1.2 sec decay time of SrI2:Eu2+. Due to the relatively low melting point of strontium iodide (~515 oC), crystal growth can be carried out in quartz crucibles by the vertical Bridgman technique. Materials-processing and crystal-growth techniques that are specific to the Bridgman growth of europium-doped strontium iodide scintillators are described here. These techniques include the use of a porous quartz frit to physically filter the molten salt from a quartz antechamber into the Bridgman growth crucible and the use of a bent or bulb grain selector design to suppress multiple grain growth. Single crystals of SrI2:Eu2+ scintillators with good optical quality and scintillation characteristics have been grown in sizes up to 5.0 cm in diameter by applying these techniques. Other aspects of the SrI2:Eu2+ crystal-growth methods and of the still unresolved crystal-growth issues are described here.

Boatner, Lynn A [ORNL; Ramey, Joanne Oxendine [ORNL; Kolopus, James A [ORNL; Hawrami, Rastgo [Radiation Monitoring Devices, Watertown, MA; Higgins, William [Radiation Monitoring Devices, Watertown, MA; Van Loef, Edgar [Radiation Monitoring Devices, Watertown, MA; Glodo, J. [Radiation Monitoring Devices, Watertown, MA; Shah, Kanai [Radiation Monitoring Devices, Watertown, MA; Bhattacharya, P. [Fisk University, Nashville, TN; Tupitsyn, E [Fisk University, Nashville, TN; Groza, Michael [Fisk University, Nashville, TN; Burger, Arnold [Fisk University, Nashville, TN

2013-01-01T23:59:59.000Z

232

Structurally-driven metal-insulator transition in Ca{sub 2}Ru{sub 1-x}Cr{sub x}O{sub 4} (0{<=}x<0.14): A single crystal X-ray diffraction study  

Science Conference Proceedings (OSTI)

Correlation between structure and transport properties are investigated in high-quality single-crystals of Ca{sub 2}Ru{sub 1-x}Cr{sub x}O{sub 4} with 013.5% and the system behaves as an insulator. Such a large, sharp metal-insulator transition and tuneable transition temperature may have potential applications in electronic devices. -- Graphical abstract: The metal-insulator transition temperature (T{sub MI}) was drastically reduced by Cr doping, and is closely related to the distortion of structure. Display Omitted Research highlights: {yields} The metal-insulator transition temperature (T{sub MI}) was drastically reduced by doping Cr into Ca{sub 2}RuO{sub 4} single crystal. {yields} Detailed single crystal structural analysis provided important insight into this structurally-driven metal-insulator transition. {yields} Negative Volume Thermal Expansion (NVTE) was observed with increasing temperature.

Qi, T.F., E-mail: tqi2@uky.ed [Center for Advanced Materials, University of Kentucky, Lexington, KY 40506 (United States); Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Ge, M. [Center for Advanced Materials, University of Kentucky, Lexington, KY 40506 (United States); High Magnetic Field Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (China); Korneta, O.B. [Center for Advanced Materials, University of Kentucky, Lexington, KY 40506 (United States); Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Parkin, S. [Center for Advanced Materials, University of Kentucky, Lexington, KY 40506 (United States); Department of Chemistry, University of Kentucky, Lexington, KY 40506 (United States); De Long, L.E.; Cao, G. [Center for Advanced Materials, University of Kentucky, Lexington, KY 40506 (United States); Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

2011-04-15T23:59:59.000Z

233

Silicon Film[trademark] photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report describes work on a project to develop an advanced low-cost manufacturing process for a new utility-scale flatplate module based on thin active layers of polycrystalline silicon on a low-cost substrate. This is called the Silicon-Film[trademark] process. This new power module is based on a new large solar cell that is 675 cm[sup 2] in area. Eighteen of these solar cells form a 170-W module. Twelve ofthese modules form a 2-kW array. The program has three components: (1) development of a Silicon-Film[trademark] wafer machine that can manufacture wafer 675 cm[sup 2] in size with a total product cost reductionof 70%; (2) development of an advanced solar cell manufacturing process that will turn the Silicon-Film[trademark] wafer into a 14%-efficient solar cell; and (3) development of an advanced module design based on these large-area, efficient silicon solar cells with an average power of 170 watts. The completion of these three tasks will lead to a new power module designed for utility and other power applications with asubstantially lower cost.

Bottenberg, W.R.; Hall, R.B.; Jackson, E.L.; Lampo, S.; Mulligan, W.E.; Barnett, A.M. (AstroPower, Inc., Newark, DE (United States))

1993-04-01T23:59:59.000Z

234

Solar-Grade Silicon from Metallurgical-Grade Silicon Via Iodine Chemical Vapor Transport Purification: Preprint  

DOE Green Energy (OSTI)

This conference paper describes the atmospheric-pressure in an ''open'' reactor, SiI2 transfers from a hot (>1100C) Si source to a cooler (>750C) Si substrate and decomposes easily via 2SiI2 Si+ SiI4 with up to 5?m/min deposition rate. SiI4 returns to cyclically transport more Si. When the source is metallurgical-grade Si, impurities can be effectively removed by three mechanisms: (1) differing free energies of formation in forming silicon and impurity iodides; (2) distillation; and (3) differing standard free energies of formation during deposition. Distillation has been previously reported. Here, we focused on mechanisms (1) and (3). We made feedstock, analyzed the impurity levels, grew Czochralski single crystals, and evaluated crystal and photovoltaic properties. Cell efficiencies of 9.5% were obtained. Incorporating distillation (step 2) should increase this to a viable level.

Ciszek, T. F.; Wang, T. H.; Page, M. R.; Bauer, R. E.; Landry, M. D.

2002-05-01T23:59:59.000Z

235

Development of methods of producing large areas of silicon sheet by the slicing of silicon ingots using inside diameter (ID) saws. First quarterly report  

SciTech Connect

An STC 16 inch automated ID slicing machine (Model SMA-4401) is being used for this effort. The saw has been modified to accept an STC Programmable Electric Feed System, STC Crystal Rotating System and an STC Dyna-Track Blade Monitoring and Control System. The saw and accessories will be used to slice 100 mm diameter single crystal silicon ingots while rotating them. The automated saw will automatically recover the wafers and load them into a cassette. The amount of material lost during slicing is being reduced by using smaller blades than ones normally used to slice 100 mm wafers. Some blades have been manufactured with cutting edge thickness as low as 0.20 mm. Initial slicing runs on 75 mm diameter silicon has been successful on blades in the 0.23 to 0.24 mm cutting edge thickness range. The thinner blades will be used to slice 100 mm silicon while rotating the boule.

Aharonyan, P.

1979-01-01T23:59:59.000Z

236

Seventh workshop on the role of impurities and defects in silicon device processing  

DOE Green Energy (OSTI)

This workshop is the latest in a series which has looked at technological issues related to the commercial development and success of silicon based photovoltaic (PV) modules. PV modules based on silicon are the most common at present, but face pressure from other technologies in terms of cell performance and cell cost. This workshop addresses a problem which is a factor in the production costs of silicon based PV modules.

NONE

1997-08-01T23:59:59.000Z

237

Silicon materials outlook study for 1980-85 calendar years  

DOE Green Energy (OSTI)

Photovoltaic solar cell arrays converting solar energy into electrical energy can become a cost-effective, alternative energy source provided that an adequate supply of low-priced solar cell materials and automated fabrication techniques are available. Presently, the photovoltaic industry is dependent upon polycrystalline silicon which is produced primarily for the discrete semiconductor device industry. This dependency is expected to continue until DOE-sponsored new technology developments mature. Recent industry forecasts have predicted a limited supply of polycrystalline silicon material and a shortage could occur in the early 80's. The Jet Propulsion Laboratory's Technology Development and Application Lead Center formed an ad hoc committee at JPL, SERI and consultant personnel to conduct interviews with key polycrystalline manufacturers and a large cross-section of single crystal ingot growers and wafer manufacturers. Industry consensus and conclusions reached from the analysis of the data obtained by the committee are reported. The highlight of the study is that there is a high probability of polycrystalline silicon shortage by the end of CY 1982 and a strong seller's market after CY 1981 which will foster price competition for available silicon.

Costogue, E.; Ferber, R.; Hasbach, W.; Pellin, R.; Yaws, C.

1979-11-01T23:59:59.000Z

238

Micro benchtop optics by bulk silicon micromachining  

DOE Patents (OSTI)

Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

Lee, Abraham P. (Walnut Creek, CA); Pocha, Michael D. (Livermore, CA); McConaghy, Charles F. (Livermore, CA); Deri, Robert J. (Pleasanton, CA)

2000-01-01T23:59:59.000Z

239

Determination of a definition of solar grade silicon. Second quarterly report, January 1--March 31, 1976  

DOE Green Energy (OSTI)

Solar device fabrication and evaluation are the key elements of this contract. Test devices from sixteen experimental crystals have been processed to date. A 12-chip LED, specifically developed for this project, now provides ten times more light than the standard lamp and allows meaningful measurements of the minority carrier lifetime in the substrate before processing. In Czochralski crystal growth thirteen acceptable single crystals resulted from 23 runs. All but one of the originally scheduled float-zone crystals and two second-generation crystals have been grown. All material prepared has been characterized and has been found to deviate considerably from semiconductor silicon standards. (WDM)

Hill, D.E.

1976-01-01T23:59:59.000Z

240

Cation distribution in a Fe-bearing K-feldspar from Itrongay,Madagascar. A combined neutron- and X-ray single crystal diffractionstudy  

Science Conference Proceedings (OSTI)

We determined the cation distribution and ordering of Si, Al and Fe on the tetrahedral sites of a monoclinic low-sanidine from Itrongay, Madagascar, by combined neutron- and X-ray single-crystal diffraction. The cation distribution was determined by means of a simultaneous refinement using neutron- and X-ray data, as well as by combining scattering densities obtained from separate refinements with chemical data from a microprobe experiment. The two methods give the same results and show that Fe is fully ordered on T1, whereas Al shows a high degree of disorder. Based on this and previously published temperature-dependent X-ray data, we conclude that it is preferential ordering of Fe on T1 even at high temperature, rather than a high diffusion kinetics of Fe, which causes this asymmetry in ordering behavior between Al and Fe. The preferential ordering of Fe3+ relative to Al3+ in T1 is consistent with its 25 percent larger ionic radius.

Ackermann, Sonia; Kunz, Martin; Armbruster, Thomas; Schefer,Jurg; Hanni, Henry

2005-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The role of hydrogen in the hydrogenation and hydrogenolysis of aniline on the nickel single crystal surfaces: Its implication on the mechanisms of HDN reactions  

SciTech Connect

The selectivity of hydrogenation and hydrogenolysis reactions for organonitrogen compounds on transition metal surfaces depends heavily on the availability of surface hydrogen surface under reaction conditions. The surface hydrogen produced during dehydrogenation of adsorbed aniline upon thermal activation does not significantly modify hydrogenolysis reactions because it desorbs below the reaction temperatures. A series of experiments which use external hydrogen to control the concentration of surface hydrogen at reaction temperatures are reported here. In situ kinetic measurements in the presence of reactive hydrogen environments have been used to probe the details of the adsorbed species and reaction mechanisms. Nickel single crystals have been used as well defined model catalysts for hydrodenitrogenation (HDN) reactions. Previously, the effect of external hydrogen on aniline hydrogenolysis on the Pt(111) surface has been reported. On Pt(111), C-N bond activation is substantially enhanced in the presence of hydrogen. The increased C-N bond cleavage is facilitated by hydrogen which maintains a parallel adsorption of the aromatic derivative of aniline. In the absence of surface hydrogen, the adsorbed intermediate tilts away from surface because of partial dehydrogenation with increasing temperature at about 400 K. This paper will discuss a recent study of aniline reactions on the Ni(100) and Ni(111) surfaces both in the presence and absence of hydrogen. Reactivity comparisons will also be made for these two nickel surfaces towards adsorbed aniline.

Huang, S.X.; Gland, J.L. [Univ. of Michigan, Ann Arbor, MI (United States); Fischer, D.A. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

1995-02-01T23:59:59.000Z

242

New oxyfluoride glass with high fluorine content and laser patterning of nonlinear optical BaAlBO{sub 3}F{sub 2} single crystal line  

Science Conference Proceedings (OSTI)

A new oxyfluoride glass of 50BaF{sub 2}-25Al{sub 2}O{sub 3}-25B{sub 2}O{sub 3} (mol. %) with a large fraction of fluorine, i.e., F/(F + O) = 0.4, was prepared using a conventional melt-quenching method in order to synthesize new glass-ceramics containing nonlinear optical oxyfluoride crystals. The refractive index at 632.8 nm and ultra-violet cutoff wavelength of the glass were 1.564 and {approx}200 nm, respectively. Eu{sup 3+} ions in the glass showed a high quantum yield of 88% in the photoluminescence spectrum in the visible region. BaAlBO{sub 3}F{sub 2} crystals (size: 50-100 nm) showing second harmonic generations were formed through the crystallization of the glass. Lines consisting of BaAlBO{sub 3}F{sub 2} crystals were patterned successfully on the glass surface by laser irradiations (Yb:YVO{sub 4} laser with a wavelength of 1080 nm, laser power of 1.1 W, scanning speed of 8 {mu}m/s). High resolution transmission electron microscope observations combined with a focused ion beam technique indicate that BaAlBO{sub 3}F{sub 2} crystals are highly oriented just like a single crystal. The present study proposes that the new oxyfluoride glass and glass-ceramics prepared have a high potential for optical device applications.

Shionozaki, K.; Honma, T.; Komatsu, T. [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)

2012-11-01T23:59:59.000Z

243

The interaction of 193-nm excimer laser radiation with single-crystal zinc oxide: The generation of atomic Zn line emission at laser fluences below breakdown  

SciTech Connect

The production of gas phase atomic and ionic line spectra accompanying the high laser fluence irradiation of solid surfaces is well known and is most often due to the production and interaction of high densities of atoms, ions, and electrons generated from laser-induced breakdown. The resulting plasma expands and moves rapidly away from the irradiated spot and is accompanied by intense emission of light. This type of plume is well studied and is frequently exploited in the technique of chemical analysis known as laser induced breakdown spectroscopy. Here, we describe a similar but weaker emission of light generated in vacuum by the laser irradiation of single crystal ZnO at fluences well below breakdown; this emission consists entirely of optical line emission from excited atomic Zn. We compare the properties of the resulting laser-generated gas-phase light emission (above and below breakdown) and describe a mechanism for the production of the low-fluence optical emission resulting from a fortuitous choice of material and laser wavelength.

Kahn, E. H. [Washington State University, Pullman; Langford, S. C. [Washington State University, Pullman; Dickinson, J. T. [Washington State University, Pullman; Boatner, Lynn A [ORNL

2013-01-01T23:59:59.000Z

244

Germanium-rich silicon-germanium materials for field-effect modular application  

E-Print Network (OSTI)

The development of electric-field-induced optical modulation in the materials capable of monolithically integrated on silicon (Si) substrates offer the possibility of high-speed modulation in a pico second timeframe as ...

Jongthammanurak, Samerkhae

2008-01-01T23:59:59.000Z

245

Silicon-on ceramic process. Silicon sheet growth and device developmentt for the Large-Area Silicon Sheet Task of the Low-Cost Solar Array Project. Quarterly report No. 13, October 1-December 31, 1979  

DOE Green Energy (OSTI)

Research on the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon is reported. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 11 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A variety of ceramic materials have been dip coated with silicon. The investigation has shown that mullite substrates containing an excess of SiO/sub 2/ best match the thermal expansion coefficient of silicon and hence produce the best SOC layers. With such substrates, smooth and uniform silicon layers 25 cm/sup 2/ in area have been achieved with single-crystal grains as large as 4 mm in width and several cm in length. Crystal length is limited by the length of the substrate. The thickness of the coating and the size of the crystalline grains are controlled by the temperature of the melt and the rate at which the substrate is withdrawn from the melt. The solar-cell potential of this SOC sheet silicon is promising. To date, solar cells with areas from 1 to 10 cm/sup 2/ have been fabricated from material with an as-grown surface. Conversion efficiencies of about 10 percent with antireflection (AR) coating have been achieved. Such cells typically have open-circuit voltage and short-circuit current densities of 0.55V and 23 mA/cm/sup 2/, respectively.

Chapman, P W; Zook, J D; Grung, B L; McHenry, K; Schuldt, S B

1980-02-15T23:59:59.000Z

246

THE USE OF AMORPHOUS SILICON IN FABRICATING A PHOTOVOLTAIC-THERMAL SYSTEM  

E-Print Network (OSTI)

& irradiation intensity 1 INTRODUCTION With the high increase in PV system production and solar energy use this information and solar irradiation data [4], electricity production during the entire lifetime of the PV system grade silicon Multicrystalline silicon ingot Multicrystalline silicon wafer Solar cell PV module PV

Kherani, Nazir P.

247

Silicon materials task of the Low-Cost Solar Array Project: Phase IV. Effects of impurities and processing on silicon solar cells. Twenty-first quarterly report, October-December 1980  

DOE Green Energy (OSTI)

The overall objective of this program is to define the effects of impurities, various thermochemical processes, and any impurity-process interactions upon the performance of terrestrial solar cells. The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Cr is highly mobile in silicon even at temperatures as low as 600/sup 0/C. Contrasting with earlier data for Mo, Ti, and V, Cr concentrations vary from place to place in polycrystalline silicon wafers and the electrically-active Cr concentration in the polysilicon is more than an order of magnitude smaller than would be projected from single crystal impurity data. We hypothesize that Cr diffuses during ingot cooldown after groth, preferentially segregates to grain boundaries and becomes electrically deactivated. Both Al and Au introduce deep levels when grown into silicon crystals. Accelerated aging data from Ni-contaminated silicon imply that no significant impurity-induced cell performance reduction should be expected over a twenty-year device lifetime. Combined electrical bias and thermal stressing of silicon solar cells containing Nb, Fe, Cu, Ti, Cr, and Ag, respectively produces no performance loss after 100 hour exposures up to 225/sup 0/C. Ti and V, but not Mo, can be gettered from polycrystalline silicon by POCl/sub 3/ or HCl at temperatures of 1000 and 1100/sup 0/C.

