Powered by Deep Web Technologies
Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

PBL FY 2002 Third Quarter Review Forecast of Generation Accumulated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Business Line Generation Accumulated Net Revenues Forecast for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) FY 2002 Third Quarter Review Forecast in Millions...

2

SLCA/IP Hydro Generation Estimates Month Forecast Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5/2013 9:06 5/2013 9:06 SLCA/IP Hydro Generation Estimates Month Forecast Generation less losses (kWh) Less Proj. Use (kWh) Net Generation (kWh) SHP Deliveries (kWh) Firming Purchases (kWh) Generation above SHP Level (kWH) 2013-Oct 232,469,911 13,095,926 219,373,985 398,608,181 192,676,761 - 2013-Nov 211,770,451 2,989,074 208,781,376 408,041,232 214,204,345 - 2013-Dec 252,579,425 3,106,608 249,472,817 455,561,848 221,545,708 - 2014-Jan 337,006,077 3,105,116 333,900,962 463,462,717 139,278,887 -

3

Artificial neural network based models for forecasting electricity generation of grid connected solar PV power plant  

Science Journals Connector (OSTI)

This paper presents an artificial neural network (ANN) approach for forecasting the performance of electric energy generated output from a working 25-kWp grid connected solar PV system and a 100-kWp grid connected PV system installed at Minicoy Island of Union Territory of Lakshadweep Islands. The ANN interpolates among the solar PV generation output and relevant parameters such as solar radiation, module temperature and clearness index. In this study, three ANN models are implemented and validated with reasonable accuracy on real electric energy generation output data. The first model is univariate based on solar radiation and the output values. The second model is a multivariate model based on module temperature along with solar radiation. The third model is also a multivariate model based on module temperature, solar radiation and clearness index. A forecasting performance measure such as percentage root mean square error has been presented for each model. The second model, which gives the most accurate results, has been used in forecasting the generation output for another PV system with similar accuracy.

Imtiaz Ashraf; A. Chandra

2004-01-01T23:59:59.000Z

4

Survey of Variable Generation Forecasting in the West: August 2011 - June 2012  

SciTech Connect (OSTI)

This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

Porter, K.; Rogers, J.

2012-04-01T23:59:59.000Z

5

Predicting Solar Generation from Weather Forecasts Using Machine Learning  

E-Print Network [OSTI]

Predicting Solar Generation from Weather Forecasts Using Machine Learning Navin Sharma, Pranshu Sharma, David Irwin, and Prashant Shenoy Department of Computer Science University of Massachusetts Amherst Amherst, Massachusetts 01003 {nksharma,pranshus,irwin,shenoy}@cs.umass.edu Abstract--A key goal

Shenoy, Prashant

6

Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA  

SciTech Connect (OSTI)

In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction intervals of forecasts. We use automatically coupled wavelet transform and autoregressive integrated moving-average (ARIMA) forecasting to reflect multi-scale variability of forecast errors. The proposed analysis reveals slow-changing “quasi-deterministic” components of forecast errors. This helps improve forecasts produced by other means, e.g., using weather-based models, and reduce forecast errors prediction intervals.

Hou, Zhangshuan; Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.

2014-10-27T23:59:59.000Z

7

Forecasting Global Generation of Obsolete Personal Computers  

Science Journals Connector (OSTI)

The parameter studied is the number of obsolete computer systems with the intent to characterize the “need” for proper recycling. ... In SI Section S6 we undertake sensitivity analysis of results to increased used computer trade and find that it causes a slight increase in generation of obsolete computers in the developing world. ... Questionnaire survey for risk factors was also performed and data were analyzed using spearman correlation analyses and logistic regression analyses. ...

Jinglei Yu; Eric Williams; Meiting Ju; Yan Yang

2010-03-22T23:59:59.000Z

8

Weather forecasting : the next generation : the potential use and implementation of ensemble forecasting  

E-Print Network [OSTI]

This thesis discusses ensemble forecasting, a promising new weather forecasting technique, from various viewpoints relating not only to its meteorological aspects but also to its user and policy aspects. Ensemble forecasting ...

Goto, Susumu

2007-01-01T23:59:59.000Z

9

Lessons from Deploying NLG Technology for Marine Weather Forecast Text Generation  

E-Print Network [OSTI]

model along with other sources of weather data such as satellite pictures and their own forecastingLessons from Deploying NLG Technology for Marine Weather Forecast Text Generation Somayajulu G Language Generation (NLG) system that produces textual weather forecasts for offshore oilrigs from

Sripada, Yaji

10

Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.  

E-Print Network [OSTI]

1 Next Generation Short-Term Forecasting of Wind Power ­ Overview of the ANEMOS Project. G outperform current state-of-the-art methods, for onshore and offshore wind power forecasting. Advanced forecasts for the power system management and market integration of wind power. Keywords: Wind power, short

Boyer, Edmond

11

PBL FY 2003 Third Quarter Review Forecast of Generation Accumulated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net Cost Recovery Adjustment Clause (SN CRAC) FY 2003 Third Quarter Review Forecast in Millions...

12

FY 2004 Second Quarter Review Forecast of Generation Accumulated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net Cost Recovery Adjustment Clause (SN CRAC) FY 2004 Second Quarter Review Forecast In Millions...

13

An Optimized Autoregressive Forecast Error Generator for Wind and Load Uncertainty Study  

SciTech Connect (OSTI)

This paper presents a first-order autoregressive algorithm to generate real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast errors. The methodology aims at producing random wind and load forecast time series reflecting the autocorrelation and cross-correlation of historical forecast data sets. Five statistical characteristics are considered: the means, standard deviations, autocorrelations, and cross-correlations. A stochastic optimization routine is developed to minimize the differences between the statistical characteristics of the generated time series and the targeted ones. An optimal set of parameters are obtained and used to produce the RT, HA, and DA forecasts in due order of succession. This method, although implemented as the first-order regressive random forecast error generator, can be extended to higher-order. Results show that the methodology produces random series with desired statistics derived from real data sets provided by the California Independent System Operator (CAISO). The wind and load forecast error generator is currently used in wind integration studies to generate wind and load inputs for stochastic planning processes. Our future studies will focus on reflecting the diurnal and seasonal differences of the wind and load statistics and implementing them in the random forecast generator.

De Mello, Phillip; Lu, Ning; Makarov, Yuri V.

2011-01-17T23:59:59.000Z

14

Generalized Additive Models versus Linear Regression in Generating Probabilistic MOS Forecasts of Aviation Weather Parameters  

Science Journals Connector (OSTI)

The skill of probabilistic Model Output Statistics forecasts generated from Generalized Additive Models (GAM) is compared to that of traditional multiple linear regression techniques. Unlike linear regression, where each predictor term in the ...

Robert L. Vislocky; J. Michael Fritsch

1995-12-01T23:59:59.000Z

15

PSCAD Modules Representing PV Generator  

SciTech Connect (OSTI)

Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

Muljadi, E.; Singh, M.; Gevorgian, V.

2013-08-01T23:59:59.000Z

16

SUMTIME-MOUSAM: Configurable Marine Weather Forecast Generator Somayajulu G. Sripada and Ehud Reiter  

E-Print Network [OSTI]

Weathernews (UK) Ltd. Aberdeen iand@wni.com Abstract Numerical weather prediction (NWP) models produce time is done using guidance from Numerical Weather Prediction (NWP) models; time series data from the NWPSUMTIME-MOUSAM: Configurable Marine Weather Forecast Generator Somayajulu G. Sripada and Ehud

Reiter, Ehud

17

Generating Spatio-Temporal Descriptions in Pollen Forecasts Ross Turner, Somayajulu Sripada and Ehud Reiter  

E-Print Network [OSTI]

Date AreaID Value 27/06/2005 1 (North) 6 27/06/2005 2 (North West) 5 27/06/2005 3 (Central) 5 27/06/2005 4Generating Spatio-Temporal Descriptions in Pollen Forecasts Ross Turner, Somayajulu Sripada al., 1994) and MultiMeteo (Coch, 1998). 2 Knowledge Acquisition Our knowledge acquisition activities

18

The Economic Value of Temperature Forecasts in Electricity Generation  

Science Journals Connector (OSTI)

Every day, the U.S. electricity-generating industry decides how to meet the electricity demand anticipated over the next 24 h. Various generating units are available to meet the demand, and each unit may have its own production lead time, start-...

Thomas J. Teisberg; Rodney F. Weiher; Alireza Khotanzad

2005-12-01T23:59:59.000Z

19

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind Generation by a Dynamic  

E-Print Network [OSTI]

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind forecasting. I. INTRODUCTION HE actual large-scale integration of wind energy in several European countries enhance the position of wind energy compared to other dispatchable forms of generation. Predicting

Paris-Sud XI, Université de

20

Photonic generation of UWB pulses with pulse position modulation  

E-Print Network [OSTI]

Photonic generation of UWB pulses with pulse position modulation H. Mu and J. Yao A novel photonic approach to generating ultra-wideband (UWB) signals with pulse position modulation (PPM) is proposed delay-line filter for UWB monocycle pulse generation, the second subsystem being a pulse

Yao, Jianping

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China  

SciTech Connect (OSTI)

Highlights: ? We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ? The model is robust at multiple time scales with the anticipated accuracy. ? At month-scale, the SARIMA model shows good representation for monthly MSW generation. ? At medium-term time scale, grey relational analysis could yield the MSW generation. ? At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term.

Xu, Lilai, E-mail: llxu@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Gao, Peiqing, E-mail: peiqing15@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China); Cui, Shenghui, E-mail: shcui@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Liu, Chun, E-mail: xmhwlc@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China)

2013-06-15T23:59:59.000Z

22

A Framework of Incorporating Spatio-temporal Forecast in Look-ahead Grid Dispatch with Photovoltaic Generation  

E-Print Network [OSTI]

at multiple sites. Given the unique spatial and temporal correlation of PV generation, an optimal data-driven forecast model for short-term PV power is proposed. This model leverages both spatial and temporal correlations among neighboring solar sites...

Yang, Chen

2013-05-02T23:59:59.000Z

23

Name of Module: Next Generation Network Project 2  

E-Print Network [OSTI]

) 30 Total 270 8. Module Examination and Grading Procedures The project will be examined at the beginning of the module. 11. Enrolment Procedures To participate to the lectures/seminars/projectsName of Module: Next Generation Network ­ Project 2 CP (ECTS): 9 Short Name: MINF-KS-AV/PJ2.W12

Wichmann, Felix

24

Name of Module: Next Generation Network Project 1  

E-Print Network [OSTI]

) 30 Total 270 8. Module Examination and Grading Procedures The project will be examined at the beginning of the module. 11. Enrolment Procedures To participate to the lectures/seminars/projectsName of Module: Next Generation Network ­ Project 1 CP (ECTS): 9 Short Name: MINF-KS-AV/PJ1.W12

Wichmann, Felix

25

Modulation compression for short wavelength harmonic generation  

E-Print Network [OSTI]

Wavelength Harmonic Generation Ji Qiang Lawrence Berkeleyform a basis for fourth generation light source. Currently,e?ciency was proposed for generation of short wavelength

Qiang, J.

2010-01-01T23:59:59.000Z

26

AEOP2011:Electricity Generation Capacity by Electricity Market Module  

Open Energy Info (EERE)

AEOP2011:Electricity Generation Capacity by Electricity Market Module AEOP2011:Electricity Generation Capacity by Electricity Market Module Region and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 97, and contains only the reference case. The dataset uses billion kilowatthours. The data is broken down into Texas regional entity, Florida reliability coordinating council, Midwest reliability council and Northeast power coordination council. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB)

27

AEO2011: Electricity Generation by Electricity Market Module Region and  

Open Energy Info (EERE)

Generation by Electricity Market Module Region and Generation by Electricity Market Module Region and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 96, and contains only the reference case. The dataset uses billion kilowatthours. The data is broken down into texas regional entity, Florida reliability coordinating council, midwest reliability council and northeast power coordination council. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electricity generation Data application/vnd.ms-excel icon AEO2011: Electricity Generation by Electricity Market Module Region and Source- Reference Case (xls, 400.2 KiB) Quality Metrics

28

Waste generation forecast for DOE-ORO`s Environmental Restoration OR-1 Project: FY 1995-FY 2002, September 1994 revision  

SciTech Connect (OSTI)

A comprehensive waste-forecasting task was initiated in FY 1991 to provide a consistent, documented estimate of the volumes of waste expected to be generated as a result of U.S. Department of Energy-Oak Ridge Operations (DOE-ORO) Environmental Restoration (ER) OR-1 Project activities. Continual changes in the scope and schedules for remedial action (RA) and decontamination and decommissioning (D&D) activities have required that an integrated data base system be developed that can be easily revised to keep pace with changes and provide appropriate tabular and graphical output. The output can then be analyzed and used to drive planning assumptions for treatment, storage, and disposal (TSD) facilities. The results of this forecasting effort and a description of the data base developed to support it are provided herein. The initial waste-generation forecast results were compiled in November 1991. Since the initial forecast report, the forecast data have been revised annually. This report reflects revisions as of September 1994.

Not Available

1994-12-01T23:59:59.000Z

29

Thermionic generator module with heat pipes  

SciTech Connect (OSTI)

A thermionic converter module is described comprising: a first heat pipe with an annular casing which has a first surface located on an inside surface of the annular casing, at least part of the first surface of the casing of the first heat pipe having constructed upon it a thermionic converter emitter located so that heat will be transferred by conduction from the first heat pipe casing to the thermionic converter emitter; a second heat pipe with a casing which has a second surface, the second surface being located within the first surface of the annular casing of the first heat pipe so that it is surrounded by the first surface; a thermionic converter collector located so as to transfer heat by conduction to the second surface of the casing of the second heat pipe with the thermionic converter collector being adjacent to the thermionic converter emitter but being separated from the thermionic converter emitter by an inter electrode space; and end fitting structures located so that, with the thermionic converter collector and the thermionic converter emitter, they complete an enclosure around the inter electrode space and form an evacuated enclosure within which are located the thermionic converter collector and the thermionic converter emitter.

Horner-Richardson, K.; Ernst, D.M.

1993-06-15T23:59:59.000Z

30

Generation of electromagnetic structures via modulational instability of drift waves  

SciTech Connect (OSTI)

Generation mechanism for large scale electromagnetic structures (blobs) is considered by employing the technique of four-wave interactions (modulational instability). It is shown that primary electrostatic turbulence may generate elongated electromagnetic structures with poloidal modulations. Such structures are principally related to drift-Alfven waves. The analysis fully takes into account finite ion temperature effects and associated diamagnetic contributions to Reynolds stress. The turbulent generation of blobs has instability growth rates which scale similar to the zonal flow instabilities, {gamma}{approx}, where q is a characteristic wave vector of large scale modes, and V-tilde is a characteristic amplitude of the velocity of turbulent fluctuations. This analysis is shown to be fully consistent with results of an earlier analysis by using the wave kinetic equation.

Smolyakov, A. I. [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 (Canada); Nuclear Fusion Institute, Russian Research Center 'Kurchatov Institute', 1 Kurchatov Square, 123182, Moscow (Russian Federation); Krasheninnikov, S. I. [University of California at San Diego, 9500 Gilman Dr., La Jolla, California 92093 (United States)

2008-07-15T23:59:59.000Z

31

Review of Variable Generation Forecasting in the West: July 2013 - March 2014  

SciTech Connect (OSTI)

This report interviews 13 operating entities (OEs) in the Western Interconnection about their implementation of wind and solar forecasting. The report updates and expands upon one issued by NREL in 2012. As in the 2012 report, the OEs interviewed vary in size and character; the group includes independent system operators, balancing authorities, utilities, and other entities. Respondents' advice for other utilities includes starting sooner rather than later as it can take time to plan, prepare, and train a forecast; setting realistic expectations; using multiple forecasts; and incorporating several performance metrics.

Widiss, R.; Porter, K.

2014-03-01T23:59:59.000Z

32

EVALUATION OF PV GENERATION CAPICITY CREDIT FORECAST ON DAY-AHEAD UTILITY MARKETS  

E-Print Network [OSTI]

City, and Sacramento Municipal Utility District, in California 1. BACKGROUND The effective capacity comfortable if capacity could be ascertained operationally by knowing in advance what the output of solar of the NDFD-based solar radiation forecasts for several climatically distinct locations, the evaluation is now

Perez, Richard R.

33

Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.  

SciTech Connect (OSTI)

We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M. (Mathematics and Computer Science); (Univ. of Chicago); (New York Univ.)

2009-10-09T23:59:59.000Z

34

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

35

The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation  

E-Print Network [OSTI]

Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

Jaworsky, Christina A

2013-01-01T23:59:59.000Z

36

A 10 GS/s Distributed Waveform Generator for Sub-Nanosecond Pulse Generation and Modulation in Standard Digital CMOS  

E-Print Network [OSTI]

A 10 GS/s Distributed Waveform Generator for Sub-Nanosecond Pulse Generation and Modulation, Email:hwu@ece.rochester.edu Abstract-- A distributed waveform generator is presented for sub a distributed waveform generator (DWG) circuit in a time-interleaved architecture suitable for standard CMOS

Wu, Hui

37

Design of a next-generation regional weather research and forecast model.  

SciTech Connect (OSTI)

The Weather Research and Forecast (WRF) model is a new model development effort undertaken jointly by the National Center for Atmospheric Research (NCAR), the National Oceanic and Atmospheric Administration (NOAA), and a number of collaborating institutions and university scientists. The model is intended for use by operational NWP and university research communities, providing a common framework for idealized dynamical studies, fill physics numerical weather prediction, air-quality simulation, and regional climate. It will eventually supersede large, well-established but aging regional models now maintained by the participating institutions. The WRF effort includes re-engineering the underlying software architecture to produce a modular, flexible code designed from the outset to provide portable performance across diverse computing architectures. This paper outlines key elements of the WRF software design.

Michalakes, J.

1999-01-13T23:59:59.000Z

38

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

SciTech Connect (OSTI)

Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-08-13T23:59:59.000Z

39

GENERATION OF ENSEMBLE STREAMFLOW FORECASTS USING AN ENHANCED VERSION OF THE SNOWMELT RUNOFF MODEL1  

E-Print Network [OSTI]

this article: Manuel Prieto & Carl Bauer (2012): Hydroelectric power generation in Chile: an institutional 2012, 131­146 Hydroelectric power generation in Chile: an institutional critique of the neutrality instructions for authors and subscription information: http://www.tandfonline.com/loi/rwin20 Hydroelectric

Walden, Von P.

40

RACORO Forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daniel Hartsock CIMMS, University of Oklahoma ARM AAF Wiki page Weather Briefings Observed Weather Cloud forecasting models BUFKIT forecast soundings + guidance...

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Forecast of Advanced Technology Adoption for Coal Fired Power Generation Towards the Year of 2050  

Science Journals Connector (OSTI)

The considered systems of coal fired power generation are Supercritical Unit, Ultra Supercritical Unit, ... . In order to compare with the natural gas case, Natural Gas Combined Cycle (NGCC) is included. Evaluati...

Keiji Makino

2013-01-01T23:59:59.000Z

42

Forecasting wireless communication technologies  

Science Journals Connector (OSTI)

The purpose of the paper is to present a formal comparison of a variety of multiple regression models in technology forecasting for wireless communication. We compare results obtained from multiple regression models to determine whether they provide a superior fitting and forecasting performance. Both techniques predict the year of wireless communication technology introduction from the first (1G) to fourth (4G) generations. This paper intends to identify the key parameters impacting the growth of wireless communications. The comparison of technology forecasting approaches benefits future researchers and practitioners when developing a prediction of future wireless communication technologies. The items of focus will be to understand the relationship between variable selection and model fit. Because the forecasting error was successfully reduced from previous approaches, the quadratic regression methodology is applied to the forecasting of future technology commercialisation. In this study, the data will show that the quadratic regression forecasting technique provides a better fit to the curve.

Sabrina Patino; Jisun Kim; Tugrul U. Daim

2010-01-01T23:59:59.000Z

43

Forecast of Advanced Technology for Coal Power Generation Towards the Year of 2050 in CO2 Reduction Model of Japan  

Science Journals Connector (OSTI)

Abstract In the fossil fuel, coal is enough to get easily because it has supply and price stability brought about its ubiquitously. Coal is used for power generation as the major fuel in the world. However it is true that control of global warming should be applied to coal power generations. Therefore, many people expect CO2 reduction by technical innovation such as efficiency improvement, Carbon dioxide Capture and Storage (CCS). In case of coal power plant are considered for improving efficiency. Some of them have already put into commercial operation but others are still under R&D stage. Especially, the technical development prospect of the power plant is very important for planning the energy strategy in the resource-importing country. Japan Coal Energy Center (JCOAL) constructed a program to forecast the share of advanced coal fired plants/natural gas power plants towards the year of 2050. Then, we simulated the future prediction about 2 cases (the Japanese scenario and the world scenario). The fuel price and the existence of CCS were considered in the forecast of the technical development of the thermal power generation. Especially in the Japanese scenario, we considered the CO2 reduction target which is 80% reduction in 1990. In the world scenario, coal price had almost no influence on the share of coal fired plant. However, when the gas price increased 1.5% or more, the share of coal fired plant increased. In that case, CO2 emissions increased because coal-fired plant increased. Compared with both cases, the amount of CO2 in 2050 without CCS case was 50% higher than that of with CCS case. In Japanese scenario, achievement of 80% CO2 reduction target is impossible without CCS. If CCS is introduced into all the new establishment coal fired plant, CO2 reduction target can be attained. In the Japanese scenario, the gas price more expensive than a coal price so that the amount of the coal fired plant does not decline. Since the reduction of the amount of CO2 will be needed in all over the world, introductory promotion and technical development of CCS are very important not only Japan but also all over the world.

Takashi Nakamura; Keiji Makino; Kunihiko Shibata; Michiaki Harada

2013-01-01T23:59:59.000Z

44

Hybrid Generation Systems Planning Expansion Forecast: A Critical State of the Art Review  

E-Print Network [OSTI]

resources. In order to power system enhance reliability, efficiency and safety, renewable and nonrenewable, hydropower, geothermal, and biomass constitute a type of distributed electricity resources and have recently, these generation unit should be working together in two or more sources in the so-called hybrid system concept

Brest, Université de

45

Future scenarios and trends in energy generation in brazil: supply and demand and mitigation forecasts  

Science Journals Connector (OSTI)

Abstract The structure of the Brazilian energy matrix defines Brazil as a global leader in power generation from renewable sources. In 2011, the share of renewable sources in electricity production reached 88.8%, mainly due to the large national water potential. Although the Brazilian energy model presents a strong potential for expansion, the total energy that could be used with most current renewable technologies often outweighs the national demand. The current composition of the national energy matrix has outstanding participation of hydropower, even though the country has great potential for the exploitation of other renewable energy sources such as wind, solar and biomass. This document therefore refers to the trend of evolution of the Brazilian Energy Matrix and exposes possible mitigation scenarios, also considering climate change. The methodology to be used in the modeling includes the implementation of the LEAP System (Long-range Energy Alternatives Planning) program, developed by the Stockholm Environment Institute, which allows us to propose different scenarios under the definition of socioeconomic scenarios and base power developed in the context of the REGSA project (Promoting Renewable Electricity Generation in South America). Results envision future scenarios and trends in power generation in Brazil, and the projected demand and supply of electricity for up to 2030.

José Baltazar Salgueirinho Osório De Andrade Guerra; Luciano Dutra; Norma Beatriz Camisão Schwinden; Suely Ferraz de Andrade

2014-01-01T23:59:59.000Z

46

Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse  

DOE Patents [OSTI]

Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

Cohen, Oren (Boulder, CO); Kapteyn, Henry C. (Boulder, CO); Mumane, Margaret M. (Boulder, CO)

2010-02-16T23:59:59.000Z

47

Waste Generation Forecast for DOE-ORO`s Environmental Restoration OR-1 Project: FY 1994--FY 2001. Environmental Restoration Program, September 1993 Revision  

SciTech Connect (OSTI)

This Waste Generation Forecast for DOE-ORO`s Environmental Restoration OR-1 Project. FY 1994--FY 2001 is the third in a series of documents that report current estimates of the waste volumes expected to be generated as a result of Environmental Restoration activities at Department of Energy, Oak Ridge Operations Office (DOE-ORO), sites. Considered in the scope of this document are volumes of waste expected to be generated as a result of remedial action and decontamination and decommissioning activities taking place at these sites. Sites contributing to the total estimates make up the DOE-ORO Environmental Restoration OR-1 Project: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, the Y-12 Plant, the Paducah Gaseous Diffusion Plant, the Portsmouth Gaseous Diffusion Plant, and the off-site contaminated areas adjacent to the Oak Ridge facilities (collectively referred to as the Oak Ridge Reservation Off-Site area). Estimates are available for the entire fife of all waste generating activities. This document summarizes waste estimates forecasted for the 8-year period of FY 1994-FY 2001. Updates with varying degrees of change are expected throughout the refinement of restoration strategies currently in progress at each of the sites. Waste forecast data are relatively fluid, and this document represents remediation plans only as reported through September 1993.

Not Available

1993-12-01T23:59:59.000Z

48

Estimating Water Needs to Meet 2025 Electricity Generating Capacity Forecasts by NERC Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL-2006/1235 NETL-2006/1235 August 2006 Revised April 8, 2008 Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

49

Correcting and combining time series forecasters  

Science Journals Connector (OSTI)

Combined forecasters have been in the vanguard of stochastic time series modeling. In this way it has been usual to suppose that each single model generates a residual or prediction error like a white noise. However, mostly because of disturbances not ... Keywords: Artificial neural networks hybrid systems, Linear combination of forecasts, Maximum likelihood estimation, Time series forecasters, Unbiased forecasters

Paulo Renato A. Firmino; Paulo S. G. De Mattos Neto; Tiago A. E. Ferreira

2014-02-01T23:59:59.000Z

50

Electro-optically Tunable Microring Resonators for Non-Linear Frequency Modulated Waveform Generation  

E-Print Network [OSTI]

Microring resonators are a fundamental building block for integrated optical filters, and have both modulation and waveform generation applications. A hybrid chalcogenide (As2S3) on titanium diffused (Ti:LiNbO3) waveguide platform has been...

Snider, William

2012-10-19T23:59:59.000Z

51

Generating and Calibrating Probabilistic Quantitative Precipitation Forecasts from the High-Resolution NWP Model COSMO-DE  

Science Journals Connector (OSTI)

Statistical postprocessing is an integral part of an ensemble prediction system. This study compares methods used to derive probabilistic quantitative precipitation forecasts based on the high-resolution version of the German-focused Consortium ...

Sabrina Bentzien; Petra Friederichs

2012-08-01T23:59:59.000Z

52

Price volatility forecasting using artificial neural networks in emerging electricity markets  

Science Journals Connector (OSTI)

In the adaptive short-term electricity price forecasting, it may be premature to rely solely on the hourly price forecast. The volatility of electricity price should also be analysed to provide additional insight on price forecasting. This paper proposes a price volatility module to analyse electricity price spikes and study the probability distribution of electricity price. Two methods are used to study the probability distribution of electricity price: the analytical method and the ANN method. Furthermore, ANN method is used to study the impact of line limits, line outages, generator outages, load pattern and bidding strategy on short term price forecasting, in addition to sensitivity analysis to determine the extent to which these factors impact price forecasting. Data used in this study are spot electricity prices from California market in the period which includes the crisis months where extreme volatility was observed.

Ahmad F. Al-Ajlouni; Hatim Y. Yamin; Ali Eyadeh

2012-01-01T23:59:59.000Z

53

Aggregate vehicle travel forecasting model  

SciTech Connect (OSTI)

This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

1995-05-01T23:59:59.000Z

54

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by Esmeralda Sanchez by Esmeralda Sanchez Errata -(7/14/04) The Office of Integrated Analysis and Forecasting has produced an annual evaluation of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and the most recent historical year of data. The Forecast Evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute forecast errors for each of the major variables for AEO82 through AEO2003. The average absolute forecast error, which for the purpose of this report will also be referred to simply as "average error" or "forecast error", is computed as the simple mean, or average, of all the absolute values of the percent errors, expressed as the percentage difference between the Reference Case projection and actual historic value, shown for every AEO and for each year in the forecast horizon (for a given variable). The historical data are typically taken from the Annual Energy Review (AER). The last column of Table 1 provides a summary of the most recent average absolute forecast errors. The calculation of the forecast error is shown in more detail in Tables 2 through 18. Because data for coal prices to electric generating plants were not available from the AER, data from the Monthly Energy Review (MER), July 2003 were used.

