Powered by Deep Web Technologies
Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

PSCAD Modules Representing PV Generator  

SciTech Connect (OSTI)

Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

Muljadi, E.; Singh, M.; Gevorgian, V.

2013-08-01T23:59:59.000Z

2

Enduring Stockpile CMM Shell Inspection Plan (U)  

SciTech Connect (OSTI)

The slides are intended to serve as a high level summary of the CMM Shell Inspection Plan as presented to Pu Sustainment Legacy Pit Production IPT.

Montano, Joshua D. [Los Alamos National Laboratory; Flores, Randy A. [Los Alamos National Laboratory

2012-06-13T23:59:59.000Z

3

Update on CMM/CBM development activity in Ukraine  

SciTech Connect (OSTI)

Current coal mine methane (CMM) and coalbed methane (CBM) development efforts in Ukraine are reviewed. These include the Donetsk CMM/CBM project and the Ukraine Methane Group CMM project (15 MW power production). 4 figs.

NONE

2007-01-15T23:59:59.000Z

4

DOE Order Self Study Modules - DOE STD 1063, Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

63-2011 63-2011 FACILITY REPRESENTATIVES DOE-STD-1063-2011 Familiar Level August 2011 1 DOE-STD-1063-2011 FACILITY REPRESENTATIVES FAMILIAR LEVEL OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to answer the following questions: 1. What are the purpose and scope of DOE-STD-1063-2011? 2. What are the definitions of the terms listed in section 3 of DOE-STD-1063-2011? 3. What are the duties, responsibilities, and authorities of facility representatives (FRs) and other key personnel? 4. What are the requirements of the FR program? 5. What are the Department of Energy (DOE)-wide FR performance indicators (PIs)? 6. How are DOE-wide FR PIs calculated? 7. What are the FR program objectives that should be measured by an FR program

5

SEM Supports CMM-SW Level 3 | Department of Energy  

Office of Environmental Management (EM)

CMM-SW Key Process Areas (KPAs) and a crosswalk to the SEM chapters, work products, and web site location where these KPAs are addressed SEM Supports CMM-SW Level 3 More Documents...

6

Characterization of Fiber Optic CMM Probe System  

SciTech Connect (OSTI)

This report documents a study completed on the fiber optic probe system that is a part of the Werth optical CMM. This study was necessary due to a lack of documentation from the vendor for the proper use and calibration of the fiber probe, and was performed in support of the Lithographie Galvanoformung Abformung (LIGA) development program at the FM&T. As a result of this study, a better understanding of the fiber optic probe has been developed, including guidelines for its proper use and calibration.

K.W.Swallow

2007-05-15T23:59:59.000Z

7

Order Module--DOE-STD-1063-2011, FACILITY REPRESENTATIVES | Department of  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1063-2011, FACILITY REPRESENTATIVES DOE-STD-1063-2011, FACILITY REPRESENTATIVES Order Module--DOE-STD-1063-2011, FACILITY REPRESENTATIVES The familiar level of this module is divided into three sections. The first section addresses the purpose and scope of DOE-STD-1063-2011, the purpose of the FR program, and the duties, responsibilities, and authorities of FRs and other key personnel. In the second section, the requirements of the FR program are discussed. The third section covers the three appendices of this standard: FR performance indicators, an FR program assessment guide, and the process to determine FR staffing. We have provided examples and a practice to help familiarize you with the material. The practice will also help prepare you for the criterion test. DOE Order Self Study Modules - DOE STD 1063, Facility Representatives

8

The National Energy Modeling System: An Overview 2000 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply regions (Figures 19 and 20). coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply regions (Figures 19 and 20). Figure 19. Coal Market Module Demand Regions Figure 20. Coal Market Module Supply Regions

9

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

10

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

11

TEHNOMUS -New Technologies and Products in Machine Manufacturing Technologies (1) CMM : coordinate measuring machine  

E-Print Network [OSTI]

TEHNOMUS - New Technologies and Products in Machine Manufacturing Technologies (1) CMM : coordinate measuring machine - 1 - COMPARISON OF A MACHINE OF MEASUREMENT WITHOUT CONTACT AND A CMM(1) : OPTIMIZATION products, the process of measurement usually proceeds on a type of machine (for example CMM

Paris-Sud XI, Université de

12

Moving from ISO9000 to the Higher Levels of the Capability Maturity Model (CMM)  

E-Print Network [OSTI]

in the world that are ISO9001 certified. Many of these are now considering adopting the SEI's Capability]. In this transition from ISO9001 to CMM, processes have to be enhanced to suit the CMM (while preserving ISO9001 issue of an ISO organization transitioning to higher levels of CMM. ISO 9001 is a standard that has 20

Jalote, Pankaj

13

The National Energy Modeling System: An Overview 1998 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

COAL MARKET MODULE COAL MARKET MODULE blueball.gif (205 bytes) Coal Production Submodule blueball.gif (205 bytes) Coal Distribution Submodule blueball.gif (205 bytes) Coal Export Component The coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end-use demand. Coal supplies are differentiated by heat and sulfur content. The CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal export demands as a part of the world coal market. Coal supply is projected on a cost-minimizing basis, constrained by existing contracts. Twelve different coal types are differentiated with respect to thermal grade, sulfur content, and underground or surface mining. The domestic production and distribution of coal is forecast for 13 demand regions and 11 supply

14

AGILE METHODOLOGY IN CMM FRAMEWORK: AN APPROACH TO SUCCESS FOR SOFTWARE COMPANIES IN CHINA  

E-Print Network [OSTI]

software companies adopt agile development methodologies (ADM) while following the CMM standard. Using e suggest that Chinese software companies adopt the agile development methodology (ADM) for software development in conjunction with the CMM framework. Agile software development was proposed in the late 1990s

Lin, Zhangxi

15

Assumptions to the Annual Energy Outlook 2001 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2001, DOE/EIA-M060(2001) January 2001. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves

16

Assumptions to the Annual Energy Outlook 2002 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2002, DOE/EIA-M060(2002) (Washington, DC, January 2002). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves

17

TA-55 Hot CMM Calibration Tolerance Analysis (U)  

SciTech Connect (OSTI)

The Hot Coordinate Measuring Machine (CMM), a Brown and Sharpe Xcel 765, has specifications listed by the manufacture of 4.5 + L/250 {micro}m for volumetric performance, 3.5 {micro}m for probing and 4.5 {micro}m for scanning. An upgrade was performed on the machine increasing its performance capability. This document reviews calibration data gathered after the upgrade over a five year period (2005-2010) and recommends a new specification of 3.0 + L/250 {micro}m for size, 3.3 {micro}m for probing, and 4.3 {micro}m for scanning. The new equations are an approximate 30% increase in accuracy for size and approximately 5% increase for probing and scanning.

Montano, Joshua D. [Los Alamos National Laboratory

2012-06-12T23:59:59.000Z

18

Assumptions to the Annual Energy Outlook 2000 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2000, DOE/EIA-M060(2000) January 2000. The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2000, DOE/EIA-M060(2000) January 2000. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of coal production, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

19

Assumptions to the Annual Energy Outlook 1999 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

coal.gif (4423 bytes) coal.gif (4423 bytes) The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Model Documentation: Coal Market Module of the National Energy Modeling System, DOE/EIA-MO60. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of coal production, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

20

Model documentation Coal Market Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents objectives and conceptual and methodological approach used in the development of the National Energy Modeling System (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1996 (AEO96). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s three submodules: Coal Production Submodule, Coal Export Submodule, and Coal Distribution Submodule.

NONE

1996-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DES13S2cmm: The First Superluminous Supernova from the Dark Energy Survey  

E-Print Network [OSTI]

We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline the spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 +/- 0.001 based on the host-galaxy emission lines) and likely spectral type (type I). Using this redshift, we find M_U_peak = -21.05 +0.10 -0.09 for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low metallicity (sub-solar), low stellar-mass host galaxy (log(M/M_sun) = 9.3 +/- 0.3); consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to fourteen similarly well-observed SLSNe-I in the literature and find it possesses one of the slowest declining tails (beyond +30 days rest frame past peak), and is the faintest at peak. Moreover, we find the b...

Papadopoulos, A; Sullivan, M; Nichol, R C; Barbary, K; Biswas, R; Brown, P J; Covarrubias, R A; Finley, D A; Fischer, J A; Foley, R F; Goldstein, D; Gupta, R R; Kessler, R; Kovacs, E; Kuhlmann, S E; Lidman, C; March, M; Nugent, P E; Sako, M; Smith, R C; Spinka, H; Wester, W; Abbott, T M C; Abdalla, F; Allam, S S; Banerji, M; Bernstein, J P; Bernstein, R A; Carnero, A; da Costa, L N; DePoy, D L; Desai, S; Diehl, H T; Eifler, T; Evrard, A E; Flaugher, B; Frieman, J A; Gerdes, D; Gruen, D; Honscheid, K; James, D; Kuehn, K; Kuropatkin, N; Lahav, O; Maia, M A G; Makler, M; Marshall, J L; Merritt, K W; Miller, C J; Miquel, R; Ogando, R; Plazas, A A; Roe, N A; Romer, A K; Rykoff, E; Sanchez, E; Santiago, B X; Scarpine, V; Schubnell, M; Sevilla, I; Santos, M Soares-; Suchyta, E; Swanson, M; Tarle, G; Thaler, J; Tucker, D L; Wechsler, R H; Zuntz, J

2015-01-01T23:59:59.000Z

22

Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumption to the Annual Energy Outlook Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2004, DOE/EIA-M060(2004) (Washington, DC, 2004). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of capacity utilization of mines, mining capacity, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

23

EIA-Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2007 Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2007, DOE/EIA-M060(2007) (Washington, DC, 2007). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

24

EIA - Assumptions to the Annual Energy Outlook 2010 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2010 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2010, DOE/EIA-M060(2010) (Washington, DC, 2010). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, the cost of factor inputs (labor and fuel), and other mine supply costs.

25

EIA - Assumptions to the Annual Energy Outlook 2008 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2008 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2008, DOE/EIA-M060(2008) (Washington, DC, 2008). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

26

Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

063-2011 063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is approved for use by all DOE/National Nuclear Security Administration (NNSA) Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations,

27

Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1063-2006 April 2006 Superseding DOE-STD-1063-2000 March 2000 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2006 ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-STD-1063-2006 iii FOREWORD 1. This Department of Energy standard is approved for use by all DOE Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should

28

Department Safety Representatives Department Safety Representative  

E-Print Network [OSTI]

Department Safety Representatives Overview Department Safety Representative Program/Operations Guidance Document The Department Safety Representative (DSR) serves a very important role with implementation of safety, health, and environmental programs on campus. The role of the DSR is to assist

Pawlowski, Wojtek

29

Facility Representative Program: Qualification Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training & Qualification Information Training & Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available Link to National Training Center Basic Courses for Facility Representative Qualification Recommended Courses to Expand Facility Representative's Knowledge Base Qualification Standards General Technical Base Qualification Standard, Qualification Card & Reference Guide -- GTB Qualification Standard (DOE-STD-1146-2007), December 2007 [PDF] -- GTB Qualification Card, December 2007 [DOC] -- GTB "Gap" Qualification Card, December 2007 [DOC] -- GTB Qualification Standard Reference Guide, May 2008 [PDF] Facility Representative Qualification Standard, Qualification Card & Reference Guide

30

Facility Representative Program: 2000 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Facility Representative Workshop 0 Facility Representative Workshop May 16-18, 2000 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Tuesday, May 16, 2000 Theme for Day 1: Sustaining the Success of the Facility Representative Program 8:00 a.m. - Opening Remarks - Joe Arango, Facility Representative Program Manager 8:05 a.m. - Welcome - Kenneth Powers, Deputy Manager Nevada Operations Office 8:15 a.m. - Deputy Secretary Remarks - T. J. Glauthier, Deputy Secretary of Energy 8:30 a.m. - Keynote Address - Jerry Lyle, Assistant Manager for Environmental Management, Idaho Operations Office 9:00 a.m. - Facility Representative of the Year Presentation - Mark B. Whitaker, Departmental Representative 9:30 a.m. - Break 9:50 a.m. - Program Results and Goals - Joe Arango, Facility Representative Program Manager

31

Facility Representative Program: Basic Courses For Facility Representative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training & Qualification Information Training & Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available Link to National Training Center Basic Courses for Facility Representative Qualification Recommended Courses to Expand Facility Representative's Knowledge Base Basic Courses For Facility Rep Qualification (These courses may be beneficial during the initial qualification of Facility Representatives.) Course Title FR FAQS CN Point of Contact Comments Applied Engineering Fundamentals 13 days * See below Mike Schoener 803-641-8166 E-mail Course description at http://ntc.doe.gov course catalog Asbestos Awareness 2 hours 2.1 Federal employees register through the CHRIS system For course details see

32

Facility Representative Program: 2010 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 Facility Representative Workshop 10 Facility Representative Workshop May 12 - 13, 2010 Las Vegas, NV Facility Rep of the Year Award | Attendees | Summary Report Workshop Agenda and Presentations Day 1: Wednesday, May 12, 2010 8:00 a.m. Opening Remarks James Heffner, Facility Representative Program Manager Earl Hughes, Safety System Oversight Program Manager Office of Nuclear Safety Policy and Assistance Office of Health, Safety and Security 8:15 a.m. Welcome from the Nevada Site Office John Mallin, Deputy Assistant Manager for Site Operations Nevada Site Office 8:30 a.m. Workshop Keynote Address Todd Lapointe Chief of Nuclear Safety Central Technical Authority Staff 9:15 a.m. Facility Representative and Safety System Oversight Award Ceremony James Heffner, Facility Representative Program Manager

33

Facility Representative Program: 2007 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Facility Representative Workshop 7 Facility Representative Workshop May 15 - 17, 2007 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 15, 2007 8:00 a.m. Opening Remarks Joanne Lorence, Facility Representative Program Manager 8:15 a.m. Welcome from the Nevada Site Office Gerald Talbot, Manager, Nevada Site Office 8:30 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:45 a.m. Keynote Address - Safety Oversight Perspective and Expectations Glenn Podonsky, Chief Health, Safety and Security Officer, Office of Health, Safety and Security 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board,

34

Facility Representative Program: 2003 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Facility Representative Workshop 3 Facility Representative Workshop May 13 - 15, 2003 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 13, 2003 Theme: Program Successes and Challenges 8:00 a.m. John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathleen Carlson Manager, Nevada Site Office 8:30 a.m. Keynote Address Savannah River Site and Facility Reps - A Shared History and Common Future Jeffrey M. Allison Manager, Savannah River Operations Office 9:00 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board

35

Facility Representative Program: 2001 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Facility Representative Workshop 1 Facility Representative Workshop May 15 - 17, 2001 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 15, 2001 Theme: Program Successes and Challenges 8:00 a.m. - Logistics Announcements & Opening Remarks - Joe Arango, Facility Representative Program Manager 8:15 a.m. - Welcome - Debbie Monette, Assistant Manager for National Security, Nevada Operations Office 8:30 a.m. - Keynote Address - Ralph Erickson, National Nuclear Security Administration 9:00 a.m.- DOE Facility Representative of the Year Presentation - Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board 9:30 a.m. - Break 9:50 a.m. - Program Summary - Joe Arango 10:10 a.m. - Management Panel/Questions and Answers

36

Facility Representative Program: Facility Representative Program Sponsors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative Program Sponsors Facility Representative Program Sponsors There are 29 Facility Representative Program Sponsors Office Name Title E-Mail Phone ASO Larry Pendexter ES&H Div Dir (Argonne) larry.pendexter@ch.doe.gov 630-252-1485 BHSO Bob Desmarais Operations Management Division Director desmarai@bnl.gov 631-344-5434 CBFO Glenn Gamlin Facility Representative Supervisor glenn.gamlin@wipp.ws 575-234-8136 CBFO Casey Gadbury Operations Manager casey.gadbury@wipp.ws 575-234-7372 FSO Mark Bollinger Deputy Manager Mark.Bollinger@ch.doe.gov 630-840-8130 FSO John Scott FR Team Lead john.scott@ch.doe.gov 630-840-2250 HS-30 James O'Brien Director, Office of Nuclear Safety James.O'Brien@hq.doe.gov 301-903-1408 HS-32 Earl Hughes Facility Representative Program Manager Earl.Hughes@hq.doe.gov 202-586-0065

37

Facility Representative Program: 2004 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Facility Representative Workshop 4 Facility Representative Workshop May 18 - 20, 2004 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 18, 2004 Theme: Program Successes and Challenges 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathy Carlson, Nevada Site Office Manager 8:30 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy Deputy Secretary's Remarks 8:40 a.m. Keynote Address - NNSA Evaluation of Columbia Accident Investigation Board Report Brigadier General Ronald J. Haeckel, Principal Assistant Deputy Administrator for Military Applications, NNSA Other Information: NASA’S Columbia Accident Investigation Board Report

38

Facility Representative Program: 2006 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Facility Representative Workshop 6 Facility Representative Workshop May 16 - 19, 2006 Knoxville, Tennessee Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final To view Pictures, scroll the mouse over the Picture icon To view Presentations, Picture Slideshows and Video, click on the icon Day 1: Tuesday, May 16, 2006 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome from Oak Ridge Office Gerald Boyd, Manager, Oak Ridge Office 8:25 a.m. Welcome from Y-12 Site Office Theodore Sherry, Manager, Y-12 Site Office 8:35 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:40 a.m. Keynote Address - Safety Oversight at Environmental Management Activities Dr. Inés Triay, Chief Operating Officer, Office of Environmental Management

39

Model documentation, Coal Market Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The international area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.

NONE

1998-01-01T23:59:59.000Z

40

Facility Representative Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative Facility Representative Office of Nuclear Safety Home Facility Representative Home Annual Facility Rep Workshop › 2012 › 2011 › 2010 › 2009 › 2008 › 2007 › 2006 › 2005 › 2004 › 2003 › 2002 › 2001 › 2000 DOE Safety Links › ORPS Info › Operating Experience › DOE Lessons Learned › Accident Investigation Assessment Tools › FR CRADs › Surveillance Guides › Manager's Guide for Safety and Health Subject Matter Links General Program Information › Program Mission Statement › Program Directives and Guidance › FR of the Year Award Program › FR of the Year Award › FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) FR Quarterly Performance Indicators Training & Qualification Information › Qualification Standards › Energy Online Courses

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Glossary Balancing Item: Represents  

Gasoline and Diesel Fuel Update (EIA)

Balancing Balancing Item: Represents differences between the sum of the components of natural gas supply and the sum of the components of natural gas disposition. These differences may be due to quantities lost or to the effects of data-report- ing problems. Reporting problems include differences due to the net result of conversions of flow data metered at varying temperature and pressure bases and converted to a standard temperature and pressure base; the effect of vari- ations in company accounting and billing practices; differ- ences between billing cycle and calendar period time frames; and imbalances resulting from the merger of data- reporting systems that vary in scope, format, definitions, and type of respondents. Biomass Gas: A medium Btu gas containing methane and carbon dioxide, resulting from the action of microorganisms on organic materials such as a landfill. British Thermal

42

On representing chemical environments  

Science Journals Connector (OSTI)

We review some recently published methods to represent atomic neighborhood environments, and analyze their relative merits in terms of their faithfulness and suitability for fitting potential energy surfaces. The crucial properties that such representations (sometimes called descriptors) must have are differentiability with respect to moving the atoms and invariance to the basic symmetries of physics: rotation, reflection, translation, and permutation of atoms of the same species. We demonstrate that certain widely used descriptors that initially look quite different are specific cases of a general approach, in which a finite set of basis functions with increasing angular wave numbers are used to expand the atomic neighborhood density function. Using the example system of small clusters, we quantitatively show that this expansion needs to be carried to higher and higher wave numbers as the number of neighbors increases in order to obtain a faithful representation, and that variants of the descriptors converge at very different rates. We also propose an altogether different approach, called Smooth Overlap of Atomic Positions, that sidesteps these difficulties by directly defining the similarity between any two neighborhood environments, and show that it is still closely connected to the invariant descriptors. We test the performance of the various representations by fitting models to the potential energy surface of small silicon clusters and the bulk crystal.

Albert P. Bartk; Risi Kondor; Gbor Csnyi

2013-05-28T23:59:59.000Z

43

Electricity Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Market Module Market Module This page inTenTionally lefT blank 101 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2013, DOE/EIA-M068(2013). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

44

Wave represents displacement Wave represents pressure Source -Sound Waves  

E-Print Network [OSTI]

Wave represents displacement Wave represents pressure Source - Sound Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency

Colorado at Boulder, University of

45

Facility Representative Program: Facility Representative of the Year  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative of the Year Award Facility Representative of the Year Award Annual Facility Representative Workshop Facility Representative of the Year Award Process Facility Representative of the Year Award 2012 WINNER: John C. Barnes, Savannah River Operations Office Letter from DNFSB Chairman Peter S. Winokur, Ph.D 2012 Nominees: Peter W. Kelley, Brookhaven Site Office James E. Garza, Idaho Operations Office (EM) William R. Watson, Idaho Operations Office (NE) Darlene S. Rodriguez, Los Alamos Field Office Robert R. Robb, Livermore Field Office Kenneth W. Wethington, Grand Junction Project Office's Moab site Thomas P. Denny, Nevada Field Office Michael J. Childers, NNSA Production Office Pantex Site Catherine T. Schidel, NNSA Production Office Y12 Site Chelsea D. Hubbard, Oak Ridge Operations Office (EM)

46

FAQS Reference Guide Facility Representative  

Broader source: Energy.gov [DOE]

This reference guide addresses the competency statements in the October 2010 edition of DOE-STD-1151-2010, Facility Representative Functional Area Qualification Standard.

47

PDSF Modules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modules Modules Modules Modules Approach to Managing The Environment Modules is a system which you can use to specify what software you want to use. If you want to use a particular software package loading its module will take care of the details of modifying your environment as necessary. The advantage of the modules approach is that the you are not required to explicitly specify paths for different executable versions and try to keep their related man paths and environment variables coordinated. Instead you simply "load" and "unload" specific modules to control your environment. Getting Started with Modules If you're using the standard startup files on PDSF then you're already setup for using modules. If the "module" command is not available, please

48

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 91 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2012, DOE/EIA-M068(2012). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

49

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 95 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2011, DOE/EIA-M068(2011). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

50

Renewable Fuels Module This  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Module Fuels Module This page inTenTionally lefT blank 175 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve

51

Facility Representative Program: Facility Representative of the Year  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative Facility Representative Office of Nuclear Safety Home Facility Representative Home Annual Facility Rep Workshop › 2012 › 2011 › 2010 › 2009 › 2008 › 2007 › 2006 › 2005 › 2004 › 2003 › 2002 › 2001 › 2000 DOE Safety Links › ORPS Info › Operating Experience › DOE Lessons Learned › Accident Investigation Assessment Tools › FR CRADs › Surveillance Guides › Manager's Guide for Safety and Health Subject Matter Links General Program Information › Program Mission Statement › Program Directives and Guidance › FR of the Year Award Program › FR of the Year Award › FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) FR Quarterly Performance Indicators Training & Qualification Information › Qualification Standards › Energy Online Courses

52

Module Configuration  

DOE Patents [OSTI]

A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

Oweis, Salah (Ellicott City, MD); D'Ussel, Louis (Bordeaux, FR); Chagnon, Guy (Cockeysville, MD); Zuhowski, Michael (Annapolis, MD); Sack, Tim (Cockeysville, MD); Laucournet, Gaullume (Paris, FR); Jackson, Edward J. (Taneytown, MD)

2002-06-04T23:59:59.000Z

53

Macroeconomic Activity Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 19 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook2011 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) represents the interaction between the U.S. economy as a whole and energy markets. The rate of growth of the economy, measured by the growth in gross domestic product (GDP) is a key determinant of the growth in demand for energy. Associated economic factors, such as interest rates and disposable income, strongly influence various elements of the supply and demand for energy. At the same time, reactions to energy markets by the aggregate economy, such as a slowdown in economic growth resulting from increasing energy prices, are also reflected in this module.

54

General Engineer / Physical Scientist (Facility Representative)  

Broader source: Energy.gov [DOE]

Facility Representatives (FRs) are line management's on-site technical representative with responsibility for identifying and evaluating environmental, safety and health issues and concerns,...

55

FAQS Job Task Analyses - Facility Representative | Department...  

Broader source: Energy.gov (indexed) [DOE]

Facility Representative FAQS Job Task Analyses - Facility Representative FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task...

56

Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 167 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the

57

EIA - The National Energy Modeling System: An Overview 2003-Coal Market  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The National Energy Modeling System: An Overview 2003 Coal Market Module Figure 19. Coal Market Module Demand Regions. Need help, contact the National Energy Information Center at 202-586-8800. Figure 20. Coal Market Module Supply Regions. Need help, contact the National Energy Information Center at 202-586-8800. Figure 21. Coal Market Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Coal Market Module Table. Need help, contact the National Energy Information Center at 202-586-8800. The coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end–use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal

58

Facility Representative of the Year Award  

Broader source: Energy.gov (indexed) [DOE]

REPRESENTATIVE OF THE YEAR AWARD PROGRAM REPRESENTATIVE OF THE YEAR AWARD PROGRAM OBJECTIVE The Facility Representative Award Program is a special award designed to recognize superior or exemplary service by a Facility Representative over a period of one year. This special award program has been established in accordance with the requirements of Department of Energy (DOE) Order 331.1C, Employee Performance Management and Recognition Program. FACILITY REPRESENTATIVE OF THE YEAR AWARD The Facility Representative of the Year Award is determined by a panel representing the Chief Health, Safety and Security Officer and managers from the National Nuclear Security Administration (NNSA), the Office of Environmental Management (EM), the Office of Science (SC), and the Office of Nuclear Energy (NE). The Facility Representative Program Manager in

59

DOE ORP Contracting Officer Representatives - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE ORP Contracting Officer Representatives DOE - ORP ContractsProcurements ORP Contracts & Procurements Home DOE-ORP Contract Management Plans DOE-ORP Prime Contracts DOE-ORP...

60

Representativeness models of systems: smart grid example  

Science Journals Connector (OSTI)

Given the great emphasis being placed on energy efficiency in contemporary society, in which the smart grid plays a prominent role, this is an opportune time to explore methodologies for appropriately representing system attributes. We suggest this is ... Keywords: Smart grid, System representativeness

Norman Schneidewind

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Incentives for the Department's Facility Representative Program,  

Broader source: Energy.gov (indexed) [DOE]

Incentives for the Department's Facility Representative Program, Incentives for the Department's Facility Representative Program, 12/17/1998 Incentives for the Department's Facility Representative Program, 12/17/1998 The Department's Revised Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 93-3 has once again underscored the Department's commitment to maintaining the technical capability necessary to safely manage and operate our defense nuclear facilities. Attracting and retaining highly qualified employees and placing them in our critical technical positions is vital to fi.dfilling this commitment. You have identified 95'% of your Facility Representative positions as critical technical positions. The Office of Field Management has noted a 12'?40annual attrition rate of Facility Representatives from the Facility

62

TOB Module Assembly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SiTracker Home Page Participating Institutions and Principal Contacts Useful Links Notes Images TOB Module Assembly and Testing Project TOB Integration Data Tracker Offline DQM LHC Fluence Calculator Total US Modules Tested Graph Total US Modules Tested Graph Total US Modules Tested Total US Modules Tested US Modules Tested Graph US Modules Tested Graph US Modules Tested US Modules Tested Rod Assembly TOB Modules on a Rod TOB Rod Insertion Installation of a TOB Rod Completed TOB Completed Tracker Outer Barrel TOB Module Assembly and Testing Project All 5208 modules of the CMS Tracker Outer Barrel were assembled and tested at two production sites in the US: the Fermi National Accelerator Laboratory and the University of California at Santa Barbara. The modules were delivered to CERN in the form of rods, with the last shipment taking

63

Advisory Board Seats New Student Representatives | Department...  

Office of Environmental Management (EM)

15, 2013 - 12:00pm Addthis The Oak Ridge Site Specific Advisory Board (ORSSAB) welcomed two new student representatives at its May meeting. Gracie Hall and Julia Riley will serve...

64

Authorizing Official Designated Representative (AODR) | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the AO Representative role will have a working knowledge of system function, security policies, and technical security safeguards, and serve as technical advisor(s) to the AO. AODR...

65

Facility Representative Program, Criteria & Review Approach Documents  

Broader source: Energy.gov [DOE]

This page provides Criteria Review and Approach Documents (CRADS) to assist Facility Representatives. Please submit your CRADS for posting by sending them to the HQ FR Program Manager. Please include the subject, date, and a contact person.

66

A Capital Market Test of Representativeness  

E-Print Network [OSTI]

. I also provide evidence that rejects a theory based on fixation in favor of representativeness. These results document evidence of overreaction to past sales growth in firms where underreaction to fundamentals does not confound the overreaction due...