Hopkins, R.H.; Hanes, M.H.; Davis, J.R.; Rohatgi, A.; Rai-Choudhury, P.; Mollenkopf, H.C.

1981-01-30T23:59:59.000Z

248

Epitaxial silicon growth for solar cells. Final report  

DOE Green Energy (OSTI)

The objectives of this contract were: (1) to determine the feasibility of silicon epitaxial growth on low-cost silicon substrates for the development of silicon sheet capable of producing low-cost, high efficiency solar cells; (2) to achieve a goal of 12% (AM-0) efficient solar cells fabricated on thin epitaxial layers (<25 ..mu..m) grown on low-cost substrates; and (3) to evaluate the add-on cost for the epitaxial process and to develop low-cost epitaxial growth procedures for application in conjunction with low-cost silicon substrates. The basic epitaxial procedures and solar-cell fabrication and evaluation techniques are described, followed by a discussion of the development of baseline epitaxial solar-cell structures, grown on high-quality conventional silicon substrates. This work resulted in the definition of three basic structures which reproducibly yielded efficiencies in the range of 12 to 13.7%. These epitaxial growth procedures and baseline structures were then used to grow diagnostic layers and solar cells on four potentially low-cost silicon substrates. A description of the crystallographic properties of such layers and the performance of epitaxially grown solar cells fabricated on these materials is given. The major results were the achievement of cell efficiencies of 10.6 to 11.2% on multigrained substrates and approx. 13% on a low-cost single-crystal substrate. An advanced epitaxial reactor, the Rotary Disc, is described. The results of growing solar-cell structures of the baseline type and on low-cost substrates are given. The add-on cost for the epitaxial process is assessed. These cost estimates show a value of approx. 0.46/W using existing or near-term technologies and project an add-on cost of $0.10/W for future reactors.

D'Aiello, R.V.; Robinson, P.H.; Richman, D.

1979-04-01T23:59:59.000Z

249

Upper critical fields and thermally-activated transport of Nd(0.7Fe0.3) FeAs single crystal  

SciTech Connect

We present measurements of the resistivity and the upper critical field H{sub c2} of Nd(O{sub 0.7}F{sub 0.3})FeAs single crystals in strong DC and pulsed magnetic fields up to 45 T and 60 T, respectively. We found that the field scale of H{sub c2} is comparable to {approx}100 T of high T{sub c} cuprates. H{sub c2}(T) parallel to the c-axis exhibits a pronounced upward curvature similar to what was extracted from earlier measurements on polycrystalline samples. Thus this behavior is indeed an intrinsic feature of oxypnictides, rather than manifestation of vortex lattice melting or granularity. The orientational dependence of H{sub c2} shows deviations from the one-band Ginzburg-Landau scaling. The mass anisotropy decreases as T decreases, from 9.2 at 44K to 5 at 34K. Spin dependent magnetoresistance and nonlinearities in the Hall coefficient suggest contribution to the conductivity from electron-electron interactions modified by disorder reminiscent that of diluted magnetic semiconductors. The Ohmic resistivity measured below T{sub c} but above the irreversibility field exhibits a clear Arrhenius thermally activated behavior over 4--5 decades. The activation energy has very different field dependencies for H{parallel}ab and H{perpendicular}ab. We discuss to what extent different pairing scenarios can manifest themselves in the observed behavior of H{sub c2}, using the two-band model of superconductivity. The results indicate the importance of paramagnetic effects on H{sub c2}(T), which may significantly reduce H{sub c2}(0) as compared to H{sub c2}(0) {approx}200--300 T based on extrapolations of H{sub c2}(T) near T{sub c} down to low temperatures.

Balakirev, Fedor F [Los Alamos National Laboratory; Jaroszynski, J [NHMFL, FSU; Hunte, F [NHMFL, FSU; Balicas, L [NHMFL, FSU; Jo, Youn - Jung [NHMFL, FSU; Raicevic, I [NHMFL, FSU; Gurevich, A [NHMFL, FSU; Larbalestier, D C [NHMFL, FSU; Fang, L [CHINA; Cheng, P [CHINA; Jia, Y [CHINA; Wen, H H [CHINA

2008-01-01T23:59:59.000Z

250

Silicon Microrefrigerator  

E-Print Network (OSTI)

We fabricated a silicon microrefrigerator on a 500-mu m-thick substrate with the standard integrated circuit (IC) fabrication process. The cooler achieves a maximum cooling of 1 degrees C below ambient at room temperature. Simulations show that the cooling power density for a 40 x 40 mu m(2) device exceeds 500 W/cm(2). The unique three-dimensional (3-D) geometry, current and heat spreading, different from conventional one-dimensional (1-D) thermoelectric device, contribute to this large cooling power density. A 3-D finite element electrothermal model is used to analyze non-ideal factors inside the device and predict its limits. The simulation results show that in the ideal situation, with low contact resistance, bulk silicon with 3-D geometry could cool similar to 20 degrees C with a cooling power density of 1000 W/cm(2) despite the low thermoelectric figure-of-merit (ZT) of the material. The large cooling power density is due to the geometry dependent heat and current spreading in the device. The non-uniformity of current and Joule heating inside the substrate also contributes to the maximum cooling of silicon microrefrigerator, exceeding 30 % limit given in one-dimensional thermoelectric theory Delta T-max = 0.5ZT(c)(2) where T-c is the cold side temperature. These devices can be used c to remove hot spots

Y Zhang; G H. Zeng; A Shakouri; Yan Zhang; Gehong Zeng; Ali Shakouri

2006-01-01T23:59:59.000Z

251

Out-of-plane negative magnetoresistance of Bi{sub 2}Sr{sub 1.6}La{sub 0.4}CuO{sub 6+{delta}} single crystals in the underdoped region  

Science Conference Proceedings (OSTI)

In order to investigate a relationship between the carrier concentration and negative magnetoresistance in the underdoped region, they have performed out-of-plane electrical resistivity measurements for underdoped Bi{sub 2}Sr{sub 1.6}La{sub 0.4}CuO{sub 6+{delta}} single crystals. Giant negative magnetoresistance has been observed in the most abundant carrier sample with {delta} = 0.12 in the experiment. The negative magnetoresistance reduces with decreasing carrier concentration.

Akazawa, Teruhiko; Ikeda, Hiroshi; Ozawa, Norihiko; Kouno, Hideki; Yoshizaki, Ryozo

1999-12-01T23:59:59.000Z

252

Future System-on-Silicon LSI Chips  

Science Conference Proceedings (OSTI)

A new three-dimensional (3D) integration technology to achieve system-on-silicon LSIs has been proposed. Several LSI wafers are vertically stacked and glued each other after thinning them in this 3D integration technology. Therefore, this technology ... Keywords: Large-scale integration, 3D LSI technology, chip packaging, chip-package codesign, multichip modules

Mitsumasa Koyanagi; Hiroyuki Kurino; Kang Wook Lee; Katsuyuki Sakuma; Nobuaki Miyakawa; Hikotaro Itani

1998-07-01T23:59:59.000Z

253

I. Interaction of ammonia with single crystal rhodium catalysts. II. Hydrogen and nitrogen adsorption on a W(111) surface: a theoretical molecular orbital approach  

DOE Green Energy (OSTI)

Rates of ammonia decomposition on (110), (100), and (111) single crystal faces of rhodium were measured at 580 to 725/sup 0/K and 10/sup -3/ to 500 x 10/sup -3/ torr. The decomposition rates were proportional to P/sub NH/sub 3//sup/1/2/ and P/sub NH/sub 3// at low and high hydrogen pressures, respectively. The H/sub 2/ kinetic order varied from 0 (low P/sub H/sub 2//) to -1.0 (high P/sub H/). The rate was independent of N/sub 2/ pressure. NH/sub 3/ decomposes about 1.5 times faster than ND/sub 3/ on the (110) and (111) faces. Rates on the (110) surface are over 10 times as rapid as on the (111). LEED, Auger, and flash desorption experiments indicated that boron was a significant surface poison and that the Rh(110) surface was essentially nitrogen-free. A rate expression is derived from a model involving surface species Rh/sub 2/NH, RhH, and RhN on a nearly bare RH surface. The rate limiting process involves the concurrent dehydrogenation of Rh/sub 2/NH and desorption of N/sub 2/. A decreasing NH/sub 3/ order (< 1/2) at high P/sub NH/sub 3// and low T is due to buildup of surface intermediates. The relative bonding energies of hydrogen and nitrogen chemisorbed at three sites on a W(111) surface were obtained via the extended Hueckel molecular orbital theory. The preferred site for both H and N chemisorption was determined as the TOP position, i.e., a single coordination site on top of a protruding W atom. The W(111) surface was simulated by truncated arrays of seven tungsten atoms. The basis set for the calculations included the tungsten valence orbitals plus the filled 5p orbitals needed for repulsion at small internuclear distances. N adsorption in the three-fold holes available on the W(111) lattices used disrupted the W--W bonds sufficiently to cause the overall bond energy to be less than for the single coordination site. The dissymmetry between the three-fold lattices and the four-fold W d orbitals may also be a contributing factor.

Vavere, A.

1979-01-01T23:59:59.000Z

254

Preparation and properties of evaporated CdTe films compared with single crystal CdTe. Progress report No. 4, August 1-October 31, 1981  

DOE Green Energy (OSTI)

The hot-wall vacuum evaporation system is nearly complete and the first films are expected in early December. CdTe homojunction cells were theoretically modelled and to some extent tested experimentally using the n-type CdTe film on p-type CdTe crystal homojunction cells previously deposited at Linz. Modelling emphasizes the known importance of surface recombination velocity for such homojunction cells. The n-type layer on the experimental cell was thinned by etching from 5 micrometers to 1.5 micrometers, with a corresponding increase in short-circuit current from 0.1 to 1 mA/cm/sup 2/. This behavior is as theoretically expected; to obtain a short-circuit current of 11 mA/cm/sup 2/, as required for a 10% cell, requires a thickness of about 0.2 micrometers for a surface recombination velocity of 10/sup 6/ cm/sec and other realistic cell parameters. By doping experiments on single crystal CdTe, it has been shown that the hole density does decrease when the P dopant density is decreased below a critical value in CdTe:P crystals, thus eliminating the possibility that the major acceptors in the P-doped crystals were not P impurity. Attempts to heavily dope CdTe with As were less successful, but this may be due to the use of elemental As as the dopant in this case rather than a compound of the dopant. Cs was shown to be an effective dopant of CdTe and resistivities as low as 0.3 ohm-cm corresponding to hole densities in the low 10/sup 17/ cm/sup -3/ range were obtained. An apparent correlation between the low-temperature barrier height associated with a grain boundary in CdTe and the angle of mismatch between the two grains has been observed. Improved capacitance of grain boundary measurements should yield defect densities.

Bube, R H

255

Silicon materials task of the low cost solar array project (Phase III). Effect of impurities and processing on silicon solar cells. Fifteenth quarterly report, April-June 1979  

DOE Green Energy (OSTI)

The overall objective of this program is to define the effects of impurities, various thermochemical processes, and any impurity-process interactions on the performance of terrestrial silicon solar cells. The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly Solar Grade silicon. The first reported determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals were performed. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon (C/sub S/) while atomic absorption was used to measure the metal content of the residual liquid (C/sub L/) from which the doped crystals were grown. Gettering of Ti-doped silicon wafers improves cell performance by 1 to 2% (absolute) for the highest temperatures and longest times. The measured profile for Ti centers formed after an 850/sup 0/C gettering operation was fitted by a mathematical expression for the out-diffusion of an impurity species. By means of cell performance data and the newly-measured segregation coefficients curves were computed to predict the variation in cell efficiency with impurity concentration for Mo, Ta, W, Nb, and Co, materials commonly employed in the construction of high temperature silicon processing equipment. Using data for second and third generation n-base ingots the cell performance curves were updated for single impurities in n-type silicon. Most impurities degrade n-base cells less than p-base devices. The effect is larges for Mo, Al, Mn, Ti, and V while Fe and Cr behave much the same in both types of solar cells. In contrast Ni and Cu both degrade n-base devices (apparently by a junction mechanism) more severely than p-base cells. (WHK)

Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Campbell, R.B.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

1979-07-01T23:59:59.000Z

256

Study of the Stability of 3C-SiC Single Crystals Using High-Resolution Diffuse X-Ray Scattering  

SciTech Connect

The stability of (001)-oriented 3C silicon carbide crystals is studied by a method coupling high resolution x-ray diffraction and numerical simulations. The analysis of the diffuse scattering intensity distribution along selected directions in reciprocal space allows us to obtain qualitative and quantitative informations regarding the 3C-6H transition. Our latest results concerning the influence of the initial crystal quality (presence of defects) and of annealing time on the 3C-6H transition are presented in this article.

Dompoint, D.; Boulle, A. [Science des Procedes Ceramiques et de Traitements de Surface (SPCTS) CNRS UMR 6638, ENSCI, 47 avenue Albert Thomas 87065 Limoges Cedex (France); Galben-Sandulache, I. G.; Chaussende, D. [Laboratoire des Materiaux et du Genie Physique (LMGP) CNRS UMR 5628, Grenoble INP, Minatec, 3 parvis Louis Neel, BP 257, 38016 Grenoble Cedex 01 (France)

2010-11-01T23:59:59.000Z

257

Hybrid silicon nanocrystal silicon nitride dynamic random access memory  

Science Conference Proceedings (OSTI)

This paper introduces a silicon nanocrystal-silicon nitride hybrid single transistor cell for potential dynamic RAM (DRAM) applications that stores charge in silicon nanocrystals or a silicon nitride charge trapping layer or both. The memory operates ...

R. F. Steimle; M. Sadd; R. Muralidhar; Rajesh Rao; B. Hradsky; S. Straub; B. E. White, Jr.

2003-12-01T23:59:59.000Z

258

Effect of a high electric field on the conductivity of MnGa{sub 2}S{sub 4}, MnIn{sub 2}S{sub 4}, and MnGaInS{sub 4} single crystals  

Science Conference Proceedings (OSTI)

The results of studying the effect of a high electric field on the conductivity of MnGa{sub 2}S{sub 4}, MnIn{sub 2}S{sub 4}, and MnGaInS{sub 4} single crystals are reported. The activation energy is determined in high and low electric fields. It is established that the decrease in the activation energy with increasing the external voltage is associated with decreasing the depth of the potential well, in which the electron is located.

Niftiev, N. N. [Azerbaijan State Pedagogical University (Azerbaijan); Tagiev, O. B. [National Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan)

2009-09-15T23:59:59.000Z

259

multicrystalline silicon  

DOE Green Energy (OSTI)

This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: {beta}-SiC and {beta}-Si{sub 3}N{sub 4} microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing.

Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Oener, Sebastian; Koepge, Ringo; Sampson, Aaron; Marcus, Matthew A.; Lai, Barry; Morhenn, Humphrey; Hahn, Giso; Bagdahn, Joerg; Buonassisi1, Tonio

2010-05-05T23:59:59.000Z

260

PDSF Modules  

NLE Websites -- All DOE Office Websites (Extended Search)

Modules Modules Modules Modules Approach to Managing The Environment Modules is a system which you can use to specify what software you want to use. If you want to use a particular software package loading its module will take care of the details of modifying your environment as necessary. The advantage of the modules approach is that the you are not required to explicitly specify paths for different executable versions and try to keep their related man paths and environment variables coordinated. Instead you simply "load" and "unload" specific modules to control your environment. Getting Started with Modules If you're using the standard startup files on PDSF then you're already setup for using modules. If the "module" command is not available, please

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Crystalline Silicon Photovolatic Cells  

Energy.gov (U.S. Department of Energy (DOE))

Crystalline silicon cells are made of silicon atoms connected to one another to form a crystal lattice. This lattice comprises the solid material that forms the photovoltaic (PV) cell's...

262

Silicon solar cell assembly  

DOE Patents (OSTI)

A silicon solar cell assembly comprising a large, thin silicon solar cell bonded to a metal mount for use when there exists a mismatch in the thermal expansivities of the device and the mount.

Burgess, Edward L. (Albuquerque, NM); Nasby, Robert D. (Albuquerque, NM); Schueler, Donald G. (Albuquerque, NM)

1979-01-01T23:59:59.000Z

263

Diluted magnetic semiconductor effects in Mn-implanted silicon carbide  

Science Conference Proceedings (OSTI)

Light transmission and Faraday rotation spectra measured at the temperature of 2 K were compared for silicon carbide single crystals of 4H polytype (4H-SiC), implanted with 3.8 x 10{sup 16} cm{sup -2} of Mn ions at the beam energy of 190 keV, and a control 4H-SiC single crystal sample, which was not implanted. Mn ion implantation led to the creation of a Mn-doped surface layer with the average Mn concentration of 10{sup 21} cm{sup -3} and a thickness of approximately 0.2 {mu}m. Transmission of light through the implanted crystal changed only slightly in comparison with the control sample, which however, corresponded to a relatively strong attenuation in the implanted layer. This was interpreted as a result of scattering, which emerges in the surface layer due to optical nonuniformities, created by the high energy ion irradiation. The presence of a thin Mn-ion-containing surface layer led, despite its small thickness, to noticeable changes in the sample Faraday rotation spectra. The estimated values of the Verdet constant for this layer were about three orders of magnitude larger and of opposite sign compared to the Verdet constant values of the undoped sample. Magnetic field dependencies of the Faraday rotation contribution from the implanted layer were found to be saturating functions, which points to a proportionality of the Faraday rotation to the magnetization of the paramagnetic Mn ion subsystem. Based on these findings we conclude that the Mn-implanted SiC layer exhibits magneto-optical properties typical of a diluted magnetic semiconductor. At the same time, no ferromagnetic ordering was observed in the studied (Si, Mn)C sample.

