Powered by Deep Web Technologies
Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

AEOP2011:Electricity Generation Capacity by Electricity Market Module  

Open Energy Info (EERE)

AEOP2011:Electricity Generation Capacity by Electricity Market Module AEOP2011:Electricity Generation Capacity by Electricity Market Module Region and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 97, and contains only the reference case. The dataset uses billion kilowatthours. The data is broken down into Texas regional entity, Florida reliability coordinating council, Midwest reliability council and Northeast power coordination council. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB)

2

Model documentation: Electricity Market Module, Electricity Capacity Planning submodule  

SciTech Connect

The National Energy Modeling System (NEMS) is a computer modeling system developed by the Energy Information Administration (EIA). The NEMS produces integrated forecasts for energy markets in the United States by achieving a general equilibrium solution for energy supply and demand. Currently, for each year during the period from 1990 through 2010, the NEMS describes energy supply, conversion, consumption, and pricing. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The supply of electricity is a conversion activity since electricity is produced from other energy sources (e.g., fossil, nuclear, and renewable). The EMM represents the generation, transmission, and pricing of electricity. The EMM consists of four main submodules: Electricity Capacity Planning (ECP), Electricity Fuel Dispatching (EFD), Electricity Finance and Pricing (EFP), and Load and Demand-Side Management (LDSM). The ECP evaluates changes in the mix of generating capacity that are necessary to meet future demands for electricity and comply with environmental regulations. The EFD represents dispatching (i.e., operating) decisions and determines how to allocate available capacity to meet the current demand for electricity. Using investment expenditures from the ECP and operating costs from the EFD, the EFP calculates the price of electricity, accounting for state-level regulations involving the allocation of costs. The LDSM translates annual demands for electricity into distributions that describe hourly, seasonal, and time-of-day variations. These distributions are used by the EFD and the ECP to determine the quantity and types of generating capacity that are required to insure reliable and economical supplies of electricity. The EMM also represents nonutility suppliers and interregional and international transmission and trade. These activities are included in the EFD and the ECP.

1994-04-07T23:59:59.000Z

3

TABLE 1. Nuclear Reactor, State, Type, Net Capacity ...  

U.S. Energy Information Administration (EIA)

Nuclear Reactor, State, Type, Net Capacity, ... Quad Cities Generating Station River Bend San Onofre Seabrook Sequoyah South Texas Project St Lucie ...

4

Figure 77. Electricity generation capacity additions by fuel type ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 77. Electricity generation capacity additions by fuel type, including combined heat and power, 2012-2040 (gigawatts) Coal

5

A type system for recursive modules  

Science Conference Proceedings (OSTI)

There has been much work in recent years on extending ML with recursive modules. One of the most difficult problems in the development of such an extension is the double vision problem, which concerns the interaction of recursion and data abstraction. ... Keywords: abstract data types, modules, recursion, type systems

Derek Dreyer

2007-10-01T23:59:59.000Z

6

High Capacity Pouch-Type Li-air Batteries  

Science Conference Proceedings (OSTI)

The pouch-type Li-air batteries operated in ambient condition are reported in this work. The battery used a heat sealable plastic membrane as package material, O2¬ diffusion membrane and moisture barrier. The large variation in internal resistance of the batteries is minimized by a modified separator which can bind the cell stack together. The cells using the modified separators show improved and repeatable discharge performances. It is also found that addition of about 20% of 1,2-dimethoxyethane (DME) in PC:EC (1:1) based electrolyte solvent improves can improve the wetability of carbon electrode and the discharge capacities of Li-air batteries, but further increase in DME amount lead to a decreased capacity due to increase electrolyte loss during discharge process. The pouch-type Li-air batteries with the modified separator and optimized electrolyte has demonstrated a specific capacity of 2711 mAh g-1 based on carbon and a specific energy of 344 Wh kg-1 based on the complete batteries including package.

Wang, Deyu; Xiao, Jie; Xu, Wu; Zhang, Jiguang

2010-05-05T23:59:59.000Z

7

Component-Oriented Languages: Messages vs. Methods, Modules vs. Types  

E-Print Network (OSTI)

Component-Oriented Languages: Messages vs. Methods, Modules vs. Types Peter H. Fr¨ohlich (phf Abstract Programming languages should support the paradigm of component-oriented software development. Component-oriented programming languages must ex- plicitlydistinguish messages vs. methods and modules vs

Fröhlich, Peter

8

A Coreless Approaches for On/Off Marx Type Modulators  

SciTech Connect

SLAC was first to report using ON/OFF switches in Marx type modulator. The development of Marx type modulator was bounded with the NLC need. The high energy physics runs based on the ILC concept where longer modulator pulse width is required. The SLAC idea of coreless modulators was useful for other applications (medicine, military, home security, etc.). The discussed conception is presented as a continuation of the earlier published articles. Several types of the Marx ON/OFF type modulators are under consideration. This article describes the new coreless approach, based on the solid state ON/OFF Marx's topology. An AC high voltage network feeds individual Marx's cells through the inductive and diode assemblies. Further integration of the ON/OFF Marx type modulator and its power supply is proposed. Two topologies are under consideration. The first scheme is an integration of DC/DC converters with ON/OFF Marx. The second topology is based on the usage of AC network directly with ON/OFF Marx scheme.

Krasnykh, Anatoly; /SLAC

2007-03-05T23:59:59.000Z

9

Table 10.8 Photovoltaic Cell and Module Shipments by Type, Trade ...  

U.S. Energy Information Administration (EIA)

2 Includes all types of photovoltaic cells and modules (single-crystal silicon, cast silicon, ribbon silicon, ... Solar Collector Manufacturing Activity, ...

10

Capacity planning in a general supply chain with multiple contract types  

E-Print Network (OSTI)

In this thesis, we study capacity planning in a general supply chain that contains multiple products, processes, and resources. We consider situations with demand uncertainty, outsourcing contracts, and option contracts. ...

Huang, Xin, 1978-

2008-01-01T23:59:59.000Z

11

Potential airport capacity gains from the optimal assignment of aircraft types to runways  

E-Print Network (OSTI)

Large commercial airports worldwide still experience demand in excess of capacity which leads to considerable delays. As an operational solution to alleviate delays, this thesis presents a model that aims at increasing ...

Kohler, Alf, 1962-

2004-01-01T23:59:59.000Z

12

Structure of a fibronectin type III-like module from Clostridium thermocellum  

NLE Websites -- All DOE Office Websites (Extended Search)

878 878 doi:10.1107/S1744309110022529 Acta Cryst. (2010). F66, 878-880 Acta Crystallographica Section F Structural Biology and Crystallization Communications ISSN 1744-3091 Structure of a fibronectin type III-like module from Clostridium thermocellum Markus Alahuhta, Qi Xu, Roman Brunecky, William S. Adney, Shi-You Ding, Michael E. Himmel and Vladimir V. Lunin* BioSciences Center, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3305, USA Correspondence e-mail: vladimir.lunin@nrel.gov Received 29 April 2010 Accepted 11 June 2010 PDB Reference: fibronectin type III-like module, 3mpc. The 1.6 A Ëš resolution structure of a fibronectin type III-like module from Clostridium thermocellum (PDB code 3mpc) with two molecules in the asymmetric unit is reported. The crystals used for data collection belonged to space group P2 1 2 1 2 1 , with

13

Analysis on Modulation Principle of Mechanical Spring Valve Block-Type Pulse Jet  

Science Conference Proceedings (OSTI)

To take full advantage of the bottom-hole hydraulic energy to improve the drilling rate, it is proposed the technique assumption that using mechanical spring valve periodically is to block the fluid pathway, and modulating pulse jet is to increase the ... Keywords: block type, pulse jet, drilling rate, water hammer, experimental study

Ni Hongjian; Zhu Lihong; Huo Hongjun; Tang Zhiwen

2011-08-01T23:59:59.000Z

14

Component-Oriented Programming Languages: Messages vs. Methods, Modules vs. Types  

E-Print Network (OSTI)

Component-Oriented Programming Languages: Messages vs. Methods, Modules vs. Types Peter H. Fr 92697-3425, USA Acknowledgements Joint research with Dr. Michael Franz. Component-Oriented Programming Languages Slide 1 #12;Overview · Trend towards component-oriented programming languages. · Essential

Fröhlich, Peter

15

Development and testing of shingle-type solar cell modules. Final report  

DOE Green Energy (OSTI)

The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/m/sup 2/ of exposed module area at 1 kW/m/sup 2/ insolation and 61/sup 0/C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packaged hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of ASG SUNADEX glass. Monsanto SAFLEX polyvinyl butyral is used as the laminating adhesive. RTVII functions as the encapsulant between the underside of the glass superstrate and a rear protective sheet of 0.8 mm thick TEXTOLITE. The semi-flexible portion of each shingle module is a composite laminate construction consisting of outer layers of B.F. Goodrich FLEXSEAL and an epichlorohydrin closed cell foam core. The module design has satisfactorily survived the JPL-defined qualification testing program which includes 50 thermal cycles between -40 and +90/sup 0/C, a seven-day temperature-humidity exposure test and a mechanical integrity test consisting of a bidirectional cyclic loading at 2390 Pa (50 lb/ft/sup 2/) which is intended to simulate loads due to a 45 m/s (100 mph) wind.

Shepard, N.F.

1979-02-28T23:59:59.000Z

16

SMD Type Metallic Reflection Cup LED Component on the Application of Backlight Module.  

E-Print Network (OSTI)

??Nowadays, using the LED as backlight module's light source becomes generalization gradually, and the application of LED light source develops from the liquid crystal display… (more)

Wang, Hui-chi

2009-01-01T23:59:59.000Z

17

Contrasting colonization and plant growth promoting capacity between wild type and gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar  

SciTech Connect

This study aims to investigate the colonization of poplar by the endophyte Pseudomonas putida W619 and its capacity to promote plant growth. Poplar cuttings were inoculated with P. putida W619 (wild-type or gfp-labelled). The colonization of both strains was investigated and morphological, physiological and biochemical parameters were analyzed to evaluate plant growth promotion. Inoculation with P. putida W619 (wild-type) resulted in remarkable growth promotion, decreased activities of antioxidative defence related enzymes, and reduced stomatal resistance, all indicative of improved plant health and growth in comparison with the non-inoculated cuttings. In contrast, inoculation with gfp-labelled P. putida W619 did not promote growth; it even had a negative effect on plant health and growth. Furthermore, compared to the wildtype strain, colonization by the gfp-labelled P. putida W619::gfp1 was much lower; it only colonized the rhizosphere and root cortex while the wild-type strain also colonized the root xylem vessels. Despite the strong plant growth promoting capacity of P. putida W619 (wild-type), after gfp labelling its growth promoting characteristics disappeared and its colonization capacity was strongly influenced; for these reasons gfp labelling should be applied with sufficient caution.

Weyens N.; van der Lelie D.; Boulet, J.; Adriaensen, D.; Timmermans, J.-P.; Prinsen, E.; Van Oevelen, S.; D"Haen, J.; Smeets, K.; Taghavi, S.; Vangronsveld, J.

2011-06-09T23:59:59.000Z

18

Development and testing of shingle-type solar cell modules. Quarterly report No. 2  

DOE Green Energy (OSTI)

The details of a shingle module design which produces in excess of 97 watts/m/sup 2/ of module area at 1 kW/m/sup 2/ insolation and at 60/sup 0/C are reported. This selected design employs a tempered glass coverplate to provide the primary solar cell structural support. The use of the B.F. Goodrich FLEXSEAL roofing system as the outer skin of the shingle substrate provides a high confidence of achieving the 15 year service life goal. The fabrication and testing of a preproduction module of this design has demonstrated that this selected approach will meet the environmental testing requirements imposed by the contract. Attempts to fabricate a preproduction module of an alternative design, which embeds the solar cell assembly within a methyl methacrylate casting, proved unsuccessful.

Shepard, N.F.

1978-01-05T23:59:59.000Z

19

Module Configuration  

SciTech Connect

A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

Oweis, Salah (Ellicott City, MD); D' Ussel, Louis (Bordeaux, FR); Chagnon, Guy (Cockeysville, MD); Zuhowski, Michael (Annapolis, MD); Sack, Tim (Cockeysville, MD); Laucournet, Gaullume (Paris, FR); Jackson, Edward J. (Taneytown, MD)

2002-06-04T23:59:59.000Z

20

Property:Cooling Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Jump to: navigation, search This is a property of type Number. Pages using the property "Cooling Capacity" Showing 2 pages using this property. D Distributed Generation...

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Property:Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:InstalledCapac...

22

SOLAR RADIO TYPE-I NOISE STORM MODULATED BY CORONAL MASS EJECTIONS  

SciTech Connect

The first coordinated observations of an active region using ground-based radio telescopes and the Solar Terrestrial Relations Observatory (STEREO) satellites from different heliocentric longitudes were performed to study solar radio type-I noise storms. A type-I noise storm was observed between 100 and 300 MHz during a period from 2010 February 6 to 7. During this period the two STEREO satellites were located approximately 65 Degree-Sign (ahead) and -70 Degree-Sign (behind) from the Sun-Earth line, which is well suited to observe the earthward propagating coronal mass ejections (CMEs). The radio flux of the type-I noise storm was enhanced after the preceding CME and began to decrease before the subsequent CME. This time variation of the type-I noise storm was directly related to the change of the particle acceleration processes around its source region. Potential-field source-surface extrapolation from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) magnetograms suggested that there was a multipolar magnetic system around the active region from which the CMEs occurred around the magnetic neutral line of the system. From our observational results, we suggest that the type-I noise storm was activated at a side-lobe reconnection region that was formed after eruption of the preceding CME. This magnetic structure was deformed by a loop expansion that led to the subsequent CME, which then suppressed the radio burst emission.

Iwai, K.; Tsuchiya, F.; Morioka, A.; Misawa, H. [Planetary Plasma and Atmospheric Research Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Miyoshi, Y.; Masuda, S. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Shimojo, M. [Nobeyama Solar Radio Observatory, Nobeyama, Nagano 384-1305 (Japan); Shiota, D. [Advanced Science Institute, RIKEN (Institute of Physics and Chemical Research), Wako, Saitama 351-0198 (Japan); Inoue, S., E-mail: kazumasa-iwai@pparc.gp.tohoku.ac.jp [National Institute of Information and Communications Technology, Koganei, Tokyo 184-0015 (Japan)

2012-01-10T23:59:59.000Z

23

GENERATING CAPACITY  

E-Print Network (OSTI)

Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating capacity consistent with mandatory reliability criteria. A large part of the problem can be associated with the failure of wholesale spot market prices for energy and operating reserves to rise to high enough levels during periods when generating capacity is fully utilized. Reforms to wholesale energy markets, the introduction of well-design forward capacity markets, and symmetrical treatment of demand response and generating capacity resources to respond to market and institutional imperfections are discussed. This policy reform program is compatible with improving the efficiency of spot wholesale electricity markets, the continued evolution of competitive retail markets, and restores incentives for efficient investment in generating capacity consistent with operating reliability criteria applied by system operators. It also responds to investment disincentives that have been associated with volatility in wholesale energy prices, limited hedging opportunities and to concerns about regulatory opportunism. 1

Paul L. Joskow; Paul L. Joskow; Paul L. Joskow

2006-01-01T23:59:59.000Z

24

generation capacity | OpenEI  

Open Energy Info (EERE)

generation capacity generation capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

25

Electricity Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Market Module Market Module This page inTenTionally lefT blank 101 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2013, DOE/EIA-M068(2013). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

26

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

27

Capacity Markets for Electricity  

E-Print Network (OSTI)

ternative Approaches for Power Capacity Markets”, Papers andand Steven Stoft, “Installed Capacity and Price Caps: Oil onElectricity Markets Have a Capacity requirement? If So, How

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

28

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

29

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 95 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2011, DOE/EIA-M068(2011). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

30

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 91 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2012, DOE/EIA-M068(2012). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

31

Modeling the Capacity and Emissions Impacts of Reduced Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand Title Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand Publication Type Report...

32

Assessing the Control Systems Capacity for Demand Response in...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Control Systems Capacity for Demand Response in California Industries Title Assessing the Control Systems Capacity for Demand Response in California Industries Publication Type...

33

Property:Number of Plants included in Capacity Estimate | Open...  

Open Energy Info (EERE)

of Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

34

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

35

Recent Upgrade of the Klystron Modulator at SLAC  

SciTech Connect

The SLAC National Accelerator Laboratory employs 244 klystron modulators on its two-mile-long linear accelerator that has been operational since the early days of the SLAC establishment in the sixties. Each of these original modulators was designed to provide 250 kV, 262 A and 3.5 {mu}S at up to 360 pps using an inductance-capacitance resonant charging system, a modified type-E pulse-forming network (PFN), and a pulse transformer. The modulator internal control comprised of large step-start resistor-contactors, vacuum-tube amplifiers, and 120 Vac relays for logical signals. A major, power-component-only upgrade, which began in 1983 to accommodate the required beam energy of the SLAC Linear Collider (SLC) project, raised the modulator peak output capacity to 360 kV, 420 A and 5.0 {mu}S at a reduced pulse repetition rate of 120 pps. In an effort to improve safety, performance, reliability and maintainability of the modulator, this recent upgrade focuses on the remaining three-phase AC power input and modulator controls. The upgrade includes the utilization of primary SCR phase control rectifiers, integrated fault protection and voltage regulation circuitries, and programmable logic controllers (PLC) -- with an emphasis on component physical layouts for safety and maintainability concerns. In this paper, we will describe the design and implementation of each upgraded component in the modulator control system. We will also report the testing and present status of the modified modulators.

Nguyen, M.N.; Burkhart, C.P.; Lam, B.K.; Morris, B.; /SLAC

2011-11-04T23:59:59.000Z

36

Comparison of Productive Capacity  

U.S. Energy Information Administration (EIA)

Appendix B Comparison of Productive Capacity Comparisons of base case productive capacities for this and all previous studies were made (Figure B1).

37

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

38

Electricity Market Module  

Reports and Publications (EIA)

Documents the Electricity Market Module as it was used for the Annual Energy Outlook 2013. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Electricity Load and Demand (ELD) Submodule.

Jeff Jones

2013-07-24T23:59:59.000Z

39

Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumption to the Annual Energy Outlook Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2004, DOE/EIA-M060(2004) (Washington, DC, 2004). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of capacity utilization of mines, mining capacity, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

40

Network Routing Capacity  

E-Print Network (OSTI)

We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every non-negative rational number is the routing capacity of some network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used.

Jillian Cannons; Randall Dougherty; Christopher Freiling; Kenneth Zeger

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

42

AEOP2011:Electricity Generation Capacity by Electricity Market...  