55

PSO (FU 2101) Ensemble-forecasts for wind power  

E-Print Network [OSTI]

PSO (FU 2101) Ensemble-forecasts for wind power Analysis of the Results of an On-line Wind Power Ensemble- forecasts for wind power (FU2101) a demo-application producing quantile forecasts of wind power correct) quantile forecasts of the wind power production are generated by the application. However

56

NOAA GREAT LAKES COASTAL FORECASTING SYSTEM Forecasts (up to 5 days in the future)  

E-Print Network [OSTI]

conditions for up to 5 days in the future. These forecasts are run twice daily, and you can step through are generated every 6 hours and you can step backward in hourly increments to view conditions over the previousNOAA GREAT LAKES COASTAL FORECASTING SYSTEM Forecasts (up to 5 days in the future) and Nowcasts

57

Results of testing a development module of the second-generation E-Systems concentrating photovoltaic-thermal module  

SciTech Connect (OSTI)

An actively-cooled linear Fresnel lens concentrating photovoltaic and thermal module, designed and built by E-Systems, was tested in the Photovoltaic Advanced Systems Test Facility. Physical, electrical, and thermal characteristics of the module are presented. Module performance is characterized through the use of multiple linear regression techniques.

Harrison, T D

1982-04-01T23:59:59.000Z

58

Improving baseline forecasts in a 500-industry dynamic CGE model of the USA.  

E-Print Network [OSTI]

??MONASH-style CGE models have been used to generate baseline forecasts illustrating how an economy is likely to evolve through time. One application of such forecasts… (more)

Mavromatis, Peter George

2013-01-01T23:59:59.000Z

59

A Novel Optimization Method for the Electric Topology of Thermoelectric Modules Used in an Automobile Exhaust Thermoelectric Generator  

Science Journals Connector (OSTI)

Based on Bi2Te3 thermoelectric modules, a kind of automobile exhaust thermoelectric generator (AETEG) with a ... heat exchanger and cooling system. Then, their electric topology (series or parallel hybrid) was .....

Rui Quan; Xinfeng Tang; Shuhai Quan; Liang Huang

2013-07-01T23:59:59.000Z

60

Efficient terahertz-wave generation and its ultrafast optical modulation in charge ordered organic ferroelectrics  

SciTech Connect (OSTI)

Efficient terahertz (THz) wave generation in strongly correlated organic compounds ?-(ET){sub 2}I{sub 3} and ??-(ET){sub 2}IBr{sub 2} (ET:bis(ethylenedithio)-tetrathiafulvalene) was demonstrated. The spontaneous polarization induced by charge ordering or electronic ferroelectricity was revealed to trigger the THz-wave generation via optical rectification; the estimated 2nd-order nonlinear optical susceptibility for ?-(ET){sub 2}I{sub 3} is over 70 times larger than that for prototypical THz-source ZnTe. Ultrafast (<1 ps) and sensitive (?40%) photoresponse of the THz wave was observed for ?-(ET){sub 2}I{sub 3}, which is attributable to photoinduced quenching of the polarization accompanied by insulator(ferroelectric)-to-metal transition. Modulation of the THz wave was observed for ??-(ET){sub 2}IBr{sub 2} upon the poling procedure, indicating the alignment of polar domains.

Itoh, Hirotake, E-mail: hiroitoh@m.tohoku.ac.jp; Iwai, Shinichiro, E-mail: s-iwai@m.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); JST, CREST, Sendai 980-8578 (Japan); Itoh, Keisuke; Goto, Kazuki [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Yamamoto, Kaoru [Department of Applied Physics, Okayama University of Science, Okayama 700-0005 (Japan); Yakushi, Kyuya [Toyota Physical and Chemical Research Institute, Nagakute 480-1192 (Japan)

2014-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Forecast Prices  

Gasoline and Diesel Fuel Update (EIA)

Notes: Notes: Prices have already recovered from the spike, but are expected to remain elevated over year-ago levels because of the higher crude oil prices. There is a lot of uncertainty in the market as to where crude oil prices will be next winter, but our current forecast has them declining about $2.50 per barrel (6 cents per gallon) from today's levels by next October. U.S. average residential heating oil prices peaked at almost $1.50 as a result of the problems in the Northeast this past winter. The current forecast has them peaking at $1.08 next winter, but we will be revisiting the outlook in more detail next fall and presenting our findings at the annual Winter Fuels Conference. Similarly, diesel prices are also expected to fall. The current outlook projects retail diesel prices dropping about 14 cents per gallon

62

A Generic Biogeochemical Module for Earth System Models: Next Generation BioGeoChemical Module (NGBGC), Version 1.0  

SciTech Connect (OSTI)

Physical and biogeochemical processes regulate soil carbon dynamics and CO2 flux to and from atmosphere, influencing global climate changes. Integration of these processes into earth system models (e.g., community land models (CLM)), however, currently faces three major challenges: 1) extensive efforts are required to modify modeling structures and to rewrite computer programs to incorporate new or updated processes as new knowledge is being generated, 2) computational cost is prohibitively expensive to simulate biogeochemical processes in land models due to large variations in the rates of biogeochemical processes, and 3) various mathematical representations of biogeochemical processes exist to incorporate different aspects of fundamental mechanisms, but systematic evaluation of the different mathematical representations is difficult, if not possible. To address these challenges, we propose a new computational framework to easily incorporate physical and biogeochemical processes into land models. The new framework consists of a new biogeochemical module with a generic algorithm and reaction database so that new and updated processes can be incorporated into land models without the need to manually set up the ordinary differential equations to be solved numerically. The reaction database consists of processes of nutrient flow through the terrestrial ecosystems in plants, litter and soil. This framework facilitates effective comparison studies of biogeochemical cycles in an ecosystem using different conceptual models under the same land modeling framework. The approach was first implemented in CLM and benchmarked against simulations from the original CLM-CN code. A case study was then provided to demonstrate the advantages of using the new approach to incorporate a phosphorus cycle into the CLM model. To our knowledge, the phosphorus-incorporated CLM is a new model that can be used to simulate phosphorus limitation on the productivity of terrestrial ecosystems.

Fang, Yilin; Huang, Maoyi; Liu, Chongxuan; Li, Hongyi; Leung, Lai-Yung R.

2013-11-13T23:59:59.000Z

63

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network [OSTI]

draft). Analyzing Fuel Price Risks Under CompetitiveCouncil (NWPPC). 2002. Fuel Price Forecasts for the DraftText Box 1: A Brief Survey of Past Literature on Fuel Price

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

64

Using Membrane Sets Incorporated into a Crossflow Electrofiltration/Electrodialysis Treatment Module to Treat CMP Wastewater and Simultaneously Generate Electrolytic Ionized Water.  

E-Print Network [OSTI]

??In this work, membrane set(s) had been incorporated into different crossflow electrofiltration (CEF) /electrodialysis (ED) treatment modules for treating various CMP wastewaters and simultaneously generating… (more)

Yang, Tsung-Yin

2003-01-01T23:59:59.000Z

65

Forecasting wave height probabilities with numerical weather prediction models  

E-Print Network [OSTI]

Forecasting wave height probabilities with numerical weather prediction models Mark S. Roulstona; Numerical weather prediction 1. Introduction Wave forecasting is now an integral part of operational weather methods for generating such forecasts from numerical model output from the European Centre for Medium

Stevenson, Paul

66

Assumptions to the Annual Energy Outlook 2001 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2001, DOE/EIA-M060(2001) January 2001. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves

67

Assumptions to the Annual Energy Outlook 2002 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2002, DOE/EIA-M060(2002) (Washington, DC, January 2002). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves

68

Fruit Flies Modulate Passive Wing Pitching to Generate In-Flight Turns Attila J. Bergou,1,* Leif Ristroph,1  

E-Print Network [OSTI]

Fruit Flies Modulate Passive Wing Pitching to Generate In-Flight Turns Attila J. Bergou,1,* Leif of their wing motions. Here, we measure the free-flight kinematics of fruit flies and determine how arise and what control variables govern them remains a challenge. Here, we analyze the torques fruit

Guckenheimer, John

69

High-power ELF radiation generated by modulated HF heating of the ionosphere can cause Earthquakes, Cyclones and localized heating  

E-Print Network [OSTI]

High-power ELF radiation generated by modulated HF heating of the ionosphere can cause Earthquakes, the HAARP heater is the most powerful ionospheric heater, with 3.6GW of effective power using HF heating, Cyclones and localized heating Fran De Aquino Maranhao State University, Physics Department, S

Paris-Sud XI, Université de

70

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 23 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 International Energy Module The NEMS International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of future U.S. and world crude-like liquids production and consumption to estimate the effects of changes in U.S. liquid fuels markets on the international petroleum market. For each year of the forecast, the NEMS IEM computes world oil prices, provides a supply curve of world crude-like liquids, generates a worldwide oil supply- demand balance with regional detail, and computes quantities of crude oil and light and heavy petroleum products imported into

71

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 International Energy Module The NEMS International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of future U.S. and world crude-like liquids production and consumption to estimate the effects of changes in U.S. liquid fuels markets on the international petroleum market. For each year of the forecast, the NEMS IEM computes oil prices, provides a supply curve of world crude-like liquids, generates a worldwide oil supply- demand balance with regional detail, and computes quantities of crude oil and light and heavy petroleum products imported into the United States by export region. Changes in the oil price (WTI), which is defined as the price of light, low-sulfur crude oil delivered to Cushing, Oklahoma in

72

1993 Solid Waste Reference Forecast Summary  

SciTech Connect (OSTI)

This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

1993-08-01T23:59:59.000Z

73

Managing Wind Power Forecast Uncertainty in Electric Grids.  

E-Print Network [OSTI]

??Electricity generated from wind power is both variable and uncertain. Wind forecasts provide valuable information for wind farm management, but they are not perfect. Chapter… (more)

Mauch, Brandon Keith

2012-01-01T23:59:59.000Z

74

Generation of ultrahigh frequency air microplasma in a magnetic loop and effects of pulse modulation on operation  

SciTech Connect (OSTI)

An atmospheric pressure air microplasma (APAMP) source was developed under ambient conditions using a magnetic loop at an operating frequency of 740 MHz. A self-igniting, stable APAMP was generated at 9.5 W. Pulse modulation (PM) was applied to the ultra high frequency signal. The effects of PM on self-ignition and operation of the APAMP source were studied by using a square wave modulating signal in the frequency range of 5-30 KHz. With the application of PM on the APAMP, in the best case, the plasma self-ignites and is sustained at 2.5 W.

Taghioskoui, Mazdak; Perlow, Joshua; Zaghloul, Mona [Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052 (United States); Montaser, Akbar [Department of Chemistry, George Washington University, Washington, DC 20052 (United States)

2010-05-10T23:59:59.000Z

75

A Buildings Module for the Stochastic Energy Deployment System  

SciTech Connect (OSTI)

The U.S. Department of Energy (USDOE) is building a new long-range (to 2050) forecasting model for use in budgetary and management applications called the Stochastic Energy Deployment System (SEDS), which explicitly incorporates uncertainty through its development within the Analytica(R) platform of Lumina Decision Systems. SEDS is designed to be a fast running (a few minutes), user-friendly model that analysts can readily run and modify in its entirety through a visual programming interface. Lawrence Berkeley National Laboratory is responsible for implementing the SEDS Buildings Module. The initial Lite version of the module is complete and integrated with a shared code library for modeling demand-side technology choice developed by the National Renewable Energy Laboratory (NREL) and Lumina. The module covers both commercial and residential buildings at the U.S. national level using an econometric forecast of floorspace requirement and a model of building stock turnover as the basis for forecasting overall demand for building services. Although the module is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies, it differs from standard energy forecasting models by including considerations of passive building systems, interactions between technologies (such as internal heat gains), and on-site power generation.

Lacommare, Kristina S H; Marnay, Chris; Stadler, Michael; Borgeson, Sam; Coffey, Brian; Komiyama, Ryoichi; Lai, Judy

2008-05-15T23:59:59.000Z

76

Hologram generation by horizontal scanning of a high-speed spatial light modulator  

Science Journals Connector (OSTI)

In order to increase the image size and the viewing zone angle of a hologram, a high-speed spatial light modulator (SLM) is imaged as a vertically long image by an anamorphic imaging...

Takaki, Yasuhiro; Okada, Naoya

2009-01-01T23:59:59.000Z

77

Wind and Load Forecast Error Model for Multiple Geographically Distributed Forecasts  

SciTech Connect (OSTI)

The impact of wind and load forecast errors on power grid operations is frequently evaluated by conducting multi-variant studies, where these errors are simulated repeatedly as random processes based on their known statistical characteristics. To generate these errors correctly, we need to reflect their distributions (which do not necessarily follow a known distribution law), standard deviations, auto- and cross-correlations. For instance, load and wind forecast errors can be closely correlated in different zones of the system. This paper introduces a new methodology for generating multiple cross-correlated random processes to simulate forecast error curves based on a transition probability matrix computed from an empirical error distribution function. The matrix will be used to generate new error time series with statistical features similar to observed errors. We present the derivation of the method and present some experimental results by generating new error forecasts together with their statistics.

Makarov, Yuri V.; Reyes Spindola, Jorge F.; Samaan, Nader A.; Diao, Ruisheng; Hafen, Ryan P.

2010-11-02T23:59:59.000Z

78

Forecasting 65+ travel : an integration of cohort analysis and travel demand modeling  

E-Print Network [OSTI]

Over the next 30 years, the Boomers will double the 65+ population in the United States and comprise a new generation of older Americans. This study forecasts the aging Boomers' travel. Previous efforts to forecast 65+ ...

Bush, Sarah, 1973-

2003-01-01T23:59:59.000Z

79

Energy balance, forecasting of bioelectricity generation and greenhouse gas emission balance in the ethanol production at sugarcane mills in the state of Mato Grosso do Sul  

Science Journals Connector (OSTI)

The aim of this paper is to present aspects about the energy balance of sugarcane crops and its carbon dioxide emissions. We calculate energy used in agricultural, industrial and distribution sectors by five sugarcane mills of Mato Grosso do Sul and we compare the yield with its energy delivery. The energy balance obtained, with an average 6.8, shows that is advantageous to produce ethanol in the lands of that Brazilian state. We have prepared a forecasting of electricity production from bagasse taking into account two types of technology. Finally, we present the potential value of CO2 emitted by the five mills to evaluate greenhouse gas emissions of the ethanol production valor chain.

Mirko V. Turdera

2013-01-01T23:59:59.000Z

80

Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint  

SciTech Connect (OSTI)

The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wind Power Forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email List Self Supplied Balancing Reserves Dynamic...

82

Solar forecasting review  

E-Print Network [OSTI]

2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

Inman, Richard Headen

2012-01-01T23:59:59.000Z

83

Wind Power Forecasting  

Science Journals Connector (OSTI)

The National Center for Atmospheric Research (NCAR) has configured a Wind Power Forecasting System for Xcel Energy that integrates high resolution and ensemble...

Sue Ellen Haupt; William P. Mahoney; Keith Parks

2014-01-01T23:59:59.000Z

84

Energy Demand Forecasting  

Science Journals Connector (OSTI)

This chapter presents alternative approaches used in forecasting energy demand and discusses their pros and cons. It... Chaps. 3 and 4 ...

S. C. Bhattacharyya

2011-01-01T23:59:59.000Z

85

Utilizing nonlinear ELF generation in modulated ionospheric heating experiments for communications applications  

E-Print Network [OSTI]

only when these harmonics are below ~4.5 kHz because of radio atmospherics (sferics) generating strong below ~10 kHz. A high-power, high-frequency (HF, 3­10 MHz) beam is directed upward, and the transmitted near the auroral electrojet can generate extremely low frequency (ELF; 3 Hz­3 kHz) radio waves

86

Improving Inventory Control Using Forecasting  

E-Print Network [OSTI]

This project studied and analyzed Electronic Controls, Inc.’s forecasting process for three high-demand products. In addition, alternative forecasting methods were developed to compare to the current forecast method. The ...

Balandran, Juan

2005-12-16T23:59:59.000Z

87

Generation of pulse-modulated induction thermal plasma at atmospheric pressure  

Science Journals Connector (OSTI)

The radio frequency induction thermal plasma of sufficiently high electric power for materials processing has been successfully generated with a pulsemodulated operating condition. A solid-stateamplifier which supplies the electric power with a nominal frequency of 1 MHz was employed for the pulsing plasma generation. The Ar–H 2 plasma was generated at a high power level of 17 kW at atmospheric pressure. Typically the plasma remained stable until the pulse duty factor went down to 30% when the period of the high power level was 5 ms and the low power level was about 6 kW.

Takamasa Ishigaki; Xiaobao Fan; Tadahiro Sakuta; Toshiyuki Banjo; Yukihito Shibuya

1997-01-01T23:59:59.000Z

88

Simulation for Wind Turbine Generators -- With FAST and MATLAB-Simulink Modules  

SciTech Connect (OSTI)

This report presents the work done to develop generator and gearbox models in the Matrix Laboratory (MATLAB) environment and couple them to the National Renewable Energy Laboratory's Fatigue, Aerodynamics, Structures, and Turbulence (FAST) program. The goal of this project was to interface the superior aerodynamic and mechanical models of FAST to the excellent electrical generator models found in various Simulink libraries and applications. The scope was limited to Type 1, Type 2, and Type 3 generators and fairly basic gear-train models. Future work will include models of Type 4 generators and more-advanced gear-train models with increased degrees of freedom. As described in this study, implementation of the developed drivetrain model enables the software tool to be used in many ways. Several case studies are presented as examples of the many types of studies that can be performed using this tool.

Singh, M.; Muljadi, E.; Jonkman, J.; Gevorgian, V.; Girsang, I.; Dhupia, J.

2014-04-01T23:59:59.000Z

89

Technology Forecasting Scenario Development  

E-Print Network [OSTI]

Technology Forecasting and Scenario Development Newsletter No. 2 October 1998 Systems Analysis was initiated on the establishment of a new research programme entitled Technology Forecasting and Scenario and commercial applica- tion of new technology. An international Scientific Advisory Panel has been set up

90

CAPP 2010 Forecast.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forecast, Markets & Pipelines 1 Crude Oil Forecast, Markets & Pipelines June 2010 2 CANADIAN ASSOCIATION OF PETROLEUM PRODUCERS Disclaimer: This publication was prepared by the...

91

Developing electricity forecast web tool for Kosovo market  

Science Journals Connector (OSTI)

In this paper is presented a web tool for electricity forecast for Kosovo market for the upcoming ten years. The input data i.e. electricity generation capacities, demand and consume are taken from the document "Kosovo Energy Strategy 2009-2018" compiled ... Keywords: .NET, database, electricity forecast, internet, simulation, web

Blerim Rexha; Arben Ahmeti; Lule Ahmedi; Vjollca Komoni

2011-02-01T23:59:59.000Z

92

Assumptions to the Annual Energy Outlook 2000 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2000, DOE/EIA-M060(2000) January 2000. The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2000, DOE/EIA-M060(2000) January 2000. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of coal production, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

93

Microsoft PowerPoint - FinalModule6.ppt  

Broader source: Energy.gov (indexed) [DOE]

6: Metrics, Performance 6: Metrics, Performance Measurements and Forecasting Prepared by: Module 6 - Metrics, Performance Measures and Forecasting 2 Prepared by: Booz Allen Hamilton Module 6: Metrics, Performance Measurements and Forecasting Welcome to Module 6. The objective of this module is to introduce you to the Metrics and Performance Measurement tools used, along with Forecasting, in Earned Value Management. The Topics that will be addressed in this Module include: * Define Cost and Schedule Variances * Define Cost and Schedule Performance Indices * Define Estimate to Complete (ETC) * Define Estimate at Completion (EAC) and Latest Revised Estimate (LRE) Module 6 - Metrics, Performance Measures and Forecasting 3 Prepared by: Booz Allen Hamilton Review of Previous Modules Let's quickly review what has been covered in the previous modules.

94

Assumptions to the Annual Energy Outlook 1999 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

coal.gif (4423 bytes) coal.gif (4423 bytes) The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Model Documentation: Coal Market Module of the National Energy Modeling System, DOE/EIA-MO60. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of coal production, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

95

Today's Forecast: Improved Wind Predictions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions July 20, 2011 - 6:30pm Addthis Stan Calvert Wind Systems Integration Team Lead, Wind & Water Power Program What does this project do? It will increase the accuracy of weather forecast models for predicting substantial changes in winds at heights important for wind energy up to six hours in advance, allowing grid operators to predict expected wind power production. Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable. These forecasts also play an important role in reducing the cost of renewable energy by allowing electricity grid operators to make timely decisions on what reserve generation they need to operate their systems.

96

Today's Forecast: Improved Wind Predictions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions July 20, 2011 - 6:30pm Addthis Stan Calvert Wind Systems Integration Team Lead, Wind & Water Power Program What does this project do? It will increase the accuracy of weather forecast models for predicting substantial changes in winds at heights important for wind energy up to six hours in advance, allowing grid operators to predict expected wind power production. Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable. These forecasts also play an important role in reducing the cost of renewable energy by allowing electricity grid operators to make timely decisions on what reserve generation they need to operate their systems.

97

Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint  

SciTech Connect (OSTI)

Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

2013-10-01T23:59:59.000Z

98

Forecasting hotspots using predictive visual analytics approach  

SciTech Connect (OSTI)

A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

2014-12-30T23:59:59.000Z

99

Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS  

E-Print Network [OSTI]

of the Department of Energy's Office of Industrial Technologies, EIA extracted energy use infonnation from the Annual Energy Outlook (AEO) - 2000 (8) for each of the seven # The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute...-6, 2000 NEMS The NEMS industrial module is the official forecasting model for EIA and thus the Department of Energy. For this reason, the energy prices and output forecasts used to drive the ITEMS model were taken from EIA's AEO 2000. Understanding...

Roop, J. M.; Dahowski, R. T

100

On the Use of Thermoelectric (TE) Applications Based on Commercial Modules: The Case of TE Generator and TE Cooler  

Science Journals Connector (OSTI)

In recent years thermoelectricity sees rapidly increasing usages in applications like portable refrigerators beverage coolers electronic component coolers etc. when used as Thermoelectric Cooler (TEC) and Thermoelectric Generators (TEG) which make use of the Seebeck effect in semiconductors for the direct conversion of heat into electrical energy and is of particular interest for systems of highest reliability or for waste heat recovery. In this work we examine the performance of commercially available TEC and TEG. A prototype TEC?refrigerator has been designed modeled and constructed for in?car applications. Additionally a TEG was made in order to measure the gained power and efficiency. Furthermore a TEG module was tested on a small size car (Toyota Starlet 1300 cc) in order to measure the gained power and efficiency for various engine loads. With the use of a modeling approach we evaluated the thermal contact resistances and their influence on the final device efficiency.

K. Zorbas; E. Hatzikraniotis; K. M. Paraskevopoulos; Th. Kyratsi

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

FPGA Based Sinusoidal Pulse Width Modulated Waveform Generation for Solar (PV) Rural Home Power Inverter  

E-Print Network [OSTI]

With the increasing concern about global environmental protection and energy demand due to rapid growth of population in developing countries and the diminishing trend of resources of conventional grid supply, the need to produce freely available pollution free natural energy such as solar/wind energy has been drawing increasing interest in every corner of the world. In an effort to utilize these energies effectively through Power converter, a great deal of research is being carried out by different researchers / scientist and engineers at different places in the world to meet the increasing demand of load. The study presents methodology to integrate solar (PV) energy (which is freely available in every corner of the world) with grid source and supplement the existing grid power in rural houses during its cut off or restricted supply period. In order to get consistency in supply a DG is also added as a standby source in the proposed integration of network. The software using novel Direct PWM modulation strate...

Singh, S N

2010-01-01T23:59:59.000Z

102

Improving the forecasting function for a Credit Hire operator in the UK  

Science Journals Connector (OSTI)

This study aims to test on the predictability of Credit Hire services for the automobile and insurance industry. A relatively sophisticated time series forecasting procedure, which conducts a competition among exponential smoothing models, is employed to forecast demand for a leading UK Credit Hire operator (CHO). The generated forecasts are compared against the Naive method, resulting that demand for CHO services is indeed extremely hard to forecast, as the underlying variable is the number of road accidents – a truly stochastic variable.

Nicolas D. Savio; K. Nikolopoulos; Konstantinos Bozos

2009-01-01T23:59:59.000Z

103

Valuing Climate Forecast Information  

Science Journals Connector (OSTI)

The article describes research opportunities associated with evaluating the characteristics of climate forecasts in settings where sequential decisions are made. Illustrative results are provided for corn production in east central Illinois. ...

Steven T. Sonka; James W. Mjelde; Peter J. Lamb; Steven E. Hollinger; Bruce L. Dixon

1987-09-01T23:59:59.000Z

104

Comparing Forecast Skill  

Science Journals Connector (OSTI)

A basic question in forecasting is whether one prediction system is more skillful than another. Some commonly used statistical significance tests cannot answer this question correctly if the skills are computed on a common period or using a common ...

Timothy DelSole; Michael K. Tippett

2014-12-01T23:59:59.000Z

105

Application of an Improved SVM Algorithm for Wind Speed Forecasting  

Science Journals Connector (OSTI)

An improved Support Vector Machine (SVM) algorithm is used to forecast wind in Doubly Fed Induction Generator (DFIG) wind power system without aerodromometer. The ... Validation (CV) method. Finally, 3.6MW DFIG w...

Huaqiang Zhang; Xinsheng Wang; Yinxiao Wu

2011-01-01T23:59:59.000Z

106

Representing Forecast Error in a Convection-Permitting Ensemble System  

Science Journals Connector (OSTI)

Ensembles provide an opportunity to greatly improve short-term prediction of local weather hazards, yet generating reliable predictions remain a significant challenge. In particular, convection-permitting ensemble forecast systems (CPEFSs) have ...

Glen S. Romine; Craig S. Schwartz; Judith Berner; Kathryn R. Fossell; Chris Snyder; Jeff L. Anderson; Morris L. Weisman

2014-12-01T23:59:59.000Z

107

Assumptions to the Annual Energy Outlook 2001 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIAÂ’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

108

Assumptions to the Annual Energy Outlook 2002 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIAÂ’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

109

Assumptions to the Annual Energy Outlook 2002 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).117 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

110

Assumptions to the Annual Energy Outlook 2001 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

111

A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting  

E-Print Network [OSTI]

is critical for coastal California solar forecasting.   affecting solar irradiance in southern California.   solar  photovoltaic generation (the southern California 

Mathiesen, Patrick; Collier, Craig; Kleissl, Jan

2013-01-01T23:59:59.000Z

112

A suite of metrics for assessing the performance of solar power forecasting  

Science Journals Connector (OSTI)

Abstract Forecasting solar energy generation is a challenging task because of the variety of solar power systems and weather regimes encountered. Inaccurate forecasts can result in substantial economic losses and power system reliability issues. One of the key challenges is the unavailability of a consistent and robust set of metrics to measure the accuracy of a solar forecast. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, and applications) that were developed as part of the U.S. Department of Energy SunShot Initiative’s efforts to improve the accuracy of solar forecasting. In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design-of-experiments methodology in conjunction with response surface, sensitivity analysis, and nonparametric statistical testing methods. The three types of forecasting improvements are (i) uniform forecasting improvements when there is not a ramp, (ii) ramp forecasting magnitude improvements, and (iii) ramp forecasting threshold changes. Day-ahead and 1-hour-ahead forecasts for both simulated and actual solar power plants are analyzed. The results show that the proposed metrics can efficiently evaluate the quality of solar forecasts and assess the economic and reliability impacts of improved solar forecasting. Sensitivity analysis results show that (i) all proposed metrics are suitable to show the changes in the accuracy of solar forecasts with uniform forecasting improvements, and (ii) the metrics of skewness, kurtosis, and Rényi entropy are specifically suitable to show the changes in the accuracy of solar forecasts with ramp forecasting improvements and a ramp forecasting threshold.

