Sample records for module forecasts consumption

  1. Forecast of the electricity consumption by aggregation of specialized experts; application to Slovakian and French

    E-Print Network [OSTI]

    Forecast of the electricity consumption by aggregation of specialized experts; application-term forecast of electricity consumption based on ensemble methods. That is, we use several possibly independent´erieure and CNRS. hal-00484940,version1-19May2010 #12;Forecast of the electricity consumption by aggregation

  2. Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption

    E-Print Network [OSTI]

    Boyer, Edmond

    Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption Tunisian electricity consumption (the residential sector represents 68% of this class of consumers). Nevertheless, with the Tunisian electricity consumption context, models elaborating which take account weather

  3. Energy consumption and expenditure projections by population group on the basis of the annual energy outlook 1999 forecast

    SciTech Connect (OSTI)

    Poyer, D.A.; Balsley, J.H.

    2000-01-07T23:59:59.000Z

    This report presents an analysis of the relative impact of the base-case scenario used in Annual Energy Outlook 1999 on different population groups. Projections of energy consumption and expenditures, as well as energy expenditure as a share of income, from 1996 to 2020 are given. The projected consumption of electricty, natural gas, distillate fuel, and liquefied petroleum gas during this period is also reported for each population group. In addition, this report compares the findings of the Annual Energy Outlook 1999 report with the 1998 report. Changes in certain indicators and information affect energy use forecasts, and these effects are analyzed and discussed.

  4. Adapting state and national electricity consumption forecasting methods to utility service areas. Final report

    SciTech Connect (OSTI)

    Swift, M.A.

    1984-07-01T23:59:59.000Z

    This report summarizes the experiences of six utilities (Florida Power and Light Co., Municipal Electric Authority of Georgia, Philadelphia Electric Co., Public Service Co. of Colorado, Sacramento Municipal Utility District, and TVA) in adapting to their service territories models that were developed for forecasting loads on a national or regional basis. The models examined were of both end-use and econometric design and included the three major customer classes: residential, commercial, and industrial.

  5. Analysis of Complexity and Power Consumption in DSP-Based Optical Modulation Formats

    E-Print Network [OSTI]

    Wei, J. L.; Cheng, Q.; Penty, R. V.; White, I. H.

    2014-07-17T23:59:59.000Z

    sector as a result of concerns about global warming. Thus energy-efficiency is also an important criterion for technology evolution [5]. Ethernet has been the dominant technology for short reach optical interconnects [6]. In March 2013, the IEEE... Analysis of Complexity and Power Consumption in DSP-Based Optical Modulation Formats J. L. Wei, Q. Cheng, R. V. Penty, and I. H. White Centre for Photonic Systems, Electrical Engineering Division, Department of Engineering, University...

  6. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    Energy Commission's final forecasts for 2012­2022 electricity consumption, peak, and natural gas demand Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand

  7. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    the California Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand

  8. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak, and natural Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility

  9. Wavelet-based multi-resolution analysis and artificial neural networks for forecasting temperature and thermal power consumption

    E-Print Network [OSTI]

    Boyer, Edmond

    and thermal power consumption Julien Eynard, Stphane Grieu1 and Monique Polit ELIAUS Lab., University. The number of past sequences to take into account and the chosen time step were also major concerns

  10. Energy consumption and expenditure projections by income quintile on the basis of the Annual Energy Outlook 1997 forecast

    SciTech Connect (OSTI)

    Poyer, D.A.; Allison, T.

    1998-03-01T23:59:59.000Z

    This report presents an analysis of the relative impacts of the base-case scenario used in the Annual Energy Outlook 1997, published by the US Department of Energy, Energy Information Administration, on income quintile groups. Projected energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1993 to 2015 are reported. Projected consumption of electricity, natural gas, distillate fuel, and liquefied petroleum gas over this period is also reported for each income group. 33 figs., 11 tabs.

  11. Design of a Solid-State Fast Voltage Compensator for klystron modulators requiring constant AC power consumption

    E-Print Network [OSTI]

    Davide, Aguglia; Philippe, Viarouge; Jerome, Cros

    2015-01-01T23:59:59.000Z

    This paper proposes a novel topological solution for klystron modulators integrating a Fast Voltage Compensator which allows an operation at constant power consumption from the utility grid. This kind of solution is mandatory for the CLIC project under study, which requires several hundreds of synchronously operated klystron modulators for a total pulsed power of 39 GW. The topology is optimized for the challenging CLIC specifications, which require a very precise output voltage flat-top as well as fast rise and fall times (3s). The Fast Voltage Compensator is integrated in the modulator such that it only has to manage the capacitor charger current and a fraction of the charging voltage. Consequently, its dimensioning power and cost is minimized.

  12. Approved Module Information for BS3336, 2014/5 Module Title/Name: Applied Econometrics and Forecasting Module Code: BS3336

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for BS3336, 2014/5 Module Title/Name: Applied Econometrics Introduction to Econometrics I AND BS2248 Introduction to Econometrics II Available to Exchange Students students undertake and advances their knowledge and skills to the methods of econometric and time

  13. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01T23:59:59.000Z

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  14. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST

    E-Print Network [OSTI]

    procurement process at the California Public Utilities Commission. This forecast was produced with the Energy Commission demand forecast models. Both the staff draft energy consumption and peak forecasts are slightly and commercial sectors. Keywords Electricity demand, electricity consumption, demand forecast, weather

  15. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    supervised data preparation. Steven Mac and Keith O'Brien prepared the historical energy consumption data. Nahid Movassagh forecasted consumption for the agriculture and water pumping sectors. Cynthia Rogers generation, conservation, energy efficiency, climate zone, investorowned, public, utilities, additional

  16. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    and water pumping sectors. Mark Ciminelli forecasted energy for transportation, communication and utilities. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data at the California Public Utilities Commission. This forecast was produced with the Energy Commission demand forecast

  17. Model documentation coal market module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    This report documents the objectives and the conceptual and methodological approach used in the development of the Coal Production Submodule (CPS). It provides a description of the CPS for model analysts and the public. The Coal Market Module provides annual forecasts of prices, production, and consumption of coal.

  18. Nonparametric models for electricity load forecasting

    E-Print Network [OSTI]

    Genève, Université de

    Electricity consumption is constantly evolving due to changes in people habits, technological innovations1 Nonparametric models for electricity load forecasting JANUARY 23, 2015 Yannig Goude, Vincent at University Paris-Sud 11 Orsay. His research interests are electricity load forecasting, more generally time

  19. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    , Gary Occhiuzzo, and Keith O'Brien prepared the historical energy consumption data. Nahid Movassagh forecasted consumption for the agriculture and water pumping sectors. Don Schultz and Doug Kemmer developed. California Energy Commission, Electricity Supply Analysis Division. Publication Number: CEC2002012001CMFVI

  20. 1992 five year battery forecast

    SciTech Connect (OSTI)

    Amistadi, D.

    1992-12-01T23:59:59.000Z

    Five-year trends for automotive and industrial batteries are projected. Topic covered include: SLI shipments; lead consumption; automotive batteries (5-year annual growth rates); industrial batteries (standby power and motive power); estimated average battery life by area/country for 1989; US motor vehicle registrations; replacement battery shipments; potential lead consumption in electric vehicles; BCI recycling rates for lead-acid batteries; US average car/light truck battery life; channels of distribution; replacement battery inventory end July; 2nd US battery shipment forecast.

  1. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST, and utilities. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption STAFFFINALREPORT NOVEMBER 2007 CEC-200-2007-015-SF2 Arnold Schwarzenegger, Governor #12;CALIFORNIA ENERGY

  2. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    and forecasting of solar radiation data: a review,forecasting of solar- radiation data, Solar Energy, vol.sequences of global solar radiation data for isolated sites:

  3. Classification of Energy Consumption in Buildings with Outlier Detection

    E-Print Network [OSTI]

    Yao, Xin

    . Then a canonical variate analysis is employed to describe latent variables of daily electricity consumption is used to predict the daily electricity consumption profiles. A case study, based on a mixed use consumption data within a buildings energy management system. Electrical peak load forecasting plays

  4. Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS

    E-Print Network [OSTI]

    Roop, J. M.; Dahowski, R. T

    Comparisons are made of energy forecasts using results from the Industrial module of the National Energy Modeling System (NEMS) and an industrial economic-engineering model called the Industrial Technology and Energy Modeling System (ITEMS), a model...

  5. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect (OSTI)

    Brainard, James Robert

    2009-10-01T23:59:59.000Z

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  6. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

  7. Technology Forecasting Scenario Development

    E-Print Network [OSTI]

    Technology Forecasting and Scenario Development Newsletter No. 2 October 1998 Systems Analysis was initiated on the establishment of a new research programme entitled Technology Forecasting and Scenario and commercial applica- tion of new technology. An international Scientific Advisory Panel has been set up

  8. Rainfall-River Forecasting

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ;2Rainfall-River Forecasting Joint Summit II NOAA Integrated Water Forecasting Program · Minimize losses due management and enhance America's coastal assets · Expand information for managing America's Water Resources, Precipitation and Water Quality Observations · USACE Reservoir Operation Information, Streamflow, Snowpack

  9. HyperionOpexModule Budget/8MonthReview

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    HyperionOpexModule Budget/8MonthReview #12;Hyperion Opex Module Budget/8 Month Review 1 ................................................................................................................................................... 6 Step 4 Enter the Forecast and Budget .............................................................................................................................. 14 Copy 8 Month Review into next year's budget

  10. Probabilistic manpower forecasting

    E-Print Network [OSTI]

    Koonce, James Fitzhugh

    1966-01-01T23:59:59.000Z

    PROBABILISTIC MANPOWER FORECASTING A Thesis JAMES FITZHUGH KOONCE Submitted to the Graduate College of the Texas ASSAM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1966 Major Subject...: Computer Science and Statistics PROBABILISTIC MANPOWER FORECASTING A Thesis By JAMES FITZHUGH KOONCE Submitted to the Graduate College of the Texas A@M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May...

  11. UPF Forecast | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium Processing Facility UPF Forecast UPF Forecast UPF Procurement provides the following forecast of subcontracting opportunities. Keep in mind that these requirements may be...

  12. Long Term Forecast ofLong Term Forecast of TsunamisTsunamis

    E-Print Network [OSTI]

    : ImproveImprove NOAANOAA''ss understandingunderstanding and forecast capabilityand forecast capability inin

  13. Factors of material consumption

    E-Print Network [OSTI]

    Silva Daz, Pamela Cristina

    2012-01-01T23:59:59.000Z

    Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

  14. Steam System Forecasting and Management

    E-Print Network [OSTI]

    Mongrue, D. M.; Wittke, D. O.

    1982-01-01T23:59:59.000Z

    '. This and the complex and integrated nature of the plants energy balance makes steam system forecasting and management essential for optimum use of the plant's energy. This paper discusses the method used by Union carbide to accomplish effective forecasting...

  15. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-02-23T23:59:59.000Z

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  16. Consensus Coal Production Forecast for

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

  17. Improving Inventory Control Using Forecasting

    E-Print Network [OSTI]

    Balandran, Juan

    2005-12-16T23:59:59.000Z

    EMGT 835 FIELD PROJECT: Improving Inventory Control Using Forecasting By Juan Mario Balandran jmbg@hotmail.com Master of Science The University of Kansas Fall Semester, 2005 An EMGT Field Project report submitted...............................................................................................................................................10 Current Inventory Forecast Process ...........................................................................................10 Development of Alternative Forecast Process...

  18. timber quality Modelling and forecasting

    E-Print Network [OSTI]

    Forest and timber quality in Europe Modelling and forecasting yield and quality in Europe Forest and timber quality in Europe Modelling and forecasting yield and quality in Europe M E F Y Q U E #12;Valuing and the UK are working closely together to develop a model to help forecast timber growth, yield, quality

  19. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    electricity demand forecast means that the region's electricity needs would grow by 5,343 average megawattsDemand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping

  20. METEOROLOGICAL Weather and Forecasting

    E-Print Network [OSTI]

    AMERICAN METEOROLOGICAL SOCIETY Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary and interpretation of information from National Weather Service watches and warnings by10 decision makers such an outlier to the regional severe weather climatology. An analysis of the synoptic and13 mesoscale

  1. Fuel Price Forecasts INTRODUCTION

    E-Print Network [OSTI]

    Fuel Price Forecasts INTRODUCTION Fuel prices affect electricity planning in two primary ways and water heating, and other end-uses as well. Fuel prices also influence electricity supply and price because oil, coal, and natural gas are potential fuels for electricity generation. Natural gas

  2. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    Quantifying PV power output variability, Solar Energy, vol.each solar sen at node i, P(t) the total power output of theSolar Forecasting Historically, traditional power generation technologies such as fossil and nu- clear power which were designed to run in stable output

  3. Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting

    E-Print Network [OSTI]

    Mathiesen, Patrick James

    2013-01-01T23:59:59.000Z

    Forecasting and Resource Assessment, 1 st Edition, Editors:Forecasting and Resource Assessment, 1 st Edition, Editors:Forecasting and Resource Assessment, 1 st Ed.. Editor: Jan

  4. Forecasting oilfield economic performance

    SciTech Connect (OSTI)

    Bradley, M.E. (Univ. of Chicago, IL (United States)); Wood, A.R.O. (BP Exploration, Anchorage, AK (United States))

    1994-11-01T23:59:59.000Z

    This paper presents a general method for forecasting oilfield economic performance that integrates cost data with operational, reservoir, and financial information. Practices are developed for determining economic limits for an oil field and its components. The economic limits of marginal wells and the role of underground competition receive special attention. Also examined is the influence of oil prices on operating costs. Examples illustrate application of these concepts. Categorization of costs for historical tracking and projections is recommended.

  5. Module Handbook Core Univ. of Oldenburg

    E-Print Network [OSTI]

    Habel, Annegret

    Energy Conversion Process · Location Dependence of Wind Energy Potential and Wind Energy Forecasting/EUREC Course 2008/2009 #12;EUREC Core Courses at University of Oldenburg, 1st Semester Wind Energy Module Module Description: Wind Energy Field: Core Oldenburg Courses: Wind Energy Wind Energy

  6. GREET Pretreatment Module

    SciTech Connect (OSTI)

    Adom, Felix K.; Dunn, Jennifer B.; Han, Jeongwoo

    2014-09-01T23:59:59.000Z

    A wide range of biofuels and biochemicals can be produced from biomass via different pretreatment technologies that yield sugars. This report documents the material and energy flows that occur when fermentable sugars from four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar) are produced via dilute acid pretreatment and ammonia fiber expansion. These flows are documented for inclusion in the pretreatment module of the Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. Process simulations of each pretreatment technology were developed in Aspen Plus. Material and energy consumption data from Aspen Plus were then compiled in the GREET pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhouse gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.

  7. NEMS industrial module documentation report

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  8. Model documentation, Coal Market Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The international area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.

  9. Introduction to the Buildings Sector Module of SEDS

    SciTech Connect (OSTI)

    DeForest, Nicholas; Bonnet, Florence; Stadler, Michael; Marnay, Chris

    2010-12-31T23:59:59.000Z

    SEDS is a stochastic engineering-economics model that forecasts economy-wide energy consumption in the U.S. to 2050. It is the product of multi-laboratory collaboration among the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), Lawrence Berkeley National Laboratory (LBNL), and Lumina Decision Systems. Among national energy models, SEDS is unique, as it is the only model written to explicitly incorporate uncertainty in its inputs and outputs. The primary purpose of SEDS is to estimate the impact of various US Department of Energy (DOE)R&D and policy programs on the performance and subsequent adoption rates of technologies relating to every energy consuming sector of the economy (shown below). It has previously been used to assist DOE in complying with the Government Performance and Results Act of 1993 (GPRA). The focus of LBNL research has been exclusively on develop the buildings model (SBEAM), which is capable of running as a stand-alone forecasting model, or as a part of SEDS as a whole. The full version of SEDS, containing all sectors and interaction is also called the 'integrated' version and is managed by NREL. Forecasts from SEDS are often compared to those coming from National Energy Modeling System (NEMS). The intention of this document is to present new users and developers with a general description of the purpose, functionality and structure of the buildings module within the Stochastic Energy Deployment System (SEDS). The Buildings module, which is capable of running as a standalone model, is also called the Stochastic Buildings Energy and Adoption Model (SBEAM). This document will focus exclusively on SBEAM and its interaction with other major sector modules present within SEDS. The methodologies and major assumptions employed in SBEAM will also be discussed. The organization of this report will parallel the organization of the model itself, being divided into major submodules. As the description progresses, the nature of modules will change from broad, easily understood concepts to lower-level data manipulation. Because SBEAM contains dozens of submodules and hundreds of variables, it would not be relevant or useful to describe each and every one. Rather, the investigation will focus more generally on the operations performed throughout the model. This manual is by no means a complete description of SBEAM; however it should provide the foundation for an introductory understanding of the model. The manual assumes a basic level of understating of Analytica{reg_sign}, the platform on which SEDS and SBEAM have been developed.

  10. UWIG Forecasting Workshop -- Albany (Presentation)

    SciTech Connect (OSTI)

    Lew, D.

    2011-04-01T23:59:59.000Z

    This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

  11. ELECTRICITY DEMAND FORECAST COMPARISON REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005.................................................................................................................................3 PACIFIC GAS & ELECTRIC PLANNING AREA ........................................................................................9 Commercial Sector

  12. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL

  13. Connected Consumption: The hidden networks of consumption

    E-Print Network [OSTI]

    Reed, David P.

    In this paper, we present the Connected Consumption Network (CCN) that allows a community of consumers to collaboratively sense the market from a mobile device, enabling more informed financial decisions in geo-local ...