Safdar, Mohammad

2012-07-16T23:59:59.000Z

67

FOOD SECURITY FUEL INDEPENDENCE These projects represent  

E-Print Network [OSTI]

FOOD SECURITY FUEL INDEPENDENCE These projects represent a huge effort to determine and improve pressing challenges. ASH 1% ASH 1% ASH 1% OTHERS 6% OTHERS 6% OTHERS 6% OIL 2% OIL 10% OIL 20% SUCROSE 45% LIPID CANE Produce and store oil in the stem in place of sugar During photosynthesis, sugarcane

Bashir, Rashid

68

An iconic approach to representing climate change  

E-Print Network [OSTI]

1 An iconic approach to representing climate change Saffron Jessica O'Neill A thesis submitted-experts to be meaningfully engaged with the issue of climate change. This thesis investigates the value of engaging non-experts with climate change at the individual level. Research demonstrates that individuals perceive climate change

Feigon, Brooke

69

Book Reviews NETL: A System for Representing  

E-Print Network [OSTI]

Book Reviews NETL: A System for Representing and Using Real-World Knowledge Scott E. Fahlman structure which can be con- sidered on its own merits, independently of such tim- ing considerations. NETL in the original]. The central organizing principle of NETL is a prop- erty inheritance hierarchy using nodes

Shapiro, Stuart C.

70

E-Print Network 3.0 - acid modulates local Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Polytechnique, Centre de mathmatiques Collection: Mathematics 11 Cotranslational protein folding with L-systems Gemma B. Danks1,2 Summary: acid module in the axiom to represent...

71

NERSC Modules Software Environment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environment » Modules Environment Environment » Modules Environment Modules Software Environment NERSC uses the module utility to manage nearly all software. There are two huge advantages of the module approach: NERSC can provide many different versions and/or installations of a single software package on a given machine, including a default version as well as several older and newer versions; and Users can easily switch to different versions or installations without having to explicitly specify different paths. With modules, the MANPATH and related environment variables are automatically managed. Users simply ``load'' and ``unload'' modules to control their environment. The module utility consists of two parts: the module command itself and the modulefiles on which it operates. Module Command

72

Modulational effects in accelerators  

SciTech Connect (OSTI)

We discuss effects of field modulations in accelerators, specifically those that can be used for operational beam diagnostics and beam halo control. In transverse beam dynamics, combined effects of nonlinear resonances and tune modulations influence diffusion rates with applied tune modulation has been demonstrated. In the longitudinal domain, applied RF phase and voltage modulations provide mechanisms for parasitic halo transport, useful in slow crystal extraction. Experimental experiences with transverse tune and RF modulations are also discussed.

Satogata, T.

1997-12-01T23:59:59.000Z

73

Data structures and apparatuses for representing knowledge  

DOE Patents [OSTI]

Data structures and apparatuses to represent knowledge are disclosed. The processes can comprise labeling elements in a knowledge signature according to concepts in an ontology and populating the elements with confidence values. The data structures can comprise knowledge signatures stored on computer-readable media. The knowledge signatures comprise a matrix structure having elements labeled according to concepts in an ontology, wherein the value of the element represents a confidence that the concept is present in an information space. The apparatus can comprise a knowledge representation unit having at least one ontology stored on a computer-readable medium, at least one data-receiving device, and a processor configured to generate knowledge signatures by comparing datasets obtained by the data-receiving devices to the ontologies.

Hohimer, Ryan E; Thomson, Judi R; Harvey, William J; Paulson, Patrick R; Whiting, Mark A; Tratz, Stephen C; Chappell, Alan R; Butner, Robert S

2014-02-18T23:59:59.000Z

74

Yucca Mountain Climate Technical Support Representative  

SciTech Connect (OSTI)

The primary objective of Project Activity ORD-FY04-012, Yucca Mountain Climate Technical Support Representative, was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.

Sharpe, Saxon E

2007-10-23T23:59:59.000Z

75

SHARP Physics Modules Updated | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Physics Modules Updated Physics Modules Updated SHARP Physics Modules Updated January 29, 2013 - 12:37pm Addthis PROTEUS Development The SHARP neutronics module, PROTEUS, includes neutron and gamma transport solvers, cross-section processing tools, and tools for depletion and fuel cycle analysis. Efforts in the second quarter focused on three major priorities: multi-physics integration, intermediate-fidelity tool development, and demonstrations of applicability. Integration of the second-order, discrete ordinates (Sn method) solver of PROTEUS with the latest version of the MOAB framework (which represents and evaluates mesh data) was initiated to enable its use for multi-physics analysis. With these updates, PROTEUS can obtain the mesh specification from the MOAB framework and store its data on the MOAB mesh representation so that MOAB

76

1997 Annual Facility Representative Workshop Attendees  

Broader source: Energy.gov (indexed) [DOE]

Annual Facility Representative Workshop Attendees Annual Facility Representative Workshop Attendees Last Name First Office Location Phone E-Mail Anderson Mike ID CFATAN (208) 526-7418 andersmr@id.doe.gov Bell Bill AL LAAO (505) 665-6324 bbell@doeal.gov Biro Brian RL LABS (509) 376-7660 brian_a_biro@rl.gov Brown Mark RL TANKS (509) 373-9150 mark_c_brown@rl.gov Charboneau Briant RL 324/327 (509) 373-6137 briant_L_charboneau@rl.gov Daniels Rick OR HFIR (423) 574-9143 e29@ornl.gov Dennis Jack AL AAO (806) 477-3176 jdennis@pantex.com Dikeakos Maria CH BHG (516) 344-3950 dikeako@bnl.gov Duey Don AL AAO (806) 477-6987 dduey@pantex.com Earley Larry RL WRAP (509) 373-9388 larry_d_earley@rl.gov Eddy Doug OAK LLNL (925) 422-3379 doug.eddy@oak.doe.gov Edwards Robert SR NMSD (803) 208-2645 robert-e.edwards@srs.gov

77

1998 Annual Facility Representative Workshop Attendees  

Broader source: Energy.gov (indexed) [DOE]

8 Annual Facility Representative Workshop Attendees 8 Annual Facility Representative Workshop Attendees Last Name First Office Location Phone Fax E-Mail Alvord Bob OAK LLNL (925) 422-0830 (925) 422-0832 robert.alvord@oak.doe.gov Barnes John SR SRTC (803) 208-2628 (803) 208-1123 johnc.barnes@srs.gov Bell Fred AL LAAO (505) 665-4856 (505) 665-9230 fbell@doeal.gov Bell Bill AL LAAO (505) 665-6324 (505) 665-9230 bbell@doeal.gov Bennett Rick RF DOE (303) 966-8155 (303) 966-7447 rick.bennett@rfets.gov Biro Brian RL LABS (509) 376-7660 (509) 376-9837 brian_a_biro@rl.gov Blanco Jose SR DWPF (803) 208-7022 (803) 557-8223 jose.blanco@srs.gov Charboneau Briant RL 324/327 (509) 373-6137 (509) 373-9839 briant_L_charboneau@rl.gov Christensen Debbie AL OMD (505) 845-5239 dschristensen@doeal.gov Clifton Gary OR ORNL (423) 576-6810 (423) 574-9275 g7y@ornl.gov

78

Modules over principal ideal rings  

E-Print Network [OSTI]

need to note, however, , the difference between the two types of "union" of a set of submodules N 1 of a module N, The first is the "set-theoretic union" con- sisting of representatives of all the distinct elements to be found in the Ni... ideal R, which cons1sts of the elements of the ring. Consider the subset B of R of all elements of the form ra + na, where r and a are ring ele- ments and n is an integer. If rla + nla, r2a + n2a s B, then la + nla 2 2a la r2a + la 2 = (rl - r2)a...

Vieaux, Jules Bellin

2012-06-07T23:59:59.000Z

79

module 4 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

module 4 module 4 HR5 TRANSITION BRIEFING module 4 More Documents & Publications Microsoft Word - Rev5functionalaccountabilityimplementationplan..doc Management (WFP) DEPARTMENT OF...

80

Advanced silicon photonic modulators  

E-Print Network [OSTI]

Various electrical and optical schemes used in Mach-Zehnder (MZ) silicon plasma dispersion effect modulators are explored. A rib waveguide reverse biased silicon diode modulator is designed, tested and found to operate at ...

Sorace, Cheryl M

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Laboratory or Facility Representative Email Addresses Phone #  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory or Facility Representative Email Addresses Phone # Ames Laboratory Stacy Joiner joiner@ameslab.gov 515-294-5932 Argonne National Laboratory Connie Cleary ccleary@anl.gov 630-252-8111 Brookhaven National Laboratory Walter Copan wcopan@bnl.gov 631-344-3035 Fermi National Acclerator Laboratory Bruce Chrisman chrisman@fnal.gov 630-840-6657 Idaho National Laboratory Steven McMaster steven.mcmaster@inl.gov 208-526-1340 Kansas City Plant Caron O'Dower codower@kcp.com 816-997-2645 Lawrence Berkeley National Laboratory Viviana Wolinsky viwolinsky@lbl.gov 510-486-6463 Lawrence Livermore National Laboratory Roger Werne werne1@llnl.gov 925-423-9353 Los Alamos National Laboratory John Mott jmott@lanl.gov 505-665-0883 National Energy Technology Laboratory Jessica Sosenko jessica.sosenko@netl.doe.gov 412-386-7417

82

Facility Representative Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1151-2010 October 2010 DOE STANDARD FACILITY REPRESENTATIVE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1151-2010 ii This document is available on the Department of Energy Office of Health, Safety and Security Approved DOE Technical Standards Web Site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/standard/standard.html DOE-STD-1151-2010 iii APPROVAL The Federal Technical Capability Panel consists of senior U.S. Department of Energy (DOE) managers responsible for overseeing the Federal Technical Capability Program. This Panel is

83

Modulating lignin in plants  

SciTech Connect (OSTI)

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

84

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces...

85

Department of Defense Representatives Visit Hanford to Benchmark...  

Office of Environmental Management (EM)

Representatives Visit Hanford to Benchmark Safety Department of Defense Representatives Visit Hanford to Benchmark Safety FLUOR News Release RICHLAND, Wash., December 16, 2005,...

86

Representing Cloud Processing of Aerosol in Numerical Models  

SciTech Connect (OSTI)

The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image is a demonstration of the first indirect effect, in which changes in aerosol modulate cloud droplet radius and concentration, which influences albedo. It is thought that, through the effects it has on precipitation (drizzle), aerosol can also affect the structure and persistence of planetary boundary layer (PBL) clouds. Regions of cellular convection, or open pockets of cloudiness (bottom image) are thought to be remnants of strongly drizzling PBL clouds. Pockets of Open Cloudiness (POCs) (Stevens et al. 2005) or Albrecht's ''rifts'' are low cloud fraction regions characterized by anomalously low aerosol concentrations, implying they result from precipitation. These features may in fact be a demonstration of the second indirect effect. To accurately represent these clouds in numerical models, we have to treat the coupled cloud-aerosol system. We present the following series of mesoscale and large eddy simulation (LES) experiments to evaluate the important aspects of treating the coupled cloud-aerosol problem. 1. Drizzling and nondrizzling simulations demonstrate the effect of drizzle on a mesoscale forecast off the California coast. 2. LES experiments with explicit (bin) microphysics gauge the relative importance of the shape of the aerosol spectrum on the 3D dynamics and cloud structure. 3. Idealized mesoscale model simulations evaluate the relative roles of various processes, sources, and sinks.

Mechem, D.B.; Kogan, Y.L.

2005-03-18T23:59:59.000Z

87

Cavity enhanced terahertz modulation  

SciTech Connect (OSTI)

We present a versatile concept for all optical terahertz (THz) amplitude modulators based on a Fabry-Prot semiconductor cavity design. Employing the high reflectivity of two parallel meta-surfaces allows for trapping selected THz photons within the cavity and thus only a weak optical modulation of the semiconductor absorbance is required to significantly damp the field within the cavity. The optical switching yields to modulation depths of more than 90% with insertion efficiencies of 80%.

Born, N., E-mail: norman.born@physik.uni-marburg.de [College of Optical Sciences, University of Arizona, 1630 E University Boulevard, Tucson, Arizona 85721 (United States); Faculty of Physics and Material Sciences Center, Philipps-Universitt Marburg, Renthof 5, 35032 Marburg (Germany); Scheller, M.; Moloney, J. V. [College of Optical Sciences, University of Arizona, 1630 E University Boulevard, Tucson, Arizona 85721 (United States)] [College of Optical Sciences, University of Arizona, 1630 E University Boulevard, Tucson, Arizona 85721 (United States); Koch, M. [Faculty of Physics and Material Sciences Center, Philipps-Universitt Marburg, Renthof 5, 35032 Marburg (Germany)] [Faculty of Physics and Material Sciences Center, Philipps-Universitt Marburg, Renthof 5, 35032 Marburg (Germany)

2014-03-10T23:59:59.000Z

88

Detailed Course Module Description  

Broader source: Energy.gov (indexed) [DOE]

Course Module Description Course Module Description Module/Learning Objectives Level of Detail in Module by Audience Consumers Gen Ed/ Community College Trades 1. Energy Issues and Building Solutions High High High Learning Objectives: * Define terms of building science, ecological systems, economics of consumption * Relate building science perspective, ecology, social science * Explain historical energy and environmental issues related to buildings * Compare Site and source energy * Examine the health, safety and comfort issues in buildings * Examine the general context for building solutions (zero energy green home with durability as the goal) * Explain a basic overview of alternative energy (total solar flux) - do we have enough energy * Examine cash flow to homeowners

89

Bracket for photovoltaic modules  

DOE Patents [OSTI]

Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

Ciasulli, John; Jones, Jason

2014-06-24T23:59:59.000Z

90

Integrated LED Headlamp Module  

Science Journals Connector (OSTI)

LED headlamp module integrates all necessary optics, electronics, and heat management into one compact unit that fits into standard mechanical headlamp frame. It provides high beam,...

Popelek, Jan

91

1Q CY2012 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2012 (PDF), Facility Representative Program Performance 1Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January through March 2012. Data for these indicators were gathered by Field elements per Department of Energy (DOE) Technical Standarf 1063-2011, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Facility Representative Program Performance Indicators for January-March 2012 More Documents & Publications 1Q CY2011 (PDF), Facility Representative Program Performance Indicators

92

3Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2011 (PDF), Facility Representative Program Performance 3Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the Period July through September 2011. Data for these indicators were gathered by Field Elements per Department of Energy's (DOE) Technical Standard (STD) 1063-2011, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Facility Representative Program Performance Indicators for July - September 2011 More Documents & Publications 3Q CY2010 (PDF), Facility Representative Program Performance Indicators

93

Module title Marketing Management Module code INT3602  

E-Print Network [OSTI]

Module title Marketing Management Module code INT3602 Academic year(s) 2013/4 Credits 15 Basic - summary of the module content Module description This module will introduce new marketing students to the fascinating world of modern marketing in an innovative and comprehensive yet practical and enjoyable way

Mumby, Peter J.

94

Facility Representative Program ID Selects FR of the Year  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative Program ID Selects Facility Representative Program ID Selects FR of the Year John Martin DOE-ID Facility Representative John Martin DOE-ID Facility Representative of the Year. John Martin was selected as DOE-ID's Facility Representative of the Year and the office's nominee for the 2007 DOE Facility Representative of the Year Award. John was selected from an exceptional field of candidates to represent DOE-ID at the Facility Representative Annual Workshop in Las Vegas this May. Each year the Department of Energy recognizes the Facility Representative whose achievements during the calendar year are most exemplary. A panel of senior personnel representing the Office of Health, Safety and Security (HSS) National Nuclear Security Administration (NNSA), Environmental Management (EM), Science (SC), Nuclear Energy (NE) and at least five

95

Working with Modules within Python  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with Modules within Perl and Python Working with Modules within Perl and Python Working with Modules within Perl and Python It can often be convenient to work with the modules system from within perl or python scripts. You can do this! Using Modules within Python The EnvironmentModules python package gives access to the module system from within python. The EnvironmentModules python package has a single function: module. Using this function you can provide the same arguments you would to "module" on the command line. The module() function accepts a list of arguments, like ['load','']; or ['unload','']. >>> import EnvironmentModules as EnvMod >>> EnvMod.module(['load','blast+']) It is important to understand that this is most effective for scripts

96

Assumptions to the Annual Energy Outlook 2002 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).117 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

97

Assumptions to the Annual Energy Outlook 2001 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

98

Membrane module assembly  

DOE Patents [OSTI]

A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

Kaschemekat, J.

1994-03-15T23:59:59.000Z

99

3Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2003 (PDF), Facility Representative Program Performance 3Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from July to September 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. 3Q CY2003, Facility Representative Program Performance Indicators More Documents & Publications 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2005 (PDF), Facility Representative Program Performance Indicators

100

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

he International Energy Module determines changes in the world oil price and the supply prices of crude he International Energy Module determines changes in the world oil price and the supply prices of crude oils and petroleum products for import to the United States in response to changes in U.S. import requirements. A market clearing method is used to determine the price at which worldwide demand for oil is equal to the worldwide supply. The module determines new values for oil production and demand for regions outside the United States, along with a new world oil price that balances supply and demand in the international oil market. A detailed description of the International Energy Module is provided in the EIA publication, Model Documentation Report: The International Energy Module of the National Energy Modeling System, DOE/EIA-M071(06), (Washington, DC, February 2006).

102

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

103

FAQS Qualification Card - Facility Representative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Representative Representative FAQS Qualification Card - Facility Representative A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-FacilityRepresentative.docx Description Facility Representative Qualification Card More Documents & Publications FAQS Gap Analysis Qualification Card - Facility Representative

104

Photovoltaic module and interlocked stack of photovoltaic modules  

DOE Patents [OSTI]

One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

Wares, Brian S.

2014-09-02T23:59:59.000Z

105

2Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2003 (PDF), Facility Representative Program Performance 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from April to June 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. A total of 13 Facility Representatives transferred to other positions during the quarter. Five of these accepted Facility Representative positions at other sites. Of the 8 that left the Program. 1 recieved a promotion and 7 accepted lateral positions. All of

106

2Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2006 (PDF), Facility Representative Program Performance 2Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. 2Q CY2006, Facility Representative Program Performance Indicators More Documents & Publications 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2004 (PDF), Facility Representative Program Performance Indicators

107

4Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2003 (PDF), Facility Representative Program Performance 4Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from October to December 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. As of December 31,2003, 93% of all Facility Representatives were fully qualified, exceeding the DOE goal of 80%. Currently, 23 of 27 sites meet the goal of 80%. Currently, 23 of 27 sites meet the goal for Facility Representative

108

1999 FACILITY REPRESENTATIVE CONFERENCE June 21 25, 1999  

Broader source: Energy.gov [DOE]

The Department of Energy will host the Facility Representative Annual Meeting on June 21-25, 1999 at the Alexis Park Hotel in Las Vegas, Nevada. The meeting will give Facility Representatives and...

109

Clostridium ljungdahlii represents a microbial production platform based on syngas  

Science Journals Connector (OSTI)

...represents a microbial production platform based on syngas 10.1073/pnas...novel biotechnological production platform based on syngas and CO 2 /H 2 . Results and Discussion...represents a microbial production platform based on syngas. | Clostridium...

Michael Kpke; Claudia Held; Sandra Hujer; Heiko Liesegang; Arnim Wiezer; Antje Wollherr; Armin Ehrenreich; Wolfgang Liebl; Gerhard Gottschalk; Peter Drre

2010-01-01T23:59:59.000Z

110

Order Module--NNSA OCCUPATIONAL RADIATION PROTECTION | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Order Module--NNSA OCCUPATIONAL RADIATION PROTECTION Order Module--NNSA OCCUPATIONAL RADIATION PROTECTION Order Module--NNSA OCCUPATIONAL RADIATION PROTECTION The familiar level of this module is designed to provide the basic information to meet the requirements that are related to 10 CFR 835, "Occupational Radiation Protection," in the following DOE Functional Area Qualification Standards: DOE-STD-1177-2004, Emergency Management DOE-STD-1151-2002, Facility Representative DOE-STD-1146-2007, General Technical Base DOE-STD-1138-2007, Industrial Hygiene DOE-STD-1183-2007, Nuclear Safety Specialist DOE-STD-1174-2003, Radiation Protection DOE-STD-1175-2006, Senior Technical Safety Manager DOE-STD-1178-2004, Technical Program Manager DOE-STD-1155-2002, Transportation and Traffic Management DOE Order Self Study Modules - 10 CFR 835 Occupational Radiation Protection

111

Assumptions to the Annual Energy Outlook 2002 - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2002, DOE/EIA- M068(2002) January 2002. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are

112

Assumptions to the Annual Energy Outlook 2001 - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2001, DOE/EIA- M068(2001) January 2001. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are

113

COSMIC RAY MODULATION BEYOND THE HELIOPAUSE: A HYBRID MODELING APPROACH  

SciTech Connect (OSTI)

Results from a newly developed hybrid cosmic ray (CR) modulation model are presented. In this approach, the transport of CRs is computed by incorporating the plasma flow from a magnetohydrodynamic model for the heliospheric environment, resulting in representative CR transport. The model is applied to the modulation of CRs beyond the heliopause (HP) and we show that (1) CR modulation persists beyond the HP, so it is unlikely that the Voyager spacecraft will measure the pristine local interstellar spectra of galactic CRs when crossing the HP. (2) CR modulation in the outer heliosheath could maintain solar-cycle-related changes. (3) The modulation of CRs in the outer heliosheath is primarily determined by the ratio of perpendicular to parallel diffusion, so that the value of the individual diffusion coefficients cannot be determined uniquely using this approach. (4) CRs can efficiently diffuse between the nose and tail regions of the heliosphere.

Strauss, R. D.; Potgieter, M. S.; Ferreira, S. E. S. [Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520 (South Africa); Fichtner, H.; Scherer, K., E-mail: dutoit.strauss@nwu.ac.za [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

2013-03-01T23:59:59.000Z

114

Module bay with directed flow  

DOE Patents [OSTI]

A module bay requires less cleanroom airflow. A shaped gas inlet passage can allow cleanroom air into the module bay with flow velocity preferentially directed toward contaminant rich portions of a processing module in the module bay. Preferential gas flow direction can more efficiently purge contaminants from appropriate portions of the module bay, allowing a reduced cleanroom air flow rate for contaminant removal. A shelf extending from an air inlet slit in one wall of a module bay can direct air flowing therethrough toward contaminant-rich portions of the module bay, such as a junction between a lid and base of a processing module.

Torczynski, John R. (Albuquerque, NM)

2001-02-27T23:59:59.000Z

115

Optical Modulation of Molecular Conductance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Modulation of Molecular Conductance Authors: Battacharyya, S., Kibel, A., Kodis, G., Liddell, P. A., Gervaldo, M., Gust, D., and Lindsay, S. Title: Optical Modulation of...

116

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

117

Sonication standard laboratory module  

DOE Patents [OSTI]

A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

1999-01-01T23:59:59.000Z

118

Module Title: Project Module Code: OPTO6005  

E-Print Network [OSTI]

Ibsen, Dr Ping Hua, Prof James Wilkinson Contact (email ID) sm@orc.soton.ac.uk, mi@orc.soton.ac.uk, ph2@orc.soton.ac.uk, jsw@orc.soton.ac.uk Is the module subject to external accreditation? No If yes and optical labs of the ORC 3. Train in technical and hands-on research skills to gain technical insight

Anderson, Jim

119

3Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2006 (PDF), Facility Representative Program Performance 3Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. A summary of this quarters data concluded: 76% fully qualified 41% staffing level

120

2Q CY2007 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2007 (PDF), Facility Representative Program Performance 2Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2007. Data for these indicators are gathered by field elements quarterly per DOE-STD-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to impove the FR Program. A summary of this quarter's data concluded: 74% Fully Qualified 94% Staffing Level ( last quarter was

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

4Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2006 (PDF), Facility Representative Program Performance 4Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. A summary of this quarters data concluded: 72% Fully Qualified ( last Quarter was

122

2Q CY2008 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2008 (PDF), Facility Representative Program Performance 2Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2008. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 87% Fully Qualifed ( last quarter was 85%) 86% Staffing Level ( last quarter was 88%)

123

RESTRICTED MODULES AND CONJECTURES FOR MODULES OF CONSTANT JORDAN TYPE  

E-Print Network [OSTI]

RESTRICTED MODULES AND CONJECTURES FOR MODULES OF CONSTANT JORDAN TYPE SEMRA ¨OZT¨URK KAPTANO GLU give a method to construct new restricted k[E]-modules of constant Jordan type from k[E]-modules of constant Jordan type and use it to realize several Jordan types. The constraints on the Jordan type

Kaptanoglu, Semra Ozturk

124

RESTRICTED MODULES AND CONJECTURES FOR MODULES OF CONSTANT JORDAN TYPE  

E-Print Network [OSTI]

RESTRICTED MODULES AND CONJECTURES FOR MODULES OF CONSTANT JORDAN TYPE SEMRA ¨OZT¨URK KAPTANO GLU Abstract. We introduce the class of restricted k[A]-modules and pt-Jordan types for a finite abelian p on Jordan types for modules of constant Jordan type when t is 1. We state conjectures giving constraints

Kaptanoglu, Semra Ozturk

125

Procedures in Modules (1) Including all procedures within modules  

E-Print Network [OSTI]

Procedures in Modules (1) Including all procedures within modules works very well in almost all designing these if possible #12;Procedures in Modules (2) These are very much like internal procedures Works very well in almost all programs Everything accessible in the module can also be used in the procedure

126

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

127

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

128

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

129

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

130

Absorbance modulation optical lithography  

E-Print Network [OSTI]

In this thesis, the concept of absorbance-modulation optical lithography (AMOL) is described, and the feasibility experimentally verified. AMOL is an implementation of nodal lithography, which is not bounded by the diffraction ...

