Powered by Deep Web Technologies
Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

References and Appendices: U.S. Manufacturing Energy Use and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4 U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis REFERENCES AMO (Advanced Manufacturing Office), EERE (Energy Efficiency and Renewable Energy). 2012a. Consider...

2

Unit References Module 1: The Science of Climate Change  

E-Print Network [OSTI]

164 Unit References Module 1: The Science of Climate Change 1. Intergovernmental Panel on Climate Change. (2007). Climate change 2007: synthesis report. IPCC Plenary XXVII (Valencia, Spain, 12-17 November 2007). 2. America's Climate Choices: Panel on Advancing the Science of Climate Change, National

Smith, Kate

3

A hybrid life-cycle inventory for multi-crystalline silicon PV module manufacturing in China  

Science Journals Connector (OSTI)

China is the world's largest manufacturer of multi-crystalline silicon photovoltaic (mc-Si PV) modules, which is a key enabling technology in the global transition to renewable electric power systems. This study presents a hybrid life-cycle inventory (LCI) of Chinese mc-Si PV modules, which fills a critical knowledge gap on the environmental implications of mc-Si PV module manufacturing in China. The hybrid LCI approach combines process-based LCI data for module and poly-silicon manufacturing plants with a 2007 China IO-LCI model for production of raw material and fuel inputs to estimate 'cradle to gate' primary energy use, water consumption, and major air pollutant emissions (carbon dioxide, methane, sulfur dioxide, nitrous oxide, and nitrogen oxides). Results suggest that mc-Si PV modules from China may come with higher environmental burdens that one might estimate if one were using LCI results for mc-Si PV modules manufactured elsewhere. These higher burdens can be reasonably explained by the efficiency differences in China's poly-silicon manufacturing processes, the country's dependence on highly polluting coal-fired electricity, and the expanded system boundaries associated with the hybrid LCI modeling framework. The results should be useful for establishing more conservative ranges on the potential 'cradle to gate' impacts of mc-Si PV module manufacturing for more robust LCAs of PV deployment scenarios.

Yuan Yao; Yuan Chang; Eric Masanet

2014-01-01T23:59:59.000Z

4

Development of a Process Planning Module for Metal Additive Manufacturing.  

E-Print Network [OSTI]

??Producing metallic parts using Laser Engineered Net Shaping (LENS™) additive manufacturing allows for a wide range of flexibility and customization while reducing waste material compared… (more)

Chernow, Eric

2013-01-01T23:59:59.000Z

5

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, January 1, 1995--December 31, 1995  

SciTech Connect (OSTI)

The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three.

Wohlgemuth, J. [Amoco/Enron Solar, Frederick, MD (United States)] [Amoco/Enron Solar, Frederick, MD (United States)

1996-06-01T23:59:59.000Z

6

Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)  

SciTech Connect (OSTI)

First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

Not Available

2013-08-01T23:59:59.000Z

7

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual subcontract report, January 1--June 30, 1995  

SciTech Connect (OSTI)

The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. To achieve these objectives, Solarex is working in the following technical areas: casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling. Accomplishments reported include: Cast first successful larger ingot producing 73% larger volume of usable Si; Increased the size of the ingot even further and cast an ingot yielding nine 11.4 {times} 11.4 cm bricks, representing a 125% increase in usable Si from a single casting; Operated the wire-saw in a semi-operational mode, producing 459,000 wafers at 94.1% overall yield; Reduced the cost of wire-saw consumables, spare parts, and waste disposal; Developed a cost-effective back surface field process that increases cell efficiency by 5% and began production trials; Developed a plan for increasing the capacity in the module assembly area; Completed qualification testing of modules built using Spire`s automated tabbing and stringing machine; Selected, tested, and qualified a low-cost electrical termination system; Completed long-term UV testing of experimental back sheets; Qualified the structure and adhesive-tape system for mounting frameless modules; and ARRI completed a study of the fracture properties of cast polycrystalline Si wafers and provided the information necessary to calculate the maximum stresses allowable during wafer handling.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1996-02-01T23:59:59.000Z

8

Manufacturing  

Office of Environmental Management (EM)

Flow of Materials through Industry Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the TechnologySystem ......

9

Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Manufacturing DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Manufacturing of Products Containing Depleted Uranium Discussion of risks and possible impacts associated with fabrication of representative products containing depleted uranium. Beneficial Uses Risk Evaluation The Department has initiated the Depleted Uranium Uses Research and Development Program to explore the potential beneficial uses of the depleted uranium (DU), fluorine, and empty carbon steel DUF6 storage cylinders for effective use of resources and to achieve cost savings to the government. A number of tasks have been initiated related to uses of DU as a shielding material, catalyst, and as a semi-conductor material in electronic devices. An evaluation of the risks associated with the release

10

High-throughput manufacturing of thin-film CdTe photovoltaic modules  

Science Journals Connector (OSTI)

The main obstacle to the wide spread use of photovoltaics as a major source of renewable energy has been cost. The key to lowering the cost of photovoltaic generated energy to the levels of conventional sources of energy lays in the development of low cost high throughput manufacturing processes. Solar Cells Inc. (SCI) believes this can be achieved for CdTe based modules by integrating its PV fabrication processes with a modern glass plant. That is sand in finished module out. It is also necessary to have a stable end product in order to gain wide acceptance. SCI has been working at producing large-area CdS/CdTe photovoltaic (PV) modules and the processes developed at SCI can be scaled to achieve high production levels at cost-effective rates.

Alan McMaster; Steve Johnson

1999-01-01T23:59:59.000Z

11

ESS 2012 Peer Review - Low Cost, Manufacturable High Voltage Power Module for ESS - Brandon Passmore, APEI  

Broader source: Energy.gov (indexed) [DOE]

W. Research Center Blvd. * Fayetteville, AR 72701 * (479) 443-5759 W. Research Center Blvd. * Fayetteville, AR 72701 * (479) 443-5759 Design and Development of a Low Cost, Manufacturable High Voltage Power Module for Energy Storage Systems Phase I SBIR September 27, 2012 Brandon Passmore, PhD Sr. Electronics Packaging Research Engineer Email: bpassmo@apei.net Acknowledgements * I would like to thank Dr. Imre Gyuk of the DOE Energy Storage Systems Program and Dr. Stan Atcitty for technical support * I would also like to thank 2 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

12

High Volume Manufacturing of Silicon-Film Solar Cells and Modules; Final Subcontract Report, 26 February 2003 - 30 September 2003  

SciTech Connect (OSTI)

The objective of the PV Manufacturing R&D subcontract was to continue to improve AstroPower's technology for manufacturing Silicon-Film* wafers, solar cells, and modules to reduce costs, and increase production yield, throughput, and capacity. As part of the effort, new technology such as the continuous back metallization screen-printing system and the laser scribing system were developed and implemented. Existing processes, such as the silicon nitride antireflection coating system and the fire-through process were optimized. Improvements were made to the statistical process control (SPC) systems of the major manufacturing processes: feedstock preparation, wafer growth, surface etch, diffusion, and the antireflection coating process. These process improvements and improved process control have led to an increase of 5% relative power, and nearly 15% relative improvement in mechanical and visual yield.

Rand, J. A.; Culik, J. S.

2005-10-01T23:59:59.000Z

13

Operators Manual and Technical Reference for the Z-Beamlet Phase Modulation Failsafe System: Version 1.  

SciTech Connect (OSTI)

The need for pulse energies exceeding 4 kJ and pulse lengths [?] 2 ns in Sandia's Z-Beamlet laser (ZBL) requires that the single-frequency spectrum of its fiber-laser master oscillator be converted to a phase modulated spectrum with a modulation in dex [?] 5. Because accidental injection of single-frequency light into ZBL could result i n damage to optical materials from transverse stimulated Brillouin scattering, the presence of phase modulated (PM) light must be monitored by a reliable failsafe system that can stop a las er shot within of a few 10's of ns following a failure of the PM system. This requirement is met by combining optical heterodyne detection with high-speed electronics to indicate the pres ence or absence of phase modulated light. The transition time for the failsafe signal resultin g from a sudden failure using this technique is approximately 35 ns. This is sufficiently short to safely stop a single-frequency laser pulse from leaving ZBL's regenerative amplifier with a n approximately 35 ns margin of safety. This manual and technical reference contains detai led instructions for daily use of the PM failsafe system and provides enough additional informat ion for its maintenance and repair.

Armstrong, Darrell J.

2014-09-01T23:59:59.000Z

14

References  

Science Journals Connector (OSTI)

......dosimeter: An improved cathode ray determination...Stopping Powers of Materials (1989) Gaithersburg...of the physically active ultraviolet (which...Standard Reference Materials: Accuracy in Analytical...dosimeter: An improved cathode ray determination...Stopping Powers of Materials, NIST Standard......

References

2008-12-01T23:59:59.000Z

15

References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis Analysis Analysis - Home Analytical Dashboards Computerized Accident Incident Reporting and Recordkeeping System (CAIRS) Corporate Safety Analysis Trends Daily Occurrence Reports Electrical Safety Occurrences Final Occurrence Reports Access System Login Lessons Learned and Best Practices Occurrence Reporting and Processing System (ORPS) Operating Experience Committee Operating Experience Level 1, 2, and 3 Documents Operating Experience Summaries Radiation Exposure Monitoring Systems (REMS) Safety Bulletins Safety and Health Alerts Safety Basis Information System (SBIS) Suspect/Counterfeit Items and Defective Items (SCI/DI) References HSS Logo References DOE O 210.2A, DOE Corporate Operating Experience Program (Apr 08, 2011) DOE O 210.2 Crosswalk DOE O 231.1B, Environment, Safety and Health Reporting (Jun 27, 2011)

16

REFERENCES  

Broader source: Energy.gov (indexed) [DOE]

205.1B 205.1B Approved 05-16-2011 Page 1 REFERENCES 1. INTRODUCTION 2. . Includes a list of sources cited in the directive and additional information sources to assist in implementing DOE Order 205.1B, Cyber Security Program. FEDERAL LAWS AND REGULATIONS a. Public Law (P.L.) 93-579, Privacy Act of 1974, as amended [Title 5 United States Code (U.S.C.) Section 552a]. . b. P.L. 104-106, Division E, Clinger Cohen Act (CCA) (formerly Information Technology Management Reform Act of 1996. c. P.L. 106-65, "National Defense Authorization Act [Section 3212(d)], enacted October 1999. d. P.L. 107-347, Title III, Federal Information Security Management Act of 2002 (FISMA), enacted December 2002. 3. OFFICE OF MANAGEMENT AND BUDGET (OMB) CIRCULARS. Located at http://www.whitehouse.gov/omb/circulars_default/.

17

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, 1 January 1996--31 December 1996  

SciTech Connect (OSTI)

This report describes Solarex`s accomplishments during this phase of the Photovoltaic Manufacturing Technology (PVMaT) program. During this reporting period, Solarex researchers converted 79% of production casting stations to increase ingot size and operated them at equivalent yields and cell efficiencies; doubled the casting capacity at 20% the cost of buying new equipment to achieve the same capacity increase; operated the wire saws in a production mode with higher yields and lower costs than achieved on the ID saws; purchased additional wire saws; developed and qualified a new wire-guide coating material that doubles the wire-guide lifetime and produces significantly less scatter in wafer thickness; ran an Al paste back-surface-field process on 25% of all cells in manufacturing; completed environmental qualification of modules using cells produced by an all-print metallization process; qualified a vendor-supplied Tedlar/ethylene vinyl acetate (EVA) laminate to replace the combination of separate sheets of EVA and Tedlar backsheet; substituted RTV adhesive for the 3M Very High Bond tape after several field problems with the tape; demonstrated the operation of a prototype unit to trim/lead attach/test modules; demonstrated the use of light soldering for solar cells; demonstrated the operation of a wafer pull-down system for cassetting wet wafers; and presented three PVMaT-related papers at the 25th IEEE Photovoltaic Specialists Conference.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1997-10-01T23:59:59.000Z

18

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual technical report, 1 January 1996--30 June 1996  

SciTech Connect (OSTI)

Two specific objectives of Solarex`s program are to reduce the manufacturing cost for polycrystalline silicon photovoltaic modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. This report highlights accomplishments during the period of January 1 through June 30, 1996. Accomplishments include: began the conversion of production casting stations to increase ingot size; operated the wire saw in a production mode with higher yields and lower costs than achieved on the ID saws; developed and qualified a new wire guide coating material that doubles the wire guide lifetime and produces significantly less scatter in wafer thickness; completed a third pilot run of the cost-effective Al paste back-surface-field (BSF) process, verifying a 5% increase in cell efficiency and demonstrating the ability to process and handle the BSF paste cells; completed environmental qualification of modules using cells produced by an all-print metallization process; optimized the design of the 15.2-cm by 15.2-cm polycrystalline silicon solar cells; demonstrated the application of a high-efficiency process in making 15.2-cm by 15.2-cm solar cells; demonstrated that cell efficiency increases with decreasing wafer thickness for the Al paste BSF cells; qualified a vendor-supplied Tedlar/ethylene vinyl acetate (EVA) laminate to replace the combination of separate sheets of EVA and Tedlar backsheet; demonstrated the operation of a prototype unit to trim/lead attach/test modules; and demonstrated the operation of a wafer pull-down system for cassetting wet wafers.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)] [Solarex Corp., Frederick, MD (United States)

1997-01-01T23:59:59.000Z

19

Photovoltaic manufacturing technology monolithic amorphous silicon modules on continuous polymer substrates: Final technical report, July 5, 1995--December 31, 1999  

SciTech Connect (OSTI)

Iowa Thin Film Technologies is completing a three-phase program that has increased throughput and decreased costs in nearly all aspects of its thin-film photovoltaic manufacturing process. The overall manufacturing costs have been reduced by 61 percent through implementation of the improvements developed under this program. Development of the ability to use a 1-mil substrate, rather than the standard 2-mil substrate, results in a 50 percent cost-saving for this material. Process development on a single-pass amorphous silicon deposition system has resulted in a 37 percent throughput improvement. A wide range of process and machine improvements have been implemented on the transparent conducting oxide deposition system. These include detailed parameter optimization of deposition temperatures, process gas flows, carrier gas flows, and web speeds. An overall process throughput improvement of 275 percent was achieved based on this work. The new alignment technique was developed for the laser scriber and printer systems, which improved registration accuracy from 100 microns to 10 microns. The new technique also reduced alignment time for these registration systems significantly. This resulted in a throughput increase of 75 percent on the scriber and 600 percent on the printer. Automated techniques were designed and implemented for the module assembly processes. These include automated busbar attachment, roll-based lamination, and automated die cutting of finished modules. These processes were previously done by hand labor. Throughput improvements ranged from 200 percent to 1200 percent, relative to hand labor rates. A wide range of potential encapsulation materials were evaluated for suitability in a roll lamination process and for cost-effectiveness. A combination material was found that has a cost that is only 10 percent of the standard EVA/Tefzel cost and is suitable for medium-lifetime applications. The 20-year lifetime applications still require the more expensive material.

Jeffrey, F.

2000-03-28T23:59:59.000Z

20

Feasibility studies to establish at the Kazakhstan Ulba metallurgical plant the manufacturing capability to produce low-enriched uranium certified reference materials  

SciTech Connect (OSTI)

One of the salient features of the transition plan that the United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) is presently implementing in the Former Soviet Union countries is the availability of uranium certified reference materials for calibration of nondestructive assay (NDA) measurement equipment. To address this challenge, DOE/NNSA and U.S. national laboratories have focused their cooperative efforts on establishing a reliable source for manufacturing, certifying, and supplying of such standards. The Ulba Metallurgical Plant (UMP), Kazakhstan, which processes large quantities of low-enriched uranium to produce ceramic fuel pellets for nuclear-powered reactors, is well situated to become a key supplier of low-enriched uranium certified reference materials for the country and Central Asia region. We have recently completed Phase I of a feasibility study to establish at UMP capabilities of manufacturing these standards. In this paper we will discuss details of a proposed methodology for uranium down-blending, material selection and characterization, and a proposed methodology of measurement by destructive (DA) and non-destructive (NDA) analysis to form a database for material certification by the competent State authorities in the Republic of Kazakhstan. In addition, we will discuss the prospect for manufacturing of such standards at UMP.

Kuzminski, Jozef [Los Alamos National Laboratory; Nesuhoff, J [NBL; Cratto, P [NBL; Pfennigwerth, G [Y12 NATIONAL SEC. COMPLEX; Mikhailenko, A [ULBA METALLURGICAL PLANT; Maliutina, I [ULBA METALLURGICAL PLANT; Nations, J [GREGG PROTECTION SERVICES

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Research Leading to High Throughput Manufacturing of Thin-Film CdTe PV Modules: Annual Subcontract Report, September 2004--September 2005  

SciTech Connect (OSTI)

Specific overall objectives of this subcontract are improvement in baseline field performance of manufactured CdTe PV modules while reducing environmental, health and safety risk in the manufacturing environment. Project objectives focus on four broad categories: (1) development of advanced front-contact window layers, (2) improved semiconductor film deposition, (3) development of improved accelerated life test procedures that indicate baseline field performance, and (4) reduction of cadmium-related environmental, health and safety risks. First Solar has significantly increased manufacturing capacity from less than 2 MW/yr to more than 20 MW/yr, while increasing the average module total-area power conversion efficiency from 7% to >9%. First Solar currently manufactures and sells 50-65-W thin-film CdTe PV modules at a rate of about 1.9 MW/month. Sales backlog (booked sales less current inventory divided by production rate) is more than a year. First Solar is currently building new facilities and installing additional equipment to increase production capacity by 50 MW/yr; the additional capacity is expected to come on line in the third quarter of 2006.

Powell, R. C.

2006-04-01T23:59:59.000Z

22

A 10-kW SiC Inverter with A Novel Printed Metal Power Module With Integrated Cooling Using Additive Manufacturing  

SciTech Connect (OSTI)

With efforts to reduce the cost, size, and thermal management systems for the power electronics drivetrain in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), wide band gap semiconductors including silicon carbide (SiC) have been identified as possibly being a partial solution. This paper focuses on the development of a 10-kW all SiC inverter using a high power density, integrated printed metal power module with integrated cooling using additive manufacturing techniques. This is the first ever heat sink printed for a power electronics application. About 50% of the inverter was built using additive manufacturing techniques.

Chinthavali, Madhu Sudhan [ORNL; Ayers, Curtis William [ORNL; Campbell, Steven L [ORNL; Wiles, Randy H [ORNL; Ozpineci, Burak [ORNL

2014-01-01T23:59:59.000Z

23

Automated Manufacturing of High Efficiency Modules: Final Subcontract Technical Status Report, 21 March 2005 - 31 August 2007  

SciTech Connect (OSTI)

SunPower Corp. describes its research to develop low-cost, next-generation SunPower modules with 30-year warranties and at least 50% higher energy production per area relative to today's typical multicrystalline Si modules.

Rose, D.; Jester, T.; Bunea, G.

2008-02-01T23:59:59.000Z

24

Worldwide Energy and Manufacturing USA Inc formerly Worldwide Manufacturing  

Open Energy Info (EERE)

Manufacturing USA Inc formerly Worldwide Manufacturing Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place San Bruno, California Zip 94066 Product Worldwide Manufacturing USA is an engineering company based in San Bruno, California. References Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) is a company located in San Bruno, California . References ↑ "Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)"

25

Life Cycle Environmental Impacts Resulting from the Manufacture of the Heliostat Field for a Reference Power Tower Design in the United States: Preprint  

SciTech Connect (OSTI)

Life cycle assessment (LCA) is recognized as a useful analytical approach for quantifying environmental impacts of renewable energy technologies, including concentrating solar power (CSP). An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory is conducting a series of LCA studies for various CSP technologies. This paper contributes to a thorough LCA of a 100 MWnet molten salt power tower CSP plant by estimating the environmental impacts resulting from the manufacture of heliostats. Three life cycle metrics are evaluated: greenhouse gas emissions, water consumption, and cumulative energy demand. The heliostat under consideration (the 148 m2 Advanced Thermal Systems heliostat) emits 5,300 kg CO2eq, consumes 274 m3 of water, and requires 159,000 MJeq during its manufacture. Future work will incorporate the results from this study into the LCA model used to estimate the life cycle impacts of the entire 100 MWnet power tower CSP plant.

Heath, G.; Burkhardt, J.; Turchi, C.

2012-10-01T23:59:59.000Z

26

Solar Manufacturing Technology 2  

Broader source: Energy.gov [DOE]

The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization processes, to innovative module packaging and processing. The CSP award demonstrates manufacturability of an innovative CSP reflective-trough receiver. The first round of the SolarMat program was launched in September 2013 supporting five projects. The second round, announced on October 22, 2014, funds ten photovoltaics (PV) and concentrating solar power (CSP) projects that focus on driving down the cost of manufacturing and implementing efficiency-increasing technology in manufacturing processes.

27

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

28

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

29

Manufacturing News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute http://energy.gov/articles/factsheet-next-generation-power-electronics-manufacturing-innovation-institute manufacturing-innovation-institute" class="title-link">FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute

30

Module Configuration  

DOE Patents [OSTI]

A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

Oweis, Salah (Ellicott City, MD); D'Ussel, Louis (Bordeaux, FR); Chagnon, Guy (Cockeysville, MD); Zuhowski, Michael (Annapolis, MD); Sack, Tim (Cockeysville, MD); Laucournet, Gaullume (Paris, FR); Jackson, Edward J. (Taneytown, MD)

2002-06-04T23:59:59.000Z

31

PV Cell and Module Calibration Activities at NREL  

SciTech Connect (OSTI)

The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.

Emery, K.; Anderberg, A.; Kiehl, J.; Mack, C.; Moriarty, T.; Ottoson, L.; Rummel, S.

2005-11-01T23:59:59.000Z

32

Manufacturing technology  

SciTech Connect (OSTI)

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

33

2014 Manufacturing Energy and Carbon Footprints: References  

Broader source: Energy.gov (indexed) [DOE]

Century Truck Partnership. 2013. Roadmap and Technical White Papers. http:www1.eere.energy.govvehiclesandfuelspdfsprogram21ctproadmapwhitepapers2013.pdf ACEEE (American...

34

Additive Manufacturing: Implications on Research and Manufacturing  

E-Print Network [OSTI]

Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

Crawford, T. Daniel

35

Additive Manufacturing : Changing the Rules of Manufacturing  

Science Journals Connector (OSTI)

Aspects of 3D printing and additive or layer manufacturing can be treated as modular manufacturing or modular components of manufacturing in the contemporary sense. Such modular manufacturing involves specialized...

2014-06-01T23:59:59.000Z

36

Optical voltage reference  

DOE Patents [OSTI]

An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

Rankin, R.; Kotter, D.

1994-04-26T23:59:59.000Z

37

Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006  

SciTech Connect (OSTI)

The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

Wohlgemuth, J.; Narayanan, M.

2006-07-01T23:59:59.000Z

38

Photovoltaic manufacturing technology monolithic amorphous silicon modules on continuous polymer substrates. Annual technical progress report, 5 July 1995--4 June 1996  

SciTech Connect (OSTI)

Iowa Thin Film Technologies` goal is to develop the most cost-effective photovoltaic manufacturing process possible. During the first year, they developed the capability of sputtering a high-quality (Zn(Al)O) successfully implemented increased deposition rates for the ZnO top contact deposition; improved registration and ink-line width to reduce area loss due to interconnects; developed a new alignment process and sensor to improve the speed and accuracy of registration for the patterning processes; developed a new Silver ink composition that allows finer print lines and lower series resistance; demonstrated an 8% overall improvement in area utilization; evaluated water-based insulator inks for compatibility with their processes; investigated and tested the use of roll-based lamination as a means to reduce the cost of assembly; developed straight roll lamination capability using pressure-sensitive adhesives and thermally activated bonding; and evaluated the use of the standard EVA/Tefzel encapsulant with a roll laminator.

Jeffrey, F. [Iowa Thin Film Technologies, Inc., Ames, IA (United States)] [Iowa Thin Film Technologies, Inc., Ames, IA (United States)

1997-02-01T23:59:59.000Z

39

Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

40

Manufacturing Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 BOEING is a trademark of Boeing Management Company. Copyright © 2009 Boeing. All rights reserved. Compressed Hydrogen Storage Workshop Manufacturing Perspective Karl M. Nelson (karl.m.nelson@boeing.com) Boeing Research & Technology Engineering, Operations & Technology | Boeing Research & Technology Materials & Fabrication Technology EOT_RT_Sub_Template.ppt | 1/12/2009 | Structural Tech 2 Copyright © 2009 Boeing. All rights reserved. DOE Hydrogen Program Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels Mark Leavitt, Alex Ly Quantum Fuel Systems Technologies Worldwide Inc. Karl Nelson, Brice Johnson The Boeing Company Ken Johnson, Kyle Alvine, Stan Pitman, Michael Dahl, Daryl Brown

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Green Manufacturing  

SciTech Connect (OSTI)

Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

Patten, John

2013-12-31T23:59:59.000Z

42

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

43

Manufacturing Glossary  

Gasoline and Diesel Fuel Update (EIA)

Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing Sector Glossary For the Manufacturing Sector Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within the steel works. Boiler Fuel: An energy source to produce heat that is transferred to the boiler vessel in order to generate steam or hot water. Fossil fuels are the primary energy sources used to produce heat for boilers.

