Powered by Deep Web Technologies
Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Department Announces Small Modular Reactor Technology Partnerships  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Modular Reactor Technology Small Modular Reactor Technology Partnerships at Savannah River Site Energy Department Announces Small Modular Reactor Technology Partnerships at Savannah River Site March 2, 2012 - 10:27am Addthis WASHINGTON, D.C. -- The U.S. Energy Department and its Savannah River Site (SRS) announced today three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at SRS facilities, near Aiken, South Carolina. As part of the Energy Department's commitment to advancing the next generation of nuclear reactor technologies and breaking down the technical and economic barriers to deployment, these Memorandums of Agreement (MOA) will help leverage Savannah River's land assets, energy facilities and nuclear expertise to

2

Partnerships Help Advance Small Modular Reactor Technology | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology March 5, 2012 - 12:00pm Addthis WASHINGTON, D.C. - DOE recently announced three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at Savannah River Site (SRS) facilities near Aiken, S.C. Read the full story on the Memorandums of Agreement to help leverage SRS land assets, energy facilities and nuclear expertise to support potential private sector development, testing and licensing of prototype SMR technologies. Addthis Related Articles Energy Department Announces Small Modular Reactor Technology Partnerships at Savannah River Site The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. | Photo by the Energy Department.

3

SRS Small Modular Reactors  

SciTech Connect

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2012-04-27T23:59:59.000Z

4

SRS Small Modular Reactors  

ScienceCinema (OSTI)

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2014-05-21T23:59:59.000Z

5

Small Modular Nuclear Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Technologies » Small Modular Reactor Technologies » Small Modular Nuclear Reactors Small Modular Nuclear Reactors Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. The development of clean, affordable nuclear power options is a key element of the Department of Energy's Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. Begun

6

Advancing Small Modular Reactors: How We're Supporting Next-Gen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology...

7

Small Modular Reactors (468th Brookhaven Lecture)  

SciTech Connect

With good reason, much more media attention has focused on nuclear power plants than solar farms, wind farms, or hydroelectric plants during the past month and a half. But as nations around the world demand more energy to power everything from cell phone batteries to drinking water pumps to foundries, nuclear plants are the only non-greenhouse-gas producing option that can be built to operate almost anywhere, and can continue to generate power during droughts, after the sun sets, and when winds die down. To supply this demand for power, designers around the world are competing to develop more affordable nuclear reactors of the future: small modular reactors. Brookhaven Lab is working with DOE to ensure that these reactors are designed to be safe for workers, members of surrounding communities, and the environment and to ensure that the radioactive materials and technology will only be used for peaceful purposes, not weapons. In his talk, Bari will discuss the advantages and challenges of small modular reactors and what drives both international and domestic interest in them. He will also explain how Brookhaven Lab and DOE are working to address the challenges and provide a framework for small modular reactors to be commercialized.

Bari, Robert

2011-04-20T23:59:59.000Z

8

Small Modular Reactors Presentation to Secretary of Energy Advisory Board -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Modular Reactors Presentation to Secretary of Energy Advisory Small Modular Reactors Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly Small Modular Reactors Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly DOE Small Modular Reactor Program (SMR) Research, Development & Deployment (RD&D) to enable the deployment of a fleet of SMRs in the United States SMR Program is a new program for FY 2011 Structured to address the need to enable the deployment of mature, near-term SMR designs based on known LWR technology Conduct needed R&D activities to advance the understanding and demonstration of innovative reactor technologies and concepts John_Kelly-SEAB_SMRBriefing_July20_2011_final.pdf More Documents & Publications Meeting Materials: June 12, 2012

9

Generic small modular reactor plant design.  

SciTech Connect

This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

2012-12-01T23:59:59.000Z

10

Ordered bed modular reactor design proposal  

SciTech Connect

The Ordered Bed Modular Reactor (OBMR) is a design as an advanced modular HTGR in which the annular reactor core is filled with an ordered bed of fuel spheres. This arrangement allows fuel elements to be poured into the core cavity which is shaped so that an ordered bed is formed and to be discharged from the core through the opening holes in the reactor top. These operations can be performed in a shutdown shorter time. The OBMR has the most of advantages from both the pebble bed reactor and block type reactor. Its core has great structural flexibility and stability, which allow increasing reactor output power and outlet gas temperature as well as decreasing core pressure drop. This paper introduces ordered packing bed characteristics, unloading and loading technique of the fuel spheres and predicted design features of the OBMR. (authors)

Tian, J. [Inst. of Nuclear Energy Technology, Tsinghua Univ., Beijing 100084 (China)

2006-07-01T23:59:59.000Z

11

Proliferation resistance of small modular reactors fuels  

SciTech Connect

In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

Polidoro, F.; Parozzi, F. [RSE - Ricerca sul Sistema Energetico,Via Rubattino 54, 20134, Milano (Italy); Fassnacht, F.; Kuett, M.; Englert, M. [IANUS, Darmstadt University of Technology, Alexanderstr. 35, D-64283 Darmstadt (Germany)

2013-07-01T23:59:59.000Z

12

Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Small Modular Reactors: How We're Supporting Next-Gen Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology December 12, 2013 - 4:00pm Addthis The basics of small modular reactor technology explained. | Infographic by Sarah Gerrity, Energy Department. The basics of small modular reactor technology explained. | Infographic by Sarah Gerrity, Energy Department. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy Nuclear energy continues to be an important part of America's diverse energy portfolio, and the Energy Department is committed to supporting a domestic nuclear industry.

13

Advanced Reactor Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Office of Nuclear Energy (NE) will pursue these advancements through RD&D activities at the Department of Energy (DOE) national laboratories and U.S. universities, as well as through collaboration with industry and international partners. These activities will focus on advancing scientific

14

Computational Analysis of Fluid Flow in Pebble Bed Modular Reactor  

E-Print Network (OSTI)

High Temperature Gas-cooled Reactor (HTGR) is a Generation IV reactor under consideration by Department of Energy and in the nuclear industry. There are two categories of HTGRs, namely, Pebble Bed Modular Reactor (PBMR) and Prismatic reactor. Pebble...

Gandhir, Akshay

2012-10-19T23:59:59.000Z

15

Modular Pebble Bed Reactor High Temperature Gas Reactor  

E-Print Network (OSTI)

Modular Pebble Bed Reactor High Temperature Gas Reactor Andrew C Kadak Massachusetts Institute For 1150 MW Combined Heat and Power Station Oil Refinery Hydrogen Production Desalinization Plant VHTR/Graphite Discrimination system Damaged Sphere ContainerGraphiteReturn FuelReturn Fresh Fuel Container Spent Fuel Tank #12

16

Economic Aspects of Small Modular Reactors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Aspects of Small Modular Reactors March 1, 2012 Introduction The potential for SMR deployment will be largely determined by the economic value that these power plants would provide to interested power producers who would evaluate their prospects in relation to other options for generating electricity. To help better understand this proposition, DOE enlisted the Energy Policy Institute at Chicago in 2010 to conduct an economic analysis of SMRs based upon what is known today. Their findings were summarized in a paper by Robert Rosner and Stephen Goldberg, released in December, 2011, titled "Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S." This brief paper will highlight some of the key finding from the study

17

Small Modular Reactors Presentation to Secretary of Energy Advisory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly Small Modular Reactors Presentation to Secretary of Energy Advisory Board - Deputy...

18

MODULAR PEBBLE BED REACTOR PROJECT UNIVERSITY RESEARCH CONSORTIUM  

E-Print Network (OSTI)

Annual Report Page ii MODULAR PEBBLE BED REACTOR ABSTRACT This project is developing a fundamental. Publication of an archival journal article covering this work is being prepared. · Detailed gas reactor Abstract

19

Advanced Modular Inverter Technology Development  

SciTech Connect

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

20

Nuclear Reactor Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Technologies Reactor Technologies Nuclear Reactor Technologies TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Small Modular Reactor Technologies Small modular reactors can also be made in factories and transported to sites where they would be ready to "plug and play" upon arrival, reducing both capital costs and construction times. The smaller size also makes these reactors ideal for small electric grids and for locations that

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Human Reliability Analysis for Small Modular Reactors  

SciTech Connect

Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

Ronald L. Boring; David I. Gertman

2012-06-01T23:59:59.000Z

22

First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Step to Spur U.S. Manufacturing of Small Modular Nuclear First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors January 25, 2012 - 5:06pm Addthis Brenda DeGraffenreid The Energy Department recently announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration's commitment to advancing U.S. manufacturing leadership in low-carbon, next generation energy technologies and restarting the nation's nuclear industry. The release of a draft Funding Opportunity Announcement (FOA) last week presents supply-chain procurement opportunities for our nation's small businesses down the line, as industry provides input in advance of a full FOA on engineering, design certification, and licensing through a

23

Economic Aspects of Small Modular Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Aspects of Small Modular Reactors Economic Aspects of Small Modular Reactors Economic Aspects of Small Modular Reactors The potential for SMR deployment will be largely determined by the economic value that these power plants would provide to interested power producers who would evaluate their prospects in relation to other options for generating electricity. To help better understand this proposition, DOE enlisted the Energy Policy Institute at Chicago in 2010 to conduct an economic analysis of SMRs based upon what is known today. Their findings were summarized in a paper by Robert Rosner and Stephen Goldberg, released in December, 2011, titled "Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S." This brief paper will highlight some of the key finding from the study1

24

Cost-Shared Development of Innovative Small Modular Reactor Designs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost-Shared Development of Innovative Small Modular Reactor Designs Cost-Shared Development of Innovative Small Modular Reactor Designs Cost-Shared Development of Innovative Small Modular Reactor Designs The Small Modular Reactor (SMR) Licensing Technical Support (LTS) program, sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), through this Funding Opportunity Announcement (FOA) seeks to facilitate the development of innovative SMR designs that have the potential to address the nation's economic, environmental and energy security goals. Specifically, the Department is soliciting applications for SMR designs that offer unique and innovative solutions for achieving the objectives of enhanced safety, operations, and performance relative to currently certified designs. This FOA focuses on design development and

25

Economic Aspects of Small Modular Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Aspects of Small Modular Reactors Economic Aspects of Small Modular Reactors Economic Aspects of Small Modular Reactors The potential for SMR deployment will be largely determined by the economic value that these power plants would provide to interested power producers who would evaluate their prospects in relation to other options for generating electricity. To help better understand this proposition, DOE enlisted the Energy Policy Institute at Chicago in 2010 to conduct an economic analysis of SMRs based upon what is known today. Their findings were summarized in a paper by Robert Rosner and Stephen Goldberg, released in December, 2011, titled "Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S." This brief paper will highlight some of the key finding from the study1

26

Cost-Shared Development of Innovative Small Modular Reactor Designs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost-Shared Development of Innovative Small Modular Reactor Designs Cost-Shared Development of Innovative Small Modular Reactor Designs Cost-Shared Development of Innovative Small Modular Reactor Designs The Small Modular Reactor (SMR) Licensing Technical Support (LTS) program, sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), through this Funding Opportunity Announcement (FOA) seeks to facilitate the development of innovative SMR designs that have the potential to address the nation's economic, environmental and energy security goals. Specifically, the Department is soliciting applications for SMR designs that offer unique and innovative solutions for achieving the objectives of enhanced safety, operations, and performance relative to currently certified designs. This FOA focuses on design development and

27

ANALYSIS OF SEPCTRUM CHOICES FOR SMALL MODULAR REACTORS-PERFORMANCE AND DEVELOPMENT  

E-Print Network (OSTI)

. The research mainly focused on producing a small modular reactor (Pebble Bed Modular Reactor) design to analyze the fuel depletion and plutonium and minor actinide accumulation with varying power densities. The reactors running at low power densities were found...

Kafle, Nischal

2011-04-26T23:59:59.000Z

28

Baseline Concept Description of a Small Modular High Temperature Reactor  

SciTech Connect

The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both small or medium-sized and modular by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOEs ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

Hans Gougar

2014-05-01T23:59:59.000Z

29

Human Reliability Considerations for Small Modular Reactors  

SciTech Connect

Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations. The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to illustrate how the issues can support SMR probabilistic risk analyses and their review by identifying potential human failure events for a subset of the issues. As part of addressing the human contribution to plant risk, human reliability analysis practitioners identify and quantify the human failure events that can negatively impact normal or emergency plant operations. The results illustrated here can be generalized to identify additional human failure events for the issues discussed and can be applied to those issues not discussed in this report.

OHara J. M.; Higgins, H.; DAgostino, A.; Erasmia, L.

2012-01-27T23:59:59.000Z

30

Energy Department Announces New Investment in U.S. Small Modular Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Department Announces New Investment in U.S. Small Modular Reactor Design and Commercialization Department to Issue Follow-on Solicitation on SMR Technology Innovation WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced an award to support a new project to design, license and help commercialize small modular reactors (SMR) in the United States. This award follows a funding opportunity announcement in March 2012. The project supported by the award will be led by Babcock & Wilcox (B&W) in partnership with the Tennessee Valley Authority and Bechtel International. In addition, the Department announced plans to issue a follow-on solicitation open to other companies and manufacturers, focused on furthering small modular reactor efficiency, operations and design.

31

SASSI Methodology-Based Sensitivity Studies for Deeply Embedded Structures, Such As Small Modular Reactors (SMRs)  

Energy.gov (U.S. Department of Energy (DOE))

SASSI Methodology-Based Sensitivity Studies for Deeply Embedded Structures, Such As Small Modular Reactors (SMRs) Dr. Dan M. Ghiocel Ghiocel Predictive Technologies Inc. http://www.ghiocel-tech.com 2014 DOE Natural Phenomena Hazards Meeting Germantown, MD, October 21-22, 2014

32

An Overview of the Safety Case for Small Modular Reactors  

SciTech Connect

Several small modular reactor (SMR) designs emerged in the late 1970s and early 1980s in response to lessons learned from the many technical and operational challenges of the large Generation II light-water reactors. After the accident at the Three Mile Island plant in 1979, an ensuing reactor redesign effort spawned the term inherently safe designs, which later evolved into passively safe terminology. Several new designs were engineered to be deliberately small in order to fully exploit the benefits of passive safety. Today, new SMR designs are emerging with a similar philosophy of offering highly robust and resilient designs with increased safety margins. Additionally, because these contemporary designs are being developed subsequent to the September 11, 2001, terrorist attack, they incorporate a number of intrinsic design features to further strengthen their safety and security. Several SMR designs are being developed in the United States spanning the full spectrum of reactor technologies, including water-, gas-, and liquid-metal-cooled ones. Despite a number of design differences, most of these designs share a common set of design principles to enhance plant safety and robustness, such as eliminating plant design vulnerabilities where possible, reducing accident probabilities, and mitigating accident consequences. An important consequence of the added resilience provided by these design approaches is that the individual reactor units and the entire plant should be able to survive a broader range of extreme conditions. This will enable them to not only ensure the safety of the general public but also help protect the investment of the owner and continued availability of the power-generating asset. Examples of typical SMR design features and their implications for improved plant safety are given for specific SMR designs being developed in the United States.

Ingersoll, Daniel T [ORNL] [ORNL

2011-01-01T23:59:59.000Z

33

Development of a system model for advanced small modular reactors.  

SciTech Connect

This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

2014-01-01T23:59:59.000Z

34

Modular Pebble-Bed Reactor Project: Laboratory-Directed Research and Development Program FY 2002 Annual Report  

SciTech Connect

This report documents the results of our research in FY-02 on pebble-bed reactor technology under our Laboratory Directed Research and Development (LDRD) project entitled the Modular Pebble-Bed Reactor. The MPBR is an advanced reactor concept that can meet the energy and environmental needs of future generations under DOEs Generation IV initiative. Our work is focused in three areas: neutronics, core design and fuel cycle; reactor safety and thermal hydraulics; and fuel performance.

Petti, David Andrew; Dolan, Thomas James; Miller, Gregory Kent; Moore, Richard Leroy; Terry, William Knox; Ougouag, Abderrafi Mohammed-El-Ami; Oh, Chang H; Gougar, Hans D

2002-11-01T23:59:59.000Z

35

Hybrid energy systems (HESs) using small modular reactors (SMRs)  

SciTech Connect

Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations while still accommodating the desire to support renewable production sources.

S. Bragg-Sitton

2014-10-01T23:59:59.000Z

36

Light Water Reactors Technology Development - Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

37

Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report  

SciTech Connect

This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).

Not Available

1986-10-01T23:59:59.000Z

38

Modularity of the MIT Pebble Bed Reactor for use by the commercial power industry  

E-Print Network (OSTI)

The Modular Pebble Bed Reactor is a small high temperature helium cooled reactor that is being considered for both electric power and hydrogen production. Pebble bed reactors are being developed in South Africa, China and ...

Hanlon-Hyssong, Jaime E

2008-01-01T23:59:59.000Z

39

Small modular reactors and the future of nuclear power in the United States  

Science Journals Connector (OSTI)

Abstract Small modular reactors are the latest new technology that nuclear advocates tout as the game changer that will overcome previous economic failures of nuclear power. The debate over \\{SMRs\\} has been particularly intense because of the rapid failure of large nuclear renaissance reactors in market economies, the urgent need to address climate change, and the dramatic success of alternative, decentralized resources in lowering costs and increasing deployment. This paper assesses the prospects for SMR technology from three perspectives: the implications of the history of cost escalation in nuclear reactor construction for learning, economies of scale and other process that SMR advocates claim will lower cost; the challenges SMR technology faces in terms of high costs resulting from lost economies of scale, long lead time needed to develop a new design, the size of the task to create assembly lines for modular reactors and intense concern about safety; and the cost and other characteristics e.g. scalability, speed to market, flexibility, etc. of available alternatives compared SMR technology. The paper concludes that the decision of the major vendors (Westinghouse and B&W) to dramatically reduce SMR development efforts reflects the severe disadvantages that SMR technology faces in the next several decades.

Mark Cooper

2014-01-01T23:59:59.000Z

40

The gas turbine-modular helium reactor (GT-MHR), high efficiency, cost competitive, nuclear energy for the next century  

SciTech Connect

The Gas Turbine-Modular Helium Reactor (GT-MHR) is the result of coupling the evolution of a small passively safe reactor with key technology developments in the US during the last decade: large industrial gas turbines, large active magnetic bearings, and compact, highly effective plate-fin heat exchangers. The GT-MHR is the only reactor concept which provides a step increase in economic performance combined with increased safety. This is accomplished through its unique utilization of the Brayton cycle to produce electricity directly with the high temperature helium primary coolant from the reactor directly driving the gas turbine electrical generator. This cannot be accomplished with another reactor concept. It retains the high levels of passive safety and the standardized modular design of the steam cycle MHTGR, while showing promise for a significant reduction in power generating costs by increasing plant net efficiency to a remarkable 47%.

Zgliczynski, J.B.; Silady, F.A.; Neylan, A.J.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Modular Hybrid Plasma Reactor for Low Cost Bulk Production of Nanomaterials  

SciTech Connect

INL developed a bench scale modular hybrid plasma system for gas phase nanomaterials synthesis. The system was being optimized for WO3 nanoparticles production and scale model projection to a 300 kW pilot system. During the course of technology development many modifications had been done to the system to resolve technical issues that had surfaced and also to improve the performance. All project tasks had been completed except 2 optimization subtasks. These 2 subtasks, a 4-hour and an 8-hour continuous powder production runs at 1 lb/hr powder feeding rate, were unable to complete due to technical issues developed with the reactor system. The 4-hour run had been attempted twice and both times the run was terminated prematurely. The modular electrode for the plasma system was significantly redesigned to address the technical issues. Fabrication of the redesigned modular electrodes and additional components had been completed at the end of the project life. However, not enough resource was available to perform tests to evaluate the performance of the new modifications. More development work would be needed to resolve these problems prior to scaling. The technology demonstrated a surprising capability of synthesizing a single phase of meta-stable delta-Al2O3 from pure alpha-phase large Al2O3 powder. The formation of delta-Al2O3 was surprising because this phase is meta-stable and only formed between 973-1073 K, and delta-Al2O3 is very difficult to synthesize as a single phase. Besides the specific temperature window to form this phase, this meta-stable phase may have been stabilized by nanoparticle size formed in a high temperature plasma process. This technology may possess the capability to produce unusual meta-stable nanophase materials that would be otherwise difficult to produce by conventional methods. A 300 kW INL modular hybrid plasma pilot scale model reactor had been projected using the experimental data from PPG Industries 300 kW hot wall plasma reactor. The projected size of the INL 300 kW pilot model reactor would be about 15% that of the PPG 300 kW hot wall plasma reactor. Including the safety net factor the projected INL pilot reactor size would be 25-30% of the PPG 300 kW hot wall plasma pilot reactor. Due to the modularity of the INL plasma reactor and the energy cascading effect from the upstream plasma to the downstream plasma the energy utilization is more efficient in material processing. It is envisioning that the material through put range for the INL pilot reactor would be comparable to the PPG 300 kW pilot reactor but the energy consumption would be lower. The INL hybrid plasma technology is rather close to being optimized for scaling to a pilot system. More near term development work is still needed to complete the process optimization before pilot scaling.

Peter C. Kong

2011-12-01T23:59:59.000Z

42

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the U.S.

McDonald, C.F.; Nichols, M.K.

1987-01-01T23:59:59.000Z

43

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the US.

McDonald, C.F.; Nichols, M.K.