Open Energy Info (EERE)

AEOP2011:Electricity Generation Capacity by Electricity Market Module Region and Source

43

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

44

Modeling Capacity Reservation Contract  

E-Print Network (OSTI)

In this paper we model a scenario where a chip designer (buyer) buys capacity from chip manufacturers (suppliers) in the presence of demand uncertainty faced by the buyer. We assume that the buyer knows the probability distribution of his demand. The supplier offers the buyer to reserve capacity in advance at a price that is lower than the historical average of the spot price. The supplier’s price (if the buyer reserves capacity in advance) is function of her capacity, demand for her capacity, unit production cost, the average spot market price and the amount of capacity reserved by the buyer. Based on these parameters we derive the price the suppliers will charge. We formulate the problem from the buyer’s perspective. The buyer’s decisions are how much capacity to reserve and from how many suppliers. The optimal solution is obtained numerically. Our model addresses the following issues that are not covered in the current literature on capacity reservation models. In the existing literature the supplier’s price is an exogenous parameter. We model the supplier’s price from relevant parameters mentioned above. This makes our model richer. For example, if the expected capacity utilization for the supplier is likely to be low then the supplier will charge a lower price for capacity reservation. In reality, the buyer sources from multiple suppliers. Most mathematical models on capacity reservation, we are aware of, assumes a single buyer and a single supplier. We generalize this to a single buyer and multiple suppliers.

Jishnu Hazra; B. Mahadevan; Sudhi Seshadri

2002-01-01T23:59:59.000Z

45

Renewable Fuels Module This  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Module Fuels Module This page inTenTionally lefT blank 175 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve

46

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

47

Natural Gas Underground Storage Capacity (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of...

48

Increasing State Capacity Through Clans  

E-Print Network (OSTI)

their role in increasing state capacity With the decline ofhere focus on state capacity and the associated discussionselements of state capacity during the transition from one

Doyle, Jr, Thomas Martin

2009-01-01T23:59:59.000Z

49

Property:MeanCapacity | Open Energy Information  

Open Energy Info (EERE)

MeanCapacity MeanCapacity Jump to: navigation, search Property Name MeanCapacity Property Type Quantity Description Mean capacity potential at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

50

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

51

Property:PlannedCapacity | Open Energy Information  

Open Energy Info (EERE)

PlannedCapacity PlannedCapacity Jump to: navigation, search Property Name PlannedCapacity Property Type Quantity Description The total planned capacity for a given area, region or project. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

52

PDSF Modules  

NLE Websites -- All DOE Office Websites (Extended Search)

Modules Modules Modules Modules Approach to Managing The Environment Modules is a system which you can use to specify what software you want to use. If you want to use a particular software package loading its module will take care of the details of modifying your environment as necessary. The advantage of the modules approach is that the you are not required to explicitly specify paths for different executable versions and try to keep their related man paths and environment variables coordinated. Instead you simply "load" and "unload" specific modules to control your environment. Getting Started with Modules If you're using the standard startup files on PDSF then you're already setup for using modules. If the "module" command is not available, please

53

Capacity Markets for Electricity  

E-Print Network (OSTI)

Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity Market”, Power WorkingFelder (1996), “Should Electricity Markets Have a Capacity

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

54

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

55

Capacity on Finsler Spaces  

E-Print Network (OSTI)

Here, the concept of electric capacity on Finsler spaces is introduced and the fundamental conformal invariant property is proved, i.e. the capacity of a compact set on a connected non-compact Finsler manifold is conformal invariant. This work enables mathematicians and theoretical physicists to become more familiar with the global Finsler geometry and one of its new applications.

Bidabad, B

2009-01-01T23:59:59.000Z

56

Liquid heat capacity lasers  

DOE Patents (OSTI)

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

57

capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

58

Battery capacity indicator  

SciTech Connect

This patent describes a battery capacity indicator for providing a continuous indication of battery capacity for a battery powered device. It comprises means for periodically effecting a first and a second positive discharge rate of the battery; voltage measurement means, for measuring the battery terminal voltage at the first and second positive discharge rates during the operation of the device, and for generating a differential battery voltage value in response thereto; memory means for storing a set of predetermined differential battery voltage values and a set of predetermined battery capacity values, each of the set of predetermined differential battery voltage values defining one of the set of predetermined battery capacity values; comparison means, coupled to the memory means and to the voltage measurement means, for comparing the measured differential battery voltage values with the set of predetermined differential battery voltage values, and for selecting the predetermined battery capacity value corresponding thereto.

Kunznicki, W.J.

1991-07-16T23:59:59.000Z

59

Bit-Interleaved Coded Modulation in the Wideband Regime  

Science Conference Proceedings (OSTI)

The wideband regime of bit-interleaved coded modulation (BICM) in Gaussian channels is studied. The Taylor expansion of the coded modulation capacity for generic signal constellations at low signal-to-noise ratio (SNR) is derived and used to determine ... Keywords: Additive white Gaussian noise (AWGN) channel, Rayleigh fading channel, bit-interleaved coded modulation, coded modulation, wideband regime

A. Martinez; A. Guillen i Fabregas; G. Caire; F. Willems

2008-12-01T23:59:59.000Z

60

EIA - Assumptions to the Annual Energy Outlook 2008 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2008 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2008, DOE/EIA-M060(2008) (Washington, DC, 2008). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EIA-Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2007 Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2007, DOE/EIA-M060(2007) (Washington, DC, 2007). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

62

EIA - Assumptions to the Annual Energy Outlook 2010 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2010 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2010, DOE/EIA-M060(2010) (Washington, DC, 2010). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, the cost of factor inputs (labor and fuel), and other mine supply costs.

63

OpenEI - Electric Capacity  

Open Energy Info (EERE)

New Zealand Energy New Zealand Energy Outlook (2010): Electricity and Generation Capacity http://en.openei.org/datasets/node/357 The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included.

License
type-text

64

Property:Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

65

Planned Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Planned Geothermal Capacity Planned Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Planned Geothermal Capacity This article is a stub. You can help OpenEI by expanding it. General List of Development Projects Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and Development Report (April 2011). Related Pages: GEA Development Phases Geothermal Development Projects Add.png Add a new Geothermal Project Please be sure the project does not already exist in the list below before adding - perhaps under a different name. Technique Developer Phase Project Type Capacity Estimate (MW) Location Geothermal Area Geothermal Region GEA Report

66

Property:GeneratingCapacity | Open Energy Information  

Open Energy Info (EERE)

GeneratingCapacity GeneratingCapacity Jump to: navigation, search Property Name GeneratingCapacity Property Type Quantity Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

67

Lateral Capacity Exchange and Its Impact on Capacity Investment Decisions  

E-Print Network (OSTI)

We study the problem of capacity exchange between two …rms in anticipation of the mismatch between demand and capacity and its impact on …rm’s capacity investment decisions. For given capacity investment levels of the two …rms, we demonstrate how capacity price may be determined and how much capacity should be exchanged when either manufacturer acts as a Stackelberg leader in the capacity exchange game. By benchmarking against the centralized system, we show that a side payment may be used to coordinate the capacity exchange decisions. We then study the …rms’capacity investment decisions using a biform game framework in which capacity investment decisions are made individually and exchange decisions are made as in a centralized system. We demonstrate the existence and uniqueness of the Nash equilibrium capacity investment levels and study the impact of …rms’share of the capacity exchange surplus on their capacity investment levels.

Amiya K. Chakravartyz; Jun Zhangy

2005-01-01T23:59:59.000Z

68

Capacity Markets for Electricity  

E-Print Network (OSTI)

Global Agenda, August 15. [6] FERC, Docket No. EL01-63-003,at http://www.pjm.com. [7] FERC, Docket No. ER01-1440-capacity of the others” (FERC, 2001). Therefore, if an LSE

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

69

Working and Net Available Shell Storage Capacity as of March...  

Gasoline and Diesel Fuel Update (EIA)

includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net...

70

Working and Net Available Shell Storage Capacity as of ...  

U.S. Energy Information Administration (EIA)

It includes three tables detailing working and net available shell storage capacity by facility type, product, and PAD District as of September 30, 2010.

71

Refinery Capacity Report 2007  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2007-06-29T23:59:59.000Z

72

Refinery Capacity Report 2009  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2009-06-25T23:59:59.000Z

73

Refinery Capacity Report 2008  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2008-06-20T23:59:59.000Z

74

Forward capacity market CONEfusion  

Science Conference Proceedings (OSTI)

In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

Wilson, James F.

2010-11-15T23:59:59.000Z

75

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing countries.

76

Preparing Guyana's REDD+ Participation: Developing Capacities for  

Open Energy Info (EERE)

Guyana's REDD+ Participation: Developing Capacities for Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Jump to: navigation, search Name Preparing Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Agency/Company /Organization Guyana Forestry Commission, The Government of Norway Sector Land Focus Area Forestry Topics Implementation, Policies/deployment programs, Background analysis Resource Type Workshop, Guide/manual Website http://unfccc.int/files/method Country Guyana UN Region Latin America and the Caribbean References Preparing Guyana's REDD+ Participation[1] Overview "In this context, the overall goal of the activities reported here are to develop a road map for the establishment of a MRV system for REDD+

77

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

78

Constrained capacity of MIMO Rayleigh fading channels  

E-Print Network (OSTI)

In this thesis channel capacity of a special type of multiple-input multiple-output (MIMO) Rayleigh fading channels is studied, where the transmitters are subject to a finite phase-shift keying (PSK) input alphabet. The constraint on the input alphabet makes an analytical solution for the capacity beyond reach. However we are able to simplify the final expression, which requires a single expectation and thus can be evaluated easily through simulation. To facilitate simulations, analytical expressions are derived for the eigenvalues and eigenvectors of a covariance matrix involved in the simplified capacity expression. The simplified expression is used to provide some good approximations to the capacity at low signal-to-noise ratios (SNRs). Involved in derivation of the capacity is the capacity-achieving input distribution. It is proved that a uniform prior distribution is capacity achieving. We also show that it is the only capacity-achieving distribution for our channel model. On top of that we generalize the uniqueness case for an input distribution to a broader range of channels.

He, Wenyan

2011-05-01T23:59:59.000Z

79

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

80

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

82

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

83

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

84

Quantum Zero-error Capacity  

E-Print Network (OSTI)

We define here a new kind of quantum channel capacity by extending the concept of zero-error capacity for a noisy quantum channel. The necessary requirement for which a quantum channel has zero-error capacity greater than zero is given. Finally, we point out some directions on how to calculate the zero-error capacity of such channels.

Rex A. C. Medeiros; Francisco M. De Assis

2006-11-08T23:59:59.000Z

85

Photovoltaics effective capacity: Interim final report 2  

DOE Green Energy (OSTI)

The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

Perez, R.; Seals, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

1997-11-01T23:59:59.000Z

86

Load Capacity of Bodies  

E-Print Network (OSTI)

For the stress analysis in a plastic body $\\Omega$, we prove that there exists a maximal positive number $C$, the \\emph{load capacity ratio,} such that the body will not collapse under any external traction field $t$ bounded by $Y_{0}C$, where $Y_0$ is the elastic limit. The load capacity ratio depends only on the geometry of the body and is given by $$ \\frac{1}{C}=\\sup_{w\\in LD(\\Omega)_D} \\frac{\\int_{\\partial\\Omega}|w|dA} {\\int_{\\Omega}|\\epsilon(w)|dV}=\\left\\|\\gamma_D\\right\\|. $$ Here, $LD(\\Omega)_D$ is the space of isochoric vector fields $w$ for which the corresponding stretchings $\\epsilon(w)$ are assumed to be integrable and $\\gamma_D$ is the trace mapping assigning the boundary value $\\gamma_D(w)$ to any $w\\in LD(\\Omega)_D$.

Reuven Segev

2005-11-01T23:59:59.000Z

87

Capacity Value of Solar Power  

Science Conference Proceedings (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

88

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

89

Module Handbook Specialisation Photovoltaics  

E-Print Network (OSTI)

#12;Specialisation Photovoltaics, University of Northumbria Module 1/Photovoltaics: PHOTOVOLTAIC CELL AND MODULE TECHNOLOGY Module name: PHOTOVOLTAIC CELL AND MODULE TECHNOLOGY Section EUREC · Chemistry · Physics Target learning outcomes The module Photovoltaic Cell and Module Technology teaches

Habel, Annegret

90

UNDP-Low Emission Capacity Building Programme | Open Energy Information  

Open Energy Info (EERE)

Programme Programme Jump to: navigation, search Logo: UNDP-Low Emission Capacity Building Programme Name UNDP-Low Emission Capacity Building Programme Agency/Company /Organization United Nations Development Programme (UNDP), European Union Sector Climate, Energy, Land, Water Topics Low emission development planning Resource Type Training materials Website http://www.undp.org/climatestr References UNDP-Low Emission Capacity Building Programme[1] UNDP-Low Emission Capacity Building Programme Screenshot "This collaborative programme aims to strengthen technical and institutional capacities at the country level, while at the same time facilitating inclusion and coordination of the public and private sector in national initiatives addressing climate change. It does so by utilizing the

91

IAEA Planning and Economic Studies Section (PESS) Capacity Building | Open  

Open Energy Info (EERE)

IAEA Planning and Economic Studies Section (PESS) Capacity Building IAEA Planning and Economic Studies Section (PESS) Capacity Building Jump to: navigation, search Tool Summary Name: IAEA Planning and Economic Studies Section (PESS) Capacity Building Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Non-renewable Energy, Energy Efficiency, Renewable Energy Topics: Pathways analysis Resource Type: Software/modeling tools, Training materials References: IAEA PESS capacity building[1] Logo: IAEA Planning and Economic Studies Section (PESS) Capacity Building "PESS offers assistance to Member States, particularly from developing regions, to improve their energy system analysis & planning capabilities. Assistance can include: transferring modern planning methods, tools and databanks

92

Total Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt...

93

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 137 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, bioesters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Administration for

94

Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 167 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the

95

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 135 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Administration for

96

Capacities associated with scalar signed Riesz kernels, and analytic capacity  

E-Print Network (OSTI)

The real and imaginari parts of the Cauchy kernel in the plane are scalar Riesz kernels of homogeneity -1. One can associate with each of them a natural notion of capacity related to bounded potentials. The main result of the paper asserts that these capacities are comparable to classical analytic capacity, thus stressing the real variables nature of analytic capacity. Higher dimensional versions of this result are also considered.

Mateu, Joan; Verdera, Joan

2010-01-01T23:59:59.000Z

97

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building (Redirected from US EPA GHG Inventory Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing

98

Multipath Channels of Unbounded Capacity  

E-Print Network (OSTI)

The capacity of discrete-time, noncoherent, multipath fading channels is considered. It is shown that if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the transmit power.

Koch, Tobias

2008-01-01T23:59:59.000Z

99

Heat capacities of elastic solids  

E-Print Network (OSTI)

The work function is embedded in the equation describing the relationship between the constant volume and constant pressure heat capacities. The modification of the work function results that the relationship between these quantities must be changed accordingly. Using the newly derived work functions of elastic solids the description of the heat capacities and the relationship between the heat capacities are given for solid phase.

Garai, J

2005-01-01T23:59:59.000Z

100

Symmetrical Symplectic Capacity with Applications  

E-Print Network (OSTI)

In this paper, we first introduce the concept of symmetrical symplectic capacity for symmetrical symplectic manifolds, and by using this symmetrical symplectic capacity theory we prove that there exists at least one symmetric closed characteristic (brake orbit and $S$-invariant brake orbit are two examples) on prescribed symmetric energy surface which has a compact neighborhood with finite symmetrical symplectic capacity.

Liu, Chungen

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Africa - CCS capacity building | Open Energy Information  

Open Energy Info (EERE)

Africa - CCS capacity building Africa - CCS capacity building Jump to: navigation, search Name Africa - CCS capacity building Agency/Company /Organization Energy Research Centre of the Netherlands Partner EECG Consultants, the University of Maputo, the Desert Research Foundation Namibia and the South Africa New Energy Research Institute Sector Energy Focus Area Conventional Energy Resource Type Training materials Website http://www.ccs-africa.org/ Program Start 2010 Program End 2011 Country Botswana, Mozambique, Namibia UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

102

An Assessment of Railway Capacity  

E-Print Network (OSTI)

In this paper, we review the main concepts and methods to perform capacity analyses, and we present an automated tool that is able to perform several capacity analyses. Capacity is extremely dependent on infrastructure, traffic, and operating parameters. Therefore, an in-depth study of the main factors that influence railway capacity is performed on several Spanish railway infrastructures. The results show how the capacity varies according to factors such as train speed, commercial stops, train heterogeneity, distance between railway signals, and timetable robustness.

M. Abril; F. Barber; A L. Ingolotti; A M. A. Salido; P. Tormos; B A. Lova

2007-01-01T23:59:59.000Z

103

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

104

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

105

Power module assembly  

SciTech Connect

A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

Campbell, Jeremy B. (Torrance, CA); Newson, Steve (Redondo Beach, CA)

2011-11-15T23:59:59.000Z

106

Entangling capacity with local ancilla  

E-Print Network (OSTI)

We investigate the entangling capacity of a dynamical operation with access to local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result; a property we call resource independence of the entangling capacity. We prove several useful upper-bounds on the entangling capacity that hold for general qudit dynamical operations, and for a whole family of entanglement measures including log-negativity and log-robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independence for all two-qudit unitaries.

Campbell, Earl T

2010-01-01T23:59:59.000Z

107

Cast polycrystalline silicon photovoltaic cell and module manufacturing technology improvements. Annual subcontract report, 1 December 1993--30 November 1994  

DOE Green Energy (OSTI)

This report describes work performed under a 3-y contract to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance, and expand Solarex`s commercial production capacities. Specific objectives are to reduce manufacturing cost for polycrstalline silicon PV modules to less than $1.20/W and to increase manufacturing capacity by a factor of 3. Solarex is working on casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1995-09-01T23:59:59.000Z

108

Thermionic modules  

DOE Patents (OSTI)

Modules of assembled microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures manufactured using MEMS manufacturing techniques including chemical vapor deposition. The MTCs incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices and modules can be fabricated at modest costs.

King, Donald B. (Albuquerque, NM); Sadwick, Laurence P. (Salt Lake City, UT); Wernsman, Bernard R. (Clairton, PA)

2002-06-18T23:59:59.000Z

109

Analysis of optical CDMA signal transmission: capacity limits and simulation results  

Science Conference Proceedings (OSTI)

We present performance limits of the optical code-division multiple-access (OCDMA) networks. In particular, we evaluate the information-theoretical capacity of the OCDMA transmission when single-user detection (SUD) is used by the receiver. First, we ... Keywords: M-ary modulation, channel capacity, multiple-access channels, optical CDMA communication, turbo codes

Aminata A. Garba; Raymond M. H. Yim; Jan Bajcsy; Lawrence R. Chen

2005-01-01T23:59:59.000Z

110

Toward an Ideal Polymer Binder Design for High-Capacity Battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

Toward an Ideal Polymer Binder Design for High-Capacity Battery Anodes Title Toward an Ideal Polymer Binder Design for High-Capacity Battery Anodes Publication Type Journal Article...

111

Decentralized capacity management and internal pricing  

E-Print Network (OSTI)

Press. Goex, R. (2002). Capacity planning and pricing undermanufacturing on innovation, capacity and pro?tability.Mieghem, V. J. (2003). Capacity management, investment and

Dutta, Sunil; Reichelstein, Stefan

2010-01-01T23:59:59.000Z

112

Capacity consideration of wireless ad hoc networks  

E-Print Network (OSTI)

Capacity ProblemCurrent Research on Capacity of Wireless Ad HocChapter 3 Upper Bound on the Capacity of Wireless Ad Hoc

Tan, Yusong

2008-01-01T23:59:59.000Z

113

Are there capacity limitations in symmetry perception?  