44

Reference Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy...

45

From Digital to Physical: Computational Aspects of 3D Manufacturing.  

E-Print Network [OSTI]

??The desktop publishing revolution of the 1980s is currently repeating itself in 3D, referred to as desktop manufacturing. Online services such as Shapeways have become… (more)

Baecher, Moritz Niklaus

2013-01-01T23:59:59.000Z

46

In the OSTI Collections: 3-D Printing and Other Additive Manufacturing...  

Office of Scientific and Technical Information (OSTI)

Suitable? Two Projects Other Materials Additive Manufacturing Technologies References Reports Available Through OSTI's SciTech Connect Additional References Until recently,...

47

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

48

The President's Manufacturing Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The President's The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the Hydrogen Economy Washington, D.C. Washington, D.C. July 13, 2005 July 13, 2005 Dale Hall Dale Hall Acting Chair, Interagency Working Group on Acting Chair, Interagency Working Group on Manufacturing Research and Development Manufacturing Research and Development National Science and Technology Council National Science and Technology Council and and Director, Manufacturing Engineering Laboratory Director, Manufacturing Engineering Laboratory National Institute of Standards and Technology National Institute of Standards and Technology U.S. Department of Commerce U.S. Department of Commerce

49

Metrics for Sustainable Manufacturing  

E-Print Network [OSTI]

a system or process in maintaining a sustainable level of afor manufacturing processes to achieve truly sustainablesustainable phase of the automobile manufacturing process

Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

2008-01-01T23:59:59.000Z

50

Advanced Manufacturing Office Overview  

Broader source: Energy.gov [DOE]

Overview presentation by the Advanced Manufacturing Office for the Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

51

Additive Manufacturing Technology Assessment  

Office of Environmental Management (EM)

subtractive manufacturing 41 methods 1. Additive manufacturing is also called as 3D printing, 42 additive fabrication, or freeform fabrication. These new 43 techniques, while...

52

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LTCC multi-chip module LTCC multi-chip module A high density LTCC multi-chip module Electronic Packaging PDF format (150 kb) The Electronic Packaging technologies in the Thin Film, Vacuum, & Packaging Department are a resource for all aspects of microelectronic packaging. From design and layout to fabrication of prototype samples, the staff offers partners the opportunity for concurrent engineering and development of a variety of electronic packaging concepts. This includes assistance in selecting the most appropriate technology for manufacturing, analysis of performance characteristics and development of new and unique processes. Capabilities: Network Fabrication Low Temperature Co-Fired Ceramic (LTCC) Thick Film Thin Film Packaging and Assembly Chip Level Packaging MEMs Packaging

53

Iskra Wind Turbine Manufacturers Ltd | Open Energy Information  

Open Energy Info (EERE)

Iskra Wind Turbine Manufacturers Ltd Iskra Wind Turbine Manufacturers Ltd Jump to: navigation, search Name Iskra Wind Turbine Manufacturers Ltd Place Nottingham, United Kingdom Sector Wind energy Product Iskra manufactures and markets the AT5-1 home-sized wind turbine rated at 5.3 kW, suitable for low wind speeds. References Iskra Wind Turbine Manufacturers Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iskra Wind Turbine Manufacturers Ltd is a company located in Nottingham, United Kingdom . References ↑ "Iskra Wind Turbine Manufacturers Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Iskra_Wind_Turbine_Manufacturers_Ltd&oldid=347129" Categories: Clean Energy Organizations

54

KMC Controls Inc Kreuter Manufacturing Company | Open Energy Information  

Open Energy Info (EERE)

KMC Controls Inc Kreuter Manufacturing Company KMC Controls Inc Kreuter Manufacturing Company Jump to: navigation, search Name KMC Controls, Inc. (Kreuter Manufacturing Company) Place New Paris, Indiana Zip IN 46553 Product Manufacturer of building management control products and systems. References KMC Controls, Inc. (Kreuter Manufacturing Company)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. KMC Controls, Inc. (Kreuter Manufacturing Company) is a company located in New Paris, Indiana . References ↑ "KMC Controls, Inc. (Kreuter Manufacturing Company)" Retrieved from "http://en.openei.org/w/index.php?title=KMC_Controls_Inc_Kreuter_Manufacturing_Company&oldid=348127" Categories:

55

Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Yeelong Wind Power Equipment Manufacturing Co Ltd Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place Hebei Province, China Sector Wind energy Product China-based wind turbine equipment manufacturer. References Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd is a company located in Hebei Province, China . References ↑ "[ Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Hebei_Yeelong_Wind_Power_Equipment_Manufacturing_Co_Ltd&oldid=346424

56

Process-Based Cost Modeling of Photonics Manufacture: The Cost Competitiveness of Monolithic Integration of a 1550-nm DFB Laser and an Electroabsorptive Modulator on an InP Platform  

Science Journals Connector (OSTI)

The monolithic integration of components holds promise to increase network functionality and reduce packaging expense. Integration also drives down yield due to manufacturing...

Fuchs, Erica R H; Bruce, E J; Ram, R J; Kirchain, Randolph E

2006-01-01T23:59:59.000Z

57

NEWTON's Material Science References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

58

Additive Manufacturing Technologies  

Science Journals Connector (OSTI)

Rapid Prototyping is the construction of complex three-dimensional parts using additive manufacturing technology.

Jürgen Stampfl; Markus Hatzenbichler

2014-01-01T23:59:59.000Z

59

Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science & Innovation » Energy Efficiency » Manufacturing Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families and helping increase U.S. competitiveness in the global marketplace. The Energy Department is committed to growing America's manufacturing industry by helping companies become leaders in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The

60

Rapid Deposition Technology Holds the Key for the World's Largest Solar Manufacturer (Fact Sheet)  

SciTech Connect (OSTI)

Thanks in part to years of collaboration with the National Renewable Energy Laboratory (NREL), a manufacturer of thin-film solar modules has grown from a small garage-type operation to become the world's largest manufacturer of solar modules. First Solar, Inc. now manufactures cadmium telluride (CdTe) solar modules throughout the world, but it began in Ohio as a small company called Solar Cells, Inc.

Not Available

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Taiwan Semiconductor Manufacturing Co Ltd TSMC | Open Energy Information  

Open Energy Info (EERE)

Semiconductor Manufacturing Co Ltd TSMC Semiconductor Manufacturing Co Ltd TSMC Jump to: navigation, search Name Taiwan Semiconductor Manufacturing Co Ltd (TSMC) Place Hsinchu, Taiwan Zip 300 Sector Solar Product Taiwan-based semiconductor company. The firm is also venturing into solar and LED production. References Taiwan Semiconductor Manufacturing Co Ltd (TSMC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Taiwan Semiconductor Manufacturing Co Ltd (TSMC) is a company located in Hsinchu, Taiwan . References ↑ "Taiwan Semiconductor Manufacturing Co Ltd (TSMC)" Retrieved from "http://en.openei.org/w/index.php?title=Taiwan_Semiconductor_Manufacturing_Co_Ltd_TSMC&oldid=352012"

62

A new DFM approach to combine machining and additive manufacturing  

E-Print Network [OSTI]

Design For Manufacturing (DFM) approaches aim to integrate manufacturability aspects during the design stage. Most of DFM approaches usually consider only one manufacturing process, but products competitiveness may be improved by designing hybrid modular products, in which products are seen as 3-D puzzles with modules realized aside by the best manufacturing process and further gathered. A new DFM system is created in order to give quantitative information during the product design stage of which modules will benefit in being machined and which ones will advantageously be realized by an additive process (such as Selective Laser Sintering or laser deposition). A methodology for a manufacturability evaluation in case of a subtractive or an additive manufacturing process is developed and implemented in a CAD software. Tests are carried out on industrial products from automotive industry.

Kerbrat, Olivier; Hascoët, Jean-Yves; 10.1016/j.compind.2011.04.003

2011-01-01T23:59:59.000Z

63

Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf Reference Shelf Reference Shelf Find reference sources Questions? 505-667-5809 Email Biography Biographies of Women in Science Biography.com Marquis Who's Who NobelPrize.org Nobel Prize Internet Archive Calculators Currency Converter OnlineConversion.com Wolfram|Alpha Computational Knowledge Engine Dictionaries Oxford English Dictionary Merriam-Webster Dictionary DOD Dictionary of Military Terms Encyclopedias Britannica Online Columbia Encyclopedia Wikipedia Grants & Funding DOE Office of Science Grants & Contracts National Science Foundation National Institutes of Health Grants.Gov FedBizOpps.gov Los Alamos Info Los Alamos County Los Alamos Historical Society University of New Mexico - Los Alamos Campus Maps Atlapedia Online Perry-Casteneda Library Map Collection U.S. Gazetteer

64

Laser Technology: Additive Manufacturing  

Science Journals Connector (OSTI)

Selective Laser Sintering, and in general Additive Manufacturing Processes are becoming mature technologies; in the ... systems that are even utilized for direct parts manufacturing. However, the parts final user...

Srichand Hinduja; Lin Li

2013-01-01T23:59:59.000Z

65

The Advanced Manufacturing Partnership  

E-Print Network [OSTI]

;ve Manufacturing Technologies (led by Dow, Honeywell and MIT) Manufacturing Ins;tutes (led, Honeywell and MIT GOALS § To launch public-private ini:a:ves to advance transforma

Das, Suman

66

Manufacturing Innovation Topics Workshop  

Broader source: Energy.gov [DOE]

The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

67

Model institutional infrastructures for recycling of photovoltaic modules  

SciTech Connect (OSTI)

How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

1996-01-01T23:59:59.000Z

68

U.S. Manufacturing Energy Use and Loss: The Big Picture  

E-Print Network [OSTI]

A first step in realizing industrial energy efficiency opportunities is to understand how industry is using, and losing, energy. The U.S. Manufacturing Energy and Carbon Footprints provide a reliable macro-scale reference for manufacturing energy...

Brueske, S.; Sabouni, R.

2014-01-01T23:59:59.000Z

69

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit  

Broader source: Energy.gov [DOE]

Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

70

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

71

Poroelastic references  

SciTech Connect (OSTI)

This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

Christina Morency

2014-12-12T23:59:59.000Z

72

Poroelastic references  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

Christina Morency

73

Enabling Manufacturing Research through Interoperability  

E-Print Network [OSTI]

sustainable or environmentally benign manufacturing processes andAND SUSTAINABLE FIGURE 8: LIFE-CYCLE OF MANUFACTURING PROCESSES (

Dornfeld, David; Wright, Paul; Helu, Moneer; Vijayaraghavan, Athulan

2009-01-01T23:59:59.000Z

74

Solar startup to manufacture in Milwaukee | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

startup to manufacture in Milwaukee startup to manufacture in Milwaukee Solar startup to manufacture in Milwaukee August 10, 2010 - 10:00am Addthis Helios USA will build photovoltaic modules such as these this fall. | File photo Helios USA will build photovoltaic modules such as these this fall. | File photo Joshua DeLung $1 million loan through Wisconsin funded by Recovery Act to Helios USA Loan helps cover upfront costs of 40,000-square-foot factory 20 employees to be hired this year, more than 100 within five years Helios USA, a startup solar energy company based in Wisconsin, will begin manufacturing photovoltaic modules in Milwaukee this fall. The firm is the first in the state to do so. Helios, founded in February 2009, received a $1 million loan from the state in May 2010, funded by the American Recovery

75

Solar startup to manufacture in Milwaukee | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar startup to manufacture in Milwaukee Solar startup to manufacture in Milwaukee Solar startup to manufacture in Milwaukee August 10, 2010 - 10:00am Addthis Helios USA will build photovoltaic modules such as these this fall. | File photo Helios USA will build photovoltaic modules such as these this fall. | File photo Joshua DeLung $1 million loan through Wisconsin funded by Recovery Act to Helios USA Loan helps cover upfront costs of 40,000-square-foot factory 20 employees to be hired this year, more than 100 within five years Helios USA, a startup solar energy company based in Wisconsin, will begin manufacturing photovoltaic modules in Milwaukee this fall. The firm is the first in the state to do so. Helios, founded in February 2009, received a $1 million loan from the state in May 2010, funded by the American Recovery

76

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

77

CIMplementation™: Evaluating Manufacturing Automation  

E-Print Network [OSTI]

in the manufacturing organization if CIMplementation~* is to succeed. 1.0 INTRODUCTION There is much discussion today about Com puter Integrated Manufacturing (CIM). Automation tools like Computer Aided Design (CAD) systems, robots, automated material handling...~ Pressing the frontier of technology in one's own manufactur ing facility will not be without its pitfalls. Second, while automation engineers may be able to piece together the technological pieces of a CIM system, they cannot and do not evaluate...

Krakauer, J.

78

Demand Activated Manufacturing Architecture  

SciTech Connect (OSTI)

Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts per month based on more than 50 manually-created document types. The fact that DAMA and FM&T desired to move from paper-based manual architectures to digitally based computer architectures gave further incentive for the partnership to grow. FM&T's greatest strength was its knowledge of NWC-wide scheduling and planning with its role as the NWC leader in manufacturing logistics. DAMA's asset was its new knowledge gained in the research and development of advanced architectures and tools for supply chain management in the textiles industry. These complimentary strengths allowed the two parties to provide both the context and the tools for the pilot. Bender: Honeywell FM&T participated in a four-site supply chain project, also referred to as an Inter-Enterprise Pipeline Evaluation. The MSAD project was selected because it involves four NWC sites: FM&T, Pantex, Los Alamos National Laboratory (LANL), and Lawrence Livermore National Laboratory (LLNL). FM&T had previously participated with Los Alamos National Laboratory in FY98 to model a two-site supply chain project, between FM&T and LANL. Evaluation of a Supply Chain Methodology is a subset of the DAMA project for the AMTEX consortium. LANL organization TSA-7, Enterprise Modeling and Simulation, has been involved in AMTEX and DAMA through development of process models and simulations for LANL, the NWC, and others. The FY 1998 and this FY 1999 projects directly involved collaboration between Honeywell and the Enterprise Modeling and Simulation (TSA-7) and Detonation Science and Technology (DX1) organizations at LANL.

Bender, T.R.; Zimmerman, J.J.

2001-02-07T23:59:59.000Z

79

High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TEMPERATURE FUEL CELL TEMPERATURE FUEL CELL (PHOSPHORIC ACID) MANUFACTURING R&D Sridhar Kanuri Manager, Phosphoric acid fuel cells & fuel processing August 10 th , 2011 PAFC MANUFACTURING R&D Agenda PAFC cost challenge Manufacturing Cost reduction opportunities Summary PAFC SYSTEM OVERVIEW Overview Heaters Reactant manifolds Manifold adaptors Axial load system Pressure Plates Power take-off Coolant manifolds Insulation H frame Coolant hoses Cell stack Assembly Fuel Processing System Thermal Management System / Water Treatment System Power Supply System (CSA's) Electrical System Module Blower Skid Powerplant modules Cost reduction is being accomplished by incremental changes in technology and manufacturing Closing commercialization gap Continuous manufacturing

80

Manufacturing Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Colorado State University Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers http:energy.goveeresuccess-storiesarticles...

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Acoustics by additive manufacturing:.  

E-Print Network [OSTI]

??This study focuses on exploring the merging field of additive manufacturing and acoustics and introduces a new type of sound absorber which is regulating performance… (more)

Setaki, F.

2012-01-01T23:59:59.000Z

82

Contribution to Nanotechnology Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning...

83

Manufacturing Demonstration Facility  

Broader source: Energy.gov (indexed) [DOE]

is key to stroke recovery * Additive manufacturing allows custom fit glove device using brain machine interface to retrain movement * Gloves are light-weight, low cost and...

84

SSL Manufacturing Roadmap  

Broader source: Energy.gov [DOE]

Report detailing DOE Solid-State Lighting Program activities to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products.

85

Clean Energy Manufacturing Initiative  

Broader source: Energy.gov [DOE]

Manufacturing technologies for cleaner energy generation, distribution, and use represents an important opportunity for U.S. economic growth, energy security, and accelerated innovation. Likewise,...

86

Catalyst Manufacturing Science and  

E-Print Network [OSTI]

Catalyst Manufacturing Science and Engineering Consortium (CMSEC) Rutgers University New Jersey, U, automotive, and energy industries makes and/or uses catalysts, there has been no academic program focusing on the operations required to make catalytic materials. Thus, catalyst manufacturing processes are often designed

87

Revitalizing Innovation in Michigan for Clean Energy Manufacturing |  

Broader source: Energy.gov (indexed) [DOE]

Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing April 25, 2011 - 4:33pm Addthis Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Kerry Duggan What does this mean for me? Michigan has expanded its manufacturing focus beyond automobiles. Companies across Michigan are producing advanced batteries, motors, controllers, lighting devices, wind machines, photovoltaic modules, and other clean energy products. To create jobs and win the clean energy race, we need to make sure technologies are invented in America and made in America. Last week, I got

88

Subject: References:  

Broader source: Energy.gov (indexed) [DOE]

Subject: Subject: References: DEAR 970.3102-2 Compensation for personal services DEAR 970.5204-13 Allowable costs and fixed-fee (Management and operating contracts) DEAR 970.5204-14 Allowable costs and fixed-fee (support contracts) When is this ~\.cquisition Letter (AL) Effective? This AL is effective 10 days from the date of issuance. This gui~ce supersedes any previous statutory cap on executive compensation. Existing contracts need to be reviewed to determine whether contract terms and conditions are consistent with the guidance in this AL, or whether contract modifications are necessary. When Does this AL Expire? This AL remain;; in effect until superseded or canceled. Whom do you Contact for More Information? Contact the Office of Procurement and Assistance Policy, for questions pertaining to the

89

High Pressure Hydrogen Tank Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane® bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

90

Proposal for a Guide for Quality Management Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008 (Revised)  

SciTech Connect (OSTI)

This technical specification provides a guideline for photovoltaic module manufacturers to produce modules that, once the design has proven to meet the quality and reliability requirements, replicate such design in an industrial scale without compromising its consistency with the requirements.

Norum, P.; Sinicco, I.; Eguchi, Y.; Lokanath, S.; Zhou, W.; Brueggemann, G.; Mikonowicz, A.; Yamamichi, M.; Kurtz, S.

2013-09-01T23:59:59.000Z

91

Digital Additive Manufacturing: From Rapid Prototyping to Rapid Manufacturing  

Science Journals Connector (OSTI)

The emergence of stereolithography in 1998 is a milestone for an entirely new class of layer-based manufacturing processes. This new manufacturing approach which allows direct digital manufacturing from CAD to a ...

K. K. B. Hon

2007-01-01T23:59:59.000Z

92

Approved Module Information for CE2105, 2014/5 Module Title/Name: Process Simulation Module Code: CE2105  

E-Print Network [OSTI]

the program to processes in chemicals manufacturing, power generation and petrochemical refining skills #12;* Ability to communicate effectively in writing and through technical diagrams * Problem reading, coursework exercises, tutorial support Module Assessment Methods of Assessment & associated

Neirotti, Juan Pablo

93

Beryllium Manufacturing Processes  

SciTech Connect (OSTI)

This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.

Goldberg, A

2006-06-30T23:59:59.000Z

94

Innovative Manufacturing Initiative Project Selections  

Office of Energy Efficiency and Renewable Energy (EERE)

The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

95

Laser Additive Manufacturing of Metals  

Science Journals Connector (OSTI)

Laser Additive Manufacturing (LAM) is based on a repeating layer wise manufacturing process which uses a laser beam to ... ) geometries into simpler two-dimensional (2D) manufacturing steps [1, 2...]. Thus LAM of...

Claus Emmelmann; Jannis Kranz; Dirk Herzog; Eric Wycisk

2013-01-01T23:59:59.000Z

96

Metal Additive Manufacturing: A Review  

Science Journals Connector (OSTI)

This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, o...

William E. Frazier

2014-06-01T23:59:59.000Z

97

Photovoltaic Module Reliability Workshop 2013 | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and PV Evolutions Impact and Detection of Pyranometer Failure on PV Performance, D.C. Jordan and B. Sekulic of NREL Manufacturing Metrology for c-Si Module ReliabilityDurability,...

98

Keeping America Competitive: A Solar Manufacturing Boost In San Diego |  

Broader source: Energy.gov (indexed) [DOE]

Keeping America Competitive: A Solar Manufacturing Boost In San Keeping America Competitive: A Solar Manufacturing Boost In San Diego Keeping America Competitive: A Solar Manufacturing Boost In San Diego December 19, 2012 - 4:26pm Addthis Soitec's concentrating photovoltaic modules use Fresnel lenses to concentrate sunlight 500 times and focus it onto small, high-efficiency solar cells. | Photo by Matthias Heyde, Fraunhofer Institute. Soitec's concentrating photovoltaic modules use Fresnel lenses to concentrate sunlight 500 times and focus it onto small, high-efficiency solar cells. | Photo by Matthias Heyde, Fraunhofer Institute. Minh Le Minh Le Program Manager, Solar Program What are the key facts? Soitec's first large-scale CPV facility in San Diego is expected to create about 450 direct manufacturing jobs. The project was supported by a $25 million investment from the

99

Innovations in Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Governor Bill Haslam along with David Danielson, EERE's Assistant Secretary, celebrate the opening of the Carbon Fiber Technology Facility. The 390-ft. long processing line is capable of custom unit operation configuration and has a capacity of up to 25 tons per year, allowing industry to validate conversion of their carbon fiber precursors at semi-production scale. Manufacturing Demonstration Facility Manufacturing Demonstration Facility Processing Technologies Advanced Materials Automation and Controls Brochure News Manufacturing Engineering Advanced Materials & Processes Materials for Aerospace On the cover, plus, read ORNL's feature articles on additive manufacturing and its momentum for aerospace applications.

100

Development of Additive Manufacturing Technology  

Science Journals Connector (OSTI)

Additive Manufacturing (AM) technology came about as a ... of different technology sectors. Like with many manufacturing technologies, improvements in computing power and reduction...

Dr. Ian Gibson; Dr. David W. Rosen…

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Additive Manufacturing for Mass Customization  

Science Journals Connector (OSTI)

Additive manufacturing (AM) is a disruptive manufacturing technology that requires no tooling for production....additively build parts from numerous materials, including polymers, metals and ceramics. Within this...

Phil Reeves; Chris Tuck; Richard Hague

2011-01-01T23:59:59.000Z

102

Additive Manufacturing for Large Products.  

E-Print Network [OSTI]

?? This thesis researches the possibility and feasibility of applying additive manufacturing technology in the manufacturing of propellers. The thesis concerns the production at the… (more)

Leirvåg, Roar Nelissen

2013-01-01T23:59:59.000Z

103

Sandia National Laboratories: wind manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

manufacturing Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the...

104

Advanced Manufacture of Reflectors  

SciTech Connect (OSTI)

The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

Angel, Roger [University of Arizona

2014-12-17T23:59:59.000Z

105

A Markovian analysis of semiconductor manufacturing processes  

E-Print Network [OSTI]

) Karan L. Watson (Member) Martin A. Wortman (Member) ep Sastri (Member) o W. Howze (Head of Department) December 1991 ABSTRACT A Markovian Analysis of Semiconductor Manufacturing Processes. (December 1991) Kent Eugene Schultz, B. S. , Iowa... grateful to Dr. Martin Wortman, for his pa- tience and endless stream of examples to help me understand stochastic processes. I would also like to thank Dr. Tep Sastri for his patience and for always having a refer- ence available when I needed it...

Schultz, Kent Eugene

2012-06-07T23:59:59.000Z

106

Diagnosing spatial variation patterns in manufacturing processes  

E-Print Network [OSTI]

. Outline of the dissertation A class of signal processing methods, usually referred to as blind source separation methods (Cardoso, 1998; Haykin, 2000), appears to provide a more black- box approach to identifying un-modeled manufacturing variation... to describe a number of related signal processing problems in which there is an array of spatially distributed sensors, each of which picks up signals from a number of distinct, signal-emitting sources (Cardoso, 1998; Haykin, 2000). Applications include...