Jie Zhang; Anthony Florita; Bri-Mathias Hodge; Siyuan Lu; Hendrik F. Hamann; Venkat Banunarayanan; Anna M. Brockway

2015-01-01T23:59:59.000Z

113

ErAs:,,InGaAs...1-x,,InAlAs...x alloy power generator modules Gehong Zeng,a  

E-Print Network [OSTI]

p-type ErAs:InGaAs alloy thermoelectric elements. The thermoelectric properties of the materials power and efficiency of a thermoelectric generator module depend largely on the material. Thermoelectric properties can be improved by introducing nanometer scale structure into materials.2 In this way

Bowers, John

114

Operational forecasting based on a modified Weather Research and Forecasting model  

SciTech Connect (OSTI)

Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

Lundquist, J; Glascoe, L; Obrecht, J

2010-03-18T23:59:59.000Z

115

Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumption to the Annual Energy Outlook Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2004, DOE/EIA-M060(2004) (Washington, DC, 2004). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of capacity utilization of mines, mining capacity, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

116

arXiv:physics/0306019v12Jun2003 Computing in High Energy and Nuclear Physics, La Jolla, California, March 24 -28, 2003 1 Java Physics Generator and Analysis Modules  

E-Print Network [OSTI]

and Asian JLC detector simulation modules have been written for performing comparisons to the American LC For- tran77, and new C++ and Fortran95 software mod- ules for event generation, detector simulation 3 and 4 list the generator and detector simulation modules, respectively. A sim- ple comparison

117

Sandia National Laboratories: solar forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource...

118

Consensus Coal Production Forecast for  

E-Print Network [OSTI]

Rate Forecasts 19 5. EIA Forecast: Regional Coal Production 22 6. Wood Mackenzie Forecast: W.V. Steam to data currently published by the Energy Information Administration (EIA), coal production in the state in this report calls for state production to decline by 11.3 percent in 2009 to 140.2 million tons. During

Mohaghegh, Shahab

119

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Table 2. Total Energy Consumption, Actual vs. Forecasts Table 3. Total Petroleum Consumption, Actual vs. Forecasts Table 4. Total Natural Gas Consumption, Actual vs. Forecasts Table 5. Total Coal Consumption, Actual vs. Forecasts Table 6. Total Electricity Sales, Actual vs. Forecasts Table 7. Crude Oil Production, Actual vs. Forecasts Table 8. Natural Gas Production, Actual vs. Forecasts Table 9. Coal Production, Actual vs. Forecasts Table 10. Net Petroleum Imports, Actual vs. Forecasts Table 11. Net Natural Gas Imports, Actual vs. Forecasts Table 12. Net Coal Exports, Actual vs. Forecasts Table 13. World Oil Prices, Actual vs. Forecasts Table 14. Natural Gas Wellhead Prices, Actual vs. Forecasts Table 15. Coal Prices to Electric Utilities, Actual vs. Forecasts

120

On Sequential Probability Forecasting  

E-Print Network [OSTI]

at the same time. [Probability, Statistics and Truth, MacMillan 1957. page 11] ... the collective "denotes a collective wherein the attribute of the single event is the number of points thrown. [Probability, StatisticsOn Sequential Probability Forecasting David A. Bessler 1 David A. Bessler Texas A&M University

McCarl, Bruce A.

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EIA-Assumptions to the Annual Energy Outlook - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2007 Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

122

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by Esmeralda Sánchez The Office of Integrated Analysis and Forecasting has produced an annual evaluation of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and the most recent historical year of data. The Forecast Evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute forecast errors for each of the major variables for AEO82 through AEO2003. The average absolute forecast error, which for the purpose of this report will also be referred to simply as "average error" or "forecast error", is computed as the simple mean, or average, of all the absolute values of the percent errors,

123

Mid-term electricity market clearing price forecasting: A hybrid LSSVM and ARMAX approach  

Science Journals Connector (OSTI)

Abstract A hybrid mid-term electricity market clearing price (MCP) forecasting model combining both least squares support vector machine (LSSVM) and auto-regressive moving average with external input (ARMAX) modules is presented in this paper. Mid-term electricity MCP forecasting has become essential for resources reallocation, maintenance scheduling, bilateral contracting, budgeting and planning purposes. Currently, there are many techniques available for short-term electricity market clearing price (MCP) forecasting, but very little has been done in the area of mid-term electricity MCP forecasting. PJM interconnection data have been utilized to illustrate the proposed model with numerical examples. The proposed hybrid model showed improved forecasting accuracy compared to a forecasting model using a single LSSVM.

Xing Yan; Nurul A. Chowdhury

2013-01-01T23:59:59.000Z

124

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

125

Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts  

E-Print Network [OSTI]

Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts Antonio that the inherent variability in wind power generation and the related difficulty in predicting future generation profiles, raise major challenges to wind power integration into the electricity grid. In this work we study

Giannitrapani, Antonello

126

What constrains spread growth in forecasts ini2alized from  

E-Print Network [OSTI]

1 What constrains spread growth in forecasts ini2alized from ensemble Kalman filters? Tom from manner in which ini2al condi2ons are generated, some due to the model (e.g., stochas2c physics as error; part of spread growth from manner in which ini2al condi2ons are generated, some due

Hamill, Tom

127

U.S. Regional Demand Forecasts Using NEMS and GIS  

SciTech Connect (OSTI)

The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-07-01T23:59:59.000Z

128

Price forecasting for notebook computers.  

E-Print Network [OSTI]

??This paper proposes a four-step approach that uses statistical regression to forecast notebook computer prices. Notebook computer price is related to constituent features over a… (more)

Rutherford, Derek Paul

2012-01-01T23:59:59.000Z

129

Ensemble Forecasts and their Verification  

E-Print Network [OSTI]

· Ensemble forecast verification ­ Performance metrics: Brier Score, CRPSS · New concepts and developments of weather Sources: Insufficient spatial resolution, truncation errors in the dynamical equations

Maryland at College Park, University of

130

Next Generation Fast RF Interlock Module and ATCA Adapter for ILC High Availability RF Test Station Demonstration  

SciTech Connect (OSTI)

High availability interlocks and controls are required for the ILC (International Linear Collider) L-Band high power RF stations. A new F3 (Fast Fault Finder) VME module has been developed to process both fast and slow interlocks using FPGA logic to detect the interlock trip excursions. This combination eliminates the need for separate PLC (Programmable Logic Controller) control of slow interlocks. Modules are chained together to accommodate as many inputs as needed. In the next phase of development the F3's will be ported to the new industry standard ATCA (Advanced Telecom Computing Architecture) crate (shelf) via a specially designed VME adapter module with IPMI (Intelligent Platform Management Interface). The goal is to demonstrate auto-failover and hot-swap for future partially redundant systems.

Larsen, R

2009-10-17T23:59:59.000Z

131

Probabilistic manpower forecasting  

E-Print Network [OSTI]

- ing E. Results- Probabilistic Forecasting . 26 27 Z8 29 31 35 36 38 39 IV. CONCLUSIONS. V. GLOSSARY 42 44 APPENDICES REFERENCES 50 70 LIST OF TABLES Table Page Outline of Job-Probability Matrix Job-Probability Matrix. Possible... Outcomes of Job A Possible Outcomes of Jobs A and B 10 Possible Outcomes of Jobs A, B and C II LIST GF FIGURES Figure Page Binary Representation of Numbers 0 Through 7 12 First Cumulative Probability Table 14 3. Graph of Cumulative Probability vs...

Koonce, James Fitzhugh

1966-01-01T23:59:59.000Z

132

Diagnosing Forecast Errors in Tropical Cyclone Motion  

Science Journals Connector (OSTI)

This paper reports on the development of a diagnostic approach that can be used to examine the sources of numerical model forecast error that contribute to degraded tropical cyclone (TC) motion forecasts. Tropical cyclone motion forecasts depend ...

Thomas J. Galarneau Jr.; Christopher A. Davis

2013-02-01T23:59:59.000Z

133

EIA model documentation: Electricity market module - electricity fuel dispatch  

SciTech Connect (OSTI)

This report documents the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM) as it was used for EIA`s Annual Energy Outlook 1997. It replaces previous documentation dated March 1994 and subsequent yearly update revisions. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves four purposes. First, it is a reference document providing a detailed description of the model for reviewers and potential users of the EFD including energy experts at the Energy Information Administration (EIA), other Federal agencies, state energy agencies, private firms such as utilities and consulting firms, and non-profit groups such as consumer and environmental groups. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation which details model enhancements that were undertaken for AE097 and since the previous documentation. Last, because the major use of the EFD is to develop forecasts, this documentation explains the calculations, major inputs and assumptions which were used to generate the AE097.

NONE

1997-01-01T23:59:59.000Z

134

Project Profile: Forecasting and Influencing Technological Progress...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forecasting and Influencing Technological Progress in Solar Energy Project Profile: Forecasting and Influencing Technological Progress in Solar Energy Logos of the University of...

135

Forecasting with adaptive extended exponential smoothing  

Science Journals Connector (OSTI)

Much of product level forecasting is based upon time series techniques. However, traditional time series forecasting techniques have offered either smoothing constant adaptability or consideration of various t...

John T. Mentzer Ph.D.

136

Electricity price forecasting in a grid environment.  

E-Print Network [OSTI]

??Accurate electricity price forecasting is critical to market participants in wholesale electricity markets. Market participants rely on price forecasts to decide their bidding strategies, allocate… (more)

Li, Guang, 1974-

2007-01-01T23:59:59.000Z

137

Energy Department Forecasts Geothermal Achievements in 2015 ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forecasts Geothermal Achievements in 2015 Energy Department Forecasts Geothermal Achievements in 2015 The 40th annual Stanford Geothermal Workshop in January featured speakers in...

138

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation by Susan H. Holte In this paper, the Office of Integrated Analysis and Forecasting (OIAF) of the Energy Information Administration (EIA) evaluates the projections published in the Annual Energy Outlook (AEO), (1) by comparing the projections from the Annual Energy Outlook 1982 through the Annual Energy Outlook 2001 with actual historical values. A set of major consumption, production, net import, price, economic, and carbon dioxide emissions variables are included in the evaluation, updating similar papers from previous years. These evaluations also present the reasons and rationales for significant differences. The Office of Integrated Analysis and Forecasting has been providing an

139

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Title of Paper Annual Energy Outlook Forecast Evaluation Title of Paper Annual Energy Outlook Forecast Evaluation by Susan H. Holte OIAF has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Natural gas has generally been the fuel with the least accurate forecasts of consumption, production, and prices. Natural gas was the last fossil fuel to be deregulated following the strong regulation of energy markets in the 1970s and early 1980s. Even after deregulation, the behavior

140

Assumptions to the Annual Energy Outlook - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumption to the Annual Energy Outlook Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).109 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Incorporating Forecast Uncertainty in Utility Control Center  

SciTech Connect (OSTI)

Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as well as system loads are not adequately reflected in existing industry-grade tools used for transmission system management, generation commitment, dispatch and market operation. There are other sources of uncertainty such as uninstructed deviations of conventional generators from their dispatch set points, generator forced outages and failures to start up, load drops, losses of major transmission facilities and frequency variation. These uncertainties can cause deviations from the system balance, which sometimes require inefficient and costly last minute solutions in the near real-time timeframe. This Chapter considers sources of uncertainty and variability, overall system uncertainty model, a possible plan for transition from deterministic to probabilistic methods in planning and operations, and two examples of uncertainty-based fools for grid operations.This chapter is based on work conducted at the Pacific Northwest National Laboratory (PNNL)

Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian

2014-07-09T23:59:59.000Z

142

Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint  

SciTech Connect (OSTI)

Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

Zhang, J.; Hodge, B. M.; Florita, A.

2013-05-01T23:59:59.000Z

143

EIA-Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2007 Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2007, DOE/EIA-M060(2007) (Washington, DC, 2007). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

144

Assumptions to the Annual Energy Outlook 1999 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

commercial.gif (5196 bytes) commercial.gif (5196 bytes) The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIAÂ’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings, however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

145

NOAA Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps  

E-Print Network [OSTI]

Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12;Bay Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12 N Collier N Charlotte S Charlotte NOAA Harmful Algal Bloom Operational Forecast System Southwest

146

Modulating lignin in plants  

SciTech Connect (OSTI)

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

147

Electron spin resonance and electron spin-echo modulation study of paramagnetic Rh species generated in Ca-Y and Na-Y zeolites  

SciTech Connect (OSTI)

Paramagnetic Rh species generated in RhNa-Y and RhCa-Y zeolites after various treatments were characterized by using electron spin resonance (ESR) and electron spin-echo modulation (ESEM) spectroscopies. Activation in flowing oxygen at 500/sup 0/C ..beta..-hydrogen a considerable amount of Rh(II) located in site I in the hexagonal prism of the zeolite structure for 3 wt % Rh in RhNa-Y zeolite. Samples of 1 wt % Rh in RhNa-Y and RhCa-Y did not show any paramagnetic signals. Adsorption of various adsorbates such as water, ammonia, methanol, carbon monoxide, and oxygen on activated samples induced a considerable increase in the ESR intensities. Adsorption of oxygen and carbon monoxide yields the corresponding adducts which are located in the ..cap alpha..-cage of the zeolite structure. Hydration generated a species which is coordinated to three water molecules. Adsorption of methanol on RhNa-Y generated a species H2 which is also formed after reduction of RhNa-Y with H/sub 2/, suggesting that the methanol molecule undergoes a reaction to generate products which further reduce Rh(III) species in the ..beta..-cage of the zeolite structure to Rh(II). No significant differences were observed between RhNa-Y and RhCa-Y except for the formation of different Rh(II) species after methanol adsorption in RhCa-Y and the generation of a larger amount of Rh(II) in site I in RhNa-Y. These results are compared to previously obtained data in RhNa-X and RhCa-X to account for the effect of the cocations and the Si/Al ratio on the generation of Rh(II) species in zeolites.

Goldfarb, D.; Kevan, L.

1987-04-15T23:59:59.000Z

148

Forecast Energy | Open Energy Information  

Open Energy Info (EERE)

Forecast Energy Forecast Energy Jump to: navigation, search Name Forecast Energy Address 2320 Marinship Way, Suite 300 Place Sausalito, California Zip 94965 Sector Services Product Intelligent Monitoring and Forecasting Services Year founded 2010 Number of employees 11-50 Company Type For profit Website http://www.forecastenergy.net Coordinates 37.865647°, -122.496315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.865647,"lon":-122.496315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Price forecasting for notebook computers  

E-Print Network [OSTI]

This paper proposes a four-step approach that uses statistical regression to forecast notebook computer prices. Notebook computer price is related to constituent features over a series of time periods, and the rates of change in the influence...

Rutherford, Derek Paul

2012-06-07T23:59:59.000Z

150

Forecasting phenology under global warming  

Science Journals Connector (OSTI)

...Forrest Forecasting phenology under global warming Ines Ibanez 1 * Richard B. Primack...and site-specific responses to global warming. We found that for most species...climate change|East Asia, global warming|growing season, hierarchical...

2010-01-01T23:59:59.000Z

151

Demand Forecasting of New Products  

E-Print Network [OSTI]

Keeping Unit or SKU) employing attribute analysis techniques. The objective of this thesis is to improve Abstract This thesis is a study into the demand forecasting of new products (also referred to as Stock

Sun, Yu

152

Wintertime sub-kilometer numerical forecasts of near-surface variables in the Canadian Rocky Mountains  

Science Journals Connector (OSTI)

Numerical Weather Prediction (NWP) systems operational at many national centers are nowadays used at kilometer scale. The next generation of NWP models will provide forecasts at sub-kilometrer scale. Large impacts are expected in mountainous ...

Vincent Vionnet; Stéphane Bélair; Claude Girard; André Plante

153

Conceptual design of a geothermal site development forecasting system  

SciTech Connect (OSTI)

A site development forecasting system has been designed in response to the need to monitor and forecast the development of specific geothermal resource sites for electrical power generation and direct heat applications. The system is comprised of customized software, a site development status data base, and a set of complex geothermal project development schedules. The system would use site-specific development status information obtained from the Geothermal Progress Monitor and other data derived from economic and market penetration studies to produce reports on the rates of geothermal energy development, federal agency manpower requirements to ensure these developments, and capital expenditures and technical/laborer manpower required to achieve these developments.

Neham, E.A.; Entingh, D.J.

1980-03-01T23:59:59.000Z

154

CCPP-ARM Parameterization Testbed Model Forecast Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

Klein, Stephen

155

Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE: Preprint  

SciTech Connect (OSTI)

The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This study examines the value of improved solar power forecasting for the Independent System Operator-New England system. The results show how 25% solar power penetration reduces net electricity generation costs by 22.9%.

Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B. M.

2014-09-01T23:59:59.000Z

156

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1995-02-01T23:59:59.000Z

157

Model documentation report: Commercial sector demand module of the national energy modeling system  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1994-08-01T23:59:59.000Z

158

Wind Forecast Improvement Project Southern Study Area Final Report...  

Office of Environmental Management (EM)

Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern...

159

Applying Bayesian Forecasting to Predict New Customers' Heating Oil Demand.  

E-Print Network [OSTI]

??This thesis presents a new forecasting technique that estimates energy demand by applying a Bayesian approach to forecasting. We introduce our Bayesian Heating Oil Forecaster… (more)

Sakauchi, Tsuginosuke

2011-01-01T23:59:59.000Z

160

Distributed Generation Potential of the U.S. CommercialSector  

SciTech Connect (OSTI)

Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25 percent of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Department of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman,Etan; Marnay, Chris

2005-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solar Energy Market Forecast | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Market Forecast Solar Energy Market Forecast Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Energy Market Forecast Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Solar Topics: Market analysis, Technology characterizations Resource Type: Publications Website: giffords.house.gov/DOE%20Perspective%20on%20Solar%20Market%20Evolution References: Solar Energy Market Forecast[1] Summary " Energy markets / forecasts DOE Solar America Initiative overview Capital market investments in solar Solar photovoltaic (PV) sector overview PV prices and costs PV market evolution Market evolution considerations Balance of system costs Silicon 'normalization' Solar system value drivers Solar market forecast Additional resources"

162

Assumptions to the Annual Energy Outlook - Household Expenditures Module  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module Assumption to the Annual Energy Outlook Household Expenditures Module Figure 5. United States Census Divisions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division (see

163

Summary Verification Measures and Their Interpretation for Ensemble Forecasts  

Science Journals Connector (OSTI)

Ensemble prediction systems produce forecasts that represent the probability distribution of a continuous forecast variable. Most often, the verification problem is simplified by transforming the ensemble forecast into probability forecasts for ...

A. Allen Bradley; Stuart S. Schwartz

2011-09-01T23:59:59.000Z

164

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by by Esmeralda Sanchez The Office of Integrated Analysis and Forecasting has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: * Over the last two decades, there have been many significant changes in laws, policies, and regulations that could not have been anticipated and were not assumed in the projections prior to their implementation. Many of these actions have had significant impacts on energy supply, demand, and prices; however, the

165

Annual Energy Outlook 2001-Appendix G: Major Assumptions for the Forecasts  

Gasoline and Diesel Fuel Update (EIA)

Forecasts Forecasts Summary of the AEO2001 Cases/ Scenarios - Appendix Table G1 bullet1.gif (843 bytes) Model Results (Formats - PDF, ZIP) - Appendix Tables - Reference Case - 1998 to 2020 bullet1.gif (843 bytes) Download Report - Entire AEO2001 (PDF) - AEO2001 by Chapters (PDF) bullet1.gif (843 bytes) Acronyms bullet1.gif (843 bytes) Contacts Related Links bullet1.gif (843 bytes) Assumptions to the AEO2001 bullet1.gif (843 bytes) Supplemental Data to the AEO2001 (Only available on the Web) - Regional and more detailed AEO 2001 Reference Case Results - 1998, 2000 to 2020 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) Forecast Homepage bullet1.gif (843 bytes) EIA Homepage Appendix G Major Assumptions for the Forecasts Component Modules Major Assumptions for the Annual Energy Outlook 2001

166

A Model of U.S. Commercial Distributed Generation Adoption  

SciTech Connect (OSTI)

Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

2006-01-10T23:59:59.000Z

167

Review of Wind Energy Forecasting Methods for Modeling Ramping Events  

SciTech Connect (OSTI)

Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

2011-03-28T23:59:59.000Z

168

Communication of uncertainty in temperature forecasts  

Science Journals Connector (OSTI)

We used experimental economics to test whether undergraduate students presented with a temperature forecast with uncertainty information in a table and bar graph format were able to use the extra information to interpret a given forecast. ...

Pricilla Marimo; Todd R. Kaplan; Ken Mylne; Martin Sharpe

169

FORECASTING THE ROLE OF RENEWABLES IN HAWAII  

E-Print Network [OSTI]

FORECASTING THE ROLE OF RENEWABLES IN HAWAII Jayant SathayeFORECASTING THE ROLF OF RENEWABLES IN HAWAII J Sa and Henrythe Conservation Role of Renewables November 18, 1980 Page 2

Sathaye, Jayant

2013-01-01T23:59:59.000Z

170

Massachusetts state airport system plan forecasts.  

E-Print Network [OSTI]

This report is a first step toward updating the forecasts contained in the 1973 Massachusetts State System Plan. It begins with a presentation of the forecasting techniques currently available; it surveys and appraises the ...

Mathaisel, Dennis F. X.

171

Antarctic Satellite Meteorology: Applications for Weather Forecasting  

Science Journals Connector (OSTI)

For over 30 years, weather forecasting for the Antarctic continent and adjacent Southern Ocean has relied on weather satellites. Significant advancements in forecasting skill have come via the weather satellite. The advent of the high-resolution ...

Matthew A. Lazzara; Linda M. Keller; Charles R. Stearns; Jonathan E. Thom; George A. Weidner

2003-02-01T23:59:59.000Z

172

Forecasting Water Use in Texas Cities  

E-Print Network [OSTI]

In this research project, a methodology for automating the forecasting of municipal daily water use is developed and implemented in a microcomputer program called WATCAL. An automated forecast system is devised by modifying the previously...

Shaw, Douglas T.; Maidment, David R.

173

Voluntary Green Power Market Forecast through 2015  

SciTech Connect (OSTI)

Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

2010-05-01T23:59:59.000Z

174

Energy demand forecasting: industry practices and challenges  

Science Journals Connector (OSTI)

Accurate forecasting of energy demand plays a key role for utility companies, network operators, producers and suppliers of energy. Demand forecasts are utilized for unit commitment, market bidding, network operation and maintenance, integration of renewable ... Keywords: analytics, energy demand forecasting, machine learning, renewable energy sources, smart grids, smart meters

Mathieu Sinn

2014-06-01T23:59:59.000Z

175

Consensus Coal Production And Price Forecast For  

E-Print Network [OSTI]

Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 © Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

Mohaghegh, Shahab

176

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Evaluation Evaluation Annual Energy Outlook Forecast Evaluation by Esmeralda Sanchez The Office of Integrated Analysis and Forecasting has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Over the last two decades, there have been many significant changes in laws, policies, and regulations that could not have been anticipated and were not assumed in the projections prior to their implementation. Many of these actions have had significant impacts on energy supply, demand, and prices; however, the impacts were not incorporated in the AEO projections until their enactment or effective dates in accordance with EIA's requirement to remain policy neutral and include only current laws and regulations in the AEO reference case projections.

177

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Analysis Papers > Annual Energy Outlook Forecast Evaluation Analysis Papers > Annual Energy Outlook Forecast Evaluation Release Date: February 2005 Next Release Date: February 2006 Printer-friendly version Annual Energy Outlook Forecast Evaluation* Table 1.Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations Printer Friendly Version Average Absolute Percent Error Variable AEO82 to AEO99 AEO82 to AEO2000 AEO82 to AEO2001 AEO82 to AEO2002 AEO82 to AEO2003 AEO82 to AEO2004 Consumption Total Energy Consumption 1.9 2.0 2.1 2.1 2.1 2.1 Total Petroleum Consumption 2.9 3.0 3.1 3.1 3.0 2.9 Total Natural Gas Consumption 7.3 7.1 7.1 6.7 6.4 6.5 Total Coal Consumption 3.1 3.3 3.5 3.6 3.7 3.8 Total Electricity Sales 1.9 2.0 2.3 2.3 2.3 2.4 Production Crude Oil Production 4.5 4.5 4.5 4.5 4.6 4.7

178

Load Forecasting of Supermarket Refrigeration  

E-Print Network [OSTI]

energy system. Observed refrigeration load and local ambient temperature from a Danish su- permarket renewable energy, is increasing, therefore a flexible energy system is needed. In the present ThesisLoad Forecasting of Supermarket Refrigeration Lisa Buth Rasmussen Kongens Lyngby 2013 M.Sc.-2013

179

Essays on macroeconomics and forecasting  

E-Print Network [OSTI]

explanatory variables. Compared to Stock and Watson (2002)�s models, the models proposed in this chapter can further allow me to select the factors structurally for each variable to be forecasted. I find advantages to using the structural dynamic factor...

Liu, Dandan

2006-10-30T23:59:59.000Z

180

Forecasting-based SKU classification  

Science Journals Connector (OSTI)

Different spare parts are associated with different underlying demand patterns, which in turn require different forecasting methods. Consequently, there is a need to categorise stock keeping units (SKUs) and apply the most appropriate methods in each category. For intermittent demands, Croston's method (CRO) is currently regarded as the standard method used in industry to forecast the relevant inventory requirements; this is despite the bias associated with Croston's estimates. A bias adjusted modification to CRO (Syntetos–Boylan Approximation, SBA) has been shown in a number of empirical studies to perform very well and be associated with a very ‘robust’ behaviour. In a 2005 article, entitled ‘On the categorisation of demand patterns’ published by the Journal of the Operational Research Society, Syntetos et al. (2005) suggested a categorisation scheme, which establishes regions of superior forecasting performance between CRO and SBA. The results led to the development of an approximate rule that is expressed in terms of fixed cut-off values for the following two classification criteria: the squared coefficient of variation of the demand sizes and the average inter-demand interval. Kostenko and Hyndman (2006) revisited this issue and suggested an alternative scheme to distinguish between CRO and SBA in order to improve overall forecasting accuracy. Claims were made in terms of the superiority of the proposed approach to the original solution but this issue has never been assessed empirically. This constitutes the main objective of our work. In this paper the above discussed classification solutions are compared by means of experimentation on more than 10,000 \\{SKUs\\} from three different industries. The results enable insights to be gained into the comparative benefits of these approaches. The trade-offs between forecast accuracy and other implementation related considerations are also addressed.

G. Heinecke; A.A. Syntetos; W. Wang

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

182

The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations – the Northern Study Area.  

SciTech Connect (OSTI)

This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times. A comprehensive analysis of wind energy forecast errors for the various model-based power forecasts was presented for a suite of wind energy ramp definitions. The results compiled over the year-long study period showed that the power forecasts based on the research models (ESRL_RAP, HRRR) more accurately predict wind energy ramp events than the current operational forecast models, both at the system aggregate level and at the local wind plant level. At the system level, the ESRL_RAP-based forecasts most accurately predict both the total number of ramp events and the occurrence of the events themselves, but the HRRR-based forecasts more accurately predict the ramp rate. At the individual site level, the HRRR-based forecasts most accurately predicted the actual ramp occurrence, the total number of ramps and the ramp rates (40-60% improvement in ramp rates over the coarser resolution forecast

Finley, Cathy [WindLogics

2014-04-30T23:59:59.000Z

183

Effects of environmental factors on the conversion efficiency of solar thermoelectric co-generators comprising parabola trough collectors and thermoelectric modules without evacuated tubular collector  

Science Journals Connector (OSTI)

Abstract Solar thermoelectric co-generators (STECGs) are an attractive means of supplying electric power and heat simultaneously and economically. Here we examine the effects of environmental factors on the conversion efficiencies of a new type of STECG comprising parabolic trough concentrators and thermoelectric modules (TEMs). Each TEM array was bonded with a solar selective absorber plate and directly positioned on the focal axis of the parabolic concentrator. Glass tubular collectors were not used to encase the TEMs. Although this makes the overall system simpler, the environmental effects become significant. Simulations show that the performance of such a system strongly depends on ambient conditions such as solar insolation, atmospheric temperature and wind velocity. As each of these factors increases, the thermal losses of the STECG system also increase, resulting in reduced solar conversion efficiency, despite the increased radiation absorption. However, the impact of these factors is relatively complicated. Although the electrical efficiency of the system increases with increasing solar insolation, it decreases with increasing ambient temperature and wind velocity. These results serve as a useful guide to the selection and installation of STECGs, particularly in Guangzhou or similar climate region.