Komarov, A. V.; Ryabchenko, S. M. [Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki Ave., Kiev 03028 (Ukraine); Los, A. V. [ISS Ltd., Semiconductors and Circuits Lab, 15 Bozhenko Street, Kiev 03680 (Ukraine); Freescale Semiconductor Ukraine LLC., 15 Bozhenko Street, Kiev 03680 (Ukraine); Romanenko, S. M. [ISS Ltd., Semiconductors and Circuits Lab, 15 Bozhenko Street, Kiev 03680 (Ukraine)

2011-04-15T23:59:59.000Z

264

The NREL Outdoor Accelerated-Weathering Tracking System Photovoltaic Module Exposure Results  

DOE Green Energy (OSTI)

Status results are presented for the Outdoor Accelerated-Weathering Tracking System (OATS) first study on photovoltaic (PV) modules. Studies began in November 1997 on pairs of commercially available crystalline silicon and amorphous silicon (a-Si) PV modules kept at constant resistive load.

Basso, T. S.

2000-01-01T23:59:59.000Z

265

Research Opportunities in Crystalline Silicon Photovoltaics for the 21st Century: Preprint  

DOE Green Energy (OSTI)

Crystalline silicon continues to be the dominant semiconductor material used for terrestrial photovoltaics. This paper discusses the scientific issues associated with silicon photovoltaics processing and cell design that may yield cell and module performance improvements, both evolutionary and revolutionary in nature. We first survey critical issues in ''thick'' crystalline silicon photovoltaics, including novel separations processes for impurity removal, impurity and defect fundamentals, interface passivation, the role of hydrogen, and high-throughput, kinetically-limited materials processing. Second, we outline emerging opportunities for creation of a very different ''thin-layer'' silicon cell structure, including the scientific issues and engineering challenges associated with thin-layer silicon processing and cell design.

Atwater, H. A. (California Institute of Technology); Sopori, B.; Ciszek, T. (National Renewable Energy Laboratory); Feldman, L. C. (Vanderbilt University); Gee, J. (Sandia National Laboratories); Rohatgi, A. (Georgia Institute of Technology)

1999-04-01T23:59:59.000Z

266

Research Opportunities in Crystalline Silicon Photovoltaics for the 21st Century  

DOE Green Energy (OSTI)

Crystalline silicon continues to be the dominant semiconductor material used for terrestrial photovoltaics. This paper discusses the scientific issues associated with silicon photovoltaics processing, and cell design that may yield cell and module performance improvements that are both evolutionary and revolutionary in nature. We first survey critical issues in ''thick'' crystalline silicon photovoltaics, including novel separations processes for impurity removal, impurity and defect fundamentals, interface passivation, the role of hydrogen. Second, we outline emerging opportunities for creation of a very different ''thin-layer'' silicon cell structure, including the scientific issues and engineering challenges associated with thin-layer silicon processing and cell design.

Atwater, Harry A.; Ciszek, Ted; Feldman, Leonard C.; Gee, James; Rohatgi, Ajeet; Sopori, Bhushan

1999-07-28T23:59:59.000Z

267

Solar Cell Silicon  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... About this Symposium. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium, Solar Cell Silicon. Sponsorship, The Minerals, Metals ...

268

Electrodeposition of molten silicon  

DOE Patents (OSTI)

Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is removed from the bath.

De Mattei, Robert C. (Sunnyvale, CA); Elwell, Dennis (Palo Alto, CA); Feigelson, Robert S. (Saratoga, CA)

1981-01-01T23:59:59.000Z

269

New Opportunities in Crystalline Silicon R&D  

DOE Green Energy (OSTI)

To support the expected growth of the silicon solar cell industry, we believe that research and development (R&D) activities should be carried out in the following areas: polysilicon feedstock for the PV industry; thin-layer silicon deposition methods, and more environmentally benign cell and module manufacturing processes. For each of these activities, we identify the main issues that needed to be addressed.

Tsuo, Y. S.; Wang, T. H.; Ciszek, T. F. (National Renewable Energy Laboratory); Menna, P. (ENEA, Portici, Italy)

1998-10-06T23:59:59.000Z

270

Silicon materials task of the low cost solar array project (Phase III). Effects of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 2: analysis of impurity behavior  

DOE Green Energy (OSTI)

The object of this phase of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study encompassed topics including thermochemical (gettering) treatments, base doping concentration, base doping type (n vs. p), grain boundary-impurity interaction, non-uniformity of impurity distribution, long term effects of impurities, as well as synergic and complexing phenomena. The program approach consists in: (1) the growth of doubly and multiply-doped silicon single crystals containing a baseline boron or phosphorus dopant and specific impurities which produce deep levels in the forbidden band gap; (2) assessment of these crystals by chemical, microstructural, electrical and solar cell tests; (3) correlation of the impurity type and concentration with crystal quality and device performance; and (4) delineation of the role of impurities and processing on subsequent silicon solar cell performance. The overall results reported are based on the assessment of nearly 200 silicon ingots. (WHK)

Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

1980-01-23T23:59:59.000Z

271

Determination of W boson helicity fractions in top quark decays in p anti-p collisions at CDF Run II and production of endcap modules for the ATLAS Silicon Tracker  

SciTech Connect

The thesis presented here includes two parts. The first part discusses the production of endcap modules for the ATLAS SemiConductor Tracker at the University of Geneva. The ATLAS experiment is one of the two multi-purpose experiments being built at the LHC at CERN. The University of Geneva invested extensive efforts to create an excellent and efficient module production site, in which 655 endcap outer modules were constructed. The complexity and extreme requirements for 10 years of LHC operation with a high resolution, high efficiency, low noise tracking system resulted in an extremely careful, time consuming production and quality assurance of every single module. At design luminosity about 1000 particles will pass through the tracking system each 25 ns. In addition to requiring fast tracking techniques, the high particle flux causes significant radiation damage. Therefore, modules have to be constructed within tight and accurate mechanical and electrical specification. A description of the ATLAS experiment and the ATLAS Semiconductor tracker is presented, followed by a detailed overview of the module production at the University of Geneva. My personal contribution to the endcap module production at the University of Geneva was taking part, together with other physicists, in selecting components to be assembled to a module, including hybrid reception tests, measuring the I-V curve of the sensors and the modules at different stages of the production, thermal cycling the modules and performing electrical readout tests as an initial quality assurance of the modules before they were shipped to CERN. An elaborated description of all of these activities is given in this thesis. At the beginning of the production period the author developed a statistics package which enabled us to monitor the rate and quality of the module production. This package was then used widely by the ATLAS SCT institutes that built endcap modules of any type, and kept being improved and updated. The production monitoring and summary using this package is shown in this thesis. The second part of the thesis reports a measurement of the fraction of longitudinal and right-handed helicity states of W bosons in top quark decays. This measurement was done using 955 pb{sup -1} of data collected with the CDF detector at the TEvatron, where protons and anti-protons are collided with a center-of-mass energy of 1.96 TeV. the helicity fraction measurements take advantage of the fact that the angular distribution of the W boson decay products depends on the helicity state of the W which they originate from. They analyze t{bar t} events in the 'lepton+jets' channel and look at the leptonic side of decay. They construct templates for the distribution of cos{theta}*, the angle between the charged lepton and the W flight direction in the rest frame of the top quark. Using Monte Carlo techniques, they construct probability distributions ('templates') for cos{theta}* in the case of left-handed, longitudinal and right-handed Ws and a template for the background model. They extract the W helicity fractions using an unbinned likelihood fitter based on the information of these templates. The Standard Model predicts the W helicity fractions to be about 70% longitudinal and 30% left-handed, while the fraction of right-handed W bosons in top decays is highly suppressed and vanishes when neglecting the mass of the b quark.

Moed, Shulamit; /Geneva U.

2007-01-01T23:59:59.000Z

272

Fabrication of the GLAST Silicon Tracker Readout Electronics  

Science Conference Proceedings (OSTI)

A unique electronics system has been built and tested for reading signals from the silicon-strip detectors of the Gamma-ray Large Area Space Telescope mission. The system amplifies and processes signals from 884,736 36-cm long silicon strips in a 4 x 4 array of tower modules. An aggressive mechanical design fits the readout electronics in narrow spaces between the tower modules, to minimize dead area. This design and the resulting departures from conventional electronics packaging led to several fabrication challenges and lessons learned. This paper describes the fabrication processes and how the problems peculiar to this design were overcome.

Baldini, Luca; Brez, Alessandro; Himel, Thomas; Johnson, R.P.; Latronico, Luca; Minuti, Massimo; Nelson, David; Sadrozinski, H.F.-W.; Sgro, Carmelo; Spandre, Gloria; Sugizaki, Mutsumi; Tajima, Hiro; Cohen Tanugi, Johann; Young, Charles; Ziegler, Marcus; /Pisa U. /INFN, Pisa /SLAC /UC, Santa Cruz

2006-03-03T23:59:59.000Z

273

Control and data acquisition electronics for the CDF Silicon Vertex Detector  

SciTech Connect

A control and data acquisition system has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules. 11 refs., 6 figs., 3 tabs.

Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.

1991-11-01T23:59:59.000Z

274

Manifestation of light and heavy electrons in the galvanomagnetic characteristics of Te-doped n-Bi{sub 0.88}Sb{sub 0.12} single crystals  

Science Conference Proceedings (OSTI)

The components of resistivity ({rho}{sub ij}), Hall coefficient (R{sub ijk}), and magnetoresistance ({rho}{sub ij,kl}) of n-Bi{sub 0.88}Sb{sub 0.12} single crystals doped with tellurium to 0.01, 0.1, and 0.2 at % have been measured in the temperature range of 77-300 K. It is concluded that light and heavy electrons are involved in transport processes. The energy spacing between the bands of light and heavy electrons is found to be 40 meV, and the ratios of the effective masses and electron mobilities are estimated as m{sub 2}*/m{sub l}* = 3 and b Almost-Equal-To 0.16, respectively.

Tairov, B. A., E-mail: btairov@physics.ab.az; Ibragimova, O. I., E-mail: ofeliya_i@physics.ab.az; Rahimov, A. H. [National Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan); Brazis, R., E-mail: brazis@pfi.lt [Semiconductor Physics Institute (Lithuania)

2011-02-15T23:59:59.000Z

275

Mechanochemical Synthesis of Nonstoichiometric Fluorite Ca{sub 1-x} La{sub x} F{sub 2+x} Nanocrystals from CaF{sub 2} and LaF{sub 3} Single Crystals  

Science Conference Proceedings (OSTI)

The nonstoichiometric Ca{sub 1-x} La{sub x}F{sub 2+x} phase (x {>=} 0.1) is obtained by mechanochemical synthesis from CaF{sub 2} and LaF{sub 3} single crystals. This phase is the first representative of fluorite fluorides obtained by mechanochemical synthesis in the MF{sub m}-RF{sub n} systems (m fluoride ions in the crystal bulk. Mechanochemical synthesis of a multicomponent fluoride material with nanometer grains opens a new chapter in the chemistry of inorganic fluorides. A decrease of the sintering temperature of the powders with nanometer grains is very important for preparing dense fluoride ceramics of complicated compositions and other polycrystalline forms of fluoride materials.

Sobolev, B.P.; Sul'yanov, S.N.; Sorokin, N.I.; Zhmurova, Z.I. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskii pr. 59, Moscow, 119333 (Russian Federation); Sviridov, I.A.; Fadeeva, V.I. [Moscow State University, Moscow, 119992 (Russian Federation); Herrero, P.; Landa-Canovas, A.; Rojas, R.M. [Instituto de Ciencia de Materiales de Madrid, Madrid (Spain)

2005-05-15T23:59:59.000Z

276

Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: A neutron and x-ray diffraction investigation of single-crystal Na2IrO3  

Science Conference Proceedings (OSTI)

We have combined single crystal neutron and x-ray diffractions to investigate the magnetic and crystal structures of the honeycomb lattice $\\rm Na_2IrO_3$. The system orders magnetically below $18.1(2)$~K with Ir$^{4+}$ ions forming zigzag spin chains within the layered honeycomb network with ordered moment of $\\rm 0.22(1)~\\mu_B$/Ir site. Such a configuration sharply contrasts the N{\\'{e}}el or stripe states proposed in the Kitaev-Heisenberg model. The structure refinement reveals that the Ir atoms form nearly ideal 2D honeycomb lattice while the $\\rm IrO_6$ octahedra experience a trigonal distortion that is critical to the ground state. The results of this study provide much-needed experimental insights into the magnetic and crystal structure crucial to the understanding of the exotic magnetic order and possible topological characteristics in the 5$d$-electron based honeycomb lattice.

Ye, Feng [ORNL; Chi, Songxue [ORNL; Cao, Huibo [ORNL; Chakoumakos, Bryan C [ORNL; Fernandez-Baca, Jaime A [ORNL; Custelcean, Radu [ORNL; Qi, Tongfei [University of Kentucky; Korneta, O. B. [University of Kentucky, Lexington; Cao, Gang [University of Kentucky

2012-01-01T23:59:59.000Z

277

High Quality Factor Silicon Cantilever Driven by PZT Actuator for Resonant Based Mass Detection  

E-Print Network (OSTI)

A high quality factor (Q-factor) piezoelectric lead zirconat titanate (PZT) actuated single crystal silicon cantilever was proposed in this paper for resonant based ultra-sensitive mass detection. Energy dissipation from intrinsic mechanical loss of the PZT film was successfully compressed by separating the PZT actuator from resonant structure. Excellent Q-factor, which is several times larger than conventional PZT cantilever, was achieved under both atmospheric pressure and reduced pressures. For a 30 micrometer-wide 100 micrometer-long cantilever, Q-factor was measured as high as 1113 and 7279 under the pressure of 101.2 KPa and 35 Pa, respectively. Moreover, it was found that high-mode vibration can be realized by the cantilever for the pursuit of great Q-factor, while support loss became significant because of the increased vibration amplitude at the actuation point. An optimized structure using node-point actuation was suggested then to suppress corresponding energy dissipation.

Lu, Jian; Zhang, Yi; Mihara, Takashi; Itoh, Toshihiro; Maeda, Ryutaro

2008-01-01T23:59:59.000Z

278

Silicon materials task of the low-cost solar-array project. Effect of impurities and processing on silicon solar cells. Final report  

DOE Green Energy (OSTI)

The object of the program has been to investigate the effects of various processes, metal contaminants, and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study has encompassed topics such as thermochemical (gettering) treatments, base-doping concentration, base-doping type (n vs. p), grain boundary-impurity interaction in polycrystalline devices, and long-term effects of impurities and impurity impacts on high-efficiency cells, as well as a preliminary evaluation of some potential low-cost silicon materials. The effects have been studied of various metallic impurities, introduced singly or in combination into Czochralski, float zone, and polycrystalline silicon ingots and into silicon ribbons grown by the dendritic web process. The solar cell data indicate that impurity-induced performance loss is caused primarily by a reduction in base diffusion length. An analytical model based on this observation has been developed and verified experimentally for both n- and p-base material. Studies of polycrystalline ingots containing impurities indicate that solar cell behavior is species sensitive and that a fraction of the impurities are segregated to the grain boundaries. HCl and POCl gettering improve the performance of single-crystal solar cells containing Fe, Cr, and Ti. In contrast Mo-doped material is barely affected. The efficiencies of solar cells fabricated on impurity-doped wafers is lower when the front junction is formed by ion implantation than when conventional diffusion techniques are used. For most impurity-doped solar cells stability is expected for projected times beyond 20 years. Feedstock impurity concentrations below one part per million for elements like V, or 100 parts per million for more benign impurities like Cu or Ni, will be required.

Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Hanes, M.H.; Rai-Choudhury, P.; Mollenkopf, H.C.

1982-02-01T23:59:59.000Z

279

Hydrogenated amorphous silicon photonics.  

E-Print Network (OSTI)

??Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it… (more)

Narayanan, Karthik

2011-01-01T23:59:59.000Z

280

Solar Cell Silicon  

Science Conference Proceedings (OSTI)

... continued and costs have been cut dramatically along the production value chain. The most important feedstock for crystalline solar cells is high purity silicon .

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Silicon Refining II  

Science Conference Proceedings (OSTI)

Research on the Forecast Model of the Boron Removal from Metallurgical Grade ... sufficient level of silicon quality together with relatively low production cost.

282

Nonoriented Silicon Steels  

Science Conference Proceedings (OSTI)

Table 2 Silicon contents, mass densities, and applications of electrical steel sheet and strip...generally used in distribution transformers. Energy savings improve with

283

Module Configuration  

SciTech Connect

A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

Oweis, Salah (Ellicott City, MD); D' Ussel, Louis (Bordeaux, FR); Chagnon, Guy (Cockeysville, MD); Zuhowski, Michael (Annapolis, MD); Sack, Tim (Cockeysville, MD); Laucournet, Gaullume (Paris, FR); Jackson, Edward J. (Taneytown, MD)

2002-06-04T23:59:59.000Z

284

Silicon-film {trademark} photovoltaic manufacturing technology. Annual subcontract report, 1 January 1994--31 December 1994  

DOE Green Energy (OSTI)

The goal of AstroPower`s PVMaT-2A project is to develop an advanced, low-cost manufacturing process for a new utility-scale, flat-plate module. This process starts with the production of continuous sheets of thin-film polycrystalline silicon using the Silicon-Film {trademark} process. Our main product focus in PVMaT-2A has been a 240 cm{sup 2} solar cell. Continuous sheets of silicon are produced and cut into wafers that are 15.5 cm on a side. Both standard modules (36 solar cells) and a new 56 solar cell module were produced. The targeted high power module design is a 170 watt module, used in a twelve module array to generate 2 kW. The solar cells, modules, and array developed here are described.