E-Print Network (OSTI)

1980). The demonstration of capacity limitation. Cognitive1972). Visual processing capacity and attentional control.J. (1996). Goodness of CAPACITY LIMIT OF SYMMETRY PERCEPTION

Huang, L Q; Pashler, Harold; Junge, J A

2004-01-01T23:59:59.000Z

114

The Ergodic Capacity of Interference Networks  

E-Print Network (OSTI)

A. Jafar, “The ergodic capacity of interference networks,”Gupta and P. R. Kumar, “The capacity of wireless networks,”cooperation achieves optimal capacity scaling in ad hoc

Jafar, Syed A

2010-01-01T23:59:59.000Z

115

Mapping Individual Variations in Learning Capacity  

E-Print Network (OSTI)

in working memory capacity. Integrative Physiological andVariations in Learning Capacity Eduardo Mercado IIIdifferences in learning capacity are evident in humans and

Mercado III, Eduardo

2011-01-01T23:59:59.000Z

116

Definition: Capacity Emergency | Open Energy Information  

Open Energy Info (EERE)

Emergency Jump to: navigation, search Dictionary.png Capacity Emergency A capacity emergency exists when a Balancing Authority Area's operating capacity, plus firm purchases from...

117

ISO New England Forward Capacity Market (Rhode Island) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) < Back Eligibility Developer Industrial State/Provincial Govt Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Generating Facility Rate-Making Under the Forward Capacity Market (FCM), ISO New England projects the capacity needs of the region's power system three years in advance and then holds an annual auction to purchase the power resources that will satisfy those future regional requirements. Resources that clear in the auction are obligated to provide power or curtail demand when called upon by the ISO. The Forward Capacity Market was developed by ISO New England, the six New

118

Property:PotentialOnshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindCapacity PotentialOnshoreWindCapacity Jump to: navigation, search Property Name PotentialOnshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Onshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

119

Worldwide Energy Efficiency Action through Capacity Building and Training  

Open Energy Info (EERE)

Worldwide Energy Efficiency Action through Capacity Building and Training Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Agency/Company /Organization National Renewable Energy Laboratory, The International Partnership for Energy Efficiency Cooperation Sector Energy Focus Area Energy Efficiency Topics Background analysis Resource Type Training materials Website http://www.nrel.gov/ce/ipeec/w Country Mexico, India UN Region Northern America References Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT)[1] Abstract Included are training materials for the Worldwide Energy Efficiency Action through Capacity Building & Training (WEACT) Workshop in Mexico City, 28-30 September 2010.

120

Property:PotentialBiopowerSolidCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerSolidCapacity PotentialBiopowerSolidCapacity Jump to: navigation, search Property Name PotentialBiopowerSolidCapacity Property Type Quantity Description The nameplate capacity technical potential from solid biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

GIZ-Best Practices in Capacity Building Approaches | Open Energy  

Open Energy Info (EERE)

GIZ-Best Practices in Capacity Building Approaches GIZ-Best Practices in Capacity Building Approaches Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GIZ-Best Practices in Capacity Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group Agency/Company /Organization: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector: Energy, Climate Focus Area: Solar, Wind Resource Type: Publications, Training materials, Lessons learned/best practices Website: prod-http-80-800498448.us-east-1.elb.amazonaws.com/w/images/8/80/Best_ Cost: Free GIZ-Best Practices in Capacity Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group Screenshot

122

FAO-Capacity Development on Climate Change | Open Energy Information  

Open Energy Info (EERE)

FAO-Capacity Development on Climate Change FAO-Capacity Development on Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FAO-Capacity Development on Climate Change Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Land, Climate Focus Area: Forestry, Agriculture Resource Type: Training materials, Lessons learned/best practices, Case studies/examples Website: www.fao.org/climatechange/learning/en/ Cost: Free FAO-Capacity Development on Climate Change Screenshot References: FAO-Capacity Development on Climate Change[1] Logo: FAO-Capacity Development on Climate Change This portal provides a one-stop window for Member States, partners, UN staff and other development actors to access FAO climate change learning resources to facilitate experience-sharing.

123

Property:PotentialEGSGeothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialEGSGeothermalCapacity PotentialEGSGeothermalCapacity Jump to: navigation, search Property Name PotentialEGSGeothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from EGS Geothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

124

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindCapacity PotentialOffshoreWindCapacity Jump to: navigation, search Property Name PotentialOffshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

125

Property:PotentialGeothermalHydrothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalCapacity PotentialGeothermalHydrothermalCapacity Jump to: navigation, search Property Name PotentialGeothermalHydrothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from Geothermal Hydrothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

126

Property:PotentialHydropowerCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerCapacity PotentialHydropowerCapacity Jump to: navigation, search Property Name PotentialHydropowerCapacity Property Type Quantity Description The nameplate capacity technical potential from Hydropower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

127

Property:PotentialBiopowerGaseousCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousCapacity PotentialBiopowerGaseousCapacity Jump to: navigation, search Property Name PotentialBiopowerGaseousCapacity Property Type Quantity Description The nameplate capacity technical potential from gaseous biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

128

Electric Capacity | OpenEI  

Open Energy Info (EERE)

Capacity Capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated December 15th, 2010 (3 years ago) Keywords Electric Capacity Electricity Generation New Zealand projections

129

Adaptive capacity and its assessment  

SciTech Connect

This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

Engle, Nathan L.

2011-04-20T23:59:59.000Z

130

Assumptions to the Annual Energy Outlook 2002 - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2002, DOE/EIA- M068(2002) January 2002. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are

131

Assumptions to the Annual Energy Outlook 2001 - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2001, DOE/EIA- M068(2001) January 2001. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are

132

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

other refinery inputs including alcohols, ethers, bioesters, other refinery inputs including alcohols, ethers, bioesters, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of U.S. refining activities in the five Petroleum Area Defense Districts (PADDs) (Figure 9). The model is created by aggregating individual refineries into one linear programmming representation for each PADD. This representation provides the marginal costs of production for a number of conventional and new petroleum products. In order to interact with other NEMS modules with different regional representations, certain PMM inputs and outputs are converted from PADD regions to other regional structures and vice versa. The linear programming results are used to determine

133

Battery Capacity Measurement And Analysis  

E-Print Network (OSTI)

In this paper, we look at different battery capacity models that have been introduced in the literatures. These models describe the battery capacity utilization based on how the battery is discharged by the circuits that consume power. In an attempt to validate these models, we characterize a commercially available lithium coin cell battery through careful measurements of the current and the voltage output of the battery under different load profile applied by a micro sensor node. In the result, we show how the capacity of the battery is affected by the different load profile and provide analysis on whether the conventional battery models are applicable in the real world. One of the most significant finding of our work will show that DC/DC converter plays a significant role in determining the battery capacity, and that the true capacity of the battery may only be found by careful measurements.

Using Lithium Coin; Sung Park; Andreas Savvides; Mani B. Srivastava

2001-01-01T23:59:59.000Z

134

Measuring wind plant capacity value  

DOE Green Energy (OSTI)

Electric utility planners and wind energy researchers pose a common question: What is the capacity value of a wind plant? Tentative answers, which can be phrased in a variety of ways, are based on widely varying definitions and methods of calculation. From the utility`s point of view, a resource that has no capacity value also has a reduced economic value. Utility planners must be able to quantify the capacity value of a wind plant so that investment in conventional generating capacity can be potentially offset by the capacity value of the wind plant. Utility operations personnel must schedule its conventional resources to ensure adequate generation to meet load. Given a choice between two resources, one that can be counted on and the other that can`t, the utility will avoid the risky resource. This choice will be reflected in the price that the utility will pay for the capacity: higher capacity credits result in higher payments. This issue is therefore also important to the other side of the power purchase transaction -- the wind plant developer. Both the utility and the developer must accurately assess the capacity value of wind. This article summarizes and evaluates some common methods of evaluating capacity credit. During the new era of utility deregulation in the United States, it is clear that many changes will occur in both utility planning and operations. However, it is my judgement that the evaluation of capacity credit for wind plants will continue to play an important part in renewable energy development in the future.

Milligan, M.R.

1996-01-01T23:59:59.000Z

135

Photovoltaic module and module arrays  

DOE Patents (OSTI)

A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Lenox, Carl J. S. (Oakland, CA); Culligan, Matthew (Berkeley, CA); Danning, Matt (Oakland, CA)

2012-07-17T23:59:59.000Z

136

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

137

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Partnerships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Process Chart: From Agency to Community. . . . . . . . . . . . . . . . . . . 7 Case Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

138

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

139

Property:Plants with Unknown Planned Capacity | Open Energy Information  

Open Energy Info (EERE)

Plants with Unknown Planned Capacity Plants with Unknown Planned Capacity Jump to: navigation, search Property Name Plants with Unknown Planned Capacity Property Type String Description Number of plants with unknown planned capacity per GEA Pages using the property "Plants with Unknown Planned Capacity" Showing 21 pages using this property. A Alaska Geothermal Region + 1 + C Cascades Geothermal Region + 2 + Central Nevada Seismic Zone Geothermal Region + 9 + G Gulf of California Rift Zone Geothermal Region + 4 + H Hawaii Geothermal Region + 0 + Holocene Magmatic Geothermal Region + 0 + I Idaho Batholith Geothermal Region + 1 + N Northern Basin and Range Geothermal Region + 11 + Northern Rockies Geothermal Region + 0 + Northwest Basin and Range Geothermal Region + 9 + R Rio Grande Rift Geothermal Region + 1 +

140

India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate  

Open Energy Info (EERE)

Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Jump to: navigation, search Name India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Agency/Company /Organization Swiss Agency for Development and Cooperation Sector Energy, Land, Water Focus Area Agriculture Topics Co-benefits assessment, Background analysis Resource Type Lessons learned/best practices Website http://www.intercooperation.or Country India Southern Asia References India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change[1] India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Screenshot Contents 1 Introduction [1] 2 Community-based Institutions [2] 3 Pasture Land Development [3]

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Property:Device Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Device Nameplate Capacity (MW) Property Type String Pages using the property "Device Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed capacity of circa 20MW + MHK Projects/Algiers Light Project + 40 kW + MHK Projects/Anconia Point Project + 40 kW + MHK Projects/Ashley Point Project + 40 kW + MHK Projects/Avondale Bend Project + 40 kW + MHK Projects/Bar Field Bend + 40 kW + MHK Projects/Barfield Point + 40 kW + MHK Projects/Bayou Latenache + 40 kW + MHK Projects/BioSTREAM Pilot Plant + 250kW pilot 1MW commercial scale + MHK Projects/Bondurant Chute + 40 kW +

142

Property:NetProdCapacity | Open Energy Information  

Open Energy Info (EERE)

NetProdCapacity NetProdCapacity Jump to: navigation, search Property Name NetProdCapacity Property Type Quantity Description Sum of the property SummerPeakNetCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

143

Property:GrossProdCapacity | Open Energy Information  

Open Energy Info (EERE)

GrossProdCapacity GrossProdCapacity Jump to: navigation, search Property Name GrossProdCapacity Property Type Quantity Description Sum of the property AvgAnnlGrossOpCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

144

High Capacity Immobilized Amine Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Immobilized Amine Sorbents Capacity Immobilized Amine Sorbents Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,288,136 entitled "High Capacity Immobilized Amine Sorbents." Disclosed in this patent is the invention of a method that facilitates the production of low-cost carbon dioxide (CO 2 ) sorbents for use in large-scale gas-solid processes. This method treats an amine to increase the number of secondary amine groups and impregnates the amine in a porous solid support. As a result of this improvement, the method increases CO 2 capture capacity and decreases the cost of using an amine-enriched solid sorbent in CO 2 capture systems. Overview The U.S. Department of Energy has placed a high priority on the separation

145

Building Regulatory Capacity for Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities...

146

Capacity Markets and Market Stability  

Science Conference Proceedings (OSTI)

The good news is that market stability can be achieved through a combination of longer-term contracts, auctions for far enough in the future to permit new entry, a capacity management system, and a demand curve. The bad news is that if and when stable capacity markets are designed, the markets may seem to be relatively close to where we started - with integrated resource planning. Market ideologues will find this anathema. (author)

Stauffer, Hoff

2006-04-15T23:59:59.000Z

147

Manufacturer: Panasonic Battery Type: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Panasonic Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 158.4 VDC Nominal Cell...

148

Capacity Value of Wind Power  

Science Conference Proceedings (OSTI)

Power systems are planned such that they have adequate generation capacity to meet the load, according to a defined reliability target. The increase in the penetration of wind generation in recent years has led to a number of challenges for the planning and operation of power systems. A key metric for system adequacy is the capacity value of generation. The capacity value of a generator is the contribution that a given generator makes to overall system adequacy. The variable and stochastic nature of wind sets it apart from conventional energy sources. As a result, the modeling of wind generation in the same manner as conventional generation for capacity value calculations is inappropriate. In this paper a preferred method for calculation of the capacity value of wind is described and a discussion of the pertinent issues surrounding it is given. Approximate methods for the calculation are also described with their limitations highlighted. The outcome of recent wind capacity value analyses in Europe and North America are highlighted with a description of open research questions also given.

Keane, Andrew; Milligan, Michael; Dent, Chris; Hasche, Bernhard; DAnnunzio, Claudine; Dragoon, Ken; Holttinen, Hannele; Samaan, Nader A.; Soder, Lennart; O'Malley, Mark J.

2011-05-04T23:59:59.000Z

149

electricity market module region | OpenEI  

Open Energy Info (EERE)

342 342 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281342 Varnish cache server electricity market module region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

150

Generation Capacity Expansion in a Risky Environment: A Stochastic Equilibrium Analysis  

Science Conference Proceedings (OSTI)

We cast models of the generation capacity expansion type formally developed for the monopoly regime into equilibrium models better adapted for a competitive environment. We focus on some of the risks faced today by investors in generation capacity and ... Keywords: capacity adequacy, risk functions, stochastic equilibrium models

Andreas Ehrenmann; Yves Smeers

2011-11-01T23:59:59.000Z

151

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

152

Power production, generating capacity data for 1972--1977  

SciTech Connect

Statistics on trends in electric power production, generating capacity, and consumption of fossil fuels over the past six-year period are reported. Included are monthly production by fuel, fuel consumption and stocks for the past six years, installed capacity, and net generation by type of prime mover and class of ownership. Most data are by State for the past year. A narrative section discusses the highlights and trends supported by the tables. This document continues the annual series on power production and generating capacity previously published by the Federal Power Commission. This publication was discontinued with this issue. 8 tables.

1978-06-01T23:59:59.000Z

153

TOB Module Assembly  

NLE Websites -- All DOE Office Websites (Extended Search)

SiTracker Home Page Participating Institutions and Principal Contacts Useful Links Notes Images TOB Module Assembly and Testing Project TOB Integration Data Tracker Offline DQM LHC Fluence Calculator Total US Modules Tested Graph Total US Modules Tested Graph Total US Modules Tested Total US Modules Tested US Modules Tested Graph US Modules Tested Graph US Modules Tested US Modules Tested Rod Assembly TOB Modules on a Rod TOB Rod Insertion Installation of a TOB Rod Completed TOB Completed Tracker Outer Barrel TOB Module Assembly and Testing Project All 5208 modules of the CMS Tracker Outer Barrel were assembled and tested at two production sites in the US: the Fermi National Accelerator Laboratory and the University of California at Santa Barbara. The modules were delivered to CERN in the form of rods, with the last shipment taking

154

Optimal Capacity Adjustments for Supply Chain Control  

E-Print Network (OSTI)

Decisions on capacity are often treated separately from those of production and inventory. In most situations, capacity issues are longer-term, so capacity-related decisions are considered strategic and thus not part of ...

Budiman, Benny

155

Building Regulatory Capacity for Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Capacity for Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities that can accept changes that would support building energy objectives" Presentation Highlights Rulemaking Community and Stakeholder Identification To Support Code Changes Engagement: Building Capacity for Change Pay It Forward RULEMAKING : Plan Development and Research of Laws Relevant to Buildings How is it conducted? 'Landscape' Review Key words or phrases to look for Identify "home rule" jurisdictions Update and review cycle built in 'Landscape' Review:

156

production capacity | OpenEI  

Open Energy Info (EERE)

production capacity production capacity Dataset Summary Description No description given. Source Oak Ridge National Laboratory Date Released November 30th, 2009 (4 years ago) Date Updated Unknown Keywords biodiesel ethanol location production capacity transportation Data application/zip icon Biorefineries.zip (zip, 7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

157

installed capacity | OpenEI  

Open Energy Info (EERE)

installed capacity installed capacity Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments

158

Worldwide Energy Efficiency Action through Capacity Building...  

Open Energy Info (EERE)

Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and...

159

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

and tank farms. Excludes storage capacity of refineries, fuel ethanol plants, and pipelines. 2 Percent exclusive use is that portion of capacity in operation that is for the...

160

High Capacity Hydrogen Storage Nanocomposite - Energy ...  

Energy Storage Advanced Materials High Capacity Hydrogen Storage Nanocomposite Processes to add metal hydrideds to nanocarbon structures to yield high capacity ...

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Economic Dispatch of Electric Generation Capacity | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the...

162

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

163

Resource Adequacy Capacity - Power Marketing - Sierra Nevada...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Adequacy Capacity Resource Adequacy Capacity Resource Adequacy Plan - Current Local Resource Adequacy Plan (Word - 175K) - Notice of Proposed Final Resource Adequacy Plan...

164

Washington Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Washington Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

165

Missouri Natural Gas Underground Storage Acquifers Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Missouri Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

166

Mississippi Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

167

Minnesota Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Minnesota Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

168

Pennsylvania Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

169

Washington Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

170

EIA Crude Oil Distillation Capacity (Table 36)  

U.S. Energy Information Administration (EIA)

(Important Note on Sources of Crude Oil Distillation Capacity Estimates) Table 3.6 World Crude Oil Distillation Capacity, January 1, 1970 - January 1, 2009

171

Photovoltaic Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Photovoltaic Energy Technology Module Photovoltaic Energy Technology Module Jump to: navigation, search Tool Summary Name: Photovoltaic Energy Technology Module Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy, Solar Topics: Technology characterizations Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: Photovoltaic Energy Technology Module[1] Resources Portable Solar Photovoltaic Lanterns: Performance and Certification Specification, and Type Approval, ESMAP TECHNICAL PAPER 078 Testing of Storage Batteries used in Stand Alone Photovoltaic Power Systems, Test procedures and examples of test results Technical Specifications for Solar Home Systems (SHS), Rural Electrification and Renewable Energy Development (PV Component) Project

172

Acceleration Modules in Linear Induction Accelerators  

E-Print Network (OSTI)

Linear Induction Accelerator (LIA) is a unique type of accelerator, which is capable to accelerate kiloAmpere charged particle current to tens of MeV energy. The present development of LIA in MHz busting mode and successful application into synchrotron broaden LIAs usage scope. Although transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. Authors examined the transition of the magnetic cores functions during LIA acceleration modules evolution, distinguished transformer type and transmission line type LIA acceleration modules, and reconsidered several related issues based on transmission line type LIA acceleration module. The clarified understanding should be helpful in the further development and design of the LIA acceleration modules.