1986-12-01T23:59:59.000Z

44

Modular Inspection System for a Complete IN-Service Examination of Nuclear Reactor Pressure Vessel, Including Beltline Region  

SciTech Connect

Final Report for a DOE Phase II Contract Describing the design and fabrication of a reactor inspection modular rover prototype for reactor vessel inspection.

David H. Bothell

2000-04-30T23:59:59.000Z

45

Small Modular Reactors and U.S. Clean Energy Sources for Electricity |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Modular Reactors and U.S. Clean Energy Sources for Small Modular Reactors and U.S. Clean Energy Sources for Electricity Small Modular Reactors and U.S. Clean Energy Sources for Electricity For the clean energy goal to be met, then, the non-carbon emitting sources must provide some 2900 TWhr. Hydropower is generally assumed to have reached a maximum of 250 TWhr, so if we assume renewables reach 650 TWhr, (double the EIA estimate) that leaves 2000 TWhr for nuclear power. If the Administration's loan guarantee program for current large reactors is successful, then one might expect the large reactors to reach 1000 TWhr by 2035. This leaves some 1000 TWhr for SMR - that is a lot of electricity. SMR and Clean Energy.pdf More Documents & Publications Slide 1 Small Modular Reactor Report (SEAB) A Strategic Framework for SMR Deployment

46

Small Modular Fast Reactor Design Description Joint Effort  

NLE Websites -- All DOE Office Websites (Extended Search)

July 1, 2005 ANL-SMFR-1 July 1, 2005 ANL-SMFR-1 Small Modular Fast Reactor Design Description Joint Effort by Argonne National Laboratory (ANL) Commissariat a l'Energie Atomique (CEA) and Japan Nuclear Cycle Development Institute (JNC) Project Leaders Y. I. Chang and C. Grandy, ANL P. Lo Pinto, CEA M. Konomura, JNC Technical Contributors ANL: J. Cahalan, F. Dunn, M. Farmer, S. Kamal, L. Krajtl, A. Moisseytsev, Y. Momozaki, J. Sienicki, Y. Park, Y. Tang, C. Reed, C. Tzanos, S. Wiedmeyer, and W. Yang CEA: P. Allegre, J. Astegiano, F. Baque, L. Cachon, M. S. Chenaud, J-L Courouau, Ph. Dufour, J. C. Klein, C. Latge, C. Thevenot, and F. Varaine JNC: M. Ando, Y. Chikazawa, M. Nagamura, Y. Okano, Y. Sakamoto,

47

Proliferation resistant fuel for pebble bed modular reactors  

SciTech Connect

We show that it is possible to denature the Plutonium produced in Pebble Bed Modular Reactors (PBMR) by doping the nuclear fuel with either 3050 ppm of {sup 237}Np or 2100 ppm of Am vector. A correct choice of these isotopes concentration yields denatured Plutonium with isotopic ratio {sup 238}Pu/Pu {>=} 6%, for the entire fuel burnup cycle. The penalty for introducing these isotopes into the nuclear fuel is a subsequent shortening of the fuel burnup cycle, with respect to a non-doped reference fuel, by 41.2 Full Power Days (FPDs) and 19.9 FPDs, respectively, which correspond to 4070 MWd/ton and 1965 MWd/ton reduction in fuel discharge burnup. (authors)

Ronen, Y.; Aboudy, M.; Regev, D.; Gilad, E. [Dept. of Nuclear Engineering, Ben-Gurion Univ. of the Negev, Beer-Sheva 84105 (Israel)

2012-07-01T23:59:59.000Z

48

A Framework to Expand and Advance Probabilistic Risk Assessment to Support Small Modular Reactors  

SciTech Connect

During the early development of nuclear power plants, researchers and engineers focused on many aspects of plant operation, two of which were getting the newly-found technology to work and minimizing the likelihood of perceived accidents through redundancy and diversity. As time, and our experience, has progressed, the realization of plant operational risk/reliability has entered into the design, operation, and regulation of these plants. But, to date, we have only dabbled at the surface of risk and reliability technologies. For the next generation of small modular reactors (SMRs), it is imperative that these technologies evolve into an accepted, encompassing, validated, and integral part of the plant in order to reduce costs and to demonstrate safe operation. Further, while it is presumed that safety margins are substantial for proposed SMR designs, the depiction and demonstration of these margins needs to be better understood in order to optimize the licensing process.

Curtis Smith; David Schwieder; Robert Nourgaliev; Cherie Phelan; Diego Mandelli; Kellie Kvarfordt; Robert Youngblood

2012-09-01T23:59:59.000Z

49

Energy Department Announces Small Modular Reactor Technology...  

Energy Savers (EERE)

of Agreement (MOA) will help leverage Savannah River's land assets, energy facilities and nuclear expertise to support potential private sector development, testing and licensing...

50

Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Demonstration  

SciTech Connect

A key area of the Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) strategy is the development of methodologies and tools that will be used to predict the safety, security, safeguards, performance, and deployment viability of SMRs. The goal of the SMR PRA activity will be to develop quantitative methods and tools and the associated analysis framework for assessing a variety of risks. Development and implementation of SMR-focused safety assessment methods may require new analytic methods or adaptation of traditional methods to the advanced design and operational features of SMRs. We will need to move beyond the current limitations such as static, logic-based models in order to provide more integrated, scenario-based models based upon predictive modeling which are tied to causal factors. The development of SMR-specific safety models for margin determination will provide a safety case that describes potential accidents, design options (including postulated controls), and supports licensing activities by providing a technical basis for the safety envelope. This report documents the progress that was made to implement the PRA framework, specifically by way of demonstration of an advanced 3D approach to representing, quantifying and understanding flooding risks to a nuclear power plant.

Curtis Smith; Steven Prescott; Tony Koonce

2014-04-01T23:59:59.000Z

51

Energy Department Announces New Investment in U.S. Small Modular Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment in U.S. Small Modular Investment in U.S. Small Modular Reactor Design and Commercialization Energy Department Announces New Investment in U.S. Small Modular Reactor Design and Commercialization November 20, 2012 - 2:48pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced an award to support a new project to design, license and help commercialize small modular reactors (SMR) in the United States. This award follows a funding opportunity announcement in March 2012. The project supported by the award will be led by Babcock & Wilcox (B&W) in partnership with the Tennessee Valley Authority and Bechtel. In addition, the Department announced plans to issue a follow-on solicitation

52

Nuclear Reactors and Technology; (USA)  

SciTech Connect

Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

Cason, D.L.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

53

Secretary Chu Op-Ed on Small Modular Reactors in the Wall Street Journal |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Op-Ed on Small Modular Reactors in the Wall Street Op-Ed on Small Modular Reactors in the Wall Street Journal Secretary Chu Op-Ed on Small Modular Reactors in the Wall Street Journal March 23, 2010 - 12:00am Addthis Washington, D.C. - Today, the Wall Street Journal published an op-ed by U.S. Secretary of Energy Steven Chu on small modular reactors. The op-ed can be viewed on the Wall Street Journal. The text of the op-ed is below: America's New Nuclear Option Small modular reactors will expand the ways we use atomic power. By Steven Chu Wall Street Journal, March 23, 2010 America is on the cusp of reviving its nuclear power industry. Last month President Obama pledged more than $8 billion in conditional loan guarantees for what will be the first U.S. nuclear power plant to break ground in nearly three decades. And with the new authority granted by the president's

54

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal March 23, 2010 - 12:24pm Addthis Washington, D.C. - Today, the Wall Street Journal published an op-ed by U.S. Secretary of Energy Steven Chu on small modular reactors. The op-ed can be found here. The text of the op-ed is below: Small modular reactors will expand the ways we use atomic power. By Steven Chu, Secretary of Energy Wall Street Journal America is on the cusp of reviving its nuclear power industry. Last month President Obama pledged more than $8 billion in conditional loan guarantees for what will be the first U.S. nuclear power plant to break ground in nearly three decades. And with the new authority granted by the president's

55

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal March 23, 2010 - 12:24pm Addthis Washington, D.C. - Today, the Wall Street Journal published an op-ed by U.S. Secretary of Energy Steven Chu on small modular reactors. The op-ed can be found here. The text of the op-ed is below: Small modular reactors will expand the ways we use atomic power. By Steven Chu, Secretary of Energy Wall Street Journal America is on the cusp of reviving its nuclear power industry. Last month President Obama pledged more than $8 billion in conditional loan guarantees for what will be the first U.S. nuclear power plant to break ground in nearly three decades. And with the new authority granted by the president's

56

Modularity in design of the MIT Pebble Bed Reactor  

E-Print Network (OSTI)

The future of new nuclear power plant construction will depend in large part on the ability of designers to reduce capital, operations, and maintenance costs. One of the methods proposed, is to enhance the modularity of ...

Berte, Marc Vincent, 1977-

2004-01-01T23:59:59.000Z

57

Advanced Reactor Technology Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Reactor Technologies » Advanced Reactor Nuclear Reactor Technologies » Advanced Reactor Technologies » Advanced Reactor Technology Documents Advanced Reactor Technology Documents January 30, 2013 Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. A goal of the process is to facilitate greater engagement between DOE and industry. The process involved establishing evaluation criteria, conducting a pilot review, soliciting concept inputs from industry entities, reviewing the concepts by TRP members and compiling the

58

Small Modular Reactor Report (SEAB) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reactors Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly A Strategic Framework for SMR Deployment Meeting Materials: December 9, 2010...

59

Retrieval and Repackaging of RH-TRU Waste - General Presentation Modular Hot Cell Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paul Murray Paul Murray Oak Ridge, TN July 29, 2009 Retrieval and Repackaging of RH-TRU Waste- GENERAL PRESENTATION MODULAR HOT CELL TECHNOLOGY AREVA FEDERAL SERVICES - OAK RIDGE, TN - GENERAL PRESENTATION OF MODULAR HOT CELL TECHNOLOGY - July 29, 2009 ADAPTING AREVA'S TECHNOLOGY AREVA Worldwide Nuclear Lifecycle Transmission & Distribution Renewable Energy AREVA US Nuclear Fuel Services Nuclear Engineering Services AREVA Federal Services, LLC. (AFS) Federal Services Major Projects * MOX-MFFF * Yucca Mountain Project * DUF6 * Plateau Remediation Contract * Washington River Closure Project * SRS Liquid Waste AREVA FEDERAL SERVICES - OAK RIDGE, TN - GENERAL PRESENTATION OF MODULAR HOT CELL TECHNOLOGY - July 29, 2009 ADAPTING AREVA'S TECHNOLOGY AFS Technology Provider

60

Small Modular Reactor: First of a Kind (FOAK) and Nth of a Kind (NOAK) Economic Analysis  

SciTech Connect

Small modular reactors (SMRs) refer to any reactor design in which the electricity generated is less than 300 MWe. Often medium sized reactors with power less than 700 MWe are also grouped into this category. Internationally, the development of a variety of designs for SMRs is booming with many designs approaching maturity and even in or nearing the licensing stage. It is for this reason that a generalized yet comprehensive economic model for first of a kind (FOAK) through nth of a kind (NOAK) SMRs based upon rated power, plant configuration, and the fiscal environment was developed. In the model, a particular projects feasibility is assessed with regards to market conditions and by commonly utilized capital budgeting techniques, such as the net present value (NPV), internal rate of return (IRR), Payback, and more importantly, the levelized cost of energy (LCOE) for comparison to other energy production technologies. Finally, a sensitivity analysis was performed to determine the effects of changing debt, equity, interest rate, and conditions on the LCOE. The economic model is primarily applied to the near future water cooled SMR designs in the United States. Other gas cooled and liquid metal cooled SMR designs have been briefly outlined in terms of how the economic model would change. FOAK and NOAK SMR costs were determined for a site containing seven 180 MWe water cooled SMRs and compared to a site containing one 1260 MWe reactor. With an equal share of debt and equity and a 10% cost of debt and equity, the LCOE was determined to be $79 $84/MWh and $80/MWh for the SMR and large reactor sites, respectively. With a cost of equity of 15%, the SMR LCOE increased substantially to $103 $109/MWh. Finally, an increase in the equity share to 70% at the 15% cost of equity resulted in an even higher LCOE, demonstrating the large variation in results due to financial and market factors. The NPV and IRR both decreased with increasing LCOE. Unless the price of electricity increases along with the LCOE, the projects may become unprofitable. This is the case at the LCOE of $103 $109/MW, in which the NPV became negative. The IRR increased with increasing electricity price. Three cases, electric only base, storagecompressed air energy storage or pumped hydro, and hydrogen production, were performed incorporating SMRs into a nuclear wind natural gas hybrid energy system for the New York West Central region. The operational costs for three cases were calculated as $27/MWh, $25/MWh, and $28/MWh, respectively. A 3% increase in profits was demonstrated for the storage case over the electric only base case.

Lauren M. Boldon; Piyush Sabharwall

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Final report on the use of the modular-logic-nomenclature approach for the N-reactor probabilistic risk assessment  

SciTech Connect

The N-Reactor probabilistic risk assessment adaption of the modular logic approach for fault tree modeling has led to the update of the master logic diagram (MLD) nomenclature to conform with a standard modular-logic-model-nomeclature format. This report describes the MLD nomenclature system and provides a listing of the updated MLD label codes, along with the original codes.

NONE

1986-06-10T23:59:59.000Z

62

Population Sensitivity Evaluation of Two Proposed Hampton Roads Area Sites for a Possible Small Modular Reactor  

SciTech Connect

The overall objective of this research project is to use the OR-SAGE tool to support the US Department of Energy (DOE) Office of Nuclear Energy (NE) in evaluating future electrical generation deployment options for small modular reactors (SMRs) in areas with significant energy demand from the federal sector. Deployment of SMRs in zones with high federal energy use can provide a means of meeting federal clean energy goals.

Belles, R. J. [ORNL; Omitaomu, O. A. [ORNL

2014-08-01T23:59:59.000Z

63

Modular high temperature gas-cooled reactor plant design duty cycle. Revision 3  

SciTech Connect

This document defines the Plant Design Duty Cycle (PCDC) for the Modular High Temperature Gas-cooled Reactor (MHTGR). The duty cycle is a set of events and their design number of occurrences over the life of the plant for which the MHTGR plant shall be designed to ensure that the plant meets all the top-level requirements. The duty cycle is representative of the types of events to be expected in multiple reactor module-turbine plant configurations of the MHTGR. A synopsis of each PDDC event is presented to provide an overview of the plant response and consequence. 8 refs., 1 fig., 4 tabs.

Chan, T.

1989-12-31T23:59:59.000Z

64

Nuclear Energy Enabling Technologies (NEET) Reactor Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enabling Technologies (NEET) Reactor Materials Enabling Technologies (NEET) Reactor Materials Award Recipient Estimated Award Amount* Award Location Supporting Organizations Project Description University of Nebraska $979,978 Lincoln, NE Massachusetts Institute of Technology (Cambridge, MA), Texas A&M (College Station, TX) Project will explore the development of advanced metal/ceramic composites. These improvements could lead to more efficient production of electricity in advanced reactors. Oak Ridge National Laboratory $849,000 Oak Ridge, TN University of Wisconsin-Madison (Madison, WI) Project will develop novel high-temperature high-strength steels with the help of computational modeling, which could lead to increased efficiency in advanced reactors. Pacific Northwest National Laboratory

65

The CANDU Reactor System: An Appropriate Technology  

Science Journals Connector (OSTI)

The CANDU Reactor System: An Appropriate Technology...Chalk River, Ontario, Canada K0J 1J0 CANDU power reactors are characterized by the combination...breeder. These and other features make the CANDU system an appropriate technology for countries...

J. A. L. Robertson

1978-02-10T23:59:59.000Z

66

High Temperature Gas-Cooled Reactor Program. Modular HTGR systems design and cost summary. [Methane reforming; steam cycle-cogeneration  

SciTech Connect

This report provides a summary description of the preconceptual design and energy product costs of the modular High Temperature Gas-Cooled Reactor (HTGR). The reactor system was studied for two applications: (1) reforming of methane to produce synthesis gas and (2) steam cycle/cogeneration to produce process steam and electricity.

Not Available

1983-09-01T23:59:59.000Z

67

Numerical Study on Crossflow Printed Circuit Heat Exchanger for Advanced Small Modular Reactors  

SciTech Connect

Various fluids such as water, gases (helium), molten salts (FLiNaK, FLiBe) and liquid metal (sodium) are used as a coolant of advanced small modular reactors (SMRs). The printed circuit heat exchanger (PCHE) has been adopted as the intermediate and/or secondary heat exchanger of SMR systems because this heat exchanger is compact and effective. The size and cost of PCHE can be changed by the coolant type of each SMR. In this study, the crossflow PCHE analysis code for advanced small modular reactor has been developed for the thermal design and cost estimation of the heat exchanger. The analytical solution of single pass, both unmixed fluids crossflow heat exchanger model was employed to calculate a two dimensional temperature profile of a crossflow PCHE. The analytical solution of crossflow heat exchanger was simply implemented by using built in function of the MATLAB program. The effect of fluid property uncertainty on the calculation results was evaluated. In addition, the effect of heat transfer correlations on the calculated temperature profile was analyzed by taking into account possible combinations of primary and secondary coolants in the SMR systems. Size and cost of heat exchanger were evaluated for the given temperature requirement of each SMR.

Su-Jong Yoon [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Piyush Sabharwall [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Eung-Soo Kim [Seoul National Univ., Seoul (Korea, Republic of)

2014-03-01T23:59:59.000Z

68

Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors  

SciTech Connect

The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

OHara J. M.; Higgins, J.; DAgostino, A.

2012-01-17T23:59:59.000Z

69

Development of the Mathematics of Learning Curve Models for Evaluating Small Modular Reactor Economics  

SciTech Connect

The cost of nuclear power is a straightforward yet complicated topic. It is straightforward in that the cost of nuclear power is a function of the cost to build the nuclear power plant, the cost to operate and maintain it, and the cost to provide fuel for it. It is complicated in that some of those costs are not necessarily known, introducing uncertainty into the analysis. For large light water reactor (LWR)-based nuclear power plants, the uncertainty is mainly contained within the cost of construction. The typical costs of operations and maintenance (O&M), as well as fuel, are well known based on the current fleet of LWRs. However, the last currently operating reactor to come online was Watts Bar 1 in May 1996; thus, the expected construction costs for gigawatt (GW)-class reactors in the United States are based on information nearly two decades old. Extrapolating construction, O&M, and fuel costs from GW-class LWRs to LWR-based small modular reactors (SMRs) introduces even more complication. The per-installed-kilowatt construction costs for SMRs are likely to be higher than those for the GW-class reactors based on the property of the economy of scale. Generally speaking, the economy of scale is the tendency for overall costs to increase slower than the overall production capacity. For power plants, this means that doubling the power production capacity would be expected to cost less than twice as much. Applying this property in the opposite direction, halving the power production capacity would be expected to cost more than half as much. This can potentially make the SMRs less competitive in the electricity market against the GW-class reactors, as well as against other power sources such as natural gas and subsidized renewables. One factor that can potentially aid the SMRs in achieving economic competitiveness is an economy of numbers, as opposed to the economy of scale, associated with learning curves. The basic concept of the learning curve is that the more a new process is repeated, the more efficient the process can be made. Assuming that efficiency directly relates to cost means that the more a new process is repeated successfully and efficiently, the less costly the process can be made. This factor ties directly into the factory fabrication and modularization aspect of the SMR paradigmmanufacturing serial, standardized, identical components for use in nuclear power plants can allow the SMR industry to use the learning curves to predict and optimize deployment costs.

Harrison, T. J. [ORNL

2014-02-01T23:59:59.000Z

70

Effects of Levels of Automation for Advanced Small Modular Reactors: Impacts on Performance, Workload, and Situation Awareness  

SciTech Connect

The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy (DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of capital costs as well as plant operations and maintenance costs (O&M), and factory production costs benefits.

Johanna Oxstrand; Katya Le Blanc

2014-07-01T23:59:59.000Z

71

Reactors: Modern-Day Alchemy - Argonne's Nuclear Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Legacy > Reactors: Modern-Day Alchemy About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

72

Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting  

SciTech Connect

During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modeling and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.

Curtis Smith

2013-09-01T23:59:59.000Z

73

Gas Reactor Technology R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy to Invest U.S. Department of Energy to Invest up to $7.3 Million for "Deep-Burn" Gas-Reactor Technology R&D Artist's rendering of Nuclear Plant An artist's rendering of the Next Generation Nuclear Plant concept. The U.S. Department of Energy today announced a Funding Opportunity Announcement (FOA) valued at $7.3 million for universities, commercial entities, National Laboratories with expertise in the concept of nuclear fuel "Deep-Burn" in which plutonium and higher transuranics recycled from spent nuclear fuel are destroyed. The funding opportunity seeks to establish the technological foundations that will support the role of the very-high-temperature, gas-cooled reactor (VHTR) in the nuclear fuel cycle -- which is one of the prototype reactors being researched/developed under

74

Safety aspects of the Modular High-Temperature Gas-Cooled Reactor (MHTGR)  

SciTech Connect

The Modular High-Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry and the utilities. The design utilizes the basic high-temperature gas-cooled reactor (HTGR) features of ceramic fuel, helium coolant, and a graphite moderator. The qualitative top-level safety requirement is that the plant's operation not disturb the normal day-to-day activities of the public. The MHTGR safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles has been evaluated. A broad range of challenges to core heat removal have been examined which include a loss of helium pressure and a simultaneous loss of forced cooling of the core. The challenges to control of heat generation have considered not only the failure to insert the reactivity control systems, but the withdrawal of control rods. Finally, challenges to control chemical attack of the ceramic coated fuel have been considered, including catastrophic failure of the steam generator allowing water ingress or of the pressure vessels allowing air ingress. The plant's response to these extreme challenges is not dependent on operator action and the events considered encompass conceivable operator errors. In the same vein, reliance on radionuclide retention within the full particle and on passive features to perform a few key functions to maintain the fuel within acceptable conditions also reduced susceptibility to external events, site-specific events, and to acts of sabotage and terrorism. 4 refs., 14 figs., 1 tab.