Collins, S.R.; Hall, R.B.; Rand, J.A. [AstroPower, Inc., Newark, DE (United States)

1995-11-01T23:59:59.000Z

285

Testing Protocol for Module Encapsulant Creep (Presentation)  

DOE Green Energy (OSTI)

Recently there has been an interest in the use of thermoplastic encapsulant materials in photovoltaic modules to replace chemically crosslinked materials, e.g., ethylene-vinyl acetate. The related motivations include the desire to: reduce lamination time or temperature; use less moisture-permeable materials; or use materials with better corrosion characteristics. However, the use of any thermoplastic material in a high-temperature environment raises safety and performance concerns, as the standardized tests currently do not expose the modules to temperatures in excess of 85C, yet modules may experience temperatures above 100C in operation. Here we constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass mock modules using different encapsulation materials of which only two were designed to chemically crosslink. One module set was exposed outdoors with insulation on the back side in Arizona in the summer, and an identical set was exposed in environmental chambers. High precision creep measurements and performance measurements indicate that despite many of these polymeric materials being in the melt state at some of the highest outdoor temperatures achievable, very little creep was seen because of their high viscosity, temperature heterogeneity across the modules, and in the case of the crystalline-silicon modules, the physical restraint of the backsheet. These findings have very important implications for the development of IEC and UL qualification and safety standards, and in regards to the necessary level of cure during the processing of crosslinking encapsulants.

Kempe, M. D.; Miller, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.; Moseley, J. M.; Shah, Q.; Tamizhmani, G.; Sakurai, K.; Inoue, M.; Doi, T.; Masuda, A.

2012-02-01T23:59:59.000Z

286

Performance of amorphous silicon photovoltaic systems, 1985--1989  

DOE Green Energy (OSTI)

This report discusses the performance of commercial amorphous silicon modules used in photovoltaic power systems from 1985 through 1989. Topics discussed include initial degradation, reliability, durability, and effects of temperature and solar irradiance on peak power and energy production. 6 refs., 18 figs.

Not Available

1990-04-01T23:59:59.000Z

287

Thermally Oxidized Silicon  

NLE Websites -- All DOE Office Websites (Extended Search)

Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Illustration of the silicon positions near the Si-SiO2 interface for a 4° miscut projected onto the ( ) plane. The silicon atoms in the substrate are blue and those in the oxide are red. The small black spots represent the translated silicon positions in the absence of static disorder. The silicon atoms in the oxide have been randomly assigned a magnitude and direction based on the static disorder value at that position in the lattice. The outline of four silicon unit cells is shown in black, whereas the outline of four expanded lattice cells in the oxide is shown in blue One of the most studied devices of modern technology is the field-effect transistor, which is the basis for most integrated circuits. At its heart

288

Silicon materials task of the Low-Cost Solar Array Project (Phase IV). Effects of impurities and processing on silicon solar cells. Twentieth quarterly report, July-September 1980  

DOE Green Energy (OSTI)

The overall objective of this program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions upon the performance of terrestrial solar cells. The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Spectral response measurements made on single crystal and polycrystalline silicon solar cells containing specific impurities agreed well with measured cell efficiencies. For polycrystalline cells it is shown that both grain boundaries and metallic impurities reduce carrier lifetime, resulting in reduced red response and reduced cell efficiency. Spectral response and DLTS measurements on chromium-doped polycrystalline silicon cells indicate an interaction between chromium and grain boundaries; the nature of this interaction is not yet understood. Measurements were made to evaluate possible long term effects of copper contamination on solar cell performance. Nine groups of cells, including a baseline cell group, are undergoing electrical/temperature tests to determine whether electric fields play a role in long term cell degradation. A mathematical model for impurity effects in high efficiency solar cells has been developed.

Hopkins, R.H.; Hanes, M.H.; Davis, J.R.; Rohatgi, A.; Rai-Choudhury, P.; Mollenkopf, H.C.

1980-11-14T23:59:59.000Z

289

Performance Testing using Silicon Devices - Analysis of Accuracy: Preprint  

SciTech Connect

Accurately determining PV module performance in the field requires accurate measurements of solar irradiance reaching the PV panel (i.e., Plane-of-Array - POA Irradiance) with known measurement uncertainty. Pyranometers are commonly based on thermopile or silicon photodiode detectors. Silicon detectors, including PV reference cells, are an attractive choice for reasons that include faster time response (10 us) than thermopile detectors (1 s to 5 s), lower cost and maintenance. The main drawback of silicon detectors is their limited spectral response. Therefore, to determine broadband POA solar irradiance, a pyranometer calibration factor that converts the narrowband response to broadband is required. Normally this calibration factor is a single number determined under clear-sky conditions with respect to a broadband reference radiometer. The pyranometer is then used for various scenarios including varying airmass, panel orientation and atmospheric conditions. This would not be an issue if all irradiance wavelengths that form the broadband spectrum responded uniformly to atmospheric constituents. Unfortunately, the scattering and absorption signature varies widely with wavelength and the calibration factor for the silicon photodiode pyranometer is not appropriate for other conditions. This paper reviews the issues that will arise from the use of silicon detectors for PV performance measurement in the field based on measurements from a group of pyranometers mounted on a 1-axis solar tracker. Also we will present a comparison of simultaneous spectral and broadband measurements from silicon and thermopile detectors and estimated measurement errors when using silicon devices for both array performance and resource assessment.

Sengupta, M.; Gotseff, P.; Myers, D.; Stoffel, T.

2012-06-01T23:59:59.000Z

290

Structural and electrical properties of trimethylboron-doped silicon nanowires  

SciTech Connect

Trimethylboron (TMB) was investigated as a p-type dopant source for the vapor-liquid-solid growth of boron-doped silicon nanowires (SiNWs). The boron concentration in the nanowires was measured using secondary ion mass spectrometry and results were compared for boron-doping using TMB and diborane (B{sub 2}H{sub 6}) sources. Boron concentrations ranging from 1x10{sup 18} to 4x10{sup 19} cm{sup -3} were obtained by varying the inlet dopant/SiH{sub 4} gas ratio. TEM characterization revealed that the B{sub 2}H{sub 6}-doped SiNWs consisted of a crystalline core with a thick amorphous Si coating, while the TMB-doped SiNWs were predominantly single crystal even at high boron concentrations. The difference in structural properties was attributed to the higher thermal stability and reduced reactivity of TMB compared to B{sub 2}H{sub 6}. Four-point resistivity and gate-dependent conductance measurements were used to confirm p-type conductivity in the TMB-doped nanowires and to investigate the effect of dopant concentration on nanowire resistivity.

Lew, K.-K.; Pan Ling; Bogart, Timothy E.; Dilts, Sarah M.; Dickey, Elizabeth C.; Redwing, Joan M.; Wang Yanfeng; Cabassi, Marco; Mayer, Theresa S.; Novak, Steven W. [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Evans East, East Windsor, New Jersey 08520 (United States)

2004-10-11T23:59:59.000Z

291

Module Handbook Specialisation Photovoltaics  

E-Print Network (OSTI)

#12;Specialisation Photovoltaics, University of Northumbria Module 1/Photovoltaics: PHOTOVOLTAIC CELL AND MODULE TECHNOLOGY Module name: PHOTOVOLTAIC CELL AND MODULE TECHNOLOGY Section EUREC · Chemistry · Physics Target learning outcomes The module Photovoltaic Cell and Module Technology teaches

Habel, Annegret

292

Computer modeling of ultrafast all-optical wavelength conversion in silicon nanophotonic waveguides  

Science Conference Proceedings (OSTI)

Wavelength conversion through cross phase modulation in silicon-on-insulator waveguides is simulated through a mathematical model. Results reveal the dominance of the optical Kerr effect for the case of ultrashort pulses. The dependence of the wavelength ... Keywords: Cross phase modulation, SOI waveguides

D. P. Korfiatis; A. D. Kosmatos; K. -A. Th. Thoma; J. C. Vardaxoglou

2009-04-01T23:59:59.000Z

293

The future of amorphous silicon photovoltaic technology  

DOE Green Energy (OSTI)

Amorphous silicon modules are commercially available. They are the first truly commercial thin-film photovoltaic (PV) devices. Well-defined production processes over very large areas (>1 m{sup 2}) have been implemented. There are few environmental issues during manufacturing, deployment in the field, or with the eventual disposal of the modules. Manufacturing safety issues are well characterized and controllable. The highest measured initial efficiency to date is 13.7% for a small triple-stacked cell and the highest stabilized module efficiency is 10%. There is a consensus among researchers, that in order to achieve a 15% stabilized efficiency, a triple-junction amorphous silicon structure is required. Fundamental improvements in alloys are needed for higher efficiencies. This is being pursued through the DOE/NREL Thin-Film Partnership Program. Cost reductions through improved manufacturing processes are being pursued under the National Renewable Energy Laboratory/US Department of Energy (NREL/DOE)-sponsored research in manufacturing technology (PVMaT). Much of the work in designing a-Si devices is a result of trying to compensate for the Staebler-Wronski effect. Some new deposition techniques hold promise because they have produced materials with lower stabilized defect densities. However, none has yet produced a high efficiency device and shown it to be more stable than those from standard glow discharge deposited material.

Crandall, R.; Luft, W.

1995-06-01T23:59:59.000Z

294

Enabling Thin Silicon Solar Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45, -45, and...

295

Experimental and Molecular Simulation Studies of Silicon ...  

Science Conference Proceedings (OSTI)

Symposium, Solar Cell Silicon ... On the Segregation of Impurities in Solar Silicon ... Silicon PV Wafers: Correlation of Mechanical Properties and Crack ...

296

Advanced Indoor Module Light-Soaking Facility  

DOE Green Energy (OSTI)

An overview of the accelerated, indoor light-soaking test station is presented in this paper, along with data obtained for six modules that underwent exposure. The station comprises a climate-controlled chamber equipped with a solar simulator that allows 1-sun light intensity exposure. Concurrently, we monitor the electrical characteristics of multiple PV modules and exercise active control over their electrical bias using programmable electronic loads, interfaced to a data acquisition system that acquires power-tracking and current-voltage data. This capability allows us to the test different bias conditions and to cyclically alternate between them. Additionally, we can vary the light intensity and module temperatures to garner realistic temperature coefficients of module performance. Data obtained on cadmium telluride (CdTe) and amorphous silicon (a-Si) modules are presented.

del Cueto, J. A.; Osterwald, C.; Pruett, J.

2005-01-01T23:59:59.000Z

297

Hydrogen in polar intermetallics: Syntheses and structures of the ternary Ca5Bi3D0.93, Yb5Bi3Hx, and Sm5Bi3H~1 by powder neutron or single crystal X-ray diffraction  

DOE Green Energy (OSTI)

The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of {beta}-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures.

Leon-Escamilla, E. Alejandro; Dervenagas, Panagiotis; Stasis, Constantine; Corbett, John D.

2010-01-01T23:59:59.000Z

298

Silicon MOS inductor  

DOE Patents (OSTI)

A device made of amorphous silicon which exhibits inductive properties at certain voltage biases and in certain frequency ranges in described. Devices of the type described can be made in integrated circuit form.

Balberg, Isaac (Princeton, NJ)

1981-01-01T23:59:59.000Z

299

Silicon Production and Refining  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... The photovoltaic (PV) industry is in rapid growth and a large supply of solar grade silicon (SoG-Si) feedstock must be provided to response the ...

300

Silicon nanocrystal memories  

Science Conference Proceedings (OSTI)

In this paper, we present an overview of memory structures fabricated by our group by using silicon nanocrystals as storage nodes. These devices show promising characteristics as candidates for future deep-submicron non-volatile memories.

S. Lombardo; B. De Salvo; C. Gerardi; T. Baron

2004-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Twenty years of service at NBNM - Analysis of Spectrolab module  

DOE Green Energy (OSTI)

This study of adhesional strength and surface analysis of encapsulant and silicon cell samples from a Natural Bridges National Monument (NBNM) Spectrolab module is an attempt to understand from its success. The module was fabricated using polyvinyl butyral (PVB) as an encapsulant. The average adhesional shear strength of the encapsulant at the cell/encapsulant interface in this module was 4.51 MPa or {approximately} 18% lower than that in currently manufactured modules. Typical encapsulant surface composition was as follows: C 75.0 at.% O 23.2 at.%, and Si 1.6 at.%, with Ag {approximately}0.2 at.% and Pb {approximately} 0.5 at.% with some tin respectively over the grid lines and solder bond. Representative silicon cell surface composition was: K 1.4 at.%, C 20.8 at.%, Sn 0.94 at.%, O 15.1 at.%, Na 2.7 at.% and Si 59.0 at.%. The presence of tin detected on the silicon cell surface may be attributed to corrosion of solder bond. The module differs from typical contemporary modules in the use of PVB, metallic mesh type interconnection, and silicon oxide AR coating.

DHERE,N.G.; PANDIT,M.B.; GHONGADI,S.R.; QUINTANA,MICHAEL A.; KING,DAVID L.; KRATOCHVIL,JAY A.

2000-04-11T23:59:59.000Z

302

Silicon web process development  

DOE Green Energy (OSTI)

Silicon dendritic web is a ribbon form of silicon produced from the melt without die shaping, and capable of fabrication into solar cells with greater than 15% AM1 conversion efficiency. This quarterly report describes the work carried out during the period April to June 1980, as part of Phase III of a DOE/JPL-sponsored effort to develop silicon web process technology compatible with the national goals for low cost photovoltaic output power. We have successfully demonstrated eight hours of silicon web growth with closed loop melt level control, a key contract milestone. The result was achieved using a feedback system in which the change in output from a laser melt level sensor was used to control the rate at which silicon pellets were fed to replace the material frozen into web crystal. The melt level was controlled to about +- 0.1mm, well within the range required for stable long term web growth. This is an important step toward the development of a fully automated silicon web growth machine. A second major highlight of this quarter was the completion of an engineering design for a semi-automated web growth machine embodying all the desired features developed so far as part of this program (including e.g. melt replenishment, level sensing and control) as well as some system simplifications. The completed design will serve as a basis for complete system automation.

Duncan, C.S.; Seidensticker, R.G.; McHugh, J.P.; Skutch, M.E.; Hopkins, R.H.

1980-07-15T23:59:59.000Z

303

Electrostatically actuatable light modulating device  

DOE Patents (OSTI)

The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

Koehler, Dale R. (1332 Wagontrain Dr., Albuquerque, NM 87123)

1991-01-01T23:59:59.000Z

304

Ge/SiGe quantum well devices for light modulation, detection, and emission.  

E-Print Network (OSTI)

??This PhD thesis is devoted to study electro-optic properties of Gemanium/Silicon-Germanium (Ge/SiGe) multiple quantum wells (MQWs) for light modulation, detection, and emission on Si platform.… (more)

Chaisakul, Papichaya

2012-01-01T23:59:59.000Z

305

Effects of interlayers on the scratch adhesion performance of ultra-thin films of copper and gold on silicon substrates  

SciTech Connect

Scratch testing has long been used to assess the adhesion of a film to its substrate. As film thicknesses have decreased, the need for greater precision and sensitivity in the scratch testing apparatus has increased. To this end, a nanoindenter was modified to make finely controlled, low-load scratches. Scratches at various loads and two orientations of a Berkovich scratching diamond were made in films of 100 nm of gold and 200 nm of copper, each on single crystal silicon. For each film type, samples with no interlayer, with an SiO{sub 2} interlayer, and with a TiW on SiO{sub 2} interlayer were tested. The scratch morphology was found to vary in a regular way with load, diamond orientation and interlayer material.

McAdams, S.D.; Tsui, T.Y.; Pharr, G.M. [Rice Univ., Houston, TX (United States); Oliver, W.C. [Nano Instruments, Inc., Knoxville, TN (United States)

1995-02-01T23:59:59.000Z

306

High Speed Single Crystal Casting Technique  

Science Conference Proceedings (OSTI)

and regulation of convection ... produced by an ordinary casting method because the solidification time is so long as to .... Water Cooled Chillplate. 1 t'Elevator.

307

Platinum Nanoclusters Out-Perform Single Crystals  

NLE Websites -- All DOE Office Websites (Extended Search)

gas, a reactant involved in many important industrial catalytic processes, including the Fischer-Tropsch process for making liquid hydrocarbons, the oxidation process in...

308

Shock Driven Twinning in Tantalum Single Crystals  

Science Conference Proceedings (OSTI)

Recovery based observations of high pressure material behavior generated under high explosively driven flyer based loading conditions are reported. Two shock pressures, 25, and 55 GPa and four orientations {l_brace}(100), (110), (111), (123){r_brace} were considered. Recovered material was characterized using electron backscatter diffraction along with a limited amount of transmission electron microscopy to assess the occurrence of twinning under each test condition. Material recovered from 25 GPa had a very small fraction of twinning for the (100), (110), and (111) oriented crystals while a more noticeable fraction of the (123) oriented crystal was twinned. Material recovered from 55 GPa showed little twinning for (100) orientation slightly more for the (111) orientation and a large area fraction for the (123) orientation. The EBSD and TEM observations of the underlying deformation substructure are rationalized by comparing with previous static and dynamic results.

McNaney, J M; HSUING, L M; Barton, N R; Kumar, M

2009-07-20T23:59:59.000Z

309

TOPAZ - Single Crystal Diffractometer | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

TOPAZ-Media Gallery View a Quick Time movie showing Compact Crystal Positioning System. (27 MB) View a 1.55 minute movie (AVI format) showing the sample orienter moving. (405 MB)...

310

Light output simulation of LYSO single crystal  

E-Print Network (OSTI)

We used the Geant4 simulation toolkit to estimate the light collection in a LYSO crystal by using cosmic muons and E=105 MeV electrons. The light output as a function of the crystal length is studied. Significant influence of the crystal wrapping in the reflective paper and optical grease coupling to the photodetectors on the light output is demonstrated.

Usubov, Zafar

2013-01-01T23:59:59.000Z

311

Creep Deformation Anisotropy in Single Crystal Superalloys  

Science Conference Proceedings (OSTI)

45% acetic acid and 10% perchloric acid at O°C and 25 V. These foils were examined both at IHI and ONERA. @cperiment.al ., results. Creep.. propert.ie_s.. at.

312

Mechanical Deformation of Single Crystal and Nanocrystalline ...  

Science Conference Proceedings (OSTI)

... hexagonal crystal structure and is commonly used as a solid lubricant and liquid lubricant additive. The objective of this work is to use atomistic simulations to ...