Tsai, Hsin-Yu Sidney

2007-01-01T23:59:59.000Z

131

1Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2010 (PDF), Facility Representative Program Performance 1Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March2010. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report are presented below." 1Q CY2010, Facility Representative Program Performance Indicators More Documents & Publications 1Q CY2011 (PDF), Facility Representative Program Performance Indicators

132

3Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2010 (PDF), Facility Representative Program Performance 3Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period of July through September 2010. Data for these indicators are gathered by Field elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representative and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Facility Representative Program Performance Indicators for July - September 2010 More Documents & Publications 3Q CY2011 (PDF), Facility Representative Program Performance Indicators

133

1Q CY2000 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2000 (PDF), Facility Representative Program Performance 1Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report "The Facility Representative Program Performance Indicators (PIs) Quarterly Report is attached, covering the period from January 2000 to March 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, DOE-STD-1 063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definitions of the PIs from the Standard are also attached for your use in evaluating the data." 1Q CY2000, Facility Representative Program Performance Indicators

134

4Q CY2002 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2 (PDF), Facility Representative Program Performance 2 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (Pis) Quarterly Report Covering the Period from October to December 2002. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. The format of the report is changed from past reports. Information will now be provided according to the major offices having field or site office Facility Representative programs: National Nuclear Security Administration (NNSSA), the Office of

135

3Q CY2007 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2007 (PDF), Facility Representative Program Performance 3Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2007. Data for these indicators are gathered by Field elements quarterly per Department of Energy (DOE-STD-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR program. A summary of this quarter 's data concluded: 3Q CY2007, Facility Representative Program Performance Indicators More Documents & Publications 2Q CY2009 (PDF), Facility Representative Program Performance Indicators

136

1Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2003 (PDF), Facility Representative Program Performance 1Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from January to March 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. The percentage of Facility Representatives who are fully qualified reached 91% across DOE. In EM the percenage of 97%, in Sc the percentage is 95% and in NNSA the percentage is 78%. The DOE goal is 75%. Staffing levels for the three organizations continue to be below

137

Student Committee Representatives Guidelines Congratulations on being selected as a student representative to a GSLIS committee! We are  

E-Print Network [OSTI]

Student Committee Representatives Guidelines Congratulations on being selected as a student to your resume or CV. Your job is to represent students to committees and committees to students. You represent the student body to the committee. Your job is to advocate for your fellow students by bringing

Gilbert, Matthew

138

Student Assembly Offices Student Assembly Representatives: There are four representatives per class to the Student Assembly. Their duties are to  

E-Print Network [OSTI]

Student Assembly Offices Student Assembly Representatives: There are four representatives per class to the Student Assembly. Their duties are to: Represent the student body of the Medical College of Wisconsin-section of the student body. Fairly administer and distribute all funds including those designated as Student Activity

139

Facility Representative of the Year Award | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facility Representative of the Year Award Facility Representative of the Year Award Facility Representative of the Year Award Departmental Award Program administered by the Office of Chief Information Officer The Facility Representative Award Program is a special award designed to recognize superior or exemplary service by a Facility Representative over a period of one year. This special award program has been established in accordance with the requirements of Department of Energy (DOE) Order 331.1C, Employee Performance Management and Recognition Program. Facility Representative of the Year Award Responsible Contacts Lorrenda Buckner HUMAN RESOURCES SPECIALIST (PERFORMANCE MANAGEMENT) E-mail lorrenda.buckner@hq.doe.gov Phone 202-586-8451 More Documents & Publications Safety System Oversight Annual Award

140

1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 | Department  

Broader source: Energy.gov (indexed) [DOE]

1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 The Department of Energy will host the Facility Representative Annual Meeting on June 21-25, 1999 at the Alexis Park Hotel in Las Vegas, Nevada. The meeting will give Facility Representatives and line management the opportunity to share lessons learned, and to discuss upcoming program improvements. There is no cost for the meeting, however, rooms reserved at the government rate are limited so if you are planning on attending, please make reservations as soon as possible. The hotel phone number is 1-800-453-8000. For more information, please contact Joe Hassenfeldt, Facility Representative Program Manager, FM-10, at 202-586-1643." Microsoft Word - Document1

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

2Q CY2002 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2002 (PDF), Facility Representative Program Performance 2Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from April to June 2002. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standards , DOE-STD-1063-2000, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definition of the PIs from the Standard are also attached for your use in evaluating the data. Overall, the percentage of fully qualified Facility Representatives increased to 80% last quarter, from 78% the previous quarter , and

142

1Q CY2000, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

May May 9,2000 MEMORANDUM FOR DISTRIBUTION FROM: .yc,..,%$'! L.W.T oseph Arango, Facl ity Representative Program Manager (S-3.1) SUBJECT: Facility Representative Program Performance Indicators Quarterly Report The Facility Representative Program Performance Indicators (PIs) Quarterly Report is attached, covering the period from January 2000 to March 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, DOE-STD-1 063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definitions of the PIs from the Standard are also attached for your use in evaluating the data. You will note that the indicators show the attrition of five Facility Representatives from the program during this reporting period. Of those five, two were promoted

143

4Q CY2001 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2001 (PDF), Facility Representative Program Performance 4Q CY2001 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2001 (PDF), Facility Representative Program Performance Indicators Quarterly Report The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from October to December 2001. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standards , DOE-STD-1063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definition of the PIs from the Standard are also attached for your use in evaluating the data 4Q CY2001, Facility Representative Program Performance Indicators More Documents & Publications

144

2Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2005 (PDF), Facility Representative Program Performance 2Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. As of June 30,2005, 97% of all FRs were fully qualified, down from 88% the previous quarter, but exceeding the DOE goal of 80%. Eighteen of 27 reporting sites meet the goal of FR qualifications. 2Q CY2005, Facility Representative Program Performance Indicators

145

Facility Representative of the Year Award | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facility Representative of the Year Award Facility Representative of the Year Award Facility Representative of the Year Award Departmental Award Program administered by the Office of Chief Information Officer The Facility Representative Award Program is a special award designed to recognize superior or exemplary service by a Facility Representative over a period of one year. This special award program has been established in accordance with the requirements of Department of Energy (DOE) Order 331.1C, Employee Performance Management and Recognition Program. Facility Representative of the Year Award Responsible Contacts Lorrenda Buckner HUMAN RESOURCES SPECIALIST (PERFORMANCE MANAGEMENT) E-mail lorrenda.buckner@hq.doe.gov Phone 202-586-8451 More Documents & Publications Safety System Oversight Annual Award

146

1Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2011 (PDF), Facility Representative Program Performance 1Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the Period January through March 2011. Data for these indicators were gathered by Field Elements per Department of Energy's (DOE) Technical Standard (STD) 1063-2011, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. This report reflects changes in DOE STD 1063-2011 that deleted one indicator and changed the way two others are calculated. The changes are discussed below. Facility Representative Program Performance Indicators for January - March

147

3Q CY2002 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2002 (PDF), Facility Representative Program Performance 3Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from July to September 2002. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standards , DOE-STD-1063-2000, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definition of the PIs from the Standard are also attached for your use in evaluating the data. The percentage of fully qualified Facility Representatives in the DOE complex

148

Nonlocal Modulation of Entangled Photons  

E-Print Network [OSTI]

We consider ramifications of the use of high speed light modulators to questions of correlation and measurement of time-energy entangled photons. Using phase modulators, we find that temporal modulation of one photon of an entangled pair, as measured by correlation in the frequency domain, may be negated or enhanced by modulation of the second photon. Using amplitude modulators we describe a Fourier technique for measurement of biphoton wave functions with slow detectors.

S. E. Harris

2008-08-06T23:59:59.000Z

149

October 2010, Facility Representative Qualification Standard Reference Guide  

Broader source: Energy.gov (indexed) [DOE]

Facility Facility Representative Qualification Standard Reference Guide OCTOBER 2010 Table of Contents i LIST OF FIGURES ..................................................................................................................... iii LIST OF TABLES ........................................................................................................................ v ACRONYMS ................................................................................................................................ vi PURPOSE ...................................................................................................................................... 1 SCOPE ........................................................................................................................................... 1

150

General Engineer/Physical Scientist (Senior Facility Representative)  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as the Site Managers Senior Facility Representative, and responsible for program management, technical monitoring, advising and evaluating all...

151

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

A Minneapolis, Minnesota Reference Buildings by Climate Zone and Representative City: 6A Minneapolis, Minnesota In addition to the ZIP file for each building type, you can directly...

152

Appointment of Contracting Officers and Contracting Officer Representatives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order established procedures governing the selection, appointment and termination of Department of Energy contracting officers and contracting officer representatives. Cancels DOE O 541.1A.

2004-04-21T23:59:59.000Z

153

Natural Gas Transmission and Distribution Module This  

Gasoline and Diesel Fuel Update (EIA)

This This page inTenTionally lefT blank 127 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through a regional interstate representative pipeline network, for both a peak (December through March) and off-peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. Natural gas flow patterns are a function of the

154

Spin precession modulation in a magnetic bilayer  

SciTech Connect (OSTI)

We report on modulation of the spin precession in a Co/garnet bilayer by femtosecond laser excitation using time-resolved magneto-optical tools. Damped oscillations in the Faraday rotation transients representing precessional motion of the magnetization vector are observed in both the 2 nm Co layer and 1.8 {mu}m garnet of the bilayer with distinct frequencies differing by about a factor of two. The excitation efficiency of these precessions strongly depends on the out-of-plane magnetic field. The modulation effect with the coupling in a magnetic bilayer can be useful for non-thermally controlling the magnetization of nanomagnets and ultrafast switching in magnetic nanodevices.

Stupakiewicz, A.; Maziewski, A. [Laboratory of Magnetism, Faculty of Physics, University of Bialystok, Lipowa 41, Bialystok (Poland); Pashkevich, M. [Laboratory of Magnetism, Faculty of Physics, University of Bialystok, Lipowa 41, Bialystok (Poland); Scientific-Practical Materials Research Centre of the NASB, P. Brovki 19, Minsk (Belarus); Stognij, A.; Novitskii, N. [Scientific-Practical Materials Research Centre of the NASB, P. Brovki 19, Minsk (Belarus)

2012-12-24T23:59:59.000Z

155

Approved Module Information for ME2011, 2014/5 Module Title/Name: Thermodynamics and Fluids Module Code: ME2011  

E-Print Network [OSTI]

Approved Module Information for ME2011, 2014/5 Module Title/Name: Thermodynamics and Fluids Module Code: ME2011 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module in which available: BEng/MEng Mechanical Engineering. BEng/MEng Electromechanical Engineering. Available

Neirotti, Juan Pablo

156

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

157

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

158

Power module assembly  

DOE Patents [OSTI]

A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

Campbell, Jeremy B. (Torrance, CA); Newson, Steve (Redondo Beach, CA)

2011-11-15T23:59:59.000Z

159

Truth-telling A Representative Johannes Abeler1  

E-Print Network [OSTI]

Truth-telling ­ A Representative Assessment Johannes Abeler1 Anke Becker2 Armin Falk3 University people do report the payoff-maximizing outcome, some report their private informa- tion truthfully or at least do not lie maximally. We measure truth-telling outside the laboratory by calling a representative

Huber, Bernhard A.

160

Floatable solar heat modules  

SciTech Connect (OSTI)

A floating solar heat module for swimming pools comprises a solid surface for conducting heat from the sun's rays to the water and further includes a solid heat storage member for continual heating even during the night. A float is included to maintain the solar heat module on the surface of the pool. The solid heat storage medium is a rolled metal disk which is sandwiched between top and bottom heat conducting plates, the top plate receiving the heat of the sun's rays through a transparent top panel and the bottom plate transferring the heat conducted through the top plate and rolled disk to the water.

Ricks, J.W.

1981-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

4Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2011 (PDF), Facility Representative Program Performance 4Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October through December 2011. Data for these indicators were gathered by field elements per Department of Energy (DOE) Technical Standard 1063-2011 , Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report include: FR Staffing/Qualification/Oversight Data: * DOE was staffed at 179 FR Full Time Equivalents (FTE), which is 92 percent of the full staffing level (DOE goal is 100 percent). Four FRs left due to transfer,

162

4Q CY2007 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2007 (PDF), Facility Representative Program Performance 4Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2007. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 83% Fully Qualified (last Quarter was 82%) 85% Staffing Level (last Quarter was 93%) 45% Time Spent in the Field (DOE goal is >40%) 73% Time Spent in Oversight Activities (DOE Goal is> 65%)"

163

1Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

6 (PDF), Facility Representative Program Performance 6 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. As of March 31,2006 81% of all FRs were fully qualified,up from 78% the previous quarter, and just above the DOE goal of 80%. To assist site offices in continuing to meet the qualification goal, there will be two focused training sessions for FR candidates in the coming months. These

164

2Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2011 (PDF), Facility Representative Program Performance 2Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period April through June 20 1 1. Data for these indicators were gathered by Field Elements per Department of Energy (DOE) Technical Standard (STD) 1063-20 1 1, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report: FR Staffing/Qualification/Oversight data DOE was staffed at 180 FR Full Time Equivalents (FTEs), which is 9 1 percent of the full staffing level (DOE goal is 100 percent).

165

2Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

Q CY2010 (PDF), Facility Representative Program Performance Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the highlight of, and announces the availablity on-line of, the Facility Representative (FR) Program Performance Indicators are gathered by Field elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. This memorandum also announces that Mr. James Heffner has turned over FR Program Manager duties to Mr. Earl Huges. Mr. Heffner is assuming expanded team leader duties over several additional programs within the

166

4Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2005 (PDF), Facility Representative Program Performance 4Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. As of December 31, 2005 78% of all FRs were fully qualified , down from the 84% the previous quarter, and below the DOE goal of 80%. Site offices hired 11 new FRs in the quarter and several sites moved FRs to new facilities, thus requiring new qualifications.

167

1Q CY2009 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2009 (PDF), Facility Representative Program Performance 1Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2009. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 78% Fully Qualified ( last Quarter was 76%) 90% Staffing Level ( last Quarter was 89%) 47% Time Spent in the Field (DOE goal is>40%) 74% Time Spent in Oversight Activites (DOE Goal is>65%)"

168

Fluid Flow Model Development for Representative Geologic Media | Department  

Broader source: Energy.gov (indexed) [DOE]

Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Clay and granitic geologic rock units are potential host media for future repositories for used nuclear fuel and high level waste. This report addresses the representation of flow in these two media within numerical process models. Discrete fracture network (DFNs) models are an approach to representing flow in fractured granite that explicitly represents the geometry and flow properties of individual fractures. New DFN generation and computational grid generation methods have been developed and tested. Mesh generation and the generation of flow streamlines within the DFN are also included. Traditional form of Darcy's law is not adequate

169

Reference Buildings by Climate Zone and Representative City: 8 Fairbanks,  

Broader source: Energy.gov (indexed) [DOE]

Climate Zone and Representative City: 8 Climate Zone and Representative City: 8 Fairbanks, Alaska Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_8a_usa_ak_fairbanks_post1980_v1.3_5.0.zip refbldg_8a_usa_ak_fairbanks_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 3A Atlanta, Georgia Reference Buildings by Climate Zone and Representative City: 6B Helena, Montana Reference Buildings by Building Type: Secondary school

170

2Q CY2012 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2012 (PDF), Facility Representative Program Performance 2Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April through June 2012. Data for these indicators were gathered by field elements per Department of Energy (DOE) Technical Standard 1063-2011, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report include: FR Staffing/Qualification/Oversight Data * DOE was staffed at 176 FR Full Time Equivalents (FTE), which is 95 percent of the full staffing level (DOE goal is 100 percent). This staff reflects a

171

1Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2005 (PDF), Facility Representative Program Performance 1Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives. and reported to Headquarters program offices for evaluation and feedback in order to improve the FR Program. As of March 31st, 2005, 88% of all FRs were fully qualified, up from 86% the previous quarter, and exceeding the DOE goal of 80%. Several of the new FRs hired recently completed qualifications. Eighteen of 27 reporting sites meet the goal of FR qualifications

172

4Q CY2004 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4 (PDF), Facility Representative Program Performance 4 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from October to December 2004. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the FR program. As of December 31, 2004, 86% of all FRs were fully qualified,down from 89% the previous quarter, and exceeding the DOE goal of 80%. Several sites added new FRs or switched FRs from their exisiting facilities to new facilities, reducing the overall qualification rate.

173

2Q CY2004 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2004 (PDF), Facility Representative Program Performance 2Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from April to June 2004. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the FR program. As of June 30, 2004, 89% of all FRs were fully qualified , exceeding the DOE goal of 80%, but down slightly from the previous quarter. Twenty of 28 reporting sites meet the goal for FR qualifications. Overall FR staffing is at 85% of the levels needed per the staffing

174

3Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2005 (PDF), Facility Representative Program Performance 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. As of September 30,2005, 84% of all FRs were fully qualified , down from 87% the previous quarter, but exceeding the DOE goal of 80%. Several sites shifted fully-qualifed FRs to new facilities, thus requiring new qualifications. Although the overall percentage of fully qualified FRS

175

3Q CY2004 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2004 (PDF), Facility Representative Program Performance 3Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from July to September 2004. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the FR program. As of September 30, 2004, 89% of all FRs were fully qualified, the same as last quarter, and exceeding the DOE goal of 80%. Twenty of 28 reporting sites meet the goal for FR qualifications. Overall FR stadding is at 85% of the levels needed per the staffing analysis methodology in

176

2Q CY2009 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2009 (PDF), Facility Representative Program Performance 2Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2009. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 77% Fully Qualified (last quarter was 78%) 90% Staffing Level ( last Quarter was 90%); 45% Time Spent in the Field (DOE goal is>40%); and 73% Time Spent in Oversight Activites (DOE Goal is > 65%)"

177

4Q CY2000, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Department of Energy Washington, DC 20585 February 26,2001 MEMORANDUM FOR DISTRIBUTION FROM: seph Arango, Facility Representative Program Manager (S-3.1) SUBJECT: Facility Representative Program Performance Indicators Quarterly Report The Facility Representative Program Performance Indicators Quarterly Report is attached, covering the period from October to December 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, 063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definitions of the PIs from the Standard are also attached for your use in evaluating the data. I intend to continue to provide this summary information to you quarterly. These provide

178

4Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2010 (PDF), Facility Representative Program Performance 4Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period October through December 2010. Data for these indicators were gathered by Field Elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report are presented below: FR Staffing/Qualification/Oversight Data * DOE was staffed at 184 FR Full Time Equivalents (FTEs) which is 92

179

4Q CY2008 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2008 (PDF), Facility Representative Program Performance 4Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2008. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 76% Fully Qualified ( last Quarter was 80%) 89% Staffing Level (last Quarter was 89%) 44% Time Spent in the Field ( Department of Energy)(DOE) goal is > 40%) 73% Time Spent in Oversight Activites (DOE Goal is> 65%)"

180

Order Module--RADIATION PROTECTION PROGRAMS GUIDE | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

RADIATION PROTECTION PROGRAMS GUIDE RADIATION PROTECTION PROGRAMS GUIDE Order Module--RADIATION PROTECTION PROGRAMS GUIDE The familiar level of this module is designed to provide the basic information related to DOE G 441.1-1C, Radiation Protection Programs Guide, as required in DOE-STD-1174-2003, Radiation Protection Functional Area Qualification Standard, December 2003. Completion of this module also meets certain requirements associated with the DOE Facility Representative Program and the DOE Intern Program. The information contained in this module addresses specific requirements and as such does not include the entire text of the source document. Before continuing, you should obtain a copy of the Order. Copies of the DOE Directives are available at http://www.directives.doe.gov/ or through the course manager. In March

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Facility Representative Program Performance Indicators for October - December 2010  

Broader source: Energy.gov (indexed) [DOE]

FOR DISTRIBUTION FOR DISTRIBUTION FROM: ANDREW C. LAWRENCE DIRECTOR OFFICE OF NUCLEAR SAFETY, QUALITY ASSURANCE AND ENVIRONMENT OFFICE OF HEALTH, SAFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, October-December (Fourth Quarter Calendar Year 2010) This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period October through December 2010. Data for these indicators were gathered by Field Elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report are presented below:

182

Radionuclide Interaction and Transport in Representative Geologic Media |  

Broader source: Energy.gov (indexed) [DOE]

Radionuclide Interaction and Transport in Representative Geologic Radionuclide Interaction and Transport in Representative Geologic Media Radionuclide Interaction and Transport in Representative Geologic Media The report presents information related to the development of a fundamental understanding of disposal-system performance in a range of environments for potential wastes that could arise from future nuclear fuel cycle alternatives. It addresses selected aspects of the development of computational modeling capability for the performance of storage and disposal options. Topics include radionuclide interaction with geomedia, colloid-facilitated radionuclide transport (Pu colloids), interaction between iodide (accumulate in the interlayer regions of clay minerals) and a suite of clay minerals, adsorption of uranium onto granite and bentonite,

183

Module Handbook Specialisation Biomass Energy  

E-Print Network [OSTI]

Module Handbook Specialisation Biomass Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Zaragoza Specialisation Provider: Biomass Energy #12;Specialisation Biomass Energy, University of Zaragoza Modul: Introduction and Basic Concepts

Damm, Werner

184

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric...

185

Modulated voltage metastable ionization detector  

SciTech Connect (OSTI)

Metastable ionization detectors used for chromatographic analysis usually employa fixed high voltage for the ionization potential. For this reason, the operating range is limited to about three orders of magnitude. By use of the technique disclosed in the instant invention, operating ranges of about nine orders of magnitude are obtained. The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration fo the constituent and a representative amplitude is applied to another input of said strip chart recorder.

Carle, G. C.; Humphry, D. E.; Kojiro, D. R.

1985-08-27T23:59:59.000Z

186

Reference Buildings by Climate Zone and Representative City: 7 Duluth,  

Broader source: Energy.gov (indexed) [DOE]

7 7 Duluth, Minnesota Reference Buildings by Climate Zone and Representative City: 7 Duluth, Minnesota In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_7a_usa_mn_duluth_pre1980_v1.3_5.0.zip refbldg_7a_usa_mn_duluth_pre1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 3B Los Angeles, California Reference Buildings by Climate Zone and Representative City: 3C San Francisco, California Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois

187

WIPP Representative Selected For National Environmental Justice Advisory  

Broader source: Energy.gov (indexed) [DOE]

WIPP Representative Selected For National Environmental Justice WIPP Representative Selected For National Environmental Justice Advisory Board WIPP Representative Selected For National Environmental Justice Advisory Board March 1, 2012 - 12:00pm Addthis Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. CARLSBAD, N.M. - Organizers say no similar opportunity or conference exists in America. In April, representatives from federal and state

188

Reference Buildings by Climate Zone and Representative City: 6A  

Broader source: Energy.gov (indexed) [DOE]

A A Minneapolis, Minnesota Reference Buildings by Climate Zone and Representative City: 6A Minneapolis, Minnesota In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_6a_usa_mn_minneapolis_post1980_v1.3_5.0.zip refbldg_6a_usa_mn_minneapolis_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 7 Duluth, Minnesota Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois Reference Buildings by Climate Zone and Representative City: 5B Boulder,

189

WIPP Representative Selected For National Environmental Justice Advisory  

Broader source: Energy.gov (indexed) [DOE]

Representative Selected For National Environmental Justice Representative Selected For National Environmental Justice Advisory Board WIPP Representative Selected For National Environmental Justice Advisory Board March 1, 2012 - 12:00pm Addthis Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. CARLSBAD, N.M. - Organizers say no similar opportunity or conference exists in America. In April, representatives from federal and state

190

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

WIPP Representative for Cutting Travel Costs, Greenhouse WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 1, 2012 - 12:00pm Addthis Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. WASHINGTON, D.C. - A representative of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., on Tuesday received the Secretary of Energy's Appreciation Award for her efforts to improve sustainability and reduce travel costs and the number of fleet vehicles. Judy A. McLemore, who works for URS Regulatory and Environmental Services, based in Carlsbad, was honored for helping advance DOE's management and

191

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

1A Miami, Florida Reference Buildings by Climate Zone and Representative City: 1A Miami, Florida In addition to the ZIP file for each building type, you can directly view the...

192

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

B Boulder, Colorado Reference Buildings by Climate Zone and Representative City: 5B Boulder, Colorado In addition to the ZIP file for each building type, you can directly view the...

193

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

A Chicago, Illinois Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois In addition to the ZIP file for each building type, you can directly view the...

194

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

B Phoenix, Arizona Reference Buildings by Climate Zone and Representative City: 2B Phoenix, Arizona In addition to the ZIP file for each building type, you can directly view the...

195

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

7 Duluth, Minnesota Reference Buildings by Climate Zone and Representative City: 7 Duluth, Minnesota In addition to the ZIP file for each building type, you can directly view the...

196

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

A Baltimore, Maryland Reference Buildings by Climate Zone and Representative City: 4A Baltimore, Maryland In addition to the ZIP file for each building type, you can directly view...

197

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

C Seattle, Washington Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington In addition to the ZIP file for each building type, you can directly view...

198

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

A Atlanta, Georgia Reference Buildings by Climate Zone and Representative City: 3A Atlanta, Georgia In addition to the ZIP file for each building type, you can directly view the...

199

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

8 Fairbanks, Alaska Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska In addition to the ZIP file for each building type, you can directly view the...

200

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

B Las Vegas, Nevada Reference Buildings by Climate Zone and Representative City: 3B Las Vegas, Nevada In addition to the ZIP file for each building type, you can directly view the...

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

A Houston, Texas Reference Buildings by Climate Zone and Representative City: 2A Houston, Texas In addition to the ZIP file for each building type, you can directly view the...

202

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

B Helena, Montana Reference Buildings by Climate Zone and Representative City: 6B Helena, Montana In addition to the ZIP file for each building type, you can directly view the...

203

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

C San Francisco, California Reference Buildings by Climate Zone and Representative City: 3C San Francisco, California In addition to the ZIP file for each building type, you can...

204

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

B Los Angeles, California Reference Buildings by Climate Zone and Representative City: 3B Los Angeles, California In addition to the ZIP file for each building type, you can...

205

DOE/Advisory Board Recognize Service of Student Representatives...  

Energy Savers [EERE]

Board Recognize Service of Student Representatives April 16, 2014 - 12:58pm Addthis The Oak Ridge Site Specific Advisory Board (ORSSAB) and the U.S. Department of Energy's (DOE)...

206

August 20, 2014 meeting with DOE representatives regarding the...  

Energy Savers [EERE]

August 20, 2014 meeting with DOE representatives regarding the remand of the DOE Direct Final Rule as it relates to efficiency standards for non-weatherized gas furnaces August 20,...

207

*Official Academic Senate Representative Dean of UC Davis Extension  

E-Print Network [OSTI]

*Official Academic Senate Representative Dean of UC Davis Extension Recruitment Advisory Committee, Health Sciences, Public Policy & Business Programs, UC Davis Extension Chloe Fox Undergraduate Student, International Agricultural Development; Outreach Coordinator, Program for International Energy Technologies

Schladow, S. Geoffrey

208

Appointment of Contracting Officers and Contracting Officer Representatives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish procedures governing the selection, appointment, and termination of contracting officers and for the appointment of contracting officer representatives. Cancels DOE Order 4200.4A. Canceled by DOE O 541.1A.

1996-04-30T23:59:59.000Z

209

W&M Student Elected to Represent American Physical Society's...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W&M Student Elected to Represent American Physical Society's Graduate Student Forum V Gray Valerie Gray, a graduate student at The College of William and Mary and a researcher at...

210

A representative individual from Arrovian aggregation of parametric individual utilities  

E-Print Network [OSTI]

A representative individual from Arrovian aggregation of parametric individual utilities social choice theory Assumptions Assumption on decisive coalitions Assumptions on individual utility functions Assumptions on the social welfare function Results The socially acceptable utility function

211

2Q CY2007, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

0,2007 0,2007 M E M 0 R A N D ; p s ' X Z FROM: M RK B. WHI DEPARTMENTAL REPRESENTATIVE TO THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD OFFICE OF HEALTH, SAFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, April - June (2nd Quarter CY2007) Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2007. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 74% Fully Qualified (last Quarter was 72%) 94% Staffing Level (last Quarter was 9 1 %)

212

Assumptions to the Annual Energy Outlook - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumption to the Annual Energy Outlook Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).109 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

213

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 23 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 International Energy Module The NEMS International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of future U.S. and world crude-like liquids production and consumption to estimate the effects of changes in U.S. liquid fuels markets on the international petroleum market. For each year of the forecast, the NEMS IEM computes world oil prices, provides a supply curve of world crude-like liquids, generates a worldwide oil supply- demand balance with regional detail, and computes quantities of crude oil and light and heavy petroleum products imported into

214

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

215

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 137 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, bioesters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Administration for

216

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 135 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Administration for

217

Flywheel Energy Storage Module  

Broader source: Energy.gov (indexed) [DOE]

kWh/100 kW kWh/100 kW Flywheel Energy Storage Module * 100KWh - 1/8 cost / KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft / Hub (which limits surface speed) * Flexible Motor Magnets on Rim ID * Develop Touch-down System for Earthquake Flying Rim Eliminate Shaft and Hub Levitate on Passive Magnetic Bearings Increase Rim Tip Speed Larger Diameter Thinner Rim Stores More Energy 4 X increase in Stored Energy with only 60% Increase in Weight Development of a 100 kWh/100 kW Flywheel Energy Storage Module High Speed, Low Cost, Composite Ring with Bore-Mounted Magnetics Current State of the Art Flywheel Limitations of Existing Flywheel * 15 Minutes of storage * Limited to Frequency Regulation Application * Rim Speed (Stored Energy) Limited by Hub Strain and Shaft Dynamics

218

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 International Energy Module The NEMS International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of future U.S. and world crude-like liquids production and consumption to estimate the effects of changes in U.S. liquid fuels markets on the international petroleum market. For each year of the forecast, the NEMS IEM computes oil prices, provides a supply curve of world crude-like liquids, generates a worldwide oil supply- demand balance with regional detail, and computes quantities of crude oil and light and heavy petroleum products imported into the United States by export region. Changes in the oil price (WTI), which is defined as the price of light, low-sulfur crude oil delivered to Cushing, Oklahoma in

219

Detection of amplitude modulation, frequency modulation, and quasifrequency modulation by the budgerigar (Melopsittacus undulatus)  

Science Journals Connector (OSTI)

In budgerigars as in humans the detection of amplitude modulation (AM) remains relatively constant as modulation frequency increases while detection of frequency modulation(FM) improves. The point at which FM and AM are equal defines the critical modulation frequency (CMF). The CMF is approximately half the size of the critical band in humans because phase information is lost outside the critical band. At small modulation indices the power spectrum of FM is almost identical to the power spectrum of AM with the difference being the relative phase of the components. The power spectrum of quasifreqeuncy modulation (QFM) is exactly the same as AM even at high?modulation indices. In this experiment two budgerigars were trained by operant conditioning to detect AM FM and QFM at several modulation rates at three carrier frequencies. Budgerigars show nearly identical thresholds for detecting modulation in FM and QFM tones at low?modulation rates and similar thresholds for detecting modulation in FM AM and QFM tones at higher modulation rates. These results argue for an insensitivity to phase differences in budgerigars when they fall outside the frequency bandwidths of the auditory system. [Work supported by NIH Grant Nos. DC?00198 and MH?00982 to RJD.