  14. NATIONAL AND GLOBAL FORECASTS WEST VIRGINIA PROFILES AND FORECASTS

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    · NATIONAL AND GLOBAL FORECASTS · WEST VIRGINIA PROFILES AND FORECASTS · ENERGY · HEALTHCARE Research West Virginia University College of Business and Economics P.O. Box 6527, Morgantown, WV 26506 EXPERT OPINION PROVIDED BY Keith Burdette Cabinet Secretary West Virginia Department of Commerce

  15. Conservation The Northwest ForecastThe Northwest Forecast

    E-Print Network [OSTI]

    & Resources Creating Mr. Toad's Wild Ride for the PNW's Energy Efficiency InCreating Mr. Toad's Wild RideNorthwest Power and Conservation Council The Northwest ForecastThe Northwest Forecast Energy EfficiencyEnergy Efficiency Dominates ResourceDominates Resource DevelopmentDevelopment Tom EckmanTom Eckman

  16. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting Executive

  17. Mathematical Forecasting Donald I. Good

    E-Print Network [OSTI]

    Boyer, Robert Stephen

    Mathematical Forecasting Donald I. Good Technical Report 47 September 1989 Computational Logic Inc the physical behavior of computer programs can reduce these risks for software engineering in the same way that it does for aerospace and other fields of engineering. Present forecasting capabilities for computer

  18. Regional-seasonal weather forecasting

    SciTech Connect (OSTI)

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01T23:59:59.000Z

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  19. Introduction to the Buildings Sector Module of SEDS

    E-Print Network [OSTI]

    DeForest, Nicholas

    2011-01-01T23:59:59.000Z

    Ma. CBECS, Commercial Building Energy Consumption Survey,R. , and Lai, J. A Buildings Module for the Stochasticon Energy Efficiency in Buildings, August 17 22, 2008,

  20. Reduces electric energy consumption

    E-Print Network [OSTI]

    BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

  1. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN with primary contributions in the area of decision support for reservoir planning and management Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project

  2. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN: California Energy Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL RESEARCH Martha

  3. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01T23:59:59.000Z

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  4. Weather forecasting : the next generation : the potential use and implementation of ensemble forecasting

    E-Print Network [OSTI]

    Goto, Susumu

    2007-01-01T23:59:59.000Z

    This thesis discusses ensemble forecasting, a promising new weather forecasting technique, from various viewpoints relating not only to its meteorological aspects but also to its user and policy aspects. Ensemble forecasting ...

  5. Optimal combined wind power forecasts using exogeneous variables

    E-Print Network [OSTI]

    Optimal combined wind power forecasts using exogeneous variables Fannar Orn Thordarson Kongens of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

  6. Energy-consumption modelling

    SciTech Connect (OSTI)

    Reiter, E.R.

    1980-01-01T23:59:59.000Z

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  7. Reduction of Water Consumption

    E-Print Network [OSTI]

    Adler, J.

    Cooling systems using water evaporation to dissipate waste heat, will require one pound of water per 1,000 Btu. To reduce water consumption, a combination of "DRY" and "WET" cooling elements is the only practical answer. This paper reviews...

  8. Forecasting consumer products using prediction markets

    E-Print Network [OSTI]

    Trepte, Kai

    2009-01-01T23:59:59.000Z

    Prediction Markets hold the promise of improving the forecasting process. Research has shown that Prediction Markets can develop more accurate forecasts than polls or experts. Our research concentrated on analyzing Prediction ...

  9. Massachusetts state airport system plan forecasts.

    E-Print Network [OSTI]

    Mathaisel, Dennis F. X.

    This report is a first step toward updating the forecasts contained in the 1973 Massachusetts State System Plan. It begins with a presentation of the forecasting techniques currently available; it surveys and appraises the ...

  10. Management Forecast Quality and Capital Investment Decisions

    E-Print Network [OSTI]

    Goodman, Theodore H.

    Corporate investment decisions require managers to forecast expected future cash flows from potential investments. Although these forecasts are a critical component of successful investing, they are not directly observable ...

  11. Wind Power Forecasting andWind Power Forecasting and Electricity Market Operations

    E-Print Network [OSTI]

    Kemner, Ken

    forecasting methods and better integration of advanced wind power forecasts into system and plant operations and wind power plants) ­ Review and assess current practices Propose and test new and improved approachesWind Power Forecasting andWind Power Forecasting and Electricity Market Operations Audun Botterud

  12. 1995 shipment review & five year forecast

    SciTech Connect (OSTI)

    Fetherolf, D.J. Jr. [East Penn Manufacturing Co., Inc., Lyon Station, PA (United States)

    1996-01-01T23:59:59.000Z

    This report describes the 1995 battery shipment review and five year forecast for the battery market. Historical data is discussed.

  13. Estimation of food consumption

    SciTech Connect (OSTI)

    Callaway, J.M. Jr.

    1992-04-01T23:59:59.000Z

    The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.

  14. Consensus Coal Production And Price Forecast For

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

  15. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 2: Electricity Demand by Utility Planning Area Energy Policy Report. The forecast includes three full scenarios: a high energy demand case, a low

  16. Minimizing energy consumption for handheld computers in Moby Dick Paul J.M. Havinga, Gerard J.M. Smit

    E-Print Network [OSTI]

    Havinga, Paul J.M.

    Minimizing energy consumption for handheld computers in Moby Dick Paul J.M. Havinga, Gerard J to reduce energy consumption for mobile comput- ers. We use extra dedicated low-power modules to cut's battery resources much effort is put in reducing energy consumption in this part. We use intelligent

  17. LOAD FORECASTING Eugene A. Feinberg

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    , regression, artificial intelligence. 1. Introduction Accurate models for electric power load forecasting to make important decisions including decisions on pur- chasing and generating electric power, load for different operations within a utility company. The natures 269 #12;270 APPLIED MATHEMATICS FOR POWER SYSTEMS

  18. Calculator simplifies field production forecasting

    SciTech Connect (OSTI)

    Bixler, B.

    1982-05-01T23:59:59.000Z

    A method of forecasting future field production from an assumed average well production schedule and drilling schedule has been programmed for the HP-41C hand-held programmable computer. No longer must tedious row summations be made by hand for staggered well production schedules. Details of the program are provided.

  19. & CONSUMPTION US HYDROPOWER PRODUCTION

    E-Print Network [OSTI]

    ENERGY PRODUCTION & CONSUMPTION US HYDROPOWER PRODUCTION In the United States hydropower supplies 12% of the nation's electricity. Hydropower produces more than 90,000 megawatts of electricity, which is enough to meet the needs of 28.3 million consumers. Hydropower accounts for over 90% of all electricity

  20. Baseline data for the residential sector and development of a residential forecasting database

    SciTech Connect (OSTI)

    Hanford, J.W.; Koomey, J.G.; Stewart, L.E.; Lecar, M.E.; Brown, R.E.; Johnson, F.X.; Hwang, R.J.; Price, L.K.

    1994-05-01T23:59:59.000Z

    This report describes the Lawrence Berkeley Laboratory (LBL) residential forecasting database. It provides a description of the methodology used to develop the database and describes the data used for heating and cooling end-uses as well as for typical household appliances. This report provides information on end-use unit energy consumption (UEC) values of appliances and equipment historical and current appliance and equipment market shares, appliance and equipment efficiency and sales trends, cost vs efficiency data for appliances and equipment, product lifetime estimates, thermal shell characteristics of buildings, heating and cooling loads, shell measure cost data for new and retrofit buildings, baseline housing stocks, forecasts of housing starts, and forecasts of energy prices and other economic drivers. Model inputs and outputs, as well as all other information in the database, are fully documented with the source and an explanation of how they were derived.

  1. Analysis of PG E's residential end-use metered data to improve electricity demand forecasts

    SciTech Connect (OSTI)

    Eto, J.H.; Moezzi, M.M.

    1992-06-01T23:59:59.000Z

    It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

  2. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchers use

  3. Margins up; consumption down

    SciTech Connect (OSTI)

    Mantho, M.

    1983-09-01T23:59:59.000Z

    The results of a survey of dealers in the domestic fuel oil industry are reported. Wholesale prices, reacting to oversupply, decreased as did retail prices; retail prices decreased at a slower rate so profit margins were larger. This trend produced competitive markets as price-cutting became the method for increasing a dealer's share of the profits. Losses to other fuels decreased, when the figures were compared to earlier y; and cash flow was very good for most dealers. In summary, profits per gallon of oil delivered increased, while the consumption of gasoline per customer decreased. 22 tables.

  4. CSV File Documentation: Consumption

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption The State Energy Data System

  5. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul Aug SepDecadeEnergy Consumption

  6. Funding Opportunity Announcement for Wind Forecasting Improvement...

    Broader source: Energy.gov (indexed) [DOE]

    collects data on a variety of physical processes that impact the wind forecasts used by wind farms, system operators and other industry professionals. By having access to...

  7. Upcoming Funding Opportunity for Wind Forecasting Improvement...

    Broader source: Energy.gov (indexed) [DOE]

    collects data on a variety of physical processes that impact the wind forecasts used by wind farms, system operators and other industry professionals. By having access to...

  8. Solid low-level waste forecasting guide

    SciTech Connect (OSTI)

    Templeton, K.J.; Dirks, L.L.

    1995-03-01T23:59:59.000Z

    Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford`s experience within the last six years. Hanford`s forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford`s annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford`s forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data.

  9. Geothermal wells: a forecast of drilling activity

    SciTech Connect (OSTI)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01T23:59:59.000Z

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  10. Online Forecast Combination for Dependent Heterogeneous Data

    E-Print Network [OSTI]

    Sancetta, Alessio

    the single individual forecasts. Several studies have shown that combining forecasts can be a useful hedge against structural breaks, and forecast combinations are often more stable than single forecasts (e.g. Hendry and Clements, 2004, Stock and Watson, 2004... in expectations. Hence, we have the following. Corollary 4 Suppose maxt?T kl (Yt, hwt,Xti)kr ? A taking expectation on the left hand side, adding 2A ? T and setting ? = 0 in mT (?), i.e. TX t=1 E [lt (wt)? lt (ut...

  11. The Value of Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Forecasting Preprint Debra Lew and Michael Milligan National Renewable Energy Laboratory Gary Jordan and Richard Piwko GE Energy Presented at the 91 st American...

  12. U-M Construction Forecast December 15, 2011 U-M Construction Forecast

    E-Print Network [OSTI]

    Kamat, Vineet R.

    U-M Construction Forecast December 15, 2011 U-M Construction Forecast Spring Fall 2012 As of December 15, 2011 Prepared by AEC Preliminary & Advisory #12;U-M Construction Forecast December 15, 2011 Overview Campus by campus Snapshot in time Not all projects Construction coordination efforts

  13. Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000

    SciTech Connect (OSTI)

    Das, S.

    1991-12-01T23:59:59.000Z

    The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

  14. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    has developed longterm forecasts of transportation energy demand as well as projected ranges of transportation fuel and crude oil import requirements. The transportation energy demand forecasts makeCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY

  15. Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting

    E-Print Network [OSTI]

    Plale, Beth

    Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting Nithya N. Vijayakumar {rramachandran, xli}@itsc.uah.edu Abstract-- Mesoscale meteorology forecasting as a data driven application Triggers, Data Mining, Stream Processing, Meteorology Forecasting I. INTRODUCTION Mesoscale meteorologists

  16. Forecast Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park atFisiaFlorida:Forecast Energy Jump to:

  17. Module Configuration

    DOE Patents [OSTI]

    Oweis, Salah (Ellicott City, MD); D'Ussel, Louis (Bordeaux, FR); Chagnon, Guy (Cockeysville, MD); Zuhowski, Michael (Annapolis, MD); Sack, Tim (Cockeysville, MD); Laucournet, Gaullume (Paris, FR); Jackson, Edward J. (Taneytown, MD)

    2002-06-04T23:59:59.000Z

    A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

  18. The Wind Forecast Improvement Project (WFIP): A Public/Private...

    Office of Environmental Management (EM)

    The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The...

  19. Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo

    E-Print Network [OSTI]

    Heinemann, Detlev

    Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo Oldenburg University have been presented more than twenty years ago (Jensenius, 1981), when daily solar radiation forecasts

  20. Alternative methods for forecasting GDP Dominique Gugan

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    analysis. Better forecast performance for macroeconomic variables will lead to Paris School of Economics the speed of computers that can develop search algorithms from appropriate selection criteria, Devroye. 1 Introduction Forecasting macroeconomic variables such as GDP and inflation play an important role

  1. A NEW APPROACH FOR EVALUATING ECONOMIC FORECASTS

    E-Print Network [OSTI]

    Vertes, Akos

    APPROACH FOR EVALUATING ECONOMIC FORECASTS Tara M. Sinclair , H.O. Stekler, and Warren Carnow Department of Economics The George Washington University Monroe Hall #340 2115 G Street NW Washington, DC 20052 JEL Codes, Mahalanobis Distance Abstract This paper presents a new approach to evaluating multiple economic forecasts

  2. 2013 Midyear Economic Forecast Sponsorship Opportunity

    E-Print Network [OSTI]

    de Lijser, Peter

    2013 Midyear Economic Forecast Sponsorship Opportunity Thursday, April 18, 2013, ­ Hyatt Regency Irvine 11:30 a.m. ­ 1:30 p.m. Dr. Anil Puri presents his annual Midyear Economic Forecast addressing and Economics at California State University, Fullerton, the largest accredited business school in California

  3. Dynamic Algorithm for Space Weather Forecasting System

    E-Print Network [OSTI]

    Fischer, Luke D.

    2011-08-08T23:59:59.000Z

    /effective forecasts, and we have performed preliminary benchmarks on this algorithm. The preliminary benchmarks yield surprisingly effective results thus far?forecasts have been made 8-16 hours into the future with significant magnitude and trend accuracy, which is a...

  4. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency SEPTEMBER 2013 CEC2002013004SDV1REV CALIFORNIA The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 1: Statewide Electricity Demand and Methods

  5. 1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast, Technical Appendix: Volume 1.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-02-01T23:59:59.000Z

    This publication documents the load forecast scenarios and assumptions used to prepare BPA`s Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

  6. PMT Base to FE readout and Mechanical Support Interface Basic parameters per module

    E-Print Network [OSTI]

    Cable 1 SHV Cable Base Power Consumption ASD Board Power Consumption 4 x 200 mW (?) 200 mW (?) Cooling Common with DC power supply. Isolated from vessel. Possible to isolate from super module. Super module. Running from top to bottom out to cable try Cooling Back enclosure. Filtered dry air. Light tight

  7. Exceeding Energy Consumption Design Expectations

    E-Print Network [OSTI]

    Castleton, H. F.; Beck, S. B. M.; Hathwat, E. A.; Murphy, E.

    2013-01-01T23:59:59.000Z

    ) the building consumed 208.7 kWh m-2 yr-1, 83% of the expected energy consumption (250 kWh m-2 yr-1). This dropped further to 176.1 kWh m-2 yr-1 in 2012 (70% below expected). Factors affecting building energy consumption have been discussed and appraised...

  8. Traffic congestion forecasting model for the INFORM System. Final report

    SciTech Connect (OSTI)

    Azarm, A.; Mughabghab, S.; Stock, D.

    1995-05-01T23:59:59.000Z

    This report describes a computerized traffic forecasting model, developed by Brookhaven National Laboratory (BNL) for a portion of the Long Island INFORM Traffic Corridor. The model has gone through a testing phase, and currently is able to make accurate traffic predictions up to one hour forward in time. The model will eventually take on-line traffic data from the INFORM system roadway sensors and make projections as to future traffic patterns, thus allowing operators at the New York State Department of Transportation (D.O.T.) INFORM Traffic Management Center to more optimally manage traffic. It can also form the basis of a travel information system. The BNL computer model developed for this project is called ATOP for Advanced Traffic Occupancy Prediction. The various modules of the ATOP computer code are currently written in Fortran and run on PC computers (pentium machine) faster than real time for the section of the INFORM corridor under study. The following summarizes the various routines currently contained in the ATOP code: Statistical forecasting of traffic flow and occupancy using historical data for similar days and time (long term knowledge), and the recent information from the past hour (short term knowledge). Estimation of the empirical relationships between traffic flow and occupancy using long and short term information. Mechanistic interpolation using macroscopic traffic models and based on the traffic flow and occupancy forecasted (item-1), and the empirical relationships (item-2) for the specific highway configuration at the time of simulation (construction, lane closure, etc.). Statistical routine for detection and classification of anomalies and their impact on the highway capacity which are fed back to previous items.

  9. A Buildings Module for the Stochastic Energy Deployment System

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Marnay, Chris; Stadler, Michael; Borgeson, Sam; Coffey, Brian; Komiyama, Ryoichi; Lai, Judy

    2008-05-15T23:59:59.000Z

    The U.S. Department of Energy (USDOE) is building a new long-range (to 2050) forecasting model for use in budgetary and management applications called the Stochastic Energy Deployment System (SEDS), which explicitly incorporates uncertainty through its development within the Analytica(R) platform of Lumina Decision Systems. SEDS is designed to be a fast running (a few minutes), user-friendly model that analysts can readily run and modify in its entirety through a visual programming interface. Lawrence Berkeley National Laboratory is responsible for implementing the SEDS Buildings Module. The initial Lite version of the module is complete and integrated with a shared code library for modeling demand-side technology choice developed by the National Renewable Energy Laboratory (NREL) and Lumina. The module covers both commercial and residential buildings at the U.S. national level using an econometric forecast of floorspace requirement and a model of building stock turnover as the basis for forecasting overall demand for building services. Although the module is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies, it differs from standard energy forecasting models by including considerations of passive building systems, interactions between technologies (such as internal heat gains), and on-site power generation.

  10. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01T23:59:59.000Z

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  11. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01T23:59:59.000Z

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  12. Solar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting Questionnaire As someone who is familiar with solar energy issues, we hope that you will tak

    E-Print Network [OSTI]

    Islam, M. Saif

    Page 1 Solar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting Questionnaire As someone who is familiar with solar energy issues, we hope that you will take a few moments to answer this short survey

  13. PSO (FU 2101) Ensemble-forecasts for wind power

    E-Print Network [OSTI]

    PSO (FU 2101) Ensemble-forecasts for wind power Analysis of the Results of an On-line Wind Power Ensemble- forecasts for wind power (FU2101) a demo-application producing quantile forecasts of wind power correct) quantile forecasts of the wind power production are generated by the application. However

  14. 1993 Solid Waste Reference Forecast Summary

    SciTech Connect (OSTI)

    Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

    1993-08-01T23:59:59.000Z

    This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

  15. Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts

    SciTech Connect (OSTI)

    Eto, J.H.; Moezzi, M.M.

    1992-06-01T23:59:59.000Z

    It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

  16. The impact of forecasted energy price increases on low-income consumers

    SciTech Connect (OSTI)

    Eisenberg, Joel F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2005-10-31T23:59:59.000Z

    The Department of Energys Energy Information Administration (EIA) recently released its short term forecast for residential energy prices for the winter of 2005-2006. The forecast indicates significant increases in fuel costs, particularly for natural gas, propane, and home heating oil, for the year ahead. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nations low-income households by primary heating fuel type, nationally and by Census Region. The statistics are intended for the use of policymakers in the Department of Energys Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2006 fiscal year.

  17. Wind Speed Forecasting for Power System Operation

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22T23:59:59.000Z

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  18. STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES 2005 TO 2018 Mignon Marks Principal Author Mignon Marks Project Manager David Ashuckian Manager ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY DIVISION B.B. Blevins Executive Director

  19. Wind Speed Forecasting for Power System Operation

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22T23:59:59.000Z

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  20. Potential Economic Value of Seasonal Hurricane Forecasts

    E-Print Network [OSTI]

    Emanuel, Kerry Andrew

    This paper explores the potential utility of seasonal Atlantic hurricane forecasts to a hypothetical property insurance firm whose insured properties are broadly distributed along the U.S. Gulf and East Coasts. Using a ...