Silady, F.A.; Millunzi, A.C.

1989-08-01T23:59:59.000Z

75

Westinghouse Small Modular Reactor balance of plant and supporting systems design  

SciTech Connect

The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operation of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)

Memmott, M. J.; Stansbury, C.; Taylor, C. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

2012-07-01T23:59:59.000Z

76

Representative Source Terms and the Influence of Reactor Attributes on Functional Containment in Modular High-Temperature Gas-Cooled Reactors  

SciTech Connect

Modular high-temperature gas-cooled reactors (MHTGRs) offer a high degree of passive safety. The low power density of the reactor and the high heat capacity of the graphite core result in slow transients that do not challenge the integrity of the robust TRISO fuel. Another benefit of this fuel form and the surrounding graphite is their superior ability to retain fission products under all anticipated normal and off-normal conditions, which limits reactor accident source terms to very low values. In this paper, we develop estimates of the source term for a generic MHTGR to illustrate the performance of the radionuclide barriers that comprise the MHTGR functional containment. We also examine the influence of initial fuel quality, fuel performance/failure, reactor outlet temperature, and retention outside of the reactor core on the resultant source term to the environment.

D. A. Petti; Hans Gougar; Dick Hobbins; Pete Lowry

2013-11-01T23:59:59.000Z

77

U.S. Department Of Energy Advanced Small Modular Reactor R&D Program: Instrumentation, Controls, and Human-Machine Interface (ICHMI) Pathway  

SciTech Connect

Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of modern ICHMI technology. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, several DOE programs have substantial ICHMI RD&D elements within their respective research portfolios. This paper describes current ICHMI research in support of advanced small modular reactors. The objectives that can be achieved through execution of the defined RD&D are to provide optimal technical solutions to critical ICHMI issues, resolve technology gaps arising from the unique measurement and control characteristics of advanced reactor concepts, provide demonstration of needed technologies and methodologies in the nuclear power application domain, mature emerging technologies to facilitate commercialization, and establish necessary technical evidence and application experience to enable timely and predictable licensing. 1 Introduction Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of m

Holcomb, David Eugene [ORNL; Wood, Richard Thomas [ORNL

2013-01-01T23:59:59.000Z

78

Modular High-Temperature Gas-Cooled Reactor short term thermal response to flow and reactivity transients  

SciTech Connect

The analyses reported here have been conducted at the Oak Ridge National Laboratory (ORNL) for the US Nuclear Regulatory Commission's (NRC's) Division of Regulatory Applications of the Office of Nuclear Regulatory Research. The short-term thermal response of the Modular High-Temperature Gas-Cooled Reactor (MHTGR) is analyzed for a range of flow and reactivity transients. These include loss of forced circulation (LOFC) without scram, moisture ingress, spurious withdrawal of a control rod group, hypothetical large and rapid positive reactivity insertion, and a rapid core cooling event. The coupled heat transfer-neutron kinetics model is also described.

Cleveland, J.C.

1988-01-01T23:59:59.000Z

79

Vehicle Technologies Office Merit Review 2014: Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Applied Materials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modular process equipment...

80

INITIATORS AND TRIGGERING CONDITIONS FOR ADAPTIVE AUTOMATION IN ADVANCED SMALL MODULAR REACTORS  

SciTech Connect

It is anticipated that Advanced Small Modular Reactors (AdvSMRs) will employ high degrees of automation. High levels of automation can enhance system performance, but often at the cost of reduced human performance. Automation can lead to human out-of the loop issues, unbalanced workload, complacency, and other problems if it is not designed properly. Researchers have proposed adaptive automation (defined as dynamic or flexible allocation of functions) as a way to get the benefits of higher levels of automation without the human performance costs. Adaptive automation has the potential to balance operator workload and enhance operator situation awareness by allocating functions to the operators in a way that is sensitive to overall workload and capabilities at the time of operation. However, there still a number of questions regarding how to effectively design adaptive automation to achieve that potential. One of those questions is related to how to initiate (or trigger) a shift in automation in order to provide maximal sensitivity to operator needs without introducing undesirable consequences (such as unpredictable mode changes). Several triggering mechanisms for shifts in adaptive automation have been proposed including: operator initiated, critical events, performance-based, physiological measurement, model-based, and hybrid methods. As part of a larger project to develop design guidance for human-automation collaboration in AdvSMRs, researchers at Idaho National Laboratory have investigated the effectiveness and applicability of each of these triggering mechanisms in the context of AdvSMR. Researchers reviewed the empirical literature on adaptive automation and assessed each triggering mechanism based on the human-system performance consequences of employing that mechanism. Researchers also assessed the practicality and feasibility of using the mechanism in the context of an AdvSMR control room. Results indicate that there are tradeoffs associated with each mechanism, but that some are more applicable to the AdvSMR domain. The two mechanisms that consistently improve performance in laboratory studies are operator initiated adaptive automation based on hierarchical task delegation and the Electroencephalogram(EEG) based measure of engagement. Current EEG methods are intrusive and require intensive analysis; therefore it is not recommended for an AdvSMR control rooms at this time. Researchers also discuss limitations in the existing empirical literature and make recommendations for further research.

Katya L Le Blanc; Johanna h Oxstrand

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Concepts and technology development for the autonomous assembly and reconfiguration of modular space systems  

E-Print Network (OSTI)

This thesis will present concepts of modular space systems, including definitions and specific examples of how modularity has been incorporated into past and present space missions. In addition, it will present two ...

Rodgers, Lennon Patrick

2006-01-01T23:59:59.000Z

82

Reactor technology assessment and selection utilizing systems engineering approach  

SciTech Connect

The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

Zolkaffly, Muhammed Zulfakar; Han, Ki-In [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

2014-02-12T23:59:59.000Z

83

Technical Needs for Prototypic Prognostic Technique Demonstration for Advanced Small Modular Reactor Passive Components  

SciTech Connect

This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components that may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and potential synergies with other national laboratory and university partners.

Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.; Ramuhalli, Pradeep; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

2013-05-17T23:59:59.000Z

84

MORECA: A computer code for simulating modular high-temperature gas-cooled reactor core heatup accidents  

SciTech Connect

The design features of the modular high-temperature gas-cooled reactor (MHTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. This report describes the ORNL MORECA code, which was developed for analyzing postulated long-term core heatup scenarios for which active cooling systems used to remove afterheat following the accidents can be assumed to the unavailable. Simulations of long-term loss-of-forced-convection accidents, both with and without depressurization of the primary coolant, have shown that maximum core temperatures stay below the point at which any significant fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. MORECA models the US Department of Energy reference design of a standard MHTGR.

Ball, S.J. (Oak Ridge National Lab., TN (United States))

1991-10-01T23:59:59.000Z

85

The Technology and Economies of Hydrogen Production from Fusion Reactors  

Science Journals Connector (OSTI)

The technology, economics, and environmental effects of producing synthetic fuels (H2 gas, H2 liquid, and methanol) based on fusion (CTR) reactors are assessed. Four United States energy systems (2020 A.D.) with ...

J. Powell; F. J. Salzano; W. A. Sevian

1975-01-01T23:59:59.000Z

86

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...Schrattenholzer (S1) report learning...include technical progress economies...suggests, the result we report are probably...high temperature gas cooled reactor...adapted from the report in question (29...storage systems 3) Turbine plant equipmentHigh...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

87

Critical assessment of thorium reactor technology .  

E-Print Network (OSTI)

??Thorium-based fuels for nuclear reactors are being considered for use with current and future designs in both large and small-scale energy production. Thorium-232 is as (more)

Drenkhahn, Robert (Robert A.)

2012-01-01T23:59:59.000Z

88

Simulator platform for fast reactor operation and safety technology demonstration  

SciTech Connect

A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

2012-07-30T23:59:59.000Z

89

Space-reactor electric systems: subsystem technology assessment  

SciTech Connect

This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified.

Anderson, R.V.; Bost, D.; Determan, W.R.

1983-03-29T23:59:59.000Z

90

The CANDU Reactor System: An Appropriate Technology  

Science Journals Connector (OSTI)

...apparent. The devel-opment of Zircaloy-2 by the U.S. Bettis Laboratory in Pittsburgh, made this con-cept practicable...necessary to base a reactor de-sign on Zircaloy-2 had not Bettis work-ers been testing the material in NRX as part of a collaborative...

J. A. L. Robertson

1978-02-10T23:59:59.000Z

91

Build Rocky Flats Environmental Technology site production prototype modular treatment system for stand alone core capability for residue unpack, sort, assay, repack  

SciTech Connect

This document describes a portable and modular suit of equipment that upfront and near-term accomplishes a sorting process that documents and removes Rocky Flats Environmental Technology Site (RFETS) residue and waste from site inventory.

Hildner, R.A.; Zygmunt, S.J.

1997-01-01T23:59:59.000Z

92

Carbon free energy development and the role of small modular reactors: A review and decision framework for deployment in developing countries  

Science Journals Connector (OSTI)

Abstract Global energy demand is projected to continue to grow over the next two decades, especially in developing economies. An emerging energy technology with distinct advantages for growing economies is small modular nuclear reactors (SMRs). Their smaller size makes them suitable for areas with limited grid capacities and dispersed populations while enabling flexibility in generating capacity and fuel sources. They have the ability to pair well with renewable energy sources, the major source of increased energy capacity for many developing economies. Further advantages include their passive safety features, lower capital requirements, and reduced construction times. As a result, \\{SMRs\\} have potential for overcoming energy poverty issues for growing economies without increasing carbon emissions. This study reviews the features and viability of \\{SMRs\\} to meet increasing energy capacity needs and develops a decision support framework to evaluate the market conditions for SMR deployment to emerging economies. The focus is on identifying countries best suited for domestic deployment of \\{SMRs\\} rather than vendor countries with ongoing or future SMR development programs for export. We begin by examining the characteristics of over two hundred countries and identifying those that satisfy several necessary economic, electrical grid capacity, and nuclear security conditions. Countries satisfying these necessary conditions are then evaluated using the Analytical Hierarchy Process (AHP) using criteria related to the economic and financial conditions, infrastructure and technological framework, and governmental policies within each country. The results find that countries with increasing GDP and energy demand that possess a robust infrastructure, energy production from high GHG sources, and governmental policies favorable to foreign investment are well-suited for future SMR deployment.

Geoffrey Black; Meredith A. Taylor Black; David Solan; David Shropshire

2015-01-01T23:59:59.000Z

93

The passive safety characteristics of modular high temperature gas-cooled reactor fuel elements  

SciTech Connect

High-Temperature Gas-Cooled Reactors (HTGR) in both the US and West Germany use an all-ceramic, coated fuel particle to retain fission products. Data from irradiation, postirradiation examinations and postirradiation heating experiments are used to study the performance capabilities of the fuel particles. The experimental results from fission product release tests with HTGR fuel are discussed. These data are used for development of predictive fuel performance models for purposes of design, licensing, and risk analyses. During off normal events, where temperatures may reach up to 1600/degree/C, the data show that no significant radionuclide releases from the fuel will occur.

Goodin, D.T.; Kania, M.J.; Nabielek, H.; Schenk, W.; Verfondern, K.

1988-01-01T23:59:59.000Z

94

LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING  

SciTech Connect

This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA. Application of RF for cesium removal in the Hanford WTP does not involve in-riser columns but does utilize the resin in large scale column configurations in a waste treatment facility. The basic conceptual design for SCIX involves the dissolution of saltcake in SRS Tanks 1-3 to give approximately 6 M sodium solutions and the treatment of these solutions for cesium removal using one or two columns supported within a high level waste tank. Prior to ion exchange treatment, the solutions will be filtered for removal of entrained solids. In addition to Tanks 1-3, solutions in two other tanks (37 and 41) will require treatment for cesium removal in the SCIX unit. The previous SCIX design (McCabe, 2005) utilized CST for cesium removal with downflow supernate processing and included a CST grinder following cesium loading. Grinding of CST was necessary to make the cesium-loaded material suitable for vitrification in the SRS Defense Waste Processing Facility (DWPF). Because RF resin is elutable (and reusable) and processing requires conversion between sodium and hydrogen forms using caustic and acidic solutions more liquid processing steps are involved. The WTP baseline process involves a series of caustic and acidic solutions (downflow processing) with water washes between pH transitions across neutral. In addition, due to resin swelling during conversion from hydrogen to sodium form an upflow caustic regeneration step is required. Presumably, one of these basic processes (or some variation) will be utilized for MSP for the appropriate ion exchange technology selected. CST processing involves two primary waste products: loaded CST and decontaminated salt solution (DSS). RF processing involves three primary waste products: spent RF resin, DSS, and acidic cesium eluate, although the resin is reusable and typically does not require replacement until completion of multiple treatment cycles. CST processing requires grinding of the ion exchange media, handling of solids with high cesium loading, and handling of liquid wash and conditioning solutions. RF processing requires h

King, W

2007-11-30T23:59:59.000Z

95

Modular Integrated Energy Systems  

E-Print Network (OSTI)

Honeywell #12;Modular Integrated Energy Systems Task 5 Prototype Development Reference Design DocumentationModular Integrated Energy Systems Prepared for: Oak Ridge National Laboratory P.O. Box 2008 Building 3147 Oak Ridge, TN 37831 April 27, 2006 Prepared by: Honeywell Laboratories 3660 Technology Drive

Oak Ridge National Laboratory

96

Dr. Hussein Khalil at Reactor and Fuel Cycle Technologies Subcommittee  

NLE Websites -- All DOE Office Websites (Extended Search)

Blue Blue ribbon presentation by Dr. Hussein Khalil Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Blue ribbon presentation by Hussein Khalil Hussein Khalil Dr. Hussein Khalil during the panel discussion Oct. 21, 2010 On October 12 Hussein Khalil, director of Argonne's Nuclear Engineering Division, participated in a Reactor and Fuel Cycle Technologies

97

Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors  

SciTech Connect

A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

Popa-Simil, L. [LAVM LLC, Los Alamos (United States)

2012-07-01T23:59:59.000Z

98

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enabling Technologies Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop crosscutting technologies that directly support and complement the Department of Energy, Office of Nuclear Energy's (DOE-NE) advanced reactor and fuel cycle concepts, focusing on innovative research that offers the promise of dramatically improved performance. NEET will coordinate research efforts on common issues and challenges that confront the DOE-NE R&D programs (Light Water Reactor Sustainability [LWRS], Next Generation Nuclear Plant [NGNP], Advanced Reactor Technologies [ART], and Small Modular Reactors [SMR]) to advance technology development and deployment. The activities undertaken in the NEET program will

99

Heavy Liquid Metal Reactor Development - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

> Heavy Liquid Metal Reactor Development > Heavy Liquid Metal Reactor Development Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Nuclear Data Program Advanced Reactor Development Overview Advanced Fast Reactor (AFR) Heavy Liquid Metal Reactor Development Generation IV Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Advanced Reactor Development and Technology Heavy Liquid Metal Reactor Development Bookmark and Share STAR-LM: Simplified, Modular, Small Reactor Featuring Flow-thru Fuel Cartridge STAR-LM: Simplified, Modular, Small Reactor Featuring Flow-thru Fuel Cartridge. Click on image to view larger image. Argonne has traditionally been the foremost institute in the US for

100

Audit Report - Naval Reactors Information Technology System Development Efforts, IG-0879  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Naval Reactors Information Naval Reactors Information Technology System Development Efforts DOE/IG-0879 December 2012 U.S. Department of Energy Office of Inspector General Office of Audits & Inspections Department of Energy Washington, DC 20585 December 21, 2012 MEMORANDUM FOR THE ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on the "Naval Reactors Information Technology System Development Efforts" INTRODUCTION AND OBJECTIVE The Naval Reactors Program (Naval Reactors), an organization within the National Nuclear Security Administration, was established to provide the military with safe and reliable nuclear propulsion plants to power warships and submarines. Naval Reactors maintains responsibility

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Product-Line Technology Recommendations for Integrated Modular Systems Zo Stephenson, Mark Nicholson, John McDermid; University of York Department of Computer Science;  

E-Print Network (OSTI)

Product-Line Technology Recommendations for Integrated Modular Systems Zoë Stephenson, Mark product-line engineering to IMS evolution. An IMS is a networked computer systems providing (potentially detection system. Introduction Embedded software systems are nearly always good examples of product lines

Nicholson, Mark

102

Discussion Paper for DOE SEAB/SMR Subcommittee V.H. Reis Small Modular Reactors and U.S. Clean Energy Sources for Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discussion Paper for DOE SEAB/SMR Subcommittee Discussion Paper for DOE SEAB/SMR Subcommittee V.H. Reis Small Modular Reactors and U.S. Clean Energy Sources for Electricity In his 2011 State of the Union speech President Obama stated: "By 2035, 80 percent of America's electricity will come from clean energy sources." As yet, there is no official definition of a clean energy source, but a sensible definition is to suggest a "clean energy standard" where sources are weighted with respect to how much CO 2 they emit per unit of electrical energy produced. That is: Where F CE = Fraction of electricity for clean energy sources (multiply by 100 to get percent)

103

Steam generator design considerations for modular HTGR plant  

SciTech Connect

Studies are in progress to develop a standard High Temperature Gas-Cooled Reactor (HTGR) plant design that is amenable to serial production and is licensable. Based on the results of trade studies performed in the DOE-funded HTGR program, activities are being focused to emphasize a modular concept based on a 350 MW(t) annular reactor core with prismatic fuel elements. Utilization of a multiplicity of the standard module affords flexibility in power rating for utility electricity generation. The selected modular HTGR concept has the reactor core and heat transport systems housed in separate steel vessels. This paper highlights the steam generator design considerations for the reference plant, and includes a discussion of the major features of the heat exchanger concept and the technology base existing in the US.

McDonald, C.F.; DeFur, D.D.

1986-05-01T23:59:59.000Z

104

Symmetric modular torsatron  

DOE Patents (OSTI)

A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

Rome, J.A.; Harris, J.H.

1984-01-01T23:59:59.000Z

105

Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C  

SciTech Connect

This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750C and provides electricity and/or process heat at 700C to conventional process applications, including the production of hydrogen.

Ian Mckirdy

2010-12-01T23:59:59.000Z

106

Development of pyro-processing technology for thorium-fuelled molten salt reactor  

SciTech Connect

The Molten Salt Reactor (MSR) is classified as the non-classical nuclear reactor type based on the specific features coming out from the use of liquid fuel circulating in the MSR primary circuit. Other uniqueness of the reactor type is based on the fact that the primary circuit of the reactor is directly connected with the on-line reprocessing technology, necessary for keeping the reactor in operation for a long run. MSR is the only reactor system, which can be effectively operated within the {sup 232}Th- {sup 233}U fuel cycle as thorium breeder with the breeding factor significantly higher than one. The fuel cycle technologies proposed as ford the fresh thorium fuel processing as for the primary circuit fuel reprocessing are pyrochemical and mainly fluoride. Although these pyrochemical processes were never previously fully verified, the present-day development anticipates an assumption for the successful future deployment of the thorium-fuelled MSR technology. (authors)

Uhlir, J.; Straka, M.; Szatmary, L. [Nuclear Research Inst. ReZ Plc, ReZ 130, Husinec - CZ-250 68 (Czech Republic)

2012-07-01T23:59:59.000Z

107

Modularity Approach Modular Pebble Bed Reactor (MPBR)  

E-Print Network (OSTI)

°C 126.7kg/s Circulator HPT 52.8MW Precooler Inventory control Bypass Valve Intercooler IHX Hatch Equip Access Hatch Equip Access Hatch Oil Refinery Hydrogen Production Desalinization Plant VHTR

108

An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory  

SciTech Connect

Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

1989-12-01T23:59:59.000Z

109

Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations  

SciTech Connect

Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

Wittenbrock, N. G.

1982-01-01T23:59:59.000Z

110

Design of a 25-kWe Surface Reactor System Based on SNAP Reactor Technologies  

SciTech Connect

A Hastelloy-X clad, sodium-potassium (NaK-78) cooled, moderated spectrum reactor using uranium zirconium hydride (UZrH) fuel based on the SNAP program reactors is a promising design for use in surface power systems. This paper presents a 98 kWth reactor for a power system the uses multiple Stirling engines to produce 25 kWe-net for 5 years. The design utilizes a pin type geometry containing UZrHx fuel clad with Hastelloy-X and NaK-78 flowing around the pins as coolant. A compelling feature of this design is its use of 49.9% enriched U, allowing it to be classified as a category III-D attractiveness and reducing facility costs relative to highly-enriched space reactor concepts. Presented below are both the design and an analysis of this reactor's criticality under various safety and operations scenarios.