313

Multiaxial Creep Deformation of Single Crystal Superalloys ...  

Science Conference Proceedings (OSTI)

For example, in power law creep the creep rate is described by the relation i .... The map was generated using a grid of 150~150 with a step size of 2Opm, and a.

314

Silicon Wafers for the Mesoscopic Era  

Science Conference Proceedings (OSTI)

... Silicon: Surface COPS - Capacitor Defect ... CoO - Wafer Diameter – Expand interaction with Super Silicon Initiative and maintain ...

315

Growth conditions, structure, Raman characterization and optical properties of Sm-doped (Lu{sub x}Gd{sub 1-x}){sub 2}SiO{sub 5} single crystals grown by the Czochralski method  

Science Conference Proceedings (OSTI)

The (Lu{sub x}Gd{sub 0.995-x}Sm{sub 0.005}){sub 2}SiO{sub 5} single crystals with x=0.095, 0.11, 0.15, 0.17, 0.19 0.35 and 0.5 were grown by the Czochralski method. Structural properties were investigated by X-ray diffraction measurements. Unit cell parameters and cell volume were determined by the Rietveld refinement of the collected X-ray powder spectra. The segregation features between Gd and Lu were estimated and analyzed. Vibrational properties of the solid solutions were analyzed on the basis of polarized Raman spectra acquired at 300-875 K temperature range. Absorption and emission spectra of Sm{sup 3+} ion in the crystals with different composition were analyzed in the terms of dopant energy levels, oscillator strengths of transitions and spectral features of luminescence bands in the visible range. Both structural and optical investigations revealed that change of Lu{sup 3+} content in (Lu{sub x}Gd{sub 0.995-x}Sm{sub 0.005}){sub 2}SiO{sub 5} solid solution crystals induces the phase transition from C2/c (Lu{sub 2}SiO{sub 5}) to P2{sub 1}/c (Gd{sub 2}SiO{sub 5}) structure. It was found that the break of LSO to GSO-type structure occurs at 0.15Single crystals of Sm{sup 3+}-doped (Lu{sub x}Gd{sub 1-x}){sub 2}SiO{sub 5} solid solutions have been grown by Czochralski method and characterized by various techniques. Crystal structure changes from C2/c to P2{sub 1}/c for composition with 0.15

GLowacki, MichaL, E-mail: glowacki@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Dominiak-Dzik, Grazyna; Ryba-Romanowski, Witold; Lisiecki, RadosLaw; Strzep, Adam [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-950 WrocLaw (Poland); Runka, Tomasz; Drozdowski, MirosLaw [Faculty of Technical Physics, Poznan University of Technology, ul. Nieszawska 13A, 60-965 Poznan (Poland); Domukhovski, Viktor [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Diduszko, Ryszard [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw (Poland); Berkowski, Marek [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

2012-02-15T23:59:59.000Z

316

Single crystals of the fluorite nonstoichiometric phase Eu{sub 0.916}{sup 2+}Eu{sub 0.084}{sup 3+}F{sub 2.084} (conductivity, transmission, and hardness)  

Science Conference Proceedings (OSTI)

The nonstoichiometric phase EuF{sub 2+x} has been obtained via the partial reduction of EuF{sub 3} by elementary Si at 900-1100 deg. C. Eu{sub 0.916}{sup 2+}Eu{sub 0.084}{sup 3+}F{sub 2.084} (EuF{sub 2.084}) single crystals have been grown from melt by the Bridgman method in a fluorinating atmosphere. These crystals belong to the CaF{sub 2} structure type (sp. gr. Fm3-barm) with the cubic lattice parameter a = 5.8287(2) A, are transparent in the spectral range of 0.5-11.3 {mu}m, and have microhardness H{sub {mu}} = 3.12 {+-} 0.13 GPa and ionic conductivity {sigma} = 1.4 x 10{sup -5} S/cm at 400 deg. C with the ion transport activation energy E{sub a} = 1.10 {+-} 0.05 eV. The physicochemical characteristics of the fluorite phases in the EuF{sub 2} - EuF{sub 3} systems are similar to those of the phases in the SrF{sub 2} - EuF{sub 3} and SrF{sub 2} - GdF{sub 3} systems due to the similar lattice parameters of the EuF{sub 2} and SrF{sub 2} components. Europium difluoride supplements the list of fluorite components MF{sub 2} (M = Ca, Sr, Ba, Cd, Pb), which are crystal matrices for nonstoichiometric (nanostructured) fluoride materials M{sub 1-x}R{sub x}F{sub 2+x} (R are rare earth elements).

Sobolev, B. P., E-mail: fluorides@ns.crys.ras.ru; Turkina, T. M.; Sorokin, N. I.; Karimov, D. N.; Komar'kova, O. N.; Sulyanova, E. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

2010-07-15T23:59:59.000Z

317

Akros Silicon | Open Energy Information  

Open Energy Info (EERE)

Akros Silicon Akros Silicon Jump to: navigation, search Name Akros Silicon Place Folsom, California Zip 95630 Product Akros Silicon specilizes in fabless semicondutors used for Power Over Ethernet, networks, and broadband. References Akros Silicon[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Akros Silicon is a company located in Folsom, California . References ↑ "Akros Silicon" Retrieved from "http://en.openei.org/w/index.php?title=Akros_Silicon&oldid=341960" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

318

It's Elemental - The Element Silicon  

NLE Websites -- All DOE Office Websites (Extended Search)

Number: 3 Group Number: 14 Group Name: none What's in a name? From the Latin word for flint, silex. Say what? Silicon is pronounced as SIL-ee-ken. History and Uses: Silicon was...

319

Laminated photovoltaic modules using back-contact solar cells  

DOE Patents (OSTI)

Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

Gee, James M. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Morgan, William P. (Albuquerque, NM); Worobey, Walter (Albuquerque, NM)

1999-09-14T23:59:59.000Z

320

Thermionic modules  

DOE Patents (OSTI)

Modules of assembled microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures manufactured using MEMS manufacturing techniques including chemical vapor deposition. The MTCs incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices and modules can be fabricated at modest costs.

King, Donald B. (Albuquerque, NM); Sadwick, Laurence P. (Salt Lake City, UT); Wernsman, Bernard R. (Clairton, PA)

2002-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Micromachined silicon electrostatic chuck  

DOE Patents (OSTI)

In the field of microelectronics, and in particular the fabrication of microelectronics during plasma etching processes, electrostatic chucks have been used to hold silicon wafers during the plasma etching process. Current electrostatic chucks that operate by the {open_quotes}Johnson-Rahbek Effect{close_quotes} consist of a metallic base plate that is typically coated with a thick layer of slightly conductive dielectric material. A silicon wafer of approximately the same size as the chuck is placed on top of the chuck and a potential difference of several hundred volts is applied between the silicon and the base plate of the electrostatic chuck. This causes an electrostatic attraction proportional to the square of the electric field in the gap between the silicon wafer and the chuck face. When the chuck is used in a plasma filled chamber the electric potential of the wafer tends to be fixed by the effective potential of the plasma. The purpose of the dielectric layer on the chuck is to prevent the silicon wafer from coming into direct electrical contact with the metallic part of the chuck and shorting out the potential difference. On the other hand, a small amount of conductivity appears to be desirable in the dielectric coating so that much of its free surface between points of contact with the silicon wafer is maintained near the potential of the metallic base plate; otherwise, a much larger potential difference would be needed to produce a sufficiently large electric field in the vacuum gap between the wafer and chuck. Typically, the face of the chuck has a pattern of grooves in which about 10 torr pressure of helium gas is maintained. This gas provides cooling (thermal contact) between the wafer and the chuck. A pressure of 10 torr is equivalent to about 0.2 psi.

Anderson, R.A.; Seager, C.H.

1994-12-31T23:59:59.000Z

322

Electrochemical thinning of silicon  

DOE Patents (OSTI)

Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

Medernach, J.W.

1994-01-11T23:59:59.000Z

323

Degradation of Photovoltaic Modules Under High Voltage Stress in the Field: Preprint  

DOE Green Energy (OSTI)

The degradation in performance for eight photovoltaic (PV) modules stressed at high voltage (HV) is presented. Four types of modules--tandem-junction and triple-junction amorphous thin-film silicon, plus crystalline and polycrystalline silicon modules--were tested, with a pair of each biased at opposite polarities. They were deployed outdoors between 2001 and 2009 with their respective HV leakage currents through the module encapsulation continuously monitored with a data acquisition system, along with air temperature and relative humidity. For the first 5 years, all modules were biased continuously at fixed 600 VDC, day and night. In the last 2 years, the modules were step-bias stressed cyclically up and down in voltage between 10 and 600 VDC, in steps of tens to hundreds of volts. This allowed characterization of leakage current versus voltage under a large range of temperature and moisture conditions, facilitating determination of leakage paths. An analysis of the degradation is presented, along with integrated leakage charge. In HV operation: the bulk silicon modules degraded either insignificantly or at rates of 0.1%/yr higher than modules not biased at HV; for the thin-film silicon modules, the added loss rates are insignificant for one type, or 0.2%/yr-0.6%/yr larger for the other type.

del Cueto, J. A.; Rummel, S. R.

2010-08-01T23:59:59.000Z

324

Inelastic x-ray scattering study of supercooled liquid and solid silicon.  

Science Conference Proceedings (OSTI)

Momentum-resolved inelastic x-ray scattering (IXS) technique is one of the powerful methods for the study of dynamical properties of a given system even in extreme conditions like high temperature and high pressure. At the same time, experimental studies of physical and structural properties of liquids have multiplied in recent years with the advent of containerless techniques. These methods reduce the possibility of contamination of specimens and remove external nucleation sites. Therefore, by combining the IXS method with the levitation method, the dynamical properties of stable liquids up to 3000 K and supercooled phase of liquids can be studied. Silicon is a basic material in the semiconductor industry and has been the subject of a large amount of experimental and theoretical studies over a long time. In the crystalline phase at ambient conditions, silicon is a diamond-structured semiconductor, but upon melting it undergoes a semiconductor-to-metal transition accompanied by significant changes in the structure and density. The coordination number increases from 4 in the solid to about 6.5 in the liquid, and liquid density is increased by about 10%. The principal purpose of the present study was to determine silicon's elastic modulus from the measurement of averaged sound speed determined from IXS. The experiments were carried out at the Advanced Photon Source (APS) beamline 3-ID with a high-resolution monochromator consisting of two nested channel-cut crystals and four backscattering analyzer setups in the horizontal scattering plane 6 m from the sample. The requirements for very high energy resolution and the basic principles of such instrumentation are discussed elsewhere as referenced. The levitation apparatus was enclosed in a bell jar specially designed for backscattering geometry with a separation of 10 cm between the sample and the detector. Silicon spheres of 2 to 3 mm in diameter were suspended in an argon gas jet and heated with a 270 W CO{sub 2} laser beam. Temperatures were measured during the experiment with a pyrometer whose operating wavelength was 0.65 {micro}m. The temperature gradient on the sample was estimated to be about +/- 20 K. The energy scans were taken for supercooled-liquid and hot-solid silicon at temperature T=1620 K. Sound velocities were determined from the initial slope of the excitation frequencies. Then, the longitudinal moduli for hotsolid and supercooled-liquid silicon were calculated from L = v{sub L}{sup 2}{rho} using measured velocities. In these calculations, density values were taken from Ohsaka et al. as referenced. Results are presented in Table 1. together with room-temperature, hot-solid single-crystal measurements, and stable-liquid values. Room-temperature longitudinal moduli were calculated from the values of the single-crystal elastic constants. They were measured between 300 K and 870 K. Since there was no phase transition up to temperature 1620 K for hot-solid silicon, it is reasonable to extrapolate these data to 1620 K in order to compare to our results for the hot solid. A significant difference (about 20%) is observed between our measurement and the extrapolated single-crystal value of the longitudinal modulus for solid silicon at temperature 1620K. This reduction of the longitudinal modulus may be an indication of the pre-melting. The factor of more than two change in the elastic modulus between supercooled liquid and hot solid at the same temperature can be attributed to the semiconductor-to-metal transition in silicon associated with melting. Also, the longitudinal modulus of the stable liquid is reported in Table 1. About a 10% difference is observed between the modulus of the supercooled and the stable liquid silicon. This can be interpreted as silicon still maintaining metallic properties with a significant increase in the degree of the directional bonding upon supercooling, as found in the x-ray diffraction and ab initio MD studies. All these results are discussed in reference.

Alatas, A.; Said, A.; Sinn, H.; Alp, E.E.; Kodituwakku, C.N.; Saboungi, M.L.; Price, D.L.; X-Ray Science Division; Western Michigan Univ.; Purdue Univ.; CRMD-CNRS; CRMHT-CNRS

2006-01-01T23:59:59.000Z

325

Crystalline silicon processing  

DOE Green Energy (OSTI)

This presentation (consisting of vugraphs) first provides the background motivation for Sandia`s effort for the development of improved crystalline silicon solar cells. It then discusses specific results and progress, and concludes with a brief discussion of options for next year.

Basore, P.A.

1994-07-13T23:59:59.000Z

326

Silicon Film{trademark} photovoltaic manufacturing technology. Semiannual technical progress report, 15 January 1992--15 July 1992  

DOE Green Energy (OSTI)

This report describes work on a project to develop an advanced low-cost manufacturing process for a new utility-scale flatplate module based on thin active layers of polycrystalline silicon on a low-cost substrate. This is called the Silicon-Film{trademark} process. This new power module is based on a new large solar cell that is 675 cm{sup 2} in area. Eighteen of these solar cells form a 170-W module. Twelve ofthese modules form a 2-kW array. The program has three components: (1) development of a Silicon-Film{trademark} wafer machine that can manufacture wafer 675 cm{sup 2} in size with a total product cost reductionof 70%; (2) development of an advanced solar cell manufacturing process that will turn the Silicon-Film{trademark} wafer into a 14%-efficient solar cell; and (3) development of an advanced module design based on these large-area, efficient silicon solar cells with an average power of 170 watts. The completion of these three tasks will lead to a new power module designed for utility and other power applications with asubstantially lower cost.

Bottenberg, W.R.; Hall, R.B.; Jackson, E.L.; Lampo, S.; Mulligan, W.E.; Barnett, A.M. [AstroPower, Inc., Newark, DE (United States)

1993-04-01T23:59:59.000Z

327

Photovoltaic module and module arrays  

DOE Patents (OSTI)

A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Lenox, Carl J. S. (Oakland, CA); Culligan, Matthew (Berkeley, CA); Danning, Matt (Oakland, CA)

2012-07-17T23:59:59.000Z

328

Flat-Plate Photovoltaic Module Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Module Basics Module Basics Flat-Plate Photovoltaic Module Basics August 20, 2013 - 4:25pm Addthis Flat-plate photovoltaic (PV) modules are made of several components, including the front surface materials, encapsulant, rear surface, and frame. Front Surface Materials The front surface of a flat-plate PV module must have a high transmission in the wavelengths that can be used by the solar cells in the module. For example, for silicon solar cells, the top surface must have high transmission of light with wavelengths from 350 to 1200 nm. Also, reflection from the front surface should be minimal. An antireflection coating added to the top surface can greatly reduce the reflection of sunlight, and texturing of the surface can cause light that strikes the surface to stay within the cells. Unfortunately, these textured

329

A solar module fabrication process for HALE solar electric UAVs  

DOE Green Energy (OSTI)

We describe a fabrication process used to manufacture high power-to-weight-ratio flexible solar array modules for use on high-altitude-long-endurance (HALE) solar-electric unmanned air vehicles (UAVs). These modules have achieved power-to-weight ratios of 315 and 396 W/kg for 150{mu}m-thick monofacial and 110{mu}m-thick bifacial silicon solar cells, respectively. These calculations reflect average module efficiencies of 15.3% (150{mu}m) and 14.7% (110{mu}m) obtained from electrical tests performed by Spectrolab, Inc. under AMO global conditions at 25{degrees}C, and include weight contributions from all module components (solar cells, lamination material, bypass diodes, interconnect wires, and adhesive tape used to attach the modules to the wing). The fabrication, testing, and performance of 32 m{sup 2} of these modules will be described.

Carey, P.G.; Aceves, R.C.; Colella, N.J.; Williams, K.A. [Lawrence Livermore National Lab., CA (United States); Sinton, R.A. [Private Consultant, San Jose, CA (United States); Glenn, G.S. [Spectrolab, Inc., Sylmar, CA (United States)

1994-12-12T23:59:59.000Z

330

Amorphous silicon radiation detectors  

DOE Patents (OSTI)

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

1992-01-01T23:59:59.000Z

331

Amorphous silicon radiation detectors  

DOE Patents (OSTI)

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

1992-11-17T23:59:59.000Z

332

Silicon Cells | Open Energy Information  

Open Energy Info (EERE)

Cells Cells Jump to: navigation, search Name Silicon Cells Place United Kingdom Product Technology developer based upon a low cost method of processing silicon to produce a new generation of high energy density batteries. References Silicon Cells[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Silicon Cells is a company located in United Kingdom . References ↑ "Silicon Cells" Retrieved from "http://en.openei.org/w/index.php?title=Silicon_Cells&oldid=351081" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs

333

Modified silicon carbide whiskers  

DOE Patents (OSTI)

Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

Tiegs, T.N.; Lindemer, T.B.

1991-05-21T23:59:59.000Z

334

Modified silicon carbide whiskers  

DOE Patents (OSTI)

Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

Tiegs, Terry N. (Lenoir City, TN); Lindemer, Terrence B. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

335

Implementation Challenges for Sintered Silicon Carbide Fiber ...  

Science Conference Proceedings (OSTI)

The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system ...

336

The Quest for Inexpensive Silicon Solar Cells  

To learn more about NREL's silicon solar cell research, visit the Silicon Materials and Devices Web site. Did you find what you needed? Yes No. Thank ...