  1. Text-Alternative Version LED Lighting Forecast

    Broader source: Energy.gov [DOE]

    The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030....

  2. Essays in International Macroeconomics and Forecasting

    E-Print Network [OSTI]

    Bejarano Rojas, Jesus Antonio

    2012-10-19T23:59:59.000Z

    This dissertation contains three essays in international macroeconomics and financial time series forecasting. In the first essay, I show, numerically, that a two-country New-Keynesian Sticky Prices model, driven by monetary and productivity shocks...

  3. Potential impact of doubling atmospheric carbon dioxide on energy consumption in the US

    SciTech Connect (OSTI)

    Munoz, J.R.; Sailor, D.J. [Tulane Univ., New Orleans, LA (United States)

    1997-11-01T23:59:59.000Z

    This paper uses models of monthly electricity and natural gas per capita demand to forecast the effects of a global warming scenario. An extensive study of energy consumption sensitivity to climate in eight of the most energy intensive states of the US is briefly summarized. Models of statewide monthly per capita electricity consumption as a function of cooling degree days, heating degree days, enthalpy latent days and wind speed were developed. Similar models were developed for natural gas using temperature as the only independent variable. Population weighted statewide monthly cooling and heating degree days were calculated using the base climatic year and the general circulation model (GCM) predictions for California, Texas, New York, and Illinois. The expected changes were clearly dependent on the model chosen for the global warming forecast. The effects of the predicted changes in cooling degree days and heating degree days generated the typical saddle shape of the estimated changes in per capita electricity use. This is attributed to shifts from predominant heating requirements to predominant cooling requirements in certain months. The shape of the climatically induced decrease in natural gas consumption was expected and also highly dependent on the GCM chosen. It appears that per capita energy consumption could be affected significantly under global warming. Since heating and cooling are provided by different energy sources, there could be significant consequences for energy delivery systems. 8 refs., 2 figs.

  4. Producing Quail for Home Consumption

    E-Print Network [OSTI]

    Thornberry, Fredrick D.

    1998-08-21T23:59:59.000Z

    Hobby and backyard producers are becoming interested in producing quail for home consumption. This publication gives tips on housing and brooding, nutrition, lighting, cannibalism, health and slaughter. It includes three recipes....

  5. US WSC TX Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but...

  6. US ESC TN Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33% higher than the national average...

  7. Energy consumption of building 39

    E-Print Network [OSTI]

    Hopeman, Lisa Maria

    2007-01-01T23:59:59.000Z

    The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

  8. Progressive consumption : strategic sustainable excess

    E-Print Network [OSTI]

    Bonham, Daniel J. (Daniel Joseph MacLeod)

    2007-01-01T23:59:59.000Z

    Trends in the marketplace show that urban dwellers are increasingly supporting locally produced foods. This thesis argues for an architecture that responds to our cultures consumptive behaviors. Addressing the effects of ...

  9. The Wealth-Consumption Ratio

    E-Print Network [OSTI]

    Verdelhan, Adrien Frederic

    We derive new estimates of total wealth, the returns on total wealth, and the wealth effect on consumption. We estimate the prices of aggregate risk from bond yields and stock returns using a no-arbitrage model. Using these ...

  10. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  11. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    gas price forecasts with contemporaneous natural gas pricesreference-case natural gas price forecast, and that have notof AEO 2009 Natural Gas Price Forecast to NYMEX Futures

  12. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Gas Price Forecast W ith natural gas prices significantlyof AEO 2006 Natural Gas Price Forecast to NYMEX Futurescase long-term natural gas price forecasts from the AEO

  13. Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

    2005-01-01T23:59:59.000Z

    to accurately forecast natural gas prices. Many policyseek alternative methods to forecast natural gas prices. Thethe accuracy of forecasts for natural gas prices as reported

  14. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    gas price forecasts with contemporaneous natural gas pricesreference-case natural gas price forecast, and that have notof AEO 2008 Natural Gas Price Forecast to NYMEX Futures

  15. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01T23:59:59.000Z

    the base-case natural gas price forecast, but to alsogas price forecasts with contemporaneous natural gas pricesof AEO 2010 Natural Gas Price Forecast to NYMEX Futures

  16. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Natural Gas Price Forecast Although natural gas prices areof AEO 2007 Natural Gas Price Forecast to NYMEX Futurescase long-term natural gas price forecasts from the AEO

  17. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

  18. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  19. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  20. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Table C13. Total Electricity Consumption and Expenditures for Non-Mall Buildings, 2003 All Buildings* Using Electricity Electricity Consumption Electricity Expenditures Number of...

  1. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  2. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace...

  3. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  4. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  5. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  6. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    3A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings...

  7. Data Center Power Consumption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Consumption Data Center Power Consumption Presentation covers the FUPWG Fall Meeting, held on November 28-29, 2007 in San Diego, California. fupwgsandiegomainers.pdf More...

  8. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  9. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  10. New York: Weatherizing Westbeth Reduces Energy Consumption |...

    Energy Savers [EERE]

    New York: Weatherizing Westbeth Reduces Energy Consumption New York: Weatherizing Westbeth Reduces Energy Consumption August 21, 2013 - 12:00am Addthis The New York State Homes and...

  11. Demonstrating Fuel Consumption and Emissions Reductions with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

  12. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01T23:59:59.000Z

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  13. 1994 Solid waste forecast container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; Clary, J.L.

    1994-09-01T23:59:59.000Z

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  14. Thermionic modules

    DOE Patents [OSTI]

    King, Donald B. (Albuquerque, NM); Sadwick, Laurence P. (Salt Lake City, UT); Wernsman, Bernard R. (Clairton, PA)

    2002-06-18T23:59:59.000Z

    Modules of assembled microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures manufactured using MEMS manufacturing techniques including chemical vapor deposition. The MTCs incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices and modules can be fabricated at modest costs.

  15. Sixth Northwest Conservation and Electric Power Plan Appendix B: Economic Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix B: Economic Forecast Role of the Economic Forecast..................................................................................................................................... 2 Economic Growth Assumptions

  16. Viability, Development, and Reliability Assessment of Coupled Coastal Forecasting Systems

    E-Print Network [OSTI]

    Singhal, Gaurav

    2012-10-19T23:59:59.000Z

    disaster, Cook Inlet (CI) and Prince William Sound (PWS) are regions that suffer from a lack of accurate wave forecast information. This dissertation develops high- resolution integrated wave forecasting schemes for these regions in order to meet...

  17. Potential to Improve Forecasting Accuracy: Advances in Supply Chain Management

    E-Print Network [OSTI]

    Datta, Shoumen

    2008-07-31T23:59:59.000Z

    Forecasting is a necessity almost in any operation. However, the tools of forecasting are still primitive in view of the great strides made by research and the increasing abundance of data made possible by automatic ...

  18. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output Perturbation

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output. This is typically not feasible for mesoscale weather prediction carried out locally by organizations without by simulating realizations of the geostatistical model. The method is applied to 48-hour mesoscale forecasts

  19. The effect of multinationality on management earnings forecasts

    E-Print Network [OSTI]

    Runyan, Bruce Wayne

    2005-08-29T23:59:59.000Z

    This study examines the relationship between a firm??s degree of multinationality and its managers?? earnings forecasts. Firms with a high degree of multinationality are subject to greater uncertainty regarding earnings forecasts due...

  20. Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-07-01T23:59:59.000Z

    This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

  1. Weighted Parametric Operational Hydrology Forecasting Thomas E. Croley II1

    E-Print Network [OSTI]

    1 Weighted Parametric Operational Hydrology Forecasting Thomas E. Croley II1 1 Great Lakes forecasts in operational hydrology builds a sample of possibilities for the future, of climate series from-parametric method can be extended into a new weighted parametric hydrological forecasting technique to allow

  2. A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION

    E-Print Network [OSTI]

    Boyer, Edmond

    1 A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION in the realm of solar radiation forecasting. In this work, two forecasting models: Autoregressive Moving. The very first results show an improvement brought by this approach. 1. INTRODUCTION Solar radiation

  3. FORECASTING SOLAR RADIATION PRELIMINARY EVALUATION OF AN APPROACH

    E-Print Network [OSTI]

    Perez, Richard R.

    FORECASTING SOLAR RADIATION -- PRELIMINARY EVALUATION OF AN APPROACH BASED UPON THE NATIONAL, and undertake a preliminary evaluation of, a simple solar radiation forecast model using sky cover predictions forecasts is 0.05o in latitude and longitude. Solar Radiation model: The model presented in this paper

  4. AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.

    E-Print Network [OSTI]

    Povinelli, Richard J.

    AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

  5. Univariate Modeling and Forecasting of Monthly Energy Demand Time Series

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural dedicated models to forecast the 12 individual months directly. Results indicate better performance is superior to naïve forecasts based on persistence and seasonality, and is better than results quoted

  6. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    requirements. The transportation energy demand forecasts make assumptions about fuel price forecastsCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY ENERGY COMMISSION Gordon Schremp, Jim Page, and Malachi Weng-Gutierrez Principal Authors Jim Page Project

  7. PSO (FU 2101) Ensemble-forecasts for wind power

    E-Print Network [OSTI]

    PSO (FU 2101) Ensemble-forecasts for wind power Wind Power Ensemble Forecasting Using Wind Speed the problems of (i) transforming the meteorological ensembles to wind power ensembles and, (ii) correcting) data. However, quite often the actual wind power production is outside the range of ensemble forecast

  8. Forecasting the Market Penetration of Energy Conservation Technologies: The Decision Criteria for Choosing a Forecasting Model

    E-Print Network [OSTI]

    Lang, K.

    1982-01-01T23:59:59.000Z

    capital requirements and research and development programs in the alum inum industry. : CONCLUSIONS Forecasting the use of conservation techndlo gies with a market penetration model provides la more accountable method of projecting aggrega...

  9. Facebook IPO updated valuation and user forecasting

    E-Print Network [OSTI]

    Facebook IPO updated valuation and user forecasting Based on: Amendment No. 6 to Form S-1 (May 9. Peter Cauwels and Didier Sornette, Quis pendit ipsa pretia: facebook valuation and diagnostic Extreme Growth JPMPaper Cauwels and Sornette 840 1110 1820 S1- filing- May 9 2012 1006 1105 1371 Facebook

  10. Modeling of Uncertainty in Wind Energy Forecast

    E-Print Network [OSTI]

    regression and splines are combined to model the prediction error from Tunø Knob wind power plant. This data of the thesis is quantile regression and splines in the context of wind power modeling. Lyngby, February 2006Modeling of Uncertainty in Wind Energy Forecast Jan Kloppenborg Møller Kongens Lyngby 2006 IMM-2006

  11. Issues in midterm analysis and forecasting 1998

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

  12. Segmenting Time Series for Weather Forecasting

    E-Print Network [OSTI]

    Sripada, Yaji

    for generating textual summaries. Our algorithm has been implemented in a weather forecast generation system. 1 presentation, aid human understanding of the underlying data sets. SUMTIME is a research project aiming turbines. In the domain of meteorology, time series data produced by numerical weather prediction (NWP

  13. Forecasting sudden changes in environmental pollution patterns

    E-Print Network [OSTI]

    Olascoaga, Maria Josefina

    Forecasting sudden changes in environmental pollution patterns María J. Olascoagaa,1 and George of Mexico in 2010. We present a methodology to predict major short-term changes in en- vironmental River's mouth in the Gulf of Mexico. The resulting fire could not be extinguished and the drilling rig

  14. New Concepts in Wind Power Forecasting Models

    E-Print Network [OSTI]

    Kemner, Ken

    New Concepts in Wind Power Forecasting Models Vladimiro Miranda, Ricardo Bessa, Joo Gama, Guenter to the training of mappers such as neural networks to perform wind power prediction as a function of wind characteristics (mainly speed and direction) in wind parks connected to a power grid. Renyi's Entropy is combined

  15. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency DECEMBER 2013 CEC2002013004SFV1 CALIFORNIA and expertise of numerous California Energy Commission staff members in the Demand Analysis Office. In addition

  16. SIMULATION AND FORECASTING IN INTERMODAL CONTAINER TERMINAL

    E-Print Network [OSTI]

    Gambardella, Luca Maria

    SIMULATION AND FORECASTING IN INTERMODAL CONTAINER TERMINAL Luca Maria Gambardella1 , Gianluca@idsia.ch 2 LCST, La Spezia Container Terminal, La Spezia (IT) 3 DSP, Data System & Planning sa, Manno (CH working in intermodal container terminals. INTRODUCTION The amount of work a container terminal deals

  17. Issues in midterm analysis and forecasting, 1996

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This document consists of papers which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1996. Topics include: The Potential Impact of Technological Progress on U.S. Energy Markets; The Outlook for U.S. Import Dependence; Fuel Economy, Vehicle Choice, and Changing Demographics, and Annual Energy Outlook Forecast Evaluation.

  18. Forecast Technical Document Felling and Removals

    E-Print Network [OSTI]

    of local investment and business planning. Timber volume production will be estimated at sub. Planning of operations. Control of the growing stock. Wider reporting (under UKWAS). The calculation fellings and removals are handled in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan

  19. Forecasting Turbulent Modes with Nonparametric Diffusion Models

    E-Print Network [OSTI]

    Tyrus Berry; John Harlim

    2015-01-27T23:59:59.000Z

    This paper presents a nonparametric diffusion modeling approach for forecasting partially observed noisy turbulent modes. The proposed forecast model uses a basis of smooth functions (constructed with the diffusion maps algorithm) to represent probability densities, so that the forecast model becomes a linear map in this basis. We estimate this linear map by exploiting a previously established rigorous connection between the discrete time shift map and the semi-group solution associated to the backward Kolmogorov equation. In order to smooth the noisy data, we apply diffusion maps to a delay embedding of the noisy data, which also helps to account for the interactions between the observed and unobserved modes. We show that this delay embedding biases the geometry of the data in a way which extracts the most predictable component of the dynamics. The resulting model approximates the semigroup solutions of the generator of the underlying dynamics in the limit of large data and in the observation noise limit. We will show numerical examples on a wide-range of well-studied turbulent modes, including the Fourier modes of the energy conserving Truncated Burgers-Hopf (TBH) model, the Lorenz-96 model in weakly chaotic to fully turbulent regimes, and the barotropic modes of a quasi-geostrophic model with baroclinic instabilities. In these examples, forecasting skills of the nonparametric diffusion model are compared to a wide-range of stochastic parametric modeling approaches, which account for the nonlinear interactions between the observed and unobserved modes with white and colored noises.

  20. Wholesale Electricity Price Forecast This appendix describes the wholesale electricity price forecast of the Fifth Northwest Power

    E-Print Network [OSTI]

    Wholesale Electricity Price Forecast This appendix describes the wholesale electricity price as traded on the wholesale, short-term (spot) market at the Mid-Columbia trading hub. This price represents noted. BASE CASE FORECAST The base case wholesale electricity price forecast uses the Council's medium

  1. Operational forecasting based on a modified Weather Research and Forecasting model

    SciTech Connect (OSTI)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18T23:59:59.000Z

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  2. Thermoelectric module

    DOE Patents [OSTI]

    Kortier, William E. (Columbus, OH); Mueller, John J. (Columbus, OH); Eggers, Philip E. (Columbus, OH)

    1980-07-08T23:59:59.000Z

    A thermoelectric module containing lead telluride as the thermoelectric mrial is encapsulated as tightly as possible in a stainless steel canister to provide minimum void volume in the canister. The lead telluride thermoelectric elements are pressure-contacted to a tungsten hot strap and metallurgically bonded at the cold junction to iron shoes with a barrier layer of tin telluride between the iron shoe and the p-type lead telluride element.

  3. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01T23:59:59.000Z

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  4. Essays on aggregate and individual consumption fluctuations

    E-Print Network [OSTI]

    Hwang, Youngjin

    2006-01-01T23:59:59.000Z

    This thesis consists of three essays on aggregate and individual consumption fluctuations. Chapter 1 develops a quantitative model to explore aggregate and individual consumption dynamics when the income process exhibits ...

  5. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Lenox, Carl J. S. (Oakland, CA); Culligan, Matthew (Berkeley, CA); Danning, Matt (Oakland, CA)

    2012-07-17T23:59:59.000Z

    A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  6. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt

    2013-08-27T23:59:59.000Z

    A photovoltaic (PV) module including a PV device and a frame, The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  7. State energy data report 1992: Consumption estimates

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  8. Test application of a semi-objective approach to wind forecasting for wind energy applications

    SciTech Connect (OSTI)

    Wegley, H.L.; Formica, W.J.

    1983-07-01T23:59:59.000Z

    The test application of the semi-objective (S-O) wind forecasting technique at three locations is described. The forecasting sites are described as well as site-specific forecasting procedures. Verification of the S-O wind forecasts is presented, and the observed verification results are interpreted. Comparisons are made between S-O wind forecasting accuracy and that of two previous forecasting efforts that used subjective wind forecasts and model output statistics. (LEW)

  9. Energy Consumption ESPRIMO E7935 E80+

    E-Print Network [OSTI]

    Ott, Albrecht

    Computers is also taking significant effort to reduce the energy consumption in data centres by providingEnergy Consumption ESPRIMO E7935 E80+ White Paper Issue: September 2008 In order to strengthen all important energy information about their products. With the publication of energy consumption

  10. Ethanol Consumption by Rat Dams During Gestation,

    E-Print Network [OSTI]

    Galef Jr., Bennett G.