Dixon, David D. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Hiatt, Matthew T. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Poston, David I.; Kapernick, Richard J. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2006-01-20T23:59:59.000Z

111

ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY  

SciTech Connect

The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large-diameter reactors. Washington University's work during the reporting period involved the implementation of the automated calibration device, which will provide an advanced method of determining liquid and slurry velocities at high pressures. This new calibration device is intended to replace the original calibration setup, which depended on fishing lines and hooks to position the radioactive particle. The report submitted by Washington University contains a complete description of the new calibration device and its operation. Improvements to the calibration program are also discussed. Iowa State University utilized air-water bubble column simulations in an effort to determine the domain size needed to represent all of the flow scales in a gas-liquid column at a high superficial velocity. Ohio State's report summarizes conclusions drawn from the completion of gas injection phenomena studies, specifically with respect to the characteristics of bubbling-jetting at submerged single orifices in liquid-solid suspensions.

Bernard A. Toseland

2000-12-31T23:59:59.000Z

112

Development and transfer of fuel fabrication and utilization technology for research reactors  

SciTech Connect

Approximately 300 research reactors supplied with US-enriched uranium are currently in operation in about 40 countries, with a variety of types, sizes, experiment capabilities and applications. Despite the usefulness and popularity of research reactors, relatively few innovations in their core design have been made in the last fifteen years. The main reason can be better understood by reviewing briefly the history of research reactor fuel technology and enrichment levels. Stringent requirements on the enrichment of the uranium to be used in research reactors were considered and a program was launched to assist research reactors in continuing their operation with the new requirements and with minimum penalties. The goal of the new program, the Reduced Enrichment Research and Test Reactor (RERTR) Program, is to develop the technical means to utilize LEU instead of HEU in research reactors without significant penalties in experiment performance, operating costs, reactor modifications, and safety characteristics. This paper reviews briefly the RERTR Program activities with special emphasis on the technology transfer aspects of interest to this conference.

Travelli, A.; Domagala, R.F.; Matos, J.E.; Snelgrove, J.L.

1982-01-01T23:59:59.000Z

113

A Multi-Modular Neutronically Coupled Power Generation System  

E-Print Network (OSTI)

The High Temperature Integrated Multi-Modular Thermal Reactor is a small modular reactor that uses an enhanced conductivity BeO-UO2 fuel with supercritical CO2 coolant to drive turbo-machinery in a direct Brayton cycle. The core consists of several...

Patel, Vishal

2012-07-16T23:59:59.000Z

114

Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project  

SciTech Connect

At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest i.e., within the next 10-15 years.

L.E. Demick

2010-09-01T23:59:59.000Z

115

Energy Department Announces New Investment in Innovative Small Modular  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Investment in Innovative Small Announces New Investment in Innovative Small Modular Reactor Energy Department Announces New Investment in Innovative Small Modular Reactor December 12, 2013 - 4:04pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department today announced an award to NuScale Power LLC to support a new project to design, certify and help commercialize innovative small modular reactors (SMRs) in the United States. This award follows a funding opportunity announcement in March 2013. View a new Energy Department infographic on small modular reactors and their potential to provide clean, safe and cost-effective nuclear energy. "Small modular reactors represent a new generation of safe, reliable,

116

A future for nuclear energy: pebble bed reactors  

Science Journals Connector (OSTI)

Pebble Bed Reactors could allow nuclear plants to support the goal of reducing global climate change in an energy hungry world. They are small, modular, inherently safe, use a demonstrated nuclear technology and can be competitive with fossil fuels. Pebble bed reactors are helium cooled reactors that use small tennis ball size fuel balls consisting of only 9 grams of uranium per pebble to provide a low power density reactor. The low power density and large graphite core provide inherent safety features such that the peak temperature reached even under the complete loss of coolant accident without any active emergency core cooling system is significantly below the temperature that the fuel melts. This feature should enhance public confidence in this nuclear technology. With advanced modularity principles, it is expected that this type of design and assembly could lower the cost of new nuclear plants removing a major impediment to deployment.

Andrew C. Kadak

2005-01-01T23:59:59.000Z

117

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines  

E-Print Network (OSTI)

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines the databases that will be produced in the course of the CRP and make them accessible through the IAEA's nuclear-Electrical Applications of Nuclear Power Project A.5.02: Nuclear hydrogen production CRP Title: Advances in nuclear power

De Cindio, Fiorella

118

MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT  

SciTech Connect

The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

Vinson, D.

2010-07-11T23:59:59.000Z

119

Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors  

SciTech Connect

This current report is a summary of information obtained in the "Information Capture" task of the U.S. DOE-funded "Under Sodium Viewing (USV) Project." The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

2009-03-27T23:59:59.000Z

120

(Instrumentation and controls technology and reactor operational safety)  

SciTech Connect

While on vacation, the traveler participated as a co-chairman of a panel of instrumentation and controls specialists visiting nuclear establishments in Europe. The purpose of the visit was to assess the status of instrumentation and controls technology for nuclear power in Europe. A list of the sites visited and the personnel contacted is included in this trip report. The visit was sponsored by Loyola College working under contract to the National Science Foundation. All costs were paid by Loyola College, for whom the traveler was a consultant. This was an outside activity approved by DOE. The traveler was surprised by the high level of automaton present in the German Konvoi nuclear power plants built by Siemens AG KWU. The claim was that this was done to improve the safety of the plant by keeping the operator out of the loop'' for the first 30 minutes of some transients or accidents. The traveler was also surprised by the high level of man-machine interface R D in the USSR.

White, J.D.

1990-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Evolution of Sodium Technology R and D Actions Supporting French Liquid-Metal Fast Breeder Reactors  

SciTech Connect

This paper describes the evolution of sodium technology research and development in parallel to sodium-cooled fast breeder reactor (FBR) developments in France and provides information concerning operating plants and existing projects. This paper also discusses how supporting research has adapted to the decline in FBR activities since the decommissioning of Superphenix, while capitalizing on knowledge acquired over more than four decades to be passed down to future generations.

Rodriguez, G.; Baque, F.; Astegiano, J.C. [Commissariat a l'Energie Atomique, Cadarache (France)

2005-04-15T23:59:59.000Z

122

Modular multivariable control improves hydrocracking  

SciTech Connect

Modular multivariable control (MMC), a system of interconnected, single process variable controllers, can be a user-friendly, reliable and cost-effective alternative to centralized, large-scale multivariable control packages. MMC properties and features derive directly from the properties of the coordinated controller which, in turn, is based on internal model control technology. MMC was applied to a hydrocracking unit involving two process variables and three controller outputs. The paper describes modular multivariable control, MMC properties, tuning considerations, application at the DCS level, constraints handling, and process application and results.

Chia, T.L.; Lefkowitz, I. [ControlSoft, Inc., Cleveland, OH (United States); Tamas, P.D. [Marathon Oil Co., Robinson, IL (United States)

1996-10-01T23:59:59.000Z

123

Minimizing the Cost of Innovative Nuclear Technology Through Flexibility: The Case of a Demonstration Accelerator-Driven Subcritical Reactor Park  

E-Print Network (OSTI)

Presented is a methodology to analyze the expected Levelised Cost Of Electricity (LCOE) in the face of technology uncertainty for Accelerator-Driven Subcritical Reactors (ADSRs). It shows that flexibility in the design and deployment strategy...

Cardin, Michel-Alexandre; Steer, Steven J.; Nuttall, William J.; Parks, Geoffrey T.; Gonalves, Leonardo V.N.; de Neufville, Richard

124

R Reactor seepage basins soil moisture and resistivity field investigation using cone penetrometer technology, Savannah River Site, Aiken, South Carolina  

SciTech Connect

The focus of this report is the summer 1999 investigation of the shallow groundwater system using cone penetrometer technology characterization methods to determine if the water table is perched beneath the R Reactor Seepage Basins (RRSBs).

Harris, M.K.

2000-02-17T23:59:59.000Z

125

Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors  

SciTech Connect

Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (<~600 MWe), than those intended for deployment on large, tightly coupled grids. This smaller size is important in avoiding grid destabilization, which can result from having a large fraction of a grid s electrical generation supplied by a single source. GARs are envisioned to be deployed worldwide often in locations without extensive nuclear power experience. DOE recently sponsored the creation of an Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system designs are key to enabling GARs to respond properly and thereby stabilize the grid during transients.

Holcomb, David Eugene [ORNL] [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL] [ORNL; O'Hara, John [Brookhaven National Laboratory (BNL)] [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates] [Longenecker & Associates; Miller, Don W. [Ohio State University] [Ohio State University

2009-01-01T23:59:59.000Z

126

Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies  

SciTech Connect

This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.

James E. O'Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

2014-09-01T23:59:59.000Z

127

Modular robot  

DOE Patents (OSTI)

A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

Ferrante, Todd A. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

128

Modular robot  

DOE Patents (OSTI)

A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

Ferrante, T.A.

1997-11-11T23:59:59.000Z

129

Analysis of granular flow in a pebble-bed nuclear reactor Chris H. Rycroft,1  

E-Print Network (OSTI)

-temperature reactor 2 , which offers meltdown-proof passive safety, convenient long-term waste storage, modular

Bazant, Martin Z.

130

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013  

SciTech Connect

Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

Bruce Hallbert; Ken Thomas

2014-07-01T23:59:59.000Z

131

Recent Development in Oxy-Combustion Technology and Its Applications to Gas Turbine Combustors and ITM Reactors  

Science Journals Connector (OSTI)

Recent Development in Oxy-Combustion Technology and Its Applications to Gas Turbine Combustors and ITM Reactors ... Also, the application of oxy-combustion technology into gas turbines is possible; however, the combustion temperature will be increased tremendously, which needs more control to make safe the turbine blades. ... technologies, a simplified model of a power plant with two forms of CO2 capture was developed. ...

Mohamed A. Habib; Medhat Nemitallah; Rached Ben-Mansour

2012-11-19T23:59:59.000Z

132

Pyroprocessing of Light Water Reactor Spent Fuels Based on an Electrochemical Reduction Technology  

SciTech Connect

A concept of pyroprocessing light water reactor (LWR) spent fuels based on an electrochemical reduction technology is proposed, and the material balance of the processing of mixed oxide (MOX) or high-burnup uranium oxide (UO{sub 2}) spent fuel is evaluated. Furthermore, a burnup analysis for metal fuel fast breeder reactors (FBRs) is conducted on low-decontamination materials recovered by pyroprocessing. In the case of processing MOX spent fuel (40 GWd/t), UO{sub 2} is separately collected for {approx}60 wt% of the spent fuel in advance of the electrochemical reduction step, and the product recovered through the rare earth (RE) removal step, which has the composition uranium:plutonium:minor actinides:fission products (FPs) = 76.4:18.4:1.7:3.5, can be applied as an ingredient of FBR metal fuel without a further decontamination process. On the other hand, the electroreduced alloy of high-burnup UO{sub 2} spent fuel (48 GWd/t) requires further decontamination of residual FPs by an additional process such as electrorefining even if RE FPs are removed from the alloy because the recovered plutonium (Pu) is accompanied by almost the same amount of FPs in addition to RE. However, the amount of treated materials in the electrorefining step is reduced to {approx}10 wt% of the total spent fuel owing to the prior UO{sub 2} recovery step. These results reveal that the application of electrochemical reduction technology to LWR spent oxide fuel is a promising concept for providing FBR metal fuel by a rationalized process.

Ohta, Hirokazu; Inoue, Tadashi; Sakamura, Yoshiharu; Kinoshita, Kensuke

2005-05-15T23:59:59.000Z

133

Modular Integrated Energy Systems  

E-Print Network (OSTI)

-driven absorption chiller, · Install and monitor the performance of a prototype IES modular system employing consists of a gas turbine-generator, a heat recovery steam generator, and a waste heat fired absorption chiller. The key goals of the project are: · Develop a set of "reference" CAD-based IES modular system

Oak Ridge National Laboratory

134

Computer analyses for the design, operation and safety of new isotope production reactors: A technology status review  

SciTech Connect

A review is presented on the currently available technologies for nuclear reactor analyses by computer. The important distinction is made between traditional computer calculation and advanced computer simulation. Simulation needs are defined to support the design, operation, maintenance and safety of isotope production reactors. Existing methods of computer analyses are categorized in accordance with the type of computer involved in their execution: micro, mini, mainframe and supercomputers. Both general and special-purpose computers are discussed. Major computer codes are described, with regard for their use in analyzing isotope production reactors. It has been determined in this review that conventional systems codes (TRAC, RELAP5, RETRAN, etc.) cannot meet four essential conditions for viable reactor simulation: simulation fidelity, on-line interactive operation with convenient graphics, high simulation speed, and at low cost. These conditions can be met by special-purpose computers (such as the AD100 of ADI), which are specifically designed for high-speed simulation of complex systems. The greatest shortcoming of existing systems codes (TRAC, RELAP5) is their mismatch between very high computational efforts and low simulation fidelity. The drift flux formulation (HIPA) is the viable alternative to the complicated two-fluid model. No existing computer code has the capability of accommodating all important processes in the core geometry of isotope production reactors. Experiments are needed (heat transfer measurements) to provide necessary correlations. It is important for the nuclear community, both in government, industry and universities, to begin to take advantage of modern simulation technologies and equipment. 41 refs.

Wulff, W.

1990-01-01T23:59:59.000Z

135

E-Print Network 3.0 - advanced reactor technology Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

advanced countries like France, Canada, the USA. Expansion... to the greenhouse effect. New Generation reactors to achieve the reuse of spent fuel. Fusion...

136

Modular tokamak magnetic system  

DOE Patents (OSTI)

A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

Yang, Tien-Fang (Wayland, MA)

1988-01-01T23:59:59.000Z

137

Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1  

SciTech Connect

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

138

Small modular HTGR nuclear power plant concept to meet the total energy needs of the developing nations  

SciTech Connect

In this paper, a small modular High-Temperature Gas-Cooled Reactor (HTGR) is described that can support the total energy needs of the developing nations by supplying electrical power, process steam, low-grade heat for desalination, and hydrogen production. Major features of the nuclear power plant concept, currently under development by GA Technologies Inc. (GA), are discussed with emphasis on (1) plant simplicity, (2) inherent safety, (3) ease of operation, (4) design and licensing standardization, and (5) acceptable power generation economics.

McDonald, C.F.

1983-09-26T23:59:59.000Z

139

Prismatic modular reactor analysis with melcor  

E-Print Network (OSTI)

, the calculation for the heat distribution in the graphite and fuel is unsatisfactory which requires MELCOR modification for the PCC simulation. For future work, a complete model of the NGNP under normal operation conditions will be developed when additional data...

Zhen, Ni

2009-05-15T23:59:59.000Z

140

Calculations of (n,?) Cross Sections on Some Structural Fusion Materials for Fusion Reactor Technology  

Science Journals Connector (OSTI)

The knowledge of cross section for emission of light charged particles (p, d, t, and ?) induced by fast neutrons on structural fusion materials has a critical importance on fusion reactors. The ga...

M. Yi?it; E. Tel; G. Tan?r

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Thermodynamics Properties of Molten Salt Technology Assessment for New Generation Fusion Reactors  

Science Journals Connector (OSTI)

In this study, some important thermodynamic properties of the fusion reactor have been analyzed. The physical and chemical ... salts have been extensively studied in the nuclear fusion program. In recent years, m...

Aybaba Hanerlio?ullar?

2014-10-01T23:59:59.000Z

142

Modular optical detector system  

DOE Patents (OSTI)

A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

Horn, Brent A. (Livermore, CA); Renzi, Ronald F. (Tracy, CA)

2006-02-14T23:59:59.000Z

143

The Argonaut Reactor - Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne Reactors > Training Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

144

Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs  

SciTech Connect

This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

Yoder, G.L.

2005-10-03T23:59:59.000Z

145

Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who  

SciTech Connect

The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

Forsberg, C.W.; Reich, W.J.

1991-09-01T23:59:59.000Z

146

Export possibilities for small nuclear reactors  

SciTech Connect

The worldwide deployment of peaceful nuclear technology is predicated on conformance with the Nuclear Non-Proliferation Treaty of 1972. Under this international treaty, countries have traded away pursuit of nuclear weapons in exchange for access to commercial nuclear technology that could help them grow economically. Realistically, however, most nuclear technology has been beyond the capacity of the NPT developing countries to afford. Even if the capital cost of the plant is managed, the costs of the infrastructure and the operational complexity of most nuclear technology have taken it out of the hands of the nations who need it the most. Now, a new class of small sodium cooled reactors has been specifically designed to meet the electrical power, water, hydrogen and heat needs of small and remote users. These reactors feature small size, long refueling interval, no onsite fuel storage, and simplified operations. Sized in the 10 MW(e) to 50 MW(e) range these reactors are modularized for factory production and for rapid site assembly. The fuel would be <20% U-235 uranium fuel with a 30-year core life. This new reactor type more appropriately fills the needs of countries for lower power distributed systems that can fill the gap between large developed infrastructure and primitive distributed energy systems. Looking at UN Resolution 1540 and the impact of other agreements, there is a need to address the issues of nuclear security, fuel, waste, and economic/legal/political-stakeholder concerns. This paper describes the design features of this new reactor type that specifically address these issues in a manner that increases the availability of commercial nuclear technology to the developing nations of the world. (authors)

Campagna, M.S.; Hess, C.; Moor, P. [Burns and Roe Enterprises, Inc., Oradell, NJ (United States); Sawruk, W. [ABSG Consulting, Inc., Shillington, PA (United States)

2007-07-01T23:59:59.000Z

147

Laminar Entrained Flow Reactor (Fact Sheet)  

SciTech Connect

The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

Not Available

2014-02-01T23:59:59.000Z

148

Material Control and Accounting Design Considerations for High-Temperature Gas Reactors  

SciTech Connect

The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work summarized in this report, namely the development of guidance to support the consideration of MC&A in the design of both pebble-bed and prismatic-fueled HTGRs. The objective is to identify and incorporate design features into the facility design that will cost effectively aid in making MC&A more effective and efficient, with minimum impact on operations. The theft of nuclear material is addressed through both MC&A and physical protection, while the threat of sabotage is addressed principally through physical protection.

Trond Bjornard; John Hockert

2011-08-01T23:59:59.000Z

149

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report  

SciTech Connect

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

150

Light Water Reactor Sustainability Program Status of Silicon Carbide Joining Technology Development  

SciTech Connect

Advanced, accident tolerant nuclear fuel systems are currently being investigated for potential application in currently operating light water reactors (LWR) or in reactors that have attained design certification. Evaluation of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) relative to Zr-based alloys, including increased corrosion resistance, reduced oxidation and heat of oxidation, and reduced hydrogen generation under steam attack (off-normal conditions). If demonstrated to be applicable in the intended LWR environment, SiC could be used in nuclear fuel cladding or other in-core structural components. Achieving a SiC-SiC joint that resists corrosion with hot, flowing water, is stable under irradiation and retains hermeticity is a significant challenge. This report summarizes the current status of SiC-SiC joint development work supported by the Department of Energy Light Water Reactor Sustainability Program. Significant progress has been made toward SiC-SiC joint development for nuclear service, but additional development and testing work (including irradiation testing) is still required to present a candidate joint for use in nuclear fuel cladding.

Shannon M. Bragg-Sitton

2013-09-01T23:59:59.000Z

151

Modular low aspect ratio-high beta torsatron  

DOE Patents (OSTI)

A fusion reactor device in which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low aspect ratio toroid in planes having the cylindrical coordinate relationship .phi.=.phi..sub.i +kz where k is a constant equal to each coil's pitch and .phi..sub.i is the toroidal angle at which the i'th coil intersects the z=o plane. The device may be described as a modular, high beta torsation whose screw symmetry is pointed along the systems major (z) axis. The toroid defined by the modular coils preferably has a racetrack minor cross section. When vertical field coils and preferably a toroidal plasma current are provided for magnetic field surface closure within the toroid, a vacuum magnetic field of racetrack shaped minor cross section with improved stability and beta valves is obtained.

Sheffield, George V. (Hopewell, NJ); Furth, Harold P. (Princeton, NJ)

1984-02-07T23:59:59.000Z

152

Comparative technology and public policy: The development of the nuclear power reactor in six nations  

Science Journals Connector (OSTI)

This essay proposes an analytic framework to compare the development and commercialization of a number of advanced civilian technologies. This framework emphasizes the multiple institutional actors and their obje...

Peter DeLeon

1980-02-01T23:59:59.000Z

153

Recent Sodium Technology Development for the Decommissioning of the Rapsodie and Superphenix Reactors and the Management of Sodium Wastes  

SciTech Connect

The Commissariat a l'Energie Atomique (CEA) has recently developed and/or conducted experiments on several processes in support of the decommissioning of two French liquid-metal fast reactors (LMFRs), Rapsodie and Superphenix, as well as on the treatment of CEA sodium wastes. CEA has demonstrated that it is possible to define appropriate and efficient processes to meet the different situations encountered in decommissioning LMFRs. Mechanical techniques derived from standard technologies have been successfully applied to fast reactor decommissioning to complete primary vessel draining from sodium. In addition, specific chemical processes have been developed to deal safely with metallic sodium reactivity. Sodium-contaminated equipment has been successfully cleaned by reacting sodium with water mist in an atmosphere with carbon dioxide to form inert sodium carbonate. Bulk sodium has been successfully converted into aqueous caustic soda by injection of liquid-metallic sodium into sodium hydroxide solution. Several processes were also defined to deal with specific sodium wastes. In all cases the principle is based on a sodium/water chemical reaction where the released hydrogen and heat are controlled. With the development of a wide variety of processes, all steps in the decommissioning of LMFRs are assumed to be now properly mastered.