Wang, Shaoheng

2013-01-01T23:59:59.000Z

173

Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System  

SciTech Connect

In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

Allgood, Glenn O [ORNL; Olama, Mohammed M [ORNL; Lake, Joe E [ORNL; Brumback, Daryl L [ORNL

2010-01-01T23:59:59.000Z

174

Assumptions to the Annual Energy Outlook - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumption to the Annual Energy Outlook Petroleum Market Module Figure 8. Petroleum Administration for Defense Districts. Having problems, call our National Energy Information Center at 202-586-8800 for help. The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohols, ethers, and bioesters natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of U.S. refining

175

Building REDD Capacity in Developing Countries | Open Energy Information  

Open Energy Info (EERE)

Building REDD Capacity in Developing Countries Building REDD Capacity in Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building REDD Capacity in Developing Countries Agency/Company /Organization: International Institute for Sustainable Development (IISD) Sector: Land Focus Area: Forestry Topics: Policies/deployment programs Resource Type: Workshop, Lessons learned/best practices Website: www.iisd.org/climate/land_use/redd/ Country: Kenya, Vietnam Eastern Africa, South-Eastern Asia References: IISD Building REDD Capacity in Developing Countries[1] Background "To provide developing countries with this support, IISD has partnered with the Alternatives to Slash and Burn Partnership for the Tropical Forest Margins, World Agroforesty Centre (ASB-ICRAF), to deliver a series of

176

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS):  

Open Energy Info (EERE)

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Distributed Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Distributed Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Topics: Low emission development planning, -LEDS Resource Type: Webinar Website: eeredev.nrel.gov/_proofs/video/2013_EC-LEDS/ Cost: Free References: Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Distributed Generation[1] Overview A webinar on distributed generation, presented by the National Renewable Energy Laboratory, with funding from the U.S. Agency for International Development. This webinar covers the basics of distributed generation, with an emphasis

177

Africa Adaptation Programme: Capacity Building Experiences-Improving  

Open Energy Info (EERE)

Africa Adaptation Programme: Capacity Building Experiences-Improving Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding and Application of Climate Data and Information Jump to: navigation, search Tool Summary Name: Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding and Application of Climate Data and Information Agency/Company /Organization: United Nations Development Programme (UNDP) Sector: Climate, Energy Topics: Adaptation, Co-benefits assessment, - Energy Access Resource Type: Dataset, Lessons learned/best practices Website: www.undp.org/environment/library.shtml Cost: Free UN Region: Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa Language: English Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding and Application of Climate Data and Information Screenshot

178

Property:Project Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Installed Capacity (MW) Installed Capacity (MW) Jump to: navigation, search Property Name Project Installed Capacity (MW) Property Type String Pages using the property "Project Installed Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 5 + 1 + MHK Projects/AWS II + 1 + MHK Projects/Admirality Inlet Tidal Energy Project + 22 + MHK Projects/Agucadoura + 2 + MHK Projects/Alaska 18 + 10 + MHK Projects/Alaska 36 + 10 + MHK Projects/Algiers Cutoff Project + 16 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Astoria Tidal Energy + 300 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

179

Property:EZFeed/ExpectedCapacity | Open Energy Information  

Open Energy Info (EERE)

ExpectedCapacity ExpectedCapacity Jump to: navigation, search Property Name EZFeed/ExpectedCapacity Property Type String Description EZFeed Expected Capacity property Subproperties This property has the following 6081 subproperties: 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) 3 30% Business Tax Credit for Solar (Vermont) 4 401 Certification (Vermont) A AEP (Central and North) - CitySmart Program (Texas) AEP (Central and North) - Residential Energy Efficiency Programs (Texas) AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) AEP Appalachian Power - Residential Home Retrofit Program (West Virginia)

180

Property:Technology Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Technology Nameplate Capacity (MW) Property Type String Pages using the property "Technology Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 100kW built and tested with 45kW 200kW and 1 4MW designs in development + MHK Technologies/AirWEC + 5kW + MHK Technologies/Aquantis + Proprietary + MHK Technologies/Atlantis AN 150 + 0 15 + MHK Technologies/Atlantis AR 1000 + 1 + MHK Technologies/Atlantis AS 400 + 0 4 + MHK Technologies/Bluetec + 1 + MHK Technologies/Current Power + from 10 kW and up + MHK Technologies/CurrentStar + 1 + MHK Technologies/Deep Green + 500 kW + MHK Technologies/Deep water capable hydrokinetic turbine + 30MW +

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Property:EZFeed/InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name EZFeed/InstalledCapacity Property Type String Description EZFeed Installed Capacity property Subproperties This property has the following 6079 subproperties: 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) 3 30% Business Tax Credit for Solar (Vermont) 4 401 Certification (Vermont) A AEP (Central and North) - CitySmart Program (Texas) AEP (Central and North) - Residential Energy Efficiency Programs (Texas) AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) AEP Appalachian Power - Residential Home Retrofit Program (West Virginia)

182

Ballasted photovoltaic module and module arrays  

DOE Patents (OSTI)

A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA)

2011-11-29T23:59:59.000Z

183

Entangling and disentangling capacities of nonlocal maps  

E-Print Network (OSTI)

Entangling and disentangling capacities are the key manifestation of the nonlocal content of a quantum operation. A lot of effort has been put recently into investigating (dis)entangling capacities of unitary operations, but very little is known about capacities of non-unitary operations. Here we investigate (dis)entangling capacities of unital CPTP maps acting on two qubits.

Berry Groisman

2007-04-08T23:59:59.000Z

184

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

185

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

186

Georgia Refinery Marketable Petroleum Coke Production Capacity ...  

U.S. Energy Information Administration (EIA)

Georgia Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

187

Working and Net Available Shell Storage Capacity as of March 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity Archives With Data for March 2011 | Release Date: May 31, 2011 Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration's (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data

188

NERSC Modules Software Environment  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment » Modules Environment Environment » Modules Environment Modules Software Environment NERSC uses the module utility to manage nearly all software. There are two huge advantages of the module approach: NERSC can provide many different versions and/or installations of a single software package on a given machine, including a default version as well as several older and newer versions; and Users can easily switch to different versions or installations without having to explicitly specify different paths. With modules, the MANPATH and related environment variables are automatically managed. Users simply ``load'' and ``unload'' modules to control their environment. The module utility consists of two parts: the module command itself and the modulefiles on which it operates. Module Command

189

High capacity immobilized amine sorbents  

DOE Patents (OSTI)

A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

Gray, McMahan L. (Pittsburgh, PA); Champagne, Kenneth J. (Fredericktown, PA); Soong, Yee (Monroeville, PA); Filburn, Thomas (Granby, CT)

2007-10-30T23:59:59.000Z

190

Building Energy Software Tools Directory : CHP Capacity Optimizer  

NLE Websites -- All DOE Office Websites (Extended Search)

CHP Capacity Optimizer Back to Tool CHP Capacity Optimizer data entry screen CHP Capacity Optimizer results screen CHP Capacity Optimizer restult map...

191

OpenEI - production capacity  

Open Energy Info (EERE)

National Biorefineries National Biorefineries Database http://en.openei.org/datasets/node/50

License
type-text field-field-license-type"> Type of License:  Other (please specify below)
Source of data Source name: 

192

Electrical Generating Capacities of Geothermal Slim Holes  

DOE Green Energy (OSTI)

Theoretical calculations are presented to estimate the electrical generating capacity of the hot fluids discharged from individual geothermal wells using small wellhead generating equipment over a wide range of reservoir and operating conditions. The purpose is to appraise the possibility of employing slim holes (instead of conventional production-size wells) to power such generators for remote off-grid applications such as rural electrification in developing countries. Frequently, the generating capacity desired is less than one megawatt, and can be as low as 100 kilowatts; if slim holes can be usefully employed, overall project costs will be significantly reduced. This report presents the final results of the study. Both self-discharging wells and wells equipped with downhole pumps (either of the ''lineshaft'' or the ''submersible'' type) are examined. Several power plant designs are considered, including conventional single-flash backpressure and condensing steam turbines, binary plants, double-flash steam plants, and steam turbine/binary hybrid designs. Well inside diameters from 75 mm to 300 mm are considered; well depths vary from 300 to 1200 meters. Reservoir temperatures from 100 C to 240 C are examined, as are a variety of reservoir pressures and CO2 contents and well productivity index values.

Pritchett, J.W.

1998-10-01T23:59:59.000Z

193

NEMS integrating module documentation report  

Science Conference Proceedings (OSTI)

The National Energy Modeling System (NEMS) is a computer modeling system that produces a general equilibrium solution for energy supply and demand in the US energy markets. The model achieves a supply and demand balance in the end-use demand regions, defined as the nine Census Divisions, by solving for the prices of each energy type such that the quantities producers are willing to supply equal the quantities consumers wish to consume. The system reflects market economics, industry structure, and energy policies and regulations that influence market behavior. The NEMS Integrating Module is the central integrating component of a complex modeling system. As such, a thorough understanding of its role in the modeling process can only be achieved by placing it in the proper context with respect to the other modules. To that end, this document provides an overview of the complete NEMS model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Not Available

1993-12-14T23:59:59.000Z

194

Electric utility capacity expansion and energy production models for energy policy analysis  

DOE Green Energy (OSTI)

This report describes electric utility capacity expansion and energy production models developed for energy policy analysis. The models use the same principles (life cycle cost minimization, least operating cost dispatching, and incorporation of outages and reserve margin) as comprehensive utility capacity planning tools, but are faster and simpler. The models were not designed for detailed utility capacity planning, but they can be used to accurately project trends on a regional level. Because they use the same principles as comprehensive utility capacity expansion planning tools, the models are more realistic than utility modules used in present policy analysis tools. They can be used to help forecast the effects energy policy options will have on future utility power generation capacity expansion trends and to help formulate a sound national energy strategy. The models make renewable energy source competition realistic by giving proper value to intermittent renewable and energy storage technologies, and by competing renewables against each other as well as against conventional technologies.

Aronson, E.; Edenburn, M.

1997-08-01T23:59:59.000Z

195

The Effect of Technological Improvement on Capacity  

E-Print Network (OSTI)

We formulate a model of capacity expansion that is relevant to a service provider for whom the cost of capacity shortages would be considerable but difficult to quantify exactly. Due to demand uncertainty and a lead time for adding capacity, not all shortages are avoidable. In addition, technological innovations will reduce the cost of adding capacity but may not be completely predictable. Analytical expressions for the infinite horizon expansion cost and shortages are optimized numerically. Sensitivity analyses allow us to determine the impact of technological change on the optimal timing and sizes of capacity expansions to account for economies of scale, the time value of money and penalties for insufficient capacity.

Expansion For Uncertain; Dohyun Pak; Nattapol Pornsalnuwat; Sarah M. Ryan

2004-01-01T23:59:59.000Z

196

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, January 1, 1995--December 31, 1995  

DOE Green Energy (OSTI)

The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three.

Wohlgemuth, J. [Amoco/Enron Solar, Frederick, MD (United States)

1996-06-01T23:59:59.000Z

197

Climate Change Capacity Development (C3D+) | Open Energy Information  

Open Energy Info (EERE)

C3D+) C3D+) Jump to: navigation, search Logo: Climate Change Capacity Development (C3D+) Name Climate Change Capacity Development (C3D+) Agency/Company /Organization United Nations Institute for Training and Research (UNITAR) Partner Caribbean Climate Change Community Centre (CCCCC), Climate System Analysis Group at UCT Cape Town (CSAG), Environment and Development Action in the Third World (ENDA-TM), University of Cape Town-Energy Research Centre, South Pacific Regional Environment Programme (SPREP), Munasinghe Institute (MIND), Center for International Forestry Research, International Institute for Sustainable Development (IISD), Stockholm Environment Institute Sector Climate Topics Low emission development planning Resource Type Training materials

198

U.S. Refining Capacity Utilization  

Reports and Publications (EIA)

This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

Tancred Lidderdale

1995-10-01T23:59:59.000Z

199

Capacity Factor Risk At Nuclear Power Plants  

E-Print Network (OSTI)

We develop a model of the dynamic structure of capacity factor risk. It incorporates the risk that the capacity factor may vary widely from year-to-year, and also the risk that the reactor may be permanently shutdown prior ...

Du, Yangbo

200

Definition: Capacity Revenue | Open Energy Information  

Open Energy Info (EERE)

through the competitive capacity market for a capacity credit.1 References SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see...

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Empirical Study of Ramp Metering and Capacity  

E-Print Network (OSTI)

Empirical Study of Ramp Metering and Capacity Michael J.EMPIRICAL STUDY OF RAMP METERING AND CAPACITY June 7, 2002Thus, the benefits of metering inflows at this on-ramp seem

Cassidy, Michael J.; Rudjanakanoknad, Jittichai

2002-01-01T23:59:59.000Z

202

On the capacity of bosonic channels  

E-Print Network (OSTI)

The capacity of the bosonic channel with additive Gaussian noise is unknown, but there is a known lower bound that is conjectured to be the capacity. We have quantified the gap that exists between this known achievable ...

Blake, Christopher Graham

2011-01-01T23:59:59.000Z

203

Capacity expansion in contemporary telecommunication networks  

E-Print Network (OSTI)

We study three capacity expansion problems in contemporary long distance telecommunication networks. The first two problems, motivated by a major long distance provider, address capacity expansion in national hybrid long ...

Sivaraman, Raghavendran

2007-01-01T23:59:59.000Z

204

On Working Memory: Its organization and capacity limits  

E-Print Network (OSTI)

64 iii 6.2 Working memory capacity10 1.4 Capacity limits of workingcapacity . . . . . . . . . . . . . . . . . . . . . . . . . .

Lara, Antonio Homero

2010-01-01T23:59:59.000Z

205

Loads, capacity, and failure rate modeling  

SciTech Connect

Both failure rate and load capacity (stress-strength) interferenece methodologies are employed in the reliability analysis at nuclear facilities. Both of the above have been utilized in a heuristic failure rate model in terms of load capacity inference. Analytical solutions are used to demonstrate that infant mortality and random aging failures may be expressed implicity in terms of capacity variability, load variability, and capacity deterioration, and that mode interactions play a role in the formation of the bathtub curve for failure rates.

Lewis, E.E.; Chen, Hsin-Chieh

1994-12-31T23:59:59.000Z

206

Peak Underground Working Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

Peak Working Natural Gas Capacity. Data and Analysis from the Energy Information Administration (U.S. Dept. of Energy)

207

Texas Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

208

Colorado Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

209

Optimization of the Refrigerant Capacity in Multiphase ...  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications. Presentation Title, Optimization of the Refrigerant Capacity in Multiphase Magnetocaloric Materials.

210

Regional Profiles: Pipeline Capacity and Service  

U.S. Energy Information Administration (EIA)

Regional Profiles: Pipeline Capacity ... large petrochemical and electric utility industries drawn there ... accounts for large electricity load ...

211

Shannon capacity of nonlinear regenerative channels  

E-Print Network (OSTI)

We compute Shannon capacity of nonlinear channels with regenerative elements. Conditions are found under which capacity of such nonlinear channels is higher than the Shannon capacity of the classical linear additive white Gaussian noise channel. We develop a general scheme for designing the proposed channels and apply it to the particular nonlinear sine-mapping. The upper bound for regeneration efficiency is found and the asymptotic behavior of the capacity in the saturation regime is derived.

Sorokina, M A

2013-01-01T23:59:59.000Z

212

Robust Capacity Planning in Semiconductor Manufacturing  

E-Print Network (OSTI)

Oct 3, 2001 ... Abstract: We present a stochastic programming approach to capacity planning under demand uncertainty in semiconductor manufacturing.

213

Advanced silicon photonic modulators  

E-Print Network (OSTI)

Various electrical and optical schemes used in Mach-Zehnder (MZ) silicon plasma dispersion effect modulators are explored. A rib waveguide reverse biased silicon diode modulator is designed, tested and found to operate at ...

Sorace, Cheryl M

2010-01-01T23:59:59.000Z

214

Capacity of shrinking condensers in the plane  

E-Print Network (OSTI)

We show that the capacity of a class of plane condensers is comparable to the capacity of corresponding "dyadic condensers". As an application, we show that for plane condensers in that class the capacity blows up as the distance between the plates shrinks, but there can be no asymptotic estimate of the blow-up.

Arcozzi, N

2011-01-01T23:59:59.000Z

215

The Compound Capacity of Polar Codes  

E-Print Network (OSTI)

We consider the compound capacity of polar codes under successive cancellation decoding for a collection of binary-input memoryless output-symmetric channels. By deriving a sequence of upper and lower bounds, we show that in general the compound capacity under successive decoding is strictly smaller than the unrestricted compound capacity.

Hassani, S Hamed; Urbanke, Ruediger

2009-01-01T23:59:59.000Z

216

Assumptions to the Annual Energy Outlook - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module Assumption to the Annual Energy Outlook Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2004, DOE/EIA- M068(2004). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described.

217

Modulating lignin in plants  

DOE Patents (OSTI)

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

218

Polymers with Tailored Electronic Structure for High Capacity Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

Polymers with Tailored Electronic Structure for High Capacity Lithium Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes Title Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes Publication Type Journal Article Year of Publication 2011 Authors Liu, Gao, Shidi Xun, Nenad Vukmirovic, Xiangyun Song, Paul Olalde-Velasco, Honghe Zheng, Vince S. Battaglia, Linwang Wang, and Wanli Yang Journal Advanced Materials Volume 23 Start Page 4679 Issue 40 Pagination 4679 - 4683 Date Published 10/2011 Keywords binders, conducting polymers, density funcational theory, lithium batteries, X-ray spectroscopy Abstract A conductive polymer is developed for solving the long-standing volume change issue in lithium battery electrodes. A combination of synthesis, spectroscopy and simulation techniques tailors the electronic structure of the polymer to enable in situ lithium doping. Composite anodes based on this polymer and commercial Si particles exhibit 2100 mAh g-1 in Si after 650 cycles without any conductive additive.