    Ethanol Consumption by Rat Dams During Gestation, Lactation and Weaning Increases Ethanol examined effects of ethanol consumption in rat dams during gestation, lactation, and weaning on voluntary ethanol consumption by their adolescent young. We found that exposure to an ethanol-ingesting dam

  11. DYNAMIC MANAGEMENT OF POWER CONSUMPTION Tajana Simunic

    E-Print Network [OSTI]

    Simunic, Tajana

    Chapter 1 DYNAMIC MANAGEMENT OF POWER CONSUMPTION Tajana Simunic HP Labs Abstract Power consumption by adapting to changes in environment are proposed: dynamic power management and dynamic voltage scaling. Dynamic power management (DPM) algorithms aim to reduce the power consumption at the system level

  12. Mathematical models of natural gas consumption

    E-Print Network [OSTI]

    Scitovski, Rudolf

    Mathematical models of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan Vazler , Marijana Zeki-Susac ksabo of natural gas consumption hourly fore- cast on the basis of hourly movement of temperature and natural gas

  13. Energy Consumption of Personal Computing Including Portable

    E-Print Network [OSTI]

    Namboodiri, Vinod

    Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

  14. Monitoring Energy Consumption In Wireless Sensor Networks

    E-Print Network [OSTI]

    Turau, Volker

    Monitoring Energy Consumption In Wireless Sensor Networks Matthias Witt, Christoph Weyer, it may impair the ability of the sensor network to function. Therefore, minimizing energy consumption energy consumption in both standby and active modes is the basis of wireless networks. Energy preserving

  15. User-needs study for the 1993 residential energy consumption survey

    SciTech Connect (OSTI)

    Not Available

    1993-09-24T23:59:59.000Z

    During 1992, the Energy Information Administration (EIA) conducted a user-needs study for the 1993 Residential Energy Consumption Survey (RECS). Every 3 years, the RECS collects information on energy consumption and expenditures for various classes of households and residential buildings. The RECS is the only source of such information within EIA, and one of only a few sources of such information anywhere. EIA sent letters to more than 750 persons, received responses from 56, and held 15 meetings with users. Written responses were also solicited by notices published in the April 14, 1992 Federal Register and in several energy-related publications. To ensure that the 1993 RECS meets current information needs, EIA made a specific effort to get input from policy makers and persons needing data for forecasting efforts. These particular needs relate mainly to development of the National Energy Modeling System and new energy legislation being considered at the time of the user needs survey.

  16. Residential Energy Consumption Survey Results: Total Energy Consumptio...

    Open Energy Info (EERE)

    Residential Energy Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) The Residential Energy Consumption Survey (RECS) is a national survey...

  17. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    49 3.3.3. Pre-installation electricity consumption of CSIE. Kahn (2011). Electricity Consumption and Durable Housing:on Electricity Consumption .

  18. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    LBNL-pend TV Energy Consumption Trends and Energy-EfficiencyTrends and Energy Consumption ..TV Technology Trends and Energy Consumption. 1.2.3. Factors

  19. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

  20. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    and Low Power Mode Energy Consumption, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

  1. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources a significant effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 15

  2. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.0 pounds

  3. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.5 pounds

  4. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

  5. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 84 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

  6. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

    2008-09-02T23:59:59.000Z

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  7. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

    2006-03-07T23:59:59.000Z

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  8. Forecasting hotspots using predictive visual analytics approach

    DOE Patents [OSTI]

    Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

    2014-12-30T23:59:59.000Z

    A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

  9. Supported PV module assembly

    DOE Patents [OSTI]

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15T23:59:59.000Z

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  10. Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1

    SciTech Connect (OSTI)

    Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.

    1994-05-01T23:59:59.000Z

    This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

  11. Model documentation Renewable Fuels Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This report documents the objectives, analaytical approach and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1996 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described.

  12. Role of Climate Variability in Modulating the Surface Water and Groundwater Interaction

    E-Print Network [OSTI]

    Arumugam, Sankar

    from the ECHAM4.5 general circulation model indicate that it is possible to quantify groundwater variability; Groundwater-surface water interaction; Hydroclimatology; Forecasting. Introduction ClimateRole of Climate Variability in Modulating the Surface Water and Groundwater Interaction over

  13. Implementation of a Corporate Energy Accounting and Forecasting Model

    E-Print Network [OSTI]

    Kympton, H. W.; Bowman, B. M.

    1981-01-01T23:59:59.000Z

    The development and implementation of a Frito-Lay computer based energy consumption reporting and modeling program is discussed. The system has been designed to relate actual plant energy consumption to a standard consumption which incorporates...

  14. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01T23:59:59.000Z

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  15. Weather Forecast Data an Important Input into Building Management Systems

    E-Print Network [OSTI]

    Poulin, L.

    2013-01-01T23:59:59.000Z

    it can generate as much or more energy that it needs ? Building activities need N kWhrs per day (solar panels, heating, etc) ? Harvested from solar panels & passive solar. Amount depends on weather ? NWP models forecast DSWRF @ surface (MJ/m2...://collaboration.cmc.ec.gc.ca/cmc/cmoi/SolarScribe/SolarScribe/ CMC NWP datasets for Day 2 Forecasts ? Regional Deterministic Prediction System (RDPS) ? RDPS raw model data ? 10 km resolution, North America, 000-054 forecasts ? Data at: http...

  16. Forecasting model of the PEPCO service area economy. Volume 3

    SciTech Connect (OSTI)

    Not Available

    1984-03-01T23:59:59.000Z

    Volume III describes and documents the regional economic model of the PEPCO service area which was relied upon to develop many of the assumptions of future values of economic and demographic variables used in the forecast. The PEPCO area model is mathematically linked to the Wharton long-term forecast of the U.S. Volume III contains a technical discussion of the structure of the regional model and presents the regional economic forecast.

  17. Wind power forecasting : state-of-the-art 2009.

    SciTech Connect (OSTI)

    Monteiro, C.; Bessa, R.; Miranda, V.; Botterud, A.; Wang, J.; Conzelmann, G.; Decision and Information Sciences; INESC Porto

    2009-11-20T23:59:59.000Z

    Many countries and regions are introducing policies aimed at reducing the environmental footprint from the energy sector and increasing the use of renewable energy. In the United States, a number of initiatives have been taken at the state level, from renewable portfolio standards (RPSs) and renewable energy certificates (RECs), to regional greenhouse gas emission control schemes. Within the U.S. Federal government, new energy and environmental policies and goals are also being crafted, and these are likely to increase the use of renewable energy substantially. The European Union is pursuing implementation of its ambitious 20/20/20 targets, which aim (by 2020) to reduce greenhouse gas emissions by 20% (as compared to 1990), increase the amount of renewable energy to 20% of the energy supply, and reduce the overall energy consumption by 20% through energy efficiency. With the current focus on energy and the environment, efficient integration of renewable energy into the electric power system is becoming increasingly important. In a recent report, the U.S. Department of Energy (DOE) describes a model-based scenario, in which wind energy provides 20% of the U.S. electricity demand in 2030. The report discusses a set of technical and economic challenges that have to be overcome for this scenario to unfold. In Europe, several countries already have a high penetration of wind power (i.e., in the range of 7 to 20% of electricity consumption in countries such as Germany, Spain, Portugal, and Denmark). The rapid growth in installed wind power capacity is expected to continue in the United States as well as in Europe. A large-scale introduction of wind power causes a number of challenges for electricity market and power system operators who will have to deal with the variability and uncertainty in wind power generation when making their scheduling and dispatch decisions. Wind power forecasting (WPF) is frequently identified as an important tool to address the variability and uncertainty in wind power and to more efficiently operate power systems with large wind power penetrations. Moreover, in a market environment, the wind power contribution to the generation portofolio becomes important in determining the daily and hourly prices, as variations in the estimated wind power will influence the clearing prices for both energy and operating reserves. With the increasing penetration of wind power, WPF is quickly becoming an important topic for the electric power industry. System operators (SOs), generating companies (GENCOs), and regulators all support efforts to develop better, more reliable and accurate forecasting models. Wind farm owners and operators also benefit from better wind power prediction to support competitive participation in electricity markets against more stable and dispatchable energy sources. In general, WPF can be used for a number of purposes, such as: generation and transmission maintenance planning, determination of operating reserve requirements, unit commitment, economic dispatch, energy storage optimization (e.g., pumped hydro storage), and energy trading. The objective of this report is to review and analyze state-of-the-art WPF models and their application to power systems operations. We first give a detailed description of the methodologies underlying state-of-the-art WPF models. We then look at how WPF can be integrated into power system operations, with specific focus on the unit commitment problem.

  18. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01T23:59:59.000Z

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  19. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Environmental Management (EM)

    Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report.pdf More Documents & Publications Computational Advances in Applied...

  20. Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures

    E-Print Network [OSTI]

    Richard A. Berk; Brian Kriegler; Jong-Ho Baek

    2011-01-01T23:59:59.000Z

    Forecasting Dangerous Inmate Misconduct: An Applications ofof Term Length more dangerous than other inmates servingIV beds or moving less dangerous Level IV inmates to Level

  1. Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures

    E-Print Network [OSTI]

    Berk, Richard; Kriegler, Brian; Baek, Jong-Ho

    2005-01-01T23:59:59.000Z

    Forecasting Dangerous Inmate Misconduct: An Applications ofof Term Length more dangerous than other inmates servingIV beds or moving less dangerous Level IV inmates to Level

  2. Forecasting the underlying potential governing climatic time series

    E-Print Network [OSTI]

    Livina, V N; Mudelsee, M; Lenton, T M

    2012-01-01T23:59:59.000Z

    We introduce a technique of time series analysis, potential forecasting, which is based on dynamical propagation of the probability density of time series. We employ polynomial coefficients of the orthogonal approximation of the empirical probability distribution and extrapolate them in order to forecast the future probability distribution of data. The method is tested on artificial data, used for hindcasting observed climate data, and then applied to forecast Arctic sea-ice time series. The proposed methodology completes a framework for `potential analysis' of climatic tipping points which altogether serves anticipating, detecting and forecasting climate transitions and bifurcations using several independent techniques of time series analysis.

  3. Sandia National Laboratories: Solar Energy Forecasting and Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource Assessment, provides an authoritative voice on the...

  4. analytical energy forecasting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMISSION Tom Gorin Lynn Marshall Principal Author Tom Gorin Project 11 Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Computer Technologies and...

  5. Econometric model and futures markets commodity price forecasting

    E-Print Network [OSTI]

    Just, Richard E.; Rausser, Gordon C.

    1979-01-01T23:59:59.000Z

    Versus CCll1rnercial Econometric M:ldels." Uni- versity ofWorking Paper No. 72 ECONOMETRIC ! 'econometric forecasts with the futures

  6. Optimization Online - Data Assimilation in Weather Forecasting: A ...

    E-Print Network [OSTI]

    M. Fisher

    2007-02-14T23:59:59.000Z

    Feb 14, 2007 ... Data Assimilation in Weather Forecasting: A Case Study in PDE-Constrained Optimization. M. Fisher(Mike.Fisher ***at*** ecmwf.int)

  7. Weather-based yield forecasts developed for 12 California crops

    E-Print Network [OSTI]

    Lobell, David; Cahill, Kimberly Nicholas; Field, Christopher

    2006-01-01T23:59:59.000Z

    RESEARCH ARTICLE Weather-based yield forecasts developed fordepend largely on the weather, measurements from existingpredictions. We developed weather-based models of statewide

  8. Using Customers' Reported Forecasts to Predict Future Sales

    E-Print Network [OSTI]

    Gordon, Geoffrey J.

    Using Customers' Reported Forecasts to Predict Future Sales Nihat Altintas , Alan Montgomery , Michael Trick Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213. nihat

  9. Consumption-based accounting of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Caldeira, K.

    2010-01-01T23:59:59.000Z

    gross world product, E is global energy consumption, Authorworld GDP, f = F/E is carbon intensity of energy consumption,

  10. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    China Estimates of global and country-specific energy saving potentials will be based on the above TV market forecast

  11. Household energy consumption and expenditures 1993

    SciTech Connect (OSTI)

    NONE

    1995-10-05T23:59:59.000Z

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  12. Reducing the demand forecast error due to the bullwhip effect in the computer processor industry

    E-Print Network [OSTI]

    Smith, Emily (Emily C.)

    2010-01-01T23:59:59.000Z

    Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

  13. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-01-01T23:59:59.000Z

    of two methods to forecast natural gas prices: using theof two methods to forecast natural gas prices is performed:accurate average forecast of natural gas prices than the

  14. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01T23:59:59.000Z

    Gas Price Forecast With natural gas prices significantlyto the EIAs natural gas price forecasts in AEO 2004 and AEOon the AEO 2005 natural gas price forecasts will likely once

  15. Evaluation of forecasting techniques for short-term demand of air transportation

    E-Print Network [OSTI]

    Wickham, Richard Robert

    1995-01-01T23:59:59.000Z

    Forecasting is arguably the most critical component of airline management. Essentially, airlines forecast demand to plan the supply of services to respond to that demand. Forecasts of short-term demand facilitate tactical ...

  16. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01T23:59:59.000Z

    revisions to the EIAs natural gas price forecasts in AEOsolely on the AEO 2005 natural gas price forecasts willComparison of AEO 2005 Natural Gas Price Forecast to NYMEX

  17. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01T23:59:59.000Z

    to estimate the base-case natural gas price forecast, but toComparison of AEO 2010 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

  18. Energy consumption in thermomechanical pulping

    SciTech Connect (OSTI)

    Marton, R.; Tsujimoto, N.; Eskelinen, E.

    1981-08-01T23:59:59.000Z

    Various components of refining energy were determined experimentally and compared with those calculated on the basis of the dimensions of morphological elements of wood. The experimentally determined fiberization energy of spruce was 6 to 60 times larger than the calculated value and that of birch 3 to 15 times larger. The energy consumed in reducing the Canadian standard freeness of isolated fibers from 500 to 150 ml was found to be approximately 1/3 of the total fiber development energy for both spruce and birch TMP. Chip size affected the refining energy consumption; the total energy dropped by approximately 30% when chip size was reduced from 16 mm to 3 mm in the case of spruce and approximately 40% for birch. 6 refs.

  19. Trends in Renewable Energy Consumption and Electricity

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Presents a summary of the nations renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and state. The report covers the period from 2006 through 2010.

  20. Permitting of Consumptive Uses of Water (Florida)

    Broader source: Energy.gov [DOE]

    Local water management districts are required to establish programs and regulations to provide for the permitting of consumptive uses of water. Such permitting programs are subject to the...

  1. Heavy Oil Consumption Reduction Program (Quebec, Canada)

    Broader source: Energy.gov [DOE]

    This program helps heavy oil consumers move toward sustainable development while improving their competitive position by reducing their consumption. Financial assistance is offered to carry out...

  2. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    have the end use, not consumption specifically for that particular end use. HVAC Heating, Ventilation, and Air Conditioning. Due to rounding, data may not sum to...

  3. Issues in International Energy Consumption Analysis: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Issues in International Energy Consumption Analysis: Electricity Usage in India's Housing Sector November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of...

  4. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","331...

  5. ,"New York Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","2272015"...

  6. Renewable Forecast Min-Max2020.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)RenewableRenewable EnergyForecast of

  7. Forecast and Funding Arrangements - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) Target 1Annual Waste Forecast and Funding

  8. A MOOS MODULE FOR MONITORING ENERGY USAGE OF AUTONOMOUS VEHICLES

    E-Print Network [OSTI]

    Idaho, University of

    A MOOS MODULE FOR MONITORING ENERGY USAGE OF AUTONOMOUS VEHICLES Anthony Kanago, Kevin Roos, James--Tracking the energy usage of an autonomous underwater vehicle (AUV) and making accurate data available provides is particularly relevant in the context of long, open-sea missions: energy consumption. A vehicle operating

  9. Ballasted photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA)

    2011-11-29T23:59:59.000Z

    A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.

  10. Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)

    SciTech Connect (OSTI)

    Ross, M.H. [Univ. of Michigan, Ann Arbor, MI (US). Dept. of Physics; Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. [Argonne National Lab., IL (US)

    1993-05-01T23:59:59.000Z

    The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

  11. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01T23:59:59.000Z

    to predictdailysolarradiation. AgricultureandForestandChuo,S. 2008. SolarradiationforecastingusingShort?termforecastingofsolarradiation: Astatistical

  12. Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.

    2014-10-27T23:59:59.000Z

    In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction intervals of forecasts. We use automatically coupled wavelet transform and autoregressive integrated moving-average (ARIMA) forecasting to reflect multi-scale variability of forecast errors. The proposed analysis reveals slow-changing quasi-deterministic components of forecast errors. This helps improve forecasts produced by other means, e.g., using weather-based models, and reduce forecast errors prediction intervals.

  13. Short term forecasting of solar radiation based on satellite data

    E-Print Network [OSTI]

    Heinemann, Detlev

    Short term forecasting of solar radiation based on satellite data Elke Lorenz, Annette Hammer University, D-26111 Oldenburg Forecasting of solar irradiance will become a major issue in the future integration of solar energy resources into existing energy supply structures. Fluctuations of solar irradiance

  14. Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime meteorological data from sites upwind of wind farms can be efficiently used to improve short-term forecasts acknowledges the support of PPM Energy, Inc. The data used in this work were obtained from Oregon State

  15. Revised 1997 Retail Electricity Price Forecast Principal Author: Ben Arikawa

    E-Print Network [OSTI]

    Revised 1997 Retail Electricity Price Forecast March 1998 Principal Author: Ben Arikawa Electricity 1997 FORE08.DOC Page 1 CALIFORNIA ENERGY COMMISSION ELECTRICITY ANALYSIS OFFICE REVISED 1997 RETAIL ELECTRICITY PRICE FORECAST Introduction The Electricity Analysis Office of the California Energy Commission

  16. A Transformed Lagged Ensemble Forecasting Technique for Increasing Ensemble Size

    E-Print Network [OSTI]

    Hansens, Jim

    A Transformed Lagged Ensemble Forecasting Technique for Increasing Ensemble Size Andrew. R.Lawrence@ecmwf.int #12;Abstract An ensemble-based data assimilation approach is used to transform old en- semble. The impact of the transformations are propagated for- ward in time over the ensemble's forecast period

  17. RESERVOIR INFLOW FORECASTING USING NEURAL NETWORKS CHANDRASHEKAR SUBRAMANIAN

    E-Print Network [OSTI]

    Manry, Michael

    a mixture of hydroelectric and non- hydroelectric power, the economics of the hydroelectric plants depend, and to economically allocate the load between various non-hydroelectric plants. Neural networks provide an attractive technology for inflow forecasting, because of (1) their success in power load forecasting 1- 6 , and (2

  18. Introducing the Canadian Crop Yield Forecaster Aston Chipanshi1

    E-Print Network [OSTI]

    Miami, University of

    for crop yield forecasting and risk analysis. Using the Census Agriculture Region (CAR) as the unit Climate Decision Support and Adaptation, Agriculture and Agri-Food Canada, 1011, Innovation Blvd, Saskatoon, SK S7V 1B7, Canada The Canadian Crop Yield Forecaster (CCYF) is a statistical modelling tool

  19. Wind-Wave Probabilistic Forecasting based on Ensemble

    E-Print Network [OSTI]

    have to be jointly taken into account in some decision-making problems, e.g. offshore wind farmWind-Wave Probabilistic Forecasting based on Ensemble Predictions Maxime FORTIN Kongens Lyngby 2012.imm.dtu.dk IMM-PhD-2012-86 #12;Summary Wind and wave forecasts are of a crucial importance for a number

  20. Wind Power Forecasting: State-of-the-Art 2009

    E-Print Network [OSTI]

    Kemner, Ken

    Wind Power Forecasting: State-of-the-Art 2009 ANL/DIS-10-1 Decision and Information Sciences about Argonne and its pioneering science and technology programs, see www.anl.gov. #12;Wind Power................................................ 14 2.2.3 Critical Processes for Wind Forecast