Jian?Yu Lin; Robert J. Dooling

1997-01-01T23:59:59.000Z

220

Simulating a Nationally Representative Housing Sample Using EnergyPlus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulating a Nationally Representative Housing Sample Using EnergyPlus Simulating a Nationally Representative Housing Sample Using EnergyPlus Title Simulating a Nationally Representative Housing Sample Using EnergyPlus Publication Type Report LBNL Report Number LBNL-4420E Year of Publication 2011 Authors Hopkins, Asa S., Alexander B. Lekov, James D. Lutz, and Gregory J. Rosenquist Subsidiary Authors Energy Analysis Department Pagination 55 Date Published March 1 Publisher Lawrence Berkeley National Laboratory City Berkeley ISBN Number LBNL-4420E Abstract This report presents a new simulation tool under development at Lawrence Berkeley National Laboratory (LBNL). This tool uses EnergyPlus to simulate each single-family home in the Residential Energy Consumption Survey (RECS), and generates a calibrated, nationally representative set of simulated homes whose energy use is statistically indistinguishable from the energy use of the single-family homes in the RECS sample. This research builds upon earlier work by Ritchard et al. for the Gas Research Institute and Huang et al. for LBNL. A representative national sample allows us to evaluate the variance in energy use between individual homes, regions, or other subsamples; using this tool, we can also evaluate how that variance affects the impacts of potential policies.

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 - 12:19pm Addthis Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE’s vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were reduced by greater than 60 percent. Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE's vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were

222

SUBJECT: Guidance on Retention of Facility Representative Technical  

Broader source: Energy.gov (indexed) [DOE]

SUBJECT: Guidance on Retention of Facility Representative Technical SUBJECT: Guidance on Retention of Facility Representative Technical Competence during Reductions in Force, 4/21/1998 SUBJECT: Guidance on Retention of Facility Representative Technical Competence during Reductions in Force, 4/21/1998 The Department's Revised Implementation Plan (IP) for Defense Nuclear Facilities Safety Board Recommendation 93-3 renews the Department's commitment to maintaining the technical capability necessary to safely manage and operate defense nuclear facilities. Retaining highly qualified employees in critical technical skills areas is vital to the maintenance of these technical capabilities. The Department has therefore committed in the revised R? to the development of a model that offices can use to proactively manage and preserve critical technical capabilities. During the

223

Facility Representative Program Performance Indicators for October-December 2011  

Broader source: Energy.gov (indexed) [DOE]

2012 2012 MEMORANDUM FOR DISTRIBUTION FROM: JAMES B. O'BRIEN DIRECTOR ~ OFFICE OF :-IDC~AR AFETY OFFICE OF HEAL 'l;H, AFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, October- December 20 ll This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October through December 2011. Data for these indicators were gathered by field elements per Department of Energy (DOE) Technical Standard 1063-2011 , Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report include: FR Staffing/Qualification/Oversight Data * DOE was staffed at 179 FR Full Time Equivalents (FTE), which is 92 percent of the full

224

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 - 12:19pm Addthis Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE’s vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were reduced by greater than 60 percent. Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE's vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were

225

Facility Representative Program Performance Indicators for April - June 2011  

Broader source: Energy.gov (indexed) [DOE]

0 , 2011 MEMORANDUM FOR DISTRIBUTION FROM: JAMES B. O'BRIEN SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, April - June 20 1 I This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period April through June 20 1 1. Data for these indicators were gathered by Field Elements per Department of Energy (DOE) Technical Standard (STD) 1063-20 1 1, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report: FR Staffin~/Qualification/Oversi~ht Data DOE was staffed at 180 FR Full Time Equivalents (FTEs), which is 9 1 percent of the full staffing level (DOE goal is 100 percent).

226

4Q CY2007, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

6, 2008 6, 2008 MEMORANDUM FROM: DEPARTMENTAL REPRESENTATNE TO THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD OFFICE OF HEALTH, SAFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, October - December (4th Quarter CY2007) Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2007. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 83% Fully Qualified (last Quarter was 82%) 85% Staffing Level (last Quarter was 93%) 45% Time Spent in the Field (DOE goal is >40%)

227

Landscape Characterization and Representativeness Analysis for Understanding Sampling Network Coverage  

SciTech Connect (OSTI)

Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.

Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William

2014-08-01T23:59:59.000Z

228

Landscape Characterization and Representativeness Analysis for Understanding Sampling Network Coverage  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.

Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William

229

June 21, 1999 Memo, Facility Representative Program Status  

Broader source: Energy.gov (indexed) [DOE]

June June 21, 1999 MEMORANDUM FOR: Assistant Secretary for Defense Programs Assistant Secretary for Environmental Management Director, Office of Science Director, Office of Nuclear Energy, Science and Technology FROM: John Wilcynski, Director, Office of Field Integration SUBJECT: FACILITY REPRESENTATIVE PROGRAM STATUS Since September, 1993, the Office of Field Management has served as the Department's corporate advocate for the Facility Representative Program. The Facility Representative (FR) is a critical technical position serving as line management's "eyes and ears" for operational safety in our contractor-operated facilities. I recognize the importance of the FR Program, and commit the Office of Field Integration (FI) to its continued crosscutting support. The FI staff continues to work with your staff members and with the Defense Nuclear Facilities

230

Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative,  

Broader source: Energy.gov (indexed) [DOE]

Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative, 12/03 Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative, 12/03 An assessment of the Electrical Safety (ES) program at XXXX was conducted during the week of December XX-XX, 2003. The assessment team evaluated the program using the programmatic areas and specific Lines of Inquiry (LOI) contained in the approved Assessment plan provided. The team consisted of the Facility Representative from National Nuclear Security Administration, as well as ES, Subject Matter Expert support. The assessment plan identified 5 areas of review for Electrical Safety. An integrated process has been established to ensure electrical safety hazards are identified and that adequate controls are defined and

231

Assumptions to the Annual Energy Outlook - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module Assumption to the Annual Energy Outlook Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2004, DOE/EIA- M068(2004). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described.

232

Processing module operating methods, processing modules, and communications systems  

DOE Patents [OSTI]

A processing module operating method includes using a processing module physically connected to a wireless communications device, requesting that the wireless communications device retrieve encrypted code from a web site and receiving the encrypted code from the wireless communications device. The wireless communications device is unable to decrypt the encrypted code. The method further includes using the processing module, decrypting the encrypted code, executing the decrypted code, and preventing the wireless communications device from accessing the decrypted code. Another processing module operating method includes using a processing module physically connected to a host device, executing an application within the processing module, allowing the application to exchange user interaction data communicated using a user interface of the host device with the host device, and allowing the application to use the host device as a communications device for exchanging information with a remote device distinct from the host device.

McCown, Steven Harvey; Derr, Kurt W.; Moore, Troy

2014-09-09T23:59:59.000Z

233

Wave Energy Resources Representative Sites Around the Hawaiian Islands  

E-Print Network [OSTI]

Wave Energy Resources for Representative Sites Around the Hawaiian Islands Prepared by: Luis A Foreword This report provides wave energy resource information required to select coastal segments for specific wave-energy-conversion (WEC) technology and to initiate engineering design incorporating

234

Representing and encoding plant architecture: A review Christophe Godin*  

E-Print Network [OSTI]

Review Representing and encoding plant architecture: A review Christophe Godin* CIRAD, Programme de and topological organisation of these components defines the plant architecture. Before the early 1970's-performance computers have become available for plant growth analysis and simulation, trig- gering the development

Paris-Sud XI, Université de

235

A Mathematical Programming Model for Scheduling Pharmaceutical Sales Representatives  

E-Print Network [OSTI]

% to nearly 80,000 from 50,000, and that visits by sales representatives to doctors' offices increased ten. In the next section, we present some background material relevant to this research. Then, in Section 3, we instances in Section 4. We present concluding remarks in Section 5. 2. Background For multi

Gautam, Natarajan

236

Representing SN1 Reaction Mechanism Using the Qualitative Process Theory  

E-Print Network [OSTI]

nucleophilic substitution) and the SN2 (bimolecular nucleophilic substitution). Our intention is not to trainRepresenting SN1 Reaction Mechanism Using the Qualitative Process Theory Alicia Tang Y domain remains widely open. The application of Qualitative Process Theory (QPT) in organic reaction

Bailey-Kellogg, Chris

237

Appointment of Contracting Officers and Contracting Officer's Representatives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish procedures governing the selection, appointment, and termination of contracting officers and for the appointment of contracting officer's representatives. To ensure that only trained and qualified procurement and financial assistance professionals, within the scope of this Order, serve as contracting officers. Cancels DOE O 541.1. Canceled by DOE O 541.1B.

2000-10-27T23:59:59.000Z

238

Anthropogenic Biomes ver. 1 Anthropogenic biomes represent heterogeneous  

E-Print Network [OSTI]

defined by population density and vegetation cover. The 21 biomes are grouped into six major categoriesAnthropogenic Biomes ver. 1 Africa Anthropogenic biomes represent heterogeneous landscape mosaics: Populated irrigated cropland 34: Populated rainfed cropland 35: Remote croplands 41: Residential rangelands

Columbia University

239

Hilbert von Neumann modules  

E-Print Network [OSTI]

We introduce a way of regarding Hilbert von Neumann modules as spaces of operators between Hilbert space, not unlike [Skei], but in an apparently much simpler manner and involving far less machinery. We verify that our definition is equivalent to that of [Skei], by verifying the `Riesz lemma' or what is called `self-duality' in [Skei]. An advantage with our approach is that we can totally side-step the need to go through $C^*$-modules and avoid the two stages of completion - first in norm, then in the strong operator topology - involved in the former approach. We establish the analogue of the Stinespring dilation theorem for Hilbert von Neumann bimodules, and we develop our version of `internal tensor products' which we refer to as Connes fusion for obvious reasons. In our discussion of examples, we examine the bimodules arising from automorphisms of von Neumann algebras, verify that fusion of bimodules corresponds to composition of automorphisms in this case, and that the isomorphism class of such a bimodule...

Bikram, Panchugopal; Srinivasan, R; Sunder, V S

2011-01-01T23:59:59.000Z

240

Photovoltaic concentrator module improvements study  

SciTech Connect (OSTI)

This report presents results of a project to design and fabricate an improved photovoltaic concentrator module. Using previous work as a baseline, this study conducted analyses and testing to select major module components and design features. The lens parquet and concentrator solar cell were selected from the highest performing, available components. A single 185X point-focus module was fabricated by the project team and tested at Sandia. Major module characteristics include a 6 by 4 compression-molded acrylic lens parquet (0.737 m{sup 2} area), twenty-four 0.2 ohms-cm, FZ, p-Si solar cells (1.56 cm{sup 2} area) soldered to ceramic substrates and copper heat spreaders, and an aluminized steel housing with corrugated bottom. This project marked the first attempt to use prismatic covers on solar cells in a high-concentration, point-focus application. Cells with 15 percent metallization were obtained, but problems with the fabrication and placement of prismatic covers on these cells lead to the decision not to use covers in the prototype module. Cell assembly fabrication, module fabrication, and module optical design activities are presented here. Test results are also presented for bare cells, cell assemblies, and module. At operating conditions of 981 watts/m{sup 2} DNI and an estimated cell temperature of 65{degrees}C, the module demonstrated an efficiency of 13.9 percent prior to stressed environmental exposure. 12 refs., 56 figs., 7 tabs.

Levy, S.L.; Kerschen, K.A. (Black and Veatch, Kansas City, MO (United States)); Hutchison, G. (Solar Kinetics, Inc., Dallas, TX (United States)); Nowlan, M.J. (Spire Corp., Bedford, MA (United States))

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Approved Module Information for ME2501, 2014/5 Module Title/Name: Design for Use Module Code: ME2501  

E-Print Network [OSTI]

process How to gather user data The role of creativity within engineering design. #12;Module Delivery2501 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Credits and Management. BSc Transport Product Design. BEng/MEng Mechanical Engineering. BEng/MEng Electromechanical

Neirotti, Juan Pablo

242

Livermore Site Office Facility Representative Program Self-Assessment  

Broader source: Energy.gov (indexed) [DOE]

ARPT-LSO-2011-001 ARPT-LSO-2011-001 Site: Livermore Site Office Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Livermore Site Office Facility Representative Program Self-Assessment Dates of Activity 01/24/2011 - 01/28/2011 Report Preparer Robert Freeman Activity Description/Purpose: This activity report documents the results of the Office of Health, Safety and Security's (HSS) review of and participation in the Livermore Site Office Self-Assessment of the Facility Representative (FR) Program. This self-assessment was led by the U.S. Department of Energy (DOE) Livermore Site Office (LSO) and conducted by LSO staff, HSS staff, National Nuclear Security Administration (NNSA) Office of the Chief of Defense Nuclear Safety (CDNS) staff, a peer from Los Alamos Site

243

Processes, data structures, and apparatuses for representing knowledge  

DOE Patents [OSTI]

Processes, data structures, and apparatuses to represent knowledge are disclosed. The processes can comprise labeling elements in a knowledge signature according to concepts in an ontology and populating the elements with confidence values. The data structures can comprise knowledge signatures stored on computer-readable media. The knowledge signatures comprise a matrix structure having elements labeled according to concepts in an ontology, wherein the value of the element represents a confidence that the concept is present in an information space. The apparatus can comprise a knowledge representation unit having at least one ontology stored on a computer-readable medium, at least one data-receiving device, and a processor configured to generate knowledge signatures by comparing datasets obtained by the data-receiving devices to the ontologies.

Hohimer, Ryan E. (West Richland, WA); Thomson, Judi R. (Guelph, CA); Harvey, William J. (Richland, WA); Paulson, Patrick R. (Pasco, WA); Whiting, Mark A. (Richland, WA); Tratz, Stephen C. (Richland, WA); Chappell, Alan R. (Seattle, WA); Butner, R. Scott (Richland, WA)

2011-09-20T23:59:59.000Z

244

Module Title: Metamaterials, Nanophotonics and Plasmonics Module Code: OPTO6004  

E-Print Network [OSTI]

Module lecturers Dr Nicholas Papasimakis, Dr Eric Plum, Dr Vassili A Fedotov Contact (email ID) np3@orc.soton.ac.uk; erp@orc.soton.ac.uk; vaf@orc.soton.ac.uk Is the module subject to external accreditation? No If yes

Anderson, Jim

245

Proposal for New Module Module Title: Photonic Materials  

E-Print Network [OSTI]

Information Academic Unit responsible for the module ORC Core/Compulsory/Optional Compulsory Programme, Dr. S. M. Ganapathy, Dr. G. Brambilla Contact (email ID) acp@orc.soton.ac.uk; smg@orc.soton.ac.uk; gb2@orc.soton.ac.uk Will the module be subject to external accreditation? No If yes, by which body

Southampton, University of

246

Module title Human Resource Management Module code INT3604  

E-Print Network [OSTI]

working and the positive management of conflict and cultural difference Syllabus plan Syllabus planModule title Human Resource Management Module code INT3604 Academic year(s) 2013/4 Credits 15 Basic in the context of human resource management principles and practice as currently applied within organisations

Mumby, Peter J.

247

Module Code ST2004 Module Title Applying Probability: Introduction  

E-Print Network [OSTI]

: Dekker, Kraaikamp, Lopuhaa, Meester: A Modern Introduction to Probability and Statistics, Springer,2005 Probability, 2nd ed, Cambridge, 2007 Swift, L: Mathematics and Statistics for Business, Management and FinanceModule Code ST2004 Module Title Applying Probability: Introduction Pre-requisites None ECTS 5

O'Mahony, Donal E.

248

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2006, DOE/EIA-M060(2006) (Washington, DC, 2006). Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2006, DOE/EIA-M060(2006) (Washington, DC, 2006). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

249

DOE | Office of Health, Safety and Security | 2012 Facility Representative,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative Facility Representative Office of Nuclear Safety Home Facility Representative Home Annual Facility Rep Workshop › 2012 › 2011 › 2010 › 2009 › 2008 › 2007 › 2006 › 2005 › 2004 › 2003 › 2002 › 2001 › 2000 DOE Safety Links › ORPS Info › Operating Experience › DOE Lessons Learned › Accident Investigation Assessment Tools › FR CRADs › Surveillance Guides › Manager's Guide for Safety and Health Subject Matter Links General Program Information › Program Mission Statement › Program Directives and Guidance › FR of the Year Award Program › FR of the Year Award › FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) FR Quarterly Performance Indicators Training & Qualification Information › Qualification Standards › Energy Online Courses

250

Domain assignments for FSSP representative set using DomainParser  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Domain assignments for the FSSP representative set Domain assignments for the FSSP representative set The following are the domain assignments for the FSSP representative set (released on January 31, 2000, 1987 chains in total) using DomainParser. Each line shows a PDB entry (with a chain identifier if any), total number of residues, number of domains, and domain assignments. The result is obtained fully automatically without manual editing. 12asa 327 2 (33-86; 271-288) (4-32; 87-270; 289-330) 153l 185 1 16pk 415 2 (5-205; 409-419) (206-408) 16vpa 311 2 (47-130; 164-233; 324-349) (131-163; 234-323; 395-402) 1914 171 1 19hca 292 2 (45-107) (1-44; 108-292) 1a02f 53 1 1a02j 52 1 1a02n 280 2 (399-569) (570-678) 1a04a 205 2 (5-126) (127-216) 1a0aa 63 1 1a0ca 437 1 1a0fa 201 2 (1-81) (82-201) 1a0ha 159 1 1a0i 332 2 (2-239) (240-349)

251

Observation of Nonlocal Modulation with Entangled Photons  

E-Print Network [OSTI]

We demonstrate a new type of quantum mechanical correlation where phase modulators at distant locations, acting on the photons of an entangled pair, interfere to determine the apparent depth of modulation. When the modulators have the same phase, the modulation depth doubles; when oppositely phased, the modulators negate each other.

S. Sensarn; G. Y. Yin; S. E. Harris

2009-09-27T23:59:59.000Z

252

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

other refinery inputs including alcohols, ethers, bioesters, other refinery inputs including alcohols, ethers, bioesters, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of U.S. refining activities in the five Petroleum Area Defense Districts (PADDs) (Figure 9). The model is created by aggregating individual refineries into one linear programmming representation for each PADD. This representation provides the marginal costs of production for a number of conventional and new petroleum products. In order to interact with other NEMS modules with different regional representations, certain PMM inputs and outputs are converted from PADD regions to other regional structures and vice versa. The linear programming results are used to determine

253

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

6, DOE/EIA- 6, DOE/EIA- M068(2006). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described. EMM Regions The supply regions used in EMM are based on the North American Electric Reliability Council regions and

254

Photovoltaic module mounting system  

DOE Patents [OSTI]

A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

2012-09-18T23:59:59.000Z

255

Photovoltaic module mounting system  

DOE Patents [OSTI]

A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

Miros, Robert H. J. (Fairfax, CA); Mittan, Margaret Birmingham (Oakland, CA); Seery, Martin N. (San Rafael, CA); Holland, Rodney H. (Novato, CA)

2012-04-17T23:59:59.000Z

256

Light modulating device  

DOE Patents [OSTI]

In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity.

Rauh, R. David (Newton, MA); Goldner, Ronald B. (Lexington, MA)

1989-01-01T23:59:59.000Z

257

Light modulating device  

DOE Patents [OSTI]

In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity are disclosed. 1 fig.

Rauh, R.D.; Goldner, R.B.

1989-12-26T23:59:59.000Z

258

Argonne's SpEC Module  

ScienceCinema (OSTI)

Jason Harper, an electrical engineer in Argonne National Laboratory's EV-Smart Grid Interoperability Center, discusses his SpEC Module invention that will enable fast charging of electric vehicles in under 15 minutes. The module has been licensed to BTCPower.

Harper, Jason

2014-06-05T23:59:59.000Z

259

Hierarchical classification of modulation signals  

E-Print Network [OSTI]

features are extracted and used to classify 11 modulation signals plus white noise in a hierarchical fashion. The modulation signals include carrier wave (CW), AM, FM, SSB, FSK2, FSK4, PSK2, PSK4, OOK, QAM16, and QAM32. A hierarchy of classifiers...

Kim, Nam Jin

2012-06-07T23:59:59.000Z

260

Oil and Gas Supply Module  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Gas Supply Module Oil and Gas Supply Module This page inTenTionally lefT blank 119 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples  

SciTech Connect (OSTI)

Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy?s extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative sampling directly from the large Tank Farm tanks is a difficult, if not unsolvable enterprise due to li

Shine, E. P.; Poirier, M. R.

2013-10-29T23:59:59.000Z

262

SOLAR ENERGETIC PARTICLE MODULATIONS ASSOCIATED WITH COHERENT MAGNETIC STRUCTURES  

SciTech Connect (OSTI)

In situ observations of solar energetic particles (SEPs) often show rapid variations of their intensity profile, affecting all energies simultaneously, without time dispersion. A previously proposed interpretation suggests that these modulations are directly related to the presence of magnetic structures with a different magnetic topology. However, no compelling evidence of local changes in magnetic field or in plasma parameters during SEP modulations has been reported. In this paper, we performed a detailed analysis of SEP events and we found several signatures in the local magnetic field and/or plasma parameters associated with SEP modulations. The study of magnetic helicity allowed us to identify magnetic boundaries, associated with variations of plasma parameters, which are thought to represent the borders between adjacent magnetic flux tubes. It is found that SEP dispersionless modulations are generally associated with such magnetic boundaries. Consequently, we support the idea that SEP modulations are observed when the spacecraft passes through magnetic flux tubes, filled or devoid of SEPs, which are alternatively connected and not connected with the flare site. In other cases, we found SEP dropouts associated with large-scale magnetic holes. A possible generation mechanism suggests that these holes are formed in the high solar corona as a consequence of magnetic reconnection. This reconnection process modifies the magnetic field topology, and therefore, these holes can be magnetically isolated from the surrounding plasma and could also explain their association with SEP dropouts.

Trenchi, L.; Bruno, R.; D'amicis, R.; Marcucci, M. F. [INAF-Istituto di Astrofisica e Planetologia Spaziali, Via del fosso del Cavaliere 100, 00133 Rome (Italy); Telloni, D. [INAF, Astronomical Observatory of Torino, Via Osservatorio 20, 10025 Pino Torinese (Italy); Zurbuchen, T. H.; Weberg, M., E-mail: lorenzo.trenchi@iaps.inaf.it [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI (United States)

2013-06-10T23:59:59.000Z

263

Facility Representative Program: Criteria Review and Approach Document  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment Tools Assessment Tools Surveillance Guides Manager's Guide for Safety and Health Walkthroughs Criteria Review and Approach Document This page provides Criteria Review and Approach Documents (CRADS) to assist Facility Representatives. Please submit your CRADS for posting by sending them to the HQ FR Program Manager. Please include the subject, date, and a contact person. Communications NASA Benchmarks Communications Assessment Plan Configuration Management Configuration Management Assessment Plan Confined Space Confined Spaces Assessment Plan Conduct of Operations Conduct of Operations Assessment Plan Electrical Assessment Electrical Safety Assessment Plan Facility Procedures Verification and Validation of Facility Procedures Assessment Plan Hoisting and Rigging

264

4Q CY2008, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

Http//www.hss.energy.gov/deprep/facrep/ Http//www.hss.energy.gov/deprep/facrep/ ENVIRONMENTAL MANAGEMENT SITES Facility Representative Program Performance Indicators (4QCY2008) Field or Ops Office Staffing Analysis FTEs Actual Staffing % Staffing Attrition % Core Qualified % Fully Qualified % Field Time * % Oversight Time ** CBFO 1 3 1 100 1 100 100 70 86 ID (EM) 13 12 11 85 0 82 82 43 84 OR (EM) 19 18 18 95 0 72 72 44 66 ORP 15 15 14 93 0 79 64 43 72 PPPO 6 5 5 83 0 80 80 44 70 RL 19 18 18 95 1 84 84 45 70 SPRU 1 1 1 100 0 100 0 30 80 SR 32 24 24 75 2 71 67 45 74 WVDP 2 2 2 100 0 50 50 42 70 EM Totals 108 98 94 87 4 77 72 44 72 DOE GOALS - - - 100 - - >80 >40 >65 * % Field Time is defined as the number of hours spent in the plant/field divided by the number of available work hours in the quarter. The number of available work hours is the actual number of hours a Facility Representative works in a calendar quarter, including overtime hours. It does not include

265

Integrated Module Heat Exchanger | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Module Heat Exchanger Integrated Module Heat Exchanger 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

266

Alternative Energy Sources - An Interdisciplinary Module for...  

Broader source: Energy.gov (indexed) [DOE]

Alternative Energy Sources - An Interdisciplinary Module for Energy Education Alternative Energy Sources - An Interdisciplinary Module for Energy Education Below is information...

267

Photovoltaic solar concentrator module  

SciTech Connect (OSTI)

This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

Chiang, C.J.

1991-05-16T23:59:59.000Z

268

Photovoltaic module with adhesion promoter  

DOE Patents [OSTI]

Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

2013-10-08T23:59:59.000Z

269

Quantum modulation against electromagnetic interference  

E-Print Network [OSTI]

Periodic signals in electrical and electronic equipment can cause interference in nearby devices. Randomized modulation of those signals spreads their energy through the frequency spectrum and can help to mitigate electromagnetic interference problems. The inherently random nature of quantum phenomena makes them a good control signal. I present a quantum modulation method based on the random statistics of quantum light. The paper describes pulse width modulation schemes where a Poissonian light source acts as a random control that spreads the energy of the potential interfering signals. I give an example application for switching-mode power supplies and comment the further possibilities of the method.

Juan Carlos Garcia-Escartin

2014-11-26T23:59:59.000Z

270

3Q CY2007, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

ENVIRONMENTAL MANAGEMENT SITES ENVIRONMENTAL MANAGEMENT SITES Facility Representative Program Performance Indicators (3QCY2007) Field or Ops Office Staffing Analysis FTEs Actual Staffing % Staffing Attrition % Core Qualified % Fully Qualified % Field Time * % Oversight Time ** CBFO 1 2 2 200 0 100 50 66 86 ID (ICP) 13 12 11 85 1 100 100 40 65 OR (EM) 19 17 16 84 0 94 88 47 71 ORP 14 14 14 100 0 100 93 46 74 PPPO 4 4 4 100 0 100 100 42 75 RL 19 19 19 100 0 100 95 73 69 SR 31 31 25 81 2 88 80 40 79 WVDP 2 2 2 100 0 100 100 43 65 EM Totals 103 101 93 90 3 96 89 50 73 DOE GOALS - - - 100 - - >80 >40 >65 * % Field Time is defined as the number of hours spent in the plant/field divided by the number of available work hours in the quarter. The number of

271

Facility Representative Program Assessment Criteria, Review, and Approach Document (CRAD)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STD-1063-2011 STD-1063-2011 Appendix B B-1 FACILITY REPRESENTATIVE PROGRAM ASSESSMENT GUIDE The DOE has implemented its FR Program, and is looking to continuously improve the program's effectiveness DOE-wide. An effective FR Program has many elements, as described in this Standard. These elements are intended to yield a program that provides DOE facilities with well-trained FRs who spend appropriate amounts of time in their facilities and can work effectively with their contractor management counterparts. The program, to be effective, needs the functional support of management. To maintain the continued support of DOE management, the FR program needs to demonstrate its continued performance and effectiveness, which is to be assessed periodically using

272

2Q CY2004, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

Attachment Attachment Facility Representative Program Performance Indicators Quarterly Report September 20, 2004 Distribution: Kyle McSlarrow, S-2 Bruce Carnes, S-2 Les Novitsky, S-2 David Garman, S-3 Linton Brooks, NA-1 Tyler Przybylek, NA-1 Everet Beckner, NA-10 James Mangeno, NA-3.6 Glenn Podonsky, SP-1 Mike Kilpatrick, OA-1 Patricia Worthington, OA-40 Paul Golan, EM-1 Inés Triay, EM-3 Patty Bubar, EM-3.2 Raymond Orbach, SC-1 Milt Johnson, SC-3 William Magwood, NE-1 Manager, Ames Site Office Manager, Argonne Site Office Manager, Brookhaven Site Office Manager, Carlsbad Field Office Manager, Fermi Site Office Manager, Idaho Operations Office Manager, Livermore Site Office Manager, Los Alamos Site Office Manager, Nevada Site Office Manager, Oak Ridge Operations Office Manager, Office of River Protection

273

1Q CY2010, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

Http: Http: OFFICE OF ENVIRONMENTAL MANAGEMENT (EM) Facility Representative Program Performance Indicators (1QCY2010) Field or Ops Office Staffing Analysis FTEs Actual Staffing % Staffing Attrition % Core Qualified % Fully Qualified % Field Time * % Oversight Time ** CBFO 3 3 3 100 0 100 33 50 78 ID (EM) 13 13 12 92 0 100 100 50 91 OR (EM) 18 17 18 100 0 100 81 45 67 ORP 15 15 14 93 1 93 80 51 81 PPPO 6 6 6 100 0 100 100 43 68 RL 19 19 19 100 0 95 95 43 69 SPRU 1 1 1 100 0 100 0 50 75 SR 32 29 29 91 1 69 69 43 76 WVDP 2 2 2 100 0 50 50 37 60 EM Totals 109 105 104 95 2 89 81 45 75 DOE GOALS - - - 100 - - >80 >40 >65 * Field or Ops Office Key:

274

Use of S-. alpha. diagram for representing tokamak equilibrium  

SciTech Connect (OSTI)

A use of the S-{alpha} diagram is proposed as a tool for representing the plasma equilibrium with a qualitative characterization of its stability through pattern recognition. The diagram is an effective tool for visually presenting the relationship between the shear and dimensionless pressure gradient of an equilibrium. In the PBX-M tokamak, an H-mode operating regime with high poloidal {beta} and L-mode regime with high toroidal {beta}, obtained using different profile modification techniques, are found to have distinct S-{alpha} trajectory patterns. Pellet injection into a plasma in the H-mode regime with high toroidal {beta}, obtained using different profile modification techniques, are found to have distinct S-{alpha} trajectory patterns. Pellet injection into a plasma in the H-mode regime results in favorable qualities of both regimes. The {beta} collapse process and ELM event also manifest themselves as characteristic changes in the S-{alpha} pattern.