Chao Li; Ming Zhang; Lei Miao; Jianhua Zhou; Yi Pu Kang; C.A.J. Fisher; Kaoru Ohno; Yang Shen; Hong Lin

2014-01-01T23:59:59.000Z

184

Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation)  

SciTech Connect (OSTI)

The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This presentation is an overview of a study that examines the value of improved solar forecasts on Bulk Power System Operations.

Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B.M.

2014-11-01T23:59:59.000Z

185

Weather forecast-based optimization of integrated energy systems.  

SciTech Connect (OSTI)

In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

2009-03-01T23:59:59.000Z

186

Forecasting wind speed financial return  

E-Print Network [OSTI]

The prediction of wind speed is very important when dealing with the production of energy through wind turbines. In this paper, we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model that has been shown to be able to reproduce accurately the statistical behavior of wind speed. The model is used to forecast, one step ahead, wind speed. In order to check the validity of the model we show, as indicator of goodness, the root mean square error and mean absolute error between real data and predicted ones. We also compare our forecasting results with those of a persistence model. At last, we show an application of the model to predict financial indicators like the Internal Rate of Return, Duration and Convexity.

D'Amico, Guglielmo; Prattico, Flavio

2013-01-01T23:59:59.000Z

187

Generated using V3.1.2 of the official AMS LATEX templatejournal page layout FOR AUTHOR USE ONLY, NOT FOR SUBMISSION! Quantifying uncertainty for climate change and long range forecasting scenarios with  

E-Print Network [OSTI]

of a turbulent tracer with a mean gradient with the background turbulent field velocity generated by the first of contemporary climate science. An impor-14 tant feature of all the current computer Atmosphere Ocean15 Science of understanding of the underlying19 physical processes or the limitations of computing power20 with the necessary

Majda, Andrew J.

188

Improved one day-ahead price forecasting using combined time series and artificial neural network models for the electricity market  

Science Journals Connector (OSTI)

The price forecasts embody crucial information for generators when planning bidding strategies to maximise profits. Therefore, generation companies need accurate price forecasting tools. Comparison of neural network and auto regressive integrated moving average (ARIMA) models to forecast commodity prices in previous researches showed that the artificial neural network (ANN) forecasts were considerably more accurate than traditional ARIMA models. This paper provides an accurate and efficient tool for short-term price forecasting based on the combination of ANN and ARIMA. Firstly, input variables for ANN are determined by time series analysis. This model relates the current prices to the values of past prices. Secondly, ANN is used for one day-ahead price forecasting. A three-layered feed-forward neural network algorithm is used for forecasting next-day electricity prices. The ANN model is then trained and tested using data from electricity market of Iran. According to previous studies, in the case of neural networks and ARIMA models, historical demand data do not significantly improve predictions. The results show that the combined ANNâ??ARIMA forecasts prices with high accuracy for short-term periods. Also, it is shown that policy-making strategies would be enhanced due to increased precision and reliability.

Ali Azadeh; Seyed Farid Ghaderi; Behnaz Pourvalikhan Nokhandan; Shima Nassiri

2011-01-01T23:59:59.000Z

189

Use of wind power forecasting in operational decisions.  

SciTech Connect (OSTI)

The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

2011-11-29T23:59:59.000Z

190

Weather Forecast Data an Important Input into Building Management Systems  

E-Print Network [OSTI]

Lewis Poulin Implementation and Operational Services Section Canadian Meteorological Centre, Dorval, Qc National Prediction Operations Division ICEBO 2013, Montreal, Qc October 10 2013 Version 2013-09-27 Weather Forecast Data An Important... and weather information ? Numerical weather forecast production 101 ? From deterministic to probabilistic forecasts ? Some MSC weather forecast (NWP) datasets ? Finding the appropriate data for the appropriate forecast ? Preparing for probabilistic...

Poulin, L.

2013-01-01T23:59:59.000Z

191

BMA Probabilistic Quantitative Precipitation Forecasting over the Huaihe Basin Using TIGGE Multimodel Ensemble Forecasts  

Science Journals Connector (OSTI)

Bayesian model averaging (BMA) probability quantitative precipitation forecast (PQPF) models were established by calibrating their parameters using 1–7-day ensemble forecasts of 24-h accumulated precipitation, and observations from 43 ...

Jianguo Liu; Zhenghui Xie

2014-04-01T23:59:59.000Z

192

Calibrated Precipitation Forecasts for a Limited-Area Ensemble Forecast System Using Reforecasts  

Science Journals Connector (OSTI)

The calibration of numerical weather forecasts using reforecasts has been shown to increase the skill of weather predictions. Here, the precipitation forecasts from the Consortium for Small Scale Modeling Limited Area Ensemble Prediction System (...

Felix Fundel; Andre Walser; Mark A. Liniger; Christoph Frei; Christof Appenzeller

2010-01-01T23:59:59.000Z

193

Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint  

SciTech Connect (OSTI)

As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecasts relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.

Steckler, N.; Florita, A.; Zhang, J.; Hodge, B. M.

2013-11-01T23:59:59.000Z

194

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

H Tables H Tables Appendix H Comparisons With Other Forecasts, and Performance of Past IEO Forecasts for 1990, 1995, and 2000 Forecast Comparisons Three organizations provide forecasts comparable with those in the International Energy Outlook 2005 (IEO2005). The International Energy Agency (IEA) provides “business as usual” projections to the year 2030 in its World Energy Outlook 2004; Petroleum Economics, Ltd. (PEL) publishes world energy forecasts to 2025; and Petroleum Industry Research Associates (PIRA) provides projections to 2015. For this comparison, 2002 is used as the base year for all the forecasts, and the comparisons extend to 2025. Although IEA’s forecast extends to 2030, it does not publish a projection for 2025. In addition to forecasts from other organizations, the IEO2005 projections are also compared with those in last year’s report (IEO2004). Because 2002 data were not available when IEO2004 forecasts were prepared, the growth rates from IEO2004 are computed from 2001.

195

Funding Opportunity Announcement for Wind Forecasting Improvement...  

Office of Environmental Management (EM)

to improved forecasts, system operators and industry professionals can ensure that wind turbines will operate at their maximum potential. Data collected during this field...

196

Upcoming Funding Opportunity for Wind Forecasting Improvement...  

Office of Environmental Management (EM)

to improved forecasts, system operators and industry professionals can ensure that wind turbines will operate at their maximum potential. Data collected during this field...

197

Huge market forecast for linear LDPE  

Science Journals Connector (OSTI)

Huge market forecast for linear LDPE ... It now appears that the success of the new technology, which rests largely on energy and equipment cost savings, could be overwhelming. ...

1980-08-25T23:59:59.000Z

198

Electricity Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Market Module Market Module This page inTenTionally lefT blank 101 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2013, DOE/EIA-M068(2013). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

199

Annual Energy Outlook Forecast Evaluation - Table 1. Forecast Evaluations:  

Gasoline and Diesel Fuel Update (EIA)

Average Absolute Percent Errors from AEO Forecast Evaluations: Average Absolute Percent Errors from AEO Forecast Evaluations: 1996 to 2000 Average Absolute Percent Error Average Absolute Percent Error Average Absolute Percent Error Average Absolute Percent Error Average Absolute Percent Error Variable 1996 Evaluation: AEO82 to AEO93 1997 Evaluation: AEO82 to AEO97 1998 Evaluation: AEO82 to AEO98 1999 Evaluation: AEO82 to AEO99 2000 Evaluation: AEO82 to AEO2000 Consumption Total Energy Consumption 1.8 1.6 1.7 1.7 1.8 Total Petroleum Consumption 3.2 2.8 2.9 2.8 2.9 Total Natural Gas Consumption 6.0 5.8 5.7 5.6 5.6 Total Coal Consumption 2.9 2.7 3.0 3.2 3.3 Total Electricity Sales 1.8 1.6 1.7 1.8 2.0 Production Crude Oil Production 5.1 4.2 4.3 4.5 4.5

200

Optimal combined wind power forecasts using exogeneous variables  

E-Print Network [OSTI]

Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Ensemble typhoon quantitative precipitation forecasts model in Taiwan  

Science Journals Connector (OSTI)

In this study, an ensemble typhoon quantitative precipitation forecast (ETQPF) model was developed to provide typhoon rainfall forecasts for Taiwan. The ETQPF rainfall forecast is obtained by averaging the pick-out cases, which are screened at a ...

Jing-Shan Hong; Chin-Tzu Fong; Ling-Feng Hsiao; Yi-Chiang Yu; Chian-You Tzeng

202

EIA-Assumptions to the Annual Energy Outlook - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2007 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind.112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon the availability of low-cost energy storage systems.

203

PDSF Modules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modules Modules Modules Modules Approach to Managing The Environment Modules is a system which you can use to specify what software you want to use. If you want to use a particular software package loading its module will take care of the details of modifying your environment as necessary. The advantage of the modules approach is that the you are not required to explicitly specify paths for different executable versions and try to keep their related man paths and environment variables coordinated. Instead you simply "load" and "unload" specific modules to control your environment. Getting Started with Modules If you're using the standard startup files on PDSF then you're already setup for using modules. If the "module" command is not available, please

204

Forecast of geothermal drilling activity  

SciTech Connect (OSTI)

The numbers of each type of geothermal well expected to be drilled in the United States for each 5-year period to 2000 AD are specified. Forecasts of the growth of geothermally supplied electric power and direct heat uses are presented. The different types of geothermal wells needed to support the forecasted capacity are quantified, including differentiation of the number of wells to be drilled at each major geothermal resource for electric power production. The rate of growth of electric capacity at geothermal resource areas is expected to be 15 to 25% per year (after an initial critical size is reached) until natural or economic limits are approached. Five resource areas in the United States should grow to significant capacity by the end of the century (The Geysers; Imperial Valley; Valles Caldera, NM; Roosevelt Hot Springs, UT; and northern Nevada). About 3800 geothermal wells are expected to be drilled in support of all electric power projects in the United States between 1981 and 2000 AD. Half of the wells are expected to be drilled in the Imperial Valley. The Geysers area is expected to retain most of the drilling activity for the next 5 years. By the 1990's, the Imperial Valley is expected to contain most of the drilling activity.

Brown, G.L.; Mansure, A.J.

1981-10-01T23:59:59.000Z

205

New Concepts in Wind Power Forecasting Models  

E-Print Network [OSTI]

New Concepts in Wind Power Forecasting Models Vladimiro Miranda, Ricardo Bessa, João Gama, Guenter to the training of mappers such as neural networks to perform wind power prediction as a function of wind for more accurate short term wind power forecasting models has led to solid and impressive development

Kemner, Ken

206

QUIKSCAT MEASUREMENTS AND ECMWF WIND FORECASTS  

E-Print Network [OSTI]

. (2004) this forecast error was encountered when assimilating satellite measurements of zonal wind speeds between satellite measurements and meteorological forecasts of near-surface ocean winds. This type of covariance enters in assimilation techniques such as Kalman filtering. In all, six residual fields

Malmberg, Anders

207

QUIKSCAT MEASUREMENTS AND ECMWF WIND FORECASTS  

E-Print Network [OSTI]

. (2004) this forecast error was encountered when assimilating satellite measurements of zonal wind speeds between satellite measurements and meteorological forecasts of near­surface ocean winds. This type of covariance enters in assimilation techniques such as Kalman filtering. In all, six residual fields

Malmberg, Anders

208

PROBLEMS OF FORECAST1 Dmitry KUCHARAVY  

E-Print Network [OSTI]

: Technology Forecast, Laws of Technical systems evolution, Analysis of Contradictions. 1. Introduction Let us: If technology forecasting practice remains at the present level, it is necessary to significantly improve to new demands (like Green House Gases - GHG Effect reduction or covering exploded nuclear reactor

Paris-Sud XI, Université de

209

UHERO FORECAST PROJECT DECEMBER 5, 2014  

E-Print Network [OSTI]

deficits. After solid 3% growth this year, real GDP growth will recede a bit for the next two years. New household spending. Real GDP will firm above 3% in 2015. · The pace of growth in China has continuedUHERO FORECAST PROJECT DECEMBER 5, 2014 Asia-Pacific Forecast: Press Version: Embargoed Until 2

210

Amending Numerical Weather Prediction forecasts using GPS  

E-Print Network [OSTI]

. Satellite images and Numerical Weather Prediction (NWP) models are used together with the synoptic surfaceAmending Numerical Weather Prediction forecasts using GPS Integrated Water Vapour: a case study to validate the amounts of humidity in Numerical Weather Prediction (NWP) model forecasts. This paper presents

Stoffelen, Ad

211

A Forecasting Support System Based on Exponential Smoothing  

Science Journals Connector (OSTI)

This chapter presents a forecasting support system based on the exponential smoothing scheme to forecast time-series data. Exponential smoothing methods are simple to apply, which facilitates...

Ana Corberán-Vallet; José D. Bermúdez; José V. Segura…

2010-01-01T23:59:59.000Z

212

ANL Software Improves Wind Power Forecasting | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

principal investigator for the project. For wind power point forecasting, ARGUS PRIMA trains a neural network using data from weather forecasts, observations, and actual wind...

213

Improved Prediction of Runway Usage for Noise Forecast :.  

E-Print Network [OSTI]

??The research deals with improved prediction of runway usage for noise forecast. Since the accuracy of the noise forecast depends on the robustness of runway… (more)

Dhanasekaran, D.

2014-01-01T23:59:59.000Z

214

The Wind Forecast Improvement Project (WFIP): A Public/Private...  

Energy Savers [EERE]

Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The Wind Forecast...

215

Thermoelectric generator  

SciTech Connect (OSTI)

A thermoelectric generator unit is described comprising: a hot side heat exchanger including a plate having extruded retention posts projecting from one surface of the plate, and fins adapted for contact with a heating source. The fins are positioned between two of the retention posts. Retention rods are inserted between the retention posts and the base of the fins to retain the fin in thermal contact with the plate surface upon insertion of the retention rod between the engaging surface of the post and the corresponding fin. Thermoelectric semi-conductor modules are in thermal contact with the opposite side of the hot side heat exchanger plate from the contact with the fins. The modules are arranged in a grid pattern so that heat flow is directed into each of the modules from the hot side heat exchanger. The modules are connected electrically so as to combine their electrical output; and a cold side heat exchanger is in thermal contact with the modules acting as a heat sink on the opposite side of the module from the hot side heat exchanger plate so as to produce a thermal gradient across the modules.

Shakun, W.; Bearden, J.H.; Henderson, D.R.

1988-03-29T23:59:59.000Z

216

1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast, Technical Appendix: Volume 1.  

SciTech Connect (OSTI)

This publication documents the load forecast scenarios and assumptions used to prepare BPA`s Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

United States. Bonneville Power Administration.

1994-02-01T23:59:59.000Z

217

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

LBL-34045 UC-1600 Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting-uses include Heating, Ventilation and Air Conditioning (HVAC). Our analysis uses the modeling framework provided by the HVAC module in the Residential End-Use Energy Planning System (REEPS), which was developed

218

Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumption to the Annual Energy Outlook Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

219

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

220

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

fuel price forecast Coal prices follow AEO 2007 referencecoal- and natural gas-based electricity generation analyzed here include decreased natural gas prices,

Hand, Maureen

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)  

SciTech Connect (OSTI)

This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

2013-10-01T23:59:59.000Z

222

Forecasting Uncertainty Related to Ramps of Wind Power Production  

E-Print Network [OSTI]

Forecasting Uncertainty Related to Ramps of Wind Power Production Arthur Bossavy, Robin Girard - The continuous improvement of the accuracy of wind power forecasts is motivated by the increasing wind power study. Key words : wind power forecast, ramps, phase er- rors, forecasts ensemble. 1 Introduction Most

Boyer, Edmond

223

The effect of multinationality on management earnings forecasts  

E-Print Network [OSTI]

and number of countries withforeign subsidiaries) are significantly positively related to more optimistic management earnings forecasts....

Runyan, Bruce Wayne

2005-08-29T23:59:59.000Z

224

Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)  

SciTech Connect (OSTI)

This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

Hodge, B. M.; Ela, E.; Milligan, M.

2011-10-01T23:59:59.000Z

225

timber quality Modelling and forecasting  

E-Print Network [OSTI]

facilities match the more traditional requirements of timber production. As this policy evolves will also incorporate carbon and energy budgeting modules to assist in the cost­benefit analysis of forest aimed at the optimisation of sustainable management, the provision of renewable resources

226

A COMPARISON OF CLOUD MICROPHYSICAL QUANTITIES WITH FORECASTS FROM CLOUD PREDICTION MODELS  

E-Print Network [OSTI]

of the Atmospheric System Research (ASR) Program, Bethesda, MD March 15-19, 2010 Environmental Sciences Department/Atmospheric Plains (SGP) site. Cloud forecasts generated by the models are compared with cloud microphysical and radiosonde) are used to derive the cloud microphysical quantities: ice water content, liquid water content

227

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

J.B. , 2004: Probabilistic wind power forecasts using localforecast intervals for wind power output using NWP-predictedsources such as wind and solar power. Integration of this

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

228

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

United States California Solar Initiative Coastally Trappedparticipants in the California Solar Initiative (CSI)on location. In California, solar irradiance forecasts near

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

229

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Download Adobe Acrobat Reader Printer friendly version on our site are provided in Adobe Acrobat Spreadsheets are provided in Excel Actual vs. Forecasts Formats Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF Table 12. World Oil Prices Excel, PDF Table 13. Natural Gas Wellhead Prices

230

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) MS Excel Viewer PDF (Acrobat Reader required Download Acrobat Reader ) Adobe Acrobat Reader Logo Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF

231

Annual Energy Outlook Forecast Evaluation 2004  

Gasoline and Diesel Fuel Update (EIA)

2004 2004 * The Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) has produced annual evaluations of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and replacing the historical year of data with the most recent. The forecast evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute percent errors for several of the major variables for AEO82 through AEO2004. (There is no report titled Annual Energy Outlook 1988 due to a change in the naming convention of the AEOs.) The average absolute percent error is the simple mean of the absolute values of the percentage difference between the Reference Case projection and the

232

Annual Energy Outlook 2001 - Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Economic Growth World Oil Prices Total Energy Consumption Residential and Commercial Sectors Industrial Sector Transportation Sector Electricity Natural Gas Petroleum Coal Three other organizations—Standard & Poor’s DRI (DRI), the WEFA Group (WEFA), and the Gas Research Institute (GRI) [95]—also produce comprehensive energy projections with a time horizon similar to that of AEO2001. The most recent projections from those organizations (DRI, Spring/Summer 2000; WEFA, 1st Quarter 2000; GRI, January 2000), as well as other forecasts that concentrate on petroleum, natural gas, and international oil markets, are compared here with the AEO2001 projections. Economic Growth Differences in long-run economic forecasts can be traced primarily to

233

energy data + forecasting | OpenEI Community  

Open Energy Info (EERE)

energy data + forecasting energy data + forecasting Home FRED Description: Free Energy Database Tool on OpenEI This is an open source platform for assisting energy decision makers and policy makers in formulating policies and energy plans based on easy to use forecasting tools, visualizations, sankey diagrams, and open data. The platform will live on OpenEI and this community was established to initiate discussion around continuous development of this tool, integrating it with new datasets, and connecting with the community of users who will want to contribute data to the tool and use the tool for planning purposes. Links: FRED beta demo energy data + forecasting Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2084382122

234

Wind Speed Forecasting for Power System Operation  

E-Print Network [OSTI]

In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

Zhu, Xinxin

2013-07-22T23:59:59.000Z

235

Evaluation of hierarchical forecasting for substitutable products  

Science Journals Connector (OSTI)

This paper addresses hierarchical forecasting in a production planning environment. Specifically, we examine the relative effectiveness of Top-Down (TD) and Bottom-Up (BU) strategies for forecasting the demand for a substitutable product (which belongs to a family) as well as the demand for the product family under different types of family demand processes. Through a simulation study, it is revealed that the TD strategy consistently outperforms the BU strategy for forecasting product family demand. The relative superiority of the TD strategy further improves by as much as 52% as the product demand variability increases and the degree of substitutability between the products decreases. This phenomenon, however, is not always true for forecasting the demand for the products within the family. In this case, it is found that there are a few situations wherein the BU strategy marginally outperforms the TD strategy, especially when the product demand variability is high and the degree of product substitutability is low.

S. Viswanathan; Handik Widiarta; R. Piplani

2008-01-01T23:59:59.000Z

236

Testing Competing High-Resolution Precipitation Forecasts  

E-Print Network [OSTI]

Testing Competing High-Resolution Precipitation Forecasts Eric Gilleland Research Prediction Comparison Test D1 D2 D = D1 ­ D2 copyright NCAR 2013 Loss Differential Field #12;Spatial Prediction Comparison Test Introduced by Hering and Genton

Gilleland, Eric

237

Forecasting Capital Expenditure with Plan Data  

Science Journals Connector (OSTI)

The short-term forecasting of capital expenditure presents one of the most difficult problems ... reason is that year-to-year fluctuations in capital expenditure are extremely wide. Some simple methods which...

W. Gerstenberger

1977-01-01T23:59:59.000Z

238

Forecasting Agriculturally Driven Global Environmental Change  

Science Journals Connector (OSTI)

...of each variable on GDP (13, 17), combined with global GDP projections (14...population, and per capita GDP, combined with projected...measure of agricultural demand for water, is forecast...Just as demand for energy is the major cause...

David Tilman; Joseph Fargione; Brian Wolff; Carla D'Antonio; Andrew Dobson; Robert Howarth; David Schindler; William H. Schlesinger; Daniel Simberloff; Deborah Swackhamer

2001-04-13T23:59:59.000Z

239

Medium- and Long-Range Forecasting  

Science Journals Connector (OSTI)

In contrast to short and extended range forecasts, predictions for periods beyond 5 days use time-averaged, midtropospheric height fields as their primary guidance. As time ranges are increased to 3O- and 90-day outlooks, guidance increasingly ...

A. James Wagner

1989-09-01T23:59:59.000Z

240

Updated Satellite Technique to Forecast Heavy Snow  

Science Journals Connector (OSTI)

Certain satellite interpretation techniques have proven quite useful in the heavy snow forecast process. Those considered best are briefly reviewed, and another technique is introduced. This new technique was found to be most valuable in cyclonic ...

Edward C. Johnston

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Annual Energy Outlook Forecast Evaluation 2005  

Gasoline and Diesel Fuel Update (EIA)

Forecast Evaluation 2005 Forecast Evaluation 2005 Annual Energy Outlook Forecast Evaluation 2005 Annual Energy Outlook Forecast Evaluation 2005 * Then Energy Information Administration (EIA) produces projections of energy supply and demand each year in the Annual Energy Outlook (AEO). The projections in the AEO are not statements of what will happen but of what might happen, given the assumptions and methodologies used. The projections are business-as-usual trend projections, given known technology, technological and demographic trends, and current laws and regulations. Thus, they provide a policy-neutral reference case that can be used to analyze policy initiatives. EIA does not propose or advocate future legislative and regulatory changes. All laws are assumed to remain as currently enacted; however, the impacts of emerging regulatory changes, when defined, are reflected.

242

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

NONE

1998-01-01T23:59:59.000Z

243

Forecasting energy markets using support vector machines  

Science Journals Connector (OSTI)

Abstract In this paper we investigate the efficiency of a support vector machine (SVM)-based forecasting model for the next-day directional change of electricity prices. We first adjust the best autoregressive SVM model and then we enhance it with various related variables. The system is tested on the daily Phelix index of the German and Austrian control area of the European Energy Exchange (???) wholesale electricity market. The forecast accuracy we achieved is 76.12% over a 200 day period.

Theophilos Papadimitriou; Periklis Gogas; Efthimios Stathakis

2014-01-01T23:59:59.000Z

244

Short Term Load Forecasting with Fuzzy Logic Systems for power system planning and reliability?A Review  

Science Journals Connector (OSTI)

Load forecasting is very essential to the operation of Electricity companies. It enhances the energy efficient and reliable operation of power system. Forecasting of load demand data forms an important component in planning generation schedules in a power system. The purpose of this paper is to identify issues and better method for load foecasting. In this paper we focus on fuzzy logic system based short term load forecasting. It serves as overview of the state of the art in the intelligent techniques employed for load forecasting in power system planning and reliability. Literature review has been conducted and fuzzy logic method has been summarized to highlight advantages and disadvantages of this technique. The proposed technique for implementing fuzzy logic based forecasting is by Identification of the specific day and by using maximum and minimum temperature for that day and finally listing the maximum temperature and peak load for that day. The results show that Load forecasting where there are considerable changes in temperature parameter is better dealt with Fuzzy Logic system method as compared to other short term forecasting techniques.

R. M. Holmukhe; Mrs. Sunita Dhumale; Mr. P. S. Chaudhari; Mr. P. P. Kulkarni

2010-01-01T23:59:59.000Z

245

Assumptions to the Annual Energy Outlook - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumption to the Annual Energy Outlook Petroleum Market Module Figure 8. Petroleum Administration for Defense Districts. Having problems, call our National Energy Information Center at 202-586-8800 for help. The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohols, ethers, and bioesters natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of U.S. refining

246

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

247

NEMS Freight Transportation Module Improvement Study  

Reports and Publications (EIA)

The U.S. Energy Information Administration (EIA) contracted with IHS Global, Inc. (IHS) to analyze the relationship between the value of industrial output, physical output, and freight movement in the United States for use in updating analytic assumptions and modeling structure within the National Energy Modeling System (NEMS) freight transportation module, including forecasting methodologies and processes to identify possible alternative approaches that would improve multi-modal freight flow and fuel consumption estimation.

2015-01-01T23:59:59.000Z

248

Module Configuration  

DOE Patents [OSTI]

A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

Oweis, Salah (Ellicott City, MD); D'Ussel, Louis (Bordeaux, FR); Chagnon, Guy (Cockeysville, MD); Zuhowski, Michael (Annapolis, MD); Sack, Tim (Cockeysville, MD); Laucournet, Gaullume (Paris, FR); Jackson, Edward J. (Taneytown, MD)

2002-06-04T23:59:59.000Z

249

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 91 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2012, DOE/EIA-M068(2012). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

250

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 95 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2011, DOE/EIA-M068(2011). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

251

Renewable Fuels Module This  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Module Fuels Module This page inTenTionally lefT blank 175 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve

252

Eastern Renewable Generation Integration Study Solar Dataset (Presentation)  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory produced solar power production data for the Eastern Renewable Generation Integration Study (ERGIS) including "real time" 5-minute interval data, "four hour ahead forecast" 60-minute interval data, and "day-ahead forecast" 60-minute interval data for the year 2006. This presentation provides a brief overview of the three solar power datasets.

Hummon, M.

2014-04-01T23:59:59.000Z

253

Joint Seasonal ARMA Approach for Modeling of Load Forecast Errors in Planning Studies  

SciTech Connect (OSTI)

To make informed and robust decisions in the probabilistic power system operation and planning process, it is critical to conduct multiple simulations of the generated combinations of wind and load parameters and their forecast errors to handle the variability and uncertainty of these time series. In order for the simulation results to be trustworthy, the simulated series must preserve the salient statistical characteristics of the real series. In this paper, we analyze day-ahead load forecast error data from multiple balancing authority locations and characterize statistical properties such as mean, standard deviation, autocorrelation, correlation between series, time-of-day bias, and time-of-day autocorrelation. We then construct and validate a seasonal autoregressive moving average (ARMA) model to model these characteristics, and use the model to jointly simulate day-ahead load forecast error series for all BAs.

Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.; Diao, Ruisheng; Lu, Ning

2014-04-14T23:59:59.000Z

254

Forecasting aggregate time series with intermittent subaggregate components: top-down versus bottom-up forecasting  

Science Journals Connector (OSTI)

......optimum value through a grid-search algorithm...method outperformed TD for estimating the aggregate data series...variable, there is no benefit of forecasting each subaggregate...forecasting strategies in estimating the `component'-level...WILLEMAIN, T. R., SMART, C. N., SHOCKOR......