  1. PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022

    E-Print Network [OSTI]

    PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022 AUGUST 2011 CEC-200-2011-011-SD CALIFORNIA for electric vehicles. #12;ii #12;iii ABSTRACT The Preliminary California Energy Demand Forecast 2012 includes three full scenarios: a high energy demand case, a low energy demand case, and a mid energy demand

  2. CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Manager Kae Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency Demand Forecast report is the product of the efforts of many current and former California Energy

  3. Distribution Based Data Filtering for Financial Time Series Forecasting

    E-Print Network [OSTI]

    Bailey, James

    recent past. In this paper, we address the challenge of forecasting the behavior of time series using@unimelb.edu.au Abstract. Changes in the distribution of financial time series, particularly stock market prices, can of stock prices, which aims to forecast the future values of the price of a stock, in order to obtain

  4. Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch

    E-Print Network [OSTI]

    i Managing Wind Power Forecast Uncertainty in Electric Grids Brandon Keith Mauch Co for the modeled wind- CAES system would not cover annualized capital costs. We also estimate market prices-ahead market is roughly $100, with large variability due to electric power prices. Wind power forecast errors

  5. Draft for Public Comment Appendix A. Demand Forecast

    E-Print Network [OSTI]

    in the planning process. Electricity demand is forecast to grow from 20,080 average megawatts in 2000 to 25 forecast of electricity demand is a required component of the Council's Northwest Regional Conservation and Electric Power Plan.1 Understanding growth in electricity demand is, of course, crucial to determining

  6. FORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS

    E-Print Network [OSTI]

    Keller, Arturo A.

    resources resulting in water stress. Effective water management a solution Supply side management Demand side management #12;Developing a regression equation based on cluster analysis for forecasting waterFORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS by Bruce Bishop Professor of Civil

  7. Forecasting Uncertainty Related to Ramps of Wind Power Production

    E-Print Network [OSTI]

    Boyer, Edmond

    - namic reserve quantification [8], for the optimal oper- ation of combined wind-hydro power plants [5, 1Forecasting Uncertainty Related to Ramps of Wind Power Production Arthur Bossavy, Robin Girard - The continuous improvement of the accuracy of wind power forecasts is motivated by the increasing wind power

  8. Impact of PV forecasts uncertainty in batteries management in microgrids

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -- Photovoltaic systems, Batteries, Forecasting I. INTRODUCTION This paper presents first results of a study Energies and Energy Systems Sophia Antipolis, France andrea.michiorri@mines-paristech.fr Abstract production forecast algorithm is used in combination with a battery schedule optimisation algorithm. The size

  9. Forecasting Building Occupancy Using Sensor Network James Howard

    E-Print Network [OSTI]

    Hoff, William A.

    of the forecasting algorithm for the different conditions. 1. INTRODUCTION According to the U.S. Department of Energy could take advantage of times when electricity cost is lower, to chill a cold water storage tankForecasting Building Occupancy Using Sensor Network Data James Howard Colorado School of Mines

  10. Voluntary Green Power Market Forecast through 2015

    SciTech Connect (OSTI)

    Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

    2010-05-01T23:59:59.000Z

    Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

  11. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01T23:59:59.000Z

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  12. Using Iterative Compilation to Reduce Energy Consumption

    E-Print Network [OSTI]

    Gheorghita, Valentin

    or to re- duce power. Most transformations require loop re- structuring. Although a large number.v.gheorghita,h.corporaal,a.a.basten}@tue.nl Keywords: Iterative Compilation, Program Optimization, Energy Consumption, Program Transformation. Abstract. This is emphasized by new demands added to compilers, like reducing static code size, energy consumption or power

  13. World synthetic rubber consumption is growing

    SciTech Connect (OSTI)

    Not Available

    1987-03-04T23:59:59.000Z

    Worldwide consumption of new rubber, both synthetic and natural, has increased. This report includes a prediction of even more growth in the rubber market which was made by the International Institute of Synthetic Rubber Producers (IISRP), based in Houston. Figures are given for worldwide consumption.

  14. Verification of hourly forecasts of wind turbine power output

    SciTech Connect (OSTI)

    Wegley, H.L.

    1984-08-01T23:59:59.000Z

    A verification of hourly average wind speed forecasts in terms of hourly average power output of a MOD-2 was performed for four sites. Site-specific probabilistic transformation models were developed to transform the forecast and observed hourly average speeds to the percent probability of exceedance of an hourly average power output. (This transformation model also appears to have value in predicting annual energy production for use in wind energy feasibility studies.) The transformed forecasts were verified in a deterministic sense (i.e., as continuous values) and in a probabilistic sense (based upon the probability of power output falling in a specified category). Since the smoothing effects of time averaging are very pronounced, the 90% probability of exceedance was built into the transformation models. Semiobjective and objective (model output statistics) forecasts were made compared for the four sites. The verification results indicate that the correct category can be forecast an average of 75% of the time over a 24-hour period. Accuracy generally decreases with projection time out to approx. 18 hours and then may increase due to the fairly regular diurnal wind patterns that occur at many sites. The ability to forecast the correct power output category increases with increasing power output because occurrences of high hourly average power output (near rated) are relatively rare and are generally not forecast. The semiobjective forecasts proved superior to model output statistics in forecasting high values of power output and in the shorter time frames (1 to 6 hours). However, model output statistics were slightly more accurate at other power output levels and times. Noticeable differences were observed between deterministic and probabilistic (categorical) forecast verification results.

  15. NatioNal aNd Global Forecasts West VirGiNia ProFiles aNd Forecasts

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    · NatioNal aNd Global Forecasts · West VirGiNia ProFiles aNd Forecasts · eNerGy · Healt Global Insight, paid for by the West Virginia Department of Revenue. 2013 WEST VIRGINIA ECONOMIC OUTLOOKWest Virginia Economic Outlook 2013 is published by: Bureau of Business & Economic Research West

  16. Firewood consumption in a Nepali village

    SciTech Connect (OSTI)

    Fox, J.

    1984-05-01T23:59:59.000Z

    People's dependence on firewood as a primary source of energy is causing serious deforestation problems in many developing countries. Reliable information on firewood consumption rates is needed to develop afforestation plans and to control deforestation. This study compares three methods used to determine firewood consumption in a Nepali village. Cultural and environmental factors that affect firewood consumption in the village are also examined. The weight survey proved to be the most accurate method used. The less precise daily recall and annual recall surveys overestimated actual firewood consumption by factors of 1.76 and 1.95, respectively. Overestimates are attributed to both physical and social factors. In view of the good agreement between daily and annual recall surveys, and the much greater ease of conducting the latter, annual recall surveys are recommended as the most practical method of monitoring firewood consumption rates. Validating the survey with occasional weighted measurements is suggested as a means of improving accuracy.

  17. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-12-06T23:59:59.000Z

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

  18. Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.

    SciTech Connect (OSTI)

    Wu, M.; Peng, J. (Energy Systems); ( NE)

    2011-02-24T23:59:59.000Z

    Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

  19. Potential impact of Thailand's alcohol program on production, consumption, and trade of cassava, sugarcane, and corn

    SciTech Connect (OSTI)

    Boonserm, P.

    1985-01-01T23:59:59.000Z

    On the first of May 1980, Thailand's fuel-alcohol program was announced by the Thai government. According to the program, a target of 147 million liters of ethanol would be produced in 1981, from cassava, sugarcane, and other biomasses. Projecting increases in output each year, the target level of ethanol produciton was set at 482 million liters of ethanol for 1986. The proposed amount of ethanol production could create a major shift up in the demand schedule of energy crops such as cassava, sugarcane, and corn. The extent of the adjustments in price, production, consumption, and exports for these energy crops need to be evaluated. The purpose of this study is to assess the potential impact of Thailand's fuel-alcohol program on price, production, consumption, and exports of three potential energy crops: cassava, sugarcane, and corn. Econometric commodity models of cassava, sugarcane, and corn are constructed and used as a method of assessment. The overall results of the forecasting simulations of the models indicate that the fuel-alcohol program proposed by the Thai government will cause the price, production, and total consumption of cassava, sugarcane, and corn to increase; on the other hand, it will cause exports to decline. In addition, based on the relative prices and the technical coefficients of ethanol production of these three energy crops, this study concludes that only cassava should be used to produce the proposed target of ethanol production.

  20. Incorporating Forecast Uncertainty in Utility Control Center

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian

    2014-07-09T23:59:59.000Z

    Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as well as system loads are not adequately reflected in existing industry-grade tools used for transmission system management, generation commitment, dispatch and market operation. There are other sources of uncertainty such as uninstructed deviations of conventional generators from their dispatch set points, generator forced outages and failures to start up, load drops, losses of major transmission facilities and frequency variation. These uncertainties can cause deviations from the system balance, which sometimes require inefficient and costly last minute solutions in the near real-time timeframe. This Chapter considers sources of uncertainty and variability, overall system uncertainty model, a possible plan for transition from deterministic to probabilistic methods in planning and operations, and two examples of uncertainty-based fools for grid operations.This chapter is based on work conducted at the Pacific Northwest National Laboratory (PNNL)

  1. Fuel consumption analyses for urban traffic management

    SciTech Connect (OSTI)

    Bowyer, D.P.; Akcelik, R.; Biggs, D.C.

    1986-12-01T23:59:59.000Z

    A primary output from the fuel consumption research conducted by the Australian Road Research Board (ARRB) is the ARRB Special Report, Guide to Fuel Consumption Analyses. This article briefly summarizes the background of the guide, describes its major features, and considers its relevance to urban traffic management decision. The guide was a result of a technical audit of studies relating to energy consumption in traffic and transport systems. A brief summary of the audit process and findings is given. The guide is intended primarily as an aid to effective use of fuel consumption models in the design of traffic management schemes. The forms of four interrelated fuel consumption models of the guide are described and their likely transferability to various situations is indicated. Each traffic and fuel consumption model is appropriate to a particular scale of traffic system. This link is shown for several selected traffic models. As an example, a discussion of the importance of accurate fuel consumption estimates for the case of priority control at a particular intersection is given.

  2. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01T23:59:59.000Z

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  3. Changing patterns of world energy consumption

    SciTech Connect (OSTI)

    Todd, S.H.

    1983-08-01T23:59:59.000Z

    The substantial increases in oil prices since 1973 have had tremendous impacts on world energy, and particularly on oil consumption. These impacts have varied across regions and energy types. As shown in a table, from 1960 through 1973 the real price of internationally traded crude oil, as measured in constant US dollars, changed very little. In this stable oil price environment, Free World energy consumption grew at 5.3% per year and oil use rose at 7.5% per year, increasing its share of Free World energy consumption from 43 to 56%. 6 tables.

  4. State energy data report 1993: Consumption estimates

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

  5. State Energy Data Report, 1991: Consumption estimates

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

  6. November 14, 2000 A Quarterly Forecast of U.S. Trade

    E-Print Network [OSTI]

    Shyy, Wei

    November 14, 2000 A Quarterly Forecast of U.S. Trade in Services and the Current Account, 2000 of Forecast*** We forecast that the services trade surplus, which declined from 1997 to 1998 and edged upward. That is, from a level of $80.6 billion in 1999, we forecast that the services trade surplus will be $80

  7. Smard Grid Software Applications for Distribution Network Load Forecasting Eugene A. Feinberg, Jun Fei

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    of the distribution network. Keywords: load forecasting, feeder, transformer, load pocket, SmartGrid I. INTRODUCTION

  8. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01T23:59:59.000Z

    Solar irradiance data . . . . . . . . . . . . .Accuracy . . . . . . . . . . . . . . . . . Solar Resourcev Uncertainty In Solar Resource: Forecasting

  9. Wind Energy Technology Trends: Comparing and Contrasting Recent Cost and Performance Forecasts (Poster)

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.

    2010-05-01T23:59:59.000Z

    Poster depicts wind energy technology trends, comparing and contrasting recent cost and performance forecasts.

  10. USING BOX-JENKINS MODELS TO FORECAST FISHERY DYNAMICS: IDENTIFICATION, ESTIMATION, AND CHECKING

    E-Print Network [OSTI]

    ~ is illustrated by developing a model that makes monthly forecasts of skipjack tuna, Katsuwonus pelamis, catches

  11. Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

    Broader source: Energy.gov [DOE]

    Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  12. ASSESSING THE QUALITY AND ECONOMIC VALUE OF WEATHER AND CLIMATE FORECASTS

    E-Print Network [OSTI]

    Katz, Richard

    INFORMATION SYSTEM Forecast -- Conditional probability distribution for event Z = z indicates forecast tornado #12;(1.2) FRAMEWORK Joint Distribution of Observations & Forecasts Observed Weather = Forecast probability p (e.g., induced by Z) Reliability Diagram Observed weather: = 1 (Adverse weather occurs) = 0

  13. Weather Forecast Data an Important Input into Building Management Systems

    E-Print Network [OSTI]

    Poulin, L.

    2013-01-01T23:59:59.000Z

    GEPS 21 members ? Provides probabilistic forecasts ? Can give useful outlooks for longer term weather forecasts ? Scribe matrix from GDPS ? includes UMOS post processed model data ? Variables like Temperature, humidity post processed by UMOS ? See...://collaboration.cmc.ec.gc.ca/cmc/cmoi/cmc-prob-products/ ? Link to experimental 3-day outlook of REPS quilts ? http://collaboration.cmc.ec.gc.ca/cmc/cmoi/cmc-prob-products.reps Users can also make their own products from ensemble forecast data? Sample ascii matrix of 2m temperature could be fed...

  14. Natural Priors, CMSSM Fits and LHC Weather Forecasts

    E-Print Network [OSTI]

    Allanach, B C; Cranmer, Kyle; Lester, Christopher G; Weber, Arne M

    2007-08-07T23:59:59.000Z

    ar X iv :0 70 5. 04 87 v3 [ he p- ph ] 5 J ul 20 07 Preprint typeset in JHEP style - HYPER VERSION DAMTP-2007-18 Cavendish-HEP-2007-03 MPP-2007-36 Natural Priors, CMSSM Fits and LHC Weather Forecasts Benjamin C Allanach1, Kyle Cranmer2... s likely discoveries. There are big differences between nature of the questions answered by a forecast, and the ques- tions that will be answered by the experiments themselves when they have acquired compelling data. A weather forecast predicting severe...

  15. Research on Building Energy Consumption Situation in Shanghai

    E-Print Network [OSTI]

    Yang, X.; Tan, H.

    2006-01-01T23:59:59.000Z

    This paper surveys the present situation of building energy consumption in Shanghai and points out the problems of insufficient energy consumption statistics based on the survey data. We analyze the relationships of energy consumption between...

  16. Increasing Underwater Vehicle Autonomy by Reducing Energy Consumption

    E-Print Network [OSTI]

    Chyba, Monique

    : Autonomous Underwater Vehicle, Minimum Energy Consumption, Optimal Control, Experiments. 1 IntroductionIncreasing Underwater Vehicle Autonomy by Reducing Energy Consumption M. Chybaa , T. Haberkornd , S, we concern ourselves with finding a control strategy that minimizes energy consumption along

  17. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    and Low Power Mode Energy Consumption, Energy Efficiency inTV Shipments on Energy Consumption.. 22 Figure 3-1.Estimates of Annual Energy Consumption in 3D mode of 3D TVs

  18. Research on Building Energy Consumption Situation in Shanghai

    E-Print Network [OSTI]

    Yang, X.; Tan, H.

    2006-01-01T23:59:59.000Z

    This paper surveys the present situation of building energy consumption in Shanghai and points out the problems of insufficient energy consumption statistics based on the survey data. We analyze the relationships of energy consumption between...

  19. Uncertainties in Energy Consumption Introduced by Building Operations and

    E-Print Network [OSTI]

    Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium between predicted and actual building energy consumption can be attributed to uncertainties introduced in energy consumption due to actual weather and building operational practices, using a simulation

  20. Module Handbook Specialisation Photovoltaics

    E-Print Network [OSTI]

    Habel, Annegret

    Module Handbook Specialisation Photovoltaics 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Northumbria Specialisation Provider: Photovoltaics #12;Specialisation Photovoltaics, University of Northumbria Module 1/Photovoltaics: PHOTOVOLTAIC CELL

  1. US SoAtl VA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are higher for Virginia households than the national...

  2. US MidAtl NY Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in New York homes is much lower than the U.S. average, because...

  3. US SoAtl GA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    household (2,067) in Georgia are similar to the U.S. household averages. * Per household electricity consumption in Georgia is among the highest in the country, but similar to...

  4. Energy consumption metrics of MIT buildings

    E-Print Network [OSTI]

    Schmidt, Justin David

    2010-01-01T23:59:59.000Z

    With world energy demand on the rise and greenhouse gas levels breaking new records each year, lowering energy consumption and improving energy efficiency has become vital. MIT, in a mission to help improve the global ...

  5. GIS-based energy consumption mapping

    E-Print Network [OSTI]

    Balta, Chrysi

    2014-11-27T23:59:59.000Z

    This project aims to provide a methodology to map energy consumption of the housing stock at a city level and visualise and evaluate different retrofitting scenarios. It is based on an engineering, bottom-up approach. It makes use...

  6. ,"New Mexico Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"3292015 10:04:17 PM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NM2" "Date","New...

  7. ,"New Mexico Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"3292015 10:01:29 PM" "Back to Contents","Data 1: New Mexico Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NM2" "Date","New...

  8. State energy data report 1996: Consumption estimates

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  9. ,"New York Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:12:03 AM" "Back to Contents","Data 1: New York Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NY2" "Date","New York...

  10. ,"New York Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:08:45 AM" "Back to Contents","Data 1: New York Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NY2" "Date","New...

  11. Essays on consumption cycles and corporate finance

    E-Print Network [OSTI]

    Issler, Paulo Floriano

    2013-01-01T23:59:59.000Z

    consumption . . . . . 1.5.3 EIS and the timing of durablefor the CRRA case (? = 2, EIS = 0.5). The right and leftof intertemporal substitution (EIS). When the economy is

  12. State energy data report 1994: Consumption estimates

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

  13. Estimates of US biomass energy consumption 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-06T23:59:59.000Z

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  14. Monitoring and Management of Refinery Energy Consumption

    E-Print Network [OSTI]

    Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

    MONITORING AND MANAGEMENT OF REFINERY ENERGY CONSUMPTION Roger O. Pelham Richard D. Moriarty Patrie D. Hudgens Profimatics, Inc. Thousand Oaks, California ABSTRACT Since 1972, the u.s. refining industry has made much progress in reduci... ng energy consumption. Lately, falling energy prices have de-emphasized the need to appropriate new capital for additional energy conservation projects. One area neglected in most refineries is the need to monitor and man age the daily use...