Takahashi, H.; Chance, M.; Kessel, C.; LeBlanc, B.; Manickam, J.; Okabayashi, M.

1991-05-01T23:59:59.000Z

275

DOE-STD-1063-2000 - Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-STD-1063-2000 March 2000 Superseding DOE-STD-1063-97 October 1997 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1063-2000 iii FOREWORD 1. This Department of Energy standard is approved for use by all DOE Components. 2. The Revision to this DOE standard was developed by a working group consisting of

276

SIGNATURE O F AGENCY REPRESENTATIVE NATIONAL ENERGY STRATEGY  

Broader source: Energy.gov (indexed) [DOE]

MINOR SUBDIVISION MINOR SUBDIVISION Jeff Martus 01-903-3481 SIGNATURE O F AGENCY REPRESENTATIVE NATIONAL ENERGY STRATEGY See attached. National Energy Strategy The Department of Energy (DOE) was directed by President Bush on July 26, 1989 to begin the development of a comprehensive National Energy Strategy (NES). Published in February 1991, the NES provides the foundation for a more efficient, less vulnerable, and environmentally sustainable energy future. The NES defines international, commercial, regulatory, and technological policy tools that diversify U.S. resources of energy supplies and offers more flexibility and efficiency in the way energy is transformed and used. This proposed schedule provides for the disposition of records that have been created or received by DOE in connection with the

277

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum

278

Photovoltaic Module Qualification Plus Testing  

SciTech Connect (OSTI)

This report summarizes a set of test methods that are in the midst of being incorporated into IEC 61215 for certification of a module design or other tests that go beyond certification to establish bankability.

Kurtz, S.; Wohlgemuth, J.; Kempe, M.; Bosco, N.; Hacke, P.; Jordan, D.; Miller, D. C.; Silverman, T. J.; Phillips, N.; Earnest, T.; Romero, R.

2013-12-01T23:59:59.000Z

279

Titel des Moduls: Schallmesstechnik und  

E-Print Network [OSTI]

Titel des Moduls: Schallmesstechnik und Signalverarbeitung (Measurement Technique and Signal. Fortgeschrittene" und/oder mit Modulen TA 2 und TA 6 "Noise and Vibration Control", "Advanced Noise and Vibration

Berlin,Technische Universität

280

Approved Module Information for CH3108, 2014/5 Module Title/Name: Polymer III Module Code: CH3108  

E-Print Network [OSTI]

Additives for Polymer Modification [Part 2]:To illustrate the role of different additives in plastics School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Credits: 20 and their effects in modifying polymer properties and performance using different modification methods

Neirotti, Juan Pablo

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Approved Module Information for ME4504, 2014/5 Module Title/Name: Renewable Energy Module Code: ME4504  

E-Print Network [OSTI]

turbine Renewable energy system design Renewable Energy Policy: UK and international perspectives ModuleApproved Module Information for ME4504, 2014/5 Module Title/Name: Renewable Energy Module Code: ME understanding of the origins and nature of renewable energy flows and their capture and conversion into useful

Neirotti, Juan Pablo

282

Compact magnetic energy storage module  

DOE Patents [OSTI]

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

Prueitt, Melvin L. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

283

Compact magnetic energy storage module  

DOE Patents [OSTI]

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

Prueitt, M.L.

1994-12-20T23:59:59.000Z

284

2Q CY2009, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

Http//www.hss.energy.gov/deprep/facrep/ Http//www.hss.energy.gov/deprep/facrep/ OFFICE OF ENVIRONMENTAL MANAGEMENT Facility Representative Program Performance Indicators (2QCY2009) Field or Ops Office * Staffing Analysis FTEs Actual Staffing % Staffing Attrition % Core Qualified % Fully Qualified % Field Time ** % Oversight Time *** CBFO 3 3 2 67 0 50 50 46 76 ID 13 13 11 85 0 100 100 49 90 OR 19 18 17 89 1 71 71 42 57 ORP 15 15 15 100 0 73 73 53 77 PPPO 6 6 6 100 0 67 67 42 70 RL 19 19 19 100 0 84 84 45 69 SR 32 28 28 88 0 64 64 47 73 WVDP 2 2 2 100 0 50 50 37 70 EM Totals 109 104 100 92 1 74 74 46 72 DOE GOALS - - - 100 - - >80 >40 >65 * Field or Ops Office Key CBFO = Carlsbad Field Office; ID = Idaho Operations Office; OR = Oak Ridge Office; ORP = Office of River Protection; PPPO = Portsmouth/Paducah

285

Greening the U.S. House of Representatives  

SciTech Connect (OSTI)

The Greening the Capitol initiative was launched in March, 2007 with the threefold goals of making the U.S. House of Representatives: 1) carbon neutral within 18 months, 2) reducing energy use by 50percent in ten years, and 3) becoming a model of sustainable operations. We report on the recommendations to meet these goals, looking at the targets of opportunity at the Capitol Power Plant, the existing buildings, and the overall operations of the complex. Our findings have shown that these goals are achievable, and that through an integrated approach the savings in carbon and energy can be met. Specific examples include the lighting retrofits in the House offices, parking areas, and the Capitol dome; the retrofits to the HVAC systems and controls, including duct sealing, improving the efficiency of the energy and water use in the food service areas; and improved operations of the steam and chilled water distribution system. A key aspect has been better tracking and feedback to the building operators of the actual energy consumption. We report on the technical opportunities presented by these historic and symbolic buildings in becoming models of sustainability.

Diamond, Rick; Diamond, Rick; Payne, Christopher

2008-03-01T23:59:59.000Z

286

Apparatus for encapsulating a photovoltaic module  

DOE Patents [OSTI]

The subject inventions concern various photovoltaic module designs to protect the module from horizontal and vertical impacts and degradation of solar cell efficiency caused by moisture. In one design, a plurality of panel supports that are positioned adjacent to the upper panel in a photovoltaic module absorb vertical forces exerted along an axis perpendicular to the upper panel. Other designs employ layers of glass and tempered glass, respectively, to protect the module from vertical impacts. A plurality of button-shaped channels is used around the edges of the photovoltaic module to absorb forces applied to the module along an axis parallel to the module and direct moisture away from the module that could otherwise penetrate the module and adversely affect the cells within the module. A spacer is employed between the upper and lower panels that has a coefficient of thermal expansion substantially equivalent to the coefficient of thermal expansion of at least one of the panels.

Albright, Scot P. (El Paso, TX); Dugan, Larry M. (Boulder, CO)

1995-10-24T23:59:59.000Z

287

Power System Equipment Module Test Project  

SciTech Connect (OSTI)

The technology of electric power generation when applying the binary process to hydrothermal resources had not yet been demonstrated in the United States. Accordingly, on November 10, 1977, the Electric Power Research Institute and the Department of Energy, acting through the Lawrence Berkeley Laboratory, agreed to cofund the Power System Equipment Module Test Project. The Power System Equipment Module Test Project consisted of a field test program to accomplish the objectives listed below while heating hydrocarbon fluids to above their critical points, expanding these fluids, and subsequently, condensing them below their critical points: (1) Verify the performance of state-of-the-art heat exchangers in geothermal service; (2) Verify the heat exchangers' performance heating either selected pure light hydrocarbons or selected mixtures of light hydrocarbons in the vicinity of their respective critical pressures and temperatures; (3) Establish overall heat transfer coefficients that might be used for design of commercial-size geothermal power plants using the same geothermal brine and light hydrocarbon working fluids; (4) Perform and investigate the above under representative fluid operating conditions during which the production wells would be pumped. The project was accomplished by diverting approximately 200 gpm of the flow from one of Magma Power Company's geothermal wells in the East Mesa Geothermal Field. After the heat was removed from the geothermal brine flow, the cooled flow was returned to Magma Power Company and recombined with the main brine stream for disposal by reinjection. Approximately five thermal megawatts was transferred from geothermal brine to hydrocarbon working fluids in a closed system. This heat was removed from the working fluids in a condenser and subsequently rejected to the environment by a wet cooling tower. The thermodynamic performance of both the working fluids and the system components was measured during the test program to achieve the project's objectives.

Schilling, J.R.

1980-12-01T23:59:59.000Z

288

Self-oscillating modulators for direct energy conversion audio power amplifiers  

E-Print Network [OSTI]

Self-oscillating modulators for direct energy conversion audio power amplifiers Petar Ljusev1, Denmark Correspondence should be addressed to Petar Ljusev (pl@oersted.dtu.dk) ABSTRACT Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D

289

Active combustion flow modulation valve  

DOE Patents [OSTI]

A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

2013-09-24T23:59:59.000Z

290

The assess facility descriptor module  

SciTech Connect (OSTI)

The Facility Descriptor (Facility) module is part of the Analytic System and Software for Evaluating Safeguards and Security (ASSESS). Facility is the foundational software application in the ASSESS system for modelling a nuclear facility's safeguards and security system to determine the effectiveness against theft of special nuclear material. The Facility module provides the tools for an analyst to define a complete description of a facility's physical protection system which can then be used by other ASSESS software modules to determine vulnerability to a spectrum of insider and outsider threats. The analyst can enter a comprehensive description of the protection system layout including all secured areas, target locations, and detailed safeguards specifications. An extensive safeguard component catalog provides the reference data for calculating delay and detection performance. Multiple target locations within the same physical area may be specified, and the facility may be defined for two different operational states such as dayshift and nightshift. 6 refs., 5 figs.

Jordan, S.E.; Winblad, A.; Key, B.; Walker, S.; Renis, T.; Saleh, R.

1989-01-01T23:59:59.000Z

291

Solid-state membrane module  

DOE Patents [OSTI]

Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

Gordon, John Howard (Salt Lake City, UT); Taylor, Dale M. (Murray, UT)

2011-06-07T23:59:59.000Z

292

Progress of MICE RFCC Module  

SciTech Connect (OSTI)

Recent progress on the design and fabrication of the RFCC (RF and superconducting Coupling Coil) module for the international MICE (Muon Ionization Cooling Experiment) are reported. The MICE ionization cooling channel has two RFCC modules, each having four 201- MHz normal conducting RF cavities surrounded by one superconducting coupling coil (solenoid) magnet. The magnet is designed to be cooled by three cryocoolers. Fabrication of the RF cavities is complete; preparation for the cavity electro-polishing, low power RF measurements, and tuning are in progress at Lawrence Berkeley National Laboratory (LBNL). Fabrication of the cold mass of the first coupling coil magnet has been completed in China and the cold mass arrived at LBNL in late 2011. Preparations for testing the cold mass are currently under way at Fermilab. Plans for the RFCC module assembly and integration are being developed and are described.

Li, D.; Bowring, D.; DeMello, A.; Gourlay, S.; Green, M.; Li, N.; Niinikoski, T.; Pan, H.; Prestemon, S.; Virostek, S.; Zisman, M.; Bross, A.; Carcagno, R.; Kashikhin, V.; Sylvester, C.; Chen, A.B.; Guo, Bin; Li, Liyi; Xu, Fengyu; Cao, Y.; Sun, S.; Wang, Li; Yin, Lixin; Luo, Tianhuan; Summers, Don; Smith, B.; Radovinsky, A.; Zhukovsky, A.; Kaplan, D.

2012-05-20T23:59:59.000Z

293

Examination of Hydrate Formation Methods: Trying to Create Representative Samples  

SciTech Connect (OSTI)

Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlled conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas is placed in a sample, then the sample is flooded with water and cooled [Priest et al., 2009]. We have performed a number of tests in which hydrate was formed and the uniformity of the hydrate formation was examined. These tests have primarily used a variety of modifications of the excess gas method to make the hydrate, although we have also used a version of the excess water technique. Early on, we found difficulties in creating uniform samples with a particular sand/ initial water saturation combination (F-110 Sand, {approx} 35% initial water saturation). In many of our tests we selected this combination intentionally to determine whether we could use a method to make the samples uniform. The following methods were examined: Excess gas, Freeze/thaw/form, Freeze/pressurize/thaw, Excess gas followed by water saturation, Excess water, Sand and kaolinite, Use of a nucleation enhancer (SnoMax), and Use of salt in the water. Below, each method, the underlying hypothesis, and our results are briefly presented, followed by a brief conclusion. Many of the hypotheses investigated are not our own, but were presented to us. Much of the data presented is from x-ray CT scanning our samples. The x-ray CT scanner provides a three-dimensional density map of our samples. From this map and the physics that is occurring in our samples, we are able to gain an understanding of the spatial nature of the processes that occur, and attribute them to the locations where they occur.

Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.; Kwon, T.-H.

2011-04-01T23:59:59.000Z

294

NREL: Awards and Honors - PowerView Semi-Transparent Photovoltaic Module  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PowerView(tm) Semi-Transparent Photovoltaic Module PowerView(tm) Semi-Transparent Photovoltaic Module Developers: Harrin Ullal, Ken Zweibel, and Bolko von Roedern, National Renewable Energy Laboratory; Robert S. Oswald and Frank Liu, BP Solar The PowerView(tm) module - a BP Solar commercial product - represents the coming of a new era in photovoltaics for buildings. Because it is semi-transparent, it can be used in lieu of architectural glass for many applications, particularly for those that call for sloped glazing, such as awnings, canopies, or slanted roofs. And because it is photovoltaics, the module uses sunlight to generate clean electricity to power a building's electrical needs. As testimony to the PowerView's utility BP Solar has already installed it on canopies of hundreds of its Connect stores -

295

A novel design for monolithic interconnected modules (MIMs) for thermophotovoltaic (TPV) power conversion  

SciTech Connect (OSTI)

The design for the fabrication of Monolithic Interconnected Modules (MIMs) for thermophotovoltaic (TPV) power conversion described in this paper utilizes a novel, interdigitated contacting scheme that increases the flexibility in the size of the component cells and hence the output current and voltage of the module. This flexibility is gained at the expense of only minimally increased grid obscuration. Because the design uses the grid fingers of the component cells as the interconnect structure, the area of the device used for this purpose becomes negligible. In this paper the authors report on the specifics of the design as well as issues related to the fabrication of the modules. Preliminary performance data for representative modules also are offered.

Ward, J.S.; Duda, A.; Wanlass, M.W. [National Renewable Energy Lab., Golden, CO (United States)] [and others

1997-06-01T23:59:59.000Z

296

Photovoltaic module certification/laboratory accreditation criteria development  

SciTech Connect (OSTI)

This document provides an overview of the structure and function of typical product certification/laboratory accreditation programs. The overview is followed by a model program which could serve as the basis for a photovoltaic (PV) module certification/laboratory accreditation program. The model covers quality assurance procedures for the testing laboratory and manufacturer, third-party certification and labeling, and testing requirements (performance and reliability). A 30-member Criteria Development Committee was established to guide, review, and reach a majority consensus regarding criteria for a PV certification/laboratory accreditation program. Committee members represented PV manufacturers, end users, standards and codes organizations, and testing laboratories.

Osterwald, C.R. [National Renewable Energy Lab., Golden, CO (United States); Hammond, R.L.; Wood, B.D.; Backus, C.E.; Sears, R.L. [Arizona State Univ., Tempe, AZ (United States); Zerlaut, G.A. [SC-International Inc., Phoenix, AZ (United States); D`Aiello, R.V. [RD Associates, Tempe, AZ (United States)

1995-04-01T23:59:59.000Z

297

Module Handbook Specialisation Wind Energy  

E-Print Network [OSTI]

of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Credit points 8 CP

Habel, Annegret

298

Approved Module Information for CE1102, 2014/5 Module Title/Name: Organic Chemistry for Engineers Module Code: CE1102  

E-Print Network [OSTI]

Approved Module Information for CE1102, 2014/5 Module Title/Name: Organic Chemistry for Engineers Module Code: CE1102 School: Engineering and Applied Science Module Type: Standard Module New Module chemistry. Part 2: Introduction to Laboratory Skills To enable the student to develop good practical skills

Neirotti, Juan Pablo

299

High Heat Flux Thermoelectric Module Using Standard Bulk Material...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

300

Hail Impact Testing on Crystalline Si Modules with Flexible Packaging...  

Broader source: Energy.gov (indexed) [DOE]

Hail Impact Testing on Crystalline Si Modules with Flexible Packaging Hail Impact Testing on Crystalline Si Modules with Flexible Packaging Presented at the PV Module Reliability...

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Overview of the PV Module Model in PVWatts (Presentation)  

SciTech Connect (OSTI)

Overview of the PV module model. PVWatts module power estimates were compared with those using the Sandia model for three modules and data sets.

Marion, B.

2010-09-22T23:59:59.000Z

302

Approved Module Information for EE3OEL, 2014/5 Module Title/Name: Optoelectronics Module Code: EE3OEL  

E-Print Network [OSTI]

Approved Module Information for EE3OEL, 2014/5 Module Title/Name: Optoelectronics Module Code: EE3: * To provide a broad overview of updated optoelectronic principles, devices and applications. The students optoelectronic devices and their important functions for applications in optical communication, signal processing

Neirotti, Juan Pablo

303

Approved Module Information for ME1601, 2014/5 Module Title/Name: Engineering Science Module Code: ME1601  

E-Print Network [OSTI]

to apply the basic engineering principles of mechanics, solid mechanics and thermo fluids to a variety and understanding of the fundamental engineering principles of mechanics, solid mechanics and thermo-fluidsApproved Module Information for ME1601, 2014/5 Module Title/Name: Engineering Science Module Code

Neirotti, Juan Pablo

304

Approved Module Information for PD2003, 2014/5 Module Title/Name: Engineering Principles 2 Module Code: PD2003  

E-Print Network [OSTI]

to apply further engineering principles of mechanics, solid mechanics, energy systems and thermo-fluids and understanding of the fundamental engineering principles of mechanics, solid mechanics and thermo- fluidsApproved Module Information for PD2003, 2014/5 Module Title/Name: Engineering Principles 2 Module

Neirotti, Juan Pablo

305

New Camshaft Phaser Module for Automobile Engines  

Science Journals Connector (OSTI)

?...shows the functional scheme of the camshaft phaser module. The function components which are integrated into the module are encircled in a chain dotted line. A spring loaded piston pressure r...

Dr.-Ing. Uwe Meinig; Dipl.-Ing. (FH) Jrgen Bohner

2013-07-01T23:59:59.000Z

306

Amplitude modulation free, wide band frequency modulated oscillator  

E-Print Network [OSTI]

oscillator- - - - - ? ? - ? 3 15 ~ Iiide Bmd Frc saency Lodulator Relatively Free of A@elf tude Modulation-? ? 35 1~'i. Tank Uoltare Versus Fx~tuency or . 'evcral Loads ? - ? ? - 35 17. Screon Voltage Versus Frequency? 10. Amclitude Lodulafion Envelope... of Conventional Design- - ? 39 19 ' ~litude Ltodulation Eave" ope of !iem Design- - - ? - - ? 39 20. Tank Voltage Versus 11~-, coney of Conventisnal Design Hew Design INTRODUCTION The accurate and rapid determination and location of faults is very important...

Nelson, Dick Frank

1951-01-01T23:59:59.000Z

307

Crossed modules of racks Alissa S. Crans  

E-Print Network [OSTI]

Crossed modules of racks Alissa S. Crans Loyola Marymount University Friedrich Wagemann Universit to that of a crossed module of racks. We investigate the relation to categorified racks, namely strict 2-racks, and trunk-like objects in the category of racks, generalizing the relation between crossed modules of groups

Wagemann, Friedrich

308

Nutrient Management Module No. 15 Sustainable  

E-Print Network [OSTI]

Nutrient Management Module No. 15 Sustainable Agriculture by Ann McCauley, Soil Scientist, Clain for those wanting more in-depth information about sustainable agriculture. This module covers Rocky Mountain Source and Applications, with the focus on sustainable agriculture. Objectives After reading this module

Lawrence, Rick L.

309

Rank Modulation with Multiplicity Anxiao (Andrew) Jiang  

E-Print Network [OSTI]

Rank Modulation with Multiplicity Anxiao (Andrew) Jiang Computer Science and Eng. Dept. Texas A&M University College Station, TX 77843 yuewang@cse.tamu.edu Abstract--Rank modulation is a scheme that uses-change memories, etc. An extension of rank modulation is studied in this paper, where multiple cells can have

Jiang, Anxiao "Andrew"

310

A Stability of LCLS Linac Modulators  

SciTech Connect (OSTI)

Information concerning to a stability of LCLS RF linac modulators is allocated in this paper. In general a 'pulse-to-pulse' modulator stability (and RF phase as well) is acceptable for the LCLS commission and FEL programs. Further modulator stability improvements are possible and approaches are discussed based on our experimental results.

Decker, F.-J.; Krasnykh, A.; Morris, B.; Nguyen, M.; /SLAC

2012-06-13T23:59:59.000Z

311

Interface module for transverse energy input to dye laser modules  

DOE Patents [OSTI]

An interface module (10) for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams (36) in the form of illumination bar (54) to the lasing zone (18) of a dye laser device, in particular to a dye laser amplifier (12). The preferred interface module (10) includes an optical fiber array (30) having a plurality of optical fibers (38) arrayed in a co-planar fashion with their distal ends (44) receiving coherent laser energy from an enhancing laser source (46), and their proximal ends (4) delivered into a relay structure (3). The proximal ends (42) of the optical fibers (38) are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array (36) delivered from the optical fiber array (30) is acted upon by an optical element array (34) to produce an illumination bar (54) which has a cross section in the form of a elongated rectangle at the position of the lasing window (18). The illumination bar (54) is selected to have substantially uniform intensity throughout.

English, Jr., Ronald E. (Tracy, CA); Johnson, Steve A. (Tracy, CA)

1994-01-01T23:59:59.000Z

312

Degradation Pathway Models for Photovoltaics Module Lifetime Performance  

E-Print Network [OSTI]

Degradation Pathway Models for Photovoltaics Module Lifetime Performance Nicholas R. Wheeler, Laura data from Underwriter Labs, featuring measurements taken on 18 identical photovoltaic (PV) modules in modules and their effects on module performance over lifetime. Index Terms--photovoltaics, statistical

Rollins, Andrew M.

313

SiC Power Module  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R&D 100 Entry R&D 100 Entry SiC Power Module 2 R&D 100 Entry SiC Power Module Submitting OrganizatiOn Sandia National Laboratories PO Box 5800, MS 1033 Albuquerque, NM 87185-1033 USA Stanley Atcitty Phone: 505-284-2701 Fax: 505-844-2890 satcitt@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate representation of this product. _____________________________________ Stanley Atcitty JOint Entry Arkansas Power Electronics International, Inc.; University of Arkansas; Rohm Co., LTD.; and the Department of Energy/ Energy Storage Program. 1. 1. Arkansas Power Electronics International, Inc. 535 W. Research Center Blvd. Fayetteville, AR 72701 USA Alexander B. Lostetter, President & CEO Phone: 479-443-5759

314

Modulation Field Induces Universe Rotation  

E-Print Network [OSTI]

In this paper, we consider a time dependent module field on spacetime extension without modifying commutative relation on noncommutative quantum plane. The significant idea is that $Lorentz$ symmetry is conserved in module and unmodule coordinate. We focus on the redefinition of spacetime structure without considering noncommutative bosonic gas in deforming the product between fields. Which the null vector is a vector on orthogonal $D$ dimensional $Hilbert$ spacetime. In $Riemann$ geometry, the equation of motion is deformed from an induced rotation. Particle field survives on the state composed by two theoretical assumed $null$ vectors, one is commutative, another is anticommutative. In the point of view, neutrino and photon mass are produced by its shift, the rotated effect generates a horizon in redefining particle field.

Chien Yu Chen

2008-06-30T23:59:59.000Z

315

Assumptions to the Annual Energy Outlook 2000 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module (RFM) consists of five distinct submodules that represent the major renewable energy technologies. Although it is described here, conventional hydroelectric is included in the Electricity Market Module (EMM) and is not part of the RFM. Similarly, ethanol modeling is included in the Petroleum Market Module (PMM). Some renewables, such as municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not require the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using wind, solar, and geothermal energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

316

Assumptions to the Annual Energy Outlook 1999 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

renewable.gif (4875 bytes) renewable.gif (4875 bytes) The NEMS Renewable Fuels Module (RFM) consists of five distinct submodules that represent the major renewable energy technologies. Although it is described here, conventional hydroelectric is included in the Electricity Market Module (EMM) and is not part of the RFM. Similarly, ethanol modeling is included in the Petroleum Market Module (PMM). Some renewables, such as municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not require the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using wind, solar, and geothermal energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittence, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

317

The National Transport Code Collaboration Module Library  

Science Journals Connector (OSTI)

This paper reports on the progress in developing a library of code modules under the auspices of the National Transport Code Collaboration (NTCC). Code modules are high quality, fully documented software packages with a clearly defined interface. The modules provide a variety of functions, such as implementing numerical physics models; performing ancillary functions such as I/O or graphics; or providing tools for dealing with common issues in scientific programming such as portability of Fortran codes. Researchers in the plasma community submit code modules, and a review procedure is followed to insure adherence to programming and documentation standards. The review process is designed to provide added confidence with regard to the use of the modules and to allow users and independent reviews to validate the claims of the modules' authors. All modules include source code; clear instructions for compilation of binaries on a variety of target architectures; and test cases with well-documented input and output. All the NTCC modules and ancillary information, such as current standards and documentation, are available from the NTCC Module Library Website http://w3.pppl.gov/NTCC. The goal of the project is to develop a resource of value to builders of integrated modeling codes and to plasma physics researchers generally. Currently, there are more than 40 modules in the module library.

A.H. Kritz; G. Bateman; J. Kinsey; A. Pankin; T. Onjun; A. Redd; D. McCune; C. Ludescher; A. Pletzer; R. Andre; L. Zakharov; L. Lodestro; L.D. Pearlstein; R. Jong; W. Houlberg; P. Strand; J. Wiley; P. Valanju; H.St. John; R. Waltz; J. Mandrekas; T.K. Mau; J. Carlsson; B. Braams

2004-01-01T23:59:59.000Z

318

Correction for Kpke et al., Clostridium ljungdahlii represents a microbial production platform based on syngas  

Science Journals Connector (OSTI)

...Clostridium ljungdahlii represents a microbial production platform based on syngas 10.1073/pnas.1010816107 MICROBIOLOGY...Clostridium ljungdahlii represents a microbial production platform based on syngas, by Michael Kopke, Claudia Held...

2010-01-01T23:59:59.000Z

319

Are Pixel Graphs Are Better at Representing Information than Pie Graphs?  

Science Journals Connector (OSTI)

This study investigates whether pixel graphs more accurately represent percentage based data than pie graphs or bar graphs. Participants were asked ... representing large quantities of percentage based data than

Jolie Bell; Jim Davies

2010-01-01T23:59:59.000Z

320

Approved Module Information for ME4501, 2014/5 Module Title/Name: Computational Fluid Dynamics and  

E-Print Network [OSTI]

-requisites: Thermodynamics and Fluids (ME3011). Engineering Mathematics 2 (AM21EM). Co-requisites: None Specified ModuleApproved Module Information for ME4501, 2014/5 Module Title/Name: Computational Fluid Dynamics and Applications Module Code: ME4501 School: Engineering and Applied Science Module Type: Standard Module New

Neirotti, Juan Pablo

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EIA-Assumptions to the Annual Energy Outlook - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module Assumptions to the Annual Energy Outlook 2007 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, load and demand electricity, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2007, DOE/EIA- M068(2007). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described.

322

What every designated representative should know about Title IV and Title V enforcement provisions  

SciTech Connect (OSTI)

Title IV of the Clean Air Act not only created a regulatory program unlike any other under the Clean Air Act, but also established a unique position--the designated representative--as an integral part of the program. The designated representative is required to meet certain basic obligations under Title IV, and a panoply of enforcement mechanisms are available to EPA in the event of noncompliance with these obligations. Also, because a designated representative may take on responsibilities under the permit provisions of Title V of the Clean Air Act, the designated representative can also be subject to an enforcement action for failure to comply with certain Title V permit requirements. This paper considers the basic definition of the designated representative under EPA`s Title IV and Title V regulations, identifies the responsibilities assigned to the designated representative, and then analyzes the enforcement mechanisms that may be applied to the designated representative if a regulatory responsibility has not been satisfied.