219

Uniform Capacity Tax and Exemption for Solar (Vermont) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uniform Capacity Tax and Exemption for Solar (Vermont) Uniform Capacity Tax and Exemption for Solar (Vermont) Uniform Capacity Tax and Exemption for Solar (Vermont) < Back Eligibility Agricultural Commercial Industrial Low-Income Residential Residential Savings Category Solar Buying & Making Electricity Program Info State Vermont Program Type Property Tax Incentive Rebate Amount 100% property tax exemption for systems 10 kilowatts or less Uniform $4/kilowatt property tax payment Provider Vermont Department of Taxes During the 2012 legislative session, Vermont passed a 100% property tax exemption for solar photovoltaic (PV) systems up to and including 10 kilowatts (kW). For systems greater than 10 kW, the state assesses a uniform $4 per kilowatt (kW). This applies to the equipment, not to the land. The 100% exemption for small PV systems expires January 1, 2023, although a

220

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

CapacityBtuHr CapacityBtuHr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.8 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 10.3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 2 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 1 + Americulture Aquaculture Low Temperature Geothermal Facility + 2.4 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 3 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.3 +

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Property:Geothermal/CapacityMwt | Open Energy Information  

Open Energy Info (EERE)

CapacityMwt CapacityMwt Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityMwt" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.2 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 1.5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 0.3 + Americulture Aquaculture Low Temperature Geothermal Facility + 0.7 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 0.88 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.09 +

222

Indonesia-ECN Capacity building for energy policy formulation and  

Open Energy Info (EERE)

ECN Capacity building for energy policy formulation and ECN Capacity building for energy policy formulation and implementation of sustainable energy projects Jump to: navigation, search Name CASINDO: Capacity development and strengthening for energy policy formulation and implementation of Sustainable energy projects in Indonesia Agency/Company /Organization Energy Research Centre of the Netherlands Sector Energy Focus Area Energy Efficiency Topics Policies/deployment programs Resource Type Software/modeling tools, Workshop, Publications, Guide/manual, Training materials Website http://www.ecn.nl/en/ Program Start 2009 Program End 2011 Country Indonesia South-Eastern Asia References ECN Policy Studies[1] CASINDO website[2] A key component of the political and economic reforms that are currently being implemented in Indonesia is the devolution of responsibilities for

223

Capacity and Energy Payments to Small Power Producers and Cogenerators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capacity and Energy Payments to Small Power Producers and Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia) Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia) < Back Eligibility Commercial Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Green Power Purchasing Renewables Portfolio Standards and Goals Docket No. 4822 was enacted by the Georgia Public Service Commission in accordance with The Public Utility Regulatory Policies Act of 1978 (PURPA)

224

High current capacity electrical connector  

DOE Patents (OSTI)

An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a "sandwiched" configuration in which a conductor plate contacts the busses along major surfaces thereof clamped between two stainless steel backing plates. The conductor plate is provided with a plurality of contact buttons affixed therein in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors.

Bettis, Edward S. (Oak Ridge, TN); Watts, Harry L. (Lake City, TN)

1976-01-13T23:59:59.000Z

225

Units: Cool Modules for HOT Languages  

E-Print Network (OSTI)

A module system ought to enable assembly-line programming using separate compilation and an expressive linking language. Separate compilation allows programmers to develop parts of a program independently. A linking language gives programmers precise control over the assembly of parts into a whole. This paper presents models of program units, MzScheme's module language for assembly-line programming. Units support separate compilation, independent module reuse, cyclic dependencies, hierarchical structuring, and dynamic linking. The models explain how to integrate units with untyped and typed languages such as Scheme and ML.

Matthew Flatt; Matthias Felleisen

1998-01-01T23:59:59.000Z

226

Ensuring Quality of PV Modules: Preprint  

SciTech Connect

Photovoltaic (PV) customers need to have confidence in the PV modules they purchase. Currently, no test can quantify a module's lifetime with confidence, but stress tests are routinely used to differentiate PV product designs. We suggest that the industry would be strengthened by using the wisdom of the community to develop a single set of tests that will help customers quantify confidence in PV products. This paper evaluates the need for quality assurance (QA) standards and suggests a path for creating these. Two types of standards are needed: 1) QA of the module design and 2) QA of the manufacturing process.

Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Kempe, M.; Sample, T.; Yamamichi, M.; Kondo, M.; Doi, T.; Otani, K.; Amano, J.

2011-07-01T23:59:59.000Z

227

DOE Transmission Capacity Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Capacity Report Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise market power; and provides flexibility to protect against uncertainties about future fuel prices, load growth, generator construction, and other factors affecting the electric system. DOE Transmission Capacity Report More Documents & Publications Report to Congress:Impacts of the Federal Energy Regulatory Commission's

228

Capacity withholding in the Electricity Pool.  

E-Print Network (OSTI)

Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which should be generating will raise energy prices but make the pattern of generation less efficient. This pattern improved significantly after privatisation. Withholding capacity that was not expected to generate would raise the Capacity Payments based on spare capacity. On a multi-year basis, these did not usually exceed “competitive ” levels, the cost of keeping stations open. The evidence for large-scale capacity withholding is weak. Keywords: JEL:

Richard Green; Richard Green

2004-01-01T23:59:59.000Z

229

Capacity Value of Concentrating Solar Power Plants  

DOE Green Energy (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

230

Optimal entangling capacity of dynamical processes  

SciTech Connect

We investigate the entangling capacity of dynamical operations when provided with local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result, a property we call resource independence of the entangling capacity. We prove several useful upper bounds on the entangling capacity that hold for general qudit dynamical operations and for a whole family of entanglement monotones including log negativity and log robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independent for all two-qudit unitary operators.

Campbell, Earl T. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

2010-10-15T23:59:59.000Z

231

Optimal Entangling Capacity of Dynamical Processes  

E-Print Network (OSTI)

We investigate the entangling capacity of dynamical operations when provided with local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result; a property we call resource independence of the entangling capacity. We prove several useful upper-bounds on the entangling capacity that hold for general qudit dynamical operations, and for a whole family of entanglement monotones including log-negativity and log-robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independence for all two-qudit unitaries.

Earl T. Campbell

2010-07-08T23:59:59.000Z

232

An electron optical technique for large-capacity random-access memories  

Science Conference Proceedings (OSTI)

Memories of the electron beam recording type have many desirable features for large capacity applications. At the Wescon Conference of 1958, the author proposed a class of electron optical memories of very high storage density under the title, "Information ...

Sterling P. Newberry

1966-11-01T23:59:59.000Z

233

Optimal lot-sizing with capacity constraints and auto-correlated interarrival times  

Science Conference Proceedings (OSTI)

There have been recent advances in using queuing relationships to determine lot sizes that minimize mean flowtimes when multiple product types are being produced at capacity-constrained resources. However, these relationships assume lot interarrival ...

S. T. Enns; Li Li

2004-12-01T23:59:59.000Z

234

Measuring the capacity of a port system : a case study on a Southeast Asian port  

E-Print Network (OSTI)

As economies develop and trade routes change, investment in port infrastructure is essential to maintain the necessary capacity for an efficiently functioning port system and to meet expected demand for all types of cargo. ...

Salminen, Jason Bryan

2013-01-01T23:59:59.000Z

235

Vehicle Specifications Battery Type: Li-Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

267 V Rated Capacity (C3): 80 Ah Cooling Method: Glycol Water mix heat exchanger Powertrain Motor Type: 3 Phase Permanent Magnet Number of Motors: One Motor Cooling Type: Oil to...

236

Type I Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

I Tanks I Tanks * 12 Type I tanks were built between 1951-53 * 750,000 gallon capacity; 75 feet in diameter by 24 ½ feet high * Partial secondary containment with leak detection * Contain approximately 10 percent of the waste volume * 7 Type I tanks have leaked waste into the tank annulus; the amount of waste stored in these tanks is kept below the known leak sites that have appeared over the decades of

237

Definition: Nameplate Capacity | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Nameplate Capacity Jump to: navigation, search Dictionary.png Nameplate Capacity The maximum amount of electric energy that a generator can produce under specific conditions, as rated by the manufacturer. Generator nameplate capacity is expressed in some multiple of watts such as megawatts (MW), as indicated on a nameplate that is physically attached to the generator.[1] View on Wikipedia Wikipedia Definition Also Known As Capacity Related Terms electricity generation, power References ↑ http://www.nrc.gov/reading-rm/basic-ref/glossary/generator-nameplate-capacity.html Retr LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ieved from "http://en.openei.org/w/index.php?title=Definition:Nameplate_Capacity&oldid=480378"

238

Definition: Deferred Generation Capacity Investments | Open Energy  

Open Energy Info (EERE)

Generation Capacity Investments Generation Capacity Investments Utilities and grid operators ensure that generation capacity can serve the maximum amount of load that planning and operations forecasts indicate. The trouble is, this capacity is only required for very short periods each year, when demand peaks. Reducing peak demand and flattening the load curve should reduce the generation capacity required to service load and lead to cheaper electricity for customers.[1] Related Terms load, electricity generation, peak demand, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Generation_Capacity_Investments&oldid=50257

239

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Geothermal Capacity Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Installed Geothermal Capacity International Market Map of U.S. Geothermal Power Plants List of U.S. Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of 2005 there was 8,933 MW of installed power capacity within 24 countries. The International Geothermal Association (IGA) reported 55,709 GWh per year of geothermal electricity. The generation from 2005 to 2010 increased to 67,246 GWh, representing a 20% increase in the 5 year period. The IGA has projected that by 2015 the new installed capacity will reach 18,500 MW, nearly 10,000 MW greater than 2005. [1] Countries with the greatest increase in installed capacity (MW) between

240

The quantum capacity with symmetric side channels  

E-Print Network (OSTI)

We present an upper bound for the quantum channel capacity that is both additive and convex. Our bound can be interpreted as the capacity of a channel for high-fidelity quantum communication when assisted by a family of channels that have no capacity on their own. This family of assistance channels, which we call symmetric side channels, consists of all channels mapping symmetrically to their output and environment. The bound seems to be quite tight, and for degradable quantum channels it coincides with the unassisted channel capacity. Using this symmetric side channel capacity, we find new upper bounds on the capacity of the depolarizing channel. We also briefly indicate an analogous notion for distilling entanglement using the same class of (one-way) channels, yielding one of the few entanglement measures that is monotonic under local operations with one-way classical communication (1-LOCC), but not under the more general class of local operations with classical communication (LOCC).

Graeme Smith; John A. Smolin; Andreas Winter

2006-07-05T23:59:59.000Z

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Channel capacities via $p$-summing norms  

E-Print Network (OSTI)

In this paper we show how \\emph{the metric theory of tensor products} developed by Grothendieck perfectly fits in the study of channel capacities, a central topic in \\emph{Shannon's information theory}. Furthermore, in the last years Shannon's theory has been generalized to the quantum setting to let the \\emph{quantum information theory} step in. In this paper we consider the classical capacity of quantum channels with restricted assisted entanglement. In particular these capacities include the classical capacity and the unlimited entanglement-assisted classical capacity of a quantum channel. To deal with the quantum case we will use the noncommutative version of $p$-summing maps. More precisely, we prove that the (product state) classical capacity of a quantum channel with restricted assisted entanglement can be expressed as the derivative of a completely $p$-summing norm.

Marius Junge; Carlos palazuelos

2013-05-05T23:59:59.000Z

242

Table 8. Capacity and Fresh Feed Input to Selected Downstream ...  

U.S. Energy Information Administration (EIA)

Capacity Inputs CapacityInputs Capacity Inputs Table 8. ... (EIA) Form EIA-820, "Annual Refinery Report." Inputs are from the form EIA-810, "Monthly Refinery Report."

243

Building Energy Software Tools Directory: CHP Capacity Optimizer  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links CHP Capacity Optimizer CHP Capacity Optimizer logo Selecting the proper installed capacity for cooling, heating, and power (CHP) equipment is critical to the...

244

On the capacity of isolated, curbside bus stops  

E-Print Network (OSTI)

New Jersey. Kohler, U. , 1991. Capacity of transit lanes.Symposium on Highway Capacity, Karlsruhe, Germany. St.Paulo. TRB, 1985. Highway Capacity Manual. Transportation

Gu, Weihua; Li, Yuwei; Cassidy, Michael J.; Griswold, Julia B.

2010-01-01T23:59:59.000Z

245

Stochastic binary problems with simple penalties for capacity ...  

E-Print Network (OSTI)

capacity constraints, using simple penalties for capacities violations. In particular, we take a closer look at the knapsack problem with weights and capacity ...

246

Zero-rate feedback can achieve the empirical capacity  

E-Print Network (OSTI)

Achieving the empirical capacity using feedback: MemorylessGaussian feedback capacity,” IEEE Trans. Inf. Theory, vol.14] Y. -H. Kim, “Feedback capacity of stationary Gaussian

Eswaran, Krishnan; Sarwate, A D; Sahai, Anant; Gastpar, M

2010-01-01T23:59:59.000Z

247

Attention capacity and task difficulty in visual search  

E-Print Network (OSTI)

1980). The demonstration of capacity limitation. Cognitiveof automatic detection: Capacity and scanning in visualD. L. (1984). Central capacity limits in consistent mapping

Huang, L Q; Pashler, Harold

2005-01-01T23:59:59.000Z

248

Robust Dynamic Traffic Assignment under Demand and Capacity Uncertainty  

E-Print Network (OSTI)

Assignment under Demand and Capacity Uncertainty ? Giuseppeworst-case sce- nario of demand and capacity con?gurations.uncertain demands and capacities are modeled as unknown-but-

Calafiore, Giuseppe; El Ghaoui, Laurent

2008-01-01T23:59:59.000Z

249

End-to-end asymmetric link capacity estimation  

E-Print Network (OSTI)

A Simple and Accurate Capacity Estimation Technique. InGerla. Accuracy of Link Capacity Es- timates using Passiveto-end asymmetric link capacity estimation Ling-Jyh Chen,

Chen, Ling-Jyh; Sun, Tony; Yang, Guang; Sanadidi, Medy Y; Gerla, Mario

2005-01-01T23:59:59.000Z

250

Working and Net Available Shell Storage Capacity as of September 30, 2010 -  

Gasoline and Diesel Fuel Update (EIA)

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2010 | Release Date: July 28, 2011 Working and Net Available Shell Storage Capacity as of September 30, 2010 is the Energy Information Administration's (EIA) first report containing semi-annual storage capacity data. It includes three tables detailing working and net available shell storage capacity by facility type, product, and PAD District as of September 30, 2010. EIA has reported weekly and monthly inventory levels of crude oil and petroleum products for decades. New storage capacity data can help analysts place petroleum inventory levels in context and better understand petroleum market activity and price movements, especially at key market centers such as Cushing, Oklahoma.

251

EEI/DOE Transmission Capacity Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRANSMISSION CAPACITY: TRANSMISSION CAPACITY: PRESENT STATUS AND FUTURE PROSPECTS Eric Hirst Consulting in Electric-Industry Restructuring Bellingham, Washington June 2004 Prepared for Energy Delivery Group Edison Electric Institute Washington, DC Russell Tucker, Project Manager and Office of Electric Transmission and Distribution U.S. Department of Energy Washington, DC Larry Mansueti, Project Manager ii iii CONTENTS Page SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. TRANSMISSION CAPACITY: DATA AND PROJECTIONS . . . . . . . . . . . . . . . . . . . 5 HISTORICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 CURRENT CONDITIONS . . . . . . .

252

Quantum capacity of channel with thermal noise  

E-Print Network (OSTI)

The quantum capacity of thermal noise channel is studied. The extremal input state is obtained at the postulation that the coherent information is convex or concave at its vicinity. When the input energy tends to infinitive, it is verified by perturbation theory that the coherent information reaches its maximum at the product of identical thermal state input. The quantum capacity is obtained for lower noise channel and it is equal the one shot capacity.

Xiao-yu Chen

2006-02-11T23:59:59.000Z

253

North Dakota Refining Capacity Study  

Science Conference Proceedings (OSTI)

According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

2011-01-05T23:59:59.000Z

254

Quantum Capacities of Channels with small Environment  

E-Print Network (OSTI)

We investigate the quantum capacity of noisy quantum channels which can be represented by coupling a system to an effectively small environment. A capacity formula is derived for all cases where both system and environment are two-dimensional--including all extremal qubit channels. Similarly, for channels acting on higher dimensional systems we show that the capacity can be determined if the channel arises from a sufficiently small coupling to a qubit environment. Extensions to instances of channels with larger environment are provided and it is shown that bounds on the capacity with unconstrained environment can be obtained from decompositions into channels with small environment.

Michael M. Wolf; David Perez-Garcia

2006-07-11T23:59:59.000Z

255

Share of Conversion Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In the early to mid 1980’s, Atlantic Basin refiners rapidly expanded their conversion capacity as a consequence of the belief that world crude production would get ...

256

Total Natural Gas Underground Storage Capacity  

Annual Energy Outlook 2012 (EIA)

Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

257

Natural gas, renewables dominate electric capacity additions ...  

U.S. Energy Information Administration (EIA)

These appear in a separate EIA survey collecting data on net metering and distributed generation. More capacity was added in the first half of 2012 than was retired.

258

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA)

Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell ...

259

When does noise increase the quantum capacity?  

E-Print Network (OSTI)

Superactivation is the property that two channels with zero quantum capacity can be used together to yield positive capacity. Here we demonstrate that this effect exists for a wide class of inequivalent channels, none of which can simulate each other. We also consider the case where one of two zero capacity channels are applied, but the sender is ignorant of which one is applied. We find examples where the greater the entropy of mixing of the channels, the greater the lower bound for the capacity. Finally, we show that the effect of superactivation is rather generic by providing example of superactivation using the depolarizing channel.

Fernando G. S. L. Brandão; Jonathan Oppenheim; Sergii Strelchuk

2011-07-21T23:59:59.000Z

260

,"Texas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Underground Natural Gas Storage Capacity",11,"Annual",2011,"6301988" ,"Release...

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

An FPTAS for Capacity Constrained Assortment Optimization  

E-Print Network (OSTI)

May 13, 2013 ... In this paper, we consider the capacity constrained version of the assortment optimization problem where each item $i$ has weight $w_i$, and ...

262

,"Nebraska Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Underground Natural Gas...

263

,"Kentucky Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Underground Natural Gas...

264

,"Wyoming Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Underground Natural Gas...

265

,"Minnesota Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Underground Natural Gas...

266

,"Maryland Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Underground Natural Gas...

267

,"Indiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Underground Natural Gas...

268

,"West Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Underground Natural...

269

,"Michigan Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Underground Natural Gas...

270

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural...

271

,"Natural Gas Depleted Fields Storage Capacity "  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Storage Capacity " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural...

272

,"Mississippi Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Underground Natural...

273

,"Arkansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Underground Natural Gas...

274

,"Alabama Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Underground Natural Gas...

275

,"Oregon Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Underground Natural Gas...

276

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas...

277

,"Missouri Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Underground Natural Gas...

278

,"Oklahoma Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Underground Natural Gas...

279

,"Washington Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Underground Natural...

280

Refinery Capacity Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration (U.S. Dept. of Energy) ... Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of ...

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"Kansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Underground Natural Gas...

282

Quantum Communication With Zero-Capacity Channels  

E-Print Network (OSTI)

Communication over a noisy quantum channel introduces errors in the transmission that must be corrected. A fundamental bound on quantum error correction is the quantum capacity, which quantifies the amount of quantum data that can be protected. We show theoretically that two quantum channels, each with a transmission capacity of zero, can have a nonzero capacity when used together. This unveils a rich structure in the theory of quantum communications, implying that the quantum capacity does not uniquely specify a channel's ability for transmitting quantum information.

Graeme Smith; Jon Yard

2008-07-30T23:59:59.000Z

283

,"Natural Gas Salt Caverns Storage Capacity "  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Storage Capacity " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas...

284

,"New Mexico Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Underground Natural...

285

Optimization of Storage vs. Compression Capacity  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Volume vs. Compression Capacity Amgad Elgowainy Argonne National Laboratory Presentation at CSD Workshop Argonne National Laboratory March 21, 2013 0 5 10 15 20 25 0 100...