S. Viswanathan; Handik Widiarta; Rajesh Piplani

2008-07-01T23:59:59.000Z

255

Forecasting short-term electricity consumption using a semantics-based genetic programming framework: The South Italy case  

Science Journals Connector (OSTI)

Abstract Accurate and robust short-term load forecasting plays a significant role in electric power operations. This paper proposes a variant of genetic programming, improved by incorporating semantic awareness in algorithm, to address a short term load forecasting problem. The objective is to automatically generate models that could effectively and reliably predict energy consumption. The presented results, obtained considering a particularly interesting case of the South Italy area, show that the proposed approach outperforms state of the art methods. Hence, the proposed approach reveals appropriate for the problem of forecasting electricity consumption. This study, besides providing an important contribution to the energy load forecasting, confirms the suitability of genetic programming improved with semantic methods in addressing complex real-life applications.

Mauro Castelli; Leonardo Vanneschi; Matteo De Felice

2015-01-01T23:59:59.000Z

256

Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 1  

SciTech Connect (OSTI)

This ACDR was performed following completed of the Conceptual Design Report in July 1992; the work encompassed August 1992 to January 1994. Mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage at Hanford and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford from about DOE sites. This volume provides an introduction to the ACDR process and the scope of the task along with a project summary of the facility, treatment technologies, cost, and schedule. Major areas of departure from the CDR are highlighted. Descriptions of the facility layout and operations are included.

Not Available

1994-03-01T23:59:59.000Z

257

Radar-Derived Forecasts of Cloud-to-Ground Lightning Over Houston, Texas  

E-Print Network [OSTI]

Lightning Forecasts..........................................................................................45 2.7 First Flash Forecasts and Lead Times.....................................................................47 vii... Cell Number ? 25 August 2000..............................................68 3.4 First Flash Forecast Time........................................................................................70 3.5 Lightning Forecasting Algorithm (LFA) Development...

Mosier, Richard Matthew

2011-02-22T23:59:59.000Z

258

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) PDF (Acrobat Reader required) Table 2. Total Energy Consumption HTML, Excel, PDF Table 3. Total Petroleum Consumption HTML, Excel, PDF Table 4. Total Natural Gas Consumption HTML, Excel, PDF Table 5. Total Coal Consumption HTML, Excel, PDF Table 6. Total Electricity Sales HTML, Excel, PDF Table 7. Crude Oil Production HTML, Excel, PDF Table 8. Natural Gas Production HTML, Excel, PDF Table 9. Coal Production HTML, Excel, PDF Table 10. Net Petroleum Imports HTML, Excel, PDF Table 11. Net Natural Gas Imports HTML, Excel, PDF Table 12. Net Coal Exports HTML, Excel, PDF Table 13. World Oil Prices HTML, Excel, PDF

259

Generating English Summaries of Time Series Data Using the Gricean Maxims  

E-Print Network [OSTI]

, gas-turbine sensor readings, and hospital intensive care data. Our weather-forecast generator, Scotland, U.K. +44 (0) 1224 272295 {ssripada,ereiter,jhunter,jyu}@csd.abdn.ac.uk ABSTRACT We are developing technology for generating English textual summaries of time-series data, in three domains: weather forecasts

Sripada, Yaji

260

12-32021E2_Forecast  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FORECAST OF VACANCIES FORECAST OF VACANCIES Until end of 2014 (Issue No. 20) Page 2 OVERVIEW OF BASIC REQUIREMENTS FOR PROFESSIONAL VACANCIES IN THE IAEA Education, Experience and Skills: Professional staff at the P4-P5 levels: * Advanced university degree (or equivalent postgraduate degree); * 7 or 10 years, respectively, of experience in a field of relevance to the post; * Resource management experience; * Strong analytical skills; * Computer skills: standard Microsoft Office software; * Languages: Fluency in English. Working knowledge of other official languages (Arabic, Chinese, French, Russian, Spanish) advantageous; * Ability to work effectively in multidisciplinary and multicultural teams; * Ability to communicate effectively. Professional staff at the P1-P3 levels:

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building Energy Software Tools Directory: Degree Day Forecasts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forecasts Forecasts Degree Day Forecasts example chart Quick and easy web-based tool that provides free 14-day ahead degree day forecasts for 1,200 stations in the U.S. and Canada. Degree Day Forecasts charts show this year, last year and three-year average. Historical degree day charts and energy usage forecasts are available from the same site. Keywords degree days, historical weather, mean daily temperature Validation/Testing Degree day data provided by AccuWeather.com, updated daily at 0700. Expertise Required No special expertise required. Simple to use. Users Over 1,000 weekly users. Audience Anyone who needs degree day forecasts (next 14 days) for the U.S. and Canada. Input Select a weather station (1,200 available) and balance point temperature. Output Charts show (1) degree day (heating and cooling) forecasts for the next 14

262

Building Energy Software Tools Directory: Energy Usage Forecasts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Usage Forecasts Energy Usage Forecasts Energy Usage Forecasts Quick and easy web-based tool that provides free 14-day ahead energy usage forecasts based on the degree day forecasts for 1,200 stations in the U.S. and Canada. The user enters the daily non-weather base load and the usage per degree day weather factor; the tool applies the degree day forecast and displays the total energy usage forecast. Helpful FAQs explain the process and describe various options for the calculation of the base load and weather factor. Historical degree day reports and 14-day ahead degree day forecasts are available from the same site. Keywords degree days, historical weather, mean daily temperature, load calculation, energy simulation Validation/Testing Degree day data provided by AccuWeather.com, updated daily at 0700.

263

Forecasting Market Demand for New Telecommunications Services: An Introduction  

E-Print Network [OSTI]

Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc The marketing team of a new telecommunications company is usually tasked with producing forecasts for diverse three decades of experience working with telecommunications operators around the world we seek

McBurney, Peter

264

River Forecast Application for Water Management: Oil and Water?  

Science Journals Connector (OSTI)

Managing water resources generally and managing reservoir operations specifically have been touted as opportunities for applying forecasts to improve decision making. Previous studies have shown that the application of forecasts into water ...

Kevin Werner; Kristen Averyt; Gigi Owen

2013-07-01T23:59:59.000Z

265

Data Mining in Load Forecasting of Power System  

Science Journals Connector (OSTI)

This project applies Data Mining technology to the prediction of electric power system load forecast. It proposes a mining program of electric power load forecasting data based on the similarity of time series .....

Guang Yu Zhao; Yan Yan; Chun Zhou Zhao…

2013-01-01T23:59:59.000Z

266

Operational Rainfall and Flow Forecasting for the Panama Canal Watershed  

Science Journals Connector (OSTI)

An integrated hydrometeorological system was designed for the utilization of data from various sensors in the 3300 km2 Panama Canal Watershed for the purpose of producing ... forecasts. These forecasts are used b...

Konstantine P. Georgakakos; Jason A. Sperfslage

2005-01-01T23:59:59.000Z

267

Power System Load Forecasting Based on EEMD and ANN  

Science Journals Connector (OSTI)

In order to fully mine the characteristics of load data and improve the accuracy of power system load forecasting, a load forecasting model based on Ensemble Empirical Mode ... is proposed in this paper. Firstly,...

Wanlu Sun; Zhigang Liu; Wenfan Li

2011-01-01T23:59:59.000Z

268

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network [OSTI]

Forecasts Using NEMS and GIS National Climatic Data Center.with Changing Boundaries." Use of GIS to Understand Socio-Forecasts Using NEMS and GIS Appendix A. Map Results Gallery

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

269

Beyond "Partly Sunny": A Better Solar Forecast | Department of...  

Energy Savers [EERE]

Beyond "Partly Sunny": A Better Solar Forecast Beyond "Partly Sunny": A Better Solar Forecast December 7, 2012 - 10:00am Addthis The Energy Department is investing in better solar...

270

The Energy Demand Forecasting System of the National Energy Board  

Science Journals Connector (OSTI)

This paper presents the National Energy Board’s long term energy demand forecasting model in its present state of ... results of recent research at the NEB. Energy demand forecasts developed with the aid of this....

R. A. Preece; L. B. Harsanyi; H. M. Webster

1980-01-01T23:59:59.000Z

271

Forecasting Energy Demand Using Fuzzy Seasonal Time Series  

Science Journals Connector (OSTI)

Demand side energy management has become an important issue for energy management. In order to support energy planning and policy decisions forecasting the future demand is very important. Thus, forecasting the f...

?Irem Uçal Sar?; Ba¸sar Öztay¸si

2012-01-01T23:59:59.000Z

272

Weather Forecasting for Radio Astronomy  

E-Print Network [OSTI]

as complex refractivity..." (Liebe, 1985) For each layer of the atmosphere, calculate: Density of water of Maciolek' profiles Weather conditions for past observations Makes possible the generation of detailed Atmospheric pressure, temperature, and humidity as a function of height above a site (and much more). Derived

Groppi, Christopher

273

A Multiscale Wind and Power Forecast System for Wind Farms  

Science Journals Connector (OSTI)

Abstract A large scale introduction of wind energy in power sector causes a number of challenges for electricity market and wind farm operators who will have to deal with the variability and uncertainty in the wind power generation in their scheduling and trading decisions. Numerical wind power forecasting has been identified as an important tool to address the increasing variability and uncertainty and to more efficiently operate power systems with large wind power penetration. It has been observed that even when the wind magnitude and direction recorded at a wind mast are the same, the corresponding energy productions can vary significantly. In this work we try to introduce improvements by developing a more accurate wind forecast system for a complex terrain. The system has been operational for eight months for the Bessaker Wind Farm located in the middle part of Norway in a very complex terrain. Operational power curves have also been derived from data analysis. Although the methodology explained has been developed for an onshore wind farm, it can very well be utilized in an offshore context also.

Adil Rasheed; Jakob Kristoffer Süld; Trond Kvamsdal

2014-01-01T23:59:59.000Z

274

Wind power forecasting in U.S. electricity markets.  

SciTech Connect (OSTI)

Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts.

Botterud, A.; Wang, J.; Miranda, V.; Bessa, R. J.; Decision and Information Sciences; INESC Porto

2010-04-01T23:59:59.000Z

275

Wind power forecasting in U.S. Electricity markets  

SciTech Connect (OSTI)

Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

2010-04-15T23:59:59.000Z

276

Sandia National Laboratories: Solar Energy Forecasting and Resource...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource...

277

Application of a Combination Forecasting Model in Logistics Parks' Demand  

Science Journals Connector (OSTI)

Logistics parks’ demand is an important basis of establishing the development policy of logistics industry and logistics infrastructure for planning. In order to improve the forecast accuracy of logistics parks’ demand, a combination forecasting ... Keywords: Logistics parks' demand, combine, simulated annealing algorithm, grey forecast model, exponential smoothing method

Chen Qin; Qi Ming

2010-05-01T23:59:59.000Z

278

A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION  

E-Print Network [OSTI]

in the realm of solar radiation forecasting. In this work, two forecasting models: Autoregressive Moving1 A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION. The very first results show an improvement brought by this approach. 1. INTRODUCTION Solar radiation

Boyer, Edmond

279

PSO (FU 2101) Ensemble-forecasts for wind power  

E-Print Network [OSTI]

PSO (FU 2101) Ensemble-forecasts for wind power Wind Power Ensemble Forecasting Using Wind Speed the problems of (i) transforming the meteorological ensembles to wind power ensembles and, (ii) correcting) data. However, quite often the actual wind power production is outside the range of ensemble forecast

280

Accuracy of near real time updates in wind power forecasting  

E-Print Network [OSTI]

· advantage: no NWP data necessary ­ very actual shortest term forecasts possible · wind power inputAccuracy of near real time updates in wind power forecasting with regard to different weather October 2007 #12;EMS/ECAM 2007 ­ Nadja Saleck Outline · Study site · Wind power forecasting - method

Heinemann, Detlev

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE -APRIL 2014  

E-Print Network [OSTI]

CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE - APRIL 2014 Anil Puri, Ph.D. -- Director, Center for Economic Analysis and Forecasting -- Dean, Mihaylo College of Business and Economics Mira Farka, Ph.D. -- Co-Director, Center for Economic Analysis and Forecasting -- Associate Professor

de Lijser, Peter

282

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data in California and for climate zones within those areas. The staff California Energy Demand 2008-2018 forecast

283

AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.  

E-Print Network [OSTI]

AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

Povinelli, Richard J.

284

Forecasting the Market Penetration of Energy Conservation Technologies: The Decision Criteria for Choosing a Forecasting Model  

E-Print Network [OSTI]

An important determinant of our energy future is the rate at which energy conservation technologies, once developed, are put into use. At Synergic Resources Corporation, we have adapted and applied a methodology to forecast the use of conservation...

Lang, K.

1982-01-01T23:59:59.000Z

285

Forecasting the Locational Dynamics of Transnational Terrorism  

E-Print Network [OSTI]

Forecasting the Locational Dynamics of Transnational Terrorism: A Network Analytic Approach Bruce A-0406 Fax: (919) 962-0432 Email: skyler@unc.edu Abstract--Efforts to combat and prevent transnational terror of terrorism. We construct the network of transnational terrorist attacks, in which source (sender) and target

Massachusetts at Amherst, University of

286

Do quantitative decadal forecasts from GCMs provide  

E-Print Network [OSTI]

' · Empirical models quantify our ability to predict without knowing the laws of physics · Climatology skill' model? 2. Dynamic climatology (DC) is a more appropriate benchmark for near- term (initialised) climate forecasts · A conditional climatology, initialised at launch and built from the historical archive

Stevenson, Paul

287

Sunny outlook for space weather forecasters  

Science Journals Connector (OSTI)

... For decades, companies have tailored public weather data for private customers from farmers to airlines. On Wednesday, a group of businesses said that they ... utilities and satellite operators. But Terry Onsager, a physicist at the SWPC, says that private forecasting firms are starting to realize that they can add value to these predictions. ...

Eric Hand

2012-04-27T23:59:59.000Z

288

Modeling of Uncertainty in Wind Energy Forecast  

E-Print Network [OSTI]

regression and splines are combined to model the prediction error from Tunø Knob wind power plant. This data of the thesis is quantile regression and splines in the context of wind power modeling. Lyngby, February 2006Modeling of Uncertainty in Wind Energy Forecast Jan Kloppenborg Møller Kongens Lyngby 2006 IMM-2006

289

Prediction versus Projection: How weather forecasting and  

E-Print Network [OSTI]

Prediction versus Projection: How weather forecasting and climate models differ. Aaron B. Wilson Context: Global http://data.giss.nasa.gov/ #12;Numerical Weather Prediction Collect Observations alters associated weather patterns. Models used to predict weather depend on the current observed state

Howat, Ian M.

290

Customized forecasting tool improves reserves estimation  

SciTech Connect (OSTI)

Unique producing characteristics of the Teapot sandstone formation, Powder River basin, Wyoming, necessitated the creation of individualized production forecasting methods for wells producing from this reservoir. The development and use of a set of production type curves and correlations for Teapot wells are described herein.

Mian, M.A.

1986-04-01T23:59:59.000Z

291

Storm-in-a-Box Forecasting  

Science Journals Connector (OSTI)

...But the WRF has no immediate...being tuned to local conditions...temperatures and winds with altitude...resulting WRF forecasts...captured the local sea-breeze winds better...spread the local operation of mesoscale...to be the WRF model now...

Richard A. Kerr

2004-05-14T23:59:59.000Z

292

FORECAST OF VACANCIES Until end of 2016  

E-Print Network [OSTI]

#12;FORECAST OF VACANCIES Until end of 2016 (Issue No. 22) #12;Page 2 OVERVIEW OF BASIC REQUIREMENTS FOR PROFESSIONAL VACANCIES IN THE IAEA Education, Experience and Skills: Professional staff the team of professionals. Second half 2015 VACANCY GRADE REQUIREMENTS / ROLE EXPECTED DATE OF VACANCY

293

Online short-term solar power forecasting  

SciTech Connect (OSTI)

This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 h. The data used is 15-min observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques. Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to 2 h ahead the most important input is the available observations of solar power, while for longer horizons NWPs are the most important input. A root mean square error improvement of around 35% is achieved by the ARX model compared to a proposed reference model. (author)

Bacher, Peder; Madsen, Henrik [Informatics and Mathematical Modelling, Richard Pedersens Plads, Technical University of Denmark, Building 321, DK-2800 Lyngby (Denmark); Nielsen, Henrik Aalborg [ENFOR A/S, Lyngsoe Alle 3, DK-2970 Hoersholm (Denmark)

2009-10-15T23:59:59.000Z

294

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

295

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

296

Assumptions to the Annual Energy Outlook 1999 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

residential.gif (5487 bytes) residential.gif (5487 bytes) The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

297

Assumptions to the Annual Energy Outlook 2000 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

298

UNCERTAINTY IN THE GLOBAL FORECAST SYSTEM  

SciTech Connect (OSTI)

We validated one year of Global Forecast System (GFS) predictions of surface meteorological variables (wind speed, air temperature, dewpoint temperature, air pressure) over the entire planet for forecasts extending from zero hours into the future (an analysis) to 36 hours. Approximately 12,000 surface stations world-wide were included in this analysis. Root-Mean-Square- Errors (RMSE) increased as the forecast period increased from zero to 36 hours, but the initial RMSE were almost as large as the 36 hour forecast RMSE for all variables. Typical RMSE were 3 C for air temperature, 2-3mb for sea-level pressure, 3.5 C for dewpoint temperature and 2.5 m/s for wind speed. Approximately 20-40% of the GFS errors can be attributed to a lack of resolution of local features. We attribute the large initial RMSE for the zero hour forecasts to the inability of the GFS to resolve local terrain features that often dominate local weather conditions, e.g., mountain- valley circulations and sea and land breezes. Since the horizontal resolution of the GFS (about 1{sup o} of latitude and longitude) prevents it from simulating these locally-driven circulations, its performance will not improve until model resolution increases by a factor of 10 or more (from about 100 km to less than 10 km). Since this will not happen in the near future, an alternative for the near term to improve surface weather analyses and predictions for specific points in space and time would be implementation of a high-resolution, limited-area mesoscale atmospheric prediction model in regions of interest.

Werth, D.; Garrett, A.

2009-04-15T23:59:59.000Z

299

Solid state pulsed power generator  

DOE Patents [OSTI]

A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

2014-02-11T23:59:59.000Z

300

Forecastability as a Design Criterion in Wind Resource Assessment: Preprint  

SciTech Connect (OSTI)

This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

Zhang, J.; Hodge, B. M.

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Microsoft Word - Documentation - Price Forecast Uncertainty.doc  

U.S. Energy Information Administration (EIA) Indexed Site

October 2009 October 2009 1 October 2009 Short-Term Energy Outlook Supplement: Energy Price Volatility and Forecast Uncertainty 1 Summary It is often noted that energy prices are quite volatile, reflecting market participants' adjustments to new information from physical energy markets and/or markets in energy- related financial derivatives. Price volatility is an indication of the level of uncertainty, or risk, in the market. This paper describes how markets price risk and how the market- clearing process for risk transfer can be used to generate "price bands" around observed futures prices for crude oil, natural gas, and other commodities. These bands provide a quantitative measure of uncertainty regarding the range in which markets expect prices to

302

ANL Wind Power Forecasting and Electricity Markets | Open Energy  

Open Energy Info (EERE)

ANL Wind Power Forecasting and Electricity Markets ANL Wind Power Forecasting and Electricity Markets Jump to: navigation, search Logo: Wind Power Forecasting and Electricity Markets Name Wind Power Forecasting and Electricity Markets Agency/Company /Organization Argonne National Laboratory Partner Institute for Systems and Computer Engineering of Porto (INESC Porto) in Portugal, Midwest Independent System Operator and Horizon Wind Energy LLC, funded by U.S. Department of Energy Sector Energy Focus Area Wind Topics Pathways analysis, Technology characterizations Resource Type Software/modeling tools Website http://www.dis.anl.gov/project References Argonne National Laboratory: Wind Power Forecasting and Electricity Markets[1] Abstract To improve wind power forecasting and its use in power system and electricity market operations Argonne National Laboratory has assembled a team of experts in wind power forecasting, electricity market modeling, wind farm development, and power system operations.

303

Long-term electricity demand forecasting for power system planning using economic, demographic and climatic variables  

Science Journals Connector (OSTI)

The stochastic planning of power production overcomes the drawback of deterministic models by accounting for uncertainties in the parameters. Such planning accounts for demand uncertainties by using scenario sets and probability distributions. However, in previous literature, different scenarios were developed by either assigning arbitrary values or assuming certain percentages above or below a deterministic demand. Using forecasting techniques, reliable demand data can be obtained and inputted to the scenario set. This article focuses on the long-term forecasting of electricity demand using autoregressive, simple linear and multiple linear regression models. The resulting models using different forecasting techniques are compared through a number of statistical measures and the most accurate model was selected. Using Ontario's electricity demand as a case study, the annual energy, peak load and base load demand were forecasted up to the year 2025. In order to generate different scenarios, different ranges in the economic, demographic and climatic variables were used. [Received 16 October 2007; Revised 31 May 2008; Revised 25 October 2008; Accepted 1 November 2008

F. Chui; A. Elkamel; R. Surit; E. Croiset; P.L. Douglas

2009-01-01T23:59:59.000Z

304

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices  

SciTech Connect (OSTI)

On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we once again find that the AEO 2007 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. Specifically, the NYMEX-AEO 2007 premium is $0.73/MMBtu levelized over five years. In other words, on average, one would have had to pay $0.73/MMBtu more than the AEO 2007 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2006-12-06T23:59:59.000Z

305

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices  

SciTech Connect (OSTI)

On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2005-12-19T23:59:59.000Z

306

features Utility Generator  

E-Print Network [OSTI]

#12;#12;#12;#12;features function utility Training Pool Utility Generator Per-frame function content utility classes utility classes utility Tree Decision Generator Module Utility Clustering Adaptive Content Classification Loop features content VO selection & Utility Selector content features Real

Chang, Shih-Fu

307

EIA-Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2007 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS25 data.

308

Short-Term World Oil Price Forecast  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: This graph shows monthly average spot West Texas Intermediate crude oil prices. Spot WTI crude oil prices peaked last fall as anticipated boosts to world supply from OPEC and other sources did not show up in actual stocks data. So where do we see crude oil prices going from here? Crude oil prices are expected to be about $28-$30 per barrel for the rest of this year, but note the uncertainty bands on this projection. They give an indication of how difficult it is to know what these prices are going to do. Also, EIA does not forecast volatility. This relatively flat forecast could be correct on average, with wide swings around the base line. Let's explore why we think prices will likely remain high, by looking at an important market barometer - inventories - which measures the

309

OpenEI Community - energy data + forecasting  

Open Energy Info (EERE)

FRED FRED http://en.openei.org/community/group/fred Description: Free Energy Database Tool on OpenEI This is an open source platform for assisting energy decision makers and policy makers in formulating policies and energy plans based on easy to use forecasting tools, visualizations, sankey diagrams, and open data. The platform will live on OpenEI and this community was established to initiate discussion around continuous development of this tool, integrating it with new datasets, and connecting with the community of users who will want to contribute data to the tool and use the tool for planning purposes. energy data + forecasting Fri, 22 Jun 2012 15:30:20 +0000 Dbrodt 34

310

Voluntary Green Power Market Forecast through 2015  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

158 158 May 2010 Voluntary Green Power Market Forecast through 2015 Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates, Inc. Jenny Sumner and Claire Kreycik National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-48158 May 2010 Voluntary Green Power Market Forecast through 2015 Lori Bird National Renewable Energy Laboratory Ed Holt Ed Holt & Associates, Inc. Jenny Sumner and Claire Kreycik National Renewable Energy Laboratory

311

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights World energy consumption is projected to increase by 57 percent from 2002 to 2025. Much of the growth in worldwide energy use in the IEO2005 reference case forecast is expected in the countries with emerging economies. Figure 1. World Marketed Energy Consumptiion by Region, 1970-2025. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data In the International Energy Outlook 2005 (IEO2005) reference case, world marketed energy consumption is projected to increase on average by 2.0 percent per year over the 23-year forecast horizon from 2002 to 2025—slightly lower than the 2.2-percent average annual growth rate from 1970 to 2002. Worldwide, total energy use is projected to grow from 412 quadrillion British thermal units (Btu) in 2002 to 553 quadrillion Btu in

312

FORSITE: a geothermal site development forecasting system  

SciTech Connect (OSTI)

The Geothermal Site Development Forecasting System (FORSITE) is a computer-based system being developed to assist DOE geothermal program managers in monitoring the progress of multiple geothermal electric exploration and construction projects. The system will combine conceptual development schedules with site-specific status data to predict a time-phased sequence of development likely to occur at specific geothermal sites. Forecasting includes estimation of industry costs and federal manpower requirements across sites on a year-by-year basis. The main advantage of the system, which relies on reporting of major, easily detectable industry activities, is its ability to use relatively sparse data to achieve a representation of status and future development.

Entingh, D.J.; Gerstein, R.E.; Kenkeremath, L.D.; Ko, S.M.

1981-10-01T23:59:59.000Z

313

The Industrialization of Thermoelectric Power Generation Technology  

Broader source: Energy.gov [DOE]

Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost scalability, raw material availability and module reliability

314

Application of Ensemble Sensitivity Analysis to Observation Targeting for Short-term Wind Speed Forecasting  

SciTech Connect (OSTI)

The operators of electrical grids, sometimes referred to as Balancing Authorities (BA), typically make critical decisions on how to most reliably and economically balance electrical load and generation in time frames ranging from a few minutes to six hours ahead. At higher levels of wind power generation, there is an increasing need to improve the accuracy of 0- to 6-hour ahead wind power forecasts. Forecasts on this time scale have typically been strongly dependent on short-term trends indicated by the time series of power production and meteorological data from a wind farm. Additional input information is often available from the output of Numerical Weather Prediction (NWP) models and occasionally from off-site meteorological towers in the region surrounding the wind generation facility. A widely proposed approach to improve short-term forecasts is the deployment of off-site meteorological towers at locations upstream from the wind generation facility in order to sense approaching wind perturbations. While conceptually appealing, it turns out that, in practice, it is often very difficult to derive significant benefit in forecast performance from this approach. The difficulty is rooted in the fact that the type, scale, and amplitude of the processes controlling wind variability at a site change from day to day if not from hour to hour. Thus, a location that provides some useful forecast information for one time may not be a useful predictor a few hours later. Indeed, some processes that cause significant changes in wind power production operate predominantly in the vertical direction and thus cannot be monitored by employing a network of sensors at off-site locations. Hence, it is very challenging to determine the type of sensors and deployment locations to get the most benefit for a specific short-term forecast application. Two tools recently developed in the meteorological research community have the potential to help determine the locations and parameters to measure in order to get the maximum positive impact on forecast performance for a particular site and short-term look-ahead period. Both tools rely on the use of NWP models to assess the sensitivity of a forecast for a particular location to measurements made at a prior time (i.e. the look-ahead period) at points surrounding the target location. The fundamental hypothesis is that points and variables with high sensitivity are good candidates for measurements since information at those points are likely to have the most impact on the forecast for the desired parameter, location and look-ahead period. One approach is called the adjoint method (Errico and Vukicevic, 1992; Errico, 1997) and the other newer approach is known as Ensemble Sensitivity Analysis (ESA; Ancell and Hakim 2007; Torn and Hakim 2008). Both approaches have been tested on large-scale atmospheric prediction problems (e.g. forecasting pressure or precipitation over a relatively large region 24 hours ahead) but neither has been applied to mesoscale space-time scales of winds or any other variables near the surface of the earth. A number of factors suggest that ESA is better suited for short-term wind forecasting applications. One of the most significant advantages of this approach is that it is not necessary to linearize the mathematical representation of the processes in the underlying atmospheric model as required by the adjoint approach. Such a linearization may be especially problematic for the application of short-term forecasting of boundary layer winds in complex terrain since non-linear shifts in the structure of boundary layer due to atmospheric stability changes are a critical part of the wind power production forecast problem. The specific objective of work described in this paper is to test the ESA as a tool to identify measurement locations and variables that have the greatest positive impact on the accuracy of wind forecasts in the 0- to 6-hour look-ahead periods for the wind generation area of California's Tehachapi Pass during the warm (high generation) season. The paper is organized

Zack, J; Natenberg, E; Young, S; Manobianco, J; Kamath, C

2010-02-21T23:59:59.000Z

315

Exponential smoothing model selection for forecasting  

Science Journals Connector (OSTI)

Applications of exponential smoothing to forecasting time series usually rely on three basic methods: simple exponential smoothing, trend corrected exponential smoothing and a seasonal variation thereof. A common approach to selecting the method appropriate to a particular time series is based on prediction validation on a withheld part of the sample using criteria such as the mean absolute percentage error. A second approach is to rely on the most appropriate general case of the three methods. For annual series this is trend corrected exponential smoothing: for sub-annual series it is the seasonal adaptation of trend corrected exponential smoothing. The rationale for this approach is that a general method automatically collapses to its nested counterparts when the pertinent conditions pertain in the data. A third approach may be based on an information criterion when maximum likelihood methods are used in conjunction with exponential smoothing to estimate the smoothing parameters. In this paper, such approaches for selecting the appropriate forecasting method are compared in a simulation study. They are also compared on real time series from the M3 forecasting competition. The results indicate that the information criterion approaches provide the best basis for automated method selection, the Akaike information criteria having a slight edge over its information criteria counterparts.