  15. Continuous Improvement Energy Projects Reduce Energy Consumption

    E-Print Network [OSTI]

    Niemeyer, E.

    2014-01-01T23:59:59.000Z

    Continuous Improvement Energy Projects Reduce Energy Consumption Eric Niemeyer, Operations Superintendent Drilling Specialties Company A division of Chevron Phillips Chemical Company LP ESL-IE-14-05-31 Proceedings of the Thrity..., LA. May 20-23, 2014 A presentation of the paper Continuous Improvement Energy Projects Reduce Energy Consumption by Bruce Murray and Allison Myers ESL-IE-14-05-31 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans...

  16. Modulating lignin in plants

    DOE Patents [OSTI]

    Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

    2013-01-29T23:59:59.000Z

    Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

  17. Optimally controlling hybrid electric vehicles using path forecasting

    E-Print Network [OSTI]

    Katsargyri, Georgia-Evangelina

    2008-01-01T23:59:59.000Z

    Hybrid Electric Vehicles (HEVs) with path-forecasting belong to the class of fuel efficient vehicles, which use external sensory information and powertrains with multiple operating modes in order to increase fuel economy. ...

  18. Recently released EIA report presents international forecasting data

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This report presents information from the Energy Information Administration (EIA). Articles are included on international energy forecasting data, data on the use of home appliances, gasoline prices, household energy use, and EIA information products and dissemination avenues.

  19. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    G. Bel; C. P. Connaughton; M. Toots; M. M. Bandi

    2015-03-29T23:59:59.000Z

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  20. OCTOBER-NOVEMBER FORECAST FOR 2014 CARIBBEAN BASIN HURRICANE ACTIVITY

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    and hurricanes, but instead predicts both hurricane days and Accumulated Cyclone Energy (ACE). Typically, while) tropical cyclone (TC) activity. We have decided to issue this forecast, because Klotzbach (2011) has

  1. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect (OSTI)

    Yoo, Wucherl; Sim, Alex

    2014-07-07T23:59:59.000Z

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  2. A methodology for forecasting carbon dioxide flooding performance

    E-Print Network [OSTI]

    Marroquin Cabrera, Juan Carlos

    1998-01-01T23:59:59.000Z

    A methodology was developed for forecasting carbon dioxide (CO2) flooding performance quickly and reliably. The feasibility of carbon dioxide flooding in the Dollarhide Clearfork "AB" Unit was evaluated using the methodology. This technique is very...

  3. The Rationality of EIA Forecasts under Symmetric and Asymmetric Loss

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    2005-01-01T23:59:59.000Z

    Agency: 1982-2005a, Annual Energy Outlook, EIA, Washington,Agency: 2004, Annual Energy Outlook Forecast Evaluation,Agency: 2005b, Annual Energy Outlook, EIA, Washington, D.C.

  4. The Rationality of EIA Forecasts under Symmetric and Asymmetric Loss

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    2005-01-01T23:59:59.000Z

    2005a, Annual Energy Outlook, EIA, Washington, D.C. Energy2005b, Annual Energy Outlook, EIA, Washington, D.C. Granger,Paper ???? The Rationality of EIA Forecasts under Symmetric

  5. Forecasting and strategic inventory placement for gas turbine aftermarket spares

    E-Print Network [OSTI]

    Simmons, Joshua T. (Joshua Thomas)

    2007-01-01T23:59:59.000Z

    This thesis addresses the problem of forecasting demand for Life Limited Parts (LLPs) in the gas turbine engine aftermarket industry. It is based on work performed at Pratt & Whitney, a major producer of turbine engines. ...

  6. Optimally Controlling Hybrid Electric Vehicles using Path Forecasting

    E-Print Network [OSTI]

    Kolmanovsky, Ilya V.

    The paper examines path-dependent control of Hybrid Electric Vehicles (HEVs). In this approach we seek to improve HEV fuel economy by optimizing charging and discharging of the vehicle battery depending on the forecasted ...

  7. Post-Construction Evaluation of Forecast Accuracy Pavithra Parthasarathi1

    E-Print Network [OSTI]

    Levinson, David M.

    Post-Construction Evaluation of Forecast Accuracy Pavithra Parthasarathi1 David Levinson 2 February, the assumed networks to the actual in-place networks and other travel behavior assumptions that went

  8. africa conditional forecasts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forecasts had the potential to improve resource management but instead played only a marginal role in real-world decision making. 1 A widespread perception that the quality of the...

  9. accident risk forecasting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forecasts had the potential to improve resource management but instead played only a marginal role in real-world decision making. 1 A widespread perception that the quality of the...

  10. Forecasting Volatility in Stock Market Using GARCH Models

    E-Print Network [OSTI]

    Yang, Xiaorong

    2008-01-01T23:59:59.000Z

    Forecasting volatility has held the attention of academics and practitioners all over the world. The objective for this master's thesis is to predict the volatility in stock market by using generalized autoregressive conditional heteroscedasticity(GARCH...

  11. Forecasting Returns and Volatilities in GARCH Processes Using the Bootstrap

    E-Print Network [OSTI]

    Romo, Juan

    Forecasting Returns and Volatilities in GARCH Processes Using the Bootstrap Lorenzo Pascual, Juan generated by GARCH processes. The main advantage over other bootstrap methods previously proposed for GARCH by having conditional heteroscedasticity. Generalized Autoregressive Conditionally Heteroscedastic (GARCH

  12. Adaptive sampling and forecasting with mobile sensor networks

    E-Print Network [OSTI]

    Choi, Han-Lim

    2009-01-01T23:59:59.000Z

    This thesis addresses planning of mobile sensor networks to extract the best information possible out of the environment to improve the (ensemble) forecast at some verification region in the future. To define the information ...

  13. Dispersion in analysts' forecasts: does it make a difference?

    E-Print Network [OSTI]

    Adut, Davit

    2004-09-30T23:59:59.000Z

    Financial analysts are an important group of information intermediaries in the capital markets. Their reports, including both earnings forecasts and stock recommendations, are widely transmitted and have a significant impact on stock prices (Womack...

  14. FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007

    E-Print Network [OSTI]

    ......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

  15. An econometric analysis and forecasting of Seoul office market

    E-Print Network [OSTI]

    Kim, Kyungmin

    2011-01-01T23:59:59.000Z

    This study examines and forecasts the Seoul office market, which is going to face a big supply in the next few years. After reviewing several previous studies on the Dynamic model and the Seoul Office market, this thesis ...

  16. Improving the Accuracy of Solar Forecasting Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Improving the Accuracy ofSolar Forecasting Funding Opportunity,DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and other...

  17. Variable Selection and Inference for Multi-period Forecasting Problems

    E-Print Network [OSTI]

    Pesaran, M Hashem; Pick, Andreas; Timmermann, Allan

    Variable Selection and Inference for Multi-period Forecasting Problems? M. Hashem Pesaran Cambridge University and USC Andreas Pick De Nederlandsche Bank and Cambridge University, CIMF Allan Timmermann UC San Diego and CREATES January 26, 2009...

  18. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    Bel, G; Toots, M; Bandi, M M

    2015-01-01T23:59:59.000Z

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  19. Dispersion in analysts' forecasts: does it make a difference?

    E-Print Network [OSTI]

    Adut, Davit

    2004-09-30T23:59:59.000Z

    Financial analysts are an important group of information intermediaries in the capital markets. Their reports, including both earnings forecasts and stock recommendations, are widely transmitted and have a significant impact on stock prices (Womack...

  20. Mesoscale predictability and background error convariance estimation through ensemble forecasting

    E-Print Network [OSTI]

    Ham, Joy L

    2002-01-01T23:59:59.000Z

    Over the past decade, ensemble forecasting has emerged as a powerful tool for numerical weather prediction. Not only does it produce the best estimate of the state of the atmosphere, it also could quantify the uncertainties associated with the best...

  1. Complex System Method to Assess Commercial Vehicle Fuel Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption Complex System Method to Assess Commercial Vehicle Fuel Consumption Two case studies for commercial vehicle applications compare a baseline, contemporary vehicle...

  2. HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY...

  3. Power to the Plug: An Introduction to Energy, Electricity, Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Below is...

  4. Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...

    Energy Savers [EERE]

    5: December 12, 2011 Fuel Consumption Standards for Combination Tractors Fact 705: December 12, 2011 Fuel Consumption Standards for Combination Tractors The National Highway...

  5. Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Preliminary measured drying time of fabric sample using ultrasonic...

  6. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected...

    Energy Savers [EERE]

    1 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles Fact 861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles...

  7. Subhourly wind forecasting techniques for wind turbine operations

    SciTech Connect (OSTI)

    Wegley, H.L.; Kosorok, M.R.; Formica, W.J.

    1984-08-01T23:59:59.000Z

    Three models for making automated forecasts of subhourly wind and wind power fluctuations were examined to determine the models' appropriateness, accuracy, and reliability in wind forecasting for wind turbine operation. Such automated forecasts appear to have value not only in wind turbine control and operating strategies, but also in improving individual wind turbine control and operating strategies, but also in improving individual wind turbine operating strategies (such as determining when to attempt startup). A simple persistence model, an autoregressive model, and a generalized equivalent Markhov (GEM) model were developed and tested using spring season data from the WKY television tower located near Oklahoma City, Oklahoma. The three models represent a pure measurement approach, a pure statistical method and a statistical-dynamical model, respectively. Forecasting models of wind speed means and measures of deviations about the mean were developed and tested for all three forecasting techniques for the 45-meter level and for the 10-, 30- and 60-minute time intervals. The results of this exploratory study indicate that a persistence-based approach, using onsite measurements, will probably be superior in the 10-minute time frame. The GEM model appears to have the most potential in 30-minute and longer time frames, particularly when forecasting wind speed fluctuations. However, several improvements to the GEM model are suggested. In comparison to the other models, the autoregressive model performed poorly at all time frames; but, it is recommended that this model be upgraded to an autoregressive moving average (ARMA or ARIMA) model. The primary constraint in adapting the forecasting models to the production of wind turbine cluster power output forecasts is the lack of either actual data, or suitable models, for simulating wind turbine cluster performance.

  8. Streamflow forecasting for large-scale hydrologic systems

    E-Print Network [OSTI]

    Awwad, Haitham Munir

    1991-01-01T23:59:59.000Z

    STREAMFLOW FORECASTING FOR LARGE-SCALE HYDROLOGIC SYSTEMS A Thesis by HAITHAM MUNIR AWWAD Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1991 Major Subject: Civil Engineering STREAMFLOW FORECASTING FOR LARGE-SCALE HYDROLOGIC SYSTEMS A Thesis by HAITHAM MUNIR AWWAD Approved as to style and content by: uan B. Valdes (Chair of Committee) alph A. Wurbs (Member) Marshall J. Mc...

  9. A model for short term electric load forecasting

    E-Print Network [OSTI]

    Tigue, John Robert

    1975-01-01T23:59:59.000Z

    A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE, III Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Electrical Engineering A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE& III Approved as to style and content by: (Chairman of Committee) (Head Depart t) (Member) ;(Me r (Member) (Member) May 1975 ABSTRACT...

  10. Adaptive Load Forecasting Philip Anton de Saint-Aubain

    E-Print Network [OSTI]

    mathematical models for the heat load. Based on district heating consumption data from four houses in a small taken is to reveal the details in the heating consumption in resi- dential houses by developing the heating signals into different components. One of the models is able to split the overall consumption

  11. Energy: a historical perspective and 21st century forecast

    SciTech Connect (OSTI)

    Salvador, Amos [University of Texas, Austin, TX (United States)

    2005-07-01T23:59:59.000Z

    Contents are: Preface; Chapter 1: introduction, brief history, and chosen approach; Chapter 2: human population and energy consumption: the future; Chapter 4: sources of energy (including a section on coal); Chapter 5: electricity: generation and consumption; and Chapter 6: energy consumption and probable energy sources during the 21st century.

  12. CSUF Economic Outlook and Forecasts Midyear Update, April 2011

    E-Print Network [OSTI]

    de Lijser, Peter

    and government support) to fundamental forces (business and consumption spending) has reached a more advanced, (4) sustained elevated oil prices, and (5) financial shocks from the European sovereign debt crisis, reflecting continued but moderate expansion. Consumption Spending. Real personal consumption expenditure fell

  13. Probabilistic wind power forecasting -European Wind Energy Conference -Milan, Italy, 7-10 May 2007 Probabilistic short-term wind power forecasting

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Probabilistic wind power forecasting - European Wind Energy Conference - Milan, Italy, 7-10 May 2007 Probabilistic short-term wind power forecasting based on kernel density estimators Jeremie Juban jeremie.juban@ensmp.fr; georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting tools

  14. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-01-01T23:59:59.000Z

    vs. AEO 2001 Price Forecast Natural Gas Price (nominal $/if forwards forecasts) or natural gas-fired generation (ifs reference case forecast of natural gas prices delivered to

  15. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    Tracking adopters and their consumption over time would shed additional light on the dynamics of solar

  16. Modeling diffusion of electrical appliances in the residential sector

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01T23:59:59.000Z

    in forecasting electricity consumption in the residentialmodeling, since household electricity consumption is largelyup forecasting of electricity consumption by combining

  17. Understanding energy consumption: Beyond technology and economics

    SciTech Connect (OSTI)

    Wilhite, H.; Shove, E.

    1998-07-01T23:59:59.000Z

    This paper summarizes two years of efforts among a cross-disciplinary group of senior researchers to bring social and cultural perspectives to modeling of household energy consumption. The work has been organized by the Center for Energy Studies of the University of Geneva. The researchers represent both the physical and social sciences, several institutions and a number of countries. The initiative was based on an acknowledgement of the failure of technical and economic models to explain consumption or more importantly, how consumption patterns change. Technical and economic models most often either ignore social and cultural issues or reduce them to parameters of other variables. An important objective for the Geneva Group has been to engage modelers and social scientists in a dialogue which brings social and cultural context to the fore. The process reveals interesting insights into the frictions of cross-disciplinary interaction and the emergence of new perspectives. Various classical modeling approaches have been discussed and rejected. Gradually, a framework has emerged which says something about the appropriate institutions and actors which contribute to consumption patterns; about how they are related; and finally about how the interinstitutional relationships and the consumption patterns themselves change. A key point of convergence is that a complete understanding of energy end-use will not be possible from an analysis directed at the point of end use alone. The analysis must incorporate what happens inside institutions like manufacturers, retailers, and public policy organizations as well as how those organizations interact with consumers, including media and advertising. Progress towards a better understanding of energy consumption requires a greater engagement of social scientists with these heretofore little explored actors an relationships.

  18. Survey of Variable Generation Forecasting in the West: August 2011 - June 2012

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2012-04-01T23:59:59.000Z

    This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

  19. Estimates of US biofuels consumption, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

  20. State energy data report 1995 - consumption estimates

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

  1. Approved Module Information for EE4017, 2014/5 Module Title/Name: Realtime Communication Networks Module Code: EE4017

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Module Code: EE4017 School: Engineering and Applied Science Module Type: Standard Module New Module development #12;Indicative Module Content: Telecommunication systems: Network structures; national & Teaching Rationale: Lectures, tutorials and directed reading. Module Assessment Methods of Assessment

  2. Bracket for photovoltaic modules

    DOE Patents [OSTI]

    Ciasulli, John; Jones, Jason

    2014-06-24T23:59:59.000Z

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  3. FASTBUS Snoop Diagnostic Module

    SciTech Connect (OSTI)

    Walz, H.V.; Downing, R.

    1980-11-01T23:59:59.000Z

    Development of the FASTBUS Snoop Module, undertaken as part of the prototype program for the new interlaboratory data bus standard, is described. The Snoop Module resides on a FASTBUS crate segment and provides diagnostic monitoring and testing capability. Communication with a remote host computer is handled independent of FASTBUS through a serial link. The module consists of a high-speed ECL front-end to monitor and single-step FASTBUS cycles, a master-slave interface, and a control microprocessor with serial communication ports. Design details and performance specifications of the prototype module are reported. 9 figures, 1 table.

  4. Approved Module Information for CE4020, 2014/5 Module Title/Name: Advanced Mass Trasfer Module Code: CE4020

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : CE4020 School: Engineering and Applied Science Module Type: Standard Module New Module? No ModuleApproved Module Information for CE4020, 2014/5 Module Title/Name: Advanced Mass Trasfer Module Code Credits: 10 Module Management Information Module Leader Name Qingchun Yuan Email Address q

  5. Approved Module Information for CS1240, 2014/5 Module Title/Name: Internet Computing Module Code: CS1240

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : CS1240 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module and applications for working with them. Module Learning Outcomes: At the end of the module, students should be ableApproved Module Information for CS1240, 2014/5 Module Title/Name: Internet Computing Module Code

  6. Approved Module Information for LT1307, 2014/5 Module Title/Name: Principles of Economics Module Code: LT1307

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: LT1307 School: Engineering and Applied Science Module Type: Standard Module New Module? No ModuleApproved Module Information for LT1307, 2014/5 Module Title/Name: Principles of Economics Module Credits: 10 Module Management Information Module Leader Name David Carpenter Email Address d

  7. Approved Module Information for ME3039, 2014/5 Module Title/Name: Design Failure Analysis Module Code: ME3039

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: ME3039 School: Engineering and Applied Science Module Type: Standard Module New Module? No ModuleApproved Module Information for ME3039, 2014/5 Module Title/Name: Design Failure Analysis Module Credits: 10 Module Management Information Module Leader Name David Upton Email Address uptondp

  8. Approved Module Information for CS1320, 2014/5 Module Title/Name: Problem Solving Module Code: CS1320

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    1320 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module CreditsApproved Module Information for CS1320, 2014/5 Module Title/Name: Problem Solving Module Code: CS: 10 Module Management Information Module Leader Name Errol Thompson Email Address thompel1@aston

  9. Approved Module Information for LT3315, 2014/5 Module Title/Name: International Trade Law Module Code: LT3315

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: LT3315 School: Engineering and Applied Science Module Type: Standard Module New Module? No ModuleApproved Module Information for LT3315, 2014/5 Module Title/Name: International Trade Law Module Credits: 10 Module Management Information Module Leader Name David Carpenter Email Address d

  10. Approved Module Information for PH4705, 2014/5 Module Title/Name: Interprofessional Learning Module Code: PH4705

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: PH4705 School: Life and Health Sciences Module Type: Standard Module New Module? No ModuleApproved Module Information for PH4705, 2014/5 Module Title/Name: Interprofessional Learning Module Credits: 10 Module Management Information Module Leader Name Fiona Lacey Email Address f

  11. Approved Module Information for CS4810, 2014/5 Module Title/Name: Enterprise Computing Systems Module Code: CS4810

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Module Code: CS4810 School: Engineering and Applied Science Module Type: Standard Module New ModuleApproved Module Information for CS4810, 2014/5 Module Title/Name: Enterprise Computing Systems? No Module Credits: 15 Module Management Information Module Leader Name Albert Hai Zhuge Email Address zhugeh

  12. Reduced Energy Consumption for Melting in Foundries

    E-Print Network [OSTI]

    336 007 TM 06 07 Department of Manufacturing Engineering and Management Technical University at the Technical University of Denmark, DTU. The project has been financed by the Danish transmission system-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known

  13. Public perceptions of energy consumption and savings

    E-Print Network [OSTI]

    Kammen, Daniel M.

    on Environmental Decisions, Columbia University, New York, NY 10027; b Department of Psychology, Ohio StatePublic perceptions of energy consumption and savings Shahzeen Z. Attaria,1 , Michael L. De February 12, 2010) In a national online survey, 505 participants reported their percep- tions of energy

  14. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    forecasts of operational energy till 2020 based on differing assumptions of technology penetration and efficiency. China

  15. Landauer in the age of synthetic biology: energy consumption and information processing in biochemical networks

    E-Print Network [OSTI]

    Mehta, Pankaj; Schwab, David J

    2015-01-01T23:59:59.000Z

    A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing h...