337

TOB Module Assembly  

NLE Websites -- All DOE Office Websites (Extended Search)

SiTracker Home Page Participating Institutions and Principal Contacts Useful Links Notes Images TOB Module Assembly and Testing Project TOB Integration Data Tracker Offline DQM LHC Fluence Calculator Total US Modules Tested Graph Total US Modules Tested Graph Total US Modules Tested Total US Modules Tested US Modules Tested Graph US Modules Tested Graph US Modules Tested US Modules Tested Rod Assembly TOB Modules on a Rod TOB Rod Insertion Installation of a TOB Rod Completed TOB Completed Tracker Outer Barrel TOB Module Assembly and Testing Project All 5208 modules of the CMS Tracker Outer Barrel were assembled and tested at two production sites in the US: the Fermi National Accelerator Laboratory and the University of California at Santa Barbara. The modules were delivered to CERN in the form of rods, with the last shipment taking

338

Nanostructured plasmonics silicon solar cells  

Science Conference Proceedings (OSTI)

We report a plasmonics silicon solar cell design, with the possibility of lower cost and higher efficiency. The proposed solar cell consists of a radial p-n junction silicon nanopillar arrays in combination with metallic nanoparticles resolved at the ... Keywords: Antireflection coating, Optical absorption, Power conversion efficiency, Solar cells

Pushpa Raj Pudasaini, Arturo A. Ayon

2013-10-01T23:59:59.000Z

339

Compensated amorphous silicon solar cell  

DOE Patents (OSTI)

An amorphous silicon solar cell incorporates a region of intrinsic hydrogenated amorphous silicon fabricated by a glow discharge wherein said intrinsic region is compensated by P-type dopants in an amount sufficient to reduce the space charge density of said region under illumination to about zero.

Carlson, David E. (Yardley, PA)

1980-01-01T23:59:59.000Z

340

Beam Test of a Large Area nonn Silicon Strip Detector with Fast Binary Readout Electronics  

E-Print Network (OSTI)

Beam Test of a Large Area n­on­n Silicon Strip Detector with Fast Binary Readout Electronics Y test was carried out for the non­irradiated and the irradiated detector modules. Efficiency, noise occupancy and performance in the edge regions were analyzed using the beam test data. High efficiency

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Beam Test of a Large Area nonn Silicon Strip Detector with Fast Binary Readout Electronics  

E-Print Network (OSTI)

Beam Test of a Large Area n­on­n Silicon Strip Detector with Fast Binary Readout Electronics Y modules was irradiated with protons to a fluence of 1.2 � 10 14 p/cm 2 . A beam test was carried out in the edge regions were analyzed using the beam test data. High efficiency both for the non

342

Amorphous silicon research. Annual subcontract report, October 1, 1994--September 30, 1995  

DOE Green Energy (OSTI)

The major effort in this program is to develop cost-effective processes which satisfy efficiency, yield, and material usage criteria for mass production of amorphous silicon-based multijunction modules. New and improved processes were developed for the component cells and a more robust rear contact was developed for better long term stability.

Arya, R.R.; Bennett, M.; Bradley, D. [and others

1996-02-01T23:59:59.000Z

343

Compensated amorphous silicon solar cell  

SciTech Connect

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

Devaud, Genevieve (629 S. Humphrey Ave., Oak Park, IL 60304)

1983-01-01T23:59:59.000Z

344

Beyond Silicon: Cutting the Costs of Solar Power | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Beyond Silicon: Cutting the Costs of Solar Power Beyond Silicon: Cutting the Costs of Solar Power Stories of Discovery & Innovation Beyond Silicon: Cutting the Costs of Solar Power Enlarge Photo Courtesy of University of Illinois Mechanically flexible, high efficiency solar module that uses an interconnected array of microscale GaAs photovoltaic cells, grown in a multilayer stack on a wafer and then printed onto a sheet of plastic. Enlarge Photo 04.15.11 Beyond Silicon: Cutting the Costs of Solar Power New method of fabricating semiconductors from gallium arsenide promises more affordable solar power, improved semiconductor devices. The biggest single barrier to widespread adoption of solar power continues to be the cost of solar cells. University of Illinois materials scientists supported by the DOE Office of Science have scored a

345

Wanxiang Silicon Peak Electronics Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Wanxiang Silicon Peak Electronics Co Ltd Wanxiang Silicon Peak Electronics Co Ltd Jump to: navigation, search Name Wanxiang Silicon-Peak Electronics Co Ltd Place Kaihua, Zhejiang Province, China Zip 324300 Sector Solar Product Maker of monocrystalline silicon ingots and wafers and subsidiary of the Wanxiang Group which includes solar cell and module maker Wanxiang Solar. Coordinates 29.140209°, 118.405113° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.140209,"lon":118.405113,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Micromachined silicon seismic transducers  

SciTech Connect

Batch-fabricated silicon seismic transducers could revolutionize the discipline of CTBT monitoring by providing inexpensive, easily depolyable sensor arrays. Although our goal is to fabricate seismic sensors that provide the same performance level as the current state-of-the-art ``macro`` systems, if necessary one could deploy a larger number of these small sensors at closer proximity to the location being monitored in order to compensate for lower performance. We have chosen a modified pendulum design and are manufacturing prototypes in two different silicon micromachining fabrication technologies. The first set of prototypes, fabricated in our advanced surface- micromachining technology, are currently being packaged for testing in servo circuits -- we anticipate that these devices, which have masses in the 1--10 {mu}g range, will resolve sub-mG signals. Concurrently, we are developing a novel ``mold`` micromachining technology that promises to make proof masses in the 1--10 mg range possible -- our calculations indicate that devices made in this new technology will resolve down to at least sub-{mu}G signals, and may even approach to 10{sup {minus}10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

Barron, C.C.; Fleming, J.G.; Sniegowski, J.J.; Armour, D.L.; Fleming, R.P.

1995-08-01T23:59:59.000Z

347

Cordierite silicon nitride filters  

SciTech Connect

The objective of this project was to develop a silicon nitride based crossflow filter. This report summarizes the findings and results of the project. The project was phased with Phase I consisting of filter material development and crossflow filter design. Phase II involved filter manufacturing, filter testing under simulated conditions and reporting the results. In Phase I, Cordierite Silicon Nitride (CSN) was developed and tested for permeability and strength. Target values for each of these parameters were established early in the program. The values were met by the material development effort in Phase I. The crossflow filter design effort proceeded by developing a macroscopic design based on required surface area and estimated stresses. Then the thermal and pressure stresses were estimated using finite element analysis. In Phase II of this program, the filter manufacturing technique was developed, and the manufactured filters were tested. The technique developed involved press-bonding extruded tiles to form a filter, producing a monolithic filter after sintering. Filters manufactured using this technique were tested at Acurex and at the Westinghouse Science and Technology Center. The filters did not delaminate during testing and operated and high collection efficiency and good cleanability. Further development in areas of sintering and filter design is recommended.

Sawyer, J.; Buchan, B. (Acurex Environmental Corp., Mountain View, CA (United States)); Duiven, R.; Berger, M. (Aerotherm Corp., Mountain View, CA (United States)); Cleveland, J.; Ferri, J. (GTE Products Corp., Towanda, PA (United States))

1992-02-01T23:59:59.000Z

348

Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites  

SciTech Connect

A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

Corman, Gregory Scot (Ballston Lake, NY); Luthra, Krishan Lal (Schenectady, NY)

2002-01-01T23:59:59.000Z

349

Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites  

SciTech Connect

A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

Corman, Gregory Scot (Ballston Lake, NY); Luthra, Krishan Lal (Schenectady, NY)

1999-01-01T23:59:59.000Z

350

Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites  

SciTech Connect

A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

Corman, G.S.; Luthra, K.L.

1999-09-14T23:59:59.000Z

351

Silicon nitride ceramic comprising samaria and ytterbia  

Science Conference Proceedings (OSTI)

This invention relates to a sintered silicon nitride ceramic comprising samaria and ytterbia for enhanced toughness.

Yeckley, Russell L. (Oakham, MA)

1996-01-01T23:59:59.000Z

352

Process for forming retrograde profiles in silicon  

SciTech Connect

A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

Weiner, Kurt H. (San Jose, CA); Sigmon, Thomas W. (Phoenix, AZ)

1996-01-01T23:59:59.000Z

353

Silicon-Film{trademark} photovoltaic manufacturing technology. Semiannual subcontract report, 15 October 1993--15 April 1994  

DOE Green Energy (OSTI)

This report describes work to develop an advanced, low-cost manufacturing process for a now utility-scale, flat-plate module. This process starts with the production of continuous sheets of thin-film, polycrystalline silicon using the Silicon-Film{trademark} process. Sheets are cut into wafers that are nominally 15 cm on a side. Fifty-six of these wafers are then fabricated into solar cells that are strung together into a 170-W module. Twelve of these modules form a 2-kW array. The program has three main components: (1) development of a Silicon-Film{trademark} wafer machine that is capable of manufacturing waters that are 225 cm{sup 2} in size at a rate of 3.0 MW/yr, with a total product cost reduction of 70%; (2) development of an advanced solar cell manufacturing process that is capable of turning the Silicon-Film{trademark} wafer into a 3.25-W solar cell; and (3) development of an advanced module design based on these large-area silicon solar cells with an average power of 170 W for 56 solar cells and 113 W for 36 solar cells.

Collins, S.R.; Hall, R.B. [AstroPower, Inc., Newark, DE (United States)

1994-09-01T23:59:59.000Z

354

High Throughput, Continuous, Mass Production of Photovoltaic Modules  

DOE Green Energy (OSTI)

AVA Solar has developed a very low cost solar photovoltaic (PV) manufacturing process and has demonstrated the significant economic and commercial potential of this technology. This I & I Category 3 project provided significant assistance toward accomplishing these milestones. The original goals of this project were to design, construct and test a production prototype system, fabricate PV modules and test the module performance. The original module manufacturing costs in the proposal were estimated at $2/Watt. The objectives of this project have been exceeded. An advanced processing line was designed, fabricated and installed. Using this automated, high throughput system, high efficiency devices and fully encapsulated modules were manufactured. AVA Solar has obtained 2 rounds of private equity funding, expand to 50 people and initiated the development of a large scale factory for 100+ megawatts of annual production. Modules will be manufactured at an industry leading cost which will enable AVA Solar's modules to produce power that is cost-competitive with traditional energy resources. With low manufacturing costs and the ability to scale manufacturing, AVA Solar has been contacted by some of the largest customers in the PV industry to negotiate long-term supply contracts. The current market for PV has continued to grow at 40%+ per year for nearly a decade and is projected to reach $40-$60 Billion by 2012. Currently, a crystalline silicon raw material supply shortage is limiting growth and raising costs. Our process does not use silicon, eliminating these limitations.

Kurt Barth

2008-02-06T23:59:59.000Z

355

Ballasted photovoltaic module and module arrays  

DOE Patents (OSTI)

A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA)

2011-11-29T23:59:59.000Z

356

Deposited Silicon Photonics: Optical Interconnect Devices In Polycrystalline Silicon .  

E-Print Network (OSTI)

??Silicon photonics has tremendous potential to provide high-bandwidth and low-power data communication for applications such as computing and telecommunication, over length scales ranging from 100… (more)

Preston, Kyle

2011-01-01T23:59:59.000Z

357

Stress Management: Revealing Defects in Thin Silicon Films  

NLE Websites -- All DOE Office Websites (Extended Search)

caused by the manufacturing process for strained-silicon films. Strained silicon is a new, rapidly developing material for building enhanced-performance silicon-based...

358

Concentrator silicon cell research  

Science Conference Proceedings (OSTI)

This project continued the developments of high-efficiency silicon concentrator solar cells with the goal of achieving a cell efficiency in the 26 to 27 percent range at a concentration level of 150 suns of greater. The target efficiency was achieved with the new PERL (passivated emitter, rear locally diffused) cell structure, but only at low concentration levels around 20 suns. The PERL structure combines oxide passivation of both top and rear surfaces of the cells with small area contact to heavily doped regions on the top and rear surfaces. Efficiency in the 22 to 23 percent range was also demonstrated for large-area concentrator cells fabricated with the buried contact solar cell processing sequence, either when combined with prismatic covers or with other innovative approaches to reduce top contact shadowing. 19 refs.

Green, M.A.; Wenham, S.R.; Zhang, F.; Zhao, J.; Wang, A. [New South Wales Univ., Kensington (Australia). Solar Photovoltaic Lab.

1992-04-01T23:59:59.000Z

359

Silicone plesiotherapy molds  

SciTech Connect

Plesiotherapy, the treatment of superficial lesions by radioactive molds has largely been replaced by teletherapy techniques involving high energy photon and electron beams. There are, however, situations for which a short distance type treatment, in one form or another, is superior to any other presently available. Traditionally, molds have taken the form of rigid devices incorporating clamps to attach them to the patient. This ensures a reproducible geometry about a localized region since the molds are applied on a daily basis. To make such devices requires considerable skill and patience. This article describes an alternative method that eliminates the use of cumbersome devices in many situations. Silicone molds made from a plaster cast model have been found suitable for the treatment of surface lesions and especially for lesions in the oral and nasal cavities. With the use of radioactive gold seeds the molds may be left in place for a few days without fear of them moving.

Karolis, C.; Reay-Young, P.S.; Walsh, W.; Velautham, G.

1983-04-01T23:59:59.000Z

360

Nano fabrication of silicon fins.  

E-Print Network (OSTI)

??We describe the formation of silicon micro- and nano-fins, with (111)-plane sidewall facets, for selective sidewall epitaxy of III-Nitride semiconductors. The fins were produced by… (more)

Liu, Lianci

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NERSC Modules Software Environment  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment » Modules Environment Environment » Modules Environment Modules Software Environment NERSC uses the module utility to manage nearly all software. There are two huge advantages of the module approach: NERSC can provide many different versions and/or installations of a single software package on a given machine, including a default version as well as several older and newer versions; and Users can easily switch to different versions or installations without having to explicitly specify different paths. With modules, the MANPATH and related environment variables are automatically managed. Users simply ``load'' and ``unload'' modules to control their environment. The module utility consists of two parts: the module command itself and the modulefiles on which it operates. Module Command

362

Direct Production of Silicones From Sand  

Science Conference Proceedings (OSTI)

Silicon, in the form of silica and silicates, is the second most abundant element in the earth's crust. However the synthesis of silicones (scheme 1) and almost all organosilicon chemistry is only accessible through elemental silicon. Silicon dioxide (sand or quartz) is converted to chemical-grade elemental silicon in an energy intensive reduction process, a result of the exceptional thermodynamic stability of silica. Then, the silicon is reacted with methyl chloride to give a mixture of methylchlorosilanes catalyzed by cooper containing a variety of tract metals such as tin, zinc etc. The so-called direct process was first discovered at GE in 1940. The methylchlorosilanes are distilled to purify and separate the major reaction components, the most important of which is dimethyldichlorosilane. Polymerization of dimethyldichlorosilane by controlled hydrolysis results in the formation of silicone polymers. Worldwide, the silicones industry produces about 1.3 billion pounds of the basic silicon polymer, polydimethylsiloxane.

Larry N. Lewis; F.J. Schattenmann: J.P. Lemmon

2001-09-30T23:59:59.000Z

363

Progress in amorphous silicon PV technology: An update  

DOE Green Energy (OSTI)

To reach the 15% stabilized efficiency goal for amorphous silicon (a-Si) modules by the year 2005, the National Renewable Energy Laboratory has established four research teams. The teams -- with members from industry, universities, and NREL -- have been in operation for 2.5 years now. Consensus has been reached that a triple-junction a-Si structure is needed to reach the efficiency goal. Performance parameter goals for the overall structure and the three component cells have been formulated. All four teams have generated their own development plans. Individual team progress relative to the plans is reported.

Luft, W.; Branz, H.M. [National Renewable Energy Lab., Golden, CO (United States); Dalal, V.L. [Iowa State Univ., Ames, IA (United States); Hegedus, S.S. [Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion; Schiff, E.A. [Syracuse Univ., NY (United States)

1995-07-01T23:59:59.000Z

364

Silicon-integrated thin-film structure for electro-optic applications  

DOE Patents (OSTI)

A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

McKee, Rodney A. (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

365

BY SILICON CRYSTALS  

NLE Websites -- All DOE Office Websites (Extended Search)

c October 29, 1942 a 1 1 _MIGH aECTgFXCATIOH - BY SILICON CRYSTALS . . c .. I n. The excellent pesformmce of Brftieh "red dot" c r y s t a l s f e explained R R due t o the kgife edge contact i n a t A polfehod ~ X ' f l i C B o H i g h frequency m c t l f f c n t f o n 8ependre c r i t i c a l l y on the ape%e;y of the rectifytnc boundary layer o f the crystal, C, For hl#$ comvere~on e f f i c i e n c y , the product c d t h i ~ capacity m a o f ' t h e @forward" (bulk) re-. sistance Rb o f the crystnl must b@ sm%P, depende primarily on the breadth of tha b f f e edge i t s lbngth. The contact am &harefore ~ E L V Q a rather large area wMQh prevents burn-out, thh3 t h e breadth of &h@ knife edge should be bdt8~1 than E~$O$B% % f I - ' amo For a knife edge, this produet very 14ttle upom For a wavsIL~n+3tih of PO emo the eowp,o%a%8sne 4

366

Thin-film amorphous silicon alloy research partnership, Phase I. Annual technical progress report, February 2, 1995--February 1, 1996  

DOE Green Energy (OSTI)

The principal objective of this R&D program is to expand, enhance and accelerate knowledge and capabilities for the development of high-performance, two-terminal multifunction amorphous silicon (a-Si) alloy modules. The near-term goal of the program is to achieve 12% stable module efficiency by 1998 using the multifunction approach. This report describes research on back reflectors of Ag/TiO{sub 2}/ZnO.