Baki Billah; Maxwell L. King; Ralph D. Snyder; Anne B. Koehler

2006-01-01T23:59:59.000Z

316

Solar Wind Forecasting with Coronal Holes  

E-Print Network [OSTI]

An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best one-month periods, and it has a linear correlation coefficient of ~0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.

S. Robbins; C. J. Henney; J. W. Harvey

2007-01-09T23:59:59.000Z

317

Space-time forecasting and evaluation of wind speed with statistical tests for comparing accuracy of spatial predictions  

E-Print Network [OSTI]

). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 11 Comparing the predictive distributions for the models when the TDD model produces the best forecast (top panel) and when the BST model produces the best forecast (bottom panel). The small vertical line on the x-axis of each plot represents... of wind to benefit humans is not a new concept. Historically, wind- mills have been used to pump water from wells or to grind grain for centuries. But fast- forwarding into the 21st century, ?windmills? are being used to generate electricity. Wind turbines...

Hering, Amanda S.

2010-10-12T23:59:59.000Z

318

Vision 2023: Forecasting Turkey's natural gas demand between 2013 and 2030  

Science Journals Connector (OSTI)

Natural gas is the primary source for electricity production in Turkey. However, Turkey does not have indigenous resources and imports more than 98.0% of the natural gas it consumes. In 2011, more than 20.0% of Turkey's annual trade deficit was due to imported natural gas, estimated at US$ 20.0 billion. Turkish government has very ambitious targets for the country's energy sector in the next decade according to the Vision 2023 agenda. Previously, we have estimated that Turkey's annual electricity demand would be 530,000 GWh at the year 2023. Considering current energy market dynamics it is almost evident that a substantial amount of this demand would be supplied from natural gas. However, meticulous analysis of the Vision 2023 goals clearly showed that the information about the natural gas sector is scarce. Most importantly there is no demand forecast for natural gas in the Vision 2023 agenda. Therefore, in this study the aim was to generate accurate forecasts for Turkey's natural gas demand between 2013 and 2030. For this purpose, two semi-empirical models based on econometrics, gross domestic product (GDP) at purchasing power parity (PPP) per capita, and demographics, population change, were developed. The logistic equation, which can be used for long term natural gas demand forecasting, and the linear equation, which can be used for medium term demand forecasting, fitted to the timeline series almost seamlessly. In addition, these two models provided reasonable fits according to the mean absolute percentage error, MAPE %, criteria. Turkey's natural gas demand at the year 2030 was calculated as 76.8 billion m3 using the linear model and 83.8 billion m3 based on the logistic model. Consequently, found to be in better agreement with the official Turkish petroleum pipeline corporation (BOTAS) forecast, 76.4 billion m3, than results published in the literature.

Mehmet Melikoglu

2013-01-01T23:59:59.000Z

319

Assumptions to the Annual Energy Outlook 2002 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

320

Assumptions to the Annual Energy Outlook 2001 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Annual Energy Outlook with Projections to 2025-Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Annual Energy Outlook 2004 with Projections to 2025 Forecast Comparisons Index (click to jump links) Economic Growth World Oil Prices Total Energy Consumption Electricity Natural Gas Petroleum Coal The AEO2004 forecast period extends through 2025. One other organization—Global Insight, Incorporated (GII)—produces a comprehensive energy projection with a similar time horizon. Several others provide forecasts that address one or more aspects of energy markets over different time horizons. Recent projections from GII and others are compared here with the AEO2004 projections. Economic Growth Printer Friendly Version Average annual percentage growth Forecast 2002-2008 2002-2013 2002-2025 AEO2003 3.2 3.3 3.1 AEO2004 Reference 3.3 3.2 3.0

322

Electric Grid - Forecasting system licensed | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Grid - Forecasting system licensed Location Based Technologies has signed an agreement to integrate and market an Oak Ridge National Laboratory technology that provides...

323

Forecasting supply/demand and price of ethylene feedstocks  

SciTech Connect (OSTI)

The history of the petrochemical industry over the past ten years clearly shows that forecasting in a turbulent world is like trying to predict tomorrow's headlines.

Struth, B.W.

1984-08-01T23:59:59.000Z

324

Integrating agricultural pest biocontrol into forecasts of energy biomass production  

E-Print Network [OSTI]

Analysis Integrating agricultural pest biocontrol into forecasts of energy biomass production T pollution, greenhouse gas emissions, and soil erosion (Nash, 2007; Searchinger et al., 2008). On the other

Gratton, Claudio

325

Microscale autonomous sensor and communications module  

DOE Patents [OSTI]

Various technologies pertaining to a microscale autonomous sensor and communications module are described herein. Such a module includes a sensor that generates a sensor signal that is indicative of an environmental parameter. An integrated circuit receives the sensor signal and generates an output signal based at least in part upon the sensor signal. An optical emitter receives the output signal and generates an optical signal as a function of the output signal. An energy storage device is configured to provide power to at least the integrated circuit and the optical emitter, and wherein the module has a relatively small diameter and thickness.

Okandan, Murat; Nielson, Gregory N

2014-03-25T23:59:59.000Z

326

EWO Meeting March 2014 Multi-Stage Scenario Tree Generation via  

E-Print Network [OSTI]

price · Production yield · Unplanned plant shutdown ­ Stochastic Programming with Recourse is a powerful and probabilities · Use of historical data and forecasts (data-driven approach) · Quality of scenario tree quality.) ­ Historical data and forecasts of product demand (uncertain parameter) · Objectives ­ Generate multi

Grossmann, Ignacio E.

327

Modular Isotopic Thermoelectric Generator  

SciTech Connect (OSTI)

Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

Schock, Alfred

1981-04-03T23:59:59.000Z

328

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

SciTech Connect (OSTI)

On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

Bolinger, Mark; Wiser, Ryan

2004-12-13T23:59:59.000Z

329

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

330

Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 167 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the

331

Definition: PV module | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: PV module Jump to: navigation, search Dictionary.png PV module A unit comprised of several PV cells, and the principal unit of a PV array; it is intended to generate direct current power under un-concentrated sunlight.[1][2] View on Wikipedia Wikipedia Definition A solar panel is a set of solar photovoltaic modules electrically connected and mounted on a supporting structure. A photovoltaic module is a packaged, connected assembly of photovoltaic cells. The solar module can be used as a component of a larger photovoltaic system to generate and supply electricity in commercial and residential applications. Each module is rated by its DC output power under standard test conditions (STC), and

332

BBO-based small autonomous hybrid power system optimization incorporating wind speed and solar radiation forecasting  

Science Journals Connector (OSTI)

Abstract Rising carbon emission or carbon footprint imposes grave concern over the earth?s climatic condition, as it results in increasing average global temperature. Renewable energy sources seem to be the favorable solution in this regard. It can reduce the overall energy consumption rate globally. However, the renewable sources are intermittent in nature with very high initial installation price. Off-grid Small Autonomous Hybrid Power Systems (SAHPS) are good alternative for generating electricity locally in remote areas, where the transmission and distribution of electrical energy generated from conventional sources are otherwise complex, difficult and costly. In optimizing SAHPS, weather data over past several years are generally the main input, which include wind speed and solar radiation. The weather resources used in this optimization process have unsystematic variations based on the atmospheric and seasonal phenomenon and it also varies from year to year. While using past data in the analysis of SAHPS performance, it was assumed that the same pattern will be followed in the next year, which in reality is very unlikely to happen. In this paper, we use BBO optimization algorithm for SAHPS optimal component sizing by minimizing the cost of energy. We have also analysed the effect of using forecast weather data instead of past data on the SAHPS performance. ANNs, which are trained with back-propagation training algorithm, are used for wind speed and solar radiation forecasting. A case study was used for demonstrating the performance of BBO optimization algorithm along with forecasting effects. The simulation results clearly showed the advantages of utilizing wind speed and solar radiation forecasting in a SAHPS optimization problem.

R.A. Gupta; Rajesh Kumar; Ajay Kumar Bansal

2015-01-01T23:59:59.000Z

333

Forecasting for inventory control with exponential smoothing  

Science Journals Connector (OSTI)

Exponential smoothing, often used in sales forecasting for inventory control, has always been rationalized in terms of statistical models that possess errors with constant variances. It is shown in this paper that exponential smoothing remains appropriate under more general conditions, where the variance is allowed to grow or contract with corresponding movements in the underlying level. The implications for estimation and prediction are explored. In particular, the problem of finding the predictive distribution of aggregate lead-time demand, for use in inventory control calculations, is considered using a bootstrap approach. A method for establishing order-up-to levels directly from the simulated predictive distribution is also explored.

Ralph D. Snyder; Anne B. Koehler; J.Keith Ord

2002-01-01T23:59:59.000Z

334

Probabilistic Verification of Global and Mesoscale Ensemble Forecasts of Tropical Cyclogenesis  

Science Journals Connector (OSTI)

Probabilistic forecasts of tropical cyclogenesis have been evaluated for two samples: a near-homogeneous sample of ECMWF and Weather Research and Forecasting (WRF) Model–ensemble Kalman filter (EnKF) ensemble forecasts during the National Science ...

Sharanya J. Majumdar; Ryan D. Torn

2014-10-01T23:59:59.000Z

335

Approved Module Information for CE2105, 2014/5 Module Title/Name: Process Simulation Module Code: CE2105  

E-Print Network [OSTI]

the program to processes in chemicals manufacturing, power generation and petrochemical refining skills #12;* Ability to communicate effectively in writing and through technical diagrams * Problem reading, coursework exercises, tutorial support Module Assessment Methods of Assessment & associated

Neirotti, Juan Pablo

336

Random switching exponential smoothing and inventory forecasting  

Science Journals Connector (OSTI)

Abstract Exponential smoothing models represent an important prediction tool both in business and in macroeconomics. This paper provides the analytical forecasting properties of the random coefficient exponential smoothing model in the “multiple source of error” framework. The random coefficient state-space representation allows for switching between simple exponential smoothing and local linear trend. Therefore it enables controlling, in a flexible manner, the random changing dynamic behavior of the time series. The paper establishes the algebraic mapping between the state-space parameters and the implied reduced form ARIMA parameters. In addition, it shows that the parametric mapping allows overcoming the difficulties that are likely to emerge in estimating directly the random coefficient state-space model. Finally, it presents an empirical application comparing the forecast accuracy of the suggested model vis-à-vis other benchmark models, both in the ARIMA and in the exponential smoothing class. Using time series relative to wholesalers inventories in the USA, the out-of-sample results show that the reduced form of the random coefficient exponential smoothing model tends to be superior to its competitors.

Giacomo Sbrana; Andrea Silvestrini

2014-01-01T23:59:59.000Z

337

Expert Panel: Forecast Future Demand for Medical Isotopes  

Broader source: Energy.gov (indexed) [DOE]

Expert Panel: Expert Panel: Forecast Future Demand for Medical Isotopes March 1999 Expert Panel: Forecast Future Demand for Medical Isotopes September 25-26, 1998 Arlington, Virginia The Expert Panel ............................................................................................. Page 1 Charge To The Expert Panel........................................................................... Page 2 Executive Summary......................................................................................... Page 3 Introduction ...................................................................................................... Page 4 Rationale.......................................................................................................... Page 6 Economic Analysis...........................................................................................

338

A robust automatic phase-adjustment method for financial forecasting  

Science Journals Connector (OSTI)

In this work we present the robust automatic phase-adjustment (RAA) method to overcome the random walk dilemma for financial time series forecasting. It consists of a hybrid model composed of a qubit multilayer perceptron (QuMLP) with a quantum-inspired ... Keywords: Financial forecasting, Hybrid models, Quantum-inspired evolutionary algorithm, Qubit multilayer perceptron, Random walk dilemma

Ricardo de A. Araújo

2012-03-01T23:59:59.000Z

339

Short term forecasting of solar radiation based on satellite data  

E-Print Network [OSTI]

Short term forecasting of solar radiation based on satellite data Elke Lorenz, Annette Hammer University, D-26111 Oldenburg Forecasting of solar irradiance will become a major issue in the future integration of solar energy resources into existing energy supply structures. Fluctuations of solar irradiance

Heinemann, Detlev

340

FORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS  

E-Print Network [OSTI]

resources resulting in water stress. Effective water management ­ a solution Supply side management Demand side management #12;Developing a regression equation based on cluster analysis for forecasting waterFORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS by Bruce Bishop Professor of Civil

Keller, Arturo A.

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Impact of PV forecasts uncertainty in batteries management in microgrids  

E-Print Network [OSTI]

production forecast algorithm is used in combination with a battery schedule optimisation algorithm. The size. On the other hand if forecasted high production events do not occur, the cost of de- optimisation Energies and Energy Systems Sophia Antipolis, France andrea.michiorri@mines-paristech.fr Abstract

Paris-Sud XI, Université de

342

Revised 1997 Retail Electricity Price Forecast Principal Author: Ben Arikawa  

E-Print Network [OSTI]

Revised 1997 Retail Electricity Price Forecast March 1998 Principal Author: Ben Arikawa Electricity 1997 FORE08.DOC Page 1 CALIFORNIA ENERGY COMMISSION ELECTRICITY ANALYSIS OFFICE REVISED 1997 RETAIL ELECTRICITY PRICE FORECAST Introduction The Electricity Analysis Office of the California Energy Commission

343

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center  

E-Print Network [OSTI]

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at wind energy sites are becoming paramount. Regime-switching space-time (RST) models merge meteorological forecast regimes at the wind energy site and fits a conditional predictive model for each regime

Washington at Seattle, University of

344

A Transformed Lagged Ensemble Forecasting Technique for Increasing Ensemble Size  

E-Print Network [OSTI]

A Transformed Lagged Ensemble Forecasting Technique for Increasing Ensemble Size Andrew. R.Lawrence@ecmwf.int #12;Abstract An ensemble-based data assimilation approach is used to transform old en- semble. The impact of the transformations are propagated for- ward in time over the ensemble's forecast period

Hansens, Jim

345

E-Print Network 3.0 - africa conditional forecasts Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: africa conditional forecasts Page: << < 1 2 3 4 5 > >> 1 COLORADO STATE UNIVERSITY FORECAST...

346

Tailored Terahertz Pulses from a Laser-Modulated Electron Beam  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the ALS have demonstrated a new method to generate tunable, coherent, broadband terahertz radiation from a relativistic electron beam modulated by a femtosecond laser....

347

FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2  

SciTech Connect (OSTI)

For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.

Templeton, K.J.

1996-05-23T23:59:59.000Z

348

Model documentation Renewable Fuels Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analaytical approach and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1996 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described.

NONE

1996-01-01T23:59:59.000Z

349

Echo-Enabled Harmonic Generation  

SciTech Connect (OSTI)

A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

Stupakov, Gennady

2010-08-25T23:59:59.000Z

350

Echo-Enabled Harmonic Generation  

SciTech Connect (OSTI)

A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

Stupakov, Gennady; /SLAC

2012-06-28T23:59:59.000Z

351

China's Present Situation of Coal Consumption and Future Coal Demand Forecast  

Science Journals Connector (OSTI)

This article analyzes China's coal consumption changes since 1991 and proportion change of coal consumption to total energy consumption. It is argued that power, iron and steel, construction material, and chemical industries are the four major coal consumption industries, which account for 85% of total coal consumption in 2005. Considering energy consumption composition characteristics of these four industries, major coal demand determinants, potentials of future energy efficiency improvement, and structural changes, etc., this article makes a forecast of 2010s and 2020s domestic coal demand in these four industries. In addition, considering such relevant factors as our country's future economic growth rate and energy saving target, it forecasts future energy demands, using per unit GDP energy consumption method and energy elasticity coefficient method as well. Then it uses other institution's results about future primary energy demand, excluding primary coal demand, for reference, and forecasts coal demands in 2010 and 2020 indirectly. After results comparison between these two methods, it is believed that coal demands in 2010 might be 2620–2850 million tons and in 2020 might be 3090–3490 million tons, in which, coal used in power generation is still the driven force of coal demand growth.

Wang Yan; Li Jingwen

2008-01-01T23:59:59.000Z

352

Forecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Futures Prices  

E-Print Network [OSTI]

This paper presents a model based on multilayer feedforward neural network to forecast crude oil spot price direction in the short-term, up to three days ahead. A great deal of attention was paid on finding the optimal ANN model structure. In addition, several methods of data pre-processing were tested. Our approach is to create a benchmark based on lagged value of pre-processed spot price, then add pre-processed futures prices for 1, 2, 3,and four months to maturity, one by one and also altogether. The results on the benchmark suggest that a dynamic model of 13 lags is the optimal to forecast spot price direction for the short-term. Further, the forecast accuracy of the direction of the market was 78%, 66%, and 53% for one, two, and three days in future conclusively. For all the experiments, that include futures data as an input, the results show that on the short-term, futures prices do hold new information on the spot price direction. The results obtained will generate comprehensive understanding of the cr...

Kulkarni, Siddhivinayak

2009-01-01T23:59:59.000Z

353

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

E-Print Network [OSTI]

are dispatched to follow the load on regular dispatchloads in the energy market, and charge imbalance fees to generators that do not followload are to some degree forecastable on a day-ahead basis, as they typically follow

Cappers, Peter

2012-01-01T23:59:59.000Z

354

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity Electricity consumption nearly doubles in the IEO2005 projection period. The emerging economies of Asia are expected to lead the increase in world electricity use. Figure 58. World Net Electricity Consumption, 2002-2025 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 59. World Net Electricity Consumption by Region, 2002-2025 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data The International Energy Outlook 2005 (IEO2005) reference case projects that world net electricity consumption will nearly double over the next two decades.10 Over the forecast period, world electricity demand is projected to grow at an average rate of 2.6 percent per year, from 14,275 billion

355

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to John J. Conti (john.conti@eia.doe.gov, 202-586-2222), Director, Office of Integrated Analysis and Forecasting. Specific questions about the report should be referred to Linda E. Doman (202/586-1041) or the following analysts: World Energy and Economic Outlook Linda Doman (linda.doman@eia.doe.gov, 202-586-1041) Macroeconomic Assumptions Nasir Khilji (nasir.khilji@eia.doe.gov, 202-586-1294) Energy Consumption by End-Use Sector Residential Energy Use John Cymbalsky (john.cymbalsky@eia.doe.gov, 202-586-4815) Commercial Energy Use Erin Boedecker (erin.boedecker@eia.doe.gov, 202-586-4791)

356

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Natural gas is the fastest growing primary energy source in the IEO2005 forecast. Consumption of natural gas is projected to increase by nearly 70 percent between 2002 and 2025, with the most robust growth in demand expected among the emerging economies. Figure 34. World Natural Gas Consumption, 1980-2025 (Trillion Cubic Feet). Need help, contact the National Energy Information Center on 202-586-8800. Figure Data Figure 35. Natural Gas Consumption by Region, 1980-2025 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 36. Increase in Natural Gas Consumption by Region and Country, 2002-2025. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data

357

Annual Energy Outlook 1998 Forecasts - Preface  

Gasoline and Diesel Fuel Update (EIA)

1998 With Projections to 2020 1998 With Projections to 2020 Annual Energy Outlook 1999 Report will be Available on December 9, 1998 Preface The Annual Energy Outlook 1998 (AEO98) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA's National Energy Modeling System (NEMS). The report begins with an “Overview” summarizing the AEO98 reference case. The next section, “Legislation and Regulations,” describes the assumptions made with regard to laws that affect energy markets and discusses evolving legislative and regulatory issues. “Issues in Focus” discusses three current energy issues—electricity restructuring, renewable portfolio standards, and carbon emissions. It is followed by the analysis

358

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by End-Use Sector Energy Consumption by End-Use Sector In the IEO2005 projections, end-use energy consumption in the residential, commercial, industrial, and transportation sectors varies widely among regions and from country to country. One way of looking at the future of world energy markets is to consider trends in energy consumption at the end-use sector level. With the exception of the transportation sector, which is almost universally dominated by petroleum products at present, the mix of energy use in the residential, commercial, and industrial sectors can vary widely from country to country, depending on a combination of regional factors, such as the availability of energy resources, the level of economic development, and political, social, and demographic factors. This chapter outlines the International Energy Outlook 2005 (IEO2005) forecast for regional energy consumption by end-use sector.

359

Volatility forecasting with smooth transition exponential smoothing  

Science Journals Connector (OSTI)

Adaptive exponential smoothing methods allow smoothing parameters to change over time, in order to adapt to changes in the characteristics of the time series. This paper presents a new adaptive method for predicting the volatility in financial returns. It enables the smoothing parameter to vary as a logistic function of user-specified variables. The approach is analogous to that used to model time-varying parameters in smooth transition generalised autoregressive conditional heteroskedastic (GARCH) models. These non-linear models allow the dynamics of the conditional variance model to be influenced by the sign and size of past shocks. These factors can also be used as transition variables in the new smooth transition exponential smoothing (STES) approach. Parameters are estimated for the method by minimising the sum of squared deviations between realised and forecast volatility. Using stock index data, the new method gave encouraging results when compared to fixed parameter exponential smoothing and a variety of GARCH models.

James W. Taylor

2004-01-01T23:59:59.000Z

360

TOB Module Assembly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SiTracker Home Page Participating Institutions and Principal Contacts Useful Links Notes Images TOB Module Assembly and Testing Project TOB Integration Data Tracker Offline DQM LHC Fluence Calculator Total US Modules Tested Graph Total US Modules Tested Graph Total US Modules Tested Total US Modules Tested US Modules Tested Graph US Modules Tested Graph US Modules Tested US Modules Tested Rod Assembly TOB Modules on a Rod TOB Rod Insertion Installation of a TOB Rod Completed TOB Completed Tracker Outer Barrel TOB Module Assembly and Testing Project All 5208 modules of the CMS Tracker Outer Barrel were assembled and tested at two production sites in the US: the Fermi National Accelerator Laboratory and the University of California at Santa Barbara. The modules were delivered to CERN in the form of rods, with the last shipment taking

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 1. Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations Table 1. Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations Average Absolute Percent Error Variable AEO82 to AEO98 AEO82 to AEO99 AEO82 to AEO2000 AEO82 to AEO2001 AEO82 to AEO2002 AEO82 to AEO2003 Consumption Total Energy Consumption 1.7 1.7 1.8 1.9 1.9 2.1 Total Petroleum Consumption 2.9 2.8 2.9 3.0 2.9 2.9 Total Natural Gas Consumption 5.7 5.6 5.6 5.5 5.5 6.5 Total Coal Consumption 3.0 3.2 3.3 3.5 3.6 3.7 Total Electricity Sales 1.7 1.8 1.9 2.4 2.5 2.4 Production Crude Oil Production 4.3 4.5 4.5 4.5 4.5 4.7 Natural Gas Production 4.8 4.7 4.6 4.6 4.4 4.4 Coal Production 3.6 3.6 3.5 3.7 3.6 3.8 Imports and Exports Net Petroleum Imports 9.5 8.8 8.4 7.9 7.4 7.5 Net Natural Gas Imports 16.7 16.0 15.9 15.8 15.8 15.4

362

Coal production forecast and low carbon policies in China  

Science Journals Connector (OSTI)

With rapid economic growth and industrial expansion, China consumes more coal than any other nation. Therefore, it is particularly crucial to forecast China's coal production to help managers make strategic decisions concerning China's policies intended to reduce carbon emissions and concerning the country's future needs for domestic and imported coal. Such decisions, which must consider results from forecasts, will have important national and international effects. This article proposes three improved forecasting models based on grey systems theory: the Discrete Grey Model (DGM), the Rolling DGM (RDGM), and the p value RDGM. We use the statistical data of coal production in China from 1949 to 2005 to validate the effectiveness of these improved models to forecast the data from 2006 to 2010. The performance of the models demonstrates that the p value RDGM has the best forecasting behaviour over this historical time period. Furthermore, this paper forecasts coal production from 2011 to 2015 and suggests some policies for reducing carbon and other emissions that accompany the rise in forecasted coal production.

Jianzhou Wang; Yao Dong; Jie Wu; Ren Mu; He Jiang

2011-01-01T23:59:59.000Z

363

Measuring the forecasting accuracy of models: evidence from industrialised countries  

Science Journals Connector (OSTI)

This paper uses the approach suggested by Akrigay (1989), Tse and Tung (1992) and Dimson and Marsh (1990) to examine the forecasting accuracy of stock price index models for industrialised markets. The focus of this paper is to compare the Mean Absolute Percentage Error (MAPE) of three models, that is, the Random Walk model, the Single Exponential Smoothing model and the Conditional Heteroskedastic model with the MAPE of the benchmark Naive Forecast 1 case. We do not evidence that a single model to provide better forecasting accuracy results compared to other models.

Athanasios Koulakiotis; Apostolos Dasilas

2009-01-01T23:59:59.000Z

364

Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty  

E-Print Network [OSTI]

Solar irradiance data . . . . . . . . . . . . .Accuracy . . . . . . . . . . . . . . . . . Solar Resourcev Uncertainty In Solar Resource: Forecasting

Marquez, Ricardo

2012-01-01T23:59:59.000Z

365

18 Bureau of Meteorology Annual Report 201314 Hazards, warnings and forecasts  

E-Print Network [OSTI]

and numerical prediction models. #12;19Bureau of Meteorology Annual Report 2013­14 2 Performance Performance programs: · Weather forecasting services; · Flood forecasting and warning services; · Hazard prediction, Warnings and Forecasts portfolio provides a range of forecast and warning services covering weather, ocean

Greenslade, Diana

366

General Renewable Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

General Renewable Energy Technology Module General Renewable Energy Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy Technology Module Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy Topics: Technology characterizations Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: General Renewable Energy Technology Module[1] Resource Generation and Transmission Interconnection Process Overview, PJM Manual, Transmission and Interconnection Planning Department, System Planning Division, PJM Interconnection, LLC References ↑ "General Renewable Energy Technology Module" Retrieved from "http://en.openei.org/w/index.php?title=General_Renewable_Energy_Technology_Module&oldid=328701

367

Forecasting aggregate demand: Analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework  

Science Journals Connector (OSTI)

Abstract Forecasting aggregate demand represents a crucial aspect in all industrial sectors. In this paper, we provide the analytical prediction properties of top-down (TD) and bottom-up (BU) approaches when forecasting the aggregate demand using a multivariate exponential smoothing as demand planning framework. We extend and generalize the results achieved by Widiarta et al. (2009) by employing an unrestricted multivariate framework allowing for interdependency between its variables. Moreover, we establish the necessary and sufficient condition for the equality of mean squared errors (MSEs) of the two approaches. We show that the condition for the equality of \\{MSEs\\} holds even when the moving average parameters of the individual components are not identical. In addition, we show that the relative forecasting accuracy of TD and BU depends on the parametric structure of the underlying framework. Simulation results confirm our theoretical findings. Indeed, the ranking of TD and BU forecasts is led by the parametric structure of the underlying data generation process, regardless of possible misspecification issues.

Giacomo Sbrana; Andrea Silvestrini

2013-01-01T23:59:59.000Z

368

Light beam frequency comb generator  

DOE Patents [OSTI]

A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.