Bischoff, C.A. [Gallagher and Kennedy, Phoenix, AZ (United States); Dayal, P. [Tucson Electric Power Co., Tucson, AZ (United States)

1995-12-31T23:59:59.000Z

323

Approved Module Information for BH3328, 2014/5 Module Title/Name: Psychology and Work Module Code: BH3328  

E-Print Network [OSTI]

* Organizational culture, climate, and change * Applying the Psychology of Work and Organizations The learning communication Planning and organizing Interpersonal discussion and communication Indicative Module Content

Neirotti, Juan Pablo

324

Commissioning of intensity modulated neutron radiotherapy (IMNRT)  

SciTech Connect (OSTI)

Purpose: Intensity modulated neutron radiotherapy (IMNRT) has been developed using inhouse treatment planning and delivery systems at the Karmanos Cancer Center/Wayne State University Fast Neutron Therapy facility. The process of commissioning IMNRT for clinical use is presented here. Results of commissioning tests are provided including validation measurements using representative patient plans as well as those from the TG-119 test suite. Methods: IMNRT plans were created using the Varian Eclipse optimization algorithm and an inhouse planning system for calculation of neutron dose distributions. Tissue equivalent ionization chambers and an ionization chamber array were used for point dose and planar dose distribution comparisons with calculated values. Validation plans were delivered to water and virtual water phantoms using TG-119 measurement points and evaluation techniques. Photon and neutron doses were evaluated both inside and outside the target volume for a typical IMNRT plan to determine effects of intensity modulation on the photon dose component. Monitor unit linearity and effects of beam current and gantry angle on output were investigated, and an independent validation of neutron dosimetry was obtained. Results: While IMNRT plan quality is superior to conventional fast neutron therapy plans for clinical sites such as prostate and head and neck, it is inferior to photon IMRT for most TG-119 planning goals, particularly for complex cases. This results significantly from current limitations on the number of segments. Measured and calculated doses for 11 representative plans (six prostate/five head and neck) agreed to within -0.8 {+-} 1.4% and 5.0 {+-} 6.0% within and outside the target, respectively. Nearly all (22/24) ion chamber point measurements in the two phantom arrangements were within the respective confidence intervals for the quantity [(measured-planned)/prescription dose] derived in TG-119. Mean differences for all measurements were 0.5% (max = 7.0%) and 1.4% (max = 4.1%) in water and virtual water, respectively. The mean gamma pass rate for all cases was 92.8% (min = 88.6%). These pass rates are lower than typically achieved with photon IMRT, warranting development of a planar dosimetry system designed specifically for IMNRT and/or the improvement of neutron beam modeling in the penumbral region. The fractional photon dose component did not change significantly in a typical IMNRT plan versus a conventional fast neutron therapy plan, and IMNRT delivery is not expected to significantly alter the RBE. All other commissioning results were considered satisfactory for clinical implementation of IMNRT, including the external neutron dose validation, which agreed with the predicted neutron dose to within 1%. Conclusions: IMNRT has been successfully commissioned for clinical use. While current plan quality is inferior to photon IMRT, it is superior to conventional fast neutron therapy. Ion chamber validation results for IMNRT commissioning are also comparable to those typically achieved with photon IMRT. Gamma pass rates for planar dose distributions are lower than typically observed for photon IMRT but may be improved with improved planar dosimetry equipment and beam modeling techniques. In the meantime, patient-specific quality assurance measurements should rely more heavily on point dose measurements with tissue equivalent ionization chambers. No significant technical impediments are anticipated in the clinical implementation of IMNRT as described here.

Burmeister, Jay; Snyder, Michael [Karmanos Cancer Center, Wayne State University School of Medicine, Detroit, Michigan 48201 (United States); Spink, Robyn; Liang Liang; Bossenberger, Todd; Halford, Robert [Karmanos Cancer Center, Detroit, Michigan 48201 (United States); Brandon, John [Michigan State University, East Lansing, Michigan 48201 (United States); Delauter, Jonathan [Wayne State University School of Medicine, Detroit, Michigan 48201 (United States)

2013-02-15T23:59:59.000Z

325

Definition: PV module | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: PV module Jump to: navigation, search Dictionary.png PV module A unit comprised of several PV cells, and the principal unit of a PV array; it is intended to generate direct current power under un-concentrated sunlight.[1][2] View on Wikipedia Wikipedia Definition A solar panel is a set of solar photovoltaic modules electrically connected and mounted on a supporting structure. A photovoltaic module is a packaged, connected assembly of photovoltaic cells. The solar module can be used as a component of a larger photovoltaic system to generate and supply electricity in commercial and residential applications. Each module is rated by its DC output power under standard test conditions (STC), and

326

Power module assemblies with staggered coolant channels  

DOE Patents [OSTI]

A manifold is provided for supporting a power module assembly with a plurality of power modules. The manifold includes a first manifold section. The first face of the first manifold section is configured to receive the first power module, and the second face of the first manifold section defines a first cavity with a first baseplate thermally coupled to the first power module. The first face of the second manifold section is configured to receive the second power module, and the second face of the second manifold section defines a second cavity with a second baseplate thermally coupled to the second power module. The second face of the first manifold section and the second face of the second manifold section are coupled together such that the first cavity and the second cavity form a coolant channel. The first cavity is at least partially staggered with respect to second cavity.

Herron, Nicholas Hayden; Mann, Brooks S; Korich, Mark D

2013-07-16T23:59:59.000Z

327

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual subcontract report, January 1--June 30, 1995  

SciTech Connect (OSTI)

The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. To achieve these objectives, Solarex is working in the following technical areas: casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling. Accomplishments reported include: Cast first successful larger ingot producing 73% larger volume of usable Si; Increased the size of the ingot even further and cast an ingot yielding nine 11.4 {times} 11.4 cm bricks, representing a 125% increase in usable Si from a single casting; Operated the wire-saw in a semi-operational mode, producing 459,000 wafers at 94.1% overall yield; Reduced the cost of wire-saw consumables, spare parts, and waste disposal; Developed a cost-effective back surface field process that increases cell efficiency by 5% and began production trials; Developed a plan for increasing the capacity in the module assembly area; Completed qualification testing of modules built using Spire`s automated tabbing and stringing machine; Selected, tested, and qualified a low-cost electrical termination system; Completed long-term UV testing of experimental back sheets; Qualified the structure and adhesive-tape system for mounting frameless modules; and ARRI completed a study of the fracture properties of cast polycrystalline Si wafers and provided the information necessary to calculate the maximum stresses allowable during wafer handling.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1996-02-01T23:59:59.000Z

328

An ultrafast carbon nanotube terahertz polarisation modulator  

SciTech Connect (OSTI)

We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies.

Docherty, Callum J.; Stranks, Samuel D.; Habisreutinger, Severin N.; Joyce, Hannah J.; Herz, Laura M.; Nicholas, Robin J.; Johnston, Michael B., E-mail: m.johnston@physics.ox.ac.uk [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom)

2014-05-28T23:59:59.000Z

329

Fractal analysis for assessing the level of modulation of IMRT fields  

SciTech Connect (OSTI)

Purpose: To investigate the potential of three fractal dimension (FD) analysis methods (i.e., the variation, power spectrum, and variogram methods) as metrics for quantifying the degree of modulation in planned intensity modulated radiation therapy (IMRT) treatment fields, and compare the most suitable FD method to the number of monitor units (MUs), the average leaf gap, and the 2D modulation index (2D MI) for assessing modulation. Methods: The authors implemented, validated, and compared the variation, power spectrum, and variogram methods for computing the FD. Validation of the methods was done using mathematical fractional Brownian surfaces of known FD that ranged in size from 128 x 128 to 512 x 512. The authors used a test set consisting of seven head and neck carcinoma plans (50 prescribed treatment fields) to choose an FD cut-point that ensures no false positives (100% specificity) in distinguishing between moderate and high degrees of field modulation. The degree of field modulation was controlled by adjusting the fluence smoothing parameters in the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA). The moderate modulation fields were representative of the degree of modulation used clinically at the authors' institution. The authors performed IMRT quality assurance (QA) on the 50 test fields using the MapCHECK device. The FD cut-point was applied to a validation set consisting of four head and neck plans (28 fields). The area under the curve (AUC) from receiver operating characteristic (ROC) analysis was used to compare the ability of FD, number of MUs, average leaf gap, and the 2D MI for distinguishing between the moderate and high modulation fields. Results: The authors found the variogram FD method to be the most suitable for assessing the modulation complexity of IMRT fields for head and neck carcinomas. Pass rates as measured by the gamma criterion for the MapCHECK IMRT field measurements were higher for the moderately modulated fields, and a gamma criterion with 1 mm distance-to-agreement and 1% dose difference showed a clear separation between the 94% pass rates of the moderate and high modulation groups. From the ROC analysis of the test set, the authors found the AUC of the variogram FD, number of MUs, average leaf gap, and 2D MI methods to be 0.99 (almost perfect), 0.91 (excellent), 0.91 (excellent), and 0.92 (excellent), respectively. A cut-point of FD > 2.25 correctly identified 92.8% of the high modulation fields and 100% of the moderately modulated fields in the validation set, satisfying the condition of no false positives. Conclusions: Of the three FD methods investigated, the variogram method is the most accurate and precise metric for identifying high modulation treatment fields. It is also more accurate and precise than the number of MUs, the average leaf gap, and the 2D MI. Although MapCHECK IMRT QA does a reasonable job at identifying high modulation fields, the variogram FD method provides one with the opportunity to quantitatively and accurately assess modulation and adjust overly modulated fields at the treatment planning stage before they are sent to the treatment machine for QA or patient treatment.

Nauta, Marcel; Villarreal-Barajas, J. Eduardo; Tambasco, Mauro [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Department of Oncology, University of Calgary, Calgary, Alberta T2N 1N4 (Canada) and Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada)

2011-10-15T23:59:59.000Z

330

In-line thermoelectric module  

DOE Patents [OSTI]

A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions may be perpendicular to the direction of current flow through the module.

Pento, Robert (Algonquin, IL); Marks, James E. (Glenville, NY); Staffanson, Clifford D. (S. Glens Falls, NY)

2000-01-01T23:59:59.000Z

331

In-Line Thermoelectric Module  

SciTech Connect (OSTI)

A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an-in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions maybe perpendicular to the direction-of current flow through the module.

Pento, Robert; Marks, James E.; Staffanson, Clifford D.

1998-07-28T23:59:59.000Z

332

Photovoltaic Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Photovoltaic Energy Technology Module Photovoltaic Energy Technology Module Jump to: navigation, search Tool Summary Name: Photovoltaic Energy Technology Module Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy, Solar Topics: Technology characterizations Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: Photovoltaic Energy Technology Module[1] Resources Portable Solar Photovoltaic Lanterns: Performance and Certification Specification, and Type Approval, ESMAP TECHNICAL PAPER 078 Testing of Storage Batteries used in Stand Alone Photovoltaic Power Systems, Test procedures and examples of test results Technical Specifications for Solar Home Systems (SHS), Rural Electrification and Renewable Energy Development (PV Component) Project

333

Frequencies Studies Applied to Photovoltaic Modules.  

E-Print Network [OSTI]

?? This master thesis proposes to study applications of frequencies studies to the case of photovoltaic modules and photovoltaic plants. Such studies are little used (more)

Miquel, Clment

2011-01-01T23:59:59.000Z

334

Solid State Marx Modulators for Emerging Applications  

SciTech Connect (OSTI)

Emerging linear accelerator applications increasingly push the boundaries of RF system performance and economics. The power modulator is an integral part of RF systems whose characteristics play a key role in the determining parameters such as efficiency, footprint, cost, stability, and availability. Particularly within the past decade, solid-state switch based modulators have become the standard in high-performance, high power modulators. One topology, the Marx modulator, has characteristics which make it particularly attractive for several emerging applications. This paper is an overview of the Marx topology, some recent developments, and a case study of how this architecture can be applied to a few proposed linear accelerators.

Kemp, M.A.; /SLAC

2012-09-14T23:59:59.000Z

335

Natural Gas Transmission and Distribution Module  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and...

336

Natural Gas Transmission and Distribution Module  

U.S. Energy Information Administration (EIA) Indexed Site

31, 2012, Washington, DC Major assumption changes for AEO2013 Oil and Gas Working Group Natural Gas Transmission and Distribution Module DRAFT WORKING GROUP PRESENTATION DO NOT...

337

Multiple Layer Graphene Optical Modulator - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Advanced Materials Find More Like This Return to Search Multiple Layer Graphene Optical Modulator Lawrence Berkeley National Laboratory Contact LBL About This...

338

Silicon Photonics for Modulation, Switching, and Tuning  

Science Journals Connector (OSTI)

Thermal and electro-refractive silicon photonic modulators, switches, and tunable filters have been demonstrated with ultralow switching energies and high-speed operation. These...

Watts, Michael

339

D-modules on smooth toric varieties  

E-Print Network [OSTI]

D-MODULES ON SMOOTH TORIC VARIETIES. MIRCEA MUSTAT A, GREGORY G. SMITH, HARRISON TSAI,. AND ULI WALTHER. Abstract. Let X be a smooth...

340

Encapsulation of High Temperature Thermoelectric Modules  

Broader source: Energy.gov [DOE]

Presents concept for hermetic encapsulation of TE modules addressing key failure mechanism, TE material oxidation, which severely impacts long term performance

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Detailed Course Module Description | Department of Energy  

Energy Savers [EERE]

lists the course modules for building science courses offered at Cornell's Collaborator Sustainable Buildingi Practice course. coursemodule.pdf More Documents & Publications...

342

Explosives detection with a frequency modulation spectrometer  

Science Journals Connector (OSTI)

An explosives detection instrument was designed and tested at SRI International. The instrument uses frequency modulation spectroscopy with midinfrared lead-salt diode lasers to...

Riris, H; Carlisle, C B; McMillen, D F; Cooper, D E

1996-01-01T23:59:59.000Z

343

Order Module--DOE O 151.1C, COMPREHENSIVE EMERGENCY MANAGEMENT SYSTEM |  

Broader source: Energy.gov (indexed) [DOE]

151.1C, COMPREHENSIVE EMERGENCY MANAGEMENT 151.1C, COMPREHENSIVE EMERGENCY MANAGEMENT SYSTEM Order Module--DOE O 151.1C, COMPREHENSIVE EMERGENCY MANAGEMENT SYSTEM The familiar level of this module is designed to summarize the basic information in DOE O 151.1C, Comprehensive Emergency Management System. This module is divided into two sections. in the first section, we will discuss the objectives and responsibilities of DOE O 151.1C, Comprehensive Emergency Management System. In the second section, we will discuss the requirements included in chapters III through XI in the Order. The information provided will meet the relevant requirements in the following DOE Functional Area Qualification Standards: DOE-STD-1177-2004, Emergency Management DOE-STD-1151-2002, Facility Representative DOE-STD-1137-2007, Fire Protection Engineering

344

Module Title: Solid state and ultrafast lasers Module Code: OPTO6002  

E-Print Network [OSTI]

Module lecturers Prof Andy Clarkson, Dr Bill Brocklesby Contact (email ID) wac@orc.soton.ac.uk, wsb@orc

Anderson, Jim

345

Reference Buildings by Climate Zone and Representative City: 5A Chicago,  

Broader source: Energy.gov (indexed) [DOE]

Reference Buildings by Climate Zone and Representative City: 5A Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_5a_usa_il_chicago-ohare_post1980_v1.3_5.0.zip refbldg_5a_usa_il_chicago-ohare_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 5B Boulder, Colorado Reference Buildings by Climate Zone and Representative City: 6A Minneapolis, Minnesota Reference Buildings by Climate Zone and Representative City: 6B Helena,

346

Reference Buildings by Climate Zone and Representative City: 4C Seattle,  

Broader source: Energy.gov (indexed) [DOE]

Reference Buildings by Climate Zone and Representative City: 4C Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_4c_usa_wa_seattle_new2004_v1.3_5.0.zip refbldg_4c_usa_wa_seattle_new2004_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington Reference Buildings by Climate Zone and Representative City: 2B Phoenix,

347

Determining CMM Motion on Free-Form Objects Using Implicit Polynomials1 William Wolovich, Hulya Yalcin  

E-Print Network [OSTI]

One often must compare several (ideally) identical objects to a model object, such as the turbine blades in a jet engine, the propeller blades of a ship, or the contoured grooves in a gear]. More serious consequences can occur if manufactured objects, such as the turbine blades in a jet engine

Yalcin, Hulya

348

Utilization and Mitigation of VAM/CMM Emissions by a Catalytic Combustion Gas Turbine  

Science Journals Connector (OSTI)

A system configured with a catalytic combustion gas turbine generator unit is introduced. The system has ... Heavy Industries, Ltd., such as small gas turbines, recuperators and catalytic combustors, and catalyti...

K. Tanaka; Y. Yoshino; H. Kashihara; S. Kajita

2013-01-01T23:59:59.000Z

349

Module No: 410331International Trade LawModule Title: Pre-requisite  

E-Print Network [OSTI]

and technology transfer contracts; also, a brief study of international trade arbitration and its rulesModule No: 410331International Trade LawModule Title: Pre-requisite: Module Type: specialization Description The international trade law course is a brief study of the topics of electronic commerce

350

Modular ITT Module D Modular ITT Module D Version 1 16/02/2012  

E-Print Network [OSTI]

manage health and safety at work. Your responses should include: basic statement on safety awarenessModular ITT ­ Module D Modular ITT ­ Module D Version 1 16/02/2012 Module D ­ Health & Safety an overall failing of your bid. This section allows us to assess your competency for health and safety. We

351

AC PV Modules Take a standard DC PV module and connect a microinverter  

E-Print Network [OSTI]

modules. These inverters range in power from 700 watts up to 1 megawatt. DC maximum system voltages can and up to 13 inverters for the 210 W version to be installed on the same AC output cable. home power 136, and secure a listing to UL1741 for a pre-assembled module/inverter device, and you have an AC PV module

Johnson, Eric E.

352

1Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report  

Broader source: Energy.gov [DOE]

"The Facility Representative Program Performance Indicators (PIs) Quarterly Report is attached, covering the period from January 2000 to March 2000. Data for these indicators are gathered by the...

353

4Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report  

Broader source: Energy.gov [DOE]

"The Facility Representative Program Performance Indicators Quarterly Report is attached, covering the period from October to December 2000. Data for these indicators are gathered by the Field...

354

2Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report  

Broader source: Energy.gov [DOE]

Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2005. Data for these indicators are gathered by Field elements...

355

4Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report  

Broader source: Energy.gov [DOE]

Attached is the Facility Representative Program Performance Indicators (Pis) Quarterly Report Covering the Period from October to December 2002. Data for these indicators are gathered by Field...

356

3Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report  

Broader source: Energy.gov [DOE]

This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the Period July through September 2011. Data for these indicators were gathered...

357

1Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report  

Broader source: Energy.gov [DOE]

Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from January to March 2003. Data for these indicators are gathered by Field...

358

4Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report  

Broader source: Energy.gov [DOE]

"This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October through December 2011. Data for these indicators were...

359

3Q C&2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report  

Broader source: Energy.gov [DOE]

"Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2008. Data for these indicators aregathered by Field...

360

1Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report  

Broader source: Energy.gov [DOE]

This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January through March 2012. Data for these indicators were...

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

E-Print Network 3.0 - archaeal orphans representing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and archaeal groups was carried out using the neighbor... -Flexibacter- Bacteroides (CFB), Cyanobacteria, and Alpha-Proteobacteria were dominantly represented. Crenarcheota...

362

3Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report  

Broader source: Energy.gov [DOE]

This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period of July through September 2010. Data for these...

363

High Schools Served by Regional Admissions Representatives (by County) Lisa Overstreet  

E-Print Network [OSTI]

High Schools Served by Regional Admissions Representatives (by County) Region 1 Lisa Overstreet San Joaquin El Dorado San Mateo Fresno Sierra Kings Solano Lake Sonoma Madera Stanislaus Mariposa

Belanger, David P.

364

Establishing and maintaining a facility representative program at DOE nuclear facilities  

SciTech Connect (OSTI)

The purpose of this DOE standard, (Establishing and Maintaining a Facility Representative Program at DOE Nuclear Facilities), is to help ensure that DOE Facility Representatives are selected based on consistently high standards and from the best qualified candidates available, that they receive the training required for them to function effectively, and that their expected duties, responsibilities, and authorities are well understood and accurately documented. To this end, this guidance provides the following practical information: (1) An approach for use in determining the required facility coverage; (2) The duties, responsibilities and authorities expected of a Facility Representative; and (3) The training and qualification expected of a Facility Representative.

Not Available

1993-08-01T23:59:59.000Z

365

Analysis and Design of Smart PV Module  

E-Print Network [OSTI]

This thesis explores the design of a smart photovoltaic (PV) module- a PV module in which PV cells in close proximity are electrically grouped to form a pixel and are connected to dc-dc converter blocks which reside embedded in the back pane...

Mazumdar, Poornima

2012-12-10T23:59:59.000Z

366

Testing Protocol for Module Encapsulant Creep (Presentation)  

SciTech Connect (OSTI)

Recently there has been an interest in the use of thermoplastic encapsulant materials in photovoltaic modules to replace chemically crosslinked materials, e.g., ethylene-vinyl acetate. The related motivations include the desire to: reduce lamination time or temperature; use less moisture-permeable materials; or use materials with better corrosion characteristics. However, the use of any thermoplastic material in a high-temperature environment raises safety and performance concerns, as the standardized tests currently do not expose the modules to temperatures in excess of 85C, yet modules may experience temperatures above 100C in operation. Here we constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass mock modules using different encapsulation materials of which only two were designed to chemically crosslink. One module set was exposed outdoors with insulation on the back side in Arizona in the summer, and an identical set was exposed in environmental chambers. High precision creep measurements and performance measurements indicate that despite many of these polymeric materials being in the melt state at some of the highest outdoor temperatures achievable, very little creep was seen because of their high viscosity, temperature heterogeneity across the modules, and in the case of the crystalline-silicon modules, the physical restraint of the backsheet. These findings have very important implications for the development of IEC and UL qualification and safety standards, and in regards to the necessary level of cure during the processing of crosslinking encapsulants.

Kempe, M. D.; Miller, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.; Moseley, J. M.; Shah, Q.; Tamizhmani, G.; Sakurai, K.; Inoue, M.; Doi, T.; Masuda, A.

2012-02-01T23:59:59.000Z

367

Nutrient Management Module No. 12 Water Quality  

E-Print Network [OSTI]

Nutrient Management Module No. 12 Water Quality Considerations and Regulations by Susan Mc Management Competency Area II: Nutrient movement in soil and water. Objectives After completing this module issues 3.Become familiar with federal and state water quality regulations 4.Identify Best Management

Lawrence, Rick L.

368

Identification coding schemes for modulated reflectance systems  

DOE Patents [OSTI]

An identifying coding apparatus employing modulated reflectance technology involving a base station emitting a RF signal, with a tag, located remotely from the base station, and containing at least one antenna and predetermined other passive circuit components, receiving the RF signal and reflecting back to the base station a modulated signal indicative of characteristics related to the tag.

Coates, Don M. (Santa Fe, NM); Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Platts, David (Santa Fe, NM); Clark, David D. (Santa Fe, NM)

2006-08-22T23:59:59.000Z

369

Workplace Training Module: Enhancing Ecotourism Business Performance  

E-Print Network [OSTI]

Workplace Training Module: Enhancing Ecotourism Business Performance (Level 5 ­ 10 credits as part on understanding best practice in ecotourism development and management (see second part of Appendix 1). The module focuses on the ecotourism business dimension ­ emphasizing best case examples of what creates successful

370

Electro-Optic Modulation of Single Photons  

E-Print Network [OSTI]

We use the Stokes photon of a biphoton pair to set the time origin for electro-optic modulation of the wave function of the anti-Stokes photon thereby allowing arbitrary phase and amplitude modulation. We demonstrate conditional single-photon wave functions composed of several pulses, or instead, having gaussian or exponential shapes.

Pavel Kolchin; Chinmay Belthangady; Shengwang Du; G. Y. Yin; S. E. Harris

2008-08-02T23:59:59.000Z

371

Module Handbook Core Univ. of Oldenburg  

E-Print Network [OSTI]

· Mechanical and Electrical Systems of the WEC Content: Energy conversion process in Wind Turbines · Wind/EUREC Course 2008/2009 #12;EUREC Core Courses at University of Oldenburg, 1st Semester Wind Energy Module Module Description: Wind Energy Field: Core Oldenburg Courses: Wind Energy Wind Energy

Habel, Annegret

372

Raising the Bar for Quality PV Modules  

Office of Energy Efficiency and Renewable Energy (EERE)

Since the development and codification of testing standards for PV modules requires a lengthy multiyear process, Department of Energys SunShot Initiative and National Renewable Energy Laboratory worked together on an accelerated schedule for nine months in 2013 to develop a voluntary standard that goes beyond current test protocols to qualify superior PV modules.

373

Ion transport membrane module and vessel system  

DOE Patents [OSTI]

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2012-02-14T23:59:59.000Z

374

Ion transport membrane module and vessel system  

DOE Patents [OSTI]

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2008-02-26T23:59:59.000Z

375

A Comparison of Key PV Backsheet and Module Properties from Fielded...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions A Comparison of Key PV Backsheet and Module Properties from Fielded Module...

376

Testing and Analysis for Lifetime Prediction of Crystalline Silicon PV Modules Undergoing Degradation by System Voltage Stress: Preprint  

SciTech Connect (OSTI)

Acceleration factors are calculated for crystalline silicon PV modules under system voltage stress by comparing the module power during degradation outdoors to that in accelerated testing at three temperatures and 85% relative humidity. A lognormal analysis is applied to the accelerated lifetime test data considering failure at 80% of the initial module power. Activation energy of 0.73 eV for the rate of failure is determined, and the probability of module failure at an arbitrary temperature is predicted. To obtain statistical data for multiple modules over the course of degradation in-situ of the test chamber, dark I-V measurements are obtained and transformed using superposition, which is found well suited for rapid and quantitative evaluation of potential-induced degradation. It is determined that shunt resistance measurements alone do not represent the extent of power degradation. This is explained with a two-diode model analysis that shows an increasing second diode recombination current and ideality factor as the degradation in module power progresses. Failure modes of the modules stressed outdoors are examined and compared to those stressed in accelerated tests.

Hacke, P.; Smith, R.; Terwiliger, K.; Glick, S.; Jordan, D.; Johnston, S.; Kempe, M.; Kurtz, S.

2012-07-01T23:59:59.000Z

377

Effectiveness of marine reserve networks in representing biodiversity and minimizing impact to fishermen: a comparison  

E-Print Network [OSTI]

LETTER Effectiveness of marine reserve networks in representing biodiversity and minimizing impact of California's Marine Life Protection Act Initiative at represent- ing biodiversity and minimizing estimated to design marine reserve networks that meet biodiversity targets efficiently (Kirkpatrick 1983; Leslie et al

Queensland, University of

378

A generalized 3D inverted pendulum model to represent human normal walking  

E-Print Network [OSTI]

A generalized 3D inverted pendulum model to represent human normal walking Sophie Sakka IRCCy,lacouture}@univ-poitiers.fr Abstract-- This paper compares different inverted pendulum models to represent the stance phase of human adapted to pathological walking as the walking symmetry hypothesis -needed to build classical inverted

Paris-Sud XI, Université de

379

Applying Engineering and Fleet Detail to Represent Passenger Vehicle Transport in a  

E-Print Network [OSTI]

Applying Engineering and Fleet Detail to Represent Passenger Vehicle Transport in a Computable. It seeks to provide leadership in understanding scientific, economic, and ecological aspects://globalchange.mit.edu/ Printed on recycled paper #12;1 Applying Engineering and Fleet Detail to Represent Passenger Vehicle

380

Development of stressed membrane heliostat mirror module: Final report  

SciTech Connect (OSTI)

The design of a commercial stressed membrane 150 m/sup 2/ heliostat mirror module based on thin .0762 mm (.003 in.) stainless steel is reported. The fabrication and initial evaluations of a 50 m/sup 2/ first of a kind prototype is reported and represents the first proof of principal for this advanced heliostat concept. The baseline design, manufacturing and installation of these vacuum focused double membrane ''thin drum'' heliostats has been established. The results of prototype testing will allow the designs and manufacturing scenarios for these 10.7 kg/m/sup 2/, 2.2 lb/ft/sup 2/, $65/m/sup 2/ heliostats to be refined and installation costs reduced.

Butler, B.L.; Beninga, K.; Loomis, W.C.; Royval, P.J.