286

,"Montana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Underground Natural Gas...

287

,"Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Underground Natural Gas...

288

,"Colorado Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Underground Natural Gas...

289

,"Utah Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Underground Natural Gas...

290

Increasing water holding capacity for irrigation  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing water holding capacity for irrigation Reseachers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine...

291

,"Tennessee Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Underground Natural Gas...

292

,"Louisiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Underground Natural Gas...

293

,"Ohio Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Underground Natural Gas...

294

,"Pennsylvania Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Underground Natural...

295

Total Atmospheric Crude Oil Distillation Capacity Former ...  

U.S. Energy Information Administration (EIA)

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd)a New Corporation/Refiner Date of Sale Table 14. Refinery Sales During 2005

296

PAD District 4 Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

Gross Input to Atmospheric Crude Oil Distillation Units: 575: 577: 562: 542: 578: 587: 1985-2013: Operable Capacity (Calendar Day) 625: 625: 630: 630: 630: 630: 1985 ...

297

,"Illinois Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","52013" ,"Release...

298

Solar Energy and Capacity Value (Fact Sheet)  

SciTech Connect

This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

Not Available

2013-09-01T23:59:59.000Z

299

Cyber Security Module  

NLE Websites -- All DOE Office Websites (Extended Search)

Cyber Security Module Cyber security training is required for all facility users and must be submitted before or upon arrival at the GUV Center. System Requirements and Information...

300

Detailed Course Module Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Course Module Description Course Module Description Module/Learning Objectives Level of Detail in Module by Audience Consumers Gen Ed/ Community College Trades 1. Energy Issues and Building Solutions High High High Learning Objectives: * Define terms of building science, ecological systems, economics of consumption * Relate building science perspective, ecology, social science * Explain historical energy and environmental issues related to buildings * Compare Site and source energy * Examine the health, safety and comfort issues in buildings * Examine the general context for building solutions (zero energy green home with durability as the goal) * Explain a basic overview of alternative energy (total solar flux) - do we have enough energy * Examine cash flow to homeowners

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Macroeconomic Activity Module  

Annual Energy Outlook 2012 (EIA)

d022412A. U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 18 Macroeconomic Activity Module To reflect uncertainty in the projection of...

302

International Energy Module  

Reports and Publications (EIA)

Summarizes the overall structure of the International Energy Model and its interface with other NEMS modules, mathematical specifications of behavioral relationships, and data sources and estimation methods.

Adrian Geagla

2012-11-05T23:59:59.000Z

303

International Energy Module  

Reports and Publications (EIA)

Summarizes the overall structure of the International Energy Model and its interface with other NEMS modules, mathematical specifications of behavioral relationships, and data sources and estimation methods.

Adrian Geagla

2013-10-22T23:59:59.000Z

304

Capacity of Byzantine Consensus with Capacity-Limited Point-to-Point Links  

E-Print Network (OSTI)

We consider the problem of maximizing the throughput of Byzantine consensus, when communication links have finite capacity. Byzantine consensus is a classical problem in distributed computing. In existing literature, the communication links are implicitly assumed to have infinite capacity. The problem changes significantly when the capacity of links is finite. We define the throughput and capacity of consensus, and identify upper bound of achievable consensus throughput. We propose an algorithm that achieves consensus capacity in complete four-node networks with at most 1 failure with arbitrary distribution of link capacities.

Liang, Guanfeng

2011-01-01T23:59:59.000Z

305

Photovoltaic module electrical termination design requirement study  

DOE Green Energy (OSTI)

Motorola Inc., in conjunction with ITT Cannon, has conducted a study to develop information to facilitate the selection of existing, commercial, electrical termination hardware for photovoltaic modules and arrays. This volume of the report contains the executive summary. Module and array design parameters were investigated and recommendations were developed for use in surveying, evaluating, and comparing electrical termination hardware. Electrical termination selection criteria factors were developed and applied to nine generic termination types in each of the four application sectors: remote, residential, intermediate and industrial. Existing terminations best suited for photovoltaic modules and arrays were identified. Cost information was developed to identify cost drivers and/or requirements which might lead to cost reductions. The general conclusion is that there is no single generic termination that is best suited for photovoltaic application, but that the appropriate termination is strongly dependent upon the module construction and its support structure as well as the specific application sector.

Mosna, F.J. Jr.; Donlinger, J.

1980-07-01T23:59:59.000Z

306

Residential photovoltaic module and array requirements study. Final report  

SciTech Connect

Burt Hill Kosar Rittelmann Associates has conducted a study to identify design requirements for photovoltaic modules and arrays used in residential applications. Building codes and referenced standards were reviewed for their applicability to residential photovoltaic array installations. Four installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Installation costs were developed for these mounting types as a function of panel/module size. cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in residential arrays. However, there is no applicable building code category for residential photovolttaic modules and arrays and early additional work is needed with standards writing organizations to develop residential module and array requirements.

1979-06-01T23:59:59.000Z

307

Engineering Technical Training Modules - Throttle Valves 1.0  

Science Conference Proceedings (OSTI)

The purpose of this training module is to provide an understanding of specifying throttle valves in a nuclear power plant. The module provides the student with an understanding of the different types of throttle valves, how to select a throttle valve, understand the flow characteristics of different throttle valves, and understanding negative characteristics that can occur when the wrong valve is chosen for different applications. Prior to using this module, the student should understand the fundamental...

2011-06-29T23:59:59.000Z

308

Engineering Technical Training Modules - Flow Measurement Version 1.0  

Science Conference Proceedings (OSTI)

The purpose of this training module is to provide an understanding of calculating flow and the various types of flow measurement devices. The module also provides information related to device selection, installation, failure modes, calibration, and instrument error. This computer-based training (CBT) module is intended for use by new engineers as well as engineers changing jobs where basic knowledge of this subject is a new requirement. This training is intended to help individuals acquire basic knowled...

2011-10-21T23:59:59.000Z

309

Working with Modules within Python  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with Modules within Perl and Python Working with Modules within Perl and Python Working with Modules within Perl and Python It can often be convenient to work with the modules system from within perl or python scripts. You can do this! Using Modules within Python The EnvironmentModules python package gives access to the module system from within python. The EnvironmentModules python package has a single function: module. Using this function you can provide the same arguments you would to "module" on the command line. The module() function accepts a list of arguments, like ['load','']; or ['unload','']. >>> import EnvironmentModules as EnvMod >>> EnvMod.module(['load','blast+']) It is important to understand that this is most effective for scripts

310

Dynamic Capacity Investment with Two Competing Technologies  

Science Conference Proceedings (OSTI)

With the recent focus on sustainability, firms making adjustments to their production or distribution capacity levels often have the option of investing in newer technologies with lower carbon footprints and/or energy consumption. These more sustainable ... Keywords: dynamic capacity investment, sustainable operations, technology choice

Wenbin Wang, Mark E. Ferguson, Shanshan Hu, Gilvan C. Souza

2013-10-01T23:59:59.000Z

311

Challenging Times for Making Refinery Capacity Decisions  

Reports and Publications (EIA)

This presentation was given at the National Petrochemical and Refiners Association's annual meeting in March 2004. The presentation covers a wide range of refining issues from near term to long term, and focuses on refining capacity and factors affecting decisions to alter that capacity.

Information Center

2004-03-01T23:59:59.000Z

312

On Quantum Capacity and its Bound  

E-Print Network (OSTI)

The quantum capacity of a pure quantum channel and that of classical-quantum-classical channel are discussed in detail based on the fully quantum mechanical mutual entropy. It is proved that the quantum capacity generalizes the so-called Holevo bound.

Masanori Ohya; Igor V. Volovich

2004-06-29T23:59:59.000Z

313

Capacity Bounded Grammars and Petri Nets  

E-Print Network (OSTI)

A capacity bounded grammar is a grammar whose derivations are restricted by assigning a bound to the number of every nonterminal symbol in the sentential forms. In the paper the generative power and closure properties of capacity bounded grammars and their Petri net controlled counterparts are investigated.

Stiebe, Ralf; 10.4204/EPTCS.3.18

2009-01-01T23:59:59.000Z

314

Installed Geothermal Capacity/Data | Open Energy Information  

Open Energy Info (EERE)

Installed Geothermal Capacity/Data Installed Geothermal Capacity/Data < Installed Geothermal Capacity Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus Aidlin Geothermal Facility Geothermal Steam Power Plant Calpine Geysers Geothermal Area 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW 2 1989 Amedee Geothermal Facility Binary Cycle Power Plant Amedee Geothermal Venture Honey Lake, California 1.6 MW1,600 kW 1,600,000 W 1,600,000,000 mW 0.0016 GW 1.6e-6 TW 2 1988 BLM Geothermal Facility Double Flash Coso Operating Co. Coso Junction, California, 90 MW90,000 kW 90,000,000 W

315

Table 6. Operable Crude Oil and Downstream Charge Capacity of ...  

U.S. Energy Information Administration (EIA)

Downstream Charge Capacity Table 6. ... (EIA), Form EIA-820, "Annual Refinery Report." Energy Information Administration, Refinery Capacity 2011 46. Title:

316

Macroeconomic Activity Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 2013 (AEO2013). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code

2013-04-10T23:59:59.000Z

317

Membrane module assembly  

DOE Patents (OSTI)

A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

Kaschemekat, J.

1994-03-15T23:59:59.000Z

318

Module Safety Issues (Presentation)  

SciTech Connect

Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

Wohlgemuth, J.

2012-02-01T23:59:59.000Z

319

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

320

Definition: Deferred Distribution Capacity Investments | Open Energy  

Open Energy Info (EERE)

Deferred Distribution Capacity Investments Deferred Distribution Capacity Investments Jump to: navigation, search Dictionary.png Deferred Distribution Capacity Investments As with the transmission system, reducing the load and stress on distribution elements increases asset utilization and reduces the potential need for upgrades. Closer monitoring and load management on distribution feeders could potentially extend the time before upgrades or capacity additions are required.[1] Related Terms load, transmission lines, transmission line, sustainability References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Distribution_Capacity_Investments&oldid=502613

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

he International Energy Module determines changes in the world oil price and the supply prices of crude he International Energy Module determines changes in the world oil price and the supply prices of crude oils and petroleum products for import to the United States in response to changes in U.S. import requirements. A market clearing method is used to determine the price at which worldwide demand for oil is equal to the worldwide supply. The module determines new values for oil production and demand for regions outside the United States, along with a new world oil price that balances supply and demand in the international oil market. A detailed description of the International Energy Module is provided in the EIA publication, Model Documentation Report: The International Energy Module of the National Energy Modeling System, DOE/EIA-M071(06), (Washington, DC, February 2006).

322

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

323

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

324

Electricity market module: Electricity fuel dispatch submodule  

Science Conference Proceedings (OSTI)

In previous Annual Energy Outlooks (AEO), international electricity trade was represented in the National Energy Modeling System (NEMS) Electricity Market Module (EMM) modeling framework as an exogenous input. The exception to this exogenous treatment was for firm power projections, i.e., new Canadian hydroelectric model builds. The AEO95 implementation of EMM allowed Canadian hydroelectric projects to be selected in the Electricity Capacity Planning (ECP) submodule on an annual basis and otherwise addressed as any other purchased power commitments. This technical memorandum addresses modifications to the Electricity Fuel Dispatch Submodule implemented in AEO96 to enhance the treatment of international electricity trade through the representation of economy imports from Canada.

NONE

1996-06-01T23:59:59.000Z

325

Capacity Building on Promoting Sustainable Development in the GMS | Open  

Open Energy Info (EERE)

Promoting Sustainable Development in the GMS Promoting Sustainable Development in the GMS Jump to: navigation, search Name Capacity Building on Promoting Sustainable Development in the GMS Agency/Company /Organization AIT-UNEP Regional Resource Centre for Asia and the Pacific Sector Energy, Land Topics Implementation, Policies/deployment programs, Background analysis Resource Type Guide/manual Website http://www.rrcap.unep.org/nsds Country Cambodia, China, Laos, Thailand, Vietnam, Myanmar UN Region South-Eastern Asia References Capacity Building in GMS[1] Summary "The study assesses the state of sustainable development strategies (SDS) in the Greater Mekong Subregion (GMS) - within each of the six member-countries and in the subregion as a whole - with a view towards identifying appropriate improvements that would bring about strong national

326

wind power capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international

327

Information Capacity of Energy Harvesting Sensor Nodes  

E-Print Network (OSTI)

Sensor nodes with energy harvesting sources are gaining popularity due to their ability to improve the network life time and are becoming a preferred choice supporting 'green communication'. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over an AWGN channel and show that the capacity achieving energy management policy is the same as the throughput optimal policy. We also obtain the capacity for the system with energy inefficiencies in storage and an achievable rate when energy conserving sleep-wake modes are supported.

Rajesh, R

2010-01-01T23:59:59.000Z

328

On channels with finite Holevo capacity  

E-Print Network (OSTI)

We consider a nontrivial class of infinite dimensional quantum channels characterized by finiteness of the Holevo capacity. Some general properties of channels of this class are described. In particular, a special sufficient condition of existence of an optimal measure is obtained and examples of channels with no optimal measure are constructed. It is shown that each channel with finite Holevo capacity has a natural extension to the set of all positive normalized functionals on the algebra of all bounded operators. General properties of such an extension are described. The class of infinite dimensional channels, for which the Holevo capacity can be explicitly determined, is considered.

M. E. Shirokov

2006-02-07T23:59:59.000Z

329

Assumptions to the Annual Energy Outlook 2002 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).117 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

330

Assumptions to the Annual Energy Outlook 2001 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

331

Sonication standard laboratory module  

DOE Patents (OSTI)

A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

1999-01-01T23:59:59.000Z

332

Water heater control module  

DOE Patents (OSTI)

An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

Hammerstrom, Donald J

2013-11-26T23:59:59.000Z

333

Assumptions to the Annual Energy Outlook - Household Expenditures Module  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module Assumption to the Annual Energy Outlook Household Expenditures Module Figure 5. United States Census Divisions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division (see

334

Digital intermediate frequency QAM modulator using parallel processing  

DOE Patents (OSTI)

The digital Intermediate Frequency (IF) modulator applies to various modulation types and offers a simple and low cost method to implement a high-speed digital IF modulator using field programmable gate arrays (FPGAs). The architecture eliminates multipliers and sequential processing by storing the pre-computed modulated cosine and sine carriers in ROM look-up-tables (LUTs). The high-speed input data stream is parallel processed using the corresponding LUTs, which reduces the main processing speed, allowing the use of low cost FPGAs.

Pao, Hsueh-Yuan (Livermore, CA); Tran, Binh-Nien (San Ramon, CA)

2008-05-27T23:59:59.000Z

335

CLEAN-Capacity Building and Training for Low Emissions Development Planning  

Open Energy Info (EERE)

CLEAN-Capacity Building and Training for Low Emissions Development Planning CLEAN-Capacity Building and Training for Low Emissions Development Planning Jump to: navigation, search Tool Summary Name: CLEAN-Capacity Building and Training for Low Emissions Development Planning Agency/Company /Organization: CLEAN, National Renewable Energy Laboratory Sector: Climate, Energy, Land Topics: Low emission development planning Resource Type: Presentation, Training materials, Video, Webinar Cost: Free References: CLEAN Webinar[1] Webinar Pre sentations CLEAN PPT 5 20 2011 (2).pdf TNA Capacity Building- webinar CLEAN-24 May 2011 Final.pdf ESMAP-CLEAN 20110524.pdf Announcement The Coordinated Low Emissions Assistance Network (CLEAN) will be offering a free webinar on Low Emission Development Strategies (LEDS): Capacity Building and Training to explore activity design, lessons learned, future

336

Illinois Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History Total Storage Capacity 984,768 980,691...

337

Heat Capacity as A Witness of Entanglement  

E-Print Network (OSTI)

We demonstrate that the presence of entanglement in macroscopic bodies (e.g. solids) in thermodynamical equilibrium could be revealed by measuring heat-capacity. The idea is that if the system were in a separable state, then for certain Hamiltonians heat capacity would not tend asymptotically to zero as the temperature approaches absolute zero. Since this would contradict the third law of thermodynamics, one concludes that the system must contain entanglement. The separable bounds are obtained by minimization of the heat capacity over separable states and using its universal low-temperature behavior. Our results open up a possibility to use standard experimental techniques of solid state physics -- namely, heat capacity measurements -- to detect entanglement in macroscopic samples.

Marcin Wiesniak; Vlatko Vedral; Caslav Brukner

2005-08-26T23:59:59.000Z

338

renewable energy generating capacity | OpenEI  

Open Energy Info (EERE)

energy generating capacity energy generating capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 16, and contains only the reference case. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO generation renewable energy renewable energy generating capacity Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generating Capacity and Generation- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

339

U.S. Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,450 15,027 14,659 15,177 15,289 15,362 1985-2012 Operable Capacity (Calendar...

340

Definition: Capacity factor | Open Energy Information  

Open Energy Info (EERE)

power)12 View on Wikipedia Wikipedia Definition The net capacity factor of a power plant is the ratio of its actual output over a period of time, to its potential output if...

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

California Interstate Natural Gas Pipeline Capacity Levels ...  

U.S. Energy Information Administration (EIA)

PG&E Gas Transmission - NW Tuscarora Pipeline (Malin OR) 110 Mmcf/d 2,080 Mmcf/d Total Interstate Pipeline Capacity into California 7,435 Mmcf/d Net Natural Gas ...

342

,"California Natural Gas Underground Storage Capacity (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:21:10 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CA2"...

343

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Note: 1) 'Demonstrated Peak Working Gas Capacity' is the sum of the highest storage inventory level of working gas observed in each facility over the prior 5-year period as...

344

Internal Markets for Supply Chain Capacity Allocation  

E-Print Network (OSTI)

This paper explores the possibility of solving supply chain capacity allocation problems using internal markets among employees of the same company. Unlike earlier forms of transfer pricing, IT now makes it easier for such ...

McAdams, David

2005-07-08T23:59:59.000Z

345

Optimal capacity adjustment for supply chain control  

E-Print Network (OSTI)

This research attempts to answer the questions involving the time and size of capacity adjustments for better supply chain management. The objective of this research is to analytically determine simple structures to adjust ...

Budiman, Benny S., 1969-

2004-01-01T23:59:59.000Z

346

Feedback Capacity of the Compound Channel  

E-Print Network (OSTI)

In this work, we find the capacity of a compound finite-state channel (FSC) with time-invariant deterministic feedback. We consider the use of fixed length block codes over the compound channel. Our achievability result ...

Shrader, Brooke E.

347

Capacity-Speed Relationships in Prefrontal Cortex  

E-Print Network (OSTI)

Working memory (WM) capacity and WM processing speed are simple cognitive measures that underlie human performance in complex processes such as reasoning and language comprehension. These cognitive measures have shown to ...

Prabhakaran, Vivek

348

Minimal capacity points and the Lowest eigenfunctions  

E-Print Network (OSTI)

We introduce the concept of the point of minimal capacity of the domain, and observe a connection between this point and the lowest eigenfunction of a Laplacian on this domain, in one special case.