  16. Short-term planning and forecasting for petroleum. Master's thesis

    SciTech Connect (OSTI)

    Elkins, R.D.

    1988-06-01T23:59:59.000Z

    The Defense Fuel Supply Center (DFSC) has, in recent past, been unable to adequately forecast for short-term petroleum requirements. This has resulted in inaccurate replenishment quantities and required short-notice corrections, which interrupted planned resupply methods. The relationship between the annual CINCLANTFLT DFM budget and sales from the the Norfolk Defense Fuel Support Point (DFSP) is developed and the past sales data from the Norfolk DFSP is used to construct seasonality indices. Finally, the budget/sales relationship is combined with the seasonality indices to provide a new forecasting model. The model is then compared with the current one for FY-88 monthly forecasts. The comparison suggests that the new model can provide accurate, timely requirements data and improve resupply of the Norfolk Defense Fuel Support Point.

  17. Sixth Northwest Conservation and Electric Power Plan Appendix D: Wholesale Electricity Price Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix D: Wholesale Electricity Price.................................................................................................................................. 27 INTRODUCTION The Council prepares and periodically updates a 20-year forecast of wholesale to forecast wholesale power prices. AURORAxmp® provides the ability to inco

  18. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01T23:59:59.000Z

    andvalidation. SolarEnergy. 73:5,307? Perez,R. ,forecastdatabase. SolarEnergy. 81:6,809?812. forecastsintheUS. SolarEnergy. 84:12,2161?2172.

  19. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean...

  20. Application of the Stretched Exponential Production Decline Model to Forecast Production in Shale Gas Reservoirs

    E-Print Network [OSTI]

    Statton, James Cody

    2012-07-16T23:59:59.000Z

    . This study suggests a type curve is most useful when 24 months or less is available to forecast. The SEPD model generally provides more conservative forecasts and EUR estimates than Arps' model with a minimum decline rate of 5%....

  1. SHORT-TERM FORECASTING OF SOLAR RADIATION BASED ON SATELLITE DATA WITH STATISTICAL METHODS

    E-Print Network [OSTI]

    Heinemann, Detlev

    SHORT-TERM FORECASTING OF SOLAR RADIATION BASED ON SATELLITE DATA WITH STATISTICAL METHODS Annette governing the insolation, forecasting of solar radiation makes the description of development of the cloud

  2. Sixth Northwest Conservation and Electric Power Plan Appendix A: Fuel Price Forecast

    E-Print Network [OSTI]

    ............................................................................................................................... 12 Oil Price Forecast Range. The price of crude oil was $25 a barrel in January of 2000. In July 2008 it averaged $127, even approachingSixth Northwest Conservation and Electric Power Plan Appendix A: Fuel Price Forecast Introduction

  3. Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011

    SciTech Connect (OSTI)

    Piwko, R.; Jordan, G.

    2011-11-01T23:59:59.000Z

    This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

  4. Solar Variability and Forecasting Jan Kleissl, Chi Chow, Matt Lave, Patrick Mathiesen,

    E-Print Network [OSTI]

    Homes, Christopher C.

    Forecasting Benefits Use of state-of-art wind and solar forecasts reduces WECC operating costs by up to 14/MWh of wind and solar generation). WECC operating costs could be reduced by an additional $500 million

  5. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    late January 2008, extend its natural gas futures strip anComparison of AEO 2008 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

  6. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Comparison of AEO 2007 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  7. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Comparison of AEO 2006 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  8. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    Comparison of AEO 2009 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  9. Status of Centralized Wind Power Forecasting in North America: May 2009-May 2010

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2010-04-01T23:59:59.000Z

    Report surveys grid wind power forecasts for all wind generators, which are administered by utilities or regional transmission organizations (RTOs), typically with the assistance of one or more wind power forecasting companies.

  10. Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General Circulation Models

    E-Print Network [OSTI]

    Arumugam, Sankar

    Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater

  11. Earnings Management Pressure on Audit Clients: Auditor Response to Analyst Forecast Signals

    E-Print Network [OSTI]

    Newton, Nathan J.

    2013-06-26T23:59:59.000Z

    This study investigates whether auditors respond to earnings management pressure created by analyst forecasts. Analyst forecasts create an important earnings target for management, and professional standards direct auditors to consider how...

  12. Forecasting the demand for electric vehicles: accounting for attitudes and perceptions

    E-Print Network [OSTI]

    Bierlaire, Michel

    prediction, transportation, attitudes and perceptions, hybrid choice models, fractional factorial design: survey design, model estimation and forecasting. We develop a stated preferences (SP) survey with issues related to the application of models designed to forecast demand for new alternatives, most

  13. Price forecasting for U.S. cattle feeders: which technique to apply?

    E-Print Network [OSTI]

    Hicks, Geoff Cody

    1997-01-01T23:59:59.000Z

    both feeder cattle costs and corn costs, and maximizing fed cattle prices. This research strives to evaluate the accuracy of six distinct price forecasting techniques over an eleven year period. The forecast techniques selected for this analysisare...

  14. Streamflow Forecasting Based on Statistical Applications and Measurements Made with Rain Gage and Weather Radar

    E-Print Network [OSTI]

    Hudlow, M.D.

    Techniques for streamflow forecasting are developed and tested for the Little Washita River in Oklahoma. The basic input for streamflow forecasts is rainfall. the rainfall amounts may be obtained from several sources; however, this study...

  15. DOE Releases Latest Report on Energy Savings Forecast of Solid...

    Broader source: Energy.gov (indexed) [DOE]

    of Solid-State Lighting in General Illumination Applications compares the annual lighting energy consumption in the U.S. with and without further market penetration of LED...

  16. Membrane module assembly

    DOE Patents [OSTI]

    Kaschemekat, Jurgen (Palo Alto, CA)

    1994-01-01T23:59:59.000Z

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  17. Module Safety Issues (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2012-02-01T23:59:59.000Z

    Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

  18. Membrane module assembly

    DOE Patents [OSTI]

    Kaschemekat, J.

    1994-03-15T23:59:59.000Z

    A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

  19. Forecast of contracting and subcontracting opportunities. Fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This forecast of prime and subcontracting opportunities with the U.S. Department of Energy and its MAO contractors and environmental restoration and waste management contractors, is the Department`s best estimate of small, small disadvantaged and women-owned small business procurement opportunities for fiscal year 1996. The information contained in the forecast is published in accordance with Public Law 100-656. It is not an invitation for bids, a request for proposals, or a commitment by DOE to purchase products or services. Each procurement opportunity is based on the best information available at the time of publication and may be revised or cancelled.

  20. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  1. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01T23:59:59.000Z

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  2. Photovoltaic module and interlocked stack of photovoltaic modules

    SciTech Connect (OSTI)

    Wares, Brian S.

    2014-09-02T23:59:59.000Z

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  3. ModuleModuleModuleModule NameNameNameName : Biostatistics Module NumberModule NumberModule NumberModule Number : 210235

    E-Print Network [OSTI]

    for the above types of confidence intervals and tests. Contribution to Program Learning Outcomes). Learning Outcomes:Learning Outcomes:Learning Outcomes:Learning Outcomes: On completing this module, student:Contribution to Program Learning Outcomes:Contribution to Program Learning Outcomes:Contribution to Program Learning

  4. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 15 SEPTEMBER 28, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  5. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 27 OCTOBER 10, 2013

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fifth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  6. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 16 AUGUST 29, 2013

    E-Print Network [OSTI]

    that we are trying to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index This is the fifth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early for ACE using three categories as defined in Table 1. Table 1: ACE forecast definition. Parameter

  7. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 3 AUGUST 16, 2012

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  8. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM OCTOBER 12 OCTOBER 25, 2012

    E-Print Network [OSTI]

    Gray, William

    to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined This is the fourth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting for individual event parameters such as named storms and hurricanes. We issue forecasts for ACE using three

  9. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 28 OCTOBER 11, 2012

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  10. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 13 SEPTEMBER 26, 2013

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fifth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  11. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 18 AUGUST 31, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  12. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM OCTOBER 11 OCTOBER 24, 2013

    E-Print Network [OSTI]

    Gray, William

    to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined This is the fifth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting for individual event parameters such as named storms and hurricanes. We issue forecasts for ACE using three

  13. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 2 AUGUST 15, 2013

    E-Print Network [OSTI]

    Gray, William

    that we are trying to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index This is the fifth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting for ACE using three categories as defined in Table 1. Table 1: ACE forecast definition. Parameter

  14. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 31 SEPTEMBER 13, 2012

    E-Print Network [OSTI]

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  15. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 17 AUGUST 30, 2012

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  16. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 4 AUGUST 17, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  17. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 29 OCTOBER 12, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  18. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 11 SEPTEMBER 24, 2014

    E-Print Network [OSTI]

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the sixth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  19. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 30 SEPTEMBER 12, 2013

    E-Print Network [OSTI]

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fifth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  20. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 31 SEPTEMBER 13, 2011

    E-Print Network [OSTI]

    Birner, Thomas

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the third year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  1. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 28 SEPTEMBER 10, 2014

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the sixth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  2. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM OCTOBER 13 OCTOBER 26, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  3. Large-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields

    E-Print Network [OSTI]

    Kolter, J. Zico

    -Gaussian case using the copula transform. On a wind power forecasting task, we show that this probabilisticLarge-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random high-dimensional conditional Gaussian distributions to forecasting wind power and extend it to the non

  4. EUROBRISA: A EURO-BRazilian Initiative for improving South American seasonal forecasts

    E-Print Network [OSTI]

    EUROBRISA: A EURO-BRazilian Initiative for improving South American seasonal forecasts by Caio A. S. van Oldenborgh, 2006: Towards an integrated seasonal forecasting system for South America. J. Climate and promote exchange of expertise and information between European and South American seasonal forecasters

  5. Hourly Temperature Forecasting Using Abductive Networks R. E. Abdel-Aal

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    ANNGSF) and for forecasting the one-hour-ahead heat load for a district heat load network (Seppl et al and network analysis functions in power utilities. Since high-low temperature forecasts are usually provided-Rohani & Maratukulam, 1998). In other agricultural and environmental applications, even high-low temperature forecasts

  6. Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting

    E-Print Network [OSTI]

    can the forecasts completely cover the evolution of earthquake-generated tsunami waves: generationDevelopment, testing, and applications of site-specific tsunami inundation models for real and applications of site-specific tsunami inundation models (forecast models) for use in NOAA's tsunami forecast

  7. 2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA

    E-Print Network [OSTI]

    Perez, Richard R.

    2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA J models 1 INTRODUCTION Solar radiation and PV production forecasts are becoming increasingly important/) three teams of experts are benchmarking their solar radiation forecast against ground truth data

  8. Robust Pareto Optimum Routing of Ships Deterministic and Ensemble Weather Forecasts

    E-Print Network [OSTI]

    Berlin,Technische Universitt

    Robust Pareto Optimum Routing of Ships utilizing Deterministic and Ensemble Weather Forecasts the SEAROUTES project, who provided me with exquisite weather forecasts, and who inspired me to apply ensemble ship operation. The more reliable weather forecasts and performance simulation of ships in a seaway

  9. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

    2013-10-01T23:59:59.000Z

    One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

  10. Study of Air Infiltration Energy Consumption

    E-Print Network [OSTI]

    Liu, Mingsheng

    SYSTEMATIC ERROR DUE TO THE STEADY-STATE COMBINED MODELS 127 SIMULATION AND NUMERICAL RESULTS 141 APPLICATION 150 SUMMARy 157 METHODOLOGy 158 DIFFERENTIAL EQUATION 159 DISCRETIZATION OF THE DIFFERENTIAL EQUATION 161 EXTERNAL NODE EQUATIONS 164... temperature. Clearly, the room heater does not need to heat the air from the outside temperature to the room temperature because it has already captured part of the conduction heat flowing through the wall. To properly estimate house energy consumption...

  11. Forecasting potential project risks through leading indicators to project outcome

    E-Print Network [OSTI]

    Choi, Ji Won

    2007-09-17T23:59:59.000Z

    , the Construction Industry Institute (CII) formed a research team to develop a new tool that can forecast the potential risk of not meeting specific project outcomes based on assessing leading indicators. Thus, the leading indicators were identified and then the new...

  12. Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets Qun Zhou--In current restructured wholesale power markets, the short length of time series for prices makes are fitted between D&O and wholesale power prices in order to obtain price scenarios for a specified time

  13. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28T23:59:59.000Z

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  14. Classification of Commodity Price Forecast With Random Forests and Bayesian

    E-Print Network [OSTI]

    de Freitas, Nando

    economy. Commodity prices are key economical20 drivers in the market. Raw products such as oil, gold 15 1 Introduction16 17 1.1 Forecasting the commodities market18 The commodities market focuses of prices in both the short and long-term view25 point to help market participants gage a greater

  15. Optimal Storage Policies with Wind Forecast Uncertainties [Extended Abstract

    E-Print Network [OSTI]

    Dalang, Robert C.

    Optimal Storage Policies with Wind Forecast Uncertainties [Extended Abstract] Nicolas Gast EPFL, IC generation. The use of energy storage compensates to some extent these negative effects; it plays a buffer role between demand and production. We revisit a model of real storage proposed by Bejan et al.[1]. We

  16. 1994 battery shipment review and five-year forecast report

    SciTech Connect (OSTI)

    Fetherolf, D. [East Penn Manufacturing Co., Lyon Station, PA (United States)

    1995-12-31T23:59:59.000Z

    This paper presents a 1994 battery shipment review and five year forecast report. Data is presented on replacement battery shipments, battery shipments, car and truck production, truck sales, original equipment, shipments for passenger cars and light commercial vehicles, and ten year battery service life trend.

  17. The Galactic Center Weather Forecast M. Moscibrodzka1

    E-Print Network [OSTI]

    Gammie, Charles F.

    The Galactic Center Weather Forecast M. Moscibrodzka1 , H. Shiokawa2 , C. F. Gammie2,3 , J*. The > 3M cloud will #12; 2 interact strongly with gas near nominal pericenter at rp 300AU 8000GM/c2 transient phase while the flow circularizes-- accompanied by transient emission--it is natural to think

  18. GenForecast(26yr)(avg).PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLCAIP Historical & Forecast Generation at Plant Total Range of Hydrology 0 2,000,000,000 4,000,000,000 6,000,000,000 8,000,000,000 10,000,000,000 12,000,000,000 1 9 7 0 1 9 7 2 1...

  19. WIND POWER ENSEMBLE FORECASTING Henrik Aalborg Nielsen1

    E-Print Network [OSTI]

    WIND POWER ENSEMBLE FORECASTING Henrik Aalborg Nielsen1 , Henrik Madsen1 , Torben Skov Nielsen1. In this paper we address the problems of (i) transforming the mete- orological ensembles to wind power ensembles the uncertainty which follow from historical (climatological) data. However, quite often the actual wind power

  20. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01T23:59:59.000Z

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  1. URBAN OZONE CONCENTRATION FORECASTING WITH ARTIFICIAL NEURAL NETWORK IN CORSICA

    E-Print Network [OSTI]

    Boyer, Edmond

    Perceptron; Ozone concentration. 1. Introduction Tropospheric ozone is a major air pollution problem, both, Ajaccio, France, e-mail: balu@univ-corse.fr Abstract: Atmospheric pollutants concentration forecasting is an important issue in air quality monitoring. Qualitair Corse, the organization responsible for monitoring air

  2. Navy Mobility Fuels Forecasting System. Phase I report

    SciTech Connect (OSTI)

    Davis, R.M.; Hadder, G.R.; Singh, S.P.N.; Whittle, C.

    1985-07-01T23:59:59.000Z

    The Department of the Navy (DON) requires an improved capability to forecast mobility fuel availability and quality. The changing patterns in fuel availability and quality are important in planning the Navy's Mobility Fuels R and D Program. These changes come about primarily because of the decline in the quality of crude oil entering world markets as well as the shifts in refinery capabilities domestically and worldwide. The DON requested ORNL's assistance in assembling and testing a methodology for forecasting mobility fuel trends. ORNL reviewed and analyzed domestic and world oil reserve estimates, production and price trends, and recent refinery trends. Three publicly available models developed by the Department of Energy were selected as the basis of the Navy Mobility Fuels Forecasting System. The system was used to analyze the availability and quality of jet fuel (JP-5) that could be produced on the West Coast of the United States under an illustrative business-as-usual and a world oil disruption scenario in 1990. Various strategies were investigated for replacing the lost JP-5 production. This exercise, which was strictly a test case for the forecasting system, suggested that full recovery of lost fuel production could be achieved by relaxing the smoke point specifications or by increasing the refiners' gate price for the jet fuel. A more complete analysis of military mobility fuel trends is currently under way.

  3. Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    the chance of winds high enough to pose dangers for boats or aircraft. In situations calling for a cost/loss analysis, the probabilities of different outcomes need to be known. For wind speed, this issue often arisesProbabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging J. Mc

  4. Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems

    E-Print Network [OSTI]

    Shenoy, Prashant

    Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems Navin Sharma,gummeson,irwin,shenoy}@cs.umass.edu Abstract--To sustain perpetual operation, systems that harvest environmental energy must carefully regulate their usage to satisfy their demand. Regulating energy usage is challenging if a system's demands

  5. Leveraging Weather Forecasts in Renewable Energy Navin Sharmaa,

    E-Print Network [OSTI]

    Shenoy, Prashant

    Leveraging Weather Forecasts in Renewable Energy Systems Navin Sharmaa, , Jeremy Gummesonb , David, Binghamton, NY 13902 Abstract Systems that harvest environmental energy must carefully regulate their us- age to satisfy their demand. Regulating energy usage is challenging if a system's demands are not elastic, since

  6. Risk Forecasting with GARCH, Skewed t Distributions, and Multiple Timescales

    E-Print Network [OSTI]

    Risk Forecasting with GARCH, Skewed t Distributions, and Multiple Timescales Alec N. Kercheval describe how the histori- cal data can first be GARCH filtered and then used to calibrate parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Data and Stylized Facts . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 GARCH Filter

  7. Forecasting Hospital Bed Availability Using Simulation and Neural Networks

    E-Print Network [OSTI]

    Kuhl, Michael E.