Rodriguez, G.; Gastaldi, O.; Baque, F. [Commissariat a l'Energie Atomique Cadarache (France)

2005-04-15T23:59:59.000Z

154

05/23/2006 08:53 PMInnovation & Technology News -Fusion reactor shows its metal -22/05/2006 Page 1 of 3http://abc.net.au/cgi-bin/common/printfriendly.pl?/science/news/tech/InnovationRepublish_1644106.htm  

E-Print Network (OSTI)

05/23/2006 08:53 PMInnovation & Technology News - Fusion reactor shows its metal - 22/05/2006 Page) News in Science Innovation & Technology News - Fusion reactor shows its metal - 22/05/2006 [This a problem facing nuclear fusion, touted as the cheap, safe, clean and almost limitless energy source

155

Modular thermoacoustic refrigerator  

Science Journals Connector (OSTI)

A thermoacousticrefrigerator was built to explore scaling to large heat flux. The refrigerator was constructed according to a modular design so that various stack heat exchanger and resonator sections are easily interchangeable. The resonator is driven by a commercial 10?in. woofer. Initial tests using pure helium gas as the working fluid and steel honeycomb (0.8?mm cell) for the stack pumped 60 W of heat against a 10?C temperature gradient. Measurements of heat flux and efficiency will be reported as functions of stack structure (e.g. pore size and shape) and will be compared with theoretical predictions.

Steven R. Murrell; George Mozurkewich

1993-01-01T23:59:59.000Z

156

Exergy Analysis of a GTL Process Based on Low-Temperature Slurry F-T Reactor Technology with a Cobalt Catalyst  

E-Print Network (OSTI)

Exergy Analysis of a GTL Process Based on Low-Temperature Slurry F-T Reactor Technology of the initial exergy of the gas is used to convert it into liquid fuel. In the present study, we analyze. Next, we use exergy analysis to establish the impact of catalyst selectivity and of thermal losses

Kjelstrup, Signe

157

Preheating After Modular Inflation  

E-Print Network (OSTI)

We study (p)reheating in modular (closed string) inflationary scenarios, with a special emphasis on Kahler moduli/Roulette models. It is usually assumed that reheating in such models occurs through perturbative decays. However, we find that there are very strong non-perturbative preheating decay channels related to the particular shape of the inflaton potential (which is highly nonlinear and has a very steep minimum). Preheating after modular inflation, proceeding through a combination of tachyonic instability and broad-band parametric resonance, is perhaps the most violent example of preheating after inflation known in the literature. Further, we consider the subsequent transfer of energy to the standard model sector in scenarios where the standard model particles are confined to a D7-brane wrapping the inflationary blow-up cycle of the compactification manifold or, more interestingly, a non-inflationary blow up cycle. We explicitly identify the decay channels of the inflaton in these two scenarios. We also consider the case where the inflationary cycle shrinks to the string scale at the end of inflation; here a field theoretical treatment of reheating is insufficient and one must turn instead to a stringy description. We estimate the decay rate of the inflaton and the reheat temperature for various scenarios.

Neil Barnaby; J. Richard Bond; Zhiqi Huang; Lev Kofman

2009-09-02T23:59:59.000Z

158

DOE Hydrogen Analysis Repository: All Modular Industry Growth Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

All Modular Industry Growth Assessment (AMIGA) Model All Modular Industry Growth Assessment (AMIGA) Model Project Summary Full Title: All Modular Industry Growth Assessment (AMIGA) Model Project ID: 139 Principal Investigator: Donald Hanson Purpose A comprehensive economic model of energy markets, primarily used to simulate a wide range of technology and policy issues. Performer Principal Investigator: Donald Hanson Organization: Argonne National Laboratory (ANL) Address: 9700 S. Cass Ave. Argonne, IL 60439 Telephone: 630-252-5061 Email: dhanson@anl.gov Additional Performers: Peter Balash, NETL; John Marano, NETL Sponsor(s) Name: Peter Balash Organization: National Energy Technology Laboratory (NETL) Telephone: 412-386-5753 Email: Peter.Balash@NETL.DOE.GOV Period of Performance Start: January 2001 Project Description

159

A Basic LEGO Reactor Design for the Provision of Lunar Surface Power  

SciTech Connect

A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces.

John Darrell Bess

2008-06-01T23:59:59.000Z

160

Honeywell modular automation system acceptance test report  

SciTech Connect

This document provides the results of the Acceptance Test Procedure for the Honeywell Modular Automation System.

Cunningham, L.T., Westinghouse Hanford

1996-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Modular Optical PDV System  

SciTech Connect

A modular optical photon Doppler velocimetry (PDV) detector system has been developed by using readily available optical components with a 20-GHz Miteq optical detector into eight channels of single-wide modules integrated into a 3U rack unit (1U = 1.75 inches) with a common power supply. Optical fibers were precisely trimmed, welded, and timed within each unit. This system has been used to collect dynamic velocity data on various physics experiments. An optical power meter displays the laser input power to the module and optical power at the detector. An adjustable micro-electromechanical system (MEMS) optical attenuator is used to adjust the amount of unshifted light entering the detector. Front panel LEDs show the presence of power to the module. A fully loaded chassis with eight channels consumes 45 watts of power. Each chassis requires 1U spacing above and below for heat management. Modules can be easily replaced.

Araceli Rutkowski, David Esquibel

2008-12-11T23:59:59.000Z

162

Reactor Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benefits Crosscutting Technology Development Reactor Materials Advanced Sensors and Instrumentation Proliferation and Terrorism Risk Assessment Advanced Methods for Manufacturing...

163

New Modularization Framework Transforms FAST Wind Turbine Modeling Tool  

Energy.gov (U.S. Department of Energy (DOE))

The National Renewable Energy Laboratory recently released an expanded version of its FAST wind turbine computer-aided engineering tool under a new modularization framework. The new framework will transform FAST into a powerful, robust, and flexible modeling software for wind and water power technology developers.

164

Monte-Carlo Modeling of Parameters of a Subcritical Cascade Reactor Based on MSBR and LMFBR Technologies  

E-Print Network (OSTI)

Parameters of a subcritical cascade reactor driven by a proton accelerator and based on a primary lead-bismuth target, main reactor constructed analogously to the molten salt breeder (MSBR) reactor core and a booster-reactor analogous to the core of the BN-350 liquid metal cooled fast breeder reactor (LMFBR). It is shown by means of Monte-Carlo modeling that the reactor under study provides safe operation modes (k_{eff}=0.94-0.98), is apable to transmute effectively radioactive nuclear waste and reduces by an order of magnitude the requirements on the accelerator beam current. Calculations show that the maximal neutron flux in the thermal zone is 10^{14} cm^{12}\\cdot s^_{-1}, in the fast booster zone is 5.12\\cdot10^{15} cm^{12}\\cdot s{-1} at k_{eff}=0.98 and proton beam current I=2.1 mA.

Bznuni, S A; Zhamkochyan, V M; Polanski, A; Sosnin, A N; Khudaverdyan, A H

2001-01-01T23:59:59.000Z

165

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979  

SciTech Connect

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

166

Modular Isotopic Thermoelectric Generator  

SciTech Connect

Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

Schock, Alfred

1981-04-03T23:59:59.000Z

167

Steam generator conceptual design for the modular HTGR - Dissimilar metal weld considerations  

SciTech Connect

The steam generator for the current Modular High Temperature Gas-Cooled Reactor (MHTGR) has evolved from a technology basis developed in U.S. and European gas-cooled reactor programs. The MHTGR steam generator is a vertically-oriented, counterflow, shell-and-tube, once-through, non-reheat, helical heat exchanger with helium on the shell side and water/steam in the tubes. In the MHTGR applications, the normal operating temperatures of the steam generator tubes can be as high as 638/sup 0/C (1180/sup 0/F). Concerns such as cost, creep strength, steam side scaling and stress corrosion cracking often lead to a design decision to use two different tube materials, one for the evaporating portion and another for the superheating portion of the steam generator. The current MHTGR steam generator design utilizes 2 1/4 CR - 1 Mo material for the economizer/evaporator/initial superheater tube section and Alloy 800H material for the finishing superheat tube section. Therefore, a dissimilar metal weld (DMW) is incorporated in each tube circuit. This feature of the design imposes certain important constraints on the steam generator designer. This paper presents an overview of the MHTGR steam generator conceptual design, and then focuses on the DMW considerations and how these have influenced the design configuration.

Spring, A.H.; Basol, M.

1987-01-01T23:59:59.000Z

168

Massachusetts Institute of Technology Department of Nuclear Engineering  

E-Print Network (OSTI)

Massachusetts Institute of Technology Department of Nuclear Engineering Advanced Reactor Technology of Technology Department of Nuclear Engineering Advanced Reactor Technology Pebble Bed Project MPBR-2 Student Department of Nuclear Engineering Advanced Reactor Technology Pebble Bed Project MPBR-3 Project Objective

169

Modular low-aspect-ratio high-beta torsatron  

DOE Patents (OSTI)

A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.

Sheffield, G.V.

1982-04-01T23:59:59.000Z

170

Radiation field modeling and optimization of a compact and modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation field modeling and optimization of a compact and modular Radiation field modeling and optimization of a compact and modular multi-plate photocatalytic reactor (MPPR) for air/water purification by Monte Carlo method Title Radiation field modeling and optimization of a compact and modular multi-plate photocatalytic reactor (MPPR) for air/water purification by Monte Carlo method Publication Type Journal Article Year of Publication 2013 Authors Zazueta, Ana Luisa Loo, Hugo Destaillats, and Gianluca Li Puma Journal Chemical Engineering Journal Volume 217 Pagination 475-485 Date Published 02/01/2013 Abstract The radiation field in a multi-plate photocatalytic reactor (MPPR) for air or water purification was modeled and optimized using a Monte Carlo stochastic method. The MPPR consists of parallel photocatalytic plates irradiated by cylindrical UV lamps orthogonal to the plates. The photocatalyst titanium dioxide (TiO2) is supported on the plates as a thin film. The photoreactor design is compact and offers a large irradiated photocatalytic surface area, a high degree of photon utilization, low pressure drop and a modular design which can facilitate scale-up. These features are desirable for the decontamination of indoor air in ventilation ducts or for water detoxification. The Monte Carlo method was applied to determine three dimensionless reactor performance parameters: the photon absorption efficiency (Φ), the uniformity of the distribution of the dimensionless radiation intensity (η) and the overall photonic efficiency (Φ). The emission of photons from the light sources was simulated by the extensive source with superficial emission (ESSE) model. Simulations were performed by varying the catalyst reflectivity albedo, the number and the diameter of lamps, and the dimensions and spacing of the photocatalytic plates. Optimal design for a basic reactor module with one lamp was accomplished for lamp-diameter-to-plate-height ratio (β) of 0.7, while the plate-spacing-to-plate-height ratio (α) was correlated by [αoptimum = 0.191 β2 - 0.5597 β + 0.3854]. A multilamp arrangement leads to a feasible increase in the size and number of the plates and the irradiated photocatalytic surface area. The optimum design was validated by measuring the apparent quantum yield of the oxidation of toluene (7 ppmv) in a humidified air stream using immobilized TiO2 (Degussa P25). Experiments performed varying the geometrical parameter α correlated well with the model calculations, with maximum apparent quantum yield for α = 0.137. The results are directly transferable to the treatment of water by photocatalysis.

171

Invertible Program Restructurings for Continuing Modular Maintenance  

E-Print Network (OSTI)

Invertible Program Restructurings for Continuing Modular Maintenance Julien Cohen ASCOLA team (EMN in main- tenance with invertible program transformations. We illustrate this on the typical Expression problems with our approach. Keywords-modular maintenance; restructuring; invertible pro- gram

Paris-Sud XI, Université de

172

Comparison and validation of HEU and LEU modeling results to HEU experimental benchmark data for the Massachusetts Institute of Technology MITR reactor.  

SciTech Connect

The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Towards this goal, comparisons of MCNP5 Monte Carlo neutronic modeling results for HEU and LEU cores have been performed. Validation of the model has been based upon comparison to HEU experimental benchmark data for the MITR-II. The objective of this work was to demonstrate a model which could represent the experimental HEU data, and therefore could provide a basis to demonstrate LEU core performance. This report presents an overview of MITR-II model geometry and material definitions which have been verified, and updated as required during the course of validation to represent the specifications of the MITR-II reactor. Results of calculations are presented for comparisons to historical HEU start-up data from 1975-1976, and to other experimental benchmark data available for the MITR-II Reactor through 2009. This report also presents results of steady state neutronic analysis of an all-fresh LEU fueled core. Where possible, HEU and LEU calculations were performed for conditions equivalent to HEU experiments, which serves as a starting point for safety analyses for conversion of MITR-II from the use of HEU fuel to the use of UMo LEU fuel.

Newton, T. H.; Wilson, E. H; Bergeron, A.; Horelik, N.; Stevens, J. (Nuclear Engineering Division); (MIT Nuclear Reactor Lab.)

2011-03-02T23:59:59.000Z

173

Fault Current Limit (FCL) Technology (Magnetic Valve Controlled Reactor-Type Fault Current Limiter Principle and Simulation)  

Science Journals Connector (OSTI)

Summarized the FCL practical research which faces to the key technical problems, briefly introduces the study of magnetic valve controllable reactor type fault current limiter principle, and the simulation result...

Chunzhe Shi

2012-01-01T23:59:59.000Z

174

Innovative safety features of the modular HTGR  

SciTech Connect

The Modular High Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry, and the utilities. Near-term development is focused on electricity generation. The top-level safety requirement is that the plant's operation not disturb the normal day-to-day activities of the public. Quantitatively, this requires that the design meet the US Environmental Protection Agency's Protective Action Guides at the site boundary and hence preclude the need for sheltering or evacuation of the public. To meet these stringent safety requirements and at the same time provide a cost competitive design requires the innovative use of the basic high temperature gas-cooled reactor features of ceramic fuel, helium coolant, and a graphite moderator. The specific fuel composition and core size and configuration have been selected to the use the natural characteristics of these materials to develop significantly higher margins of safety. In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure of a simultaneous loss of forced cooling of the core. The challenges to control of heat generation consider not only the failure to insert the reactivity control systems but also the withdrawal of control rods. Finally, challenges to control of chemical attack of the ceramic-coated fuel are considered, including catastrophic failure of the steam generator, which allows water ingress, or failure of the pressure vessels, which allows air ingress. The plant's response to these extreme challenges is not dependent on operator action, and the events considered encompass conceivable operator errors.

Silady, F.A.; Simon, W.A.

1992-01-01T23:59:59.000Z

175

Innovative safety features of the modular HTGR  

SciTech Connect

The Modular High Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry, and the utilities. Near-term development is focused on electricity generation. The top-level safety requirement is that the plant`s operation not disturb the normal day-to-day activities of the public. Quantitatively, this requires that the design meet the US Environmental Protection Agency`s Protective Action Guides at the site boundary and hence preclude the need for sheltering or evacuation of the public. To meet these stringent safety requirements and at the same time provide a cost competitive design requires the innovative use of the basic high temperature gas-cooled reactor features of ceramic fuel, helium coolant, and a graphite moderator. The specific fuel composition and core size and configuration have been selected to the use the natural characteristics of these materials to develop significantly higher margins of safety. In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure of a simultaneous loss of forced cooling of the core. The challenges to control of heat generation consider not only the failure to insert the reactivity control systems but also the withdrawal of control rods. Finally, challenges to control of chemical attack of the ceramic-coated fuel are considered, including catastrophic failure of the steam generator, which allows water ingress, or failure of the pressure vessels, which allows air ingress. The plant`s response to these extreme challenges is not dependent on operator action, and the events considered encompass conceivable operator errors.

Silady, F.A.; Simon, W.A.

1992-01-01T23:59:59.000Z

176

Acoustics of modular constructionIndustry overview  

Science Journals Connector (OSTI)

This session will provide an overview of the issues and efforts impacting the commercial modular construction industry throughout North America with particular focus on acoustics in relocatable classrooms. The Modular Building Institute is the international nonprofit trade association representing manufacturers and dealers of commercial modular facilites both temporary and permanent serving educational health care retail industrial military and multi?family markets.

Thomas E. Hardiman

2007-01-01T23:59:59.000Z

177

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979  

SciTech Connect

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

178

Nuclear Reactor (atomic reactor)  

Science Journals Connector (OSTI)

A nuclear reactor splits Uranium or Plutonium nuclei, and the...235 is fissionable but more than 99% of the naturally occurring Uranium is U238 that makes enrichment mandatory. In some reactors U238 and Thorium23...

2008-01-01T23:59:59.000Z

179

Generation -IV Reactor Concepts  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation-IV Reactor Concepts Generation-IV Reactor Concepts Thomas H. Fanning Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439, USA The Generation-IV International Forum (GIF) is a multi-national research and development (R&D) collaboration. The GIF pursues the development of advanced, next generation reactor technology with goals to improve: a) sustainability (effective fuel utilization and minimization of waste) b) economics (competitiveness with respect to other energy sources) c) safety and reliability (e.g., no need for offsite emergency response), and d) proliferation resistance and physical protection The GIF Technology Roadmap exercise selected six generic systems for further study: the Gas- cooled Fast Reactor (GFR), the Lead-cooled Fast Reactor (LFR), the Molten Salt Reactor (MSR),

180

Analysis of the Reactor Cavity Cooling System for Very High Temperature Gas-cooled Reactors Using Computational Fluid Dynamics Tools  

E-Print Network (OSTI)

The design of passive heat removal systems is one of the main concerns for the modular Very High Temperature Gas-Cooled Reactors (VHTR) vessel cavity. The Reactor Cavity Cooling System (RCCS) is an important heat removal system in case of accidents...

Frisani, Angelo

2011-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Passive solar strategies as a logic for improved architectural design: Two prototypes for modular housing  

SciTech Connect

This paper presents a project in which two passive solar housing prototypes were developed for mass production as modular housing. The prototypes have been built and are currently being marketed and thermally monitored. The project received support from the U.S. DOE under its Passive Solar Manufactured Buildings Program. The goal of this project was to develop a prototype which incorporated passive solar technologies into modular housing. Because modular housing is an industrialized product, this incorporation involved relating to a construction process as well as deriving the design of a new product. This paper addresses the issues of modular housing production that impact energy efficiency, passive solar design, and architectural quality. The product's design evolution is described, with emphasis upon how solutions for the prototype(s) were derived in response to factory construction processes, cost, existing and potential markets and the extended goal to improve both energy efficiency and architectural design while introducing passive solar strategies.

Reeder, B.C.

1983-12-01T23:59:59.000Z

182

Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration  

SciTech Connect

Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus on meeting two of the eight needs outlined in the recently published 'Technology Roadmap on Instrumentation, Control, and Human-Machine Interface (ICHMI) to Support DOE Advanced Nuclear Energy Programs' which was created 'to provide a systematic path forward for the integration of new ICHMI technologies in both near-term and future nuclear power plants and the reinvigoration of the U.S. nuclear ICHMI community and capabilities.' The research consortium is led by The University of Tennessee (UT) and is focused on three interrelated topics: Topic 1 (simulator development and measurement sensitivity analysis) is led by Dr. Mike Doster with Dr. Paul Turinsky of North Carolina State University (NCSU). Topic 2 (multivariate autonomous control of modular reactors) is led by Dr. Belle Upadhyaya of the University of Tennessee (UT) and Dr. Robert Edwards of Penn State University (PSU). Topic 3 (monitoring, diagnostics, and prognostics system development) is led by Dr. Wes Hines of UT. Additionally, South Carolina State University (SCSU, Dr. Ken Lewis) participated in this research through summer interns, visiting faculty, and on-campus research projects identified throughout the grant period. Lastly, Westinghouse Science and Technology Center (Dr. Mario Carelli) was a no-cost collaborator and provided design information related to the IRIS demonstration platform and defining needs that may be common to other SMR designs. The results of this research are reported in a six-volume Final Report (including the Executive Summary, Volume 1). Volumes 2 through 6 of the report describe in detail the research and development under the topical areas. This volume serves to introduce the overall NERI-C project and to summarize the key results. Section 2 provides a summary of the significant contributions of this project. A list of all the publications under this project is also given in Section 2. Section 3 provides a brief summary of each of the five volumes (2-6) of the report. The contributions of SCSU are described in Section 4, including a summary of undergraduate research exper

J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

2011-05-31T23:59:59.000Z

183

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors  

E-Print Network (OSTI)

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling practices in a nutshell', Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, pp.288 Energy and Nuclear Applications', Göteborg, Sweden, 13­14 October 2011 Copyright © 2013 Inderscience

Demazière, Christophe

184

Optimization of actinide transmutation in innovative lead-cooled fast reactors  

E-Print Network (OSTI)

The thesis investigates the potential of fertile free fast lead-cooled modular reactors as efficient incinerators of plutonium and minor actinides (MAs) for application to dedicated fuel cycles for transmutation. A methodology ...

Romano, Antonino, 1972-

2003-01-01T23:59:59.000Z

185

Microsoft Word - 20.1 Special Study Reactor Type Comparison_VS...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Source NRC Nuclear Regulatory Commission PBMR Pebble Bed Modular Reactor PHP Process Heat Plant PLOFC Pressurized Loss of Forced Cooling QA Quality Assurance R&D Research and...