Lee, Ho Young

2004-09-30T23:59:59.000Z

107

DOE Offers Support for Innovative Manufacturing Plant That Will Produce  

Broader source: Energy.gov (indexed) [DOE]

Support for Innovative Manufacturing Plant That Will Support for Innovative Manufacturing Plant That Will Produce High Quality Solar Silicon at Low Cost DOE Offers Support for Innovative Manufacturing Plant That Will Produce High Quality Solar Silicon at Low Cost June 16, 2011 - 12:00am Addthis Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a $275 million loan guarantee to Calisolar Inc. to commercialize its innovative solar silicon manufacturing process. Calisolar's innovative process should produce silicon for use in solar cells at less than half the cost of traditional polysilicon purification processes, which will reduce the overall cost of solar modules and panels. At full production, the manufacturing plant is expected to produce 16,000 metric tons (MT) of solar silicon annually, equivalent to

108

NREL: Jobs and Economic Competitiveness - Solar PV Manufacturing Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar PV Manufacturing Cost Analysis Solar PV Manufacturing Cost Analysis Between 2000 and 2010 global shipments of PV cells/modules grew 53% (compound annual growth rate [CAGR]). At the same time, the U.S. market share has slipped from 30% to 7% (30% CAGR) while China/Taiwan has grown from <2% to 54% (115% CAGR) to become the leader in global production. NREL's manufacturing cost analysis has focused on understanding the regional competitiveness of solar PV manufacturing specifically: What factors have led to China's dramatic growth in PV? Is it sustainable? Can the US compete? NREL's manufacturing cost analysis studies show that: U.S. incentives to strengthen access to capital for investment in innovative solar technologies could offset China's current advantage U.S. incentives are dwarfed by the scale of Chinese incentives

109

Electrolyzer Manufacturing Progress and Challenges  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrolyzer Manufacturing Electrolyzer Manufacturing Progress and Challenges John Torrance, Director of Manufacturing DOE Manufacturing Workshop 8/12/11 Outline * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: Stack - Cost Breakdown - Approaches * Current Manufacturing Limitations: System - Cost Breakdown - Approaches * Potential Impact * Summary and Conclusions 2 3 * World leader in Proton Exchange Membrane (PEM) electrolyzer technology * Founded in 1996 - changed name from Proton Onsite in April 2011 to reflect product expansion. * ISO 9001:2008 registered * Over 1,500 systems operating in 62 different countries. Cell Stacks Complete Systems Turnkey Solutions Military Applications Proton Energy Proton Onsite Headquarters in Wallingford, CT Capabilities * Complete product development, manufacturing & testing

110

Retrofit Energy Savings Estimation Model Reference Manual  

E-Print Network [OSTI]

Retrofit Energy Savings Estimation Model Reference Manual #12;#12;Retrofit Energy Savings commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does from the Department of Energy. Any conclusions or opinions expressed in this manual represent solely

111

Advanced Manufacture of Reflectors  

Broader source: Energy.gov [DOE]

The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

112

PDSF Modules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modules Modules Modules Modules Approach to Managing The Environment Modules is a system which you can use to specify what software you want to use. If you want to use a particular software package loading its module will take care of the details of modifying your environment as necessary. The advantage of the modules approach is that the you are not required to explicitly specify paths for different executable versions and try to keep their related man paths and environment variables coordinated. Instead you simply "load" and "unload" specific modules to control your environment. Getting Started with Modules If you're using the standard startup files on PDSF then you're already setup for using modules. If the "module" command is not available, please

113

Advanced Drivetrain Manufacturing  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) supports advanced manufacturing techniques that are leading to the "next-generation" of more reliable, affordable, and efficient wind turbine drivetrains. As turbines continue to increase in size, each and every component must also be scaled to meet the demands for renewable energy.

114

Innovations in Manufacturing  

Science Journals Connector (OSTI)

...competition from steam engines and water...Century ofthe Steam Engine is a classic...of the American System of Manufactures...general-purpose machine tools, interchangeable...spe-cialized machine tools, and were con-fined...note that if the system was con-fined...Nel-son provides an assessment of working conditions...

THOMAS WEISS

1983-05-20T23:59:59.000Z

115

Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd | Open Energy  

Open Energy Info (EERE)

Jingye Bearing Manufacture for Rolling Mills Co Ltd Jingye Bearing Manufacture for Rolling Mills Co Ltd Jump to: navigation, search Name Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd Place Beijing Municipality, China Sector Wind energy Product Beijing-based wind turbine bearing maker. References Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd is a company located in Beijing Municipality, China . References ↑ "Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Beijing_Jingye_Bearing_Manufacture_for_Rolling_Mills_Co_Ltd&oldid=342621

116

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Information Integration & Infrastructure Manufacturing Information Integration & Infrastructure PDF format (47 kb) The Information Infrastructure Team in the Computer Applications for Manufacturing organization can provide programming and analysis support for information applications for manufacturing. The Team works closely with customers to help them define their requirements. The Team's experience and expertise can help your manufacturing information needs. Capabilities Provide computer hardware and software standards that directly support the seamless manufacturing initiative. Develop graphical user interfaces (GUI) for applications using the proprietary Windows environment or an open system design using Web servers and client browsers. Provide computer hardware support, including all personal computer

117

Transformational Manufacturing | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transformational Manufacturing Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and transformational technology to improve the efficiency and competitiveness of domestic manufacturing while reducing its carbon footprint. The lab's efforts concentrate on sustainable manufacturing, applied nanotechnology and distributed energy, with an emphasis on transitioning science discoveries to the market.

118

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

119

Manufacturing News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Manufacturing News Manufacturing News RSS January 15, 2014 FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute The Obama Administration announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. November 22, 2013 In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency As Part of Obama Administration's Better Plants Program, U.S. Manufacturers Cut Energy Waste and Save Money October 21, 2013 FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking

120

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with MDF Working with MDF Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Manufacturing Initiative | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Areas Research Areas Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Manufacturing SHARE Manufacturing Initiative Titanium robotic hand holding sphere fabricated using additive manufacturing Oak Ridge National Laboratory is supporting the DOE's Office of Energy Efficiency and Renewable Energy (EERE) Clean Energy Manufacturing Initiative focusing on American competitiveness in clean energy manufacturing. The DOE Initiative has two primary objectives-increase US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive

122

Manufacturing News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Manufacturing News Manufacturing News RSS August 3, 2011 Department of Energy Announces Philips Lighting North America as Winner of L Prize Competition Philips Product Delivers on Department's Challenge to Replace Common Light Bulb with Energy-Saving Lighting Alternative August 2, 2011 Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal SUNPATH Program Will Boost American Competitiveness, Lower Cost of Solar Energy June 29, 2011 Department of Energy Announces New Partnerships to Support Manufacturing Job Training National Training and Education Resource (NTER) Offers Tools to Train Workers June 24, 2011 Department of Energy Announces $120 Million to Support Development of Innovative Manufacturing Processes

123

Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing  

E-Print Network [OSTI]

Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel for integrated module including in-tank regulator · Developed high efficiency H2 fuel storage systems for DOE tank efficiency, the highest weight efficiency ever demonstrated, in partnership with Lawrence

124

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network [OSTI]

that convert hydrogen into electric energy, (2) hydrogen storage systems, and (3) large-scale hydrogen and prioritize topics for public-private R&D on manufacturing hydrogen storage system components. ScopeManufacturing for the Hydrogen Economy Manufacturing Research & Development of Onboard Hydrogen

125

Gas Turbine Manufacturers Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

126

Fuel Oil Use in Manufacturing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of fuel oil relative to other fuels is that manufacturers must maintain large storage tanks. This can prove to be an added expense beyond the price of the fuel. Manufacturers...

127

Managing a manufacturing company in a wired world  

Science Journals Connector (OSTI)

Under new conditions of unlimited access to information technology, the management of a manufacturing company will be changed to take advantage of new capabilities based on internet, intranet and computing and simulation technologies. A conceptual model of management system, applicable in small and medium size manufacturing companies (SMEs), has been developed. It integrates physical, information and knowledge value chains. Based on this concept, a managerial ''dashboard'' is proposed as a tool allowing a manager to access information from sources inside and outside the company, to check financial/economic conditions and to simulate alternative courses of actions. The tool operates as a hypertext system and includes modules representing the internal operations of company and its interfaces with suppliers and knowledge providers. It also includes a microworlds simulation module and a module of return-on-investment analysis.

A.B. Jambekar; K.I. Pelc

2002-01-01T23:59:59.000Z

128

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

Federal/State Programs Federal/State Programs ENERGY STAR Focus for Automobile Manufacturing The U.S. automobile manufacturers and EPA have worked together to jointly develop a Focus on energy efficiency within the industry. Participating companies work with EPA to institute or improve their corporate energy management programs and the energy performance of their operations. Through ENERGY STAR, EPA provides tools to gauge plant and program energy performance, a forum for elevating energy management in the industry, and recognition for superior energy achievements. See all Federal/State Programs DOE State Activities For information on activities, financial assistance, and solicitations within your state, please refer to the DOE Office of Energy Efficiency and Renewable Energy State Specific Information website.

129

Leveraging Manufacturing for a Sustainable Future  

E-Print Network [OSTI]

2010): “Sustainable Manufacturing – Greening Processes,processes and systems) can play in creating a sustainablesustainable manufacturing as “the creation of manufacturing products that use materials and processes

Dornfeld, David

2011-01-01T23:59:59.000Z

130

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

D. , “Sustainable Manufacturing - Greening Processes,Avoid) Increase process efficiency Most sustainable (Improvesustainable manufacturing. 2 They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

131

Sustainable Manufacturing – Greening Processes, Systems and Products  

E-Print Network [OSTI]

mittels Sustainable Manufacturing - Greening Processes,Sustainable for manufacturing Manufacturing Cambridge, accessed processes,processes due to energy awareness and environmental consciousness create many opportunities for sustainable

Dornfeld, David

2010-01-01T23:59:59.000Z

132

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

D. , Sustainable Manufacturing – Greening Processes, Systemsor impact low Most  sustainable Increase process efficiencysustainable manufacturing [1]. They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

133

Climate VISION: Private Sector Initiatives: Automobile Manufacturers...  

Office of Scientific and Technical Information (OSTI)

Industry Associations Alliance of Automobile Manufacturers The Alliance of Automobile Manufacturers, Inc. is a trade association composed of 10 car and light truck manufacturers...

134

Precision and Energy Usage for Additive Manufacturing  

E-Print Network [OSTI]

Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

2013-01-01T23:59:59.000Z

135

Energy Use in Manufacturing ? 1998 to 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Use in Manufacturing - 1998 to 2002 Energy Use in Manufacturing provides information related to energy consumption changes within the U.S. manufacturing sector between 1998 and...

136

Manufacturing Science and Technology: Organizations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Machining Operations Machining Operations Machining Services Electronic Fabrication Manufacturing Process Science & Technology Thin Film, Vacuum, & Packaging Organic Materials Ceramic & Glass Meso Manufacturing & Systems Development Visiting Us AMTTP Center Organizational chart Organizations Our Business areas Manufacturing Science and Technology David Plummer, Director Manufacturing Enterprise Joe M. Harris, Senior Manager Machining Operations Mathew Donnelly, Manager Machining Services Daryl Reckaway, Acting Manager Electronic Fabrication Phillip L. Gallegos, Manager Manufacturing Process Science and Technology Mark F. Smith, Senior Manager Thin Film, Vacuum, and Packaging Mark F. Smith, Acting Manager Organic Materials Mike Kelly, Manager Ceramic and Glass Alex Roesler, Manager

137

Advanced Manufacturing Office: Motor Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Motor Systems to Motor Systems to someone by E-mail Share Advanced Manufacturing Office: Motor Systems on Facebook Tweet about Advanced Manufacturing Office: Motor Systems on Twitter Bookmark Advanced Manufacturing Office: Motor Systems on Google Bookmark Advanced Manufacturing Office: Motor Systems on Delicious Rank Advanced Manufacturing Office: Motor Systems on Digg Find More places to share Advanced Manufacturing Office: Motor Systems on AddThis.com... Quick Links Energy Resource Center Technical Publications by Energy System Energy-Efficient Technologies Incentives & Resources by Zip Code Better Plants Superior Energy Performance Contacts Motor Systems Photo of Man Checking Motor Performance Motor-driven equipment accounts for 54% of manufacturing electricity use. Dramatic energy and cost savings can be achieved in motor systems by

138

Revolutionizing Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Revolutionizing Manufacturing Revolutionizing Manufacturing Revolutionizing Manufacturing Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy Department's Manufacturing Demonstration Facility at Oak Ridge National Laboratory includes an array of state-of-the-art additive manufacturing capabilities, allowing researchers and industry to develop innovative manufacturing solutions. | Photo courtesy of Oak Ridge National

139

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

140

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Faculty Position in Mechanical Engineering Additive Manufacturing  

E-Print Network [OSTI]

Faculty Position in Mechanical Engineering Additive Manufacturing University of Kansas of additive manufacturing. Exceptional candidates with outstanding qualifications could be considered using additive manufacturing in applications such as, but not limited to the net shape manufacture of

142

Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components  

E-Print Network [OSTI]

Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies

Wisconsin at Madison, University of

143

Plumbing Manufacturer's Institute Ex Parte Communication Regarding...  

Broader source: Energy.gov (indexed) [DOE]

Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Letter to Department...

144

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

145

East Penn Manufacturing Co. Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Manufacturing Co. Smart Grid Demonstration Project Manufacturing Co. Smart Grid Demonstration Project Jump to: navigation, search Project Lead East Penn Manufacturing Co. Country United States Headquarters Location Lyon Station, Pennsylvania Recovery Act Funding $2,245,523.00 Total Project Value $4,491,046.00 References ARRA Smart Grid Demonstration Projects[1] This article is a stub. You can help OpenEI by expanding it. The East Penn Manufacturing Co. Smart Grid Demonstration Project is a U.S. Department of Energy Smart Grid Demonstration Project which is based in Lyon Station, Pennsylvania. Overview Demonstrate the economic and technical viability of a 3MW grid-scale, advanced energy storage system using the lead-carbon UltraBattery technology to regulate frequency and manage energy demand. This project

146

Changing quantum reference frames  

E-Print Network [OSTI]

We consider the process of changing reference frames in the case where the reference frames are quantum systems. We find that, as part of this process, decoherence is necessarily induced on any quantum system described relative to these frames. We explore this process with examples involving reference frames for phase and orientation. Quantifying the effect of changing quantum reference frames serves as a first step in developing a relativity principle for theories in which all objects including reference frames are necessarily quantum.

Matthew C. Palmer; Florian Girelli; Stephen D. Bartlett

2014-05-21T23:59:59.000Z

147

Infrared imaging: A versatile NDT method for manufacturing  

SciTech Connect (OSTI)

The non-contact, non-invasive, highly adaptable nature of infrared technology offers many advantages over traditional non-destructive testing methods such as x-ray and ultrasound. Recent performance improvements accompanied by cost reductions are enabling broader implementation across a wide variety of industries. Most promising for future growth are application specific configurations packaged as integrated modules. Among the many industries that benefit from infrared technology, manufacturing has experienced the greatest gain. Environments including both continuous and batch manufacturing involve many critical thermal processes. Through the use of infrared imaging equipment, these processes can be easily monitored and optimized to ensure product quality and process efficiency.

West, L.M. [FLIR Systems, Inc., Portland, OR (United States)

1995-12-31T23:59:59.000Z

148

Manufacturing consumption of energy 1994  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

149

1 Copyright 2014 by ASME Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference  

E-Print Network [OSTI]

to "a crowdsourcing-based design model that leverages cloud computing, service-oriented architecture and manufacturing (CBDM) refers to "a service-oriented product development model in which service consumers are able to configure products or services as well as reconfigure manufacturing systems through Infrastructure-as-a-Service

150

Metallization by plating for high-performance multichip modules  

Science Journals Connector (OSTI)

Electrolytic plating is used to produce the interconnect wiring on the current generation of high-performance multichip modules used in IBM S/390® and AS/400® servers. This paper reviews the material and manufacturing ...

K. K. H. Wong; S. Kaja; P. W. DeHaven

1998-09-01T23:59:59.000Z

151

Economical Patterning of Series Connected a-Silicon Modules  

Science Journals Connector (OSTI)

Different patterning methods are used for manufacturing series connected stripe like cells in a-Si modules whith thin film technologie. These line patterns cause a loss of active cell area, defined by the edge...

W. Juergens; R. Plättner; H. Kausche…

1987-01-01T23:59:59.000Z

152

Manufacturing consumption of energy 1991  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

Not Available

1994-12-01T23:59:59.000Z

153

FAQS Reference Guide - Technical Training | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Qualification Standard Reference Guide, December 2009 More Documents & Publications DOE-HDBK-1206-98 DOE-HDBK-1001-96 Order Module--DOE-HDBK-1203-97, GUIDE TO GOOD PRACTICES FOR...

154

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Machining Machining PDF format (236 kb) MS&T's machining group consists of two departments: Manufacturing Processing, and Manufacturing Processes and Services. The two departments team to build, procure, and assemble unique prototype and production hardware with diverse quality requirements. The in-house capability can manufacture hardware ranging from microscopic to proportions measured in feet and tons. The group's outside contacts and resources are almost boundless. This team's expertise includes: precision machining, welding, fabrication and assembly, aircraft quality sheet metal construction, and explosives machining and assembly. The department can manage a variety of activities: design modifications, in-house fabrication, outside shop selection and surveillance and manufacturing records management.

155

High Pressure Hydrogen Tank Manufacturing  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

156

ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Sustainable Nanomaterials Workshop Advanced Manufacturing Office, U.S. Department of Energy Nanocomposite Materials for Lithium-Ion Batteries...

157

Electrolyzer Manufacturing Progress and Challenges  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

158

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

159

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

1 Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

160

Assumptions to the Annual Energy Outlook 2001 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Comleted Copy in PDF Format Comleted Copy in PDF Format Related Links Annual Energy Outlook 2001 Supplemental Data to the AEO 2001 NEMS Conference To Forecasting Home Page EIA Homepage Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network [OSTI]

Manufacturing for the Hydrogen Economy Manufacturing Research & Development of PEM Fuel Cell of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

162

Development of Automated Production Line Processes for Solar Brightfield Modules: Final Report, 1 June 2003-30 November 2007  

SciTech Connect (OSTI)

Summary of progress by Spire Corporation under NREL's PV Manufacturing R&D Project to develop new automated systems for fabricating very large photovoltaic modules.

Nowlan, M.

2008-04-01T23:59:59.000Z

163

Toward engineering functional organ modules by additive manufacturing  

Science Journals Connector (OSTI)

Tissue engineering is emerging as a possible alternative to methods aimed at alleviating the growing demand for replacement tissues and organs. A major pillar of most tissue engineering approaches is the scaffold, a biocompatible network of synthetic or natural polymers, which serves as an extracellular matrix mimic for cells. When the scaffold is seeded with cells it is supposed to provide the appropriate biomechanical and biochemical conditions for cell proliferation and eventual tissue formation. Numerous approaches have been used to fabricate scaffolds with ever-growing complexity. Recently, novel approaches have been pursued that do not rely on artificial scaffolds. The most promising ones utilize matrices of decellularized organs or methods based on multicellular self-assembly, such as sheet-based and bioprinting-based technologies. We briefly overview some of the scaffold-free approaches and detail one that employs biological self-assembly and bioprinting. We describe the technology and its specific applications to engineer vascular and nerve grafts.

Francoise Marga; Karoly Jakab; Chirag Khatiwala; Benjamin Shepherd; Scott Dorfman; Bradley Hubbard; Stephen Colbert; Gabor Forgacs

2012-01-01T23:59:59.000Z

164

Petrick Technology Trends Of Manufacturing  

E-Print Network [OSTI]

#12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: � that firms sophisticated modeling and simulation of both new products and production processes; � that additive

165

Design for manufacturability Design verification  

E-Print Network [OSTI]

ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

Patel, Chintan

166

EIA-Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2007 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS25 data.

167

General Renewable Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

General Renewable Energy Technology Module General Renewable Energy Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy Technology Module Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy Topics: Technology characterizations Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: General Renewable Energy Technology Module[1] Resource Generation and Transmission Interconnection Process Overview, PJM Manual, Transmission and Interconnection Planning Department, System Planning Division, PJM Interconnection, LLC References ↑ "General Renewable Energy Technology Module" Retrieved from "http://en.openei.org/w/index.php?title=General_Renewable_Energy_Technology_Module&oldid=328701

168

Manufacturing Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Manufacturing Blog Manufacturing Blog RSS January 15, 2014 Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. January 6, 2014 Manufacturing Spotlight: Boosting American Competitiveness Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. November 15, 2013 Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory Secretary Moniz and President Obama toured a high-strength steel plant in

169

Advanced Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Manufacturing Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

170

Manufacturing Fuel Cell Manhattan Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

171

Manufacturing Data | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Data Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Manufacturing Data These Federal datasets contain a wealth of information for manufacturing - either from information in a single dataset or by combining data from more than one place. This site will be enhanced with the addition of new datasets, and new apps using these datasets, as they are developed. Search Terms Category -Any- Geospatial Items per page 25 50 100 Apply Name Downloads Rating TradeStats Express TradeStats Express provides statistics on U.S. merchandise trade at the national and state levels. Data can also be displayed in maps, graphs, tables, or as exports, imports, and trade balances.... Data Extraction

172

Tax Abatement for Solar Manufacturers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Tax Abatement for Solar Manufacturers Tax Abatement for Solar Manufacturers < Back Eligibility Industrial Savings Category Solar Buying & Making Electricity Maximum Rebate None Program Info Start Date 7/1/2005 State District of Columbia Program Type Industry Recruitment/Support Rebate Amount 43% reduction of state's business and occupation (B&O) tax Provider Washington State Department of Revenue Senate Bill [http://www.leg.wa.gov/pub/billinfo/2005-06/Pdf/Bills/Session%20Law%20200... 5111], signed by Washington's governor in May 2005, created a reduced business and occupation (B&O) tax rate for Washington manufacturers of solar-electric (photovoltaic) modules or silicon components of those systems. In May 2009, Washington enacted

173

Out of Bounds Additive Manufacturing Christopher  

E-Print Network [OSTI]

#12;Out of Bounds Additive Manufacturing Christopher Holshouser, Clint Newell, and Sid Palas, Tenn. The Big Area Additive Manufacturing system has the potential to manufacture parts completely) are working on an additive manufacturing (AM) system (Big Area Additive Manufacturing, or BAAM) capable

Pennycook, Steve

174

Recent progress in the photovoltaic manufacturing technology project (PVMaT)  

SciTech Connect (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) Project was initiated in 1990 to help the US photovoltaic (PV) industry extend its world leadership role in manufacturing and commercially developing PV modules and systems. It is being conducted in several phases, staggered to support industry progress. The four most recently awarded subcontracts (Phase 2B) are now completing their first year of research. They include two subcontracts on CdTe, one on Spheral Solar[trademark] Cells, and one on cast polysilicon. These subcontracts represent new technology additions to the PVMaT Project. Subcontracts initiated in earlier phases are nearing completion, and their progress is summarized. An additional phase of PVMaT, Phase 4A, is being initiated which will emphasize product-driven manufacturing research and development. The intention of Phase 4A is to emphasize improvement and cost reduction in the manufacture of full-system PV products. The work areas may include, but are not limited to, issues such as improvement of module manufacturing processes; system and system component packaging, integration, manufacturing, and assembly; product manufacturing flexibility; and balance-of-system development with the goal of product manufacturing improvements.

Witt, C.E.; Mitchell, R.L.; Thomas, H. (National Renewable Energy Lab., Golden, CO (United States)); Herwig, L.O. (USDOE, Washington, DC (United States)); Ruby, D.S. (Sandia National Labs., Albuquerque, NM (United States)); Sellers, R.

1994-12-09T23:59:59.000Z

175

Advanced Manufacturing Policies and Paradigms for Innovation  

Science Journals Connector (OSTI)

...2013 ). 4 About the Advanced Manufacturing Partnership 2.0; www.manufacturing.gov/amp.html. 5 For example , www1.eere.energy.gov/manufacturing/; www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__%28AVM...

William B. Bonvillian

2013-12-06T23:59:59.000Z

176

High frequency reference electrode  

DOE Patents [OSTI]

A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

Kronberg, J.W.

1994-05-31T23:59:59.000Z

177

MST: Organizations: Precision Meso Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Precision Meso Manufacturing Precision Meso Manufacturing Many engineers and product realization teams at Sandia National Laboratories are currently engaged in efforts to create revolutionary national security products that feature unprecedented functionality in ever-smaller, more portable configurations. In the course of development, the Sandia technology community has realized the need for manufacturing capabilities that expand upon what traditional microfabrication provides. The term “meso,” derived from the Greek mesos, meaning “intermediate” or “in the middle,” describes operations on a length scale that typically ranges from hundreds of micrometers to one centimeter. Meso Manufacturing involves a suite of innovative fabrication and metrology tools that compliment each other to make these products a reality. The Meso

178

Prototype Design, Manufacturing, and Testing  

Science Journals Connector (OSTI)

Prototyping describes the practical realization of the theoretical concept of the nonimaging Fresnel lens. The steps that are to be taken in order to get a working prototype of the lens manufactured are as fol...