Mark Levi; Jia Pan

2011-04-04T23:59:59.000Z

349

Lattice Heat Capacity of Mesoscopic Nanostructures  

E-Print Network (OSTI)

We present a rigorous full quantum mechanical model for the lattice heat capacity of mesoscopic nanostructures in various dimensions. Model can be applied to arbitrary nanostructures with known vibrational spectrum in zero, one, two, or three dimensions. The limiting case of infinitely sized multi-dimensional materials are also found, which are in agreement with well-known results. As examples, we obtain the heat capacity of fullerenes.

Gharekhanlou, B; Vafai, A

2010-01-01T23:59:59.000Z

350

Measuring the capacity impacts of demand response  

Science Conference Proceedings (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

351

Technical Assessment Guide -- Generation Capacity Addition Topics  

Science Conference Proceedings (OSTI)

This report discusses the challenges facing the power industry with regard to capacity addition. These challenges include technological and regulatory risks, life cycle management, and material and labor escalation forecast. The report also examines the market trends for CT and CTCC, as this technology has become a reliable technology for capacity addition, and provides the cost data for various switchyard configurations. These topics have been addressed in past TAG reports and the content in this ...

2013-03-06T23:59:59.000Z

352

Heat capacity in weakly correlated liquids  

Science Conference Proceedings (OSTI)

Previously unavailable numerical data related to the heat capacity in two- and three-dimensional liquid Yukawa systems are obtained by means of fluctuation theory. The relations between thermal conductivity and diffusion constants are numerically studied and discussed. New approximation for heat capacity dependence on non-ideality parameter for weakly correlated systems of particles is proposed. Comparison of the obtained results to the existing theoretical and numerical data is discussed.

Khrustalyov, Yu. V.; Vaulina, O. S. [Joint Institute for High Temperatures RAS, 125412, Izhorskaya St., 13 bld.2, Moscow (Russian Federation); Moscow Institute of Physics and Technology, 117303, Kerchenskaya St., 1A bld.1, Moscow (Russian Federation); Koss, X. G. [Joint Institute for High Temperatures RAS, 125412, Izhorskaya St., 13 bld.2, Moscow (Russian Federation)

2012-12-15T23:59:59.000Z

353

EPRI Increased Transmission Capacity Workshop Proceedings  

Science Conference Proceedings (OSTI)

This report documents the proceedings of EPRI's Increased Overhead Transmission Capacity Workshop. The workshop was held on September 20, 2011 at the offices of the American Transmission Company in Waukesha, Wisconsin. Participants included members of the EPRI Increased Overhead Transmission Capacity Task Force. The workshop was a joint effort of two EPRI research projects: (1) Increased Power Flow Guidebook and Ratings for Overhead Lines, and (2) Impact of High Temperature Operation on Conductor Systems...

2011-11-30T23:59:59.000Z

354

CIM - compact intensity modulation.  

SciTech Connect

Compact intensity modulation (CIM), a new method to modulate the intensity of a neutron beam is demonstrated. CIM allows the production of arbitrary signals where the focus point can be chosen and changed without any constraints. A novel feature in this technique compared to spin echo techniques is that the neutron polarization is kept parallel or anti-parallel to the static fields during the passage through the magnetic fields and the beating pattern at the detector is produced by an amplitude modulation (AM) of the adiabatic RF-spin flippers rather than Larmor precession like in neutron spin echo (NSE) instruments; thus, the achievable contrast is very high and the instrument resolution can be changed very quickly. This gives the fascinating possibility at pulsed neutron sources to sweep the modulation frequency of the flippers in order to increase dynamic resolution range during the same neutron pulse.

Bleuel, M.; Lang, E.; Gahler, G.; Lal, J.; Intense Pulsed Neutron Source; Inst. Lau Langevin

2008-07-21T23:59:59.000Z

355

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

356

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh100 kW Flywheel Energy Storage Module * 100KWh - 18 cost KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft Hub (which limits surface speed)...

357

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

358

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

359

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-05-14T23:59:59.000Z

360

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

362

Renewable Fuels Module  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.

Chris Namovicz

2013-07-03T23:59:59.000Z

363

Capacity Value of Wind Power - Summary  

Science Conference Proceedings (OSTI)

Power systems are planned such that they have adequate generation capacity to meet the load, according to a defined reliability target. The increase in the penetration of wind generation in recent years has led to a number of challenges for the planning and operation of power systems. A key metric for generation system adequacy is the capacity value of generation. The capacity value of a generator is the contribution that a given generator makes to generation system aequacy. The variable and stochastic nature of wind sets it apart from conventional energy sources. As a result, the modeling of wind generation in the same manner as conventional generation for capacity value calculations is inappropriate. In this paper a preferred method for calculation of the capacity value of wind is described and a discussion of the pertinent issues surrounding it is given. Approximate methods for the calculation are also described with their limitations highlighted. The outcome of recent wind capacity value analyses in Europe and North America, along with some new analysis, are highlighted with a discussion of relevant issues also given.

O'Malley, M.; Milligan, M.; Holttinen, H.; Dent, C.; Keane, A.

2010-01-01T23:59:59.000Z

364

Programmable synchronous communications module  

SciTech Connect

The functional characteristics of a programmable, synchronous serial communications CAMAC module with buffering in block format are described. Both bit and byte oriented protocols can be handled in full duplex depending on the program implemented. The main elements of the module are a Signetics 2652 Multi-Protocol Communications Controller, a Zilog Z-808 8 bit microprocessor with PROM and RAM, and FIFOs for buffering. (FS)

Horelick, D.

1979-10-01T23:59:59.000Z

365

Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumption to the Annual Energy Outlook Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

366

Photovoltaic module reliability workshop  

DOE Green Energy (OSTI)

The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

Mrig, L. (ed.)

1990-01-01T23:59:59.000Z

367

Assumptions to the Annual Energy Outlook 2002 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

368

Assumptions to the Annual Energy Outlook 2001 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

369

Characterization of Field Exposed Thin Film Modules: Preprint  

DOE Green Energy (OSTI)

Test arrays of thin film modules have been deployed at the Solar Energy Centre near New Delhi, India since 2002-2003. Performances of these arrays were reported by O.S. Sastry [1]. This paper reports on NREL efforts to support SEC by performing detailed characterization of selected modules from the array. Modules were selected to demonstrate both average and worst case power loss over the 8 years of outdoor exposure. The modules characterized included CdTe, CIS and three different types of a-Si. All but one of the a-Si types were glass-glass construction. None of the modules had edge seals. Detailed results of these tests are presented along with our conclusions about the causes of the power loss for each technology.

Wohlgemuth, J. H.; Sastry, O. S.; Stokes, A.; Singh, Y. K.; Kumar, M.

2012-06-01T23:59:59.000Z

370

Degradation Analysis of Weathered Crystalline-Silicon PV Modules: Preprint  

DOE Green Energy (OSTI)

We present an analysis of the results of a solar weathering program that found a linear relationship between maximum power degradation and the total UV exposure dose for four different types of commercial crystalline Si modules. The average degradation rate for the four modules types was 0.71% per year. The analysis showed that losses of short-circuit current were responsible for the maximum power degradation. Judging by the appearance of the undegraded control modules, it is very doubtful that the short-circuit current losses were caused by encapsulation browning or obscuration. When we compared the quantum efficiency of a single cell in a degraded module to one from an unexposed control module, it appears that most of the degradation has occurred in the 800 - 1100 nm wave-length region, and not the short wavelength region.

Osterwald, C. R.; Anderberg, A.; Rummel, S.; Ottoson, L.

2002-05-01T23:59:59.000Z

371

Photovoltaic module energy rating procedure. Final subcontract report  

DOE Green Energy (OSTI)

This document describes testing and computation procedures used to generate a photovoltaic Module Energy Rating (MER). The MER consists of 10 estimates of the amount of energy a single module of a particular type (make and model) will produce in one day. Module energy values are calculated for each of five different sets of weather conditions (defined by location and date) and two load types. Because reproduction of these exact testing conditions in the field or laboratory is not feasible, limited testing and modeling procedures and assumptions are specified.

Whitaker, C.M.; Newmiller, J.D. [Endecon Engineering (United States)

1998-01-01T23:59:59.000Z

372

Gradient Combinatorial Libraries via Modulated Light ...  

Science Conference Proceedings (OSTI)

... Libraries via Modulated Light Exposure. Bookmark and Share Gradient Combinatorial Libraries via Modulated Light Exposure. ...

373

Heat capacity and compactness of denatured proteins  

E-Print Network (OSTI)

One of the striking results of protein thermodynamics is that the heat capacity change upon denaturation is large and positive. This change is generally ascribed to the exposure of non-polar groups to water on denaturation, in analogy to the large heat capacity change for the transfer of small non-polar molecules from hydrocarbons to water. Calculations of the heat capacity based on the exposed surface area of the completely unfolded denatured state give good agreement with experimental data. This result is difficult to reconcile with evidence that the heat denatured state in the absence of denaturants is reasonably compact. In this work, sample conformations for the denatured state of truncated CI2 are obtained by use of an effective energy function for proteins in solution. The energy function gives denatured conformations that are compact with radii of gyration that are slightly larger than that of the native state. The model is used to estimate the heat capacity, as well as that of the native state, at 300 and 350 K via finite enthalpy differences. The calculations show that the heat capacity of denaturation can have large positive contributions from non-covalent intraprotein interactions because these interactions change more with temperature in non-native conformations than in the native state. Including this contribution, which has been neglected in empirical surface area models, leads to heat capacities of unfolding for compact denatured states that are consistent with the experimental heat capacity data. Estimates of the stability curve of CI2 made with the effective energy function support the present model. # 1999 Elsevier Science B.V. All rights reserved.

Themis Lazaridis; Martin Karplus

1999-01-01T23:59:59.000Z

374

Maximal output purity and capacity for asymmetric unital qudit channels  

E-Print Network (OSTI)

We consider generalizations of depolarizing channels to maps in which the identity channel is replaced by a convex combinations of unitary conjugations. We show that one can construct unital channels of this type for which the input which achieves maximal output purity is unique. We give conditions under which multiplicativity of the maximal p-norm and additivity of the minimal output entropy. We also show that the Holevo capacity need not equal log d - the minimal entropy as one might expect for a convex combination of unitary conjugations. Conversely, we give examples for which this condition holds, but the channel has no evident covariance properties.

Nilanjana Datta; Mary Beth Ruskai

2005-05-08T23:59:59.000Z

375

Can Bounded Rationality Explain Excess Capacity? ?  

E-Print Network (OSTI)

Excess capacity is observed in many markets especially those where a substantial initial investment is required. The theoretical literature often explains this feature by strategic attempts to deter entry or to limit new entrants ’ market shares but the empirical evidence for such a rationale is mixed. Moreover, excess capacity has also been observed in experimental studies on capacityconstrained games where there is no entry (and therefore no entry-deterrence motive). This paper explores experimentally another rationale for excess capacity: rather than (in addition to) being a threat to (potential) entrants, excess capacity held by incumbents may constitute a valuable option to reap extra gains from competition with an inexperienced entrant, if he turns out to makes a mistake. In our experimental design we used the level of experience (the number of periods played) as a proxy for the level of rationality and matched subjects with different levels of experience. We find evidence of excess capacity decreasing with opponent’s experience. ? This paper is a sustantially revised version of a chapter of Le Coq and Sturluson’s 2003 Stockholm School of Economics Ph.D. thesis. It was before circulated as "Does Opponent’s experience matter?". The authors would like to thank Tore Ellingsen for his insightful comments in the project’s infancy, Urs Fischbacher for allowig us tousethez-TreesoftwareandHans-TheoNorman for technical help. We thank also seminar participants at the IIOC 2004 (Chicago), EARIE 2003 (Lausanne), SAET 2003 (Rhodos) for helpful comments. We gratefully acknowledge financial

Chloélecoq Jon; Thor Sturluson

2006-01-01T23:59:59.000Z

376

U.S. Fuel Ethanol Plant Production Capacity  

U.S. Energy Information Administration (EIA)

U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District: Number of Plants: 2013 Nameplate Capacity: 2012 Nameplate Capacity

377

On the capacity of network coding for random networks  

E-Print Network (OSTI)

d ) , the network NC coding capacity C s;t ; ;t > (1 0 )8, AUGUST 2005 On the Capacity of Network Coding for Randomthat the network coding capacity concentrates around the

Ramamoorthy, A; Shi, J; Wesel, R D

2005-01-01T23:59:59.000Z

378

Zero-error capacity of a quantum channel  

E-Print Network (OSTI)

We define the quantum zero-error capacity, a new kind of classical capacity of a noisy quantum channel. Moreover, the necessary requirement for which a quantum channel has zero-error capacity greater than zero is also given.

Rex A. C. Medeiros; Francisco M. de Assis

2004-03-26T23:59:59.000Z

379

DOE mixed waste treatment capacity analysis  

SciTech Connect

This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

1994-06-01T23:59:59.000Z

380

Heat capacity at the glass transition  

E-Print Network (OSTI)

A fundamental problem of glass transition is to explain the jump of heat capacity at the glass transition temperature $T_g$ without asserting the existence of a distinct solid glass phase. This problem is also common to other disordered systems, including spin glasses. We propose that if $T_g$ is defined as the temperature at which the liquid stops relaxing at the experimental time scale, the jump of heat capacity at $T_g$ follows as a necessary consequence due to the change of system's elastic, vibrational and thermal properties. In this picture, we discuss time-dependent effects of glass transition, and identify three distinct regimes of relaxation. Our approach explains widely observed logarithmic increase of $T_g$ with the quench rate and the correlation of heat capacity jump with liquid fragility.

Kostya Trachenko; Vadim Brazhkin

2010-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Module/array interface study. Final report  

SciTech Connect

Bechtel National, Inc. has conducted a study of alternate module, panel, and array designs for use in large scale applications such as central station photovoltaic power plants. The objective of the study is to identify design features that will lead to minimum plant costs. Several aspects of module design are evaluated, including glass superstrate and metal substrate module configurations, the potential for hail damage, light absorption in glass superstrates, the economics of glass selection, and electrical design. Also, three alternate glass superstrate module configurations are evaluated by means of finite element computer analyses. Two panel sizes, 1.2 by 2.4 m (4 by 8 ft) and 2.4 by 4.8 m (8 by 16 ft), are used to support three module sizes, 0.6 by 1.2 m (2 by 4 ft), 1.2 by 1.2 m (4 by 4 ft), and 1.2 by 2.4 m (4 by 8 ft), for design loadings of +- 1.7 kPa (35 psf), +- 2.4 kPa (50 psf), and +- 3.6 kPa (75 psf). Designs and cost estimates are presented for twenty panel types and nine array configurations at each of the three design loadings. Structural cost sensitivities of combined array configurations and panel cases are presented.

1978-08-01T23:59:59.000Z

382

Computer Based Training: Engineering Technical Training Modules - Valve Actuator v1.0  

Science Conference Proceedings (OSTI)

Valve Actuator ETTM, Version 1.0 is a computer-based training module that allows users to access training when desired and review it at their own pace. The purpose of this training module is to provide a basic understanding of the various types of power valve actuators used in nuclear power plants and their characteristics. This module will also provide an understanding of valve actuator applications, selection, accessory requirements, and capabilities. This computer-based training (CBT) module is intend...

2009-12-04T23:59:59.000Z

383

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

384

Macroeconomic Activity Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 19 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook2011 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) represents the interaction between the U.S. economy as a whole and energy markets. The rate of growth of the economy, measured by the growth in gross domestic product (GDP) is a key determinant of the growth in demand for energy. Associated economic factors, such as interest rates and disposable income, strongly influence various elements of the supply and demand for energy. At the same time, reactions to energy markets by the aggregate economy, such as a slowdown in economic growth resulting from increasing energy prices, are also reflected in this module.

385

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

386

1 Modules and exactness  

E-Print Network (OSTI)

Suppose that R is an associative ring with 1. In most commutative cases, R is either the integers Z or some field k. Example: Suppose that k is a field and G is a group. The group-algebra k(G) over k is the direct sum k(G) = ? k, g?G with elements written as finite sums ? g?G ?g · g, with ?g ? k and all but finitely many ?g = 0. The “rule” (?g · g)(?h · h) = (?g?h) · (gh) defines the algebra structure on k(G), with multiplicative identity 1 = 1 · e, where e is the identity element of G. A k(G)-module M is a k-vector space M, with bilinear map ? : k(G) × M ? M with (r, m) ? ? r?m, such that r?(s?m) = (r·s)? m and 1 ? m = m, or equivalently M is a k-vector 1 space equipped with a group homomorphism G ? Autk(M). k(G)-modules are often called G-modules for that reason. Not even that is the most enlightened way to describe a k(G)-module. A group G can be thought of as a category (actually a groupoid) with one object ? and a morphism ? g ? ? ? for every g ? G. Then a k(G)-module is a functor M: G ? k ? Mod which takes values in the category of k-vector spaces. NB: I’ve only based these notions on fields k and their vector spaces to make them seem real. The object k could be a ring; then k(G) is a k-algebra still and a k(G)-module is a k-module M equipped with a group homomorphism G ? Autk(M). Now we recall some basic definitions and facts about R-modules. Suppose that f: M ? N is an R-module homomorphism. Then the kernel ker(f) of f is defined by ker(f) = {all x ? M such that f(x) = 0}. ker(f) is plainly a submodule of M. The image 2 im(f) of f is the submodule of N consisting of all y ? N such that y = f(x) for some x ? M. The cokernel of f cok(f) is defined to be the quotient A sequence cok(f) = N / im(f). M f ? ? M ? g ? ? M of R-module homomorphisms is said to be exact if ker(g) = im(f). Equivalently, the sequence is exact if g · f = 0 and for all y ? M ? with g(y) = 0 there is an x ? M such that f(x) = y. A sequence M1 ? M2 ? · · · ? Mn of R-module homomorphisms is said to be exact if ker = im everywhere. Example 1.1. The sequence 0 ? ker(f) ? M f ? ? N ? cok(f) ? 0 is exact for all R-module homomorphisms f. Note that 0 ? M f ? ? N is exact if and only if f is a monomorphism (injective), and that

unknown authors

2009-01-01T23:59:59.000Z

387

Photovoltaic module and interlocked stack of photovoltaic modules  

DOE Patents (OSTI)

One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

Wares, Brian S.

2012-09-04T23:59:59.000Z

388

Definition: Capacity Benefit Margin | Open Energy Information  

Open Energy Info (EERE)

Benefit Margin Benefit Margin Jump to: navigation, search Dictionary.png Capacity Benefit Margin The amount of firm transmission transfer capability preserved by the transmission provider for Load- Serving Entities (LSEs), whose loads are located on that Transmission Service Provider's system, to enable access by the LSEs to generation from interconnected systems to meet generation reliability requirements. Preservation of CBM for an LSE allows that entity to reduce its installed generating capacity below that which may otherwise have been necessary without interconnections to meet its generation reliability requirements. The transmission transfer capability preserved as CBM is intended to be used by the LSE only in times of emergency generation deficiencies.[1] Related Terms

389

Correlation between thermal expansion and heat capacity  

E-Print Network (OSTI)

Theoretically predicted linear correlation between the volume coefficient of thermal expansion and the thermal heat capacity was investigated for highly symmetrical atomic arrangements. Normalizing the data of these thermodynamic parameters to the Debye temperature gives practically identical curves from zero Kelvin to the Debye temperature. This result is consistent with the predicted linear correlation. At temperatures higher than the Debye temperature the normalized values of the thermal expansion are always higher than the normalized value of the heat capacity. The detected correlation has significant computational advantage since it allows calculating the volume coefficient of thermal expansion from one experimental data by using the Debye function.