186

Role of Nuclear Grade Graphite in Oxidation in Modular HTGRs  

SciTech Connect

The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

Willaim Windes; G. Strydom; J. Kane; R. Smith

2014-11-01T23:59:59.000Z

187

Modular CHP System for Utica College: Design Specification, March...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modular CHP System for Utica College: Design Specification, March 2007 Modular CHP System for Utica College: Design Specification, March 2007 This paper describes Utica College's...

188

Achievements: Nuclear Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne National Laboratory Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

189

Regulator of modular units and Mahler measures.  

E-Print Network (OSTI)

We present a proof of the formula, due to Mellit and Brunault, which evaluates an integral of the regulator of two modular units to the value of the $L$-series of a modular form of weight 2 at $s=2$. Applications of the formula to computing Mahler measures are discussed.

Wadim Zudilin.

190

Early Exploration - Reactors designed/built by Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Exploration Early Exploration About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

191

Performance and Safety Analysis of a Generic Small Modular Reactor  

E-Print Network (OSTI)

for spent fuel from a Westinghouse AP1000. The results showed that from a fuel material standpoint, the SMR and AP1000 had effectively the same PR value. Unable to analyze security systems and methods employed at specific nuclear power plant sites...

Kitcher, Evans Damenortey, 1987-

2012-11-07T23:59:59.000Z

192

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

193

A MODULAR ACTUATOR ARCHITECTURE FOR ROBOTIC APPLICATIONS  

SciTech Connect

The United States Department of Energy (DOE) Complexes perform numerous hazardous material handling operations within the confines of a glovebox. The DOE is continuing to seek more efficient and safer means of handling these materials inside gloveboxes rather than the conventional, labor-intensive method through lead lined gloves. The use of glovebox automation technology will also be critical to the DOE in its efforts to comply with its mandated ALARA principles in handling the hazardous materials associated with the cleanup process. Operations associated with materials processing in a glovebox are similar to many industrial tasks, but the unique glovebox environment and Plutonium material properties create a unique set of challenges for conventional automation machinery. Such properties include: Low to moderate levels of ionizing radiation, high abrasiveness, corrosiveness, pyrophoric tendencies, rapid dispersal and permeation of environment, diffuses quickly, and possible incompatible material interaction. The glovebox presents the following challenges: existing gloveboxes may not be readily altered or even modified at all, complex mechanical operations for maintenance and repair are difficult or impossible through gloves, failed equipment may not be removed easily or at all. If a broken piece of equipment cannot be bagged-out through a glove port (approximately 216 mm (8 1/2 inch) diameter) it must remain in place. Broken equipment obstructs further operations. If it renders the entire glovebox unusable, a significant volume of waste is generated and an expensive system must be disposed of and replaced. A moderate sized glovebox alone costs between $250,000 and $500,000 and an equipment malfunction, which penetrates the glovebox and exposes the room to Plutonium or other toxic materials, is catastrophic. In addition to the human exposure issues, cleanup can easily run into the millions of dollars. A solution to the issues described above is ARM Automation Inc.'s (ARM) modular robotic manipulator technology developed for DOE EM operations, which addresses many of the issues discussed in the previous section. This manipulator system has the capability of custom configurations, which accommodate common glovebox tasks such as materials repackaging. The modular nature and quick connects of this system simplify installations into ''hot'' boxes and any potential modifications or repair therein. In the field of automation and robotics, a very common element is one used to generate motion for precise positioning of loads. One example of such an automation component would be an individual joint within an industrial robotic manipulator. This component consists of a tightly integrated package containing an electric motor, gear train, output support bearings, position sensors, brake, servo-amplifier and communications controller. Within the context of this paper, this key building block is referred to as an actuator module. With regard to the needs of the EM, [8] and [9] have shown that while each focus area has unique requirements for robotic automation at a system or manipulator level, their requirements at the actuator level are very similar. Thereby, a modular approach to automation which utilizes a small set of versatile actuator modules can be used to construct a broad range of robotic systems and automation cells suited to EM applications. By providing a pre-engineered, pre-integrated motion system to different robotics users within the DOE, new automation systems can be more quickly created without extensive expertise in motion control or the expense of building custom equipment.

None

2001-07-01T23:59:59.000Z

194

CESAR: Center for Exascale Simulation of Advanced Reactors | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

CESAR: Center for Exascale Simulation of Advanced Reactors CESAR: Center for Exascale Simulation of Advanced Reactors CESAR: Center for Exascale Simulation of Advanced Reactors CESAR is an interdisciplinary center for developing an innovative, next-generation nuclear reactor analysis tool that both utilizes and guides the development of exascale computing platforms. Existing reactor analysis codes are highly tuned and calibrated for commercial light-water reactors, but they lack the physics fidelity to seamlessly carry over to new classes of reactors with significantly different design characteristics-as, for example, innovative concepts such as TerraPower's Traveling Wave reactor and Small Modular Reactor concepts. Without vastly improved modeling capabilities, the economic and safety characteristics of these and other novel systems will require tremendous

195

The Integral Fast Reactor (IFR) - Reactors designed/built by Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Integral Fast Reactor Integral Fast Reactor About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

196

EEL 4712 Digital Design 1. Catalog Description (3 credits) Advanced modular logic design, design languages,  

E-Print Network (OSTI)

EEL 4712 Digital Design 1. Catalog Description ­ (3 credits) Advanced modular logic design, design systems, using the state of the art technologies and design environments and tools. 4. Contribution containing an Altera Cyclone II EP2C8T144C8 FPGA (will be provided to you, included in lab fee) 13

Fang, Yuguang "Michael"

197

TEPP Training - Modular Emergency Response Radiological Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Packaging and Transportation » Services » Waste Management » Packaging and Transportation » Transportation Emergency Preparedness Program » TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) Once the jurisdiction has completed an evaluation of their plans and procedures, they will need to address any gaps in training. To assist, TEPP has developed the Modular Emergency Response Radiological Transportation Training (MERRTT) program. MERRTT provides fundamental knowledge for responding to transportation incidents involving radiological material and builds on training in existing hazardous materials curricula. MERRTT satisfies the training requirements outlined in the Waste Isolation Pilot

198

Modular design for increasing assembly automation  

Science Journals Connector (OSTI)

Abstract Modular design can address the need for a high number of product variants and further allow a higher degree of automation in the assembly line. A framework is developed for the simultaneous modular product design and the design of automated manufacturing system. Product designs are optimized for automation using Design Structure Matrix and Modular Function Deployment. Alternative production systems are designed and accessed based on the analysis of assembly steps hierarchically. The implementation of the framework on the design of a production system for furniture assembly, able to handle multiple variants with a large number of components, is demonstrated.

Konstantinos Salonitis

2014-01-01T23:59:59.000Z

199

Major Safety Aspects of Advanced Candu Reactor and Associated Research and Development  

SciTech Connect

The Advanced Candu{sup R} Reactor design is built on the proven technology of existing Candu plants and on AECL's knowledge base acquired over decades of nuclear power plant design, engineering, construction and research. Two prime objectives of ACR-700TM1 are cost reduction and enhanced safety. To achieve them some new features were introduced and others were improved from the previous Candu 6 and Candu 9 designs. The ACR-700 reactor design is based on the modular concept of horizontal fuel channels surrounded by a heavy water moderator, the same as with all Candu reactors. The major novelty in the ACR-700 is the use of slightly enriched fuel and light water as coolant circulating in the fuel channels. This results in a more compact reactor design and a reduction of heavy water inventory, both contributing to a significant decrease in cost compared to Candu reactors, which employ natural uranium as fuel and heavy water as coolant. The reactor core design adopted for ACR-700 also has some features that have a bearing on inherent safety, such as negative power and coolant void reactivity coefficient. Several improvements in engineered safety have been made as well, such as enhanced separation of the safety support systems. Since the ACR-700 design is an evolutionary development of the currently operating Candu plants, limited research is required to extend the validation database for the design and the supporting safety analysis. A program of safety related research and development has been initiated to address the areas where the ACR-700 design is significantly different from the Candu designs. This paper describes the major safety aspects of the ACR-700 with a particular focus on novel features and improvements over the existing Candu reactors. It also outlines the key areas where research and development efforts are undertaken to demonstrate the effectiveness and robustness of the design. (authors)

Bonechi, M.; Wren, D.J.; Hopwood, J.M. [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

2002-07-01T23:59:59.000Z

200

A MODULAR, SCALABLE, ARCHITECTURE FOR UNMANNED VEHICLES  

E-Print Network (OSTI)

1 A MODULAR, SCALABLE, ARCHITECTURE FOR UNMANNED VEHICLES David G. Armstrong II, Carl D. Crane III://www.me.ufl.edu/CIMAR Ralph English Wintec, Inc. Ft. Walton Beach, Florida Phillip Adsit Applied Research Associates Tyndall

Florida, University of

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Honeywell modular automation system computer software documentation  

SciTech Connect

This document provides a Computer Software Docuemntation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-21I.

Cunningham, L.T.

1997-01-20T23:59:59.000Z

202

A design flow based on modular refinement  

E-Print Network (OSTI)

We propose a practical methodology based on modular refinement to design complex systems. The methodology relies on modules with latency-insensitive interfaces so that the refinements can change the timing contract of a ...

Dave, Nirav H.

203

Design of a modular motorcycle windshield wiper  

E-Print Network (OSTI)

Motorcycle windshield wipers are essentially non-existent in the United States. Customer and market research reveals a demand for such a product. This paper explores the product viability of a modular motorcycle windshield ...

Boyd, Robert Allen Michael

2010-01-01T23:59:59.000Z

204

Modular Gas-to-Liquid: Converting a Liability into Economic Value  

Science Journals Connector (OSTI)

Modular Gas-to-Liquid: Converting a Liability into Economic Value ... In the 1950s, several plants started again using the FT process, one in Brownsville, TX, with a capacity of 10800 bbl/day based on methane and one in Sasolburg, South Africa, based on coal-derived gas. ... Commercial-scale technologies do not apply to associated gas because the technologies benefit from economies of scale based on high feed rates and sustained gas flow rates. ...

Johannes G. Koortzen; Sabjinder Bains; Lary L. Kocher; Iain K. Baxter; Ross A. Morgan

2013-09-19T23:59:59.000Z

205

E-Print Network 3.0 - accelerator technology developments Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Through Flexibility: The Case of a Demonstration Accelerator-Driven Subcritical Reactor... technology facing significant technological uncertainty, the...

206

Modular ITT Module D Modular ITT Module D Version 1 16/02/2012  

E-Print Network (OSTI)

manage health and safety at work. Your responses should include: basic statement on safety awarenessModular ITT ­ Module D Modular ITT ­ Module D Version 1 16/02/2012 Module D ­ Health & Safety an overall failing of your bid. This section allows us to assess your competency for health and safety. We

207

Figure 1. Recurrent modular network architecture Recurrent modular network architecture for sea ice  

E-Print Network (OSTI)

). Classification of sea ice in MIZ is important for navigation in these regions and for accurate evaluation of heatFigure 1. Recurrent modular network architecture Recurrent modular network architecture for sea ice classification in the Marginal Ice Zone using ERS SAR images Andrey V. Bogdanov1a , Marc Toussaint1b , Stein

Toussaint, Marc

208

Modular design of biological systems  

E-Print Network (OSTI)

The focus of my research is the development of technology for building compound biological systems from simpler pieces. I designed BioScaffold parts, a family of variable regions that can be inserted into a DNA sequence ...

Norville, Julie Erin, 1980-

2012-01-01T23:59:59.000Z

209

Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1,  

E-Print Network (OSTI)

Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1, *, Alexander J Ninfa2 a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation: computational methods; metabolic and regulatory networks Keywords: feedback; insulation; modularity; singular

Sontag, Eduardo

210

Modular Integrated Monitoring System (MIMS) field test installations  

SciTech Connect

The MIMS program is funded by the Department of Energy under the Office of Nonproliferation and National Security. The program objective is to develop cost effective, modular, multi-sensor monitoring systems. Both in-plant and ground based sensors are envisioned. It is also desirable to develop sensors/systems that can be fielded/deployed in a rapid fashion. A MIMS architecture was selected to allow modular integration of sensors and systems and is based on LonWorks technology, commercially developed by Echelon Corporation. The first MIMS fieldable hardware was demonstrated at Lawrence Livermore National Laboratory. The field test, known within the DOE as the Item Tracking and Transparency (IT&I) demonstration, involved the collaboration and cooperation of five DOE laboratories (Sandia (SNL), Lawrence Livermore (LLNL), Pacific Northwest (PNL), Los Alamos (LANL), and Oak Ridge (ORNL)). The IT&T demonstration involved the monitoring of special nuclear material as it was transported around the facility utilizing sensors from the participating labs. The scenario was programmed to ignore normal activity in the facility until entry into the room where the material was stored. A second demonstration, which involved three separate scenarios, was conducted at Idaho National Engineering Laboratory (INEL). The participants included representatives from SNL, LLNL, PNL, and INEL. DOE has selected INEL as the long term testbed for MIMS developed sensors, systems, and scenarios. This paper will describe the installation, intended purpose, and results of the field demonstrations at LLNL and INEL under the MIMS program.

Martinez, R.L.; Waymire, D.R. [Sandia National Labs., Albuquerque, NM (United States); Fuess, D.A. [Lawrence Livermore National Lab., CA (United States)] [and others

1995-07-01T23:59:59.000Z

211

Introduction and Condensation The 2-modular characters of Fi23  

E-Print Network (OSTI)

Introduction and Condensation The 2-modular characters of Fi23 Problem, Perfidy, Tricks, and Tackling them Verification, Overview and Outlook Computing the 2-modular characters of Fi23 Max Neunhöffer23 #12;Introduction and Condensation The 2-modular characters of Fi23 Problem, Perfidy, Tricks

Neunhöffer, Max

212

Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters  

SciTech Connect

Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

Konzek, G.J.

1983-07-01T23:59:59.000Z

213

Distribution ICategory: General Reactor Technology  

E-Print Network (OSTI)

, and use it. It is a natural background, a necessity of life, a pollutant when in excess, a cure excessive! amounts of ultraviolet light from the sun to penetrate the earth's atmosphere and reach its a minimum of new hazards. X-rays have been with us since the 1890's and radioactivity was discovered soon

Shlyakhter, Ilya

214

Piecing together modular : understanding the benefits and limitations of modular construction methods for multifamily development  

E-Print Network (OSTI)

The primary purpose of this thesis is to explain the benefits and limitations of modular construction as it pertains to primarily wood-frame, multifamily housing in the United States. This thesis attempts to educate the ...

Cameron, Peter J. (Peter Jay)

2007-01-01T23:59:59.000Z

215

Honeywell Modular Automation System Computer Software Documentation  

SciTech Connect

This document provides a Computer Software Documentation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-211 and vertical denitration calciner in HC-230C-2.

CUNNINGHAM, L.T.

1999-09-27T23:59:59.000Z

216

E-Print Network 3.0 - assisted reactor concept Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Through Flexibility: The Case of a Demonstration Accelerator-Driven Subcritical Reactor Park EPRG... for Accelerator- Driven Subcritical Reactors (ADSRs). It shows...

217

Creating value for the business service buyer through modularity  

Science Journals Connector (OSTI)

The present study explores how modularity makes services visible and how it enables the customers to participate in service co-creation. We review the literature on buying business services to determine the buying challenges and we define service modularity and especially concentrate on defining the attributes of a modular service offering. Theoretical framework describing the connections of the attributes and challenges in service buying is elaborated through a single case study of a modular service in a professional service firm. We argue that a modular service offering can help customers by increasing the visibility of the service offering.

Pauliina Ulkuniemi; Saara Pekkarinen

2011-01-01T23:59:59.000Z

218

Axial Flux, Modular, Permanent-Magnet Generator with a Toroidal Winding for Wind Turbine Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

CP-500-24996 Ÿ UC Category: 1213 CP-500-24996 Ÿ UC Category: 1213 Axial Flux, Modular, Permanent- Magnet Generator with a Toroidal Winding for Wind Turbine Applications E. Muljadi C.P. Butterfield Yih-Huei Wan National Wind Technology Center National Renewable Energy Laboratory Presented at IEEE Industry Applications Conference St. Louis, MO November 5-8, 1998 National Renewable Energy Laboratory 1617 Cole Boulevard

219

Nuclear Power Technology: A Mandate for Change  

Science Journals Connector (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Fission Reactor

Kunmo Chung; George A. Hazelrigg

220

Chicago Pile reactors create enduring research legacy - Argonne's  

NLE Websites -- All DOE Office Websites (Extended Search)

Chicago Pile reactors create enduring research Chicago Pile reactors create enduring research legacy About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Early Argonne reactor lit the way for worldwide nuclear industry -  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Argonne reactor lit the way for worldwide Early Argonne reactor lit the way for worldwide nuclear industry About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

222

NUCLEAR REACTORS.  

E-Print Network (OSTI)

??Nuclear reactors are devices containing fissionable material in sufficient quantity and so arranged as to be capable of maintaining a controlled, self-sustaining NUCLEAR FISSION chain (more)

Belachew, Dessalegn

2010-01-01T23:59:59.000Z

223

Education: The Effort Is Global - Argonne's Nuclear Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne Reactors > Education: The Effort Is Global About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

224

Modular architecture for robotics and teleoperation  

DOE Patents (OSTI)

Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

Anderson, Robert J. (11908 Ibex Ave., N.E., Albuquerque, NM 87111)

1996-12-03T23:59:59.000Z

225

Modular test facility for HTS insert coils  

SciTech Connect

The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields in the range of 40-50 T. In this paper we will present a modular test facility developed for the purpose of investigating very high field levels with available 2G HTS superconducting materials. Performance of available conductors is presented, together with magnetic calculations and evaluation of Lorentz forces distribution on the HTS coils. Finally a test of a double pancake coil is presented.

Lombardo, V; Bartalesi, A.; Barzi, E.; Lamm, M.; Turrioni, D.; Zlobin, A.V.; /Fermilab

2009-10-01T23:59:59.000Z

226

Copper vapor laser modular packaging assembly  

DOE Patents (OSTI)

A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

Alger, Terry W. (Tracy, CA); Ault, Earl R. (Dublin, CA); Moses, Edward I. (Castro Valley, CA)

1992-01-01T23:59:59.000Z

227

Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs  

SciTech Connect

This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

1994-04-01T23:59:59.000Z

228

Why Nuclear Energy? - Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy: Nuclear Energy: Why Nuclear Energy? About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

229

Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report  

SciTech Connect

Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

Lambarski, T.; Minyard, G. [Solar Electric Specialties Co., Willits, CA (United States)

1998-10-01T23:59:59.000Z

230

BNL | Our History: Reactors as Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

> See also: Accelerators > See also: Accelerators Brookhaven History: Using Reactors as Research Tools BGRR Brookhaven Graphite Research Reactor The Brookhaven Graphite Research Reactor (BGRR) was the Laboratory's first big machine and the first peace-time reactor built in the United States following World War II. The reactor's primary mission was to produce neutrons for scientific experimentation and to refine reactor technology. At the time, the BGRR could accommodate more simultaneous experiments than any other reactor. Scientists and engineers from every corner of the U.S. came to use the reactor, which was not only a source of neutrons for experiments, but also an excellent training facility. Researchers used the BGRR's neutrons as tools for studying atomic nuclei and the structure of solids, and to investigate many physical, chemical and

231

Temperature effects on chemical reactor  

Science Journals Connector (OSTI)

In this paper we had to study some characteristics of the chemical reactors from which we can understand the reactor operation in different circumstances; from these and the most important factor that has a great effect on the reactor operation is the temperature it is a mathematical processing of a chemical problem that was already studied but it may be developed by introducing new strategies of control; in our case we deal with the analysis of a liquid?gas reactor which can make the flotation of the benzene to produce the ethylene; this type of reactors can be used in vast domains of the chemical industry especially in refinery plants where we find the oil separation and its extractions whether they are gases or liquids which become necessary for industrial technology especially in our century.

M. Azzouzi

2008-01-01T23:59:59.000Z

232

Light Water Reactor Sustainability Technical Documents | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » Nuclear Reactor Technologies » Light Water Reactor Initiatives » Nuclear Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents September 30, 2011 Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement

233

Modular CHP System for Utica College: Design Specification, March 2007  

Energy.gov (U.S. Department of Energy (DOE))

This report describes a system specification for purchasing the modularized components of a cogeneration facility for assembly, shipping, and onsite operation.

234

A graphical operations interface for modular surface systems  

E-Print Network (OSTI)

This paper presents the design and implementation of algorithms for a new graphical operations interface system specifically adapted to operating modular reconfigurable articulated surface systems. Geometric models of ...

Vona, Marsette A.

235

Coal-fueled diesels for modular power generation  

SciTech Connect

Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

Wilson, R.P. [Little (Arthur D.), Inc., Cambridge, MA (United States); Rao, A.K. [Cooper-Bessemer Reciprocating, Grove City, PA (United States); Smith, W.C. [Department of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center

1993-11-01T23:59:59.000Z

236

naval reactors  

National Nuclear Security Administration (NNSA)

After operating for 34 years and training over 14,000 sailors, the Department of Energy S1C Prototype Reactor Site in Windsor, Connecticut, was returned to "green field"...

237

Language constructs for modular parallel programs  

SciTech Connect

We describe programming language constructs that facilitate the application of modular design techniques in parallel programming. These constructs allow us to isolate resource management and processor scheduling decisions from the specification of individual modules, which can themselves encapsulate design decisions concerned with concurrence, communication, process mapping, and data distribution. This approach permits development of libraries of reusable parallel program components and the reuse of these components in different contexts. In particular, alternative mapping strategies can be explored without modifying other aspects of program logic. We describe how these constructs are incorporated in two practical parallel programming languages, PCN and Fortran M. Compilers have been developed for both languages, allowing experimentation in substantial applications.