Dr. Ralf Leutz; Dr. Akio Suzuki

2001-01-01T23:59:59.000Z

179

Laser Additive Manufacturing in GE  

Science Journals Connector (OSTI)

There has been an increasing interest given to laser additive manufacturing (LAM) in recent years from across the global. GE has been one of the leading industries engaging in this...

Peng, Henry; Li, Yanmin; Guo, Rui; Wu, Zhiwei

180

Photovoltaics Manufacturing in Developing Countries  

Science Journals Connector (OSTI)

The need for energy sources in the developing countries might be partially satisfied by using photovoltaic power systems in addition to conventional means. A review of photovoltaic manufacturing in developing ...

G. Darkazalli; S. Hogan

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

182

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

183

Fenner acquires PTFE seal manufacturer  

Science Journals Connector (OSTI)

Fenner Plc has announced the acquisition of substantially all of the operating assets and liabilities of EGC, a Houston-based manufacturer of fluoroplastic seals and other related fluoroplastic precision components.

2006-01-01T23:59:59.000Z

184

Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumption to the Annual Energy Outlook Industrial Demand Module Table 17. Industry Categories Printer Friendly Version Energy-Intensive Manufacturing Nonenergy-Intensive Manufacturing Nonmanufacturing Industries Food and Kindred Products (NAICS 311) Metals-Based Durables (NAICS 332-336) Agricultural Production -Crops (NAICS 111) Paper and Allied Products (NAICS 322) Balance of Manufacturing (all remaining manufacturing NAICS) Other Agriculture Including Livestock (NAICS112- 115) Bulk Chemicals (NAICS 32B) Coal Mining (NAICS 2121) Glass and Glass Products (NAICS 3272) Oil and Gas Extraction (NAICS 211) Hydraulic Cement (NAICS 32731) Metal and Other Nonmetallic Mining (NAICS 2122- 2123) Blast Furnaces and Basic Steel (NAICS 331111) Construction (NAICS233-235)

185

ACAA fly ash basics: quick reference card  

SciTech Connect (OSTI)

Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

NONE

2006-07-01T23:59:59.000Z

186

Funding Opportunity Announcement for Water Power Manufacturing...  

Energy Savers [EERE]

Funding Opportunity Announcement for Water Power Manufacturing Funding Opportunity Announcement for Water Power Manufacturing April 11, 2014 - 11:23am Addthis On April 11, 2014,...

187

Additive manufacturing: technology, applications and research needs  

Science Journals Connector (OSTI)

Additive manufacturing (AM) technology has been researched and ... complexities that could not be produced by subtractive manufacturing processes. Through intensive research over the past...

Nannan Guo; Ming C. Leu

2013-09-01T23:59:59.000Z

188

A Management Strategy for Additive Manufacturing:.  

E-Print Network [OSTI]

??The thesis is about a Management Strategy for Additive Manufacturing - how engineering change influences the NPD process through the adoption of new manufacturing technology.… (more)

Zahn, N.Z.

2014-01-01T23:59:59.000Z

189

Advanced Manufacturing Initiative Improves Turbine Blade Productivity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

190

Request for Information (RFI): Advanced Manufacturing Office...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Manufacturing Office (AMO) Software Tools Request for Information (RFI): Advanced Manufacturing Office (AMO) Software Tools July 25, 2014 - 1:00pm Addthis Funding: This...

191

Solar Manufacturing Technology 2 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Manufacturing Technology 2 Solar Manufacturing Technology 2 The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization...

192

Autogenic Pressure Reactions for Battery Materials Manufacture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free reaction for producing unique...

193

2014 American Energy & Manufacturing Competitiveness Summit in...  

Office of Environmental Management (EM)

Council on Competitiveness 9 of 10 Advanced Manufacturing Office Director Mark Johnson delivers the lunch keynote during the American Energy & Manufacturing Competitiveness...

194

National Electrical Manufacturers Association (NEMA) Response...  

Broader source: Energy.gov (indexed) [DOE]

Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

195

Explore Careers in Manufacturing | Department of Energy  

Office of Environmental Management (EM)

in U.S. manufacturing. The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous...

196

Advanced Technology Vehicles Manufacturing Loan Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles Manufacturing Loan Program ATVM-Program-Application-Overview.pdf More Documents & Publications ATVM...

197

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

198

Mother nature as a wire manufacturer | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mother nature as a wire manufacturer Mother nature as a wire manufacturer With computational models, scientists see how microbe directs electrons New research shows how electrons...

199

Process systems engineering of continuous pharmaceutical manufacturing  

E-Print Network [OSTI]

Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

Abel, Matthew J

2010-01-01T23:59:59.000Z

200

Mechanical and Manufacturing Engineering Mechatronics Engineering Minor  

E-Print Network [OSTI]

Mechanical and Manufacturing Engineering Mechatronics Engineering Minor Students pursuing a BSc in mechanical or manufacturing engineering have experience and entrepreneurship. Mechatronics is the synergistic combination of mechanical

Calgary, University of

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Understanding Manufacturing Energy and Carbon Footprints, October...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S....

202

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

203

Goodman Manufacturing: Order (2012-CE-1509)  

Broader source: Energy.gov (indexed) [DOE]

Company, Company, L.P., Respondent Issued: August 7, 2012 ) ) ) ) ) ) ORDER Case Number: 2012-CE-1509 By the General Counsel, U.S. Department of Energy: 1. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Goodman Manufacturing Company, L.P. ("Respondent"). The Compromise Agreement resolves the case initiated to pursue a civil penalty for violations of the compliance certification requirements located at 10 C.F.R. § 429.12. 2. DOE and Respondent have negotiated the terms of the Compromise Agreement that resolves this matter. A copy of the Compromise Agreement is attached hereto and incorporated by reference. 3. After reviewing the terms of the Compromise Agreement and evaluating the facts

204

Sample References Business Student  

E-Print Network [OSTI]

and provide them with the job description/your resume Brand Yourself- the heading should be the same as your resume and cover letter Be Consistent- use the same fonts/sizes as your resume and cover letter Pay/advice-tools/resume-cover-letter/how-to-make-the-best-use-of-references Obtaining References http

205

Wilderness Preservation : a Reference Handbook  

E-Print Network [OSTI]

Preservation: A Reference Handbook By Kenneth A. RossenbergPreservation: A Reference Handbook. Santa Barbara: ABC-CLIO,Preservation: A Reference Handbook is a comprehensive

Zimmer, Peter

1996-01-01T23:59:59.000Z

206

Clean Energy Manufacturing Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative July 10, 2013 - 1:52pm Addthis Boosting U.S. competitiveness in clean energy manufacturing Boosting U.S. competitiveness in clean energy manufacturing The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the Office of Energy Efficiency & Renewable Energy's (EERE) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. alex was here Addthis Related Articles Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa.

207

Application Protocol Reference Architecture Application Protocol Reference Architecture  

E-Print Network [OSTI]

Application Protocol Reference Architecture 165 Chapter 7 Application Protocol Reference Architecture This chapter proposes an alternative reference architecture for application protocols. The proposed reference architecture consists of the set of possible architectures for application protocols

van Sinderen, Marten

208

NEWTON's Botany References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Botany References Botany References Do you have a great botany reference link? Please click our Ideas page. Featured Reference Links: Dave's Garden - Plant Database Dave's Garden - Plant Database Visit Dave's Garden with information and photos for 185,359 different plants! United States Department of Agriculture Plant Database USDA PLANTS Database The PLANTS Database provides standardized information about the vascular plants, mosses, liverworts, hornworts, and lichens of the U.S. and its territories. Search over 40,000 plant images of US plants. Botany.com Botany.com Botany.com offers an encyclopedia of flowers and plants and resources to help people learn how to identify any different kinds of plants. Plant Kingdom This is a good reference for looking at the plant kingdom.

209

NEWTON's General Science References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

General Science References General Science References Do you have a great general science reference link? Please click our Ideas page. Featured Reference Links: First.gov Science and Technology First.gov Science and Technology This site, sponsered by the US Government provides reference links to topics on science, telecommunications, computers, research agencies, and news. NASA Science NASA Science NASA Science, is a website sponsered by NASA, that supplies resources for understanding our world and the world above. Topics include earth science, heliophysics, the planets, astrophysics and much more. There is also an educator page! Nobel Laueate Listings and Stories Nobel Laueate Listings and Stories See the official site for the Nobel Prize, and read biographies about all of the Nobel Laureates, and there life changing discoveries and accomplishments.

210

Amorphous silicon photovoltaic manufacturing technology - Phase 2A. Annual subcontract report, May 1, 1993--April 30, 1994  

SciTech Connect (OSTI)

Utility Power Group (UPG), and its lower-tier subcontractor, Advanced Photovoltaic Systems, Inc. (APS) have conducted efforts in developing their manufacturing lines. UPG has focused on the automation of encapsulation and termination processes developed in Phase I. APS has focused on completion of the encapsulation and module design tasks, while continuing the process and quality control and automation projects. The goal is to produce 55 watt (stabilized) EP50 modules in a new facility. In the APS Trenton EUREKA manufacturing facility, APS has: (1) Developed high throughput lamination procedures; (2) Optimized existing module designs; (3) Developed new module designs for architectural applications; (4) Developed enhanced deposition parameter control; (5) Designed equipment required to manufacture new EUREKA modules developed during Phase II; (6) Improved uniformity of thin-film materials deposition; and (7) Improved the stabilized power output of the APS EP50 EUREKA module to 55 watts. In the APS Fairfield EUREKA manufacturing facility, APS has: (1) Introduced the new products developed under Phase I into the APS Fairfield EUREKA module production line; (2) Increased the extent of automation in the production line; (3) Introduced Statistical Process Control to the module production line; and (4) Transferred-progress made in the APS Trenton facility into the APS Fairfield facility.

Duran, G.; Mackamul, K.; Metcalf, D. [Utility Power Group, Chatsworth, CA (United States)

1995-01-01T23:59:59.000Z

211

Department of Industrial and Manufacturing Engineering Fall 2011 The Center for Integrated Healthcare Delivery Systems (CIHDS) Academy  

E-Print Network [OSTI]

PENNSTATE Department of Industrial and Manufacturing Engineering Fall 2011 The Center is to educate young adults about the field of Industrial Engineering through learning modules and examples that focus on the healthcare industry. The learning modules shall utilize Industrial Engineering concepts

Demirel, Melik C.

212

Materials from 2014 SunShot Summit Breakout Session: Looking Ahead: PV Manufacturing in 10 Years  

Broader source: Energy.gov [DOE]

This was a breakout session at the 2014 SunShot Grand Challenge Summit and Peer Review. The global PV manufacturing landscape has undergone significant changes in the past decade, from geographic and economic changes in the supply chain to a significant increase in PV module production by fewer manufacturers. The lessons learned over the last decade will guide the future of this growing industry. This session explored the future of PV manufacturing over the next 5 to 10 years, both domestic and abroad. Expert panelists provided their insights and perspectives across three thematic areas: a vision of PV manufacturing, including the level of integration and the factory of the future; value-adding attributes of PV products; and the geographic concentration of PV manufacturing.

213

Development of Large High-Voltage PV Modules with Improved Reliability and Lower Cost: Final Subcontract Report, 1 April 2006--31 August 2007  

SciTech Connect (OSTI)

The overall objective was to provide NREL with technical results that enhance its capability to improve PV manufacturing technology by developing a PV module with specified characteristics.

Wohlgemuth, J.

2009-05-01T23:59:59.000Z

214

PEM Stack Manufacturing: Industry Status  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

© 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED © 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED JULY 2009 B U I L D I N G A C L E A N E N E R G Y G R O W T H C O M P A N Y B A L L A R D P O W E R S Y S T E M S PEM Stack Manufacturing: Industry Status Duarte R. Sousa, PE August 11, 2011 AUGUST 2009 P A G E 2 Overview of PEM Stack Manufacturing MEA Manufacturing Plate Manufacturing Stack Assembly Stack Conditioning and Testing Package and Ship For each of the four main processes, the following will be provided: 1. A brief history of where we have been; 2. Where we are today; 3. Where we would like to transition to; 4. Gaps and proposals. AUGUST 2009 P A G E 3 PEM Stack Manufacturing: Cost Overview * The MEA was readily identified as the major cost driver in a 10 kW stationary stack. * The precious metal catalyst electrode is the major cost driver for the MEA.

215

Oak Ridge Manufacturing Demonstration Facility (MDF)  

Office of Energy Efficiency and Renewable Energy (EERE)

The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

216

Designing a National Network for Manufacturing Innovation  

E-Print Network [OSTI]

Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction · NNMI principles · Public NMMI Design · Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material ­ e.g. lightweight, low cost carbon fiber

217

1 - Honeywell Bull in manufacturing automation  

Science Journals Connector (OSTI)

economy, the manufacturing industry has undergone great changes over the past 25 years. Now, with the expansion of computerised manufacturing control applications, computer manufacturers can meet the specialised needs of the manufacturing community. This paper also examines the CIM architecture at all levels, looks at current standards and at Honeywell Bull as a supplier.

R. Anderson

1988-01-01T23:59:59.000Z

218

Manufacturing Spotlight: Boosting American Competitiveness | Department of  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Spotlight: Boosting American Competitiveness Manufacturing Spotlight: Boosting American Competitiveness Manufacturing Spotlight: Boosting American Competitiveness January 6, 2014 - 1:06pm Addthis Libby Wayman Clean Energy Manufacturing Initiative Director Advancing the nation's clean energy manufacturing industry helps to capture the value of U.S. innovation in clean energy technologies, fosters further innovation right here in America, and makes U.S. manufacturers more competitive by reducing their energy costs - all while creating jobs and building a more sustainable planet for future generations. Industry and government are working together to expand American leadership in this sector by bringing new clean energy technologies to the marketplace and making manufacturing processes more energy efficient.

219

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration/Manufacturing Consumption of Energy 1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline. More recently, the electricity markets have been undergoing change. When Congress passed the Energy Policy Act of 1992, requirements were included not only to open access to the ownership of electricity generation, but also to open access to the transmission lines so that wholesale trade in electricity would be possible. Now several States, including California and

220

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Beam Manufacture Ion Beam Manufacture PDF format (113 kb) Example sine wave FIB sputtered into initially planar Si substrate Example sine wave FIB sputtered into initially planar Si substrate Sandia Manufacturing Science & Technology's Focused Ion Beam (FIB) laboratory provides an opportunity for research, development and prototyping. Currently, our scientists are developing methods for ion beam sculpting microscale tools, components and devices. This includes shaping of specialty tools such as end-mills, turning tools and indenters. Many of these have been used in ultra-precision machining DOE applications. Additionally, staff are developing the capability to ion mill geometrically-complex features and substrates. This includes the ability to sputter predetermined curved shapes of various symmetries and

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Energy Consumption Survey Forms Form EIA-846A (4-6-95) U.S. Department of Commerce Bureau of the Census Acting as Collecting and Compiling Agent For 1994 MANUFACTURING ENERGY CONSUMPTION SURVEY Public reporting burden for this collection of information is estimated to average 9 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Energy Information Administration, Office of Statistical Standards, EI-73, 1707 H-Street, NW, Washington, DC 20585; and to the Office of Information and Regulatory Affairs, Office of

222

Manufacturing Services | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services Services Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Services Do you have a new idea? You may need to file a patent to both develop it and protect it. Find out more below. Search for existing patents Apply for a patent Business Owners Getting a business started, established, and growing is difficult. We want to make that easier. Check out the government services below that are available to businesses, and find out more about what's coming with StartUp America. Start a business Access financing Find opportunities to sell products and services to the government Grow your business Help with exporting for beginners and for experts. Shared Facilities Facilities can be a huge factor in whether you create a new product or

223

Photovoltaic Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Photovoltaic Energy Technology Module Photovoltaic Energy Technology Module Jump to: navigation, search Tool Summary Name: Photovoltaic Energy Technology Module Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy, Solar Topics: Technology characterizations Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: Photovoltaic Energy Technology Module[1] Resources Portable Solar Photovoltaic Lanterns: Performance and Certification Specification, and Type Approval, ESMAP TECHNICAL PAPER 078 Testing of Storage Batteries used in Stand Alone Photovoltaic Power Systems, Test procedures and examples of test results Technical Specifications for Solar Home Systems (SHS), Rural Electrification and Renewable Energy Development (PV Component) Project

224

References to Astrophysics Papers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

References to Astrophysics Papers References to Astrophysics Papers References to Astrophysics Papers Edward Tufte claims the most common number of references to scientific papers is zero. My five papers in astrophysics published from 1992 to 1996 continue to receive citations. Major ones are listed below. Mineo, S.; Rappaport, S.; Steinhorn, B.; Levine, A.; Gilfanov, M.; Pooley, D., 2013, The Astrophysical Journal, Volume 771, Issue 2, article id. 133, 12 pp. Spatially Resolved Star Formation Image and the Ultraluminous X-Ray Source Population in NGC 2207/IC 2163 Junqueira, T. C.; Lépine, J. R. D.; Braga, C. A. S.; Barros, D. A 2013, Astronomy & Astrophysics, Volume 550, id.A91. A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy.

225

NEWTON's References About Mathematics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Math References Math References Do you have a great math reference link? Please click our Ideas page. Featured Reference Links: Steve Marsden's Chemistry Resources Discovery Education's Mathematics Guide Discovery Educators have provided a Mathematics Guide for Educators. Included are numerous links to sites that touch on almost every mathematic topic that you are interested in. The Ultimate Math Portal The Ultimate Math Portal Whether you are confused by multiplication, need extra practice with geometry proofs, find yourself struggling to understand logarithms, or you just want to know more about pi, you are sure to find what you need with this great list of math facts and resources. MathIsFun.com MathIsFun.com Here, math is explained in easy language, for your students to understand. Plus, there are puzzles, games, quizzes, worksheets and a forum for more exploration. This site is designed for K-12 kids, teachers and parents to enjoy.

226

NEWTON's Molecular Biology References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molecular Biology References Molecular Biology References Do you have a great reference link? Please click our Ideas page. Featured Reference Links: The Vitual Museum of Bacteria The Vitual Museum of Bacteria Visit the virtual museum of bacteria to learn more about bacteria and germs! This site brings together many links on bacteria, bacteriology, and related topics available on the web. It also provides crystal-clear information about many aspects of bacteria. The American Society of Cell Biology Cell Biology Educational Resources This site, sponsered by the American Society of Cell Biology, provides additional web links to everything from, general educational sites, to biology course materials, to teaching tools and more. National Center for Biotechnology Information National Center for Biotechnology Information

227

REFERENCES Baines, W. D.  

Office of Scientific and Technical Information (OSTI)

was performed at Sandia National Laboratories, supported by the U. S. Department of Energy under contract number DE-AC04-76DP00789. REFERENCES Baines, W. D. a, Jd Peterson,...

228

Value of Information References  

SciTech Connect (OSTI)

This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

Morency, Christina

2014-12-12T23:59:59.000Z

229

Value of Information References  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

Morency, Christina

230

Manufacturing Energy and Carbon Footprints (2006 MECS)  

Broader source: Energy.gov [DOE]

Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

231

Precision displacement reference system  

DOE Patents [OSTI]

A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

Bieg, Lothar F. (Albuquerque, NM); Dubois, Robert R. (Albuquerque, NM); Strother, Jerry D. (Edgewood, NM)

2000-02-22T23:59:59.000Z

232

Power Quality from the Manufacturer’s Standpoint  

E-Print Network [OSTI]

Power quality is an unstable field (if you'll pardon the double meaning). It's in its infancy; there isn't general agreement on much, not even terminology. As an instrument manufacturer in the field, I'm particularly concerned with two philosophical...

McEachern, A.

233

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin Films Thin Films PDF format (189 kb) Multi Layer Thin Films Multi Layer Thin Films Planetary Sputtering SystemsPlanetary Sputtering Systems Planetary Sputtering Systems The Thin Film laboratory within Manufacturing Science & Technology provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposition processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials.

234

Big Efficieny for Small Manufacturing  

E-Print Network [OSTI]

Big Efficiency for Small Manufacturing Daniel Trombley American Council for an Energy-Efficient Economy Presented to: Industrial Energy Technology Conference New Orleans, LA May 21, 2014 ESL-IE-14-05-10 Proceedings of the Thrity-Sixth Industrial...-Sized Manufacturers http://www.aceee.org/research-report/ie1401 Daniel Trombley dtrombley@aceee.org www.aceee.org ESL-IE-14-05-10 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 ...

Trombley, D.

2014-01-01T23:59:59.000Z

235

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013  

Broader source: Energy.gov [DOE]

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

236

Manufacturing Energy and Carbon Footprints  

E-Print Network [OSTI]

Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

Brueske, S.; Lorenz, T.

2012-01-01T23:59:59.000Z

237

Additive manufacturing method of producing  

E-Print Network [OSTI]

Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

Painter, Kevin

238

Sensors and Controls Characteristics Reference Guide Research Project |  

Broader source: Energy.gov (indexed) [DOE]

Sensors and Controls Characteristics Sensors and Controls Characteristics Reference Guide Research Project Sensors and Controls Characteristics Reference Guide Research Project The U.S. Department of Energy (DOE) is currently conducting research into a reference guide about building sensors and controls characteristics. Project Description This project seeks to develop a Sensors and Controls Characteristics Reference Guide through a series of market engagements with building researchers, manufacturers, and users. When completed, the reference will serve as a guide to develop and deploy low-cost sensor systems defined by high-value case studies, as well as develop and deploy a "controls" open-source platform that enables validation and adoption of algorithms. Project Partners Research is being undertaken by DOE, Pacific Northwest National Laboratory,

239

Explore Careers in Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Careers in Manufacturing Careers in Manufacturing Explore Careers in Manufacturing About the Advanced Manufacturing Office The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. Image of scientists examining an experiment. back to top What types of jobs are available? Innovation Process Design & Development Engineers Mechanical Electrical Chemical Biochemical Health Safety Environmental Scientists Materials Computer Automation Software Energy Storage Production Engineers Industrial systems Process Materials Equipment Controls Supply Chain Logistics Quality Control Maintenance, Installation & Repair Machinists Efficient Use

240

Manufacturers' View on Benchmarking and Disclosure  

U.S. Energy Information Administration (EIA) Indexed Site

Association of Electrical and Association of Electrical and Medical Imaging Equipment Manufacturers Manufacturing Solutions for Energy Efficiency in Buildings Patrick Hughes Policy Director, High Performance Buildings National Electrical Manufacturers Association The Association of Electrical and Medical Imaging Equipment Manufacturers What is NEMA? The Association of Electrical Equipment and Medical Imaging Manufacturers Which policies encourage energy efficiency in buildings? Energy Savings Performance Contracts Tax Incentives Shaheen- Portman Benchmarking and Disclosure Bullitt Center Seattle, Washington The Association of Electrical Equipment and Medical Imaging Manufacturers Energy Savings Performance Contracts ESPCs pay for efficiency upgrades with

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Secure Manufacturing | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secure Secure Manufacturing Secure Manufacturing The depth and breadth of Y-12's manufacturing capabilities and expertise enable Y-12 to address current and emerging national security challenges by providing leadership and direction to perform the following activities: solving unique, high-risk manufacturing problems; eliminating the most difficult manufacturability and development obstacles; protecting classified and proprietary materials, components, and information; developing unique technologies to optimize manufacturing and systems performance; and executing projects cost effectively and with timeliness. Y-12 accomplishes this mission to meet the national security challenges of today and those of the future, with capability and expertise in the following areas:

242

Batteries - Materials Processing and Manufacturing Breakout session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Processing and Manufacturing Materials Processing and Manufacturing Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * PHEV40 and AEV 100 possible with success in current R&D * Achievable with Li-ion manufacturing improvements and advanced chemistries in current Li-ion R&D * AEV300 more challenging * Requires manufacturing improvements and materials and chemistry improvements * Quantify benefits/ drawbacks of fast charging vs. increased electrode cost Barriers Interfering with Reaching the Targets * Materials cost * Need: Material synthesis in large quantities/ with increased impurities and broader size distributions or advanced manufacturing * Electrode thickness - manufacturing and performance * Separator cost/ performance/ safety

243

MST: Organizations: Manufacturing Processes & Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Processing Manufacturing Processing Manufacturing Process, Science, and Technology Mark Smith Mark Smith, Senior Manager Manufacturing Process Science and Technology conducts research and development on advanced manufacturing process and materials technologies. It provides manufacturing process development, technical consulting, and technology transfer to support Sandia product realization needs. This organization also provides prototype fabrication and specialized production services, as required, to support Sandia missions. Departments Dianna Blair Mike Kelly Alex Roesler Paul C. McKey Thin Film, Vacuum, and Packaging Organic Materials Ceramics and Glass Meso Mfg. and System Development Dianna Blair, Manager Mike Kelly, Manager Alex Roesler, Manager Paul C. McKey,

244

Advanced Manufacturing Office: Industrial Assessment Centers (IACs)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Assessment Industrial Assessment Centers (IACs) to someone by E-mail Share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Facebook Tweet about Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Twitter Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Google Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Delicious Rank Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Digg Find More places to share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on AddThis.com... Industrial Assessment Centers (IACs) Learn More Learn how companies have benefited from IAC assessments. Search the IAC Database for recommendations and savings achieved.