Jozsef Garai

2004-04-25T23:59:59.000Z

390

Changing World Product Markets and Potential Refining Capacity ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Asia Demand growth, product mix, trade Price Signals for Capacity Changes Capacity ... 150 AZ Clean Fuels FCC/RCC Coking ...

391

Indonesia-ECN Capacity building for energy policy formulation...  

Open Energy Info (EERE)

ECN Capacity building for energy policy formulation and implementation of sustainable energy projects Jump to: navigation, search Name CASINDO: Capacity development and...

392

GIZ-Developing Climate Policy Capacity within the South African...  

Open Energy Info (EERE)

Policy Capacity within the South African Department of Environmental Affairs (DEA) Jump to: navigation, search Name South Africa - Developing Climate Policy Capacity within DEA...

393

Changing World Product Markets and Potential Refining Capacity Increases  

Reports and Publications (EIA)

The presentation explores potential refinery capacity increases over the next 5 years in various world regions, based on changing demand patterns, changing price incentives, and capacity expansion announcements.

Information Center

2006-03-20T23:59:59.000Z

394

EIA - Reference Case Projections for Electricity Capacity and...  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel (2003-2030) International Energy Outlook 2006 Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables...

395

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

extra-heavy oil and shale have zero Resource- Cost), whileof the Oil Transition: Modeling Capacity, Costs, andof the oil transition: modeling capacity, costs, and

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

396

Texas Natural Gas Underground Storage Capacity (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Natural Gas Underground Storage Capacity (Million...

397

Indonesia-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Indonesia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Indonesia-Enhancing Capacity for Low Emission Development Strategies...

398

Indonesia-Strengthening Planning Capacity for Low Carbon Growth...  

Open Energy Info (EERE)

Indonesia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Jump to: navigation, search Name Indonesia-Strengthening Planning Capacity for Low Carbon Growth...

399

Working crude oil storage capacity at Cushing, Oklahoma rises ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, ... as reported in EIA's recently released report on Working and Net Available Shell Storage Capacity. Utilization of working storage capacity ...

400

India-Vulnerability Assessment and Enhancing Adaptive Capacities...  

Open Energy Info (EERE)

Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Jump to: navigation, search Name India-Vulnerability Assessment and Enhancing Adaptive Capacities to...

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solar Energy and Capacity Value (Fact Sheet), NREL (National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy and Capacity Value e Solar Energy Can Provide Valuable Capacity to Utilities and Power System Operators Solar photovoltaic (PV) systems and concentrating solar power...

402

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

403

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

404

Gulf Coast (PADD 3) Shell Storage Capacity at Operable Refineries  

U.S. Energy Information Administration (EIA)

Propane/Propylene: 4,376: 3,520: 3,565-----1982-2013: ... Notes: Shell storage capacity is the design capacity of the tank. See Definitions, Sources, ...

405

Estimates of Peak Underground Working Gas Storage Capacity in the ...  

U.S. Energy Information Administration (EIA)

Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update The aggregate peak capacity for U.S. underground natural gas storage is ...

406

Lower 48 States Total Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

data. Release Date: 9302013 Next Release Date: 10312013 Referring Pages: Total Natural Gas Underground Storage Capacity Lower 48 States Underground Natural Gas Storage Capacity...

407

Stochastic binary problems with simple penalties for capacity ...  

E-Print Network (OSTI)

Mar 24, 2009 ... Abstract: This paper studies stochastic programs with first-stage binary variables and capacity constraints, using simple penalties for capacities ...

408

Indiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

409

Wyoming Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

410

Louisiana Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Louisiana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

411

Louisiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

412

Virginia Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

413

On the complexity of maximizing the minimum Shannon capacity in ...  

E-Print Network (OSTI)

capacity in wireless networks by joint channel assignment and power allocation ... tal Shannon capacity of any mobile user in the system. The corresponding.

414

New Mexico Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

415

Washington Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Washington Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

416

Iowa Natural Gas Underground Storage Acquifers Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Iowa Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

417

Illinois Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

418

New York Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

419

Y-12 builds capacity to meet nuclear testing schedule - Or: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

builds capacity to meet nuclear testing schedule - Or: Increasing capacity to meet nuclear testing schedule (title as it appeared in The Oak Ridger) The continuing high volume...

420

Maryland Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Oklahoma Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

422

Alabama Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

423

Kansas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

424

Utah Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

425

Tennessee Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Tennessee Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

426

Maryland Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Maryland Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

427

Missouri Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

428

Oregon Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

429

DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process...

430

Tennessee Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Tennessee Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

431

Colorado Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

432

Montana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

433

Minnesota Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

434

Arkansas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

435

Minnesota Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Minnesota Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

436

Iowa Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

437

Nebraska Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Nebraska Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

438

Nebraska Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

439

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

440

Texas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Arkansas Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Arkansas Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

442

Capacity and Energy Payments to Small Power Producers and Cogenerators...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia) Capacity and Energy Payments to Small Power Producers and Cogenerators Under...

443

Colorado Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Colorado Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

444

Pennsylvania Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Pennsylvania Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

445

Oklahoma Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

446

Working and Net Available Shell Storage Capacity as of ...  

U.S. Energy Information Administration (EIA)

Revision to Working and Net Available Shell Storage Capacity as of September 30, 2010 . Crude oil storage capacity data at tank farms reported for PAD District 2 and ...

447

Kentucky Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

448

Oregon Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oregon Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

449

Ohio Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Ohio Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

450

Montana Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Montana Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

451

Michigan Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

452

Ohio Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

453

Mississippi Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Mississippi Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

454

CLEAN-Capacity Building and Training for Low Emissions Development...  

Open Energy Info (EERE)

CLEAN-Capacity Building and Training for Low Emissions Development Planning Jump to: navigation, search Tool Summary Name: CLEAN-Capacity Building and Training for Low Emissions...

455

Natural gas, renewables dominate electric capacity additions in ...  

U.S. Energy Information Administration (EIA)

Of the ten states with the highest levels of capacity additions, most of the new capacity uses natural gas or renewable energy sources.

456

Capacity Regions and Sum-Rate Capacities of Vector Gaussian Interference Channels  

E-Print Network (OSTI)

The capacity regions of vector, or multiple-input multiple-output, Gaussian interference channels are established for very strong interference and aligned strong interference. Furthermore, the sum-rate capacities are established for Z interference, noisy interference, and mixed (aligned weak/intermediate and aligned strong) interference. These results generalize known results for scalar Gaussian interference channels.

Shang, Xiaohu; Kramer, Gerhard; Poor, H Vincent

2009-01-01T23:59:59.000Z

457

Trade Study on Aggregation of Multiple 10-KW Solid Ozide Fuel Cell Power Modules  

DOE Green Energy (OSTI)

According to the Solid State Energy Conversion Alliance (SECA) program guidelines, solid oxide fuel cells (SOFC) will be produced in the form of 3-10 kW modules for residential use. In addition to residential use, these modules can also be used in apartment buildings, hospitals, etc., where a higher power rating would be required. For example, a hospital might require a 250 kW power generating capacity. To provide this power using the SECA SOFC modules, 25 of the 10 kW modules would be required. These modules can be aggregated in different architectures to yield the necessary power. This report will show different approaches for aggregating numerous SOFC modules and will evaluate and compare each one with respect to cost, control complexity, ease of modularity, and fault tolerance.

Ozpineci, B.

2004-12-03T23:59:59.000Z

458

Method of monolithic module assembly  

DOE Patents (OSTI)

Methods for "monolithic module assembly" which translate many of the advantages of monolithic module construction of thin-film PV modules to wafered c-Si PV modules. Methods employ using back-contact solar cells positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The methods of the invention allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

Gee, James M. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Morgan, William P. (Albuquerque, NM); Worobey, Walter (Albuquerque, NM)

1999-01-01T23:59:59.000Z

459

Utah Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

124,465 124,465 124,465 124,465 124,465 124,465 2002-2013 Total Working Gas Capacity 54,898 54,898 54,898 54,898 54,898 54,898 2012-2013 Total Number of Existing Fields 3 3 3 3 3...

460

Partial energies fluctuations and negative heat capacities  

E-Print Network (OSTI)

We proceed to a critical examination of the method used in nuclear fragmentation to exhibit signals of negative heat capacity. We show that this method leads to unsatisfactory results when applied to a simple and well controlled model. Discrepancies are due to incomplete evaluation of potential energies.

Xavier Campi; H. Krivine; E. Plagnol; N. Sator

2004-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Partial energies fluctuations and negative heat capacities  

E-Print Network (OSTI)

We proceed to a critical examination of the method used in nuclear fragmentation to exhibit signals of negative heat capacity. We show that this method leads to unsatisfactory results when applied to a simple and well controlled model. Discrepancies are due to incomplete evaluation of potential energies.

Campi, X; Plagnol, E; Campi, Xavier; ccsd-00002099, ccsd

2004-01-01T23:59:59.000Z

462

Ohio Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

577,944 577,944 577,944 577,944 577,944 577,944 2002-2013 Total Working Gas Capacity 230,350 228,030 228,030 228,030 228,030 230,828 2012-2013 Total Number of Existing Fields 24 24...

463

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY  

E-Print Network (OSTI)

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY ANALYSIS TOOLS APPLICABLE TO MULTI Commercial HVAC Design Process 12 5.0 Conclusion 18 6.0 References 19 TABLE OF CONTENTS SECTIONS #12;MULTI performance by collectively improving the enve- lope, lighting and HVAC systems. The primary goals of the UC

California at Davis, University of

464

Michigan Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

1,078,979 1,078,979 1,078,979 1,079,424 1,079,424 1,079,424 2002-2013 Total Working Gas Capacity 673,200 673,200 674,010 674,455 674,455 674,967 2012-2013 Total Number of Existing...

465

Maryland Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

64,000 64,000 64,000 64,000 64,000 64,000 1988-2011 Salt Caverns 0 1999-2011 Depleted Fields 64,000 64,000 64,000 64,000 64,000 64,000 1999-2011 Total Working Gas Capacity 17,300...

466

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

774,309 774,309 774,309 774,309 774,309 774,309 2002-2013 Total Working Gas Capacity 434,174 433,084 433,084 433,084 433,084 433,214 2012-2013 Total Number of Existing Fields 51 51...

467

Oregon Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

29,565 29,565 29,565 29,565 29,565 29,565 2002-2013 Total Working Gas Capacity 15,935 15,935 15,935 15,935 15,935 15,935 2012-2013 Total Number of Existing Fields 7 7 7 7 7 7...

468

Colorado Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

122,086 122,086 122,086 122,086 122,086 122,086 2002-2013 Total Working Gas Capacity 60,582 60,582 60,582 60,582 60,582 60,582 2012-2013 Total Number of Existing Fields 10 10 10 10...

469

Iowa Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

288,210 288,210 288,210 288,210 288,210 288,210 2002-2013 Total Working Gas Capacity 90,313 90,313 90,313 90,313 90,313 90,313 2012-2013 Total Number of Existing Fields 4 4 4 4 4 4...

470

Tennessee Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

1,200 1,200 1,200 1,200 0 1998-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 1,200 1,200 1,200 1,200 0 1999-2011 Total Working Gas Capacity 860 860 0 2008-2011...

471

Arkansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

21,853 21,853 21,853 21,853 21,853 21,853 2002-2013 Total Working Gas Capacity 12,178 12,178 12,178 12,178 12,178 12,178 2012-2013 Total Number of Existing Fields 2 2 2 2 2 2...

472

Iowa Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

275,200 278,238 284,747 284,811 288,010 288,210 1988-2011 Aquifers 275,200 278,238 284,747 284,811 288,010 288,210 1999-2011 Depleted Fields 0 1999-2011 Total Working Gas Capacity...

473

Washington Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

43,316 39,341 39,287 39,210 41,309 43,673 1988-2011 Aquifers 43,316 39,341 39,287 39,210 41,309 43,673 1999-2011 Depleted Fields 0 1999-2011 Total Working Gas Capacity 23,033...

474

Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

9,500 9,500 9,500 9,500 9,500 9,500 2002-2013 Total Working Gas Capacity 5,400 5,400 5,400 5,400 5,400 5,400 2012-2013 Total Number of Existing Fields 2 2 2 2 2 2...

475

Nebraska Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

39,469 34,850 34,850 34,850 34,850 34,850 1988-2011 Salt Caverns 0 1999-2011 Depleted Fields 39,469 34,850 34,850 34,850 34,850 34,850 1999-2011 Total Working Gas Capacity 13,619...

476

California Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

592,711 592,711 592,711 592,711 592,711 599,711 2002-2013 Total Working Gas Capacity 349,296 349,296 349,296 349,296 349,296 374,296 2012-2013 Total Number of Existing Fields 14 14...

477

Montana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

376,301 376,301 376,301 376,301 376,301 376,301 2002-2013 Total Working Gas Capacity 197,501 197,501 197,501 197,501 197,501 197,501 2012-2013 Total Number of Existing Fields 5 5 5...

478

Missouri Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

32,505 32,940 32,876 10,889 11,502 13,845 1988-2011 Aquifers 32,505 32,940 32,876 10,889 11,502 13,845 1999-2011 Total Working Gas Capacity 11,276 3,040 3,656 6,000 2008-2011...

479

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

4,000 64,000 64,000 64,000 64,000 64,000 2002-2013 Total Working Gas Capacity 18,300 18,300 18,300 18,300 18,300 18,300 2012-2013 Total Number of Existing Fields 1 1 1 1 1 1...

480

Missouri Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

13,845 13,845 13,845 13,845 13,845 13,845 2002-2013 Total Working Gas Capacity 6,000 6,000 6,000 6,000 6,000 6...

Note: This page contains sample records for the topic "module capacity type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

110,749 110,749 110,749 110,749 110,749 110,749 2002-2013 Total Working Gas Capacity 33,024 33,024 33,024 33,024 33,024 33,024 2012-2013 Total Number of Existing Fields 22 22 22 22...

482

Minnesota Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

7,000 7,000 7,000 7,000 7,000 7,000 2002-2013 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2,000 2...

483

West Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

524,332 524,337 524,337 524,337 524,337 524,337 2002-2013 Total Working Gas Capacity 256,454 257,322 257,319 257,315 257,311 258,072 2012-2013 Total Number of Existing Fields 30 30...

484

Illinois Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

999,931 999,931 999,931 999,931 999,931 1,000,281 2002-2013 Total Working Gas Capacity 302,962 302,962 302,962 302,962 302,962 303,312 2012-2013 Total Number of Existing Fields 28...

485

Oklahoma Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

370,838 370,838 370,838 370,838 370,838 370,838 2002-2013 Total Working Gas Capacity 180,358 180,358 180,358 180,358 180,358 180,358 2012-2013 Total Number of Existing Fields 13 13...

486

New York Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

245,579 245,579 245,779 245,779 245,779 245,779 2002-2013 Total Working Gas Capacity 129,026 129,026 129,221 129,221 129,221 129,551 2012-2013 Total Number of Existing Fields 26 26...

487

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

74,940 674,940 708,440 708,303 715,203 714,443 2002-2013 Total Working Gas Capacity 399,572 399,572 424,021 423,472 428,072 428,482 2012-2013 Total Number of Existing Fields 17 17...

488

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

124,937 124,937 124,937 157,985 157,985 157,985 2002-2013 Total Working Gas Capacity 48,705 48,705 48,705 73,705 73,705 73,705 2012-2013 Total Number of Existing Fields 9 9 9 9 9 9...

489

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

21,723 221,723 221,723 221,723 221,723 221,723 2002-2013 Total Working Gas Capacity 107,600 107,600 107,600 107,600 107,600 107,600 2012-2013 Total Number of Existing Fields 23 23...

490

Midwest (PADD 2) Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

Gross Input to Atmospheric Crude Oil Distillation Units: 3,318: 3,217: 3,151: 3,087: 3,336: 3,572: 1985-2013: Operable Capacity (Calendar Day) 3,769: 3,769: 3,769 ...

491

CSEM WP 124 Capacity Markets for Electricity  

E-Print Network (OSTI)

CSEM WP 124 Capacity Markets for Electricity Anna Creti, LEEERNA, University of Toulouse for Electricity Anna Creti LEEERNA, University of Toulouse Natalia Fabra Universidad Carlos III de Madrid February 2004 Abstract The creation of electricity markets has raised the fundamental question as to whether

California at Berkeley. University of

492

Computing with competencies: Modelling organizational capacities  

Science Conference Proceedings (OSTI)

The notion of competency provides an observable account of concrete human capacities under specific work conditions. The fact that competencies are subject to concrete kinds of measurement entails that they are subject to some extent to comparison and ... Keywords: Competencies, Competency gap analysis, Learning technology, Ontologies, Skills

Elena GarcíA-Barriocanal; Miguel-Angel Sicilia; Salvador SáNchez-Alonso

2012-11-01T23:59:59.000Z

493

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2012-11-15T23:59:59.000Z

494

Coal Market Module  

Reports and Publications (EIA)

Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2013 (AEO2013). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

Michael Mellish

2013-07-17T23:59:59.000Z

495

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2013-10-10T23:59:59.000Z

496

Assumptions to the Annual Energy Outlook 2002 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for

497

Assumptions to the Annual Energy Outlook 2001 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for

498

Heavy Rainfall Induced by Tropical Cyclones across Northern Taiwan and Associated Intraseasonal Oscillation Modulation  

Science Conference Proceedings (OSTI)

Tropical cyclones (TCs) moving northwestward/westward across northern Taiwan are defined to have a type-2 track. This study aims to analyze heavy rainfall associated with type-2 TCs in Taiwan, focusing on the modulation processes of the ...

Jau-Ming Chen; Pei-Hua Tan; Ching-Feng Shih

499

Tematea: Issue Based Modules for Coherent Implementation of Biodiversity  

Open Energy Info (EERE)

Tematea: Issue Based Modules for Coherent Implementation of Biodiversity Tematea: Issue Based Modules for Coherent Implementation of Biodiversity Conventions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Tematea: Issue Based Modules for Coherent Implementation of Biodiversity Conventions Agency/Company /Organization: United Nations Environment Programme, International Union for Conservation of Nature Sector: Land Topics: Implementation, Co-benefits assessment, - Environmental and Biodiversity Resource Type: Guide/manual, Training materials, Lessons learned/best practices Website: www.tematea.org Tematea: Issue Based Modules for Coherent Implementation of Biodiversity Conventions Screenshot References: Tematea[1] Summary "The TEMATEA Project on Issue-Based Modules supports a better and more coherent national implementation of biodiversity-related conventions

500

Wind Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Technology Module Wind Energy Technology Module Jump to: navigation, search Tool Summary Name: Wind Energy Technology Module Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy, Wind Topics: Background analysis, Technology characterizations Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, Country: Russia, China Eastern Europe, Eastern Asia Coordinates: 54.5283298°, 112.9648819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.5283298,"lon":112.9648819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}