Guha, S. [United Solar Systems Corp., Troy, MI (United States)

1996-04-01T23:59:59.000Z

367

Module Technology: Current Practice and Issues (Presentation)  

DOE Green Energy (OSTI)

PV modules must provide mechanical support for the cells, protect the world from the voltages inside, protect the cells, diodes and interconnects from the weather outside, couple as much light as possible into the PV cells and minimize the temperature increase of the cells. The package must continue to serve these functions for at least 25 years as that is the typical module warranty period today. Furthermore the package must do all this for as low a cost as possible since the key to large scale PV growth is a reduction in cost while retaining excellent module reliability and durability. This paper will review current module construction practices for both crystalline silicon and thin film PV with emphasis on explaining why the present designs and materials have been selected. Possible long term issues with today's designs and materials will be discussed. Several proposed solutions to these issues will be presented, highlighting the research efforts that will be necessary in order to verify that they can cost effectively solve the identified issues.

Wohlgemuth, J.

2010-10-05T23:59:59.000Z

368

The development of a porous silicon nitride crossflow filter; Final report, September 1988--September 1992  

Science Conference Proceedings (OSTI)

This report summarizes the work performed in developing a permeable form of silicon nitride for application to ceramic crossflow filters for use in advanced coal-fired electric power plants. The program was sponsored by the Department of Energy Morgantown Energy Technology Center and consisted of a design analysis and material development phase and a filter manufacture and demonstration phase. The crossflow filter design and operating requirements were defined. A filter design meeting the requirements was developed and thermal and stress analyses were performed. Material development efforts focused initially on reaction-bonded silicon nitride material. This approach was not successful, and the materials effort was refocused on the development of a permeable form of sintered silicon nitride (SSN). This effort was successful. The SSN material was used for the second phase of the program, filter manufacture and evaluation. Four half-scale SAN filter modules were fabricated. Three of the modules were qualified for filter performance tests. Tests were performed on two of the three qualified modules in the High-Temperature, High-Pressure facility at the Westinghouse Science and Technology Center. The first module failed on test when it expanded into the clamping device, causing dust leakage through the filter. The second module performed well for a cumulative 150-hr test. It displayed excellent filtration capability during the test. The blowback pulse cleaning was highly effective, and the module apparently withstood the stresses induced by the periodic pulse cleaning. Testing of the module resumed, and when the flow of combustion gas through the filter was doubled, cracks developed and the test was concluded.

NONE

1992-09-01T23:59:59.000Z

369

Investigation of mechanically hard, chemically inert antireflection coatings for photovoltaic solar modules. Final technical report, April 1, 1980-March 31, 1981  

DOE Green Energy (OSTI)

The overall objective of this program is to determine the optical properties of i-Carbon (diamond-like) films and determine if these films can be developed into antireflecting (AR) coatings for silicon solar cells. The i-C films have been produced on glass, silicon, and KCl by radio frequency (RF) plasma decomposition of the alkane gases. Films were also produced on silicon solar cells by low-energy ion beam techniques. These coatings did not perform as well as those made from hydrocarbon gases. Significant progress has been made in understanding the deposition parameters that affect the optical properties of the films. The optical constants n and k have been determined over a large range of process parameters and source gas. The degree of hydrogen incorporation in these films has been studied by SIMS analysis. It was found that the lower optically absorbing films contain more hydrogen. This hydrogen does not, however, manifest itself in fundamental C-H absorption bands in the infrared. Very efficient single-layer quarter-wave i-C AR coatings have been produced on single-crystal and SOC Si solar cells. An increase in cell efficiency of 40% over uncoated cells has been achieved.

Moravec, T.J.

1981-03-31T23:59:59.000Z

370

Laser wafering for silicon solar.  

Science Conference Proceedings (OSTI)

Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

2011-03-01T23:59:59.000Z

371

Enabling Thin Silicon Solar Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Enabling Thin Silicon Solar Cell Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45°, -45°, and dendritic crack patterns. The effort to shift U.S. energy reliance from fossil fuels to renewable sources has spurred companies to reduce the cost and increase the reliability of their solar photovoltaics (SPVs). The use of thinner silicon in SPV technologies is being widely adopted because it significantly reduces costs; however, silicon is brittle, and thinner silicon, coupled with other recent trends in SPV technologies (thinner glass, lighter or no metal frames, increased use of certain polymers for encapsulation of the silicon cells), is more susceptible to stress and cracking. When the thin

372

Design of a silicon waver breaker  

E-Print Network (OSTI)

Usually multiple MEMS or IC devices are fabricated on a single silicon wafer. Manually separating the components from each other involves scribing and fracturing the silicon. This thesis presents a design for a tool to aid ...

Mukaddam, Kabir James, 1983-

2005-01-01T23:59:59.000Z

373

Types of Silicon Used in Photovoltaics  

Energy.gov (U.S. Department of Energy (DOE))

Silicon—used to make some the earliest photovoltaic (PV) devices—is still the most popular material for solar cells. Silicon is also the second-most abundant element in the Earth's crust (after...

374

Nucleation and solidification of silicon for photovoltaics  

E-Print Network (OSTI)

The majority of solar cells produced today are made with crystalline silicon wafers, which are typically manufactured by growing a large piece of silicon and then sawing it into ~200 pm wafers, a process which converts ...

Appapillai, Anjuli T. (Anjuli Tara)

2010-01-01T23:59:59.000Z

375

Cermet layer for amorphous silicon solar cells  

DOE Patents (OSTI)

A transparent high work function metal cermet forms a Schottky barrier in a Schottky barrier amorphous silicon solar cell and adheres well to the P+ layer in a PIN amorphous silicon solar cell.

Hanak, Joseph J. (Lawrenceville, NJ)

1979-01-01T23:59:59.000Z

376

Becancour Silicon Inc BSI | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name Becancour Silicon Inc (BSI) Place St. Laurent, Quebec, Canada Zip H4M2M4 Sector Solar Product Canadian supplier of silicon metal for the...

377

Three dimensional amorphous silicon/microcrystalline silicon solar cells  

DOE Patents (OSTI)

Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

Kaschmitter, J.L.

1996-07-23T23:59:59.000Z

378

Three dimensional amorphous silicon/microcrystalline silicon solar cells  

DOE Patents (OSTI)

Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.

Kaschmitter, James L. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

379

Silicon crystal growing by oscillating crucible technique  

DOE Patents (OSTI)

A process for growing silicon crystals from a molten melt comprising oscillating the container during crystal growth is disclosed.

Schwuttke, G.H.; Kim, K.M.; Smetana, P.

1983-08-03T23:59:59.000Z

380

Demonstration of a silicon raman laser  

E-Print Network (OSTI)

The need for low-cost photonic devices has stimulated significant amount of research in silicon photonics. One avenue of this research is building active devices based on nonlinear properties of silicon. Raman effect in silicon is an attractive way of realizing these devices. In the last few years, spontaneous and stimulated Raman scattering have been demonstrated in Silicon-on-insulator (SOI) waveguides, showing the possibility of active functionalities based

Bahram Jalali; Ozdal Boyraz; Dimitri Dimitropoulos; Varun Raghunathan

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solar Cell Silicon - Programmaster.org  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... About this Symposium. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium, Solar Cell Silicon. Sponsorship, TMS Extraction and ...

382

Copper doped polycrystalline silicon solar cell  

DOE Patents (OSTI)

Photovoltaic cells having improved performance are fabricated from polycrystalline silicon containing copper segregated at the grain boundaries.

Lovelace, Alan M. Administrator of the National Aeronautics and Space (La Canada, CA); Koliwad, Krishna M. (La Canada, CA); Daud, Taher (La Crescenta, CA)

1981-01-01T23:59:59.000Z

383

Buckeye Silicon | Open Energy Information  

Open Energy Info (EERE)

Silicon Silicon Jump to: navigation, search Name Buckeye Silicon Address 2600 Dorr Street - Suite 1070 Place Toledo, Ohio Zip 43606 Sector Renewable Energy, Services, Solar Product Consulting; Manufacturing;Raw materials/extraction;Refining;Research and development Website http://www.sphereenergy.net Coordinates 41.6529122°, -83.6066466° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6529122,"lon":-83.6066466,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Silicon Photonics: The Inside Story  

E-Print Network (OSTI)

The electronic chip industry embodies the height of technological sophistication and economics of scale. Fabricating inexpensive photonic components by leveraging this mighty manufacturing infrastructure has fueled intense interest in silicon photonics. If it can be done economically and in an energy efficient manner, empowering silicon with optical functionality will bring optical communications to the realm of computers where limitations of metallic interconnects are threatening the industry's future. The field is making stunning progress and stands to have a bright future, as long as the community recognizes the real challenges, and maintains an open mind with respect to its applications. This talk will review recent 'game changing' developments and discuss promising applications beyond data communication. It will conclude with recent observation of extreme-value statistical behavior in silicon photonics, a powerful example of how scientific discoveries can unexpectedly emerge in the course of technology d...

Jalali, Bahram

2008-01-01T23:59:59.000Z

385

Modulating lignin in plants  

DOE Patents (OSTI)

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

386

Performance and Modeling of Amorphous Silicon Photovoltaics for Building-Integrated Applications (Preprint prepared for Solar 99)  

Science Conference Proceedings (OSTI)

Amorphous silicon photovoltaic (PV) modules offer several advantages for building-integrated applications. The material can be deposited on glass or flexible substrates, which allows for products like roofing shingles and integrated PV/building glass. The material also has a uniform surface, which is ideal for many architectural applications. Amorphous silicon modules perform well in warm weather and have a small temperature coefficient for power. Depending on the building load, this may be beneficial when compared to crystalline systems. At the National Renewable Energy Laboratory, we are monitoring the performance of a triple-junction a-Si system. The system consists of 72 roofing shingles mounted directly to simulated roofing structures. This paper examines the performance of the building-integrated amorphous silicon PV system and applicability for covering residential loads. A simple model of system performance is also developed and is presented.

Kroposki, B.; Hansen, R.

1998-06-07T23:59:59.000Z

387

Prealloyed catalyst for growing silicon carbide whiskers  

DOE Patents (OSTI)

A prealloyed metal catalyst is used to grow silicon carbide whiskers, especially in the .beta. form. Pretreating the metal particles to increase the weight percentages of carbon or silicon or both carbon and silicon allows whisker growth to begin immediately upon reaching growth temperature.

Shalek, Peter D. (Los Alamos, NM); Katz, Joel D. (Niagara Falls, NY); Hurley, George F. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

388

Process of preparing tritiated porous silicon  

DOE Patents (OSTI)

A process of preparing tritiated porous silicon in which porous silicon is equilibrated with a gaseous vapor containing HT/T.sub.2 gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon.

Tam, Shiu-Wing (Downers Grove, IL)

1997-01-01T23:59:59.000Z

389

Tandem junction amorphous silicon solar cells  

DOE Patents (OSTI)

An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

Hanak, Joseph J. (Lawrenceville, NJ)

1981-01-01T23:59:59.000Z

390

Laser wafering for silicon solar.  

SciTech Connect

Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 {micro}m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

2011-03-01T23:59:59.000Z

391

LIFE CYCLE ANALYSIS OF HIGH-PERFORMANCE MONOCRYSTALLINE SILICON PHOTOVOLTAIC SYSTEMS: ENERGY PAYBACK TIMES AND NET ENERGY PRODUCTION VALUE  

E-Print Network (OSTI)

LIFE CYCLE ANALYSIS OF HIGH-PERFORMANCE MONOCRYSTALLINE SILICON PHOTOVOLTAIC SYSTEMS: ENERGY and other countries. Higher efficiencies are produced by innovative cell designs and material and energy% more electricity than average efficiency (i.e., 14%) c-Si PV modules. Keywords: Photovoltaic, energy

392

Erbium diffusion in silicon dioxide  

SciTech Connect

Erbium diffusion in silicon dioxide layers prepared by magnetron sputtering, chemical vapor deposition, and thermal growth has been investigated by secondary ion mass spectrometry, and diffusion coefficients have been extracted from simulations based on Fick's second law of diffusion. Erbium diffusion in magnetron sputtered silicon dioxide from buried erbium distributions has in particular been studied, and in this case a simple Arrhenius law can describe the diffusivity with an activation energy of 5.3{+-}0.1 eV. Within a factor of two, the erbium diffusion coefficients at a given temperature are identical for all investigated matrices.

Lu Yingwei; Julsgaard, B.; Petersen, M. Christian [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Jensen, R. V. Skougaard [Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg O (Denmark); Pedersen, T. Garm; Pedersen, K. [Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg O (Denmark); Interdisciplinary Nanoscience Center-iNANO, DK-8000 Aarhus C (Denmark); Larsen, A. Nylandsted [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Interdisciplinary Nanoscience Center-iNANO, DK-8000 Aarhus C (Denmark)

2010-10-04T23:59:59.000Z

393

Comparison of Energy Production and Performance from Flat-Plate Photovoltaic Module Technologies Deployed at Fixed Tilt: Preprint  

DOE Green Energy (OSTI)

This conference paper describes the performance data for 14 photovoltaic modules deployed at fixed-latitude tilt in the field are presented and compared. Module performance is monitored continuously for optimum power characteristics. Flat-plate module technologies representative of crystalline, amorphous, and polycrystalline silicon, and cadmium telluride and copper indium diselenide, are scrutinized for energy production, effective efficiency and performance ratio-ratio of effective to reference efficiency. Most performance ratios exhibit seasonal fluctuations largely correlated to air or module temperatures, varying between 80% and 100%. These ratios tend toward larger values during winter and vise versa, except for amorphous silicon and cadmium telluride modules. In a-Si cases, the situation appears reversed: better performance ratios are exhibited during late summer. The effective efficiency and average daily and yearly energy production are analyzed and quantified.

del Cueto, J. A.

2002-05-01T23:59:59.000Z

394

Center punched solar cell module development effort. Final report  

SciTech Connect

The results of an advanced module development program with the objective of providing a low cost solar cell mechanical interconnect design are presented. The design approach, which avoids soldering or welding operations, lends itself to automated assembly techniques thus supporting the Low-Cost Silicon Solar Array Project goals. During the course of the program, a total of twelve modules were delivered to JPL for qualification testing. The first group of six modules contained aluminum contact cells and the second group of six modules contained silver-titanium-palladium contact cells. Extensive component and environmental testing by Xerox Electro-Optical Systems at the module level has shown that reliable cell mechanical interconnection can be achieved when utilizing the proper electrical contact materials and pressures. Environmental testing of XEOS modules at JPL, in accordance with the same JPL specification used by XEOS, will be performed and the results will be separately published. The module design, manufacturing procedure, test program, significant problem areas and solutions, and conclusions and recommendations as formulated and conducted by XEOS are discussed.

Ross, R.E.; Mortensen, W.E.

1978-06-01T23:59:59.000Z

395

Growth of silicon sheets for photovoltaic applications  

DOE Green Energy (OSTI)

The status of silicon sheet development for photovoltaic applications is critically reviewed. Silicon sheet growth processes are classified according to their linear growth rates. The fast growth processes, which include edge-defined film-fed growth, silicon on ceramic, dendritic-web growth, and ribbon-to-ribbon growth, are comparatively ranked subject to criteria involving growth stability, sheet productivity, impurity effects, crystallinity, and solar cell results. The status of more rapid silicon ribbon growth techniques, such as horizontal ribbon growth and melt quenching, is also reviewed. The emphasis of the discussions is on examining the viability of these sheet materials as solar cell substrates for low-cost silicon photovoltaic systems.

Surek, T.

1980-12-01T23:59:59.000Z

396

Method for processing silicon solar cells  

DOE Patents (OSTI)

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

1997-05-06T23:59:59.000Z

397

Method for processing silicon solar cells  

DOE Patents (OSTI)

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

Tsuo, Y. Simon (Golden, CO); Landry, Marc D. (Lafayette, CO); Pitts, John R. (Lakewood, CO)

1997-01-01T23:59:59.000Z

398

17.1%-Efficient Multi-Scale-Textured Black Silicon Solar Cells without Dielectric Antireflection Coating: Preprint  

DOE Green Energy (OSTI)

In this work we present 17.1%-efficient p-type single crystal Si solar cells with a multi-scale-textured surface and no dielectric antireflection coating. Multi-scale texturing is achieved by a gold-nanoparticle-assisted nanoporous etch after conventional micron scale KOH-based pyramid texturing (pyramid black etching). By incorporating geometric enhancement of antireflection, this multi-scale texturing reduces the nanoporosity depth required to make silicon 'black' compared to nanoporous planar surfaces. As a result, it improves short-wavelength spectral response (blue response), previously one of the major limiting factors in 'black-Si' solar cells. With multi-scale texturing, the spectrum-weighted average reflectance from 350- to 1000-nm wavelength is below 2% with a 100-nm deep nanoporous layer. In comparison, roughly 250-nm deep nanopores are needed to achieve similar reflectance on planar surface. Here, we characterize surface morphology, reflectivity and solar cell performance of the multi-scale textured solar cells.

Toor, F.; Page, M. R.; Branz, H. M.; Yuan, H. C.

2011-07-01T23:59:59.000Z

399

Microelectromechanical pump utilizing porous silicon  

DOE Patents (OSTI)

A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

Lantz, Jeffrey W. (Albuquerque, NM); Stalford, Harold L. (Norman, OK)

2011-07-19T23:59:59.000Z

400

Method for fabricating silicon cells  

DOE Patents (OSTI)

A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.

Ruby, D.S.; Basore, P.A.; Schubert, W.K.

1998-08-11T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Method for fabricating silicon cells  

DOE Patents (OSTI)

A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.

Ruby, Douglas S. (Albuquerque, NM); Basore, Paul A. (Albuquerque, NM); Schubert, W. Kent (Albuquerque, NM)

1998-08-11T23:59:59.000Z

402

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

... An extremely pure form of crystalline silicon produced by dipping a single crystal seed into a pool of molten silicon under high ... (such as a ...