Foster, I.

1996-03-01T23:59:59.000Z

238

Honeywell Modular Automation System Computer Software Documentation  

SciTech Connect

The purpose of this Computer Software Document (CSWD) is to provide configuration control of the Honeywell Modular Automation System (MAS) in use at the Plutonium Finishing Plant (PFP). This CSWD describes hardware and PFP developed software for control of stabilization furnaces. The Honeywell software can generate configuration reports for the developed control software. These reports are described in the following section and are attached as addendum's. This plan applies to PFP Engineering Manager, Thermal Stabilization Cognizant Engineers, and the Shift Technical Advisors responsible for the Honeywell MAS software/hardware and administration of the Honeywell System.

STUBBS, A.M.

2000-12-04T23:59:59.000Z

239

Nucleic acid amplification using modular branched primers  

DOE Patents (OSTI)

Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

Ulanovsky, Levy (Westmont, IL)

2001-01-01T23:59:59.000Z

240

Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers  

E-Print Network (OSTI)

for Modular, Scalable Liquid-Rack Cooling Systems in DataFOR A MODULAR, SCALABLE LIQUID-RACK COOLING SYSTEM IN DATA3 M ODULAR LIQUID - RACK COOLING

Xu, TengFang

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Research reactors - an overview  

SciTech Connect

A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

West, C.D.

1997-03-01T23:59:59.000Z

242

Fast Machine Code for Modular Multiplication Michael Scott  

E-Print Network (OSTI)

Fast Machine Code for Modular Multiplication Michael Scott School of Computer Applications Dublin, that is the calculation of a = b e mod n where for acceptable levels of security a, b, e, and n are large multiprecision will be not much larger than the number of bits in the binary representation of e. Therefore fast modular

Bernstein, Daniel

243

On -Induction, Chiral Generators and Modular Invariants for Subfactors  

E-Print Network (OSTI)

On -Induction, Chiral Generators and Modular Invariants for Subfactors Jens B¨ockenhauer and David apply -induction and, developing further some ideas of Ocneanu, we define chiral generators -Induction, Chiral Generators and Modular Invariants 43 5.1 Relating -induction to chiral generators

Kawahigashi, Yasuyuki

244

Toward Infusing Modular and Reflective Design Learning throughout the Curriculum  

E-Print Network (OSTI)

Toward Infusing Modular and Reflective Design Learning throughout the Curriculum John C. Georgas intervention that cen- ters on the widespread infusion of design learning throughout the curriculum using: An emphasis on broadly infusing design learning through the curriculum using modular design challenges

Georgas, John

245

Argonne step closer to safer nuclear reactor  

Science Journals Connector (OSTI)

Argonne step closer to safer nuclear reactor ... "A key technological link" toward development of meltdown-immune nuclear reactors is now in the demonstration phase at Argonne National Laboratory near Chicago. ... The technique is part of Argonne's continuing interest in the sodium-cooled integral fast reactor (IFR), whose immunity to meltdown derives from molten sodium's function as a heat sink and the use of metallic fuel that conducts heat better than conventional oxide fuels. ...

WARD WORTHY

1988-05-30T23:59:59.000Z

246

Light Water Reactor Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Light Water Reactor Sustainability ACCOMPLISHMENTS REPORT 2014 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

247

Light Water Reactor Sustainability Technical Documents | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Technologies » Light Water Reactor Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents April 30, 2013 LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs: DOE-NE's Light Water Reactor Sustainability (LWRS) Program and EPRI's Long-Term Operations (LTO) Program. April 30, 2013 Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and

248

Modular Biomass Systems Could Boost Rural Areas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas June 16, 2010 - 1:09pm Addthis Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Stephen Graff Former Writer & editor for Energy Empowers, EERE Increased ethanol production will help revitalize the rural economy and decrease America's dependence on foreign oil, but there are other ways to create opportunities in the farmlands. For Robb Walt, president of Community Power Corporation (CPC) in Littleton, Colo., one answer is community-scale, bio-energy service companies, or

249

Z-score-based modularity for community detection in networks  

E-Print Network (OSTI)

Identifying community structure in networks is an issue of particular interest in network science. The modularity introduced by Newman and Girvan [Phys. Rev. E 69, 026113 (2004)] is the most popular quality function for community detection in networks. In this study, we identify a problem in the concept of modularity and suggest a solution to overcome this problem. Specifically, we obtain a new quality function for community detection. We refer to the function as Z-modularity because it measures the Z-score of a given division with respect to the fraction of the number of edges within communities. Our theoretical analysis shows that Z-modularity mitigates the resolution limit of the original modularity in certain cases. Computational experiments using both artificial networks and well-known real-world networks demonstrate the validity and reliability of the proposed quality function.

Miyauchi, Atsushi

2015-01-01T23:59:59.000Z

250

Modular Biomass Systems Could Boost Rural Areas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas June 16, 2010 - 1:09pm Addthis Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Stephen Graff Former Writer & editor for Energy Empowers, EERE Increased ethanol production will help revitalize the rural economy and decrease America's dependence on foreign oil, but there are other ways to create opportunities in the farmlands. For Robb Walt, president of Community Power Corporation (CPC) in Littleton, Colo., one answer is community-scale, bio-energy service companies, or

251

Intelligent Control of Modular Robotic Welding Cell  

SciTech Connect

Although robotic machines are routinely used for welding, such machines do not normally incorporate intelligent capabilities. We are studying the general problem of formulating usable levels of intelligence into welding machines. From our perspective, an intelligent machine should: incorporate knowledge of the welding process, know if the process is operating correctly, know if the weld it is making is good or bad, have the ability to learn from its experience to perform welds, and be able to optimize its own performance. To this end, we are researching machine architecture, methods of knowledge representation, decision making and conflict resolution algorithms, methods of learning and optimization, human/machine interfaces, and various sensors. This paper presents work on the machine architecture and the human/machine interface specifically for a robotic, gas metal arc welding cell. Although the machine control problem is normally approached from the perspective of having a central body of control in the machine, we present a design using distributed agents. A prime goal of this work is to develop an architecture for an intelligent machine that will support a modular, plug and play standard. A secondary goal of this work is to formulate a human/machine interface that treats the human as an active agent in the modular structure.

Smartt, Herschel Bernard; Kenney, Kevin Louis; Tolle, Charles Robert

2002-04-01T23:59:59.000Z

252

INTEGRATED FISCHER TROPSCH MODULAR PROCESS MODEL  

SciTech Connect

With declining petroleum reserves, increased world demand, and unstable politics in some of the worlds richest oil producing regions, the capability for the U.S. to produce synthetic liquid fuels from domestic resources is critical to national security and economic stability. Coal, biomass and other carbonaceous materials can be converted to liquid fuels using several conversion processes. The leading candidate for large-scale conversion of coal to liquid fuels is the Fischer Tropsch (FT) process. Process configuration, component selection, and performance are interrelated and dependent on feed characteristics. This paper outlines a flexible modular approach to model an integrated FT process that utilizes a library of key component models, supporting kinetic data and materials and transport properties allowing rapid development of custom integrated plant models. The modular construction will permit rapid assessment of alternative designs and feed stocks. The modeling approach consists of three thrust areas, or strands model/module development, integration of the model elements into an end to end integrated system model, and utilization of the model for plant design. Strand 1, model/module development, entails identifying, developing, and assembling a library of codes, user blocks, and data for FT process unit operations for a custom feedstock and plant description. Strand 2, integration development, provides the framework for linking these component and subsystem models to form an integrated FT plant simulation. Strand 3, plant design, includes testing and validation of the comprehensive model and performing design evaluation analyses.

Donna Post Guillen; Richard Boardman; Anastasia M. Gribik; Rick A. Wood; Robert A. Carrington

2007-12-01T23:59:59.000Z

253

Light Water Reactor Sustainability Newsletter Rebecca Smith-Kevern  

NLE Websites -- All DOE Office Websites (Extended Search)

Rebecca Smith-Kevern Director, Office of Light Water Reactor Technologies. I am often asked why the Federal Government should fund a program that supports the continued operation...

254

Reactor Development for the Hepatitis A Vaccine VAQTA  

Science Journals Connector (OSTI)

Reactor choice for virus propagation is dependent not only on technological merits but also on manufacturing convenience, regulatory considerations, and process development organization culture. The different ...

J. G. Aunins; T. A. Bibila; S. Gatchalian; G. R. Hunt

1997-01-01T23:59:59.000Z

255

Technology, safety and costs of decommissioning a reference boiling water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule  

SciTech Connect

Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies of conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference boiling water reactor (BWR) described in the earlier study; and defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs. This report presents the results of recent PNL studies to provide supporting information in three areas concerning decommissioning of the reference BWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation.

Konzek, G.J.; Smith, R.I.

1988-07-01T23:59:59.000Z

256

Technology, safety and costs of decommissioning a reference pressurized water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule  

SciTech Connect

Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies on conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference pressurized water reactor (PWR) described in the earlier study; defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs; and completing a study of recent PWR steam generator replacements to determine realistic estimates for time, costs and doses associated with steam generator removal during decommissioning. This report presents the results of recent PNL studies to provide supporting information in four areas concerning decommissioning of the reference PWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; assessing the cost and dose impacts of recent steam generator replacements; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation.

Konzek, G.J.; Smith, R.I.

1988-07-01T23:59:59.000Z

257

Safety approaches for high power modular laser operation  

SciTech Connect

Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest has been the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program has progressed to the point where a plant-scale facility to demonstrate commercial feasibility has been built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a >90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities ({approximately}3000 gal) of ethanol dye solutions. The Laboratory`s safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

Handren, R.T.

1993-03-01T23:59:59.000Z

258

Catalytic reactor  

DOE Patents (OSTI)

A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

2009-03-10T23:59:59.000Z

259

Engineering Development of Ceramic Membrane Reactor  

E-Print Network (OSTI)

ceramic Ion Transport Membrane (ITM) reactor system for low-cost conversion of natural gas to hydrogen;7 A Revolutionary Technology Using Ceramic Membranes Ion Transport Membranes (ITM) ­ Non-porous multiEngineering Development of Ceramic Membrane Reactor Systems for Converting Natural Gas to Hydrogen

260

A next-generation reactor concept: The Integral Fast Reactor (IFR)  

SciTech Connect

The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

Chang, Y.I.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A next-generation reactor concept: The Integral Fast Reactor (IFR)  

SciTech Connect

The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

Chang, Y.I.

1992-07-01T23:59:59.000Z

262

Instrumentation and Control and Human Machine Interface Science and Technology Roadmap in Support of Advanced Reactors and Fuel Programs in the U.S.  

SciTech Connect

The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology Roadmap (Reference xi) that was developed to address the major challenges in this technical area for the Gen IV and other U.S. Department of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I&C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems and their licensing considerations. The ICHMI roadmap will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues.

Miller, Don W.; Arndt, Steven A.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Bond, Leonard J.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

2008-06-01T23:59:59.000Z

263

Advance Reactor Concepts Technical Review Panel Public Report  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Nuclear Energy supports research and development for advanced reactor technologies. This report documents the results of the 2014 Technical Review Panel (TRP) review of seven advanced reactor concepts. The intent of the process was to identify R&D needs for advanced reactor concepts in order to inform Department of Energy (DOE) Office of Nuclear Energy R&D investment decisions.

264

Research Program of a Super Fast Reactor  

SciTech Connect

Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is not breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)

Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie; Terai, Takayuki; Nagasaki, Shinya; Muroya, Yusa; Abe, Hiroaki [Nuclear Professional School / Department of Nuclear Engineering and Management, The University of Tokyo, Tokaimura, Naka-gun, Ibaraki, 319-1188 (Japan); Mori, Hideo [Department of Mechanical Engineering, Kyushu University (Japan); Akiba, Masato; Akimoto, Hajime; Okumura, Keisuke; Akasaka, Naoaki [Japan Atomic Energy Agency (Japan); GOTO, Shoji [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

265

Dynamics on modular networks with heterogeneous correlations  

SciTech Connect

We develop a new ensemble of modular random graphs in which degree-degree correlations can be different in each module, and the inter-module connections are defined by the joint degree-degree distribution of nodes for each pair of modules. We present an analytical approach that allows one to analyze several types of binary dynamics operating on such networks, and we illustrate our approach using bond percolation, site percolation, and the Watts threshold model. The new network ensemble generalizes existing models (e.g., the well-known configuration model and Lancichinetti-Fortunato-Radicchi networks) by allowing a heterogeneous distribution of degree-degree correlations across modules, which is important for the consideration of nonidentical interacting networks.

Melnik, Sergey [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland) [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland); Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP (United Kingdom); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom) [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP (United Kingdom); Mucha, Peter J. [Department of Mathematics, Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250 (United States) [Department of Mathematics, Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250 (United States); Institute for Advanced Materials, Nanoscience and Technology, University of North Carolina, Chapel Hill, North Carolina 27599-3216 (United States); Gleeson, James P. [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland)] [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland)

2014-06-15T23:59:59.000Z

266

Honeywell modular automation system computer software documentation  

SciTech Connect

The purpose of this Computer Software Document (CSWD) is to provide configuration control of the Honeywell Modular Automation System (MAS) in use at the Plutonium Finishing Plant (PFP). The Honeywell MAS is used to control the thermal stabilization furnaces in glovebox HA-211. The PFP developed software is being updated to reflect the Polycube Processing and Unwashed Salt Thermal Stabilization program addition. The polycube processing program was installed per HNF-FMP-02-11162-R2. The functional test of the program was performed in JCS work package 22-02-1031, The unwashed salt item program was installed per HNF-FMP-03-16577-RO. The functional test of the program completed in JCS work package 22-03-00654.

STUBBS, A.M.

2003-07-02T23:59:59.000Z

267

Honeywell Modular Automation System Acceptance Test Procedure  

SciTech Connect

The purpose of this Acceptance Test Procedure (ATP) is to verify the operability of the three new furnaces as controlled by the new Honeywell Modular Automation System (MAS). The Honeywell MAS is being installed in PFP to control the three thermal stabilization furnaces in glovebox HA-211. The ATP provides instructions for testing the configuration of the Honeywell MAS at the Plutonium Finishing Plant(PFP). The test will be a field test of the analog inputs, analog outputs, and software interlocks. The interlock test will check the digital input and outputs. Field equipment will not be connected forth is test. Simulated signals will be used to test thermocouple, limit switch, and vacuum pump inputs to the PLUMAS.

STUBBS, A.M.

1999-09-21T23:59:59.000Z

268

Modular, multi-level groundwater sampler  

DOE Patents (OSTI)

Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

Nichols, Ralph L. (812 Plantation Point Dr., N. Augusta, SC 29841); Widdowson, Mark A. (4204 Havana Ct., Columbia, SC 29206); Mullinex, Harry (10 Cardross La., Columbia, SC 29209); Orne, William H. (12 Martha Ct., Sumter, SC 29150); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

1994-01-01T23:59:59.000Z

269

Kahler stabilized, modular invariant heterotic string models  

SciTech Connect

We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Bintruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.

Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.

2007-03-19T23:59:59.000Z

270

Focal plane array with modular pixel array components for scalability  

DOE Patents (OSTI)

A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

2014-12-09T23:59:59.000Z

271

UCLA program in reactor studies: The ARIES tokamak reactor study  

SciTech Connect

The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D-{sup 3}He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs.

Not Available

1991-01-01T23:59:59.000Z

272

Modular Applied General Equilibrium Tool (MAGNET) | Open Energy Information  

Open Energy Info (EERE)

Modular Applied General Equilibrium Tool (MAGNET) Modular Applied General Equilibrium Tool (MAGNET) Jump to: navigation, search Tool Summary Name: Modular Applied General Equilibrium Tool (MAGNET) Agency/Company /Organization: LEI Wageningen UR, the Netherlands Complexity/Ease of Use: Moderate Related Tools Ex Ante Appraisal Carbon-Balance Tool (EX-ACT) Climate Rapid Overview and Decision Support (C-ROADS) Simulator Partnership for Economic Policy Modeling and Policy Impact Analysis (MPIA) ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS A modular global computable general equilibrium model that covers the whole economy and has been used extensively in agricultural, environmental, and trade policy analysis; builds on the GTAP model, and is the successor of LEITAP. Approach MAGNET is based on the Global Trade Analysis Project (GTAP) model and

273

DOE Hydrogen Analysis Repository: Renewable Energy Power System Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Power System Modular Simulator (RPM-Sim) Renewable Energy Power System Modular Simulator (RPM-Sim) Project Summary Full Title: Renewable Energy Power System Modular Simulator (RPM-Sim) Project ID: 104 Principal Investigator: Edward Muljadi Keywords: Renewable; hybrid electric vehicles (HEV) Purpose This is a package software program developed based on a modular concept. Each module consists of a type of equipment or an element of a power system (for example, diesel-genset, wind turbine generator, village load, rotary converter, PV-inverter module, fuel cell-inverter module (developed by Prof. Hashem Nehrir, Montana State University), electrolysis module (developed by Prof. Hosein Salehfar and Prof. Mann University of North Dakota). Performer Principal Investigator: Edward Muljadi Organization: National Renewable Energy Laboratory (NREL)

274

Modularity and Commonality Research: Past Developments and Future Opportunities  

E-Print Network (OSTI)

Research on modularity and commonality has grown substantially over the past 15 years. Searching 36 journals over more than the past 35 years, I identify over 160 references in the engineering and management literature ...

Fixson, Sebastian K.

2007-04-20T23:59:59.000Z

275

Improving link failover efficiency in MANETs using modular prediction  

Science Journals Connector (OSTI)

In this paper, we present a flexible, modular architecture to combine various link state related measurements and prediction algorithms in order to accurately predict link failure in MANETs, while keeping bandwidth and energy overhead low. Our architecture ...

E. Van Den Berg; A. Cisneros; I. Hokelek; K. Parmeswaran; S. Samtani; J. Sucec; J. L. Simbol; A. Staikos; G. B. Rucker

2010-04-01T23:59:59.000Z

276

Distributed algorithms for self-disassembly in modular robots  

E-Print Network (OSTI)

We developed a modular robotic system that behaves as programmable matter. Specifically, we designed, implemented, and tested a collection of robots that, starting from an amorphous arrangement, can be assembled into ...

Gilpin, Kyle W

2006-01-01T23:59:59.000Z

277

Retroactivity, modularity, and insulation in synthetic biology circuits  

E-Print Network (OSTI)

A central concept in synthetic biology is the reuse of well-characterized modules. Modularity simplifies circuit design by allowing for the decomposition of systems into separate modules for individual construction. Complex ...

Lin, Allen

2011-01-01T23:59:59.000Z

278

Modular redundancy without voters decreases complexity of restoring organ  

Science Journals Connector (OSTI)

Fault-tolerant modules have usually been implemented through the use of static fault-masking or dynamic spare-switching. But a new class of MR (Modular Redundancy), the Responsive schemes, promises higher reliability levels and more efficient implementations ...

P. T. DeSousa; F. P. Mathur

1977-06-01T23:59:59.000Z

279

Distributed Online Learning of Central Pattern Generators in Modular Robots  

Science Journals Connector (OSTI)

In this paper we study distributed online learning of locomotion gaits for modular robots. The learning is based on a stochastic approximation method, SPSA, which optimizes the parameters of coupled oscillator...

David Johan Christensen; Alexander Sprwitz

2010-01-01T23:59:59.000Z

280

On the modular curve X0(23) Rene Schoof  

E-Print Network (OSTI)

that the extension does not split over Z[ 1 23 ]. The group scheme J0(23)[2] even has irreducible featuresOn the modular curve X0(23) Ren´e Schoof Abstract. The Jacobian J0(23) of the modular curve X0(23) is a semi-stable abelian variety over Q with good reduction outside 23. It is simple. We prove that every

Schoof, René

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Modular robotics overview of the `state of the art`  

SciTech Connect

The design of a robotic arm processing modular components and reconfigurable links is the general goal of a modular robotics development program. The impetus behind the pursuit of modular design is the remote engineering paradigm of improved reliability and availability provided by the ability to remotely maintain and repair a manipulator operating in a hazardous environment by removing and replacing worn or failed modules. Failed components can service off- line and away from hazardous conditions. The desire to reconfigure an arm to perform different tasks is also an important driver for the development of a modular robotic manipulator. In order to bring to fruition a truly modular manipulator, an array of technical challenges must be overcome. These range from basic mechanical and electrical design considerations such as desired kinematics, actuator types, and signal and transmission types and routings, through controls issues such as the need for control algorithms capable of stable free space and contact control, to computer and sensor design issues like consideration of the use of embedded processors and redundant sensors. This report presents a brief overview of the state of the art of technical issues relevant of modular robotic arm design. The focus is on breadth of coverage, rather than depth, in order to provide a reference frame for future development.

Kress, R.L.; Jansen, J.F.; Hamel, W.R.