245

Quality Assurance REFERENCE GUIDE  

Broader source: Energy.gov (indexed) [DOE]

Quality Assurance Quality Assurance Qualification Standard DOE-STD-1150-2002 July 2012 Reference Guide The Functional Area Qualification Standard References Guides are developed to assist operators, maintenance personnel, and the technical staff in the acquisition of technical competence and qualification within the Technical Qualification Program. Please direct your questions or comments related to this document to the Office of Leadership and Career Management, Technical Qualification Program (TQP) Manager, Albuquerque Complex. This page is intentionally blank. Table of Contents i FIGURES ....................................................................................................................................... ii TABLES ........................................................................................................................................ iii

246

List of Manufacturing Groups Displayed in the 1998 Manufacturing Energy  

U.S. Energy Information Administration (EIA) Indexed Site

21 manufacturing subsectors (3-digit NAICS codes); 21 manufacturing subsectors (3-digit NAICS codes); 311 Food 312 Beverage and Tobacco Products 313 Textile Mills 314 Textile Product Mills 315 Apparel 316 Leather and Allied Products 321 Wood Products 322 Paper 323 Printing and Related Support 324 Petroleum and Coal Products 325 Chemicals 326 Plastics and Rubber Products 327 Nonmetallic Mineral Products 331 Primary Metals 332 Fabricated Metal Products 333 Machinery 334 Computer and Electronic Products 335 Electrical Equip., Appliances, and Components 336 Transportation Equipment 337 Furniture and Related Products 339 Miscellaneous 6 industry groups (4-digit NAICS codes); 3212 Veneer, Plywood, and Engineered Woods 3219 Other Wood Products 3272 Glass and Glass Products 3312 Steel Products from Purchased Steel 3313 Alumina and Aluminum

247

Sustainable manufacturing: evaluation and modeling of environmental impacts in additive manufacturing  

Science Journals Connector (OSTI)

Cleaner production and sustainability are of crucial importance in the field of manufacturing processes where great amounts of energy and materials are being consumed. Nowadays, additive manufacturing technologie...

Florent Le Bourhis; Olivier Kerbrat…

2013-12-01T23:59:59.000Z

248

MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen  

Broader source: Energy.gov (indexed) [DOE]

MANUFACTURING MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge) Manufacturing 332420 Other Metal Container Manufacturing 332439 Machine Shops 332710 Electroplating, Plating, Polishing, Anodizing, and Coloring 332813 Industrial valve Manufacturing 332911 Other Ordnance and Accessories Manufacturing 332995 All Other Miscellaneous Fabricated Metal Product Manufacturing

249

Nonresident Alien Reference Guide  

E-Print Network [OSTI]

- 1 - Nonresident Alien Reference Guide #12;- 2 - Definition Nonresident Alien (NRA) is defined as any employee who is NOT a United States Citizen or a Permanent Resident (Resident Alien or Green Card status. These are NOT Immigration categories. United States Citizen Permanent Resident Alien Resident

Adali, Tulay

250

(Nonresident Alien) Reference Guide  

E-Print Network [OSTI]

- 1 - NRA (Nonresident Alien) Reference Guide #12;- 2 - UMBC'S OFFICES ASSISTING THE NONRESIDENT ALIEN (NRA) Office of International Education Administration Building 2nd floor Arlene Wergin Ext: 5 - Definition Nonresident Alien (NRA) is defined as any employee who is NOT a United States Citizen

Adali, Tulay

251

Grant Reference Lead / Sole  

E-Print Network [OSTI]

Rank Overall Score Grant Reference Lead / Sole Grant Grant Holder Research Organisation Project sediment-concentration and velocity data for submarine turbidity currents Standard Grant DEC12 1 9 NE-concentration and velocity data for submarine turbidity currents Standard Grant DEC12 2 8 NE/K015184/1 Y Alistair Pike

252

References: Elmasri/Navathe  

E-Print Network [OSTI]

2. Disks and the Bu#er Cache 2­1 Part 2: Disks and Caching References: . Elmasri Implementierung. . Mark Gurry , Peter Corrigan: Oracle Performance Tuning, 2nd Edition (with disk). . Oracle 8i.com/] . Wikipedia (RAID systems): [http://en.wikipedia.org/wiki/Redundant Array of Independent Disks] . The PC Guide

Brass, Stefan

253

Diesel engine reference book  

SciTech Connect (OSTI)

This book is a reference on the design, operation, and maintenance of all types of diesel engines, ranging from the smallest automotive and ancillary engines to the largest marine diesels. Nearly 900 line drawings, graphs and photos illustrate the book. Major Sections: Theory; Engine Design Practice; Lubrication; Environmental Pollution; Crankcase Explosions; Engine Types; Engine Testing; Maintenance; Index.

Lilly, I.R.C.

1984-01-01T23:59:59.000Z

254

The assess facility descriptor module  

SciTech Connect (OSTI)

The Facility Descriptor (Facility) module is part of the Analytic System and Software for Evaluating Safeguards and Security (ASSESS). Facility is the foundational software application in the ASSESS system for modelling a nuclear facility's safeguards and security system to determine the effectiveness against theft of special nuclear material. The Facility module provides the tools for an analyst to define a complete description of a facility's physical protection system which can then be used by other ASSESS software modules to determine vulnerability to a spectrum of insider and outsider threats. The analyst can enter a comprehensive description of the protection system layout including all secured areas, target locations, and detailed safeguards specifications. An extensive safeguard component catalog provides the reference data for calculating delay and detection performance. Multiple target locations within the same physical area may be specified, and the facility may be defined for two different operational states such as dayshift and nightshift. 6 refs., 5 figs.

Jordan, S.E.; Winblad, A.; Key, B.; Walker, S.; Renis, T.; Saleh, R.

1989-01-01T23:59:59.000Z

255

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

256

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

2(94) 2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. ii Energy Information Administration/Manufacturing Consumption of Energy 1994 Contacts This publication was prepared by the Energy Information Administration (EIA) under the general direction of W. Calvin

257

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified in Standard Industrial Classification 20 through 39 of the U.S. economy as defined 2 by the Office of Management and Budget. The manufacturing sector is a part of the industrial sector, which also includes mining; construction; and agriculture, forestry, and fishing. The EIA also conducts energy consumption surveys in the residential, commercial buildings, and residential transportation sectors: the Residential Energy 3 Consumption Survey (RECS); the Commercial Buildings Energy Consumption Survey (CBECS); and, until recently, the Residential Transportation Energy Consumption Survey (RTECS).

258

Electromagnetic compatibility in semiconductor manufacturing  

SciTech Connect (OSTI)

Electromagnetic Interference (EMI) causes problems in semiconductor manufacturing facilities that range from nuisances to major disruptions of production. In many instances, these issues are addressed in a reactionary rather than proactive manner by individuals who do not have the experience or the equipment necessary to combat EMI problems in a timely, cost effective manner. This approach leads to expensive retrofits, reduced equipment availability, long recovery times, and in some cases, line yield impacts. The goal of electromagnetic compatibility (EMC) in semiconductor manufacturing is to ensure that semiconductor process, metrology, and support equipment operate as intended without being affected by electromagnetic disturbances either transmitted through air (radiated interference), or transferred into the equipment via a conductive media (conducted interference). Rather than being neglected until serious issues arise, EMC should be considered in the early stages of facility design, in order to gain the most benefit at the lowest cost.

Montoya, J.A. [Intel Corp., Hillsboro, OR (United States)

1995-12-31T23:59:59.000Z

259

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

260

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

(MECS) > MECS 1994 Combined Consumption and Fuel Switching (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption Logo Full Report - (file size 5.4 MB) pages:531 Selected Sections (PDF format) Contents (file size 56 kilobytes, 10 pages). Overview (file size 597 kilobytes, 11 pages). Chapters 1-3 (file size 265 kilobytes, 9 pages). Chapter 4 (file size 1,070 kilobytes, 15 pages). Appendix A - Detailed Tables Tables A1 - A8 (file size 1,031 kilobytes, 139 pages). Tables A9 - A23 (file size 746 kilobytes, 119 pages). Tables A24 - A29 (file size 485 kilobytes, 84 pages). Tables A30 - A44 (file size 338 kilobytes, 39 pages). Appendix B (file size 194 kilobytes, 24 pages). Appendix C (file size 116 kilobytes, 16 pages).

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fact Sheet: 48C Manufacturing Tax Credits  

Broader source: Energy.gov (indexed) [DOE]

48C Manufacturing Tax Credits 48C Manufacturing Tax Credits In order to foster investment and job creation in clean energy manufacturing, the American Recovery and Reinvestment Act of 2009 included a tax credit for investments in manufacturing facilities for clean energy technologies. The Section 48C Advanced Manufacturing Tax Credit originally provided a 30% investment tax credit to 183 domestic clean energy manufacturing facilities valued at $2.3 billion. Today the IRS has announced the availability of additional 48C allocations, utilizing $150 million remaining tax credits that were never fully monetized by previous awardees. This tax credit program will help build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. These manufacturing facilities will also

262

Manufacturing Demonstration Facility (MDF) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) October 11, 2013 - 9:44am Addthis The Manufacturing Demonstration Facility (MDF) is a collabora-tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber. Fostering Collaboration to Accelerate Progress Work conducted by MDF partners and users provides real data that is used to reduce the technical risk associated with full commercialization of promising foundational manufacturing process and materials innovations. The

263

Objective assessment of manufacturing technology investments  

E-Print Network [OSTI]

Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

Rothman, Craig Jeremy

2012-01-01T23:59:59.000Z

264

FACT SHEET: 48C MANUFACTURING TAX CREDITS  

Office of Energy Efficiency and Renewable Energy (EERE)

The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. On February 7,...

265

Upcoming Funding Opportunity for Water Power Manufacturing |...  

Energy Savers [EERE]

Water Power Manufacturing Upcoming Funding Opportunity for Water Power Manufacturing March 24, 2014 - 12:00pm Addthis On March 24, 2014, the U.S. Department of Energy (DOE)...

266

Creation and sustainment of manufacturing technology roadmaps  

E-Print Network [OSTI]

Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

Grillon, Louis S

2012-01-01T23:59:59.000Z

267

Benefits and Barriers of Smart Manufacturing  

E-Print Network [OSTI]

Decision makers in the industrial sector have only recently started to realize the potential of smart manufacturing to transform manufacturing. The potential gains in efficiency at the process and supply-chain level are still largely unknown...

Trombley, D.; Rogers, E.

2014-01-01T23:59:59.000Z

268

Refrigerator Manufacturers: Order (2013-CE-5341)  

Broader source: Energy.gov [DOE]

DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

269

Building Blocks for the Future of Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the Future of Manufacturing Building Blocks for the Future of Manufacturing Scott Smith 2011.05.04 Even though we grew up on opposite sides of the world, my colleague...

270

SunShot Initiative: Solar Manufacturing Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Manufacturing Technology to Solar Manufacturing Technology to someone by E-mail Share SunShot Initiative: Solar Manufacturing Technology on Facebook Tweet about SunShot Initiative: Solar Manufacturing Technology on Twitter Bookmark SunShot Initiative: Solar Manufacturing Technology on Google Bookmark SunShot Initiative: Solar Manufacturing Technology on Delicious Rank SunShot Initiative: Solar Manufacturing Technology on Digg Find More places to share SunShot Initiative: Solar Manufacturing Technology on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy in Solar Grid Engineering for Accelerated Renewable Energy Deployment Physics of Reliability: Evaluating Design Insights for Component

271

QTR Webinar: Chapter 8- Industry and Manufacturing  

Broader source: Energy.gov [DOE]

The DOE EERE Advanced Manufacturing Office hosted a QTR webinar to obtain input from Leaders in Academia, Industry, and Government on Chapter 8, Industry and Manufacturing, and the associated Technology Assessments.

272

Manufacturing of Plutonium Tensile Specimens  

SciTech Connect (OSTI)

Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

Knapp, Cameron M [Los Alamos National Laboratory

2012-08-01T23:59:59.000Z

273

Continuous roll-to-roll a-Si photovoltaic manufacturing technology  

SciTech Connect (OSTI)

This report describes work performed by ECD to advance its roll-to-roll, triple-junction photovoltaic manufacturing technologies; to reduce the module production costs; to increase the stabilized module performance; and to expand the commercial capacity utilizing ECD technology. The 3-year goal is to develop advanced large-scale manufacturing technology incorporating ECD's earlier research advances with the capability of producing modules with stable 11% efficiency at a cost of approximately $1/W[sub p]. Major efforts during Phase I are (1) the optimization of the high-performance back-reflector system, (2) the optimization of a-Si-Ge narrow band-gap solar cell, and (3) the optimization of the stable efficiency of the module. The goal is to achieve a stable 8% efficient 0.3-m [times] 1.2-m (1-ft [times] 4-ft) module. Also, the efforts include work on a proprietary, high-deposition-rate, microwave plasma, CVD manufacturing technology; and on the investigation of material cost reduction.

Izu, M. (Energy Conversion Devices, Inc., Troy, MI (United States))

1993-04-01T23:59:59.000Z

274

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

275

Manufacturing Energy and Carbon Footprints Scope  

Broader source: Energy.gov [DOE]

List of manufacturing sectors selected for analysis along with North American Industry Classification System (NAICS) code descriptions

276

Webinar: Additive Manufacturing for Fuel Cells  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

277

Honda: North American Manufacturing Facilities | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Facilities From October, 2008 Honda: North American Manufacturing Facilities More Documents & Publications Johnson Controls: EISA Presentation MEMA: Comments AZ Automotive...

278

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Broader source: Energy.gov (indexed) [DOE]

application of customized sensor driven modeling, measurement simulation technologies, energy management dashboards and a variety of manufacturing metrics for individual...

279

The MARX Modulator Development Program for the International Linear Collider  

SciTech Connect (OSTI)

The ILC Marx Modulator Development Program at SLAC is working towards developing a full-scale ILC Marx ''Reference Design'' modulator prototype, with the goal of significantly reducing the size and cost of the ILC modulator while improving overall modulator efficiency and availability. The ILC Reference Design prototype will provide a proof-of-concept model to industry in advance of Phase II SBIR funding, and also allow operation of the new 10MW L-Band Klystron prototypes immediately upon their arrival at SLAC.

Leyh, G.E.; /SLAC

2006-06-12T23:59:59.000Z

280

Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing > Derived Annual Estimates - Executive Summary Manufacturing > Derived Annual Estimates - Executive Summary Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988 Figure showing Derived Estimates Executive Summary This report presents a complete series of annual estimates of purchased energy used by the manufacturing sector of the U.S. economy, for the years 1974 to 1988. These estimates interpolate over gaps in the actual data collections, by deriving estimates for the missing years 1982-84 and 1986-87. For the purposes of this report, "purchased" energy is energy brought from offsite for use at manufacturing establishments, whether the energy is purchased from an energy vendor or procured from some other source. The actual data on purchased energy comes from two sources, the U.S. Department of Commerce Bureau of the Census's Annual Survey of Manufactures (ASM) and EIA's Manufacturing Energy Consumption Survey (MECS). The ASM provides annual estimates for the years 1974 to 1981. However, in 1982 (and subsequent years) the scope of the ASM energy data was reduced to collect only electricity consumption and expenditures and total expenditures for other purchased energy. In 1985, EIA initiated the triennial MECS collecting complete energy data. The series equivalent to the ASM is referred to in the MECS as "offsite-produced fuels." The completed annual series for 1974 to 1988 developed in this report links the ASM and MECS "offsite" series, estimating for the missing years. Estimates are provided for the manufacturing sector as a whole and at the two-digit Standard Industrial Classification (SIC) level for total energy consumption and for the consumption of individual fuels. There are no direct sources of data for the missing years (1982-1984 and 1986-1987). To derive consumption estimates, a comparison was made between the ASM, MECS, and other economic series to see whether there were any good predictors for the missing data. Various estimation schemes were analyzed to fill in the gaps in data after 1981 by trying to match known data for the 1974 to 1981 period.

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Low Temperature PEM Fuel Cell Manufacturing Needs  

E-Print Network [OSTI]

Low Temperature PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project #12; Cost drivers were identified for the following: · MEA · Plates · Balance of Plant (BOP) · Fuel Processing Manufacturing Fuel Cell Project ­ Phase 1 Note that this presentation

282

Additive manufacturing of metallic tracks on  

E-Print Network [OSTI]

Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology (note: may require additional tooling/ set up time) · Rapid Prototyping & small scale manufacture microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair

Painter, Kevin

283

Pseudomonas fluorescens -A robust manufacturing platform  

E-Print Network [OSTI]

Pseudomonas fluorescens -A robust manufacturing platform Reprinted from July/August 2004 Speciality at efficient- ly transporting single chain antibodies and other mammalian-derived proteins. In addition production. Dowpharma, a contract manufacturing services unit of Dow Chemical, has developed a manufacturing

Lebendiker, Mario

284

e! Science News Semiconductor manufacturing technique holds  

E-Print Network [OSTI]

arsenide chips manufactured in multilayer stacks: light sensors, high-speed transistors and solar cellse! Science News Semiconductor manufacturing technique holds promise for solar energy Published semiconductor manufacturing method pioneered at the University of Illinois, the future of solar energy just got

Rogers, John A.

285

EFFECTIVE STRUCTURAL HEALTH MONITORING WITH ADDITIVE MANUFACTURING  

E-Print Network [OSTI]

will be presented for components that can be processed by additive manufacturing (AM) or 3D printing. The origin structures. KEYWORDS : structural health monitoring methodology, 3D printing, additive manufacturing, fatigue, intelligent structure INTRODUCTION Additive manufacturing (AM), also known as 3D Printing or Rapid

Boyer, Edmond

286

Microsoft Word - JT Manufacturing Study Report 070522.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Impact of Scale-Up and Production The Impact of Scale-Up and Production Volume on SOFC Manufacturing Cost DOE/NETL-XXXX/XXXX (optional) April 2, 2007 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any

287

NEWTON's Botany References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Botany References Botany References Do you have a great botany video? Please click our Ideas page. Featured Videos: AOL News AOL News - Botany Videos AOL news provides hundreds of botany videos from around the world. View informational and instructional videos as well as interviews about the latest botany topics and discoveries. NeoK12 Plant Videos NeoK12 - Every Plant Topic Imaginable Explore videos encompassing every category dealing with plants. Learn about photosynthesis, plant evolution, reproduction, and many more plant related videos. Fungus Image Fungi Videos BBC Nature provides informational videos about fugni and other organisms. Learn and explore a wide variety of topics concerning the fungus kingdom. Other Botany Videos: Botany Videos for Kids Look at various botany videos geared towards a younger audience.

288

OSH technical reference manual  

SciTech Connect (OSTI)

In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

Not Available

1993-11-01T23:59:59.000Z

289

Results of I-V Curves and Visual Inspection of PV Modules Deployed at TEP Solar Test Yard (Poster)  

SciTech Connect (OSTI)

The purpose of the PV Service Life Prediction project is to examine and report on how solar modules are holding up after being in the field for 5 or more years. This poster presents the common problems crystalline-silicon and thin-film modules exhibit, including details of modules from three manufactures that were tested January 13-16, 2014.

McNutt, P.; Wohlgemuth, J.; Miller, D.; Stoltenberg, B.

2014-02-01T23:59:59.000Z

290

Sustainable Manufacturing via Multi-Scale, Physics-Based Process...  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013 Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

291

Request for Information (RFI): Specific Clean Energy Manufacturing...  

Broader source: Energy.gov (indexed) [DOE]

Focus Areas Suitable for a Manufacturing Innovation Institute Request for Information (RFI): Specific Clean Energy Manufacturing Focus Areas Suitable for a Manufacturing...

292

Request for Information (RFI): Clean Energy Manufacturing Topics...  

Broader source: Energy.gov (indexed) [DOE]

Request for Information (RFI): Clean Energy Manufacturing Topics Suitable for a Manufacturing Innovation Institute Request for Information (RFI): Clean Energy Manufacturing Topics...

293

U.S. Advanced Manufacturing and Clean Energy Technology Challenges  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation...

294

Private-Public Partnerships for U.S. Advanced Manufacturing  

Broader source: Energy.gov (indexed) [DOE]

Polymer Composite Manufacturing Workshop Crystal City January 13, 2014 Private-Public Partnerships for U.S. Advanced Manufacturing Dr. Frank W. Gayle Advanced Manufacturing...

295

Photovoltaic module performance and durability following long-term field exposure  

SciTech Connect (OSTI)

Our investigations of both new and field-aged photovoltaic modules have indicated that, in general, today's commercially available modules area highly reliable product. However, by using new test procedures, subtle failure mechanisms have also been identified that must be addressed in order to achieve 30-year module lifetimes. This paper summarizes diagnostic test procedures, results, and implications of in-depth investigations of the performance and durability characteristics of commercial modules after long-term field exposure. A collaborative effort with U.S. module manufacturers aimed at achieving 30-year module lifetimes is also described.

Ellibee, D.E.; Hansen, B.R.; King, D.L.; Kratochvil, J.A.; Quintana, M.A.

1998-09-08T23:59:59.000Z

296

NREL Manufacturing R&D Workshop NREL H2/FC Manufacturing R&D Workshop  

E-Print Network [OSTI]

&D Workshop Fuel Cell Proton Exchange Membrane (PEM) and Solid Oxide Fuel Cell (SOFC) Manufacturing Lines and driving down the cost of fuel cell manufacturing through automation. What are the key technical Membrane Electrode Assembly Manufacturing Hypothetical Fuel Cell Manufacturing Platforms August 11, 2011

297

Headquarters Security Quick Reference Book  

Broader source: Energy.gov [DOE]

This quick reference book provides an overview of Department of Energy (DOE) Headquarters (HQ) security programs.

298

American Wind Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

American Wind Manufacturing American Wind Manufacturing American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind Farm, shown here, in Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 14:38 2 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-07 16:16 3 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 17:14 4 of 9 Nordex USA manufacturing facility - Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 13:55 5 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 14:11 6 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas.

299

Dimensional metrology interoperability and standardization in manufacturing systems  

Science Journals Connector (OSTI)

Dimensional metrology is an important part of any manufacturing system. It consists of distinct components and requires a large, diverse, and interconnected knowledge base. How to pass information seamlessly with minimal cost and minimal data loss between different components of a dimensional metrology system is a major issue that concerns software and hardware vendors, standards developers, and customers. This paper focuses on the four main elements of a dimensional metrology system: product definition, measurement process plan definition, measurement process execution, and analysis and reporting of quality data. The activities and software modules that are involved in these elements are discussed. Key issues that cause interoperability problems are identified. These issues are discussed as they relate to the current situation in dimensional metrology standards development. The STEP (ISO 10303) standards are the product of an international effort to achieve interoperability for manufacturing systems. Extending STEP is an appropriate way to solve the interoperability problem within dimensional metrology systems. Further development of STEP standards is proposed so that Geometric Dimensioning and Tolerancing (GD&T) information already available in STEP can be linked with manufacturing feature information, measurement technology, and measurement results. The proposed STEP data model is an attempt to provide a standard that will support automatic measurement process plan generation for in-process on-machine measurement. Some case studies are under way to test the model.

Yaoyao Zhao; Xun Xu; Tom Kramer; Fred Proctor; John Horst

2011-01-01T23:59:59.000Z

300

Hilbert von Neumann modules  

E-Print Network [OSTI]

We introduce a way of regarding Hilbert von Neumann modules as spaces of operators between Hilbert space, not unlike [Skei], but in an apparently much simpler manner and involving far less machinery. We verify that our definition is equivalent to that of [Skei], by verifying the `Riesz lemma' or what is called `self-duality' in [Skei]. An advantage with our approach is that we can totally side-step the need to go through $C^*$-modules and avoid the two stages of completion - first in norm, then in the strong operator topology - involved in the former approach. We establish the analogue of the Stinespring dilation theorem for Hilbert von Neumann bimodules, and we develop our version of `internal tensor products' which we refer to as Connes fusion for obvious reasons. In our discussion of examples, we examine the bimodules arising from automorphisms of von Neumann algebras, verify that fusion of bimodules corresponds to composition of automorphisms in this case, and that the isomorphism class of such a bimodule...