1987-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Gregory H. Friedman: Before the U.S. House of Representatives Committee on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Representatives of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Gregory H. Friedman: Before the U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations February 26, 2003 Before the U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Statement of Gregory H. Friedman, Inspector General U.S. Department of Energy Testify on the Office of Inspector General's recent inquiry concerning Los Alamos National Laboratory. STATEMENT OF GREGORY H. FRIEDMAN INSPECTOR GENERAL U.S. DEPARTMENT OF ENERGY BEFORE THE U.S. HOUSE OF REPRESENTATIVES COMMITTEE ON ENERGY AND COMMERCE SUBCOMMITTEE ON OVERSIGHT AND INVESTIGATIONS, February 26, 2003

382

3Q C&2008 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q C&2008 (PDF), Facility Representative Program Performance 3Q C&2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q C&2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2008. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 80% Fully Qualified ( last Quarter was 87%) 89% Staffing Level ( last Quarter was 86%) 45% Time Spent in the Field (DOE goal is > 40%) 76% Time Spent in Oversight Activites (DOE Goal is >

383

FACILITY REPRESENTATIVE PROGRAM STATUS, 6/21/1999 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

FACILITY REPRESENTATIVE PROGRAM STATUS, 6/21/1999 FACILITY REPRESENTATIVE PROGRAM STATUS, 6/21/1999 FACILITY REPRESENTATIVE PROGRAM STATUS, 6/21/1999 Since September, 1993, the Office of Field Management has served as the Department's corporate advocate for the Facility Representative Program. The Facility Representative (FR) is a critical technical position serving as line management's "eyes and ears" for operational safety in our contractor-operated facilities. I recognize the importance of the FR Program, and commit the Office of Field Integration (FI) to its continued crosscutting support. The FI staff continues to work with your staff members and with the Defense Nuclear Facilities Safety Board (Board) staff on FR Program issues, including staffing, training and qualification, recruitment, and retention. The Board is clearly interested in the

384

Tune modulation due to synchrotron oscillations and chromaticity, and the dynamic aperture  

SciTech Connect (OSTI)

A tracking study was done of the effects of a tune modulation, due to synchrotron oscillations and the tune dependence on momentum (chromaticity), on the dynamic aperture. The studies were done using several RHIC lattices and tracking runs of about 1 {times} 10{sup 6} turns. The dynamic aperture was found to decrease roughly linearly with the amplitude of the tune modulation and may be represented by A = A{sub o}(l--10 {Delta}{nu}) where A{sub o} is the dynamic aperture for {Delta}{nu} = 0, and {Delta}{nu} is the tune modulation amplitude. In Eq. (1), the range of {Delta}{nu} is such that lower order non-linear resonances, like the 1/3 and 1/4 resonance axe not crossed because of the tune modulation. Three different cases were studied, corresponding to RHIC lattices with different {beta}*, and with different synchrotron oscillation amplitudes. In each case, the tune modulation amplitude was varied by changing the chromaticity. In each case, roughly the same result, Eq. (1), was found. The result found here for the effect of a tune modulation due to chromaticity may be compared with the result found for the effect of a tune modulation due to a gradient ripple in the quadrupoles, which was A = A{sub o}(l--42 {Delta}{nu}). The effect of a {Delta}{nu} due to a gradient ripple appears to be about 4 times stronger than the effect of a {Delta}{nu} due to chromaticity and synchrotron oscillations.

Parzen, G.

1994-03-01T23:59:59.000Z

385

A Graphene-based Polarization-Insensitive Optical Modulator  

Science Journals Connector (OSTI)

We present a polarization-insensitive modulator. The performance of the designed modulator is comprehensively evaluated, showing a 3-dB modulation with 910-nm long waveguide, an...

hu, xiao; Gui, Chengcheng; Wang, Jian

386

CHARGED PARTICLE IDENTIFICATION WITH MODULES OF THE PLASTIC BALL  

E-Print Network [OSTI]

WITH MODULES OF THE PLASTIC BALL H.H. Gutbrod, M.R. Maier,WITH MODULES OF THE PLASTIC BALL H.H. Gutbrod, M.R. Maier*,of modules of the Plastic Ball detector for positive pions

Gutbrod, H.H.

2010-01-01T23:59:59.000Z

387

Approved Module Information for EE2EDP, 2014/5 Module Title/Name: Electronics Design Project Module Code: EE2EDP  

E-Print Network [OSTI]

Code: EE2EDP School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Engineering Systems. BEng Electrical and Electronic Engineering. BEng Electronic Engineering and Computer competition among the groups to produce a 'best' system. * Students will be required to use creativity

Neirotti, Juan Pablo

388

Criticality Calculations for Step?2 GPHS Modules  

Science Journals Connector (OSTI)

The Multi?Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version referred to as the Step?2 GPHS Module has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of 238 Pu in the oxide form as the primary source of heat and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step?2 version. The Monte Carlo N?Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand the configuration is extremely sub?critical; k eff is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close?spaced stack to approach criticality ( k eff ?=?1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Ronald J. Lipinski; Danielle L. Hensen

2008-01-01T23:59:59.000Z

389

Criticality Calculations for Step-2 GPHS Modules  

SciTech Connect (OSTI)

The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Lipinski, Ronald J. [Advanced Nuclear Concepts Department, Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States); Hensen, Danielle L. [Risk and Reliability Department Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States)

2008-01-21T23:59:59.000Z

390

Criticality calculations for Step-2 GPHS modules.  

SciTech Connect (OSTI)

The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Hensen, Danielle Lynn; Lipinski, Ronald J.

2007-08-01T23:59:59.000Z

391

Tematea: Issue Based Modules for Coherent Implementation of Biodiversi...  

Open Energy Info (EERE)

Tematea: Issue Based Modules for Coherent Implementation of Biodiversity Conventions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Tematea: Issue Based Modules for...

392

Agenda for the PV Module Reliability Workshop, February 26 -...  

Broader source: Energy.gov (indexed) [DOE]

Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado This...

393

NREL: Performance and Reliability R&D - PV Module Reliability...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reliability R and D Printable Version PV Module Reliability Workshop NREL hosts an annual Photovoltaic Module Reliability Workshop (PVMRW) so that solar technology experts can...

394

Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESSTutorial_ROTATION...  

Broader source: Energy.gov (indexed) [DOE]

Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESS TutorialROTATIONWITHINDUSTRY.doc Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESS TutorialROTATIONWITHINDUSTRY.doc...

395

Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESSTutorial_ESTABLISHI...  

Broader source: Energy.gov (indexed) [DOE]

ESTABLISHINGAPROFILE.doc Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESS TutorialESTABLISHINGAPROFILE.doc Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESS...

396

Energy Efficiency at Home - An Interdisciplinary Module for Energy...  

Broader source: Energy.gov (indexed) [DOE]

Efficiency at Home - An Interdisciplinary Module for Energy Education Energy Efficiency at Home - An Interdisciplinary Module for Energy Education Below is information about the...

397

SunShot Presentation PV Module Reliabity Workshop Opening Session...  

Broader source: Energy.gov (indexed) [DOE]

SunShot Presentation PV Module Reliabity Workshop Opening Session SunShot Presentation PV Module Reliabity Workshop Opening Session This PowerPoint slide deck was originally...

398

SunShot Presentation PV Module Reliabity Workshop Opening Session  

Broader source: Energy.gov (indexed) [DOE]

2013 PV Module Reliability Workshop Feb 26- 27, 2013, Golden, CO * The SunShot Initiative * Systems Integration Technology Validation Activities * 2013 PV Module Reliability...

399

Module: Emission Factors for Deforestation | Open Energy Information  

Open Energy Info (EERE)

Website: www.leafasia.orgtoolstechnical-guidance-series-emission-factors-defo Cost: Free Language: English Module: Emission Factors for Deforestation Screenshot Logo: Module:...

400

Module: Activity Data for Deforestation | Open Energy Information  

Open Energy Info (EERE)

Website: www.leafasia.orgtoolstechnical-guidance-series-activity-data-defores Cost: Free Language: English Module: Activity Data for Deforestation Screenshot Logo: Module:...

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Chirped Laser Dispersion Spectroscopy with Directly Modulated Quantum Cascade Laser  

Science Journals Connector (OSTI)

A feasibility study of chirped laser dispersion spectroscopy (CLaDS) with utilizing direct modulation of a quantum cascade laser instead of external modulators is presented....

Hangauer, Andreas; Spinner, Georg; Nikodem, Michal; Wysocki, Gerard

402

EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glass Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Characterization of Dynamic Loads on Solar Modules with Respect to Fracture of Solar Cells...

403

Characterization of Dynamic Loads on Solar Modules with Respect...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Dynamic Loads on Solar Modules with Respect to Fracture of Solar Cells Characterization of Dynamic Loads on Solar Modules with Respect to Fracture of Solar...

404

Statistical and Domain Analytics Applied to PV Module Lifetime...  

Broader source: Energy.gov (indexed) [DOE]

on PV Modules Failure Rates from Certification Testing to UL and IEC Standards for Flat Plate PV Modules Accelerated Stress Testing, Qualification Testing, HAST, Field Experience...

405

Planar photovoltaic solar concentrator module  

DOE Patents [OSTI]

A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

Chiang, C.J.

1992-12-01T23:59:59.000Z

406

Approved Module Information for CE2004, 2014/5 Module Title/Name: Transfer Processes Module Code: CE2004  

E-Print Network [OSTI]

tubes. Natural convection from pipes. Thermal radiation fundamentals, view factors, radiation exchange classes, directed reading, coursework exercises, tutorial support Module Assessment Methods of Assessment & associated weighting (including approaches to formative assessment as well as summative): Assessment Type

Neirotti, Juan Pablo

407

Approved Module Information for CE2105, 2014/5 Module Title/Name: Process Simulation Module Code: CE2105  

E-Print Network [OSTI]

the program to processes in chemicals manufacturing, power generation and petrochemical refining skills #12;* Ability to communicate effectively in writing and through technical diagrams * Problem reading, coursework exercises, tutorial support Module Assessment Methods of Assessment & associated

Neirotti, Juan Pablo

408

Approved Module Information for BH2239, 2014/5 Module Title/Name: Psychology and Work Module Code: BH2239  

E-Print Network [OSTI]

culture, climate, and change * Applying the Psychology of Work and Organizations The learning outcomes * Academic writing skills * Critical reasoning * Written and oral communication * Planning and organizing * Interpersonal discussion and communication Indicative Module Content: * Introduction to Work and Organizational

Neirotti, Juan Pablo

409

Microscale autonomous sensor and communications module  

DOE Patents [OSTI]

Various technologies pertaining to a microscale autonomous sensor and communications module are described herein. Such a module includes a sensor that generates a sensor signal that is indicative of an environmental parameter. An integrated circuit receives the sensor signal and generates an output signal based at least in part upon the sensor signal. An optical emitter receives the output signal and generates an optical signal as a function of the output signal. An energy storage device is configured to provide power to at least the integrated circuit and the optical emitter, and wherein the module has a relatively small diameter and thickness.

Okandan, Murat; Nielson, Gregory N

2014-03-25T23:59:59.000Z

410

Amplitude modulation of wind turbine noise  

E-Print Network [OSTI]

Due to swish and thump amplitude modulation, the noise of wind turbines cause more annoyance than other environmental noise of the same average level. The wind shear accounts for the thump modulation (van den Berg effect). Making use of the wind speed measurements at the hub height, as well as at the top and the bottom of the rotor disc (Fig.1), the non-standard wind profile is applied. It causes variations in the A-weighted sound pressure level, LpA. The difference between the maximum and minimum of LpA characterizes thump modulation (Fig.2).

Makarewicz, Rufin

2013-01-01T23:59:59.000Z

411

Gregory H. Friedman: Before The U.S. House of Representatives Committee on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The U.S. House of Representatives The U.S. House of Representatives Committee on Government Reform Subcommittee on the Federal Workforce and Agency Organization Gregory H. Friedman: Before The U.S. House of Representatives Committee on Government Reform Subcommittee on the Federal Workforce and Agency Organization April 5 2005 Before The U.S. House of Representatives Committee on Government Reform Subcommittee on the Federal Workforce and Agency Organization Statement of Gregory H. Friedman, Inspector General U.S. Department of Energy Testify regarding recent allegations of misconduct involving documents associated with the U.S. Department of Energy's Yucca Mountain Project. Disposal of the Nation's high-level nuclear waste and spent nuclear fuel is one of the most sensitive and complex challenges facing the U.S.

412

Herbert Richardson: Before The U.S. House of Representatives Committee on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Herbert Richardson: Before The U.S. House of Representatives Herbert Richardson: Before The U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Herbert Richardson: Before The U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations March 4, 2004 Before The U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Statement of Herbert Richardson, Principal Deputy Inspector General U.S. Department of Energy Testify regarding physical security at the Department of Energy's facilities. The Department's activities range from nuclear nonproliferation, to cutting edge research and development, to weapons programs. The sensitive and critical nature of the Department's work

413

U.S. Representative Cleaver congratulates KCP employees for safety record  

National Nuclear Security Administration (NNSA)

Representative Cleaver congratulates KCP employees for safety record Representative Cleaver congratulates KCP employees for safety record during big move | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > U.S. Representative Cleaver congratulates KCP employees for ... U.S. Representative Cleaver congratulates KCP employees for safety record

414

Gregory H. Friedman: Before the U.S. House Of Representatives Committee on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Representatives Of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Gregory H. Friedman: Before the U.S. House Of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations May 1, 2003 Before the U.S. House Of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Statement of Gregory H. Friedman, Inspector General U.S. Department of Energy Request to testify on the Office of Inspector General's (OIG) reviews of management practices at the Los Alamos National Laboratory (Laboratory). In February of this year, I testified before this Subcommittee regarding our Special Inquiry report on Operations at Los Alamos National Laboratory (DOE/IG-0584, January 2003). That report noted a series of actions taken by

415

Design of a Fragment Library that maximally represents available chemical space  

Science Journals Connector (OSTI)

Cheminformatics protocols have been developed and assessed that identify a small set of fragments which can represent the compounds in a chemical library for use in fragment-based ligand discovery. Six differe...

M. N. Schulz; J. Landstrm; K. Bright

2011-07-01T23:59:59.000Z

416

Extracting and Representing Qualitative Behaviors of Complex Systems in Phase Spaces  

E-Print Network [OSTI]

We develop a qualitative method for understanding and representing phase space structures of complex systems and demonstrate the method with a program, MAPS --- Modeler and Analyzer for Phase Spaces, using deep domain ...

Zhao, Feng

1991-03-01T23:59:59.000Z

417

Representing Knowledge of LargeScale Space 1 Benjamin Jack Kuipers  

E-Print Network [OSTI]

Representing Knowledge of Large­Scale Space 1 Benjamin Jack Kuipers July 1977 1 B. J. Kuipers. 1977, and Mark Jeffery. Continuing discussions with Al Stevens have been pleasurable and helpful. My wife Laura

Kuipers, Benjamin

418

How faithfully will the geostrophic currents represent the existing ocean currents?  

Science Journals Connector (OSTI)

It is widely recognized that the geostrophic flows computed by the dynamic method of Bjerknes and collaborators represent the actual currents pretty faithfully. However, what would be the reason that a geostrophi...

Koji Hidaka

1972-04-01T23:59:59.000Z

419

STUDENT GOVERNMENT ASSOCIATION The Student Government Association, or "SGA", has the greatest student representative  

E-Print Network [OSTI]

_____________________________________________________________________________ STUDENT GOVERNMENT ASSOCIATION The Student Government Association, or "SGA", has the greatest student representative authority on campus. The Student Government Association receives a $4.50 per student per quarter student-assessed fee

Selmic, Sandra

420

Lessons Learned in Optimizing Workers' and Worker Representatives' Input to Work Planning and Control  

Broader source: Energy.gov [DOE]

Slide Presentation by Tom McQuiston, Dr. P.H., United Steelworkers - Tony Mazzocchi Center for Health, Safety and Environmental Education. Lessons Learned in Optimizing Workers and Worker Representatives Input in Work Planning and Control.

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

John C. Barnes of Savannah River Operations named 2012 Facility Representative of the Year  

Broader source: Energy.gov [DOE]

About 200 Department of Energy (DOE) federal employees are Facility Representatives (FR) who provide day-to-day oversight of contractor operations at DOE facilities. Each year the Department...

422

Secretary Chu to Join Representatives Lofgren and Honda at the SLAC  

Broader source: Energy.gov (indexed) [DOE]

Representatives Lofgren and Honda at the SLAC Representatives Lofgren and Honda at the SLAC National Accelerator Laboratory Secretary Chu to Join Representatives Lofgren and Honda at the SLAC National Accelerator Laboratory August 13, 2010 - 12:00am Addthis Washington, D.C. - On Monday, U.S. Energy Secretary Steven Chu will visit the SLAC National Accelerator Laboratory in Menlo Park, California. Secretary Chu will join Representatives Zoe Lofgren and Mike Honda and Stanford University President John Hennessy at a dedication ceremony for the Linac Coherent Light Source (LCLS). The Recovery Act-funded LCLS produces x-ray pulses millions of times brighter than the world's most powerful synchrotron sources, capable of capturing images of atoms and molecules in motion. The LCLS is led by SLAC National Accelerator Laboratory (SLAC). Operated by

423

U.S. Energy Secretary Steven Chu, U.S. Representatives Larson and Courtney  

Broader source: Energy.gov (indexed) [DOE]

Steven Chu, U.S. Representatives Larson and Steven Chu, U.S. Representatives Larson and Courtney to Visit Research Center in East Hartford U.S. Energy Secretary Steven Chu, U.S. Representatives Larson and Courtney to Visit Research Center in East Hartford February 3, 2011 - 12:00am Addthis WASHINGTON, DC - Tomorrow, Friday, February 4, U.S. Secretary of Energy Steven Chu will travel to East Hartford, Conn. to visit United Technologies Research Center, which has received funding from the Department for several transformational clean energy research projects. The Secretary is visiting UTC to highlight the importance of investing in innovation and clean energy to put people back to work, grow the economy, and win the future. He will be joined by U.S. Representatives John Larson and Joe Courtney for a tour

424

Secretary Chu: China's Clean Energy Successes Represent a New "Sputnik  

Broader source: Energy.gov (indexed) [DOE]

Chu: China's Clean Energy Successes Represent a New Chu: China's Clean Energy Successes Represent a New "Sputnik Moment" for America Secretary Chu: China's Clean Energy Successes Represent a New "Sputnik Moment" for America November 29, 2010 - 12:00am Addthis Washington, D.C. - In a speech at the National Press Club, U.S Energy Secretary Steven Chu said that the success of China and other countries in clean energy industries represents a new "Sputnik Moment" for the United States, and requires a similar mobilization of America's innovation machine so that we can compete in the global race for the jobs of the future. Secretary Chu outlined efforts underway at the Department to give America's entrepreneurs and manufacturers an edge through investments in clean energy innovation.

425

Photovoltaic module with removable wind deflector  

DOE Patents [OSTI]

A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

2014-02-18T23:59:59.000Z

426

Photovoltaic Module Reliability Workshop 2013 | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and PV Evolutions Impact and Detection of Pyranometer Failure on PV Performance, D.C. Jordan and B. Sekulic of NREL Manufacturing Metrology for c-Si Module ReliabilityDurability,...

427

Superieur lichtbereik dankzij dubbele LED module  

Science Journals Connector (OSTI)

GC Europe introduceert een nieuw concept voor lichtuitharding. De GC G-Light heeft een LED module met twee typen dioden. Met een...GC G-Light een hoge lichtopbrengst voor het uitharden van dental...

2005-08-01T23:59:59.000Z

428

Photovoltaic Module Modeling using Simulink/Matlab  

Science Journals Connector (OSTI)

This paper describes a method of modeling and simulation photovoltaic (PV) module that implemented in Simulink/Matlab. It is necessary to define a circuit-based simulation model for a PV cell in order to allow the interaction with a power converter. Characteristics of PV cells that are affected by irradiation and temperature are modeled by a circuit model. A simplified PV equivalent circuit with a diode equivalent is employed as model. The simulation results are compared with difference types of PV module datasheets. Its results indicated that the created simulation blocks in Simulink/matlab are similar to actual PV modules, compatible to different types of PV module and user-friendly.

Krismadinata; Nasrudin Abd. Rahim; Hew Wooi Ping; Jeyraj Selvaraj

2013-01-01T23:59:59.000Z

429

Project Execution Plan Review Module (RM)  

Broader source: Energy.gov [DOE]

The Project Execution Plan (PEP) Review Module (RM) is a tool that assists DOE federal project review teams in evaluating the adequacy of the PEP development and maintenance for projects of any...

430

Rack assembly for mounting solar modules  

DOE Patents [OSTI]

A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures to be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.

Plaisted, Joshua Reed; West, Brian

2012-09-04T23:59:59.000Z

431

Rack assembly for mounting solar modules  

DOE Patents [OSTI]

A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.

Plaisted, Joshua Reed (Oakland, CA); West, Brian (San Francisco, CA)

2010-12-28T23:59:59.000Z

432

Rack assembly for mounting solar modules  

SciTech Connect (OSTI)

A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.

Plaisted, Joshua Reed; West, Brian

2014-06-10T23:59:59.000Z

433

Laborlandschaft : redesigning the industrial laboratory module  

E-Print Network [OSTI]

This thesis proposes to redesign the industrial pharmaceutical laboratory typology by rethinking the composition of the laboratory module; the smallest functional sub-unit of the laboratory type. The design for this thesis ...

Farley, Alexander H. (Alexander Hamilton)

2014-01-01T23:59:59.000Z

434

Order Module--NNSA OCCUPATIONAL RADIATION PROTECTION  

Broader source: Energy.gov [DOE]

The familiar level of this module is designed to provide the basic information to meet the requirements that are related to 10 CFR 835, Occupational Radiation Protection, in the following DOE...

435

Order Module--RADIATION PROTECTION PROGRAMS GUIDE  

Broader source: Energy.gov [DOE]

The familiar level of this module is designed to provide the basic information related to DOEG 441.1-1C, Radiation Protection Programs Guide, as required in DOE-STD-1174-2003, Radiation Protection...

436

Optimal design of reverse osmosis module networks  

SciTech Connect (OSTI)

The structure of individual reverse osmosis modules, the configuration of the module network, and the operating conditions were optimized for seawater and brackish water desalination. The system model included simple mathematical equations to predict the performance of the reverse osmosis modules. The optimization problem was formulated as a constrained multivariable nonlinear optimization. The objective function was the annual profit for the system, consisting of the profit obtained from the permeate, capital cost for the process units, and operating costs associated with energy consumption and maintenance. Optimization of several dual-stage reverse osmosis systems were investigated and compared. It was found that optimal network designs are the ones that produce the most permeate. It may be possible to achieve economic improvements by refining current membrane module designs and their operating pressures.

Maskan, F.; Wiley, D.E.; Johnston, L.P.M.; Clements, D.J.

2000-05-01T23:59:59.000Z

437

Algebraic Characters for Harish-Chandra modules  

E-Print Network [OSTI]

We give a purely cohomological treatment of a character theory for (g,K)-modules. This leads to a beautiful formalism extending to large categories of (g,K)-modules. Due to results of Hecht-Schmid and Vogan the classical results of Harish-Chandra's global character theory extend to this setting. This algebraic approach reduces (not necessarily admissible) discretely decomposable branching problems to finiteness statements about multiplicities of composition factors and appropriate character formulas.

Januszewski, Fabian

2012-01-01T23:59:59.000Z

438

DOE special projects: PLACE3S GIS MODULE [Final report  

SciTech Connect (OSTI)

PLACE3S (PLAnning for Community Energy, Economic and Environmental Sustainability) energy option matching module.

NONE

2002-07-31T23:59:59.000Z

439

Contractive and completely contractive modules, matricial tangent vectors  

E-Print Network [OSTI]

Contractive and completely contractive modules, matricial tangent vectors and distance decreasing a finite dimensional Hilbert module over H() and that the module is contractive if and only if C, (v tensor product norm then again the module is contractive if and only if V is less or equal to one

Misra, Gadadhar

440

Microsoft PowerPoint - FinalModule3.ppt  

Broader source: Energy.gov (indexed) [DOE]

3: Project Scheduling 3: Project Scheduling Prepared by: Module 3 - Project Scheduling 1 Prepared by: Booz Allen Hamilton Module 3: Project Scheduling Welcome to Module 3. The objective of this module is to introduce you to Project Scheduling. The Topics that will be addressed in this Module include: * Define Planning vs. Scheduling * Define and Illustrate Basic Scheduling Concepts * Define Logic Relationships and Critical Path * Define and Illustrate Different Schedule Formats Module 3 - Project Scheduling 2 Prepared by: Booz Allen Hamilton Review of Previous Modules Let's quickly review what has been covered in the previous modules. * In Module 1 we introduced you to earned value and the requirements for properly implementing an earned value management system (EVMS). * In Module 2 we discussed

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Microsoft PowerPoint - FinalModule8.ppt  

Broader source: Energy.gov (indexed) [DOE]

8: Reporting 8: Reporting Prepared by: Module 8 - Reporting 1 Prepared by: Booz Allen Hamilton Module 8: Government Required Reports Welcome to Module 8. The objective of this module is to introduce you to Government required reports. The Topics that will be addressed in this Module include: * Define Cost Performance Report (CPR) * Define Cost/Schedule Status Report (C/SSR) Module 8 - Reporting 2 Prepared by: Booz Allen Hamilton Review of Previous Modules In the previous seven modules, we discussed the framework needed to perform Earned Value and develop an Earned Value Management System (EVMS). * In Module 1 we introduced you to earned value and the requirements for properly implementing an earned value management system (EVMS) * In Module 2 we discussed the development of the work breakdown structure

442

Development of a commercial photovoltaic concentrator module  

SciTech Connect (OSTI)

The ojective of this work was to develop the design and prototype of a commercial high-concentration photovoltaic (PV) module. The design is for a 282-sun point-focus concentrating module. Most of the components, subassemblies, and design features incorporate simplifications and ease of manufacturing. The Solar Kinetics, Inc. (SKI) module is designed to incorporate high-efficiency, single-crystal silicon PV cells. The housing is made with aluminum laminated for voltage stand-off and simultaneously providing high thermal conductivity. The Fresnel lens injection molded by American Optical (AO) as singles. The cell assembly consists of a copper heat spreader, a photovoltaic cell soldered, a top and bottom contact, and a reflective secondary optical element (SOE). The cell assemblies passed all of the initial electrical characterization and high-potential tests. Under environmental cycling, the only bond that failed was the PV cell-to-heat spreader interface. The other components (top contact, bottom contact, SOE) passed all the environmental cycling tests. The cell assemblies were designed to be mounted onto the receiver section with a thermally conductive RTV. This geometry was subjected to environmental testing. There was no delamination of this bond nor was there electrical breakdown when the assemblies were subjected to the hi-pot test. A mock module was fabricated for environmental evaluation. This module was subjected to the humidity/freeze cycling to assess the performance of the lens mounting design. This module was also subjected to the rain test after the humidity/freeze cycling and checked for water leaks. The lens showed small displacement from its original position after the environmental cycling. One tablespoon of water did collect inside the module.

Saifee, S.T.; Hutchison, G. [Solar Kinetics, Inc., Dallas, TX (United States)

1992-09-01T23:59:59.000Z

443

EIA-Assumptions to the Annual Energy Outlook - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2007 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind.112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon the availability of low-cost energy storage systems.

444

Gregory H. Friedman: Before the U.S. House of Representatives Committee on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy and Commerce Subcommittee on Oversight and Energy and Commerce Subcommittee on Oversight and Investigations Gregory H. Friedman: Before the U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations April 5, 2005 Before the U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Statement of Gregory H. Friedman, Inspector General U.S. Department of Energy Request to testify on the results of our work at the Los Alamos National Laboratory, one of the Department of Energy's most prominent facilities. STATEMENT OF GREGORY H. FRIEDMAN INSPECTOR GENERAL U.S. DEPARTMENT OF ENERGY BEFORE THE U.S. HOUSE OF REPRESENTATIVES COMMITTEE ON ENERGY AND COMMERCE SUBCOMMITTEE ON OVERSIGHT AND INVESTIGATIONS, May 5, 2005

445

WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT. | Department  

Broader source: Energy.gov (indexed) [DOE]

REPRESENT. REPRESENT. WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT. The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a DOE-sponsored publication released in 2008 and available online at www.smartgrid.gov, this publication is one in a series of books designed to better acquaint discrete stakeholder groups with the promise and possibilities of the Smart Grid. Stakeholder groups include Utilities, Regulators, Policymakers, Technology Providers, Consumer Advocates and Environmental Groups.