    Forecasting Hospital Bed Availability Using Simulation and Neural Networks Matthew J. Daniels, NY 14623 Elisabeth Hager Hager Consulting Pittsford, NY 14534 Abstract The availability of beds is a critical factor for decision-making in hospitals. Bed availability (or alternatively the bed occupancy

  8. Short-Term Solar Energy Forecasting Using Wireless Sensor Networks

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Stefan Achleitner, Tao Liu an advantage for output power prediction. Solar Energy Prediction System Our prediction model is based variability of more then 100 kW per minute. For practical usage of solar energy, predicting times of high

  9. SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg.girodo@uni-oldenburg.de ABSTRACT Solar energy is expected to contribute major shares of the future global energy supply. Due to its and solar energy conversion processes has to account for this behaviour in respective operating strategies

  10. Development and Deployment of an Advanced Wind Forecasting Technique

    E-Print Network [OSTI]

    Kemner, Ken

    findings. Part 2 addresses how operators of wind power plants and power systems can incorporate advanced the output of advanced wind energy forecasts into decision support models for wind power plant and power and applications of power market simulation models around the world. Argonne's software tools are used extensively

  11. Integrating agricultural pest biocontrol into forecasts of energy biomass production

    E-Print Network [OSTI]

    Gratton, Claudio

    Analysis Integrating agricultural pest biocontrol into forecasts of energy biomass production T), University of Lome, 114 Rue Agbalepedogan, BP: 20679, Lome, Togo e Center for Agricultural & Energy Policy model of potential biomass supply that incorporates the effect of biological control on crop choice

  12. Radiation fog forecasting using a 1-dimensional model

    E-Print Network [OSTI]

    Peyraud, Lionel

    2001-01-01T23:59:59.000Z

    The importance of fog forecasting to the aviation community, to road transportation and to the public at large is irrefutable. The deadliest aviation accident in history was in fact partly a result of fog back on 27 March 1977. This has, along...

  13. Classification and forecasting of load curves Nolwen Huet

    E-Print Network [OSTI]

    Cuesta, Juan Antonio

    Classification and forecasting of load curves Nolwen Huet Abstract The load curve, which gives of electricity customer uses. This load curve is only available for customers with automated meter reading. For the others, EDF must estimate this curve. Usually a clustering of the load curves is performed, followed

  14. What constrains spread growth in forecasts ini2alized from

    E-Print Network [OSTI]

    Hamill, Tom

    1 What constrains spread growth in forecasts ini2alized from ensemble Kalman filters? Tom from manner in which ini2al condi2ons are generated, some due to the model (e.g., stochas2c physics as error; part of spread growth from manner in which ini2al condi2ons are generated, some due

  15. CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE -APRIL 2014

    E-Print Network [OSTI]

    de Lijser, Peter

    CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE - APRIL 2014 Anil Puri, Ph.D. -- Director-year increase in the debt ceiling -- both of which proceeded without the usual drama. Second, the private sector, corporate coffers are flush with cash, and low US energy prices have dramatically improved the global

  16. Exploiting weather forecasts for sizing photovoltaic energy bids

    E-Print Network [OSTI]

    Giannitrapani, Antonello

    1 Exploiting weather forecasts for sizing photovoltaic energy bids Antonio Giannitrapani, Simone for a photovoltaic (PV) power producer taking part into a competitive electricity market characterized by financial set from an Italian PV plant. Index Terms--Energy market, bidding strategy, photovoltaic power

  17. Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    1 Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids Yogesh Simmhan, prasanna}@usc.edu I. INTRODUCTION Smart Power Grids exemplify an emerging class of Cyber Physical-on paradigm to support operational needs. Smart Grids are an outcome of instrumentation, such as Phasor

  18. TRANSPORTATION ENERGY FORECASTS AND ANALYSES FOR THE 2009

    E-Print Network [OSTI]

    Page Manager FOSSIL FUELS OFFICE Mike Smith Deputy Director FUELS AND TRANSPORTATION DIVISION Melissa, Weights and Measurements/Gary Castro, Allan Morrison, John Mough, Ed Williams Clean Energy FuelsCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS AND ANALYSES FOR THE 2009 INTEGRATED

  19. Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts

    E-Print Network [OSTI]

    Giannitrapani, Antonello

    bid is computed by exploiting the forecast energy price for the day ahead market, the historical wind renewable energy resources, such as wind and photovoltaic, has grown rapidly. It is well known the problem of optimizing energy bids for an independent Wind Power Producer (WPP) taking part

  20. Detecting and Forecasting Economic Regimes in Automated Exchanges

    E-Print Network [OSTI]

    Ketter, Wolfgang

    Detecting and Forecasting Economic Regimes in Automated Exchanges Wolfgang Ketter , John Collins. of Mgmt., Erasmus University Dept. of Computer Science and Engineering, University of Minnesota Dept,gini,schrater}@cs.umn.edu, agupta@csom.umn.edu Abstract We present basic building blocks of an agent that can use observable market

  1. Detecting and Forecasting Economic Regimes in Automated Exchanges

    E-Print Network [OSTI]

    Ketter, Wolfgang

    Detecting and Forecasting Economic Regimes in Automated Exchanges Wolfgang Ketter # , John Collins, Rotterdam Sch. of Mgmt., Erasmus University + Dept. of Computer Science and Engineering, University wketter@rsm.nl, {jcollins,gini,schrater}@cs.umn.edu, agupta@csom.umn.edu Abstract We present basic

  2. THE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD

    E-Print Network [OSTI]

    energy-using devices in the average U.S. household that used over 4,700 kWh of electricity, natural gas-using devices to energy price, household income, and the cost of these devices. This analysis findsTHE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD ENERGY SERVICES by Steven Groves BASc

  3. Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging

    E-Print Network [OSTI]

    Washington at Seattle, University of

    February 24, 2006 1J. McLean Sloughter is Graduate Research Assistant, Adrian E. Raftery is BlumsteinProbabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging J. McLean Sloughter, Adrian E. Raftery and Tilmann Gneiting 1 Department of Statistics, University of Washington

  4. Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    : J. McLean Sloughter, Department of Mathematics, Seattle University, 901 12th Ave., P.O. Box 222000Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging J. MCLEAN SLOUGHTER Seattle University, Seattle, Washington TILMANN GNEITING Heidelberg University, Heidelberg

  5. air pollution forecast: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air pollution forecast First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ENVIRONMENTAL INFORMATION SYSTEM...

  6. Water heater control module

    DOE Patents [OSTI]

    Hammerstrom, Donald J

    2013-11-26T23:59:59.000Z

    An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

  7. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

    1999-01-01T23:59:59.000Z

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  8. Fact #839: September 22, 2014 World Petroleum Consumption Continues...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    since 2007, this is offset by increasing consumption from the rest of the world. China has seen a rapid increase in petroleum consumption over the last decade while India...

  9. Evaluating Texas State University Energy Consumption According to Productivity

    E-Print Network [OSTI]

    Carnes, D.; Hunn, B. D.; Jones, J. W.

    1998-01-01T23:59:59.000Z

    The Energy Utilization Index, energy consumption per square foot of floor area, is the most commonly used index of building energy consumption. However, a building or facility exists solely to support the activities of its occupants. Floor area...

  10. The individual contribution of automotive components to vehicle fuel consumption

    E-Print Network [OSTI]

    Napier, Parhys L

    2011-01-01T23:59:59.000Z

    Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles ...

  11. Characterizing System Level Energy Consumption in Mobile Computing Platforms

    E-Print Network [OSTI]

    Obraczka, Katia

    1 Characterizing System Level Energy Consumption in Mobile Computing Platforms Cintia B. Margi 1156 High Street Santa Cruz, CA 95064 Abstract--- This paper approaches energy consumption charac terization in mobile computing platforms by assessing energy con sumption of ''basic'' application

  12. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    real-world thermostat settings and heat energy consumptionto real-world behaviours. The actual energy consumption goesworld data indicates that the houses heated during the night had higher annual heat energy consumption.

  13. The Analysis and Assessment on Heating Energy Consumption of SAT

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

  14. Home, Habits, and Energy: Examining Domestic Interactions and Energy Consumption

    E-Print Network [OSTI]

    Paulos, Eric

    , habitual, and irrational. Implications for the design of energy-conserving interactions with technology investigate the relationships among "normal" domestic interactions with technology, energy consumptionHome, Habits, and Energy: Examining Domestic Interactions and Energy Consumption James Pierce1

  15. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    USA MODELLING THE IMPACT OF USER BEHAVIOUR ON HEAT ENERGY CONSUMPTIONUSA The second point of interest to research was modelling the excess energy consumptionUSA Figure 3. Actual heating and hot water energy consumption

  16. The Analysis and Assessment on Heating Energy Consumption of SAT

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

  17. Approved Module Information for PD1803, 2014/5 Module Title/Name: Engineering Principles Module Code: PD1803

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: PD1803 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module.i.smith@aston.ac.uk Telephone Number 3610 Office MB156C Additional Module Tutor(s): Michael David Peters. David Barry. LevelApproved Module Information for PD1803, 2014/5 Module Title/Name: Engineering Principles Module

  18. Approved Module Information for CH2107, 2014/5 Module Title/Name: Physical Chemistry II Module Code: CH2107

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : CH2107 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module. ----- [Part 2: Physical Chemistry Laboratory]; Building on material from a number of modules in the 1st and 2Approved Module Information for CH2107, 2014/5 Module Title/Name: Physical Chemistry II Module Code

  19. Approved Module Information for EM4003, 2014/5 Module Title/Name: Project Management Module Code: EM4003

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : EM4003 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module. Links to Research: The module will link to the work of the Project and Supply Chain Management ResearchApproved Module Information for EM4003, 2014/5 Module Title/Name: Project Management Module Code

  20. Approved Module Information for LT1312, 2014/5 Module Title/Name: Literature Review Project Module Code: LT1312

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: LT1312 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Rationale: Lectures/tutorials Guided reading according to issue chosen Module Assessment MethodsApproved Module Information for LT1312, 2014/5 Module Title/Name: Literature Review Project Module

  1. Approved Module Information for ME1601, 2014/5 Module Title/Name: Engineering Science Module Code: ME1601

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for ME1601, 2014/5 Module Title/Name: Engineering Science Module Code: ME1601 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module@aston.ac.uk Telephone Number Not Specified Office Not Specified Additional Module Tutor(s): David Smith. Abul Hossain

  2. Approved Module Information for PD2003, 2014/5 Module Title/Name: Engineering Principles 2 Module Code: PD2003

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for PD2003, 2014/5 Module Title/Name: Engineering Principles 2 Module Code: PD2003 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module.i.smith@aston.ac.uk Telephone Number 3610 Office MB156C Additional Module Tutor(s): Michael David Peters. David Barry. Level

  3. Approved Module Information for CS4840, 2014/5 Module Title/Name: Software Architecture Module Code: CS4840

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : CS4840 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module, directed reading, formative assignments, practical project-based work Module Assessment MethodsApproved Module Information for CS4840, 2014/5 Module Title/Name: Software Architecture Module Code

  4. Approved Module Information for ME3011, 2014/5 Module Title/Name: Thermodynamics and Fluids Module Code: ME3011

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: ME3011 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Modules/ Exempt from Anonymous Marking Details Assessment Weight EXAM TOTAL Closed Book 2:00hrs - 80Approved Module Information for ME3011, 2014/5 Module Title/Name: Thermodynamics and Fluids Module

  5. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

    2011-11-29T23:59:59.000Z

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

  6. Federal Energy Consumption and Progress Made toward Requirements

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) tracks Federal agency energy consumption and progress toward achieving energy laws and requirements.

  7. Short and Long-Term Perspectives: The Impact on Low-Income Consumers of Forecasted Energy Price Increases in 2008 and A Cap & Trade Carbon Policy in 2030

    SciTech Connect (OSTI)

    Eisenberg, Joel Fred [ORNL

    2008-01-01T23:59:59.000Z

    The Department of Energy's Energy Information Administration (EIA) recently released its short-term forecast for residential energy prices for the winter of 2007-2008. The forecast indicates increases in costs for low-income consumers in the year ahead, particularly for those using fuel oil to heat their homes. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation's low-income households by primary heating fuel type, nationally and by Census Region. The report provides an update of bill estimates provided in a previous study, "The Impact Of Forecasted Energy Price Increases On Low-Income Consumers" (Eisenberg, 2005). The statistics are intended for use by policymakers in the Department of Energy's Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2008 fiscal year. In addition to providing expenditure forecasts for the year immediately ahead, this analysis uses a similar methodology to give policy makers some insight into one of the major policy debates that will impact low-income energy expenditures well into the middle decades of this century and beyond. There is now considerable discussion of employing a cap-and-trade mechanism to first limit and then reduce U.S. emissions of carbon into the atmosphere in order to combat the long-range threat of human-induced climate change. The Energy Information Administration has provided an analysis of projected energy prices in the years 2020 and 2030 for one such cap-and-trade carbon reduction proposal that, when integrated with the RECS 2001 database, provides estimates of how low-income households will be impacted over the long term by such a carbon reduction policy.

  8. Power Consumption Prediction and Power-Aware Packing in Consolidated

    E-Print Network [OSTI]

    Urgaonkar, Bhuvan

    prediction and enforcement of appropriate limits on power consumption--power budgets--within the data center-term energy consumption within that level and 2) a sustained budget to capture any restrictions on sustained as the well-being of our environ- ment. Trends from such platforms suggest that the power consumption in data

  9. Getting to Green: Understanding Resource Consumption in the Home

    E-Print Network [OSTI]

    Grinter, Rebecca Elizabeth

    of collecting data on being green. Author Keywords Sustainability, residential resource consumption, domestic energy [19], increasing awareness of resource consumption in the workplace [20] and building homes manage their energy consumption. Next, we outline our methods and findings from a qualitative study of 15

  10. Automated Analysis of Performance and Energy Consumption for Cloud Applications

    E-Print Network [OSTI]

    Schneider, Jean-Guy

    load tests and profile system performance and energy consumption data. Using StressCloud, we have, increasing data storage and computation needs significantly raise the energy consumption of large cloud consumption directly contributes to data centres' operational costs, especially as the energy unit cost

  11. Experimental Measurements of the Power Consumption for Wireless Sensor Networks

    E-Print Network [OSTI]

    Alonso, Javier

    consumption. Therefore, in order to give some recommendations to de- velopers and optimize the energy spent of the energy consumption should be performed for the most common operations in a sensor node. This knowledge common operations: (i) CPU change state and (ii) data transfer radio. CPU change state. The consumption

  12. Minimizing Energy Consumption in Body Sensor Networks via Convex Optimization

    E-Print Network [OSTI]

    Poovendran, Radha

    energy consumption while limiting the latency in data transfer. In this paper, we focus on pollingMinimizing Energy Consumption in Body Sensor Networks via Convex Optimization Sidharth Nabar energy consumption and latency. We show that this problem can be posed as a geometric program, which

  13. 2008 Erik Hinterbichler DESIGNING A BETTER ENERGY CONSUMPTION INDICATOR

    E-Print Network [OSTI]

    Karahalios, Karrie G.

    in which HCI can contribute to energy conservation is in interfaces for residential energy consumption on the effects of energy consumption feedback in the home. From this analysis, we created a theoretical framework© 2008 Erik Hinterbichler #12;DESIGNING A BETTER ENERGY CONSUMPTION INDICATOR INTERFACE

  14. FISHERY PRODUCTS SITUATION Consumption of fishery products is ex-

    E-Print Network [OSTI]

    . Per -capita sales likely will be near 11.2 pounds--down from 11.4 pounds in 1970. Consumption had beenFISHERY PRODUCTS SITUATION Consumption of fishery products is ex- pected to be off a little in 1971 to attract more imports in 1971 . Since U.S. fish consumption is about 550/0-de- pendent on imports

  15. Per Capita Annual Utilization and Consumption of Fish and Shellfish

    E-Print Network [OSTI]

    Per Capita Annual Utilization and Consumption of Fish and Shellfish in Hawaii, 1970-77 Table I was 5.82 kg (12.8 pounds). It has been speculated that the per capita consumption of fishery prod- ucts is that the per capita consumption rate in Hawaii for 1977 was about 77 percent higher than the U.S. average

  16. Effects of household dynamics on resource consumption and

    E-Print Network [OSTI]

    Ehrlich, Paul R.

    influence per capita consumption7,8 and thus biodiversity through, for example, consumption of wood for fuel, and resultant higher per capita resource con- sumption in smaller households1519 pose serious challenges on resource consumption and biodiversity Jianguo Liu*, Gretchen C. Daily, Paul R. Ehrlich & Gary W. Luck

  17. A Realistic Power Consumption Model for Wireless Sensor Network Devices

    E-Print Network [OSTI]

    Hempstead, Mark

    . Recent analyses of WSN energy efficiency have been widely based on a sensor node power consumption model1 A Realistic Power Consumption Model for Wireless Sensor Network Devices Qin Wang, Mark Hempstead}@eecs.harvard.edu Abstract-- A realistic power consumption model of wireless communication subsystems typically used in many

  18. Profiling, Prediction, and Capping of Power Consumption in Consolidated Environments

    E-Print Network [OSTI]

    Urgaonkar, Bhuvan

    an upper bound on long-term energy consumption within that level and (ii) a sustained budget to capture any-being of our environment. Trends from such platforms suggest that the power consumption in high-performance comProfiling, Prediction, and Capping of Power Consumption in Consolidated Environments Jeonghwan Choi

  19. Wildland fire emissions, carbon, and climate: Modeling fuel consumption

    E-Print Network [OSTI]

    rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called evaluated with an independent, quality assured, fuel consumption data set. Furthermore, anecdotal evidenceWildland fire emissions, carbon, and climate: Modeling fuel consumption Roger D. Ottmar U

  20. On the Energy Consumption and Performance of Systems Software

    E-Print Network [OSTI]

    Stoller, Scott

    On the Energy Consumption and Performance of Systems Software Zhichao Li, Radu Grosu, Priya Sehgal {zhicli,grosu,psehgal,sas,stoller,ezk}@cs.stonybrook.edu ABSTRACT Models of energy consumption that can balance out performance and energy use. This paper considers the energy consumption