Bikram, Panchugopal; Srinivasan, R; Sunder, V S

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

TOB Module Assembly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SiTracker Home Page Participating Institutions and Principal Contacts Useful Links Notes Images TOB Module Assembly and Testing Project TOB Integration Data Tracker Offline DQM LHC Fluence Calculator Total US Modules Tested Graph Total US Modules Tested Graph Total US Modules Tested Total US Modules Tested US Modules Tested Graph US Modules Tested Graph US Modules Tested US Modules Tested Rod Assembly TOB Modules on a Rod TOB Rod Insertion Installation of a TOB Rod Completed TOB Completed Tracker Outer Barrel TOB Module Assembly and Testing Project All 5208 modules of the CMS Tracker Outer Barrel were assembled and tested at two production sites in the US: the Fermi National Accelerator Laboratory and the University of California at Santa Barbara. The modules were delivered to CERN in the form of rods, with the last shipment taking

302

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molding, Thermoforming & Compounding Molding, Thermoforming & Compounding PDF format (89 kb) The Manufacturing Science & Technology Center helps customers choose the best materials and techniques for their product by providing a variety of conformal coatings, thermoforming, and compounding materials using established or custom designed processes. The department provides consulting services for injection molding and rubber compounding projects. Capabilities: Thermoforming: Processing thermoplastics such as polycarbonate, polymethyl methacrylate, polypropylene polystyrene, and ABS; producing holding trays, protective caps, and custom covers Injection Molding Consultation: Designing your part to be injection molded, helping you choose the best material for your application, and supporting your interface with injection molding companies

303

Technological development for commercialization of amorphous silicon based multijunction modules  

SciTech Connect (OSTI)

Some of the significant steps in technological development for large-scale commercialization of amorphous silicon (a-Si:H) based multijunction photovoltaic modules are presented. These developments are establishing a high quality baseline process for manufacturing large-area ({approximately}8 ft{sup 2}) a-Si:H/a-SiGe:H tandem junction modules with improved stabilized conversion efficiency, throughput, yield, and reduced materials usage.

Yang, L.; Bennett, M.; Chen, L. [Solarex, Newtown, PA (United States)] [and others

1996-12-31T23:59:59.000Z

304

A solar module fabrication process for HALE solar electric UAVs  

SciTech Connect (OSTI)

We describe a fabrication process used to manufacture high power-to-weight-ratio flexible solar array modules for use on high-altitude-long-endurance (HALE) solar-electric unmanned air vehicles (UAVs). These modules have achieved power-to-weight ratios of 315 and 396 W/kg for 150{mu}m-thick monofacial and 110{mu}m-thick bifacial silicon solar cells, respectively. These calculations reflect average module efficiencies of 15.3% (150{mu}m) and 14.7% (110{mu}m) obtained from electrical tests performed by Spectrolab, Inc. under AMO global conditions at 25{degrees}C, and include weight contributions from all module components (solar cells, lamination material, bypass diodes, interconnect wires, and adhesive tape used to attach the modules to the wing). The fabrication, testing, and performance of 32 m{sup 2} of these modules will be described.

Carey, P.G.; Aceves, R.C.; Colella, N.J.; Williams, K.A. [Lawrence Livermore National Lab., CA (United States); Sinton, R.A. [Private Consultant, San Jose, CA (United States); Glenn, G.S. [Spectrolab, Inc., Sylmar, CA (United States)

1994-12-12T23:59:59.000Z

305

Reference Handbook: Pressure detectors  

SciTech Connect (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with the information necessary to understand pressure detection. Upon completion of this handbook you should be able to do the following: Define pressure in terms of force and area. Describe the basic operating principles of the U-Tube Manometer. Demonstrate proper techniques for reading Manometers. Describe the basic operating principles of the three types of Bourdon Tubes. Explain the difference between diaphragm. and bellows-type pressure measurement devices. This handbook is designed for use by experienced Rocky Flats operators to reinforce and improve their current knowledge level, and by entry-level operators to ensure that they possess a minimum level of fundamental knowledge. Pressure Detectors is applicable to many job classifications and can be used as a reference for classroom work or for self-study. Although this reference handbook is by no means all-encompassing, you will gain enough information about this subject area to assist you in contributing to the safe operations of Rocky Flats Plant.

Not Available

1990-11-09T23:59:59.000Z

306

EV Everywhere Batteries Workshop - Materials Processing and Manufactur...  

Broader source: Energy.gov (indexed) [DOE]

Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session...

307

Integrated Modules for Bioassay (IMBA) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Integrated Modules for Bioassay (IMBA) Integrated Modules for Bioassay (IMBA) Integrated Modules for Bioassay (IMBA) Current Central Registry Toolbox Version(s): IMBA ExpertTM USDOE Edition version 4.0.28 Code Owner: UK Health Protection Agency (HPA) Description: IMBA ExpertTM (IX) software suite comprises a series of independent modules (referred to as sub-modules) that implement the International Commission on Radiological Protection (ICRP) Publication 66, Human Respiratory Tract Model (HRTM) and the ICRP Publications 30 (series), 67, 68, 69, and 71 biokinetic models. In 2001, the United Kingdom (UK) National Radiological Protection Board (NRPB), whose functions were absorbed later into the UK Health Protection Agency (HPA), and ACJ & Associates Inc., began development of an interface (referred to as a shell) for the IMBA modules. This effort was funded in

308

Energy and American Society : a Reference Handbook  

E-Print Network [OSTI]

American Society: A Reference Handbook By E. Willard MillerSOCIETY: A REFERENCE HANDBOOK (Contemporary World IssuesSOCIETY: A REFERENCE HANDBOOK is an important reference work

Li, Haipeng

1996-01-01T23:59:59.000Z

309

Technical Reference OVERVIEW  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parking and the ENERGY STAR Score in the United States and Canada Page 1 Parking and the ENERGY STAR Score in the United States and Canada Page 1 Parking and the ENERGY STAR Score in the United States and Canada Technical Reference OVERVIEW The ENERGY STAR score provides a fair assessment of the energy performance of a property relative to its peers, taking into account the climate, weather, and business activities at the property. Parking areas are not eligible to earn the ENERGY STAR score. However, because parking is a common amenity at other commercial building types (i.e., office and hotels), the ENERGY STAR score does make adjustments to accommodate for the presence of parking.

310

Nuclear Science References Database  

E-Print Network [OSTI]

The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

B. Pritychenko; E. B?ták; B. Singh; J. Totans

2014-07-08T23:59:59.000Z

311

Tank characterization reference guide  

SciTech Connect (OSTI)

Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-09-01T23:59:59.000Z

312

Long life reference electrode  

DOE Patents [OSTI]

An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservoir and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved. 2 figs.

Yonco, R.M.; Nagy, Z.

1987-07-30T23:59:59.000Z

313

Advanced Manufacturing Office: MotorMaster+  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MotorMaster+ to MotorMaster+ to someone by E-mail Share Advanced Manufacturing Office: MotorMaster+ on Facebook Tweet about Advanced Manufacturing Office: MotorMaster+ on Twitter Bookmark Advanced Manufacturing Office: MotorMaster+ on Google Bookmark Advanced Manufacturing Office: MotorMaster+ on Delicious Rank Advanced Manufacturing Office: MotorMaster+ on Digg Find More places to share Advanced Manufacturing Office: MotorMaster+ on AddThis.com... MotorMaster+ This photo shows the inner workings of an industrial electric motor with gears. In the lower left hand corner are the words "MotorMaster+" and underneath are the words "Motor-Driven Systems." Download MotorMaster+ now! Version: 4.01.01 Release Date: September 21, 2010 Release Notes Metric Unit Measurements: No

314

Amorphous silicon photovoltaic manufacturing technology, Phase 2A. Semiannual subcontract report, 1 May 1993--31 October 1993  

SciTech Connect (OSTI)

Utility Power Group (UPG) and its lower-tier subcontractor, Advanced Photovoltaic Systems, Inc. (APS), continued work to develop their manufacturing lines. UPG focused on the automation of encapsulation and termination processes developed in Phase 1. APS focused on completion of the encapsulation and module design tasks while continuing process quality control, and automation projects. The goal is to produce 55-W (stabilized) EP50 modules in a new facility.

Duran, G.; Mackamul, K.; Metcalf, D. [Utility Power Group, Chatsworth, CA (United States); Volltrauer, H. [Advanced Photovoltaic Systems, Inc., Princeton, NJ (United States)

1994-04-01T23:59:59.000Z

315

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sol-Gel Glasses Sol-Gel Glasses PDF format (74 kb) Sol Gel Sol Gel Coating with Sol-Gel Glasses Coating with Sol-Gel Glasses The Manufacturing Science & Technology Center conducts process development and scale-up of ceramic and glass materials prepared by the sol-gel process. Sol-gel processing uses solutions prepared at low temperature rather than high temperature powder processing to make materials with controlled properties. A precursor sol-gel solution (sol) is either poured into a mold and allowed to gel or is diluted and applied to a substrate by spinning, dipping, spraying, electrophoresis, inkjet printing or roll coating. Controlled drying of the wet gel results in either a ceramic or glass bulk part or a thin film on a glass, plastic, ceramic or metal substrate.

316

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electro Microfluidic Dual In-line Package (EMDIP) Electro Microfluidic Dual In-line Package (EMDIP) PDF format (115 kb) EMDIP diagram EMDIP Diagram Microfluidics is experiencing explosive growth in new product developments. Already there are many commercial applications for electro microfluidic devices such as chemical sensors, biological sensors, and drop ejectors for both printing and chemical analysis. The number of surface micromachined microfluidic devices is likely to increase. Manufacturing efficiency and integration of microfluidics with electronics will become important. In order to realize applications for these devices, an efficient method for packaging microfluidic devices is needed. Responding to this need, researchers at Sandia developed the Electro Microfluidic Dual In-Line Package (EMDIP) and the Fluidic Printed Wiring Board (FPWB).

317

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

318

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

319

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Welding, Fabrication, & Metal Forming Welding, Fabrication, & Metal Forming PDF format (159 kb) The department consists of three trades: welding; fabrication and assembly; and precision metal forming. These interrelated groups use similar equipment and rely on each other's skills. One stop will get you the service of three reliable trades. The team manufactures and assembles prototype hardware and has the in-house capability of producing hardware with sizes ranging from thumbnail to rail-car. Expertise includes aircraft quality sheet metal construction, certified welding, and assembly. The staff has experience managing a variety of activities: design modification assistance; in-house fabrication; and project management and can work with your engineers to transform sketches and ideas into working prototypes.

320

Wind Turbine Manufacturing Process Monitoring  

SciTech Connect (OSTI)

To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

2012-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

322

ENRAF gauge reference level calculations  

SciTech Connect (OSTI)

This document describes the method for calculating reference levels for Enraf Series 854 Level Detectors as installed in the tank farms. The reference level calculation for each installed level gauge is contained herein.

Huber, J.H., Fluor Daniel Hanford

1997-02-06T23:59:59.000Z

323

Clean Energy Manufacturing Resources - Technology Feasibility | Department  

Broader source: Energy.gov (indexed) [DOE]

Feasibility Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Learn About U.S. Department of Energy Priorities Advanced Manufacturing Office Plans - features information on analysis, plan implementations, and commercial outcomes. Bioenergy Technologies Office Plans - includes technology roadmaps, multiyear program plans, analysis, and more.

324

Advanced Manufacturing Jobs and Innovation Accelerator Challenge |  

Broader source: Energy.gov (indexed) [DOE]

Technical Assistance » Advanced Manufacturing Jobs and Innovation Technical Assistance » Advanced Manufacturing Jobs and Innovation Accelerator Challenge Advanced Manufacturing Jobs and Innovation Accelerator Challenge October 10, 2013 - 12:01pm Addthis The Advanced Manufacturing Jobs and Innovation Accelerator Challenge (Accelerator) is a multi-agency sponsored competition established to enhance existing regional networks of firms and institutions that accelerate technology-related innovation, business formation, and job creation. Funding provided to these regional networks (also called clusters) help academia, utilities, local governments, and private industry and investors expand partnerships, share strategic information more efficiently, and reduce costs by leveraging existing assets and resources (like physical facilities and equipment).

325

Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology...  

Broader source: Energy.gov (indexed) [DOE]

SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify...

326

Moving towards green and sustainable manufacturing  

Science Journals Connector (OSTI)

The pressing needs of energy, water and other resource conservation worldwide is ... a major engineering challenge. In manufacturing, developing green technologies (from process and tooling to the ... manufacturi...

David Alan Dornfeld

2014-01-01T23:59:59.000Z

327

Oak Ridge Centers for Manufacturing Technology - Partnership...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in result from Jack Cook making contacts with some of the people who experienced the Oak Ridge Centers for Manufacturing Technology firsthand. Here is his introduction...

328

Oak Ridge National Laboratory Manufacturing Demonstration Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oak Ridge National Laboratory Manufacturing Demonstration Facility Technology Collaborations | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single...

329

Oak Ridge Centers for Manufacturing Technology ? testimonials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

testimonials The first testimonial for the successful Oak Ridge Centers for Manufacturing Technology came from Mitchell Burnett. Mitch was among the first hourly paid employees, an...

330

Fiber Reinforced Polymer Composite Manufacturing Workshop  

Office of Energy Efficiency and Renewable Energy (EERE)

A workshop on Fiber Reinforced Polymer (FRP) Composite Manufacturing (held January 13, 2014, in Arlington, VA) brought together stakeholders from industry and academia to discuss manufacturing of composites. The workshop explored emerging FRP composite market applications in clean energy and barriers to the development and widespread commercial use of these lightweight, high-strength and high-stiffness materials. Improving the manufacturing speed and quality-and reducing their manufacturing costs-could accelerate their use in automotive, wind, compressed gas storage and other clean energy and industrial applications.

331

Manufacturing Success Stories | Department of Energy  

Office of Environmental Management (EM)

Colorado State University Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers Assessment center has helped Colorado companies save...

332

Federal Energy and Manufacturing Workforce Training Programs...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

manufacturing related workforce training programs. Funded by the National Science Foundation, the Department of Labor and the Department of Energy these programs provide...

333

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

Precision Manufacturing, LCA, Machining, SustainabilityNOMENCLATURE API = CMOS = GWP = LCA = LCI = Mfg = MRR = RoHSLife Cycle Assessment (LCA). The following sections will

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

334

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TX National Center for Manufacturing Sciences Ann Arbor, MI Nimbis Services McLean, VA Praxair Tonawanda, NY Rockwell Automation Milwaukee, WI For additional information, please...

335

Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop  

Broader source: Energy.gov (indexed) [DOE]

Blue Team B (Washington II & III) - Manufacturing Process Technology Facilitators - Kelly Visconti and Steve Sikirica; Note taker - Theresa Miller Red Team (Madison Room) -...

336

Advanced Manufacturing Office (Formerly Industrial Technologies Program)  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

337

PRESENTATION: BRIEFING ON CLEAN ENERGY MANUFACTURING  

Broader source: Energy.gov [DOE]

A briefing to the Secretary's Energy Advisory Board on the clean energy manufacturing delivered by David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy.

338

National Network for Manufacturing Innovation: A Preliminary...  

Energy Savers [EERE]

capabilities from all the partners to build the proving grounds where innovations flourish and to help advance American domestic manufacturing. nstcnnmiprelimdesignfinal.pdf...

339

Composite Tube Trailer Design/Manufacturing Needs  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

340

Manufacturing Barriers to High Temperature PEM Commercialization  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Supplemental Comments of the Plumbing Manufacturers Instititute...  

Broader source: Energy.gov (indexed) [DOE]

Supplemental Comments of the Plumbing Manufacturers Instititute Regarding the Economic Impacts of the Proposed Definition of "Showerhead," Docket No. EERE-2010-BT-NOA-0016...

342

American Energy and Manufacturing Competitiveness Summit  

Broader source: Energy.gov [DOE]

The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

343

Laser and Intelligent Energy Field Manufacturing  

Science Journals Connector (OSTI)

Laser has demonstrated many important applications, including machining, welding, surface treating, additive manufacturing etc. Multiple hybrid processes had been developed, including...

Zhang, Wenwu

344

Fiber Reinforced Polymer Composite Manufacturing Workshop: Summary...  

Energy Savers [EERE]

for carbon fiber, including bio-based materials or natural gas; lower energy conversion of white fiber to carbon fiber; and composite manufacturing. Dr. Johnson then...

345

Manufacturing Ecosystems and Keystone Technologies (Text Version)  

Broader source: Energy.gov [DOE]

This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

346

Additive Manufacturing: Current Status and Future Prospects  

Science Journals Connector (OSTI)

The potential implications of additive manufacturing or 3D printing technology are being recognized across a number ... wider adoption of and greater business value from 3D printing.

Jyotirmoyee Bhattacharjya; Sonali Tripathi…

2014-01-01T23:59:59.000Z

347

Solar Manufacturing Incentive Grant (SMIG) Program  

Broader source: Energy.gov [DOE]

Created in 1995 and administered jointly by the Virginia Department of Mines, Minerals and Energy, and the Virginia Economic Development Partnership, the Solar Manufacturing Incentive Grant (SMIG)...

348

Green Manufacturing Initiative Annual Report 2010  

E-Print Network [OSTI]

Green Manufacturing Initiative Annual Report 2010 Dr. John Patten Dr. David Meade May 3, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Herman Miller Energy Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

de Doncker, Elise

349

A National Strategic Plan For Advanced Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

across hundreds of sites and thousands of users through conventional social network media and (2) deploy digitally programmable manufacturing equipment to 1,000 high schools....

350

Low Energy Ion Implantationin Semiconductor Manufacturing | U...  

Office of Science (SC) Website

Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

351

2014 Manufacturing Energy and Carbon Footprints: Definitions...  

Broader source: Energy.gov (indexed) [DOE]

and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are...

352

Advanced Materials and Manufacturing | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and characterization of ceramic materials for energy-related applications Process Development and Scale-up Program Argonne's Materials Synthesis and Manufacturing Research and...

353

Manufacturing Licenses Available | Tech Transfer | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Manufacturing SHARE Manufacturing 200401490 Production of Materials with Superior Properties Utilizing High Magnetic Field (Related ID # 200501531, 200701867, 200802085, 200902312, 201002455, 201102675) 200701900 Robust Digital Valve for Prosthetic Finger, Microsurgery, Robotics (Related ID # 200701983, 200802088) 200701972 Manufacturing Biodiesel from Triglycerides (Related ID # 200702012, 200802186) 200701983 Meso-scale Fluidic Digital Valve 200802083 A Hydraulic Flow Control Device by Means of a Digital Poppet Valve 200802088 Miniature shape memory alloy fluid control valve 200902224 Glass Drawing for Wire Arrays 200902231 Nano/Micro Vacuum Triodes Using Glass Fiber Drawing Methods 200902291 Method of Machining Carbon and Graphite foams 200902309 Multi-Winding Homopolar Electric Machine Offers

354

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plating and Lithography Plating and Lithography PDF format (76 kb) 450 ft2 Plating Laboratory 450 h2 Plating Laboratory The Plating capabilities in the Thin Film, Vacuum and Packaging department includes both electroless and electro plating. These processes support Multi-Chip Module, microelectromechanical systems (MEMS), Weapons Systems (Neutron Tubes) and other miscellaneous projects. Capabilities: Electroplate large areas using cyanide and non-cyanide based chemistries Develop, fabricate, and test coatings and patterns Routinely plate copper, nickel, and gold Expertise in developing plating processes for unusual applications and metals Electroless nickel and copper plating Electrophoretic deposition of photoresist Low volume electro or electroless plating production capabilities

355

PV Manufacturing R&D Project -- Trends in the U.S. PV Industry  

SciTech Connect (OSTI)

To foster continued growth in the U.S. photovoltaic (PV) industry, the U.S. Department of Energy initiated the PV Manufacturing R&D (PVMR&D) Project--a partnership with U.S. PV industry participants to perform cost-shared manufacturing research and development. Throughout FY 2004, PVMR&D managed fourteen subcontracts across the industry. The impact of PVMR&D is quantified by reductions in direct module manufacturing costs, scale-up of existing PV production capacity, and accrual of cost savings to the public and industry. An analysis of public and industry investment shows that both recaptured funds by mid-1998 based on estimated manufacturing cost savings from PVMR&D participation. Since project inception, total PV manufacturing capacity has increased from 14 MW to 201 MW at the close of 2003, while direct manufacturing costs declined from $5.55/W to $2.49/W. These results demonstrate continued progress toward the overriding goals of the PVMR&D project.

Brown, K. E.; Mitchell, R. L.; Bower, W. I.; King, R.

2005-01-01T23:59:59.000Z

356

Manufacturer-To-Retailer versus Manufacturer-To-Consumer Rebates in a Supply Chain  

Science Journals Connector (OSTI)

Starting with a newsvendor model (single-product, single-period, stochastic demand), we build a single-retailer, single-manufacturer supply chain with endogenous manufacturer rebates and retail pricing. The deman...

Goker Aydin; Evan L. Porteus

2009-01-01T23:59:59.000Z

357

Simultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial and Manufacturing Systems Engineering  

E-Print Network [OSTI]

Simultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial and Manufacturing Systems Engineering University of Windsor F.A. Salustri, Department of Mechanical, Aerospace, and Industrial Engineering, Ryerson University To appear, Research in Engineering Design, Springer

Salustri, Filippo A.

358

Modeling of additive manufacturing process relevant feature in layer based manufacturing process planning  

Science Journals Connector (OSTI)

Compared with general machining processes, additive manufacturing (AM) process has stabler planning route ... approach is applied to the process planning of additive manufacturing in this paper. The concept of “....

Xi-juan Liu ???

2012-04-01T23:59:59.000Z

359

A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels  

Broader source: Energy.gov [DOE]

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

360

LAI References and Summaries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cart Sign In/Register Quick Data Search Help icon Go NASA Meatball Cart Sign In/Register Quick Data Search Help icon Go NASA Meatball No JAVASCRIPT Capabilities. This site will not function without JavaScript. Please use the Web Product Tree. or anonymous FTP at ftp://daac.ornl.gov/data. Global Leaf Area Index Data from Field Measurements, 1932-2000 References and summaries for literature on leaf area index (reviews, methodology, etc.) Barclay, H. J. (1998) Conversion of total leaf area to projcted leaf area in lodgepole pine and Douglas-fir. Tree PHysiology 18, 185-193. Summary It is noted that three distinct definitions of leaf area index (LAI) in the literature have no predictable relationship with each other. Conversion factors were derived, from total LAI to projected LAI of horizontal leaves and to projected LAI for inclined leaves of lodgepole pine and coastal Douglas-fir, enabling comparison of results from different studies. An algorithm was derived to allow determination of these factors based on twig angles and the angles that the foliage subtends with the twig. The conversion factor was more sensitive to differences in vertical angles of the twigs than to twig rotation or foliar arrangement on the twig.

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sensor Characteristics Reference Guide  

SciTech Connect (OSTI)

The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: • Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. • Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. • Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

2013-04-01T23:59:59.000Z

362

Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 15, System design description. Volume 1  

SciTech Connect (OSTI)

This System Design Description, prepared in accordance with the TPX Project Management Plan provides a summary or TF Magnet System design features at the conclusion of Phase I, Preliminary Design and Manufacturing Research. The document includes the analytical and experimental bases for the design, and plans for implementation in final design, manufacturing, test, and magnet integration into the tokamak. Requirements for operation and maintenance are outlined, and references to sources of additional information are provided.

NONE

1995-09-22T23:59:59.000Z

363

Capillary reference half-cell  

DOE Patents [OSTI]

The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods. 11 figs.

Hall, S.H.