403

Lower Cost CPV 3-Sun Mirror Modules  

SciTech Connect

In a series of patent applications filed between 2002 and 2005, JX Crystals Inc described a evolutionary lower-cost low-concentration planar solar photovoltaic module that uses multiple linear rows of silicon cells and standard one-sun circuit laminations incorporating glass and EVA weather proofing encapsulations. The three novel features that we described are interdependent and integrated together to yield lower cost PV modules. These 3 novel features are: (1) The use of rows of linear mirrors or linear Fresnel lenses aligned with the cell rows and concentrating the sunlight onto the cell rows. (2) The addition of a thin aluminum sheet heat spreader on the back of the circuit lamination to spread the heat away from the cell rows so that the cell operating temperature remains acceptably low. (3) The incorporation of slots in the back of the aluminum sheet heat spreader to accommodate the differences in thermal expansion between the silicon cells, the glass, and the aluminum so that the circuit interconnectivity is maintained over time. Various embodiments of this planar linear concentrator panel are shown in figures 1 to 5. Figures 1 and 2 show the original planar linear concentrator module concept from July of 2002 with either mirrors (figure 1) or linear Fresnel lenses (figure 2). The idea was expanded in 2003 with the idea of an aluminum sheet heat spreader added to the back of a standard PV circuit lamination as shown in figure 3. In 2003, we also transitioned from half cells to third cells using SunPower cells as shown in figure 4. JX Crystals Inc then received funding for the 3-sun PV mirror module concept from the Shanghai Science and Technology Commission in 2003 and from the Shanghai Flower Port and the Shanghai Import and Export Trading Company in 2005. This funding led to a 800 panel pilot production run of our JX Crystals designed 3-sun module in 2006. 672 of these panels were installed in a 100 kW demonstration and an additional 24 panels were installed in a second 4 kW demonstration both at the Flower Port in Shanghai. Both of these systems were completed in 2006. Our 3-sun PV Panel concept has been described previously (see references 1, 2, & 3 available at www.jxcrystals.com under publication tab). We are now interested in bringing this potentially lower cost 3-sun technology back to the US. For any new technology, three issues need to be addressed. They are performance, durability, and cost. These topics are addressed in the next 3 sections.

Fraas, Dr. Lewis [JX Crystals, Inc.; Avery, James E. [JX Crystals, Inc.; Minkin, Leonid M [ORNL; Huang, H, [JX Crystals, Inc.; Gehl, Anthony C [ORNL; Maxey, L Curt [ORNL

2007-01-01T23:59:59.000Z

404

Kerfless Silicon Precursor Wafer Formed by Rapid Solidification: October 2009 - March 2010  

DOE Green Energy (OSTI)

1366 Direct Wafer technology is an ultra-low-cost, kerfless method of producing crystalline silicon wafers compatible with the existing dominant silicon PV supply chain. By doubling utilization of silicon and simplifying the wafering process and equipment, Direct Wafers will support drastic reductions in wafer cost and enable module manufacturing costs < $1/W. This Pre-Incubator subcontract enabled us to accelerate the critical advances necessary to commercialize the technology by 2012. Starting from a promising concept that was initially demonstrated using a model material, we built custom equipment necessary to validate the process in silicon, then developed sufficient understanding of the underlying physics to successfully fabricate wafers meeting target specifications. These wafers, 50 mm x 50 mm x 200 ..mu..m thick, were used to make prototype solar cells via standard industrial processes as the project final deliverable. The demonstrated 10% efficiency is already impressive when compared to most thin films, but still offers considerable room for improvement when compared to typical crystalline silicon solar cells.

Lorenz, A.

2011-06-01T23:59:59.000Z

405

Electricity Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Market Module Market Module This page inTenTionally lefT blank 101 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2013, DOE/EIA-M068(2013). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

406

Polycrystalline thin-film solar cells and modules  

DOE Green Energy (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

407

Polycrystalline thin-film solar cells and modules  

DOE Green Energy (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

408

High Power SiC Modules for HEVs and PHEVs  

DOE Green Energy (OSTI)

With efforts to reduce the cost, size, and thermal management systems for the power electronics drivetrain in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), wide band gap semiconductors including silicon carbide (SiC) have been identified as possibly being a partial solution. Research on SiC power electronics has shown their higher efficiency compared to Si power electronics due to significantly lower conduction and switching losses. This paper focuses on the development of a high power module based on SiC JFETs and Schottky diodes. Characterization of a single device, a module developed using the same device, and finally an inverter built using the modules is presented. When tested at moderate load levels compared to the inverter rating, an efficiency of 98.2% was achieved by the initial prototype.

Chinthavali, Madhu Sudhan [ORNL; Tolbert, Leon M [ORNL; Zhang, Hui [ORNL; Han, Jung H [ORNL; Barlow, Fred D. [University of Idaho; Ozpineci, Burak [ORNL

2010-01-01T23:59:59.000Z

409

Mechanical and Thermal Characterisation of a TT Half-Module Prototype  

E-Print Network (OSTI)

This note describes the mechanical effects of thermal cycles on a TT half-module, to demonstrate that the detectors can withstand the expected thermal gradients without damage. The stress transferred by the carbon fiber rails and the ceramic to the silicon sensors was investigated, and the deformation that occurred during these tests was measured by strain gauges that were attached to sensors on a test half-module. In addition, heat transfer through the carbon fiber rails was studied. Furthermore, we present a comparison of different materials proposed to build the carbon fiber rails of the modules.

Lehner, F; Pangilinan, M; Siegler, M

2005-01-01T23:59:59.000Z

410

Cyber Security Module  

NLE Websites -- All DOE Office Websites (Extended Search)

Cyber Security Module Cyber security training is required for all facility users and must be submitted before or upon arrival at the GUV Center. System Requirements and Information...

411

Detailed Course Module Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Course Module Description Course Module Description Module/Learning Objectives Level of Detail in Module by Audience Consumers Gen Ed/ Community College Trades 1. Energy Issues and Building Solutions High High High Learning Objectives: * Define terms of building science, ecological systems, economics of consumption * Relate building science perspective, ecology, social science * Explain historical energy and environmental issues related to buildings * Compare Site and source energy * Examine the health, safety and comfort issues in buildings * Examine the general context for building solutions (zero energy green home with durability as the goal) * Explain a basic overview of alternative energy (total solar flux) - do we have enough energy * Examine cash flow to homeowners

412

Macroeconomic Activity Module  

Annual Energy Outlook 2012 (EIA)

d022412A. U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 18 Macroeconomic Activity Module To reflect uncertainty in the projection of...

413

International Energy Module  

Reports and Publications (EIA)

Summarizes the overall structure of the International Energy Model and its interface with other NEMS modules, mathematical specifications of behavioral relationships, and data sources and estimation methods.

Adrian Geagla

2012-11-05T23:59:59.000Z

414

International Energy Module  

Reports and Publications (EIA)

Summarizes the overall structure of the International Energy Model and its interface with other NEMS modules, mathematical specifications of behavioral relationships, and data sources and estimation methods.

Adrian Geagla

2013-10-22T23:59:59.000Z

415

Polarized IR and Raman spectra of Ca{sub 2}MgSi{sub 2}O{sub 7}, Ca{sub 2}ZnSi{sub 2}O{sub 7} and Sr{sub 2}MgSi{sub 2}O{sub 7} single crystals: Temperature-dependent studies of commensurate to incommensurate and incommensurate to normal phase transitions  

Science Conference Proceedings (OSTI)

IR and Raman spectra of Ca{sub 2}MgSi{sub 2}O{sub 7}, Ca{sub 2}ZnSi{sub 2}O{sub 7} and Sr{sub 2}MgSi{sub 2}O{sub 7} oriented single crystals and powders have been measured. The temperature dependence of phonons has been established in the 4-650 K range. Discussion of the results has been performed on the basis of factor group approach for the tetragonal P4-bar 2{sub 1}m (D{sub 2d}{sup 3}) space group with Z=2. The assignment of the bands observed to the internal and external modes has been made on their polarization behaviour, phonon energy calculations and literature data. The evidences of the LO-TO splitting and commensurate (C) to incommensurate (IC) as well as incommensurate (IC) to normal (N) phase transitions have been found. As a representative example, the results obtained for the spontaneous Raman scattering have also been used in the discussion of the stimulated Raman spectra of Ca{sub 2}ZnSi{sub 2}O{sub 7}. - Graphical abstract: Raman and IR spectra of Ca{sub 2}MgSi{sub 2}O{sub 7}, Ca{sub 2}ZnSi{sub 2}O{sub 7}, Sr{sub 2}MgSi{sub 2}O{sub 7} have been measured. The temperature dependence of phonons has been established in the 4-650 K range. The evidences of the LO-TO splitting and commensurate (C) to incommensurate (IC) as well as incommensurate (IC) to normal (N) phase transitions have been found. Highlights: Black-Right-Pointing-Pointer Polarized IR and Raman spectra of pyrosilicates single crystals have been studied. Black-Right-Pointing-Pointer Temperature dependence of the phonon bands and LO-TO splitting have been analysed. Black-Right-Pointing-Pointer Commensurate to incommensurate and to normal phase have been evidenced in the spectra. Black-Right-Pointing-Pointer Phonon calculations have been used in assignment of the normal modes. Black-Right-Pointing-Pointer Stimulated Raman spectra of Ca{sub 2}ZnSi{sub 2}O{sub 7} crystal have been measured and analysed.

Hanuza, J. [Institute of Low Temperatures and Structure Research, Polish Academy of Sciences, ul. Okolna 2, Wroclaw (Poland); Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Wroclaw University of Economics, 118/120 Komandorska str., Wroclaw (Poland); Ptak, M., E-mail: m.ptak@int.pan.wroc.pl [Institute of Low Temperatures and Structure Research, Polish Academy of Sciences, ul. Okolna 2, Wroclaw (Poland); Maczka, M.; Hermanowicz, K. [Institute of Low Temperatures and Structure Research, Polish Academy of Sciences, ul. Okolna 2, Wroclaw (Poland); Lorenc, J. [Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Wroclaw University of Economics, 118/120 Komandorska str., Wroclaw (Poland); Kaminskii, A.A. [Institute of Crystallography, Russian Academy of Sciences, Moscow (Russian Federation)

2012-07-15T23:59:59.000Z

416

Working with Modules within Python  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with Modules within Perl and Python Working with Modules within Perl and Python Working with Modules within Perl and Python It can often be convenient to work with the modules system from within perl or python scripts. You can do this! Using Modules within Python The EnvironmentModules python package gives access to the module system from within python. The EnvironmentModules python package has a single function: module. Using this function you can provide the same arguments you would to "module" on the command line. The module() function accepts a list of arguments, like ['load','']; or ['unload','']. >>> import EnvironmentModules as EnvMod >>> EnvMod.module(['load','blast+']) It is important to understand that this is most effective for scripts

417

The Silicon Mine | Open Energy Information  

Open Energy Info (EERE)

Mine Mine Jump to: navigation, search Name The Silicon Mine Place Netherlands Sector Solar Product The Silicon Mine (TSM) will produce solar grade polysilicon suitable for the production of wafers or as the base material for the manufacture of solar cells. References The Silicon Mine[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. The Silicon Mine is a company located in Netherlands . References ↑ "The Silicon Mine" Retrieved from "http://en.openei.org/w/index.php?title=The_Silicon_Mine&oldid=352196" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

418

Macroeconomic Activity Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 2013 (AEO2013). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code

2013-04-10T23:59:59.000Z

419

Membrane module assembly  

DOE Patents (OSTI)

A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

Kaschemekat, J.

1994-03-15T23:59:59.000Z

420

Module Safety Issues (Presentation)  

SciTech Connect

Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

Wohlgemuth, J.

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Amorphous silicon solar cell allowing infrared transmission  

DOE Patents (OSTI)

An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

Carlson, David E. (Yardley, PA)

1979-01-01T23:59:59.000Z

422

Process for strengthening silicon based ceramics  

DOE Patents (OSTI)

A process for strengthening silicon based ceramic monolithic materials and composite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400{degrees}C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts, or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.

Kim, Hyoun-Ee; Moorhead, A.J.

1991-03-07T23:59:59.000Z

423

Diamond-silicon carbide composite and method  

DOE Patents (OSTI)

Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

Zhao, Yusheng (Los Alamos, NM)

2011-06-14T23:59:59.000Z

424

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

he International Energy Module determines changes in the world oil price and the supply prices of crude he International Energy Module determines changes in the world oil price and the supply prices of crude oils and petroleum products for import to the United States in response to changes in U.S. import requirements. A market clearing method is used to determine the price at which worldwide demand for oil is equal to the worldwide supply. The module determines new values for oil production and demand for regions outside the United States, along with a new world oil price that balances supply and demand in the international oil market. A detailed description of the International Energy Module is provided in the EIA publication, Model Documentation Report: The International Energy Module of the National Energy Modeling System, DOE/EIA-M071(06), (Washington, DC, February 2006).

425

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

426

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

427

Toward accurate and large-scale silicon photonics  

E-Print Network (OSTI)

Silicon photonics, emerging from the interface of silicon technology and photonic technology, is expected to inherit the incredible integration ability of silicon technology that has boomed the microelectronic industry for ...

Sun, Jie, Ph.D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

428

Efficient light trapping structure in thin film silicon solar cells  

E-Print Network (OSTI)

Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

Sheng, Xing

429

Investigation of polarization anisotropy in individual porous silicon nanoparticles  

Science Conference Proceedings (OSTI)

Polarization anisotropy is investigated in single porous silicon nanoparticles containing multiple chromophores. Two forms of nanoparticle samples are studied; low current density (LCD) and high current density (HCD). Photoluminescence measurements reveal ... Keywords: Anisotropy, Photoluminescence, Polarization, Porous silicon, Silicon nanocrystal

Daniel J. Gargas; Donald J. Sirbuly; Michael D. Mason; Paul J. Carson; Steven K. Buratto

2008-09-01T23:59:59.000Z

430

Structural alloy with a protective coating containing silicon or silicon-oxide  

DOE Patents (OSTI)

This invention is comprised of an iron-based alloy containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100{degrees}C.

Natesan, K.

1992-01-01T23:59:59.000Z

431

Single-crystal X-ray and neutron diffraction investigations of the temperature dependence of the structure of the Tc = 10 K organic superconductor. kappa. -(ET) sub 2 Cu(NCS) sub 2. [where ET or BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene, C sub 10 H sub 8 S sub 8  

Science Conference Proceedings (OSTI)

The crystal structure of {kappa}-(ET){sub 2}Cu(NCS){sub 2} (ET or BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene, C{sub 10}H{sub 8}S{sub 8}) has been examined by single-crystal neutron and X-ray diffraction at temperatures between 298 and 15 K. Comparison of the low temperature ordered structures determined by use of X-ray and neutron diffraction with the previously reported crystallographically disordered room temperature X-ray structure indicates the avoidance of close H{center dot}{center dot}{center dot}H contacts as the reason for the conformational disorder of the terminal ethylene groups of the ET molecules at high temperatures. The space group is monoclinic noncentrosymmetric P2{sub 1}, Z = 2. Unit cell parameters at 118 K are a = 16.359(4), b = 8.418(2), c = 12.855(3) {angstrom}, {beta} = 111.21(2){degree}, and V = 1650.3(7) {angstrom}{sup 3}; at 15 K, a = 16.373(5), b = 8.375(3), c = 12.775(6) {angstrom}, {beta} = 111.45(4){degree}, and V = 1630(1) {angstrom}{sup 3}. The interlayer spacing a {center dot} sin {beta} remains constant upon cooling from 298 to 15 K even though the a axis increases slightly in length.

Schultz, A.J.; Beno, M.A.; Geiser, U.; Wang, H.H.; Kini, A.; Williams, J.M. (Argonne National Lab., IL (United States)); Myunghwan Whangbo (North Carolina State Univ., Raleigh (United States))

1991-10-01T23:59:59.000Z

432

Engineering Metal Impurities in Multicrystalline Silicon Solar...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar...

433

Electrochemical Lithiation of Silicon Clathrate Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, Due to its high theoretical specific capacity, silicon has been the subject of intense research as an anode for lithium-ion batteries.

434

Silicon Nano-Crystal Waveguide (SNOW) Laser  

Silicon Nano-Crystal Waveguide (SNOW) Laser Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

435

Nanoscale Characterization of Polymer Precursor Derived Silicon ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Nano-scale mechanical properties of silicon carbide derived ... Carbon Fiber Reinforced Ultra-High-Temperature Ceramic Matrix Composites.

436

Surface alloying of silicon into aluminum substrate.  

SciTech Connect

Aluminum alloys that are easily castable tend to have lower silicon content and hence lower wear resistance. The use of laser surface alloying to improve the surface wear resistance of 319 and 320 aluminum alloys was examined. A silicon layer was painted onto the surface to be treated. A high power pulsed Nd:YAG laser with fiberoptic beam delivery was used to carry out the laser surface treatment to enhance the silicon content. Process parameters were varied to minimize the surface roughness from overlap of the laser beam treatment. The surface-alloyed layer was characterized and the silicon content was determined.

Xu, Z.

1998-10-28T23:59:59.000Z

437

Silicon Materials and Devices (Fact Sheet)  

DOE Green Energy (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Silicon Materials and Devices that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

438

Method For Passivating Crystal Silicon Surfaces - Energy ...  

The photovoltaic market remains dominated by silicon wafer-based solar cells. Therefore, there is a need for improvements in the manufacturing ...

439

Silicon Materials and Devices (Fact Sheet)  

DOE Green Energy (OSTI)

This National Center for Photovoltaics sheet describes the capabilities of its silicon materials and devices research. The scope and core competencies and capabilities are discussed.

Not Available

2013-06-01T23:59:59.000Z

440

Silicon nitride having a high tensile strength  

Science Conference Proceedings (OSTI)

A ceramic body comprising at least about 80 w/o silicon nitride and having a mean tensile strength of at least about 800 MPa.

Pujari, Vimal K. (Northboro, MA); Tracey, Dennis M. (Medfield, MA); Foley, Michael R. (Oxford, MA); Paille, Norman I. (Oxford, MA); Pelletier, Paul J. (Sutton, MA); Sales, Lenny C. (Grafton, MA); Willkens, Craig A. (Worcester, MA); Yeckley, Russell L. (Latrobe, PA)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modules single-crystal silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Silicon Surface and Heterojunction Interface Passivation ...  

Silicon Solar Cell Materials and Processes Vail, Colorado August 10-13