Priatko, Gordon J. (Cupertino, CA); Kaskey, Jeffrey A. (Livermore, CA)

1992-01-01T23:59:59.000Z

369

Code division multiple access signaling for modulated reflector technology  

DOE Patents [OSTI]

A method and apparatus for utilizing code division multiple access in modulated reflectance transmissions comprises the steps of generating a phase-modulated reflectance data bit stream; modifying the modulated reflectance data bit stream; providing the modified modulated reflectance data bit stream to a switch that connects an antenna to an infinite impedance in the event a "+1" is to be sent, or connects the antenna to ground in the event a "0" or a "-1" is to be sent.

Briles, Scott D. (Los Alamos, NM)

2012-05-01T23:59:59.000Z

370

Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models  

SciTech Connect (OSTI)

Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

Vrugt, Jasper A [Los Alamos National Laboratory; Wohling, Thomas [NON LANL

2008-01-01T23:59:59.000Z

371

Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) | Open  

Open Energy Info (EERE)

Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Agency/Company /Organization: Energy Sector Management Assistance Program of the World Bank Sector: Energy Focus Area: Non-renewable Energy Topics: Baseline projection, Co-benefits assessment, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Simple Website: www.esmap.org/esmap/EFFECT Cost: Free Equivalent URI: www.esmap.org/esmap/EFFECT Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Screenshot

372

Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory  

Gasoline and Diesel Fuel Update (EIA)

Forecasting Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory Levels MICHAEL YE, ∗ JOHN ZYREN, ∗∗ AND JOANNE SHORE ∗∗ Abstract This paper presents a short-term monthly forecasting model of West Texas Intermedi- ate crude oil spot price using OECD petroleum inventory levels. Theoretically, petroleum inventory levels are a measure of the balance, or imbalance, between petroleum production and demand, and thus provide a good market barometer of crude oil price change. Based on an understanding of petroleum market fundamentals and observed market behavior during the post-Gulf War period, the model was developed with the objectives of being both simple and practical, with required data readily available. As a result, the model is useful to industry and government decision-makers in forecasting price and investigat- ing the impacts of changes on price, should inventories,

373

Adaptive sampling and forecasting with mobile sensor networks  

E-Print Network [OSTI]

This thesis addresses planning of mobile sensor networks to extract the best information possible out of the environment to improve the (ensemble) forecast at some verification region in the future. To define the information ...

Choi, Han-Lim

2009-01-01T23:59:59.000Z

374

Pacific Adaptation Strategy Assistance Program Dynamical Seasonal Forecasting  

E-Print Network [OSTI]

Pacific Adaptation Strategy Assistance Program Dynamical Seasonal Forecasting Seasonal Prediction · POAMA · Issues for future Outline #12;Pacific Adaptation Strategy Assistance Program Major source Adaptation Strategy Assistance Program El Nino Mean State · Easterlies westward surface current upwelling

Lim, Eun-pa

375

Forecasting Volatility in Stock Market Using GARCH Models  

E-Print Network [OSTI]

Forecasting volatility has held the attention of academics and practitioners all over the world. The objective for this master's thesis is to predict the volatility in stock market by using generalized autoregressive ...

Yang, Xiaorong

2008-01-01T23:59:59.000Z

376

Exponential smoothing with covariates applied to electricity demand forecast  

Science Journals Connector (OSTI)

Exponential smoothing methods are widely used as forecasting techniques in industry and business. Their usual formulation, however, does not allow covariates to be used for introducing extra information into the forecasting process. In this paper, we analyse an extension of the exponential smoothing formulation that allows the use of covariates and the joint estimation of all the unknowns in the model, which improves the forecasting results. The whole procedure is detailed with a real example on forecasting the daily demand for electricity in Spain. The time series of daily electricity demand contains two seasonal patterns: here the within-week seasonal cycle is modelled as usual in exponential smoothing, while the within-year cycle is modelled using covariates, specifically two harmonic explanatory variables. Calendar effects, such as national and local holidays and vacation periods, are also introduced using covariates. [Received 28 September 2010; Revised 6 March 2011, 2 October 2011; Accepted 16 October 2011

José D. Bermúdez

2013-01-01T23:59:59.000Z

377

Initial conditions estimation for improving forecast accuracy in exponential smoothing  

Science Journals Connector (OSTI)

In this paper we analyze the importance of initial conditions in exponential smoothing models on forecast errors and prediction intervals. We work with certain exponential smoothing models, namely Holt’s additive...

E. Vercher; A. Corberán-Vallet; J. V. Segura; J. D. Bermúdez

2012-07-01T23:59:59.000Z

378

A Bayesian approach to forecast intermittent demand for seasonal products  

Science Journals Connector (OSTI)

This paper investigates the forecasting of a large fluctuating seasonal demand prior to peak sale season using a practical time series, collected from the US Census Bureau. Due to the extreme natural events (e.g. excessive snow fall and calamities), sales may not occur, inventory may not replenish and demand may set off unrecorded during the peak sale season. This characterises a seasonal time series to an intermittent category. A seasonal autoregressive integrated moving average (SARIMA), a multiplicative exponential smoothing (M-ES) and an effective modelling approach using Bayesian computational process are analysed in the context of seasonal and intermittent forecast. Several forecast error indicators and a cost factor are used to compare the models. In cost factor analysis, cost is measured optimally using dynamic programming model under periodic review policy. Experimental results demonstrate that Bayesian model performance is much superior to SARIMA and M-ES models, and efficient to forecast seasonal and intermittent demand.

Mohammad Anwar Rahman; Bhaba R. Sarker

2012-01-01T23:59:59.000Z

379

Review/Verify Strategic Skills Needs/Forecasts/Future Mission...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ReviewVerify Strategic Skills NeedsForecastsFuture Mission Shifts Annual Lab Plan (1-10 yrs) Fermilab Strategic Agenda (2-5 yrs) Sector program Execution Plans (1-3...

380

A Parameter for Forecasting Tornadoes Associated with Landfalling Tropical Cyclones  

Science Journals Connector (OSTI)

The authors develop a statistical guidance product, the tropical cyclone tornado parameter (TCTP), for forecasting the probability of one or more tornadoes during a 6-h period that are associated with landfalling tropical cyclones affecting the ...

Matthew J. Onderlinde; Henry E. Fuelberg

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Wind Power Forecasting: State-of-the-Art 2009  

E-Print Network [OSTI]

Wind Power Forecasting: State-of-the-Art 2009 ANL/DIS-10-1 Decision and Information Sciences about Argonne and its pioneering science and technology programs, see www.anl.gov. #12;Wind Power

Kemner, Ken

382

2007 National Hurricane Center Forecast Verification Report James L. Franklin  

E-Print Network [OSTI]

storms 17 4. Genesis Forecasts 17 5. Summary and Concluding Remarks 18 a. Atlantic Summary 18 statistical models, provided the best intensity guidance at each time period. The 2007 season marked the first

383

Recently released EIA report presents international forecasting data  

SciTech Connect (OSTI)

This report presents information from the Energy Information Administration (EIA). Articles are included on international energy forecasting data, data on the use of home appliances, gasoline prices, household energy use, and EIA information products and dissemination avenues.

NONE

1995-05-01T23:59:59.000Z

384

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network [OSTI]

......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

385

Information-Based Skill Scores for Probabilistic Forecasts  

Science Journals Connector (OSTI)

The information content, that is, the predictive capability, of a forecast system is often quantified with skill scores. This paper introduces two ranked mutual information skill (RMIS) scores, RMISO and RMISY, for the evaluation of probabilistic ...

Bodo Ahrens; André Walser

2008-01-01T23:59:59.000Z

386

A methodology for forecasting carbon dioxide flooding performance  

E-Print Network [OSTI]

A methodology was developed for forecasting carbon dioxide (CO2) flooding performance quickly and reliably. The feasibility of carbon dioxide flooding in the Dollarhide Clearfork "AB" Unit was evaluated using the methodology. This technique is very...

Marroquin Cabrera, Juan Carlos

2012-06-07T23:59:59.000Z

387

Evolutionary Optimization of an Ice Accretion Forecasting System  

Science Journals Connector (OSTI)

The ability to model and forecast accretion of ice on structures is very important for many industrial sectors. For example, studies conducted by the power transmission industry indicate that the majority of failures are caused by icing on ...

Pawel Pytlak; Petr Musilek; Edward Lozowski; Dan Arnold

2010-07-01T23:59:59.000Z

388

Diagnosing the Origin of Extended-Range Forecast Errors  

Science Journals Connector (OSTI)

Experiments with the ECMWF model are carried out to study the influence that a correct representation of the lower boundary conditions, the tropical atmosphere, and the Northern Hemisphere stratosphere would have on extended-range forecast skill ...

T. Jung; M. J. Miller; T. N. Palmer

2010-06-01T23:59:59.000Z

389

Research on Development Trends of Power Load Forecasting Methods  

Science Journals Connector (OSTI)

In practical problem, number of samples is often limited, for complex issues such as power load forecasting, generally available historical data and information of impact factor are very ... support vector mechan...

Litong Dong; Jun Xu; Haibo Liu; Ying Guo

2014-01-01T23:59:59.000Z

390

Weather Research and Forecasting Model 2.2 Documentation  

E-Print Network [OSTI]

................................................................................................. 20 3.1.2 Integrate's Flow of ControlWeather Research and Forecasting Model 2.2 Documentation: A Step-by-step guide of a Model Run .......................................................................................................................... 19 3.1 The Integrate Subroutine

Sadjadi, S. Masoud

391

Network Bandwidth Utilization Forecast Model on High Bandwidth Network  

SciTech Connect (OSTI)

With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

Yoo, Wucherl; Sim, Alex

2014-07-07T23:59:59.000Z

392

Wind Speed Forecasting Using a Hybrid Neural-Evolutive Approach  

Science Journals Connector (OSTI)

The design of models for time series prediction has found a solid foundation on statistics. Recently, artificial neural networks have been a good choice as approximators to model and forecast time series. Designing a neural network that provides a good ...

Juan J. Flores; Roberto Loaeza; Héctor Rodríguez; Erasmo Cadenas

2009-11-01T23:59:59.000Z

393

A model for short term electric load forecasting  

E-Print Network [OSTI]

A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE, III Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Electrical Engineering A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE& III Approved as to style and content by: (Chairman of Committee) (Head Depart t) (Member) ;(Me r (Member) (Member) May 1975 ABSTRACT...

Tigue, John Robert

1975-01-01T23:59:59.000Z

394

Radiation fog forecasting using a 1-dimensional model  

E-Print Network [OSTI]

measuring site (Molly Caren), the soil moisture measuring site (Wilmington), and (b) location of the forecast site (Ohio River Basin near Cincinnati including Lunken airport) . . 23 3 An example of a COBEL configuration file for 25 August 1996, showing... measuring site (Molly Caren), the soil moisture measuring site (Wilmington), and (b) location of the forecast site (Ohio River Basin near Cincinnati including Lunken airport) . . 23 3 An example of a COBEL configuration file for 25 August 1996, showing...

Peyraud, Lionel

2012-06-07T23:59:59.000Z

395

FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2  

SciTech Connect (OSTI)

For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

Valero, O.J.

1996-04-23T23:59:59.000Z

396

Annual Energy Outlook with Projections to 2025 - Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Annual Energy Outlook 2005 Forecast Comparisons Table 32. Forecasts of annual average economic growth, 2003-2025 Printer Friendly Version Average annual percentage growth Forecast 2003-2009 2003-2014 2003-2025 AEO2004 3.5 3.2 3.0 AEO2005 Reference 3.4 3.3 3.1 Low growth 2.9 2.8 2.5 High growth 4.1 3.9 3.6 GII 3.4 3.2 3.1 OMB 3.6 NA NA CBO 3.5 3.1 NA OEF 3.5 3.5 NA Only one other organization—Global Insight, Incorporated (GII)—produces a comprehensive energy projection with a time horizon similar to that of AEO2005. Other organizations address one or more aspects of the energy markets. The most recent projection from GII, as well as other forecasts that concentrate on economic growth, international oil prices, energy

397

Weather-based forecasts of California crop yields  

SciTech Connect (OSTI)

Crop yield forecasts provide useful information to a range of users. Yields for several crops in California are currently forecast based on field surveys and farmer interviews, while for many crops official forecasts do not exist. As broad-scale crop yields are largely dependent on weather, measurements from existing meteorological stations have the potential to provide a reliable, timely, and cost-effective means to anticipate crop yields. We developed weather-based models of state-wide yields for 12 major California crops (wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios), and tested their accuracy using cross-validation over the 1980-2003 period. Many crops were forecast with high accuracy, as judged by the percent of yield variation explained by the forecast, the number of yields with correctly predicted direction of yield change, or the number of yields with correctly predicted extreme yields. The most successfully modeled crop was almonds, with 81% of yield variance captured by the forecast. Predictions for most crops relied on weather measurements well before harvest time, allowing for lead times that were longer than existing procedures in many cases.

Lobell, D B; Cahill, K N; Field, C B

2005-09-26T23:59:59.000Z

398

Wave height forecasting in Dayyer, the Persian Gulf  

Science Journals Connector (OSTI)

Forecasting of wave parameters is necessary for many marine and coastal operations. Different forecasting methodologies have been developed using the wind and wave characteristics. In this paper, artificial neural network (ANN) as a robust data learning method is used to forecast the wave height for the next 3, 6, 12 and 24 h in the Persian Gulf. To determine the effective parameters, different models with various combinations of input parameters were considered. Parameters such as wind speed, direction and wave height of the previous 3 h, were found to be the best inputs. Furthermore, using the difference between wave and wind directions showed better performance. The results also indicated that if only the wind parameters are used as model inputs the accuracy of the forecasting increases as the time horizon increases up to 6 h. This can be due to the lower influence of previous wave heights on larger lead time forecasting and the existing lag between the wind and wave growth. It was also found that in short lead times, the forecasted wave heights primarily depend on the previous wave heights, while in larger lead times there is a greater dependence on previous wind speeds.

B. Kamranzad; A. Etemad-Shahidi; M.H. Kazeminezhad

2011-01-01T23:59:59.000Z

399

NREL: Resource Assessment and Forecasting - Metrology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calibrators Frequency counters Resistors Capacitors Amplifiers Clamp-ons Transducers (watt, voltage, and current) Power supplies Current sources Oscilloscopes Function generators...

400

Photovoltaic solar concentrator module  

SciTech Connect (OSTI)

This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

Chiang, C.J.

1991-05-16T23:59:59.000Z

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Natural-Gas-Fired Thermoelectric Power Generation System  

Science Journals Connector (OSTI)

This paper presents a combustion-driven thermoelectric power generation system that uses PbSnTe-based thermoelectric modules. The modules were integrated into a gas-fired furnace with a special burner design. The...

K. Qiu; A.C.S. Hayden

2009-07-01T23:59:59.000Z

402

Finite generation of Tate cohomology.  

E-Print Network [OSTI]

Let G be a finite group and let k be a field of characteristic p. Given a finitely generated indecomposable non-projective kG-module M, we conjecture that if the Tate cohomology $\\HHHH^*(G, M)$ of G with coefficients in M is finitely generated over the Tate cohomology ring $\\HHHH^*(G, k)$, then the support variety V_G(M) of M is equal to the entire maximal ideal spectrum V_G(k). We prove various results which support this conjecture. The converse of this conjecture is established for modules in the connected component of k in the stable Auslander-Reiten quiver for kG, but it is shown to be false in general. It is also shown that all finitely generated kG-modules over a group G have finitely generated Tate cohomology if and only if G has periodic cohomology.

Jon F. Carlson; Sunil K. Chebolu; Jan Minac.; 15 (2011) 244-257

403

Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy  

Science Journals Connector (OSTI)

Abstract Buildings are the dominant source of energy consumption and environmental emissions in urban areas. Therefore, the ability to forecast and characterize building energy consumption is vital to implementing urban energy management and efficiency initiatives required to curb emissions. Advances in smart metering technology have enabled researchers to develop “sensor based” approaches to forecast building energy consumption that necessitate less input data than traditional methods. Sensor-based forecasting utilizes machine learning techniques to infer the complex relationships between consumption and influencing variables (e.g., weather, time of day, previous consumption). While sensor-based forecasting has been studied extensively for commercial buildings, there is a paucity of research applying this data-driven approach to the multi-family residential sector. In this paper, we build a sensor-based forecasting model using Support Vector Regression (SVR), a commonly used machine learning technique, and apply it to an empirical data-set from a multi-family residential building in New York City. We expand our study to examine the impact of temporal (i.e., daily, hourly, 10 min intervals) and spatial (i.e., whole building, by floor, by unit) granularity have on the predictive power of our single-step model. Results indicate that sensor based forecasting models can be extended to multi-family residential buildings and that the optimal monitoring granularity occurs at the by floor level in hourly intervals. In addition to implications for the development of residential energy forecasting models, our results have practical significance for the deployment and installation of advanced smart metering devices. Ultimately, accurate and cost effective wide-scale energy prediction is a vital step towards next-generation energy efficiency initiatives, which will require not only consideration of the methods, but the scales for which data can be distilled into meaningful information.

Rishee K. Jain; Kevin M. Smith; Patricia J. Culligan; John E. Taylor

2014-01-01T23:59:59.000Z

404

Technology data characterizing refrigeration in commercial buildings: Application to end-use forecasting with COMMEND 4.0  

SciTech Connect (OSTI)

In the United States, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of the refrigeration end use in terms of specific technologies, however, is complicated by several factors. First, the number of configurations of refrigeration cases and systems is quite large. Also, energy use is a complex function of the refrigeration-case properties and the refrigeration-system properties. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. Expanding end-use forecasting models so that they address individual technology options requires characterization of the present floorstock in terms of service requirements, energy technologies used, and cost-efficiency attributes of the energy technologies that consumers may choose for new buildings and retrofits. This report describes the process by which we collected refrigeration technology data. The data were generated for COMMEND 4.0 but are also generally applicable to other end-use forecasting frameworks for the commercial sector.

Sezgen, O.; Koomey, J.G.

1995-12-01T23:59:59.000Z

405

Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1  

SciTech Connect (OSTI)

This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

Valero, O.J.; Templeton, K.J.; Morgan, J.

1997-01-07T23:59:59.000Z

406

Assumptions to the Annual Energy Outlook 2001 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for

407

Assumptions to the Annual Energy Outlook 2002 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for

408

NERSC Modules Software Environment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environment » Modules Environment Environment » Modules Environment Modules Software Environment NERSC uses the module utility to manage nearly all software. There are two huge advantages of the module approach: NERSC can provide many different versions and/or installations of a single software package on a given machine, including a default version as well as several older and newer versions; and Users can easily switch to different versions or installations without having to explicitly specify different paths. With modules, the MANPATH and related environment variables are automatically managed. Users simply ``load'' and ``unload'' modules to control their environment. The module utility consists of two parts: the module command itself and the modulefiles on which it operates. Module Command

409

Modulational effects in accelerators  

SciTech Connect (OSTI)

We discuss effects of field modulations in accelerators, specifically those that can be used for operational beam diagnostics and beam halo control. In transverse beam dynamics, combined effects of nonlinear resonances and tune modulations influence diffusion rates with applied tune modulation has been demonstrated. In the longitudinal domain, applied RF phase and voltage modulations provide mechanisms for parasitic halo transport, useful in slow crystal extraction. Experimental experiences with transverse tune and RF modulations are also discussed.

Satogata, T.

1997-12-01T23:59:59.000Z

410

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Oil Markets Oil Markets IEO2005 projects that world crude oil prices in real 2003 dollars will decline from their current level by 2010, then rise gradually through 2025. In the International Energy Outlook 2005 (IEO2005) reference case, world demand for crude oil grows from 78 million barrels per day in 2002 to 103 million barrels per day in 2015 and to just over 119 million barrels per day in 2025. Much of the growth in oil consumption is projected for the emerging Asian nations, where strong economic growth results in a robust increase in oil demand. Emerging Asia (including China and India) accounts for 45 percent of the total world increase in oil use over the forecast period in the IEO2005 reference case. The projected increase in world oil demand would require an increment to world production capability of more than 42 million barrels per day relative to the 2002 crude oil production capacity of 80.0 million barrels per day. Producers in the Organization of Petroleum Exporting Countries (OPEC) are expected to be the major source of production increases. In addition, non-OPEC supply is expected to remain highly competitive, with major increments to supply coming from offshore resources, especially in the Caspian Basin, Latin America, and deepwater West Africa. The estimates of incremental production are based on current proved reserves and a country-by-country assessment of ultimately recoverable petroleum. In the IEO2005 oil price cases, the substantial investment capital required to produce the incremental volumes is assumed to exist, and the investors are expected to receive at least a 10-percent return on investment.

411

Diophantine Generation,  

E-Print Network [OSTI]

Diophantine Generation, Horizontal and Vertical Problems, and the Weak Vertical Method Alexandra Shlapentokh Diophantine Sets, Definitions and Generation Diophantine Sets Diophantine Generation Properties of Diophantine Generation Diophantine Family of Z Diophantine Family of a Polynomial Ring Going Down Horizontal

Shlapentokh, Alexandra

412

NURBS interpolation based on exponential smoothing forecasting  

Science Journals Connector (OSTI)

To meet the requirement of exploring a new generation of CNC systems based on STEP-NC, NURBS interpolation has been studied. In contrast to existing NURBS interpolation based on the Taylor’s expansion, this paper...

Zhou Kai; Wang Guanjun; Jin Houzhong…

2008-12-01T23:59:59.000Z

413

Definition: Optimized Generator Operation | Open Energy Information  

Open Energy Info (EERE)

Optimized Generator Operation Optimized Generator Operation Jump to: navigation, search Dictionary.png Optimized Generator Operation Better forecasting and monitoring of load and grid performance would enable grid operators to dispatch a more efficient mix of generation that could be optimized to reduce cost. The coordinated operation of energy storage, distributed generation, or plug-in electric vehicle assets could also result in completely avoiding central generation dispatch.[1] Related Terms sustainability References ↑ SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Optimized_Generator_Operation&oldid=502509" Categories:

414

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

415

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

416

An assessment of electrical load forecasting using artificial neural network  

Science Journals Connector (OSTI)

The forecasting of electricity demand has become one of the major research fields in electrical engineering. The supply industry requires forecasts with lead times, which range from the short term (a few minutes, hours, or days ahead) to the long term (up to 20 years ahead). The major priority for an electrical power utility is to provide uninterrupted power supply to its customers. Long term peak load forecasting plays an important role in electrical power systems in terms of policy planning and budget allocation. This paper presents a peak load forecasting model using artificial neural networks (ANN). The approach in the paper is based on multi-layered back-propagation feed forward neural network. For annual forecasts, there should be 10 to 12 years of historical monthly data available for each electrical system or electrical buss. A case study is performed by using the proposed method of peak load data of a state electricity board of India which maintain high quality, reliable, historical data providing the best possible results. Model's quality is directly dependent upon data integrity.

V. Shrivastava; R.B. Misra; R.C. Bansal

2012-01-01T23:59:59.000Z

417

Numerical Simulation of 2010 Pakistan Flood in the Kabul River Basin by Using Lagged Ensemble Rainfall Forecasting  

Science Journals Connector (OSTI)

Lagged ensemble forecasting of rainfall and rainfall–runoff–inundation (RRI) forecasting were applied to the devastating flood in the Kabul River basin, the first strike of the 2010 Pakistan flood. The forecasts were performed using the Global ...

Tomoki Ushiyama; Takahiro Sayama; Yuya Tatebe; Susumu Fujioka; Kazuhiko Fukami

2014-02-01T23:59:59.000Z

418

In-line thermoelectric module  

DOE Patents [OSTI]

A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions may be perpendicular to the direction of current flow through the module.

Pento, Robert (Algonquin, IL); Marks, James E. (Glenville, NY); Staffanson, Clifford D. (S. Glens Falls, NY)

2000-01-01T23:59:59.000Z

419

In-Line Thermoelectric Module  

SciTech Connect (OSTI)

A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an-in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions maybe perpendicular to the direction-of current flow through the module.

Pento, Robert; Marks, James E.; Staffanson, Clifford D.

1998-07-28T23:59:59.000Z

420

Expert Panel: Forecast Future Demand for Medical Isotopes | Department of  

Broader source: Energy.gov (indexed) [DOE]

Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes The Expert Panel has concluded that the Department of Energy and National Institutes of Health must develop the capability to produce a diverse supply of radioisotopes for medical use in quantities sufficient to support research and clinical activities. Such a capability would prevent shortages of isotopes, reduce American dependence on foreign radionuclide sources and stimulate biomedical research. The expert panel recommends that the U.S. government build this capability around either a reactor, an accelerator or a combination of both technologies as long as isotopes for clinical and research applications can be supplied reliably, with diversity in adequate

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Forecasting correlated time series with exponential smoothing models  

Science Journals Connector (OSTI)

This paper presents the Bayesian analysis of a general multivariate exponential smoothing model that allows us to forecast time series jointly, subject to correlated random disturbances. The general multivariate model, which can be formulated as a seemingly unrelated regression model, includes the previously studied homogeneous multivariate Holt-Winters’ model as a special case when all of the univariate series share a common structure. MCMC simulation techniques are required in order to approach the non-analytically tractable posterior distribution of the model parameters. The predictive distribution is then estimated using Monte Carlo integration. A Bayesian model selection criterion is introduced into the forecasting scheme for selecting the most adequate multivariate model for describing the behaviour of the time series under study. The forecasting performance of this procedure is tested using some real examples.

Ana Corberán-Vallet; José D. Bermúdez; Enriqueta Vercher

2011-01-01T23:59:59.000Z

422

Application of GIS on forecasting water disaster in coal mines  

SciTech Connect (OSTI)

In many coal mines of China, water disasters occur very frequently. It is the most important problem that water gets inrush into drifts and coal faces, locally known as water gush, during extraction and excavation. Its occurrence is controlled by many factors such as geological, hydrogeological and mining technical conditions, and very difficult to be predicted and prevented by traditional methods. By making use of overlay analysis of Geographic Information System, a multi-factor model can be built to forecast the potential of water gush. This paper introduced the method of establishment of the water disaster forecasting system and forecasting model and two practical successful cases of application in Jiaozuo and Yinzhuang coal mines. The GIS proved helpful for ensuring the safety of coal mines.

Sun Yajun; Jiang Dong; Ji Jingxian [China Univ. of Mining and Technology, Jiangshy (China)] [and others

1996-08-01T23:59:59.000Z

423

EIA-Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2007 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new

424

module 4 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

module 4 module 4 HR5 TRANSITION BRIEFING module 4 More Documents & Publications Microsoft Word - Rev5functionalaccountabilityimplementationplan..doc Management (WFP) DEPARTMENT OF...

425

Performance Predictions and Topology Improvements for Optical Serrodyne Comb Generators  

Science Journals Connector (OSTI)

Detailed simulations identify which optical components affect the performance of a radio frequency (RF) and optical comb generator based on an optical loop with a phase modulator. The...

Lowery, Arthur

2005-01-01T23:59:59.000Z

426

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Skutterudite TE modules were fabricated and assembled into prototype thermoelectric generators (TEGs), then installed on a standard GM production vehicle and tested for performance

427

NREL: Energy Analysis - Energy Forecasting and Modeling Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Forecasting and Modeling Energy Forecasting and Modeling The following includes summary bios of staff expertise and interests in analysis relating to energy economics, energy system planning, risk and uncertainty modeling, and energy infrastructure planning. Team Lead: Nate Blair Administrative Support: Geraly Amador Clayton Barrows Greg Brinkman Brian W Bush Stuart Cohen Carolyn Davidson Paul Denholm Victor Diakov Aron Dobos Easan Drury Kelly Eurek Janine Freeman Marissa Hummon Jennie Jorganson Jordan Macknick Trieu Mai David Mulcahy David Palchak Ben Sigrin Daniel Steinberg Patrick Sullivan Aaron Townsend Laura Vimmerstedt Andrew Weekley Owen Zinaman Photo of Clayton Barrows. Clayton Barrows Postdoctoral Researcher Areas of expertise Power system modeling Primary research interests Power and energy systems

428

Forecast of contracting and subcontracting opportunities. Fiscal year 1996  

SciTech Connect (OSTI)

This forecast of prime and subcontracting opportunities with the U.S. Department of Energy and its MAO contractors and environmental restoration and waste management contractors, is the Department`s best estimate of small, small disadvantaged and women-owned small business procurement opportunities for fiscal year 1996. The information contained in the forecast is published in accordance with Public Law 100-656. It is not an invitation for bids, a request for proposals, or a commitment by DOE to purchase products or services. Each procurement opportunity is based on the best information available at the time of publication and may be revised or cancelled.