446

On April 25, 2013, several representatives of energy efficiency advocacy organiz  

Broader source: Energy.gov (indexed) [DOE]

April 25, 2013, several representatives of energy efficiency advocacy organizations met with staff April 25, 2013, several representatives of energy efficiency advocacy organizations met with staff and members of the Compressed Air and Gas Institute (CAGI) along with some compressed air experts at the offices of the Alliance to Save Energy to explore and discuss a consensus approach to advancing energy efficiency of compressed air systems within the context of the DOE's potential rulemaking on compressors. The group discussed the need to assemble the relevant data and technical content that will be valuable in identifying possible pathways to achieve a meaningful and appropriate compressor standard that maximizes energy savings potential without creating an undue burden on the market. Representing the energy efficiency advocacy organizations were Tracy Kohler of the Compressed Air

447

December 17, 1998 Memo, Incentives for the Department's Facility Representative Program  

Broader source: Energy.gov (indexed) [DOE]

mE mE F 1325.8 (a89) EFG (U7-W) United States Government Department of Energy memorandum DATE: December 17, 1998 REPLY TO ATTN OF: FM- 10(J. Hassenfeldt, 202 586-1643) SUBJECT Incentives for the Department's Facility Representative Program TO:Distribution The Department's Revised Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 93-3 has once again underscored the Department's commitment to maintaining the technical capability necessary to safely manage and operate our defense nuclear facilities. Attracting and retaining highly qualified employees and placing them in our critical technical positions is vital to fi.dfilling this commitment. You have identified 95'% of your Facility Representative positions as critical technical positions. The Office of Field Management has noted a 12'?40 annual attrition rate of Facility Representatives

448

How Representative are the Cloud Regimes at the TWP Sites? … An ISCCP Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How Representative are the Cloud Regimes at the How Representative are the Cloud Regimes at the TWP Sites? - An ISCCP Perspective C. Jakob Bureau of Meteorology Research Centre Melbourne, Australia G. Tselioudis National Aeronautic and Space Administration Goddard Institute for Space Studies Columbia University New York Introduction The Atmospheric Radiation Measurement (ARM) Program has established comprehensive cloud and radiation observatories in various locations across the globe with the aim of collecting measurements and developing models to better understand the processes that control solar and thermal infrared radiative transfer in clouds and at the surface. The locales of the individual ARM sites were chosen because they represent typical cloud regimes occurring in various climate regimes (Stokes and Schwartz

449

Three dimensional, multi-chip module  

DOE Patents [OSTI]

A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow dummy chips'' are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned on the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.

Bernhardt, A.F.; Petersen, R.W.

1993-08-31T23:59:59.000Z

450

Three dimensional, multi-chip module  

DOE Patents [OSTI]

A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow "dummy chips" are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned o the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.

Bernhardt, Anthony F. (Berkeley, CA); Petersen, Robert W. (Pleasanton, CA)

1993-01-01T23:59:59.000Z

451

Performance Stabilization of CdTe PV Modules using Bias and Light  

SciTech Connect (OSTI)

Reversible performance changes due to light exposure frustrate repeatable performance measurements on CdTe PV modules. It is common to use extended light-exposure to ensure that measurements are representative of outdoor performance. We quantify the extent to which such a light-exposed state depends on module temperature and consider bias in the dark to aid in stabilization. We evaluate the use of dark forward bias to bring about a performance state equivalent to that obtained with light exposure, and to maintain a light-exposed state prior to STC performance measurement. Our results indicate that the most promising method for measuring a light-exposed state is to use light exposure at controlled temperature followed by prompt STC measurement with a repeatable time interval between exposure and the STC measurement.

Silverman, T. J.; Deceglie, M. G.; Marion, B.; Kurtz, S. R.

2014-07-01T23:59:59.000Z

452

Approved Module Information for EC211C, 2014/5 Module Title/Name: Estimation, Measurement & Scheduling Module Code: EC211C  

E-Print Network [OSTI]

practice and scheduling using planning and control tools and techniques to evaluate students? own work & Scheduling Module Code: EC211C School: Engineering and Applied Science Module Type: Standard Module New and practices of construction scheduling; * To develop an understanding of cost and time in construction

Neirotti, Juan Pablo

453

electricity market module region | OpenEI  

Open Energy Info (EERE)

342 342 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281342 Varnish cache server electricity market module region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

454

Siemens SOFC Test Article and Module Design  

SciTech Connect (OSTI)

Preliminary design studies of the 95 kWe-class SOFC test article continue resulting in a stack architecture of that is 1/3 of 250 kWe-class SOFC advanced module. The 95 kWeclass test article is envisioned to house 20 bundles (eight cells per bundle) of Delta8 cells with an active length of 100 cm. Significant progress was made in the conceptual design of the internal recirculation loop. Flow analyses were initiated in order to optimize the bundle row length for the 250 kWeclass advanced module. A preferred stack configuration based on acceptable flow and thermal distributions was identified. Potential module design and analysis issues associated with pressurized operation were identified.

None

2011-03-31T23:59:59.000Z

455

Module level solutions to solar cell polarization  

DOE Patents [OSTI]

A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

Xavier, Grace (Fremont, CA), Li; Bo (San Jose, CA)

2012-05-29T23:59:59.000Z

456

Low thermal resistance power module assembly  

DOE Patents [OSTI]

A power module assembly with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate with passageways or openings for coolant that extend through the plate from a lower surface to an upper surface. A circuit substrate is provided and positioned on the spreader plate to cover the coolant passageways. The circuit substrate includes a bonding layer configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer may be solder material which bonds to the upper surface of the plate to provide a continuous seal around the upper edge of each opening in the plate. The assembly includes power modules mounted on the circuit substrate on a surface opposite the bonding layer. The power modules are positioned over or proximal to the coolant passageways.

Hassani, Vahab (Denver, CO); Vlahinos, Andreas (Castle Rock, CO); Bharathan, Desikan (Arvada, CO)

2007-03-13T23:59:59.000Z

457

Enhanced heat transfer for thermionic power modules  

SciTech Connect (OSTI)

The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

Johnson, D.C.

1981-07-01T23:59:59.000Z

458

Scannerless loss modulated flash color range imaging  

DOE Patents [OSTI]

Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

Sandusky, John V. (Albuquerque, NM); Pitts, Todd Alan (Rio Rancho, NM)

2008-09-02T23:59:59.000Z

459

Scannerless loss modulated flash color range imaging  

DOE Patents [OSTI]

Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

Sandusky, John V. (Albuquerque, NM); Pitts, Todd Alan (Rio Rancho, NM)

2009-02-24T23:59:59.000Z

460

Plasmon absorption modulator systems and methods  

SciTech Connect (OSTI)

Plasmon absorption modulator systems and methods are disclosed. A plasmon absorption modulator system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and a metal layer formed on a top surface of the stack of quantum well layers. A method for modulating plasmonic current includes enabling propagation of the plasmonic current along a metal layer, and applying a voltage across the stack of quantum well layers to cause absorption of a portion of energy of the plasmonic current by the stack of quantum well layers. A metamaterial switching system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and at least one metamaterial structure formed on a top surface of the stack of quantum well layers.

Kekatpure, Rohan Deodatta; Davids, Paul

2014-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Review of the Facility Representative Program at the Idaho Site, March 2013  

Broader source: Energy.gov (indexed) [DOE]

of the Facility Representative Program at the Idaho Site March 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose.................................................................................................................................................. ! 2.0 Scope ..................................................................................................................................................... ! 3.0 Background ........................................................................................................................................... 1 4.0 Results ..................................................................................................................................................

462

Laser Safety Web Resources The web links below represent varied resources for laser safety information and  

E-Print Network [OSTI]

Laser Safety Web Resources The web links below represent varied resources for laser safety endorsement by Georgia Tech. Please contact the Laser Safety Officer if you know of any helpful resources of Laser Physics and Technology, http://www.rp- photonics.com/encyclopedia.html Kentek, http

Houston, Paul L.

463

Literature List Arabatzis, T. 2006. Representing Electrons: A Biographical Approach to Theoretical  

E-Print Network [OSTI]

(Springer), pp. 13-28. Hacking, I. 1983. Representing and Intervening (Cambridge University Press), pp. 149-185, 210-232. Hacking, I. 1999. The Social Construction of What? (Harvard University Press), pp. 1-34, 63-99. Hacking, I. 2000. "How Inevitable Are the Results of Successful Science?" Philosophy of Science 67

464

curve represents degradation where all the cell wall is accessible to enzymes and the  

E-Print Network [OSTI]

curve represents degradation where all the cell wall is accessible to enzymes and the 'Within, van Gelder AH, Driehuis F (1997) Anim. Feed Sci Technol 66, 31-45 A role for plant enzymes- ystwyth, Ceredigion, SY23 3EB, UK) Proteolytic enzymes in plants are inti- mately involved in controlled

Boyer, Edmond

465

Results on CP Violation from Belle T.E. Browder representing the Belle Collaboration  

E-Print Network [OSTI]

Results on CP Violation from Belle T.E. Browder representing the Belle Collaboration Department of Physics, University of Hawaii, Honolulu, Hawaii Abstract. I describe the recent measurement of the CP In 1973, Kobayashi and Maskawa (KM) first proposed a model where CP violation is incorporated

Browder, Tom

466

Representing Energy Price Variability in Long-and Medium-term Hydropower Optimization  

E-Print Network [OSTI]

, 2002). The output of each hydropower plant is usually small relative to the overall energy market1 Representing Energy Price Variability in Long- and Medium- term Hydropower Optimization Marcelo A Department of Civil and Environmental Engineering, University of California, Davis, USA Journal of Water

Pasternack, Gregory B.

467

On the Possibility of Using Complex Values in Fuzzy Logic For Representing Inconsistencies  

E-Print Network [OSTI]

applications in mind, including the idea of applying fuzzy logic to control. In surprising contrast to Zadeh's initial predictions, fuzzy control has become the most successful area of applications of fuzzy logic (seeOn the Possibility of Using Complex Values in Fuzzy Logic For Representing Inconsistencies Hung T

Kreinovich, Vladik

468

University Safety Partners Mission Statement The University Safety Partners (USP) is a group of appointed representatives  

E-Print Network [OSTI]

the work environment at Stanford. The role of University Safety Partners is to: · Advise the UniversityUniversity Safety Partners Mission Statement The University Safety Partners (USP) is a group of appointed representatives who are responsible for the administration of the University's health and safety

469

XPS Investigations of Ruthenium Deposited onto Representative Inner Surfaces of Nuclear Reactor Containment Buildings  

E-Print Network [OSTI]

XPS Investigations of Ruthenium Deposited onto Representative Inner Surfaces of Nuclear Reactor in a nuclear power plant, interactions of gaseous RuO4 with reactor containment building surfaces (stainless, during nuclear reactor operation, the fission-product ruthenium will accumulate in the fuel. The quantity

Paris-Sud XI, Université de

470

Synthesizing Representative I/O Workloads Using Iterative Distillation Zachary Kurmas  

E-Print Network [OSTI]

Synthesizing Representative I/O Workloads Using Iterative Distillation Zachary Kurmas College proper- ties are "key" for a given workload and storage system. We have developed a tool, the Distiller, that automati- cally identifies the key properties ("attribute-values") of the workload. The Distiller then uses

Kurmas, Zachary

471

Patterns for Representing FMEA in Formal Specification of Control Systems Ilya Lopatkin, Alexei Iliasov,  

E-Print Network [OSTI]

Patterns for Representing FMEA in Formal Specification of Control Systems Ilya Lopatkin, Alexei, Finland {Yuliya.Prokhorova, Elena.Troubitsyna}@abo.fi Abstract -- Failure Modes and Effects analysis (FMEA) is a widely used technique for inductive safety analysis. FMEA provides engineers with valuable information

Southampton, University of

472

When is it Biased? Assessing the Representativeness of Twitter's Streaming API  

E-Print Network [OSTI]

When is it Biased? Assessing the Representativeness of Twitter's Streaming API Fred Morstatter tweets through the "Streaming API". Recently, research has pointed to evidence of bias in this source in the Streaming API data. We tackle the problem of finding sample bias without costly and restrictive Firehose

Liu, Huan

473

Signs and Sight in Southern Uganda Representing Perception in Ordinary Conversation  

E-Print Network [OSTI]

124 Signs and Sight in Southern Uganda Representing Perception in Ordinary Conversation Ben Orlove-spoken language in the East African nation of Uganda, frequently include discussions and evaluations of signs, drawn from field work that we have conducted in Uganda, centers on a set of beliefs that certain sensory

Orlove, Benjamin S.

474

Mechanism-based Representative Volume Elements (RVEs) for Predicting Property Degradations in Multiphase Materials  

SciTech Connect (OSTI)

Quantitative understanding of the evolving thermal-mechanical properties of a multi-phase material hinges upon the availability of quantitative statistically representative microstructure descriptions. Questions then arise as to whether a two-dimensional (2D) or a three-dimensional (3D) representative volume element (RVE) should be considered as the statistically representative microstructure. Although 3D models are more representative than 2D models in general, they are usually computationally expensive and difficult to be reconstructed. In this paper, we evaluate the accuracy of a 2D RVE in predicting the property degradations induced by different degradation mechanisms with the multiphase solid oxide fuel cell (SOFC) anode material as an example. Both 2D and 3D microstructure RVEs of the anodes are adopted to quantify the effects of two different degradation mechanisms: humidity-induced electrochemical degradation and phosphorus poisoning induced structural degradation. The predictions of the 2D model are then compared with the available experimental measurements and the results from the 3D model. It is found that the 2D model, limited by its inability of reproducing the realistic electrical percolation, is unable to accurately predict the degradation of thermo-electrical properties. On the other hand, for the phosphorus poisoning induced structural degradation, both 2D and 3D microstructures yield similar results, indicating that the 2D model is capable of providing computationally efficient yet accurate results for studying the structural degradation within the anodes.

Xu, Wei; Sun, Xin; Li, Dongsheng; Ryu, Seun; Khaleel, Mohammad A.

2013-02-01T23:59:59.000Z

475

Nuclear talks in Austria International representatives will meet in Vienna on Saturday to discuss a  

E-Print Network [OSTI]

Nuclear talks in Austria International representatives will meet in Vienna on Saturday to discuss a controversial nuclear fusion plan. The technical meeting of experts is intended to pave the way of nuclear fusion say it provides an attractive long-term energy option, because the basic materials needed

476

Review of the Facility Representative Program at the Idaho Site, March 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Facility Representative Program at the Idaho Site March 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose.................................................................................................................................................. ! 2.0 Scope ..................................................................................................................................................... ! 3.0 Background ........................................................................................................................................... 1 4.0 Results ..................................................................................................................................................

477

Diagnosing Abortion Problems Abortions can represent a significant loss of (potential)  

E-Print Network [OSTI]

Diagnosing Abortion Problems Abortions can represent a significant loss of (potential) income in the investi- gation of an abortion problem. Breeding dates, parity, production information and health events and Preventing Abortion Problems Ernest Hovingh, Extension Veterinarian, Virginia-Maryland Regional College

Liskiewicz, Maciej

478

Microsoft PowerPoint - FinalModule5.ppt  

Broader source: Energy.gov (indexed) [DOE]

5: EVMS Concepts and Methods 5: EVMS Concepts and Methods Prepared by: Module 5 - EVMS Concepts and Methods 1 Prepared by: Booz Allen Hamilton Module 5: EVMS Concepts and Methods Welcome to Module 5. The objective of this module is to introduce you to Basic Earned Value concepts and methods. The Topics that will be addressed in this Module include: * Earned Valve Management System (EVMS) Criteria * The definitions and illustrations of the basic EVMS terminology * The definition and illustrations of the EV methods Module 5 - EVMS Concepts and Methods 2 Prepared by: Booz Allen Hamilton Review of Previous Modules In the previous four modules, we discussed the framework needed to perform Earned Value and develop an Earned Value Management System (EVMS). * In Module 1 we introduced you to earned value and the requirements for

479

Ponderomotive Forces On Waves In Modulated Media  

SciTech Connect (OSTI)

Nonlinear interactions of waves via instantaneous cross-phase modulation can be cast in the same way as ponderomotive wave-particle interactions in high-frequency electromagnetic fi eld. The ponderomotive effect arises when rays of a probe wave scatter off perturbations of the underlying medium produced by a second, modulation wave, much like charged particles scatter off a quasiperiodic field. Parallels with the point-particle dynamics, which itself is generalized by this theory, lead to new methods of wave manipulation, including asymmetric barriers for light.

Dodin, I.Y; Fisch, Nathaniel

2014-02-28T23:59:59.000Z

480

Request for Information on Photovoltaic Module Recycling  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy SunShot Initiative requests feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to photovoltaic (PV) module recycling technology. SunShot intends to understand the current state of recycling technology and the areas of research that could lead to impactful recycling technologies to support the developing PV industry. The intent of this request for information is to generate discussion related to planning for the end of life of photovoltaic modules and to create a list of high impact research topics in photovoltaics recycling.

Note: This page contains sample records for the topic "module cmm represents" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Modulation of whistler waves in nonthermal plasmas  

SciTech Connect (OSTI)

The modulation of whistler waves in nonthermal plasmas is investigated. The dynamics of the magnetized plasma is described by the fluid equations and the electron velocity distribution function is modeled via a nonthermal {kappa} distribution. A multiscale perturbation analysis based on the Krylov-Bogoliubov-Mitropolsky method is carried out and the nonlinear Schroedinger equation governing the modulation of the high-frequency whistler is obtained. The effect of the superthermal electrons on the stability of the wave envelope and soliton formation is discussed and a comparison with previous results is presented.

Rios, L. A.; Galvao, R. M. O. [Centro Brasileiro de Pesquisas Fisicas and Instituto Nacional de Ciencia e Tecnologia de Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil)

2011-02-15T23:59:59.000Z

482

General Renewable Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

General Renewable Energy Technology Module General Renewable Energy Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy Technology Module Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy Topics: Technology characterizations Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: General Renewable Energy Technology Module[1] Resource Generation and Transmission Interconnection Process Overview, PJM Manual, Transmission and Interconnection Planning Department, System Planning Division, PJM Interconnection, LLC References ↑ "General Renewable Energy Technology Module" Retrieved from "http://en.openei.org/w/index.php?title=General_Renewable_Energy_Technology_Module&oldid=328701

483

ON COSMIC RAY MODULATION BEYOND THE HELIOPAUSE: WHERE IS THE MODULATION BOUNDARY?  

SciTech Connect (OSTI)

Two of the paradigms in modeling the transport of galactic cosmic rays are that the modulation boundary is the heliopause and that the local interstellar spectra are identical to the galactic cosmic ray spectra. Here we demonstrate that the proton spectrum is already modulated due to an altered interstellar diffusion in the outer heliosheath as a consequence of the heliospheric 'obstacle' in the interstellar flow. The main modulation effect however is adiabatic energy losses during a 'confinement time' of cosmic rays inside the heliosphere.

Scherer, K.; Fichtner, H. [Institut fuer Theoretische Physik IV, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Strauss, R. D.; Ferreira, S. E. S.; Potgieter, M. S. [Centre for Space Research, North-West University, 2520 Potchefstroom (South Africa); Fahr, H.-J. [Argelander Institute, Universitaet of Bonn, D-53121 Bonn (Germany)

2011-07-10T23:59:59.000Z

484

Capacity estimation and code design principles for continuous phase modulation (CPM)  

E-Print Network [OSTI]

is represented as Y n = Sn + Zn 1 < n < Ns. The received signal is processed by the demodulator to produce the 12 symbol likelihoods (n) = [Prob(Xn = 0);Prob(Xn = 1);:::;Prob(Xn = M 1)] for each discrete time instant n 2 [1;2;:::;Ns]. The M-ary CPM modulator... the properties of the channel make it easy to find the distribution that maximizes the mutual information. For channels with memory the information theoretic definition of capacity is maximum of limn!1 1N I(XN1 ; Y N1 ) , over all possible distributions...

Ganesan, Aravind

2004-09-30T23:59:59.000Z

485

Industrial high performance crystalline silicon solar cells and modules based on rear surface passivation technology  

Science Journals Connector (OSTI)

Abstract Stimulated by the extreme market conditions, the increase in performance and the reduction of manufacturing costs of standard crystalline silicon solar cells and modules have been quite significant in the last years. This progress was achieved mainly by process and material improvements avoiding additional process complexity. As todays cells are predominantly limited by optical and recombination losses at the rear surface, dielectric rear surface passivation represents an obvious approach to overcome the limitations. In recent years several concepts have been developed to implement dielectric rear side passivation into industrial-scale mass production. In this paper a short review is given about the evolution of dielectric rear side passivation technologies as well as on state-of-the-art cell and module results. Simple and cost effective cell and module designs utilizing standard as well as innovative manufacturing technologies are presented. Furthermore, it is shown that for all major steps multiple process options are available to further reduce the manufacturing costs. Using an optimized emitter and screen-printed metallization on commercially available 156mm156mm p-type Czochralski-grown crystalline silicon wafers best cell efficiencies of 19.9% without dielectric rear surface passivation and 21.0% with dielectric rear surface passivation are demonstrated. Replacing the screen-printed front contacts by electroplated nickelcopper contacts record efficiencies of up to 21.3% are reached. By optimizing the module design and materials to reduce the resistive and optical losses, a peak module power of up to 306W and 19.5% aperture area efficiency are achieved.

Axel Metz; Dennis Adler; Stefan Bagus; Henry Blanke; Michael Bothar; Eva Brouwer; Stefan Dauwe; Katharina Dressler; Raimund Droessler; Tobias Droste; Markus Fiedler; Yvonne Gassenbauer; Thorsten Grahl; Norman Hermert; Wojtek Kuzminski; Agata Lachowicz; Thomas Lauinger; Norbert Lenck; Mihail Manole; Marcel Martini; Rudi Messmer; Christine Meyer; Jens Moschner; Klaus Ramspeck; Peter Roth; Ruben Schnfelder; Berthold Schum; Jrg Sticksel; Knut Vaas; Michael Volk; Klaus Wangemann

2014-01-01T23:59:59.000Z

486

Drilling Waste Management Technology Identification Module  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

you are in this section Technology Identification you are in this section Technology Identification Home » Technology Identification Drilling Waste Management Technology Identification Module The Technology Identification Module is an interactive tool for identifying appropriate drilling waste management strategies for a given well location and circumstances. The Technology Identification Module follows the philosophy of a waste management hierarchy. Waste management options with the lowest environmental impacts are encouraged ahead of those with more significant environmental impacts. The Technology Identification Module helps identify waste management options, but users should also consider their own site-specific costs and waste volumes. How it Works Users will be asked to answer a series of questions about the location of the well site, physical features of the site that may allow or inhibit the use of various options, whether the regulatory agency with jurisdiction allows or prohibits particular options, and whether cost or the user's company policy would preclude any options. Nearly all questions are set up for only "yes" or "no" responses. Depending on how the initial questions are answered, users will face from 15 to 35 total questions. Some of these can be answered immediately, while others may require some additional investigation of other portions of this web site or external information. Suitable options will be identified as users complete the questions, and users will be able to print out a summary of suitable options when the process is completed.

487

On the flat length of injective modules  

Science Journals Connector (OSTI)

......that I has a projective resolution of length n + m and hence pdRI n + m. Therefore, spli R n + m, as needed. The second inequality...n - 1. Proof. Let I be an injective left R-module. Then pdRI spli R n and hence Corol- lary 2.12 implies that fdRI n......

Ioannis Emmanouil; Olympia Talelli

2011-10-01T23:59:59.000Z

488

Optomechanical laser cooling with mechanical modulations  

E-Print Network [OSTI]

We theoretically study the laser cooling of cavity optomechanics when the mechanical resonance frequency and damping depend on time. In the regime of weak optomechanical coupling we extend the theory of laser cooling using an adiabatic approximation. We discuss the modifications of the cooling dynamics and compare it with numerical simulations in a wide range of modulation frequencies.

Marc Bienert; Pablo Barberis-Blostein

2014-12-15T23:59:59.000Z

489

Modules Whose Lattice of Submodules is Distributive  

Science Journals Connector (OSTI)

......Then (A + B)nC = (A + B)*-1 = Aoc^ + B*-1 = {AnC) + (BnC). (i...ofaD module M and a G End M. (i) IfA+Aoc = B + Boc, then A = B. (i)' If A n...proposition, A = {A + AAoc)*-1 = {B + Boc) n{B + Boc......

W. Stephenson

1974-03-01T23:59:59.000Z

490

Pulse width modulation inverter with battery charger  

DOE Patents [OSTI]

An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

Slicker, James M. (Union Lake, MI)

1985-01-01T23:59:59.000Z

491

FUSION CATEGORIES AND MODULE CATEGORIES EVAN JENKINS  

E-Print Network [OSTI]

FUSION CATEGORIES AND MODULE CATEGORIES EVAN JENKINS k is an algebraically closed field of bilinear functors C ? D E. 2. Fusion categories Definition. Let C be a tensor/monoidal category. C is called a fusion category if (1) Every object has a left and right dual (2) 1 is simple. Examples (G

Proudfoot, Nicholas

492

Mitochondrial modulation: reversible phosphorylation takes center stage?  

E-Print Network [OSTI]

.5 billion years, mitochondria have evolved from oxygen-scavenging bacterial symbionts into pri- mary controlMitochondrial modulation: reversible phosphorylation takes center stage? David J. Pagliarini1 and Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA In the past 1

Pagliarini, David J.

493

"Dimension theory of arbitrary modules over 2  

E-Print Network [OSTI]

finite von Neumann algebras and L -Betti numbers I: Foundations to define L2-Betti n* *umbers for arbitrary topological spaces with an action of a discrete group* *n amenable group that the p-th L2-Betti number depends only on the C -module given * *by

Lück, Wolfgang

494

Optical wavelength modulation in free electron lasers  

SciTech Connect (OSTI)

An attribute of the free electron laser (FEL) is the continuous tunability of the optical wavelength by modulation of the electron beam energy. The variation of the wavelength and power of the optical beam is studied as a function of FEL operating parameters. These results will be applied to the Stanford SCA FEL and Boeing FEL.

Mabe, R.M.; Wong, R.K.; Colson, W.B. [Naval Postgraduate School, Monterey, CA (United States)

1995-12-31T23:59:59.000Z

495

Light modulated switches and radio frequency emitters  

DOE Patents [OSTI]

The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

Wilson, Mahlon T. (Los Alamos, NM); Tallerico, Paul J. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

496

Modulation instability in high power laser amplifiers  

E-Print Network [OSTI]

. Widmayer, R. K. White, S. T. Yang, and B. M. VanWonterghem, "National Ignition Facility laser performanceModulation instability in high power laser amplifiers Alexander M. Rubenchik,1,* Sergey K. Turitsyn in high-power laser systems. The so-called B-integral restriction is commonly used as the criteria for MI

Turitsyn, Sergei K.

497

Ultracompact Nano-Mechanical Plasmonic Phase Modulators  

E-Print Network [OSTI]

Dielectrics' refractive index limits photonics miniaturization. By coupling light to metal's free electrons, plasmonic devices achieve deeper localization, which scales with the device geometric size. However, when localization approaches the skin depth, energy shifts from the dielectric into the metal, hindering active modulation. Here we propose a nano-electromechanical phase modulation principle exploiting the extraordinarily strong dependence of the phase velocity of metal-insulator-metal(MIM) gap plasmons on dynamically variable gap size. We demonstrate a 23 {\\mu}m long non-resonant modulator having 1.5 {\\pi} rad range with 1.7 dB excess loss at 780 nm. Analysis shows an ultracompact 1 {\\mu}m$^{2}$ footprint {\\pi} rad phase modulator can be realized, more than an order of magnitude smaller than any previously shown. Remarkably, this size reduction is achieved without incurring extra loss, since the nanobeam-plasmon coupling strength increases at a similar rate as the loss. Such small, high density electr...

Dennis, Brian S; Czaplewski, David A; Lopez, Daniel; Blumberg, Girsh; Aksyuk, Vladimir

2014-01-01T23:59:59.000Z

498

Heat Shock Response Modulators as Therapeutic  

E-Print Network [OSTI]

Heat Shock Response Modulators as Therapeutic Tools for Diseases of Protein Conformation* Published. This review addresses the regulation of molecular chaperones and components of protein homeostasis by heat understanding of pharmacologically active small molecule regu- lators of the heat shock response

Morimoto, Richard

499

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2003, DOE/EIA-M060(2003) (Washington, DC, January 2003). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of capacity utilization of mines, mining capacity, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

500

Atmospheric Oxidation of Coal at Moderate Temperatures. Effect of Oxidation on the Carbonizing Properties of Representative Coking Coals.  

Science Journals Connector (OSTI)

Atmospheric Oxidation of Coal at Moderate Temperatures. ... Effect of Oxidation on the Carbonizing Properties of Representative Coking Coals. ...

L Schmidt; J Elder; J Davis

1940-01-01T23:59:59.000Z