1996-02-13T23:59:59.000Z

364

reference | OpenEI Community  

Open Energy Info (EERE)

98 98 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235098 Varnish cache server reference Home Jweers's picture Submitted by Jweers(83) Contributor 7 August, 2013 - 18:23 New Robust References! citation citing developer formatting reference Semantic Mediawiki wiki Check out the new Reference Form. Adding a reference object to OpenEI using this form is the most complete way to cite a reference. After providing the name of your reference, the form will ask for your document

365

Manufacturer-to-Retailer versus Manufacturer-to-Consumer Rebates in a Supply Chain  

E-Print Network [OSTI]

Manufacturer-to-Retailer versus Manufacturer-to-Consumer Rebates in a Supply Chain Goker Aydin rebates and retail pricing. The demand uncertainty is multiplicative, and the expected demand depends on the effective (retail) price of the product. A retailer rebate goes from the manufacturer to the retailer

Aydin, Goker

366

NERSC Modules Software Environment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environment » Modules Environment Environment » Modules Environment Modules Software Environment NERSC uses the module utility to manage nearly all software. There are two huge advantages of the module approach: NERSC can provide many different versions and/or installations of a single software package on a given machine, including a default version as well as several older and newer versions; and Users can easily switch to different versions or installations without having to explicitly specify different paths. With modules, the MANPATH and related environment variables are automatically managed. Users simply ``load'' and ``unload'' modules to control their environment. The module utility consists of two parts: the module command itself and the modulefiles on which it operates. Module Command

367

Watfactory Virtual Manufacturing Process Varying Inputs  

E-Print Network [OSTI]

with the virtual process: · Allows quick exploration (i.e. during a short course) of process improvement ideasWatfactory Virtual Manufacturing Process Machine 1 Machine 2 Machine 3 Stream 1 Machine B Stream 2 Inputs Can be Set by Stream z19, ..., z24 The Watfactory virtual process simulates a manufacturing

Zhu, Mu

368

Biologically inspired mutual synchronization of manufacturing machines  

E-Print Network [OSTI]

Biologically inspired mutual synchronization of manufacturing machines Erjen Lefeber,a,1 , Herman machine is developed. This control system is based on a synchronization mechanism of enzymes replacing of a single turnover cycle. In manufacturing, batch machines serve several jobs simultaneously, e.g., heat

Armbruster, Dieter

369

A Global Assessment of Manufacturing: Economic  

E-Print Network [OSTI]

A Global Assessment of Manufacturing: Economic Development, Energy Use, Carbon Emissions Keywords production, materials, closed loop, China, emerging economies Abstract We present in two parts an assessment of global manufacturing. In the first part, we review economic development, pollution, and carbon

Gutowski, Timothy

370

Mechanical and Manufacturing Engineering Petroleum Engineering Minor  

E-Print Network [OSTI]

Mechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major program. This minor builds on the fundamentals provided by a basis in mechanical engineering and adds

Calgary, University of

371

Evaluating Energy Efficiency Improvements in Manufacturing Processes  

E-Print Network [OSTI]

and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agendaEvaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices

Boyer, Edmond

372

Simulation Model Driven Engineering for Manufacturing Cell  

E-Print Network [OSTI]

Simulation Model Driven Engineering for Manufacturing Cell Hironori Hibino1 , Toshihiro Inukai2 Abstract. In our research, the simulation model driven engineering for manufacturing cell (SMDE on the simulation model and to extend the range of control applications and simulation applications using the PC

Paris-Sud XI, Université de

373

Modulational effects in accelerators  

SciTech Connect (OSTI)

We discuss effects of field modulations in accelerators, specifically those that can be used for operational beam diagnostics and beam halo control. In transverse beam dynamics, combined effects of nonlinear resonances and tune modulations influence diffusion rates with applied tune modulation has been demonstrated. In the longitudinal domain, applied RF phase and voltage modulations provide mechanisms for parasitic halo transport, useful in slow crystal extraction. Experimental experiences with transverse tune and RF modulations are also discussed.

Satogata, T.

1997-12-01T23:59:59.000Z

374

Monolithic amorphous silicon modules on continuous polymer substrate  

SciTech Connect (OSTI)

This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

Grimmer, D.P. (Iowa Thin Film Technologies, Inc., Ames, IA (United States))

1992-03-01T23:59:59.000Z

375

T-674: Drupal Secure Password Hashes Module Security Bypass Vulnerability |  

Broader source: Energy.gov (indexed) [DOE]

74: Drupal Secure Password Hashes Module Security Bypass 74: Drupal Secure Password Hashes Module Security Bypass Vulnerability T-674: Drupal Secure Password Hashes Module Security Bypass Vulnerability July 22, 2011 - 3:00pm Addthis PROBLEM: Drupal Secure Password Hashes Module Security Bypass Vulnerability PLATFORM: Drupal Secure Password Hashes 6.X-1.0 Drupal Secure Password Hashes 5.X-1.4 ABSTRACT: The Secure Password Hashes module for Drupal is prone to a security-bypass vulnerability. reference LINKS: Drupal Homepage SA-CONTRIB-2011-026 - Secure Password Hashes (phpass) - Multiple Vulnerabilities IMPACT ASSESSMENT: Medium Discussion: This module uses the PHPass hashing library to try to store users hashed passwords securely. The module sets a fixed string for the 'pass' column in the {users} database column but does not replace the pass attribute of the account

376

Low Temperature PEM Fuel Cell Manufacturing Needs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PEM Fuel Cell PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project  Cost drivers were identified for the following: * MEA * Plates * Balance of Plant (BOP) * Fuel Processing Manufacturing Fuel Cell Project - Phase 1 Note that this presentation will be MEA centric as this is the working group I represent...  MEA Cost Drivers Identified: Identifying MEA Cost Drivers * The MEA was readily identified as the major cost driver in a 10 kW stationary stack. * The precious metal catalyst electrode is the major cost driver for the MEA. Thus, focus cost reduction efforts on MEA manufacturing methods. Identify gaps in MEA manufacturing technology: How much better can we do? Note: Cost reductions realized from both material price reduction

377

Manufacturing News and Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing News and Blog Manufacturing News and Blog Manufacturing News and Blog Blog Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 3:53 PM From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. Read The Full Story Manufacturing Spotlight: Boosting American Competitiveness January 6, 2014 1:06 PM Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. Read The Full Story Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory

378

Clean Energy Manufacturing Resources - Technology Prototyping | Department  

Broader source: Energy.gov (indexed) [DOE]

Guide Home » Clean Energy Manufacturing Resources - Technology Guide Home » Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Characterize Materials Shared Research Equipment User Facility - a facility at Oak Ridge National Laboratory that provides access to advanced instruments and scientists for the scale characterization of materials.

379

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) |  

Broader source: Energy.gov (indexed) [DOE]

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) May 28, 2010 DOE issued a Notice of Noncompliance Determination to Summit Manufacturing, Inc. finding that 4SHP13LE136P + 15001+CA042A964+TDR basic model, a split-system air conditioning heat pump with a heat pump coil, does not comport with the energy conservation standards. DOE determined the product was noncompliant based on the company's own testing. Summit must immediately notify each person (or company) to whom Summit distributed the noncompliant products that the product does not meet Federal standards. In addition, Summit must provide to DOE documents and records showing the number of units Summit distributed and to whom. The manufacturer and/or

380

Revitalizing American Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Revitalizing American Manufacturing Revitalizing American Manufacturing Revitalizing American Manufacturing September 13, 2010 - 5:30pm Addthis A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | Secretary Chu Secretary Chu Former Secretary of Energy "The Department of Energy has long been charged with accelerating energy

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

FACTSHEET: Next Generation Power Electronics Manufacturing Innovation  

Broader source: Energy.gov (indexed) [DOE]

FACTSHEET: Next Generation Power Electronics Manufacturing FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a matching $70 million in non-federal cost-share, the institute will bring together over 25 companies, universities and state and federal organizations to invent and manufacture wide bandgap (WBG) semiconductor-based power electronics that are cost-competitive and 10 times more powerful than current

382

Logistics implications of electric car manufacturing  

Science Journals Connector (OSTI)

The increasingly important role of electric cars manufacturing needs to develop new logistics concepts in automotive industry. This article analyses critical issues in logistics operations of electric cars based on the in-house perspective of the car manufacturer. The purpose of this paper is two-fold. Firstly, to verify existing research about the impact of electric car manufacturing on logistics operations. Secondly, to investigate concrete logistics implications based on different electric car operations models. Therefore, we use manufacturing phenotypes, which can be applied to separate and classify configuration and coordination principles and helps to reach a better understanding of relationships with their logistics implications. The presented model is based on real case study data of global auto industry and supports the academic study of cross-site comparisons. A holistic and consistent understanding of different operations types in electric car manufacturing will be necessary, which will help in evaluating the actual and future supply chain forms in the car industry.

Florian Klug

2014-01-01T23:59:59.000Z

383

Manufacturing Innovation Multi-Topic Workshop  

Broader source: Energy.gov [DOE]

DOE’s Advanced Manufacturing Office (AMO) and the Office of Secretary of Defense Manufacturing Technology Program (OSD ManTech) held a joint workshop October 8 and 9, 2014 in Fort Worth, TX. This workshop identified mid-Technology Readiness Level (TRL) research and development (R&D) needs, market and supply chain challenges, and shared facility needs for advanced manufacturing. The workshop complemented a recently released AMO Request for Information (RFI) and a recently amended OSD ManTech RFI. AMO and OSD ManTech sought to know more about the challenges associated with advanced manufacturing technology that potentially could be overcome by pre-competitive collaboration as part of a Manufacturing Innovation Institute.

384

A measurement infrastructure for sustainable manufacturing  

Science Journals Connector (OSTI)

Global resource degradation, climate change, and environmental pollution are worsening due to increasing globalised industrialisation. Manufacturing industries have thus been put under pressure to cope with these problems while maintaining competitiveness. Sustainable manufacturing has been proposed to meet these challenges. The measurement of sustainability in manufacturing enables the quantitative measure of sustainability performance in specific manufacturing processes that will support decision-making for more sustainable processes and products. This paper describes a proposed sustainable manufacturing measurement infrastructure. The centre piece of this infrastructure is a sustainability performance management component that will effectively manage a sustainable indicator repository, measurement process guidelines, and sustainability performance analysis, evaluation, and reporting. The sustainability measurement infrastructure provides a foundation for decision-making tools development and enables users to create a tight integration into business strategy development processes. Examples in this paper are on carbon emissions and energy consumption.

Shaw C. Feng; Che B. Joung

2011-01-01T23:59:59.000Z

385

EI Summary of All Manufacturing SIC  

U.S. Energy Information Administration (EIA) Indexed Site

All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) The manufacturing sector includes establishments engaged in the mechanical or chemical transformation of materials or substances into new products. These operations are generally conducted in facilities described as plants, factories, or mills, while characteristically using power-driven machines and material-handling equipment. Manufacturing also includes such activities as the assembly of components of manufactured products and the blending of materials, such as lubricating oil, plastics, resins, or liquors.

386

Energy-Related Carbon Emissions in Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy-Related Carbon Emissions Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel Paper Food Stone, clay and glass Methodological Details Estimation methods Glossary Return to: Energy and GHG Analysis Efficiency Page Energy Use in Manufacturing Energy-Related Carbon Emissions in Manufacturing Manufacturing, which accounts for about 80 percent of industrial energy consumption, also accounts for about 80 percent of industrial energy-related carbon emissions. (Agriculture, mining, forestry, and fisheries account for the remaining 20 percent.) In 1994, three industries, petroleum, chemicals, and primary metals, emitted almost 60 percent of the energy-related carbon in manufacturing. The next three largest emitters (paper, food, and the stone, glass, and clay products industry) produced an additional 22 percent of the energy-related manufacturing emissions (Figure 1).

387

NREL: Photovoltaics Research - Awards for Photovoltaic Manufacturing R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Awards for Photovoltaic Manufacturing R&D Awards for Photovoltaic Manufacturing R&D The following research efforts within the PV Manufacturing R&D Project were honored with prestigious industry awards. 1995-AstroPower (now GE Energy): Received an R&D 100 Award for its Silicon-Film product, which combined the performance and stability of conventional crystalline-silicon-based solar cells with the low cost of sheet-material production. 1998-Ascension Technology and Advanced Energy Systems: Recipients of Popular Science's "100 Best of What's New" in technological advances. Ascension Technology was cited for its SunSine 300 AC PV modules with a built-in microinverter that eliminated the need for DC wiring. Advanced Energy Systems was recognized for its microinverter, which was small, easy

388

Manufacturing and testing VLPC hybrids  

SciTech Connect (OSTI)

To insure that the manufacture of VLPC devices is a reliable, cost-effective technology, hybrid assembly procedures and testing methods suitable for large scale production have been developed. This technology has been developed under a contract from Fermilab as part of the D-Zero upgrade program. Each assembled hybrid consists of a VLPC chip mounted on an AlN substrate. The VLPC chip is provided with bonding pads (one connected to each pixel) which are wire bonded to gold traces on the substrate. The VLPC/AlN hybrids are mated in a vacuum sealer using solder preforms and a specially designed carbon boat. After mating, the VLPC pads are bonded to the substrate with an automatic wire bonder. Using this equipment we have achieved a thickness tolerance of {+-}0.0007 inches and a production rate of 100 parts per hour. After assembly the VLPCs are tested for optical response at an operating temperature of 7K. The parts are tested in a custom designed continuous-flow dewar with a capacity 15 hybrids, and one Lake Shore DT470-SD-11 calibrated temperature sensor mounted to an AlN substrate. Our facility includes five of these dewars with an ultimate test capacity of 75 parts per day. During the course of the Dzero program we have assembled more than 4,000 VLPC hybrids and have tested more than 2,500 with a high yield.

Adkins, L. R.; Ingram, C. M.; Anderson, E. J. [Guidance, Navigation and Sensors, Boeing (United States)

1998-11-09T23:59:59.000Z

389

Alternative Fuels Data Center: Clean Energy Manufacturing Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Clean Energy Clean Energy Manufacturing Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Google Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Delicious Rank Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Energy Manufacturing Grants The Clean Energy Manufacturing Incentive Grant Program provides financial

390

Criticality Calculations for Step?2 GPHS Modules  

Science Journals Connector (OSTI)

The Multi?Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version referred to as the Step?2 GPHS Module has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of 238 Pu in the oxide form as the primary source of heat and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step?2 version. The Monte Carlo N?Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand the configuration is extremely sub?critical; k eff is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close?spaced stack to approach criticality ( k eff ?=?1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Ronald J. Lipinski; Danielle L. Hensen

2008-01-01T23:59:59.000Z

391

Criticality Calculations for Step-2 GPHS Modules  

SciTech Connect (OSTI)

The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Lipinski, Ronald J. [Advanced Nuclear Concepts Department, Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States); Hensen, Danielle L. [Risk and Reliability Department Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States)

2008-01-21T23:59:59.000Z

392

Criticality calculations for Step-2 GPHS modules.  

SciTech Connect (OSTI)

The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Hensen, Danielle Lynn; Lipinski, Ronald J.

2007-08-01T23:59:59.000Z

393

Tips: References | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

References References Tips: References April 11, 2012 - 9:03am Addthis Tips: References The following resources were used to develop the Energy Savers Guide: Tips on Saving Money and Energy at Home: Alternative Fuels and Advanced Vehicles Data Center American Council for an Energy-Efficient Economy Cool Roof Rating Council Database of State Incentives for Renewables & Efficiency (DSIRE) DOE Building America DOE Building Technologies Program DOE Building Technologies Program, 2010 Buildings Energy Databook DOE Energy Information Administration Residential Energy Consumption Survey DOE/EPA Fuel Economy Guide DOE Federal Energy Management Program DOE Office of Electricity Delivery and Energy Reliability ENERGY STAR® Green Roofs for Healthy Cities National Renewable Energy Laboratory

394

FAQS Reference Guide- Aviation Manager  

Broader source: Energy.gov [DOE]

This reference guide addresses the competency statements in the January 2010 edition of DOE-STD-1164-2003 Chg 1, Aviation Safety Officer Functional Area Qualification Standard.

395

FAQS Reference Guide – Criticality Safety  

Broader source: Energy.gov [DOE]

This reference guide addresses the competency statements in the April 2009 edition of DOE-STD-1173-2009, Criticality Safety Functional Area Qualification Standard.

396

FAQS Reference Guide- Chemical Processing  

Broader source: Energy.gov [DOE]

This reference guide addresses the competency statements in the February 2010 edition of DOE-STD-1176-2010, Chemical Processing Functional Area Qualification Standard.

397

FAQS Reference Guide – Emergency Management  

Broader source: Energy.gov [DOE]

This reference guide addresses the competency statements in the January 2004 edition of DOE-STD-1177-2004, Emergency Management Functional Area Qualification Standard.

398

FAQS Reference Guide – Industrial Hygiene  

Broader source: Energy.gov [DOE]

This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1138-2007, Industrial Hygiene Functional Area Qualification Standard.

399

FAQS Reference Guide – Facility Representative  

Broader source: Energy.gov [DOE]

This reference guide addresses the competency statements in the October 2010 edition of DOE-STD-1151-2010, Facility Representative Functional Area Qualification Standard.

400

Ris Energy Report 6 References Reference list for Chapter 3  

E-Print Network [OSTI]

. European Commission. (2006). Action plan for energy efficiency: Real- ising the potential. Brussels. 2Risø Energy Report 6 References Reference list for Chapter 3 1. European Commission. (2007. Review Report FutuRES-E. Energy Economics group, university of Vienna. 5. European Commission. (2007

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future  

E-Print Network [OSTI]

Growth. Every $1.00 in manufactured goods generates an additional $1.43 worth of additional economic© ATI 2006 Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future presented to thepresented to the 2006 MIT Manufacturing Summit:2006 MIT Manufacturing Summit

Brock, David

402

Proceedings of the 1998 NSF Design and Manufacturing Grantees Conferences Manufacturing Logistics Workshop: A Summary of Research Directions  

E-Print Network [OSTI]

Proceedings of the 1998 NSF Design and Manufacturing Grantees Conferences Manufacturing Logistics Louis A. Martin-Vega Lehigh University Abstract: A workshop sponsored by NSF on Manufacturing Logistics for Manufacturing Logistics was defined. In this paper, we summarize future research directions in manufacturing

Wu, David

403

Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs |  

Broader source: Energy.gov (indexed) [DOE]

Energetx Composites: Retooling Manufacturing, Creating Michigan Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs July 23, 2012 - 4:58pm Addthis Using its fiberglass technology expertise and a grant from the Energy Department's State Energy Program (SEP), Energetx Composites was able to shift its operations to producing wind turbine blades. | Photo courtesy of Energetx Composites. Using its fiberglass technology expertise and a grant from the Energy Department's State Energy Program (SEP), Energetx Composites was able to shift its operations to producing wind turbine blades. | Photo courtesy of Energetx Composites. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs What does this mean for me?

404

Clean Energy Manufacturing Resources - Technology Maturation | Department  

Broader source: Energy.gov (indexed) [DOE]

Maturation Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Comply With Regulations and Standards DOE Building Technologies Office: Appliance and Equipment Standards - minimum energy conservation standards for more than 50 categories of appliances and equipment. Implementation, Certification and Enforcement - explains DOE

405

DOE Hydrogen Analysis Repository: PEMFC Manufacturing Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PEMFC Manufacturing Cost PEMFC Manufacturing Cost Project Summary Full Title: Manufacturing Cost of Stationary Polymer Electrolyte Membrane (PEM) Fuel Cell Systems Project ID: 85 Principal Investigator: Brian James Keywords: Costs; fuel cells; stationary Performer Principal Investigator: Brian James Organization: Directed Technologies, Inc. (DTI) Address: 3601 Wilson Blvd., Suite 650 Arlington, VA 22201 Telephone: 703-243-3383 Email: brian_james@directedtechnologies.com Period of Performance End: November 1999 Project Description Type of Project: Analysis Category: Cross-Cutting Objectives: Estimate the cost of the fuel cell system using the Directed Technologies, Inc. cost database built up over the several years under U.S. Department of Energy and Ford Motor Company contracts.

406

Improving Green Manufacturing Education in China Universities and Colleges  

Science Journals Connector (OSTI)

Green manufacturing is the irresistible development trend of manufacturing industries throughout the world, and green manufacturing education plays an extremely significant part in the process of going green for ...

Li Chen; Qing-chun Xiang

2014-01-01T23:59:59.000Z

407

Research and Applications of Cloud Manufacturing in China  

Science Journals Connector (OSTI)

In order to improve the produce efficiency of enterprises, scholars put forward many manufacturing modes, such as agile manufacturing, gridding manufacturing, and industry 4.0, IPS2, and so on. These manufacturin...

Bo Hu Li; Lin Zhang; Xudong Chai; Fei Tao…

2014-01-01T23:59:59.000Z

408

Additive manufacturing and its societal impact: a literature review  

Science Journals Connector (OSTI)

Thirty years into its development, additive manufacturing has become a mainstream manufacturing process. Additive manufacturing build up parts by adding materials one ... parts on-demand. Its advantages over conv...

Samuel H. Huang; Peng Liu; Abhiram Mokasdar…

2013-07-01T23:59:59.000Z

409

Additive Manufacturing Technologies for Enhancing the Development Process of Biodevices  

Science Journals Connector (OSTI)

A new set of manufacturing techniques and technologies has appeared in the ... by the name of “rapid prototyping and manufacturing technologies.” They are usually based on “additive manufacturing processes” and a...

Andrés Díaz Lantada; Pilar Lafont Morgado…

2013-01-01T23:59:59.000Z

410

High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell (Phosphoric Acid) Manufacturing R&D High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop...

411

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION  

E-Print Network [OSTI]

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

Schumacher, Russ

412

Faculty Position in Ultra High Precision Robotics & Manufacturing  

E-Print Network [OSTI]

, manipulation and metrology systems targeting additive manufacturing; · New kinematics, quasi-perfect guidings, actuators, transmission systems, sensors and methods targeting ultra-high precision additive manufacturingFaculty Position in Ultra High Precision Robotics & Manufacturing at the Ecole Polytechnique

Candea, George

413

Development of a commercial photovoltaic concentrator module  

SciTech Connect (OSTI)

The ojective of this work was to develop the design and prototype of a commercial high-concentration photovoltaic (PV) module. The design is for a 282-sun point-focus concentrating module. Most of the components, subassemblies, and design features incorporate simplifications and ease of manufacturing. The Solar Kinetics, Inc. (SKI) module is designed to incorporate high-efficiency, single-crystal silicon PV cells. The housing is made with aluminum laminated for voltage stand-off and simultaneously providing high thermal conductivity. The Fresnel lens injection molded by American Optical (AO) as singles. The cell assembly consists of a copper heat spreader, a photovoltaic cell soldered, a top and bottom contact, and a reflective secondary optical element (SOE). The cell assemblies passed all of the initial electrical characterization and high-potential tests. Under environmental cycling, the only bond that failed was the PV cell-to-heat spreader interface. The other components (top contact, bottom contact, SOE) passed all the environmental cycling tests. The cell assemblies were designed to be mounted onto the receiver section with a thermally conductive RTV. This geometry was subjected to environmental testing. There was no delamination of this bond nor was there electrical breakdown when the assemblies were subjected to the hi-pot test. A mock module was fabricated for environmental evaluation. This module was subjected to the humidity/freeze cycling to assess the performance of the lens mounting design. This module was also subjected to the rain test after the humidity/freeze cycling and checked for water leaks. The lens showed small displacement from its original position after the environmental cycling. One tablespoon of water did collect inside the module.

Saifee, S.T.; Hutchison, G. [Solar Kinetics, Inc., Dallas, TX (United States)

1992-09-01T23:59:59.000Z

414

module 4 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

module 4 module 4 HR5 TRANSITION BRIEFING module 4 More Documents & Publications Microsoft Word - Rev5functionalaccountabilityimplementationplan..doc Management (WFP) DEPARTMENT OF...

415

Archived Reference Building Type: Hospital  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

416

Archived Reference Building Type: Hospital  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

417

Archived Reference Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

418

Archived Reference Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

419

NPS Quick Reference Guide | Open Energy Information  

Open Energy Info (EERE)

Reference GuideLegal Abstract NPS Quick Reference Guide, current through August 13, 2014. Published NA Year Signed or Took Effect 2014 Legal Citation NPS Quick Reference Guide...

420

reference case | OpenEI  

Open Energy Info (EERE)

reference case reference case Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Advanced silicon photonic modulators  

E-Print Network [OSTI]

Various electrical and optical schemes used in Mach-Zehnder (MZ) silicon plasma dispersion effect modulators are explored. A rib waveguide reverse biased silicon diode modulator is designed, tested and found to operate at ...