NONE

1996-02-01T23:59:59.000Z

429

Sales forecasting strategies for small businesses: an empirical investigation of statistical and judgemental methods  

Science Journals Connector (OSTI)

This study evolved from the mixed results shown in the reviewed forecasting literature and from the lack of sufficient forecasting research dealing with micro data. The main purpose of this study is to investigate and compare the accuracy of different quantitative and qualitative forecasting techniques, and to recommend a forecasting strategy for small businesses. Emphasis is placed on the testing of combining as a tool to improve forecasting accuracy. Of particular interest is whether combining time series and judgemental forecasts provides more accurate results than individual methods. A case study of a small business was used for this purpose to assess the accuracy and applicability of combining forecasts. The evidence indicates that combining qualitative and quantitative methods results in better and improved forecasts.

Imad J. Zbib

2006-01-01T23:59:59.000Z

430

Distributed quantitative precipitation forecasts combining information from radar and numerical weather prediction model outputs  

E-Print Network [OSTI]

Applications of distributed Quantitative Precipitation Forecasts (QPF) range from flood forecasting to transportation. Obtaining QPF is acknowledged to be one of the most challenging areas in hydrology and meteorology. ...

Ganguly, Auroop Ratan

2002-01-01T23:59:59.000Z

431

A Comparison of Measures-Oriented and Distributions-Oriented Approaches to Forecast Verification  

Science Journals Connector (OSTI)

The authors have carried out verification of 590 12–24-h high-temperature forecasts from numerical guidance products and human forecasters for Oklahoma City, Oklahoma, using both a measures-oriented verification scheme and a distributions-...

Harold E. Brooks; Charles A. Doswell III

1996-09-01T23:59:59.000Z

432

Correspondence among the Correlation, RMSE, and Heidke Forecast Verification Measures; Refinement of the Heidke Score  

Science Journals Connector (OSTI)

The correspondence among the following three forecast verification scores, based on forecasts and their associated observations, is described: 1) the correlation score, 2) the root-mean-square error (RMSE) score, and 3) the Heidke score (based on ...

Anthony G. Barnston

1992-12-01T23:59:59.000Z

433

Improving Seasonal Forecast Skill of North American Surface Air Temperature in Fall Using a Postprocessing Method  

Science Journals Connector (OSTI)

A statistical postprocessing approach is applied to seasonal forecasts of surface air temperatures (SAT) over North America in fall, when the original uncalibrated predictions have little skill. The data used are ensemble-mean seasonal forecasts ...

XiaoJing Jia; Hai Lin; Jacques Derome

2010-05-01T23:59:59.000Z

434

Computing electricity spot price prediction intervals using quantile regression and forecast averaging  

Science Journals Connector (OSTI)

We examine possible accuracy gains from forecast averaging in the context of interval forecasts of electricity spot prices. First, we test whether constructing empirical prediction intervals (PI) from combined electricity

Jakub Nowotarski; Rafa? Weron

2014-08-01T23:59:59.000Z

435

Medium-term forecasting of demand prices on example of electricity prices for industry  

Science Journals Connector (OSTI)

In the paper, a method of forecasting demand prices for electric energy for the industry has been suggested. An algorithm of the forecast for 2006–2010 based on the data for 1997–2005 has been presented.

V. V. Kossov

2014-09-01T23:59:59.000Z

436

Price Forecasting and Optimal Operation of Wholesale Customers in a Competitive Electricity Market.  

E-Print Network [OSTI]

??This thesis addresses two main issues: first, forecasting short-term electricity market prices; and second, the application of short-term electricity market price forecasts to operation planning… (more)

Zareipour, Hamidreza

2006-01-01T23:59:59.000Z

437

Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011  

SciTech Connect (OSTI)

This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

Piwko, R.; Jordan, G.

2011-11-01T23:59:59.000Z

438

Combining Multi Wavelet and Multi NN for Power Systems Load Forecasting  

Science Journals Connector (OSTI)

In the paper, two pre-processing methods for load forecast sampling data including multiwavelet transformation and chaotic time series ... introduced. In addition, multi neural network for load forecast including...

Zhigang Liu; Qi Wang; Yajun Zhang

2008-01-01T23:59:59.000Z

439

Application of the Stretched Exponential Production Decline Model to Forecast Production in Shale Gas Reservoirs  

E-Print Network [OSTI]

Production forecasting in shale (ultra-low permeability) gas reservoirs is of great interest due to the advent of multi-stage fracturing and horizontal drilling. The well renowned production forecasting model, Arps? Hyperbolic Decline Model...

Statton, James Cody

2012-07-16T23:59:59.000Z

440

E-Print Network 3.0 - air pollution forecast Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

forecast Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution forecast Page: << < 1 2 3 4 5 > >> 1 DISCOVER-AQ Outlook for Wednesay, July...

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States  

E-Print Network [OSTI]

and validation.   Solar Energy.   73:5, 307? Perez, R. , irradiance forecasts for solar energy applications based on forecast database.   Solar Energy.   81:6, 809?812.  

Mathiesen, Patrick; Kleissl, Jan

2011-01-01T23:59:59.000Z

442

A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height  

Science Journals Connector (OSTI)

The Weather Research and Forecasting Model (WRF) with 10-km horizontal grid spacing was used to explore improvements in wind speed forecasts at a typical wind turbine hub height (80 m). An ensemble consisting of WRF model simulations with ...

Adam J. Deppe; William A. Gallus Jr.; Eugene S. Takle

2013-02-01T23:59:59.000Z

443

Advanced silicon photonic modulators  

E-Print Network [OSTI]

Various electrical and optical schemes used in Mach-Zehnder (MZ) silicon plasma dispersion effect modulators are explored. A rib waveguide reverse biased silicon diode modulator is designed, tested and found to operate at ...

Sorace, Cheryl M

2010-01-01T23:59:59.000Z

444

Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method  

Science Journals Connector (OSTI)

In this paper the analysis and forecasting of wind velocities in Chetumal, Quintana Roo, Mexico is presented. Measurements were made by the Instituto de Investigaciones Eléctricas (IIE) during two years, from 2004 to 2005. This location exemplifies the wind energy generation potential in the Caribbean coast of Mexico that could be employed in the hotel industry in the next decade. The wind speed and wind direction were measured at 10 m above ground level. Sensors with high accuracy and a low starting threshold were used. The wind velocity was recorded using a data acquisition system supplied by a 10 W photovoltaic panel. The wind speed values were measured with a frequency of 1 Hz and the average wind speed was recorded considering regular intervals of 10 min. First a statistical analysis of the time series was made in the first part of the paper through conventional and robust measures. Also the forecasting of the last day of measurements was made utilizing the single exponential smoothing method (SES). The results showed a very good accuracy of the data with this technique for an ? value of 0.9. Finally the SES method was compared with the artificial neural network (ANN) method showing the former better results.

E. Cadenas; O.A. Jaramillo; W. Rivera

2010-01-01T23:59:59.000Z

445

Definition: Deferred Generation Capacity Investments | Open Energy  

Open Energy Info (EERE)

Generation Capacity Investments Generation Capacity Investments Utilities and grid operators ensure that generation capacity can serve the maximum amount of load that planning and operations forecasts indicate. The trouble is, this capacity is only required for very short periods each year, when demand peaks. Reducing peak demand and flattening the load curve should reduce the generation capacity required to service load and lead to cheaper electricity for customers.[1] Related Terms load, electricity generation, peak demand, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Generation_Capacity_Investments&oldid=50257

446

Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities  

SciTech Connect (OSTI)

The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

Porter, K.; Rogers, J.

2009-12-01T23:59:59.000Z

447

Modulation Field Induces Universe Rotation  

E-Print Network [OSTI]

In this paper, we consider a time dependent module field on spacetime extension without modifying commutative relation on noncommutative quantum plane. The significant idea is that $Lorentz$ symmetry is conserved in module and unmodule coordinate. We focus on the redefinition of spacetime structure without considering noncommutative bosonic gas in deforming the product between fields. Which the null vector is a vector on orthogonal $D$ dimensional $Hilbert$ spacetime. In $Riemann$ geometry, the equation of motion is deformed from an induced rotation. Particle field survives on the state composed by two theoretical assumed $null$ vectors, one is commutative, another is anticommutative. In the point of view, neutrino and photon mass are produced by its shift, the rotated effect generates a horizon in redefining particle field.

Chien Yu Chen

2008-06-30T23:59:59.000Z

448

Combination of Long Term and Short Term Forecasts, with Application to Tourism  

E-Print Network [OSTI]

Combination of Long Term and Short Term Forecasts, with Application to Tourism Demand Forecasting that are combined. As a case study, we consider the problem of forecasting monthly tourism numbers for inbound tourism to Egypt. Specifically, we con- sider 33 source countries, as well as the aggregate. The novel

Abu-Mostafa, Yaser S.

449

COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 3 AUGUST 16, 2012  

E-Print Network [OSTI]

there is significant uncertainty in its future intensity, the current forecast is for a slowly strengthening TC which, 3) forecast output from global models, 4) the current and projected state of the Madden with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all

Gray, William

450

VALIDATION OF SHORT AND MEDIUM TERM OPERATIONAL SOLAR RADIATION FORECASTS IN THE US  

E-Print Network [OSTI]

, and medium term forecasts (up to seven days ahead) from numerical weather prediction models [1]. Forecasts radiation forecasting. One approach relies on numerical weather prediction (NWP) models which can be global modeling of the atmosphere. NWP models cannot, at this stage of their development, predict the exact

Perez, Richard R.

451

Products and Service of Center for Weather Forecast and Climate Studies  

E-Print Network [OSTI]

) Seasonal Climate Forecast (1-6 months) #12;Weather Forecast Weather Bulletin PCD SCD1 SCD2 SX6 SatelliteLOG O Products and Service of Center for Weather Forecast and Climate Studies Simone Sievert da AND DEVELOP. DIVISION SATELLITE DIVISION ENVIROM. SYSTEM OPERATIONAL DIVISION CPTEC/INPE Msc / PHD &TRAINING

452

Ensemble-based air quality forecasts: A multimodel approach applied to ozone  

E-Print Network [OSTI]

Ensemble-based air quality forecasts: A multimodel approach applied to ozone Vivien Mallet1., and B. Sportisse (2006), Ensemble-based air quality forecasts: A multimodel approach applied to ozone, J, the uncertainty in chem- istry transport models is a major limitation of air quality forecasting. The source

Boyer, Edmond

453

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces...

454

Does Money Matter in Inflation Forecasting? JM Binner 1  

E-Print Network [OSTI]

1 Does Money Matter in Inflation Forecasting? JM Binner 1 P Tino 2 J Tepper 3 R Anderson4 B Jones 5 range of different definitions of money, including different methods of aggregation and different that there exists a long-run relationship between the growth rate of the money supply and the growth rate of prices

Tino, Peter

455

Detecting and Forecasting Economic Regimes in Automated Exchanges  

E-Print Network [OSTI]

, such as over- supply or scarcity, from historical data using computational methods to construct price density. The agent can use this information to make both tactical decisions such as pricing and strategic decisions historical data and identified from observable data. We outline how to identify regimes and forecast regime

Ketter, Wolfgang

456

Forecasting Market Demand for New Telecommunications Services: An Introduction  

E-Print Network [OSTI]

Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc, 2000 Abstract The marketing team of a new telecommunications company is usually tasked with producing involved in doing so. Based on our three decades of experience working with telecommunications operators

Parsons, Simon

457

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS  

E-Print Network [OSTI]

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg.girodo@uni-oldenburg.de ABSTRACT Solar energy is expected to contribute major shares of the future global energy supply. Due to its and solar energy conversion processes has to account for this behaviour in respective operating strategies

Heinemann, Detlev

458

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks  

E-Print Network [OSTI]

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Stefan Achleitner, Tao Liu an advantage for output power prediction. Solar Energy Prediction System Our prediction model is based variability of more then 100 kW per minute. For practical usage of solar energy, predicting times of high

Cerpa, Alberto E.

459

Solar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting Questionnaire As someone who is familiar with solar energy issues, we hope that you will tak  

E-Print Network [OSTI]

is familiar with solar energy issues, we hope that you will take a few moments to answer this short survey on your needs for information on solar energy resources and forecasting. This survey is conducted with the California Solar Energy Collaborative (CSEC) and the California Solar Initiative (CSI) our objective

Islam, M. Saif

460

A FORECAST MODEL OF AGRICULTURAL AND LIVESTOCK PRODUCTS PRICE  

E-Print Network [OSTI]

A FORECAST MODEL OF AGRICULTURAL AND LIVESTOCK PRODUCTS PRICE Wensheng Zhang1,* , Hongfu Chen1 and excessive fluctuation of agricultural and livestock products price is not only harmful to residents' living, but also affects CPI (Consumer Price Index) values, and even leads to social crisis, which influences

Boyer, Edmond

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Forecasting Building Occupancy Using Sensor Network James Howard  

E-Print Network [OSTI]

) into the future. Our approach is to train a set of standard forecasting models to our time series data. Each model conditioning (HVAC) systems. In particular, if occupancy can be accurately pre- dicted, HVAC systems can potentially be controlled to op- erate more efficiently. For example, an HVAC system can pre-heat or pre

Hoff, William A.

462

Forecasting Hospital Bed Availability Using Simulation and Neural Networks  

E-Print Network [OSTI]

Forecasting Hospital Bed Availability Using Simulation and Neural Networks Matthew J. Daniels is a critical factor for decision-making in hospitals. Bed availability (or alternatively the bed occupancy in emergency departments, and many other important hospital decisions. To better enable a hospital to make

Kuhl, Michael E.

463

Development and Deployment of an Advanced Wind Forecasting Technique  

E-Print Network [OSTI]

findings. Part 2 addresses how operators of wind power plants and power systems can incorporate advanced the output of advanced wind energy forecasts into decision support models for wind power plant and power in Porto) Power Systems Unit Porto, Portugal Industry Partners Horizon Wind Energy, LLC Midwest Independent

Kemner, Ken

464

Power load forecasting using data mining and knowledge discovery technology  

Science Journals Connector (OSTI)

Considering the importance of the peak load to the dispatching and management of the electric system, the error of peak load is proposed in this paper as criteria to evaluate the effect of the forecasting model. This paper proposes a systemic framework that attempts to use data mining and knowledge discovery (DMKD) to pretreat the data. And a new model is proposed which combines artificial neural networks with data mining and knowledge discovery for electric load forecasting. With DMKD technology, the system not only could mine the historical daily loading which had the same meteorological category as the forecasting day to compose data sequence with highly similar meteorological features, but also could eliminate the redundant influential factors. Then an artificial neural network is constructed to predict according to its characteristics. Using this new model, it could eliminate the redundant information, accelerate the training speed of neural network and improve the stability of the convergence. Compared with single BP neural network, this new method can achieve greater forecasting accuracy.

Yongli Wang; Dongxiao Niu; Ling Ji

2011-01-01T23:59:59.000Z

465

Probabilistic Forecasts of Wind Speed: Ensemble Model Output Statistics  

E-Print Network [OSTI]

. Over the past two decades, ensembles of numerical weather prediction (NWP) models have been developed and phrases: Continuous ranked probability score; Density forecast; Ensem- ble system; Numerical weather prediction; Heteroskedastic censored regression; Tobit model; Wind energy. 1 #12;1 Introduction Accurate

Washington at Seattle, University of

466

Introduction An important goal in operational weather forecasting  

E-Print Network [OSTI]

sensitive areas. To answer these questions simulation experiments with state-of-the-art numerical weather prediction (NWP) models have proved great value to test future meteorological observing systems a priori102 Introduction An important goal in operational weather forecasting is to reduce the number

Haak, Hein

467

Operational Forecasts of Cloud Cover and Water Vapour  

E-Print Network [OSTI]

of the forecast programme, which involved the additional use of 10.7 µm GOES-8 satellite data and surface weather cirrus cloud cover 15 5. A satellite-derived extinction parameter 17 5.1 Background 17 5.2 Previous work 20 5.3 Continued development of a satellite-derived 22 extinction parameter 6. Suggestions

468

Increasing NOAA's computational capacity to improve global forecast modeling  

E-Print Network [OSTI]

competing numerical weather prediction centers such as the European Center for MediumRange Weather Forecasts (ECMWF). For most sensibleweather metrics, we lag 1 to 1.5 days (i.e., they make a 3.5day of NOAA's current investment in weather satellites. Without a modern data assimilation system

Hamill, Tom

469

Measuring forecast skill: is it real skill or  

E-Print Network [OSTI]

samples, then many verification metrics will credit a forecast with extra skill it doesn't deserve islands, zero meteorologists Imagine a planet with a global ocean and two isolated islands. Weather three metrics... (1) Brier Skill Score (2) Relative Operating Characteristic (3) Equitable Threat Score

Hamill, Tom

470

URBAN OZONE CONCENTRATION FORECASTING WITH ARTIFICIAL NEURAL NETWORK IN CORSICA  

E-Print Network [OSTI]

Perceptron; Ozone concentration. 1. Introduction Tropospheric ozone is a major air pollution problem, both, Ajaccio, France, e-mail: balu@univ-corse.fr Abstract: Atmospheric pollutants concentration forecasting is an important issue in air quality monitoring. Qualitair Corse, the organization responsible for monitoring air

Boyer, Edmond

471

Leveraging Weather Forecasts in Renewable Energy Navin Sharmaa,  

E-Print Network [OSTI]

Leveraging Weather Forecasts in Renewable Energy Systems Navin Sharmaa, , Jeremy Gummesonb , David, Binghamton, NY 13902 Abstract Systems that harvest environmental energy must carefully regulate their us- age to satisfy their demand. Regulating energy usage is challenging if a system's demands are not elastic, since

Shenoy, Prashant

472

Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems  

E-Print Network [OSTI]

Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems Navin Sharma,gummeson,irwin,shenoy}@cs.umass.edu Abstract--To sustain perpetual operation, systems that harvest environmental energy must carefully regulate their usage to satisfy their demand. Regulating energy usage is challenging if a system's demands

Shenoy, Prashant

473

Journey data based arrival forecasting for bicycle hire schemes  

E-Print Network [OSTI]

Journey data based arrival forecasting for bicycle hire schemes Marcel C. Guenther and Jeremy T. The global emergence of city bicycle hire schemes has re- cently received a lot of attention of future bicycle migration trends, as these assist service providers to ensure availability of bicycles

Imperial College, London

474

FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY  

E-Print Network [OSTI]

1 FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY Rick Katz Institute for Study ON EXTREMES · Emil Gumbel (1891 ­ 1966) -- Pioneer in application of statistics of extremes (Germany, France) Conventional Methods (3) Extreme Value Theory (EVT) (4) Application of EVT to Verification (5) Frost

Katz, Richard

475

FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY  

E-Print Network [OSTI]

1 FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY Rick Katz Institute for Study on Extremes · Emil Gumbel (1891 ­ 1966) -- Pioneer in application of statistics of extremes "Il est impossible que l'improbable n'arrive jamais." #12;3 OUTLINE (1) Motivation (2) Conventional Methods (3) Extreme

Katz, Richard

476

FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY  

E-Print Network [OSTI]

1 FORECAST VERIFICATION OF EXTREMES: USE OF EXTREME VALUE THEORY Rick Katz Institute for Study ON EXTREMES · Emil Gumbel (1891 ­ 1966) -- Pioneer in application of statistics of extremes "Il est impossible que l'improbable n'arrive jamais." #12;3 OUTLINE (1) Motivation (2) Conventional Methods (3) Extreme

Katz, Richard

477

Seasonal Forecasting of Extreme Wind and Precipitation Frequencies in Europe  

E-Print Network [OSTI]

Seasonal Forecasting of Extreme Wind and Precipitation Frequencies in Europe Matthew J. Swann;Abstract Flood and wind damage to property and livelihoods resulting from extreme precipitation events variability of these extreme events can be closely related to the large-scale atmospheric circulation

Feigon, Brooke

478

Criticality Calculations for Step?2 GPHS Modules  

Science Journals Connector (OSTI)

The Multi?Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version referred to as the Step?2 GPHS Module has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of 238 Pu in the oxide form as the primary source of heat and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step?2 version. The Monte Carlo N?Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand the configuration is extremely sub?critical; k eff is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close?spaced stack to approach criticality ( k eff ?=?1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Ronald J. Lipinski; Danielle L. Hensen

2008-01-01T23:59:59.000Z

479

Criticality Calculations for Step-2 GPHS Modules  

SciTech Connect (OSTI)

The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Lipinski, Ronald J. [Advanced Nuclear Concepts Department, Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States); Hensen, Danielle L. [Risk and Reliability Department Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States)

2008-01-21T23:59:59.000Z

480

Criticality calculations for Step-2 GPHS modules.  

SciTech Connect (OSTI)

The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Hensen, Danielle Lynn; Lipinski, Ronald J.

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "module generates forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

1. Generation 1 1. Generation  

E-Print Network [OSTI]

1. Generation 1 _________________________________________________________________________ 1. Generation Sound and vibrations or, in more general terms, oscillations of matter (solids or fluids) are generated in many different dynamic processes. The basic mechanisms which underlie these oscillations

Berlin,Technische Universität

482

generation capacity | OpenEI  

Open Energy Info (EERE)

generation capacity generation capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

483

electricity market module region | OpenEI  

Open Energy Info (EERE)

342 342 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281342 Varnish cache server electricity market module region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

484

Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000  

SciTech Connect (OSTI)

The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

Das, S.

1991-12-01T23:59:59.000Z

485

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology The Anemos Wind Power Forecasting Platform Technology -  

E-Print Network [OSTI]

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology 1 The Anemos Wind Power a professional, flexible platform for operating wind power prediction models, laying the main focus on state models from all over Europe are able to work on this platform. Keywords: wind energy, wind power

Boyer, Edmond

486

Forecasting sales and product evolution: The case of the hybrid/electric car  

Science Journals Connector (OSTI)

We present a model that forecasts sales and product evolution, based on data on market and industry, which can be collected before the product is introduced. Product evolution can be incremental but can also take place by releasing new generations. In our model adoption of a new product is motivated by attribute improvements (enabled by technology evolution), and firms' attribute improvements strategies are motivated by market growth and directed by market preferences. The interdependency between attributes' improvements and cumulative adoption level makes the problem inherently dynamic. The dependency of attribute levels on adoption levels is assessed using industry and technology analysis. Market preferences and purchase intention response to attribute levels changes are assessed based on a conjoint study. The option of collecting and interpreting data about both demand and supply aspects, before the new product is introduced, enables us to estimate sales and technology progress endogenously rather than to require them as inputs. We demonstrate the method on the hybrid car market.

Yair Orbach; Gila E. Fruchter

2011-01-01T23:59:59.000Z

487

A Non Parametric Model for the Forecasting of the Venezuelan Oil Prices  

E-Print Network [OSTI]

A neural net model for forecasting the prices of Venezuelan crude oil is proposed. The inputs of the neural net are selected by reference to a dynamic system model of oil prices by Mashayekhi (1995, 2001) and its performance is evaluated using two criteria: the Excess Profitability test by Anatoliev and Gerko (2005) and the characteristics of the equity curve generated by a trading strategy based on the neural net predictions. ----- Se introduce aqui un modelo no parametrico para pronosticar los precios del petroleo Venezolano cuyos insumos son seleccionados en base a un sistema dinamico que explica los precios en terminos de dichos insumos. Se describe el proceso de recoleccion y pre-procesamiento de datos y la corrida de la red y se evaluan sus pronosticos a traves de un test estadistico de predictibilidad y de las caracteristicas del Equity Curve inducido por la estrategia de compraventa bursatil generada por dichos pronosticos.

Costanzo, Sabatino; Dehne, Wafaa; Prato, Hender

2007-01-01T23:59:59.000Z

488

Light modulated switches and radio frequency emitters  

DOE Patents [OSTI]

The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

Wilson, Mahlon T. (Los Alamos, NM); Tallerico, Paul J. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

489

Metallization by plating for high-performance multichip modules  

Science Journals Connector (OSTI)

Electrolytic plating is used to produce the interconnect wiring on the current generation of high-performance multichip modules used in IBM S/390® and AS/400® servers. This paper reviews the material and manufacturing ...

K. K. H. Wong; S. Kaja; P. W. DeHaven

1998-09-01T23:59:59.000Z

490

Module name: Advanced topic: Visual Computing Abbreviation: SVC  

E-Print Network [OSTI]

visualization (registration and segmentation of computer tomography measurement data), digital image generationModule name: Advanced topic: Visual Computing Abbreviation: SVC Study semester: 3rd semester (WS Recommended prerequisites: Geometric Modeling, Interactive Computer Graphics Learning goals: Technological

Ahlers, Volker - Fakultät IV

491

Assumptions to the Annual Energy Outlook 2001 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Comleted Copy in PDF Format Comleted Copy in PDF Format Related Links Annual Energy Outlook 2001 Supplemental Data to the AEO 2001 NEMS Conference To Forecasting Home Page EIA Homepage Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The

492

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

493

Protective, Modular Wave Power Generation System  

SciTech Connect (OSTI)

The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

Vvedensky, Jane M.; Park, Robert Y.

2012-11-27T23:59:59.000Z

494

Draft forecast of the final report for the comparison to 40 CFR Part 191, Subpart B, for the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The United States Department of Energy is planning to dispose of transuranic wastes, which have been generated by defense programs, at the Waste Isolation Pilot Plant. The WIPP Project will assess compliance with the requirements of the United States Environmental Protection Agency. This report forecasts the planned 1992 document, Comparison to 40 CFR, Part 191, Subpart B, for the Waste Isolation Pilot Plant (WIPP). 130 refs., 36 figs., 11 tabs.

Bertram-Howery, S.G.; Marietta, M.G.; Anderson, D.R.; Gomez, L.S.; Rechard, R.P. (Sandia National Labs., Albuquerque, NM (USA)); Brinster, K.F.; Guzowski, R.V. (Science Applications International Corp., Albuquerque, NM (USA))

1989-12-01T23:59:59.000Z

495

Assumptions to the Annual Energy Outlook 2000 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for each Census Division using the assumptions and methods described below.100

496

Cavity enhanced terahertz modulation  

SciTech Connect (OSTI)

We present a versatile concept for all optical terahertz (THz) amplitude modulators based on a Fabry-Pérot semiconductor cavity design. Employing the high reflectivity of two parallel meta-surfaces allows for trapping selected THz photons within the cavity and thus only a weak optical modulation of the semiconductor absorbance is required to significantly damp the field within the cavity. The optical switching yields to modulation depths of more than 90% with insertion efficiencies of 80%.

Born, N., E-mail: norman.born@physik.uni-marburg.de [College of Optical Sciences, University of Arizona, 1630 E University Boulevard, Tucson, Arizona 85721 (United States); Faculty of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg (Germany); Scheller, M.; Moloney, J. V. [College of Optical Sciences, University of Arizona, 1630 E University Boulevard, Tucson, Arizona 85721 (United States)] [College of Optical Sciences, University of Arizona, 1630 E University Boulevard, Tucson, Arizona 85721 (United States); Koch, M. [Faculty of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg (Germany)] [Faculty of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg (Germany)

2014-03-10T23:59:59.000Z

497

EIA-Assumptions to the Annual Energy Outlook - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumptions to the Annual Energy Outlook 2007 Petroleum Market Module Figure 9. Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, and bioesters), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining

498

Distributed Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

499

Detailed Course Module Description  

Broader source: Energy.gov (indexed) [DOE]

Course Module Description Course Module Description Module/Learning Objectives Level of Detail in Module by Audience Consumers Gen Ed/ Community College Trades 1. Energy Issues and Building Solutions High High High Learning Objectives: * Define terms of building science, ecological systems, economics of consumption * Relate building science perspective, ecology, social science * Explain historical energy and environmental issues related to buildings * Compare Site and source energy * Examine the health, safety and comfort issues in buildings * Examine the general context for building solutions (zero energy green home with durability as the goal) * Explain a basic overview of alternative energy (total solar flux) - do we have enough energy * Examine cash flow to homeowners

500

Bracket for photovoltaic modules  

DOE Patents [OSTI]

Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

Ciasulli, John; Jones, Jason

2014-06-24T23:59:59.000Z