Sorace, Cheryl M

2010-01-01T23:59:59.000Z

422

Wind Energy & Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Wind Energy & Manufacturing Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, await delivery for development of wind farms across the country in the United States. Photo from Gamesa, NREL 16001 Wind power creates new high-paying jobs in a wide variety of industries. This includes direct jobs installing, operating, and maintaining wind turbines, as well as jobs at manufacturing facilities that produce wind turbines, blades, electronic components, gearboxes, generators, towers, and other equipment. Indirect jobs in the industries that support these activities are also created.[1] In 2012, 72% of the wind turbine equipment (including towers, blades, and gears) installed in the United States during the year was made in

423

Summit Manufacturing: Noncompliance Determination (2010-SE-0303)  

Broader source: Energy.gov (indexed) [DOE]

the the Matter of: Summit Manufacturing, Inc. Case Number 2010-SE-0303 NOTICE OF NONCOMPLIANCE DETERMINATION CERTIFICATION Manufacturers of certain covered products are required to certify compliance with the applicable energy conservation standards through submission of a compliance statement and a certification report. 10 CFR § 430.62. See 42 U.S.C. 6296 . The compliance statement is a legal statement by the manufacturer that the information provided in its certification reports is true , accurate and complete, that the basic models certified meet the applicable energy conservation standard, that the energy efficiency information report is the result of testing performed in conformance with the applicable test requirements in 10 CFR part 430, subpart B; and that the manufacturer is

424

Advanced Methods for Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methods for Manufacturing Methods for Manufacturing Advanced Methods for Manufacturing The overall purpose of the AMM subprogram is to accelerate innovations that reduce the cost and schedule of constructing new nuclear plants and make fabrication of nuclear power plant components faster, cheaper, and more reliable. Based on past industry work and new stakeholder input, this effort will focus on opportunities that provide simplified, standardized, and labor-saving outcomes for manufacturing, fabrication, assembly, and construction processes (both technologies and methods) and show the most promise in shortening timelines and lowering overall deployment costs. The innovations selected for further development under the AMM program will collectively provide a major means of moving the U.S. nuclear industry from

425

Aurora Photovoltaics Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Aurora Photovoltaics Manufacturing Aurora Photovoltaics Manufacturing Jump to: navigation, search Name Aurora Photovoltaics Manufacturing Place Lawrenceville, New Jersey Zip 8648 Sector Solar Product A subsidiary of EPV solar, based in New Jersey, focused on manufacturing of PV cells. Coordinates 36.761678°, -77.845048° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.761678,"lon":-77.845048,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Leitner Shriram Manufacturing Ltd | Open Energy Information  

Open Energy Info (EERE)

Leitner Shriram Manufacturing Ltd Leitner Shriram Manufacturing Ltd Jump to: navigation, search Name Leitner Shriram Manufacturing Ltd Place Chennai, Tamil Nadu, India Zip 600095 Sector Wind energy Product Chennai-based JV between Leitwind and Shriram EPC with the purpose of manufacturing MW-class wind turbines. Coordinates 13.06397°, 80.24311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13.06397,"lon":80.24311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Manufacturing Research & Technologies | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research & Technologies Research & Technologies Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Research & Technologies It's clear that the government is working across a wide spectrum to help build the capabilities needed to support American manufacturers. Some agencies have very specific initiatives to help in this area. The National Science Foundation (NSF) Computer and Information Science and Engineering (CISE) Directorate supports research and education projects that (a) explore the foundations of computing and communication devices and their usage, (b) invent new computing and networking technologies and that explore new ways to make use of existing technologies and (c) explore the

428

Miraial formerly Kakizaki Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Miraial formerly Kakizaki Manufacturing Miraial formerly Kakizaki Manufacturing Jump to: navigation, search Name Miraial (formerly Kakizaki Manufacturing) Place Tokyo, Japan Zip 171-0021 Product Manufacturer of wafer handling products and other components for the global semiconductor industry. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Cost modeling for monoclonal antibody manufacturing  

E-Print Network [OSTI]

The Novartis BioPharmOps division is responsible for manufacturing large molecule products, including monoclonal antibodies, for late stage clinical trials and commercial sales. The BioPharmOps site in Huningue, France is ...

Simpson, Christina M. (Christina Margaret)

2011-01-01T23:59:59.000Z

430

Exergy Efficiency Definitions for Manufacturing Processes  

Science Journals Connector (OSTI)

The original application of thermodynamic metrics for manufacturing processes has been under development throughout the last decade. The metrics are based on the second law of thermodynamics. Therefore, the exergy

Renald; Karel Kellens; Wim Dewulf…

2011-01-01T23:59:59.000Z

431

Clean Energy Technology Device Manufacturers' Credits (Delaware)  

Broader source: Energy.gov [DOE]

Qualified manufacturers can apply for a tax break equal to 75% of the corporation income tax. The incentive is an increase from the Investment and Employment Credit Against Corporation Income Tax,...

432

A haptic stencil for manufacturing applications  

E-Print Network [OSTI]

The haptic stencil consists of a 5 DOF haptic device and an anti-collision algorithm that acts as a geometric stencil and can be used for a variety of applications ranging from training to rapid prototyping and manufacturing. ...

Mansukhani, Kirti Ramesh, 1981-

2004-01-01T23:59:59.000Z

433

Level schedule implementation in unstable manufacturing environments  

E-Print Network [OSTI]

American Axle & Manufacturing Inc. (AAM), headquartered in Detroit (MI) is one of the major Tier 1 suppliers in the automotive industry. The main challenge in AAM plant 2 is production rate unstability due to downtime, ...

López de Haro, Santiago

2008-01-01T23:59:59.000Z

434

4D printing : towards biomimetic additive manufacturing  

E-Print Network [OSTI]

Inherent across all scales in Nature's material systems are multiple design dimensions, the existences of which are products of both evolution and environment. In human manufacturing where design must be preconceived and ...

Tsai, Elizabeth Yinling

2013-01-01T23:59:59.000Z

435

Solid-State Lighting Manufacturing Workshop  

Broader source: Energy.gov [DOE]

Nearly 200 lighting industry leaders, chip makers, fixture and component manufacturers, and others gathered in Fairfax, Virginia, on April 21 and 22, 2009, for the first-ever DOE Solid-State...

436

American Energy and Manufacturing Competitiveness Summit Introduction...  

Broader source: Energy.gov (indexed) [DOE]

costs. Our labor costs for manufacturing are lower than many other countries like Germany and Japan. And third we have a good technology infrastructure. We can put all of...

437

Requirements & Status for Volume Fuel Cell Manufacturing  

E-Print Network [OSTI]

Requirements & Status for Volume Fuel Cell Manufacturing DOE Hydrogen Program, Washington, DC July ­Eliminate components, parts and process steps ­Standardize core components across products ­Standardize non-core

438

Cost Effective Cooling Strategies for Manufacturing Facilities  

E-Print Network [OSTI]

Industrial plants are designed for a specific purpose of manufacturing products or a group of products in the most cost effective way. One factor which is often very poorly addressed is the environmental requirements for the workplace. Environmental...

Kumar, R.

439

Industrial Activities at DOE: Efficiency, Manufacturing, Process...  

Energy Savers [EERE]

Process, and Materials R&D Overview of industrial activities at DOE by Joe Cresko, EERE Advanced Manufacturing Office, at the EERE QC Workshop held December 9-10, 2013, at the...

440

Stronger Manufacturers' Energy Efficiency Standards for Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing...

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Association of Home Appliance Manufacturers Comment  

Broader source: Energy.gov [DOE]

The Association of Home Appliance Manufacturers (AHAM) respectfully submits the following comments to the Department of Energy (DOE) on its Regulatory Burden RFI, 79 Fed. Reg. 37963 (July 3, 2014).

442

Cycle to Cycle Manufacturing Process Control  

E-Print Network [OSTI]

Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to ...

Hardt, David E.

443

Sandia National Laboratories: Numerical Manufacturing And Design...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NuMAD (Numerical Manufacturing And Design) is an open-source software tool written in Matlab which simplifies the process of creating a three-dimensional model of a wind turbine...

444

Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

445

Steam System Improvements at a Manufacturing Plant  

E-Print Network [OSTI]

BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

Compher, J.; Morcom, B.

446

Pollution from drug manufacturing: review and perspectives  

Science Journals Connector (OSTI)

...19] and Europe [9,14] as pollution sources, with concentrations of...the picture of pharmaceutical pollution from manufacturing is still highly...for some drugs, possibly even air pollution. 2. Effect studies A number of...

2014-01-01T23:59:59.000Z

447

Photographic lens manufacturing and production technologies  

E-Print Network [OSTI]

An investigation was conducted to determine the methods and processes required for the manufacture of photographic objective lenses. Production of photographic lenses requires incredible precision in the melting, mixing, ...

Kubaczyk, Daniel Mark

2011-01-01T23:59:59.000Z

448

Analyzing sampling methodologies in semiconductor manufacturing  

E-Print Network [OSTI]

This thesis describes work completed during an internship assignment at Intel Corporation's process development and wafer fabrication manufacturing facility in Santa Clara, California. At the highest level, this work relates ...

Anthony, Richard M. (Richard Morgan), 1971-

2004-01-01T23:59:59.000Z

449

Advanced Technology Vehicles Manufacturing (ATVM) Loan Program  

Broader source: Energy.gov [DOE]

The Advanced Technology Vehicles Manufacturing (ATVM) loan program was established in Section 136 of the Energy Independence and Security Act of 2007 to support the production of fuel-efficient,...

450

Energy Department Trains Veterans in Advanced Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE)

Today, the first 24 participants marked the successful completion of the Advanced Manufacturing Internship program, a pilot effort sponsored by the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy (EERE).

451

Validation of Gene Therapy Manufacturing Processes  

Science Journals Connector (OSTI)

Specific issues of concern in the validation of gene therapy viral vector manufacturing processes include quality of raw materials, safety testing of cell and viral banks, production and purification of the ve...

Dominick Vacante; Gail Sofer; Stephen Morris…

2002-01-01T23:59:59.000Z

452

USA Manufacturing Respondent BEFORE THE U.S. DEPARTMENT OF ENERGY  

Broader source: Energy.gov (indexed) [DOE]

USA Manufacturing USA Manufacturing Respondent BEFORE THE U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C. 20585 ) ) ) ) ) ) ORDER Case Number: 2013-CE-5336 By the General Counsel, U.S. Department of Energy: I. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department ofEnet'gy ("DOE") and USA Manufacturing ("Respondent"). The Compromise Agreement resolves the case initiated to pursue a civil penalty for violations of the compliance certification requirements located at 10 C.P.R.§§ 429.12 and 429.53. 2. DOE and Respondent have negotiated the terms of the Compromise Agreement that resolve this matter. A copy of the Compromise Agreement is attached hereto and incorporated by reference. 3. After reviewing the terms of the Compromise Agreement and evaluating the facts

453

Risk management practices in global manufacturing investment  

E-Print Network [OSTI]

the company of devout bring to a man.”(NITI SHATAKAM of Bhartrihari, Sanskrit Poet, 6th Century) ii ABSTRACT This thesis explores risk management practices in global manufacturing investment. It reflects the growing internationalisation of manufacturing... (Narula & Dunning, 2000). Many academic publications and global institutions’ reports reflect this an increase in globalisation. UNCTAD reports the positive impact of globalisation across the world. This report states “the difference in per capita...

Kumar, Mukesh

2010-07-06T23:59:59.000Z

454

Energetic additive manufacturing process with feed wire  

DOE Patents [OSTI]

A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

Harwell, Lane D. (Albuquerque, NM); Griffith, Michelle L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Pressly, Gary A. (Sandia Park, NM)

2000-11-07T23:59:59.000Z

455

Global manufacturing model and case studies  

E-Print Network [OSTI]

chain network. 3. 7 Level of firm's global manufacturing competitiveness. . . . 3. 8 A typical unit-cost curve. . 3. 9 Ford Fiesta production network in Western Europe. . . . . . . 35 38 39 42 3. 10 Integrated information system, 51 3. 11 World..., Japan, and Europe. 4. 1 Hofstede's scores of USA and Mexico. 91 4. 2 Average daily wage plus benefits and taxes by occupation. . . . 94 CHAPTER I INTRODUCTION Black & Decker, a $5 billion U. S. -based manufacturer of hand tools, provides an example...

Kijtawesataporn, Komsun

2012-06-07T23:59:59.000Z

456

Manufacturing Environment in the Year 2000  

E-Print Network [OSTI]

-l's Advanced Technical Planning Committee and the major companies they represent have evaluated the content and direction. Leading professionals in the CIM field have endorsed this paper as well as contributed to its content. Companies such as Hughes... have been eliminated; the walls between manufacturing; engineering, ma ket ing and finance have been replaced with one cohesive system that works ...CIM ...Computer Inte grated Manufacturing. I i Numerous architectures have been designed :hat...

Slautterback, W. H.

457

Duracold Refrigeration Manufacturing: Order (2013-CE-5342) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Duracold Refrigeration Manufacturing: Order (2013-CE-5342) Duracold Refrigeration Manufacturing: Order (2013-CE-5342) Duracold Refrigeration Manufacturing: Order (2013-CE-5342) April 25, 2013 DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and Duracold Refrigeration Manufacturing. Duracold Refrigeration Manufacturing: Order (2013-CE-5342) More Documents & Publications Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) North Star Refrigerator: Order (2013-CE-5355) Schott Gemtron: Order (2013-CE-5358

458

Contact Manufacturing Demonstration Facility Craig Blue, Ph.D.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Demonstration Facility Craig Blue, Ph.D. Director, Manufacturing Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www.ornl.gov/manufacturing Advanced Manufacturing Next-Generation Manufacturing As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization, and process technology to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing processes and materials targeting products of the future.

459

A Review of Engineering Research in Sustainable Manufacturing  

E-Print Network [OSTI]

focused on sustainable processes and systems. Despite recentto make their processes more sustainable, evaluating theirManufacturing Process Design for Sustainable Manufacturing,”

2013-01-01T23:59:59.000Z

460

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8,...

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

PEM Stack Manufacturing: Industry Status | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

American Energy and Manufacturing Competitiveness Summit Low Temperature PEM Fuel Cell Manufacturing Needs A Total Cost of Ownership Model for Low Temperature PEM Fuel...

462

Slice Contour Modification in Additive Manufacturing for Minimizing Part Errors.  

E-Print Network [OSTI]

??Additive Manufacturing (AM) is a process of manufacturing parts by combining layers of materials which are deposited on top of each other. AM processes have… (more)

Sharma, Kunal

2014-01-01T23:59:59.000Z

463

Webinar: Additive Manufacturing for Fuel Cells | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Additive Manufacturing for Fuel Cells Webinar: Additive Manufacturing for Fuel Cells February 11, 2014 5:00PM to 6:00PM EST Online...

464

Celgard US Manufacturing Facilities Initiative for Lithium-ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

465

Miracle Wind Power Components Manufacture Co Ltd | Open Energy...  

Open Energy Info (EERE)

Miracle Wind Power Components Manufacture Co Ltd Jump to: navigation, search Name: Miracle Wind Power Components Manufacture Co Ltd Place: Wuxi, Jiangsu Province, China Sector:...

466

EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing...  

Broader source: Energy.gov (indexed) [DOE]

4: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn,...

467

U.S. Offshore Wind Manufacturing and Supply Chain Development...  

Office of Environmental Management (EM)

U.S. Offshore Wind Manufacturing and Supply Chain Development U.S. Offshore Wind Manufacturing and Supply Chain Development This report seeks to provide an organized, analytical...

468

Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Download the presentation slides from the "Joint...

469

Energy Use Loss and Opportunities Analysis: U.S. Manufacturing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining energyuselossopportunitiesanalys...

470

DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...  

Office of Environmental Management (EM)

Against 4 Showerhead Manufacturers (Notice of Proposed Civil Penalty and Requests for Test Data Issued) DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

471

Energy Department to Work with National Association of Manufacturers...  

Office of Environmental Management (EM)

to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to Increase...

472

Design for manufacturability with regular fabrics in digital integrated circuits  

E-Print Network [OSTI]

Integrated circuit design is limited by manufacturability. As devices scale down, sensitivity to process variation increases dramatically, making design for manufacturability a critical concern. Designers must identify the ...

Gazor, Mehdi (Seyed Mehdi)

2005-01-01T23:59:59.000Z

473

Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA...  

Energy Savers [EERE]

Polymer Composite Manufacturing - RFI Part 2 DE-FOA-0001056: Summary of Responses Clean Energy Manufacturing Innovation Institute for Composite Materials And Structures Webinar...

474

$23.5 Million Investment in Innovative Manufacturing Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative March 26, 2013 - 9:56am Addthis As part of the President's effort "to guarantee that the next...

475

Manufacturing Pre-Solicitation Transcript | Department of Energy  

Office of Environmental Management (EM)

Transcript Manufacturing Pre-Solicitation Transcript Transcript from the US DOE Hydrogen Program Manufacturing R&D Pre-Solicitation Meeting presolicitationtranscript.pdf...

476

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...  

Office of Environmental Management (EM)

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program Presented at the NREL Hydrogen and Fuel Cell...

477

Preliminary Fuel Cell Manufacturing R&D Topics | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Preliminary Fuel Cell Manufacturing R&D Topics Preliminary Fuel Cell Manufacturing R&D Topics Preliminary draft research topics subject to revision prior to a soliciatation being...

478

20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3: Manufacturing, Materials, and Resources Summary Slides 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials, and Resources Summary Slides Summary Slides for Chapter 3:...

479

Proceedings from the Wind Manufacturing Workshop: Achieving 20...  

Office of Environmental Management (EM)

Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009 Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind...

480

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide...

Note: This page contains sample records for the topic "module manufacturer references" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Manufacturers of Noncompliant Products Agree to Civil Penalties...  

Energy Savers [EERE]

Air-Con Agrees to Pay Civil Penalty to Resolve Enforcement Action Showerhead Manufacturer Agrees to Civil Penalty to Resolve Enforcement Action Two Manufacturers Agree to...

482

Indian Wind Turbine Manufacturers Association | Open Energy Informatio...  

Open Energy Info (EERE)

Manufacturers Association Jump to: navigation, search Name: Indian Wind Turbine Manufacturers Association Place: Chennai, India Zip: 600 041 Sector: Wind energy Product:...

483

AMO Industry Day Workshop on Upcoming Smart Manufacturing FOA  

Broader source: Energy.gov [DOE]

AMO will host an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing.

484

AMO Issues Request for Information on Clean Energy Manufacturing...  

Energy Savers [EERE]

Request for Information on Clean Energy Manufacturing Topics, Including Fuel Cell and Hydrogen Applications AMO Issues Request for Information on Clean Energy Manufacturing Topics,...

485

Li-Ion Battery Cell Manufacturing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Battery Cell Manufacturing Li-Ion Battery Cell Manufacturing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

486

Metal and Glass Manufacturers Reduce Costs by Increasing Energy...  

Broader source: Energy.gov (indexed) [DOE]

Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

487

Unlocking the Potential of Additive Manufacturing in the Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry PDF includes slides from...

488

Upcoming Webinar February 11: Additive Manufacturing for Fuel...  

Broader source: Energy.gov (indexed) [DOE]

February 11: Additive Manufacturing for Fuel Cells Upcoming Webinar February 11: Additive Manufacturing for Fuel Cells February 6, 2014 - 12:00am Addthis On Tuesday, February 11,...

489

Energy Department Launches New Clean Energy Manufacturing Initiative |  

Broader source: Energy.gov (indexed) [DOE]

New Clean Energy Manufacturing New Clean Energy Manufacturing Initiative Energy Department Launches New Clean Energy Manufacturing Initiative March 26, 2013 - 10:56am Addthis News Media Contact (202) 586-4940 OAK RIDGE - As part of the Obama Administration's commitment to revitalizing America's manufacturing sector, today the Energy Department launched the Clean Energy Manufacturing Initiative (CEMI), a new Department initiative focused on growing American manufacturing of clean energy products and boosting U.S. competitiveness through major improvements in manufacturing energy productivity. The initiative includes private sector partnerships, new funding from the Department, and enhanced analysis of the clean energy manufacturing supply chain that will guide the Department's future funding decisions.

490

A novel methodology of design for Additive Manufacturing applied to Additive Laser Manufacturing process  

Science Journals Connector (OSTI)

Abstract Nowadays, due to rapid prototyping processes improvements, a functional metal part can be built directly by Additive Manufacturing. It is now accepted that these new processes can increase productivity while enabling a mass and cost reduction and an increase of the parts functionality. However, the physical phenomena that occur during these processes have a strong impact on the quality of the produced parts. Especially, because the manufacturing paths used to produce the parts lead these physical phenomena, it is essential to considerate them right from the parts design stage. In this context, a new numerical chain based on a new design for Additive Manufacturing (DFAM) methodology is proposed in this paper, the new DFAM methodology being detailed; both design requirements and manufacturing specificities are taken into account. The corresponding numerical tools are detailed in the particular case of thin-walled metal parts manufactured by an Additive Laser Manufacturing (ALM) process.

Remi Ponche; Olivier Kerbrat; Pascal Mognol; Jean-Yves Hascoet

2014-01-01T23:59:59.000Z

491

A Quantitative Study of the Impact of Additive Manufacturing in the Aircraft Spare Parts Supply Chain.  

E-Print Network [OSTI]

??Additive manufacturing is a promising manufacturing technology which is finding its way into mainstream manufacturing industry. As compared to conventional manufacturing it has a number… (more)

Mokasdar, Abhiram S., M.S.

2012-01-01T23:59:59.000Z

492

Modulating lignin in plants  

SciTech Connect (OSTI)

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

493

Photovoltaic module certification/laboratory accreditation criteria development  

SciTech Connect (OSTI)

This document provides an overview of the structure and function of typical product certification/laboratory accreditation programs. The overview is followed by a model program which could serve as the basis for a photovoltaic (PV) module certification/laboratory accreditation program. The model covers quality assurance procedures for the testing laboratory and manufacturer, third-party certification and labeling, and testing requirements (performance and reliability). A 30-member Criteria Development Committee was established to guide, review, and reach a majority consensus regarding criteria for a PV certification/laboratory accreditation program. Committee members represented PV manufacturers, end users, standards and codes organizations, and testing laboratories.

Osterwald, C.R. [National Renewable Energy Lab., Golden, CO (United States); Hammond, R.L.; Wood, B.D.; Backus, C.E.; Sears, R.L. [Arizona State Univ., Tempe, AZ (United States); Zerlaut, G.A. [SC-International Inc., Phoenix, AZ (United States); D`Aiello, R.V. [RD Associates, Tempe, AZ (United States)

1995-04-01T23:59:59.000Z

494

Sporting Good Manufacturing Company: Optimal Manufacturing and Shipping Cost Through Linear Programming Models  

E-Print Network [OSTI]

Figure 15: Example Transshipment Model.............................................................................. 18 vi List of Principal Symbols and Nomenclature SGMC Sporting Good Manufacturing Company LP Linear Programming CEO Chief... Executive Officer COO Chief Operation Officer PKR Pakistani Rupees EMGT Engineering Management O.F. Objective Function A i No. of bats manufactured in factory i; where i = k, l BB i No. of Stumps manufactured in factory i; where i = k, l C i No...

Malik, Ejaz

2009-05-15T23:59:59.000Z

495

The Future of Manufacturing Takes Shape: 3D Printed Car on Display at Manufacturing Summit  

Office of Energy Efficiency and Renewable Energy (EERE)

This week in Washington, leaders in science, industry, and manufacturing gathered at the Energy Department’s 2014 American Energy and Manufacturing Competitiveness Summit, jointly sponsored by the Council on Competitiveness. Also at the Summit was the world's first 3-D printed vehicle chassis, an innovation that resulted from a collaboration between Arizona-based Local Motors, Cincinnati Incorporated, and the Oak Ridge National Laboratory’s Manufacturing Demonstration Facility (MDF) with the funding support of The Energy Department’s Advanced Manufacturing Office.

496

Small Manufacturer Strategic Decision Making Assistance Tool (SMSDM): a Case Study of a Small Oklahoma Manufacturer.  

E-Print Network [OSTI]

??The propose was to design an informative analytical tool for small Oklahoma manufacturing firms that would assist in their strategic planning and decision making processes.… (more)

Robertson, William D.

2011-01-01T23:59:59.000Z

497

The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office  

Broader source: Energy.gov [DOE]

This presentation describes the Advanced Manufacturing Partnership from its beginning as a recommendation of the President's Council of Advisers on Science and Technology to its development and organization.

498

Solar Wind | Open Energy Information  

Open Energy Info (EERE)

Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind manufactures solar modules and cells. References: Solar...

499

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces...

500

Form EIA-3 Users Manual Quarterly Coal Consumption and Quality Report, Manufacturing and  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Users Manual Quarterly Coal Consumption and Quality Report, Manufacturing and Transformation/Processing Coal Plants and Commercial and Institutional Coal Users Document Number: 001 Version: 2.0 June 2011 1 June 2011 Document History Number Date Section Description 1 2 May 2011 June 2011 Document initiation. Revised screen shots and remove external user references. Primary POC: Tejasvi Raghuveer Phone: (202) 586-8926 Email: Tejasvi.Raghuveer@eia.gov Document Changes/Maintenance POC: Primary POC: Tejasvi Raghuveer Phone: (202) 586-8926 Email: Tejasvi.Raghuveer@eia.gov Project References: Coal Internet Data Collection (CIDC) User's Manual, September 2007