1996-08-01T23:59:59.000Z

282

Issues in acoustic field testing of quiet modular classrooms  

Science Journals Connector (OSTI)

Modular classrooms are important to American education: About 300 000 modular classrooms are currently in use by public school systems here. Good acoustical conditions for learning are no less vital for students in modular classrooms than stick?built classrooms. In an effort to promote good acoustics in modular classrooms ANSI S12 Working Group 46 is seeking to standardize acoustic field testing. Their efforts are in response to key acoustical issues of modular classrooms: Excessive noise from HVAC (heating ventilating and air conditioning) systems and poor airborne sound insulation from exterior noise sources. In a recent and notable advance an HVAC system provider reported good progress in modular HVACnoise reduction: A ducted wall mounted system was used instead of the usual free blowing system with exposed fans. HVACnoise in the unoccupied room was near the maximum 35 dB level required by ANSI S12.60. Interior noise levels were so low that efforts to confirm their values were confounded by noise contamination from exterior sources. The relatively high interior ambient noise levels were due to poor airborne sound insulation. Lessons learned from recent field testing will be discussed. Results of airborne sound insulation tests now in planning stages will be reported if available.

David Lubman; Louis C. Sutherland

2007-01-01T23:59:59.000Z

283

Lessons Learned From Gen I Carbon Dioxide Cooled Reactors  

SciTech Connect

This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

David E. Shropshire

2004-04-01T23:59:59.000Z

284

Sandia National Laboratories Technology Marketing Summaries ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia National Laboratories 04052013 Industrial Technologies Find More Like This Small-Scale Reactor for the Production of Medical Isotopes Currently, there is a severe...

285

Hydrogain Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Place: Florida Zip: FL 33069 Sector: Hydro, Hydrogen Product: Developers of hydrogen fuel generation and storage technology for generators, reactors, power plants, fuel-cells...

286

Modular Countermine Payload for Small Robots  

SciTech Connect

Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multi-mission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.

Herman Herman; Doug Few; Roelof Versteeg; Jean-Sebastien Valois; Jeff McMahill; Michael Licitra; Edward Henciak

2010-04-01T23:59:59.000Z

287

Photocatalytic reactor  

DOE Patents (OSTI)

A photocatalytic reactor is described for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane. 4 figs.

Bischoff, B.L.; Fain, D.E.; Stockdale, J.A.D.

1999-01-19T23:59:59.000Z

288

Fast Spectrum Molten Salt Reactor Options  

SciTech Connect

During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

2011-07-01T23:59:59.000Z

289

The ARIES tokamak reactor study  

SciTech Connect

The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

Not Available

1989-10-01T23:59:59.000Z

290

Hybrid adsorptive membrane reactor  

DOE Patents (OSTI)

A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

2011-03-01T23:59:59.000Z

291

A new, very massive modular Liquid Argon Imaging Chamber to detect low energy off-axis neutrinos from the CNGS beam. (Project MODULAr)  

E-Print Network (OSTI)

The paper is considering an opportunity for the CERN/GranSasso (CNGS) neutrino complex, concurrent time-wise with T2K and NOvA, to search for theta_13 oscillations and CP violation. Compared with large water Cherenkov (T2K) and fine grained scintillators (NOvA), the LAr-TPC offers a higher detection efficiency and a lower backgrounds, since virtually all channels may be unambiguously recognized. The present proposal, called MODULAr, describes a 20 kt fiducial volume LAr-TPC, following very closely the technology developed for the ICARUS-T60o, and is focused on the following activities, for which we seek an extended international collaboration: (1) the neutrino beam from the CERN 400 GeV proton beam and an optimised horn focussing, eventually with an increased intensity in the framework of the LHC accelerator improvement program; (2) A new experimental area LNGS-B, of at least 50000 m3 at 10 km off-axis from the main Laboratory, eventually upgradable to larger sizes. A location is under consideration at about 1.2 km equivalent water depth; (3) A new LAr Imaging detector of at least 20 kt fiducial mass. Such an increase in the volume over the current ICARUS T600 needs to be carefully considered. It is concluded that a very large mass is best realised with a set of many identical, independent units, each of 5 kt, "cloning" the technology of the T600. Further phases may foresee extensions of MODULAr to meet future physics goals. The experiment might reasonably be operational in about 4/5 years, provided a new hall is excavated in the vicinity of the Gran Sasso Laboratory and adequate funding and participation are made available.

B. Baibussinov; M. Baldo Ceolin; G. Battistoni; P. Benetti; A. Borio; E. Calligarich; M. Cambiaghi; F. Cavanna; S. Centro; A. G. Cocco; R. Dolfini; A. Gigli Berzolari; C. Farnese; A. Fava; A. Ferrari; G. Fiorillo; D. Gibin; A. Guglielmi; G. Mannocchi; F. Mauri; A. Menegolli; G. Meng; C. Montanari; O. Palamara; L. Periale; A. Piazzoli; P. Picchi; F. Pietropaolo; A. Rappoldi; G. L. Raselli; C. Rubbia; P. Sala; G. Satta; F. Varanini; S. Ventura; C. Vignoli

2007-04-11T23:59:59.000Z

292

Accelerators for Subcritical Molten-Salt Reactors  

SciTech Connect

Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

Johnson, Roland (Muons, Inc.) [Muons, Inc.

2011-08-03T23:59:59.000Z

293

GEN-IV Reactors  

Science Journals Connector (OSTI)

Generation-IV reactors are a set of nuclear reactors currently being developed under international collaborations targeting ... economics, proliferation resistance, and physical protection of nuclear energy. Nuclear

Taek K. Kim

2013-01-01T23:59:59.000Z

294

The Netherlands Reactor Centre  

Science Journals Connector (OSTI)

... Two illustrated brochures in English have recently J. been issued by the Netherlands Reactor Centre ( ... Centre (Reactor Centrum Nederland). The first* gives a general survey of the ...

S. WEINTROUB

1964-04-04T23:59:59.000Z

295

Kernel for modular robot applications: Automatic modeling techniques  

SciTech Connect

A modular robotic system consists of standardized joint and link units that an be assembled into various kinematic configurations for different types of tasks. For the control and simulation of such a system, manual derivation of the kinematic and dynamic models, as well as the error model for kinematic calibration, require tremendous effort, because the models constantly change as the robot geometry is altered after module reconfiguration. This paper presents a frame-work to facilitate the model-generation procedure for the control and simulation of the modular robot system. A graph technique, termed kinematic graphs and realized through assembly incidence matrices (AIM), is introduced to represent the module-assembly sequence and robot geometry. The kinematics and dynamics are formulated based on a local representation of the theory of lie groups and Lie algebras. The automatic model-generation procedure starts with a given assembly graph of the modular robot. Kinematic, dynamic, and error models of the robot are then established, based on the local representations and iterative graph-traversing algorithms. This approach can be applied to a modular robot with both serial and branch-type geometries, and arbitrary degrees of freedom. Furthermore, the AIM of the robot naturally leads to solving the task-oriented optimal configuration problem in modular robots. There is no need to maintain a huge library of robot models, and the footprint of the overall software system can be reduced.

Chen, I.M.; Yeo, S.H.; Chen, G. [Nanyang Technological Univ. (Singapore). School of Mechanical and production Engineering] [Nanyang Technological Univ. (Singapore). School of Mechanical and production Engineering; Yang, G. [Gintic Inst. of Manufacturing Technology (Singapore). Automation Technology Div.] [Gintic Inst. of Manufacturing Technology (Singapore). Automation Technology Div.

1999-02-01T23:59:59.000Z

296

E-Print Network 3.0 - acid immunoaffinity reactor Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

, and J.F. Stubbins4) Title: Final Report on In-reactor Creep-fatigue Deformation... , Finland 3) Reactor Technology Design Department, SCKCEN, 200 Boeretang, B-2400 Mol,...

297

E-Print Network 3.0 - advanced space reactor Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

, and J.F. Stubbins4) Title: Final Report on In-reactor Creep-fatigue Deformation... , Finland 3) Reactor Technology Design Department, SCKCEN, 200 Boeretang, B-2400 Mol,...

298

E-Print Network 3.0 - advanced gas reactor Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

, and J.F. Stubbins4) Title: Final Report on In-reactor Creep-fatigue Deformation... , Finland 3) Reactor Technology Design Department, SCKCEN, 200 Boeretang, B-2400 Mol,...

299

E-Print Network 3.0 - adjustment 100-k reactors Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

, and J.F. Stubbins4) Title: Final Report on In-reactor Creep-fatigue Deformation... , Finland 3) Reactor Technology Design Department, SCKCEN, 200 Boeretang, B-2400 Mol,...

300

Development of Modeling Techniques for A Generation IV Gas Fast Reactor  

E-Print Network (OSTI)

Worldwide, multiple countries are investing a great deal of time and energy towards developing a new class of technologically advanced nuclear reactors. These new reactors have come to be known as the Generation IV (Gen IV) class of nuclear...

Dercher, Andrew Steven

2012-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Numerical simulations of ion transport membrane oxy-fuel reactors for CO? capture applications  

E-Print Network (OSTI)

Numerical simulations were performed to investigate the key features of oxygen permeation and hydrocarbon conversion in ion transport membrane (ITM) reactors. ITM reactors have been suggested as a novel technology to enable ...

Hong, Jongsup

2013-01-01T23:59:59.000Z

302

Modular Robot Systems From Self-Assembly to Self-Disassembly  

E-Print Network (OSTI)

We have presented a detailed retrospective on modular robots and discussed connections between modular robots and programmable matter. This field has seen a great deal of creativity and innovation at the level of designing ...

Rus, Daniela L.

303

What exactly is Product Modularity? The answer depends on who you ask  

E-Print Network (OSTI)

'Product modularity' has recently experienced a significant increase in interest in the academic literature. While the concept of product modularity is used across a wide range of academic research areas, substantial ...

Fixson, Sebastian K.

2007-04-20T23:59:59.000Z

304

SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Modular and Scalable Baseload Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility to someone by E-mail Share SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Facebook Tweet about SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Twitter Bookmark SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Google Bookmark SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Delicious Rank SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Digg Find More places to share SunShot Initiative: Modular and Scalable

306

Modularity, quaternion-Khler spaces, and mirror symmetry  

SciTech Connect

We provide an explicit twistorial construction of quaternion-Khler manifolds obtained by deformation of c-map spaces and carrying an isometric action of the modular group SL(2,Z). The deformation is not assumed to preserve any continuous isometry and therefore this construction presents a general framework for describing NS5-brane instanton effects in string compactifications with N= 2 supersymmetry. In this context the modular invariant parametrization of twistor lines found in this work yields the complete non-perturbative mirror map between type IIA and type IIB physical fields.

Alexandrov, Sergei; Banerjee, Sibasish [Universit Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier (France)] [Universit Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier (France)

2013-10-15T23:59:59.000Z

307

The Los Alamos VXI-based modular RF control system  

SciTech Connect

This paper describes the design and implementation of the Los Alamos modular RF control system, which provides high-performance feedback and/or feedforward control of RF accelerator cavities. This is a flexible, modular control system which has been realized in the industry-standard VXI cardmodular format. A wide spectrum of system functionality can be accommodated simply by incorporating only those modules and features required for a particular application. The fundamental principles of the design approach are discussed. Details of the VXI implementation are given, including the system architecture and interfaces, performance capabilities, and available features.

Jachim, S.P.; Ziomek, C.; Natter, E.F.; Regan, A.H.; Hill, J.; Eaton, L.; Gutscher, W.D.; Curtin, M.; Denney, P.; Hansberry, E.; Brooks, T.

1993-01-01T23:59:59.000Z

308

The Los Alamos VXI-based modular RF control system  

SciTech Connect

This paper describes the design and implementation of the Los Alamos modular RF control system, which provides high-performance feedback and/or feedforward control of RF accelerator cavities. This is a flexible, modular control system which has been realized in the industry-standard VXI cardmodular format. A wide spectrum of system functionality can be accommodated simply by incorporating only those modules and features required for a particular application. The fundamental principles of the design approach are discussed. Details of the VXI implementation are given, including the system architecture and interfaces, performance capabilities, and available features.

Jachim, S.P.; Ziomek, C.; Natter, E.F.; Regan, A.H.; Hill, J.; Eaton, L.; Gutscher, W.D.; Curtin, M.; Denney, P.; Hansberry, E.; Brooks, T.

1993-06-01T23:59:59.000Z

309

Model-Based Testing for the Second Generation of Integrated Modular Avionics Christof Efkemann, Jan Peleska  

E-Print Network (OSTI)

activities regarding automated testing of Integrated Modular Avionics controllers in the European research, specialised electronics devices, many of them with cus- tom interfaces. In the Integrated Modular AvionicsModel-Based Testing for the Second Generation of Integrated Modular Avionics Christof Efkemann, Jan

Peleska, Jan - Fachbereich 3

310

Nuclear reactor  

DOE Patents (OSTI)

A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

Thomson, Wallace B. (Severna Park, MD)

2004-03-16T23:59:59.000Z

311

The Solar Power Tower Jlich A Solar Thermal Power Plant for Test and Demonstration of Air Receiver Technology  

Science Journals Connector (OSTI)

The open volumetric receiver technology allows the use of air as heat transfer medium at high temperatures in solar thermal power tower plants. It combines porous ceramic ... a strictly modular receiver design. H...

K. Hennecke; P. Schwarzbzl; G. Koll

2009-01-01T23:59:59.000Z

312

Comments on "Modular Strategy" Gerald Navratil  

E-Print Network (OSTI)

...] can all be used for design of optimal BP+Technology integrated test facility: ETF o BP Step (FIRE configuration building fusion science Deferred Integration more compatible with Portfolio Approach to Optimal will provide basis for superconducting magnet design in ETF-DEMO facility. · Integration Step is closer

313

MHTGR: New production reactor summary of experience base  

SciTech Connect

Worldwide interest in the Modular High-Temperature Gas-Cooled Reactor (MHTGR) stems from the capability of the system to retain the advanced fuel and thermal performance while providing unparalleled levels of safety. The small power level of the MHTGR and its passive systems give it a margin of safety not attained by other concepts being developed for power generation. This report covers the experience base for the key nuclear system, components, and processes related to the MHTGR-NPR. 9 refs., 39 figs., 9 tabs.

Not Available

1988-03-01T23:59:59.000Z

314

The Italian Navigator Lands - Argonne's Nuclear Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

The Italian Navigator Lands The Italian Navigator Lands About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

315

Modular PM Motor Drives for Automotive Traction Applications  

SciTech Connect

This paper presents modular permanent magnet (PM) motor drives for automotive traction applications. A partially modularized drive system consisting of a single PM motor and multiple inverters is described. The motor has multiple three-phase stator winding sets and each winding set is driven with a separate three-phase inverter module. A truly modularized inverter and motor configuration based on an axial-gap PM motor is then introduced, in which identical PM motor modules are mounted on a common shaft and each motor module is powered by a separate inverter module. The advantages of the modular approach for both inverter and motor include: (1) power rating scalability--one design meets different power requirements by simply stacking an adequate number of modules, thus avoiding redesigning and reducing the development cost, (2) increased fault tolerance, and (3) easy repairing. A prototype was constructed by using two inverters and an axial-gap PM motor with two sets of three-phase stat or windings, and it is used to assist the diesel engine in a hybrid electric vehicle converted from a Chevrolet Suburban. The effect of different pulse-width-modulation strategies for both motoring and regenerative modes on current control is analyzed. Torque and regenerative control algorithms are implemented with a digital signal processor. Analytical and initial testing results are included in the paper.

Su, G.J.

2001-10-29T23:59:59.000Z

316

Should one always use Repeated Squaring for Modular Exponentiation?  

E-Print Network (OSTI)

squaring, which is based on representing the exponent in the standard binary numeration system. We show here that for certain applications, replacing the standard system by one based on Fibonacci numbers may, Fibonacci number system, cryptog­ raphy 1. Introduction Modular exponentiation is defined as the task

Klein Shmuel Tomi

317

A modular microfluidic architecture for integrated biochemical analysis  

E-Print Network (OSTI)

A modular microfluidic architecture for integrated biochemical analysis Kashan A. Shaikh*, Kee Suk for review November 15, 2004) Microfluidic laboratory-on-a-chip (LOC) systems based on a mod- ular (lead) at a sensitivity of 500 nM in microfluidic breadboard

Barron, Annelise E.

318

Modular Exponentiation Algorithm Analysis for Energy Consumption and Performance  

E-Print Network (OSTI)

Modular Exponentiation Algorithm Analysis for Energy Consumption and Performance Lin Zhong lzhong of their complexity, parallelism and latency. Insights are found for tradeoff between energy consumption of a tree structure. For example, Figure 1.3 shows to add 5 k-bit integers together in a tree sequence. It

Zhong, Lin

319

Development and Features EatSafe: Modular Portable Food Sensor  

E-Print Network (OSTI)

. The convenience of the EatSafe Sensor allows for this. PRONE TO FOOD-POISONING Seniors, children, pregnant womenDevelopment and Features EatSafe: Modular Portable Food Sensor ECE-Rady Design Competition FOOD INDUSTRY Every year >76 million people become sick from the consumption of contaminated food. PACKAGING

California at San Diego, University of

320

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...viability of SMRs as an energy source. These include...variable and intermittent renewable power into systems...likely evolution of the energy system over the next...25-150 26 2 FBNR FURGS Brazil iPWR 72 26 3 ACP100...HTR 240 26 20 G4M Gen 4 Energy USA LMR 25 26 21 SMR-160...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...future, both lower up-front cost and new markets could yield a more attractive economic paradigm for SMR...that are designed to accelerate their market penetration. These investigations usually...monitoringEarthing equipmentDiesel and diesel control equipmentAux equipment: transformers...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

322

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...the Post-Fukushima Age. Presentation to the Nuclear Energy Standards Coordination Collaborative, July 17, 2012, Washington, DC...computers, monitoring equipment, instrumentation equipment 8) HVAC and fire fighting equipmentVentilation and air conditioning...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

323

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...nuclear plants. An even more fundamental point is that this strategy...agreed that this is one of the fundamental benefits of SMRs...monitoringEarthing equipmentDiesel and diesel control equipmentAux equipment...during constructionFuel for engines, turbines, and boilersWaste...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

324

Design data needs modular high-temperature gas-cooled reactor. Revision 2  

SciTech Connect

The Design Data Needs (DDNs) provide summary statements for program management, of the designer`s need for experimental data to confirm or validate assumptions made in the design. These assumptions were developed using the Integrated Approach and are tabulated in the Functional Analysis Report. These assumptions were also necessary in the analyses or trade studies (A/TS) to develop selections of hardware design or design requirements. Each DDN includes statements providing traceability to the function and the associated assumption that requires the need.

NONE

1987-03-01T23:59:59.000Z

325

INEEL/EXT-01-01623 MODULAR PEBBLE-BED REACTOR PROJECT  

E-Print Network (OSTI)

of Energy Assistant Secretary for Environmental Management Under DOE Idaho Operations Office Contract DE Product Chemistry Module 17 2.2 Studies at MIT 20 2.2.1 In-Core Environment: Simulation of Core Fueling 21 3.1.2.4 Enhancements to the Geometric Modeling Capability 31 3.1.2.5 Ex-Core Radionuclide Decay 32 3

326

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...computers, monitoring equipment, instrumentation equipment 8) HVAC and fire fighting equipmentVentilation and air conditioning...buildings that are not in controlled areas Both of the above include filters, heaters, coolers, fans, blowers, humidifiers, ducts...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

327

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...our questions. The specifications we developed for the...SMR [160 megawatts-thermal (MW th ), 45 MW e...from NuScale. Specifications for the...valves, piping, insulation, instrumentation...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

328

E-Print Network 3.0 - accelerator technology division Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Through Flexibility: The Case of a Demonstration Accelerator-Driven Subcritical Reactor Park EPRG... in the conceptual design a range of possible technological...

329

Fredericton, New Brunswick, 5 June 2010 CMS Summer Meeting slide 1 Modular Invariant Theory of the Cyclic Group  

E-Print Network (OSTI)

Fredericton, New Brunswick, 5 June 2010 CMS Summer Meeting ­ slide 1 Modular Invariant Theory Some Consequences Fredericton, New Brunswick, 5 June 2010 CMS Summer Meeting ­ slide 2 Modular 2010 CMS Summer Meeting ­ slide 3 #12;The Modular Group of Prime Order Modular Representation Theory

Wehlau, David

330

E-Print Network 3.0 - actinide burner reactors Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Design 85 (2010) 14881491 Contents lists available at ScienceDirect Summary: subcritical advanced burner reactor, Nuclear technology 162 (2008). 9 M. Kotschenreuther,...

331

E-Print Network 3.0 - application research reactor Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Technologies 28 Research Aptitude Problem 1 Scavenging of aerosol particles by ice crystals Summary: strategies that would be required to operate these reactor systems....

332

Laser Fusion Experimental Reactor LIFT Based on Fast Ignition and the Issue  

Science Journals Connector (OSTI)

We organized a design committee for the laser fusion experimental reactor to show the feasibility to construct it with existing materials and improved technologies. The ...

Norimatsu, Takayoshi; Kozaki, Yasuji; Shiraga, Hiroshi; Fujita, Hisanori; Okano, Kunihiko; Azech, Hiroshi

333

Modular cathode assemblies and methods of using the same for electrochemical reduction  

DOE Patents (OSTI)

Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.

Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L

2014-12-02T23:59:59.000Z

334

Vehicle Technologies Program High-temperaturestrengthinthe  

E-Print Network (OSTI)

by DOE's Vehicle Technologies Program, the two partners developed and tested a modified version, gas turbines, and nuclear reactors. The engineering of the microstructure of CF8C, which cannot.vehicles.energy.gov Vehicle Technologies Program Vehicle Technologies Program Contacts Jerry Gibbs Technology Development

Pennycook, Steve

335

Protective, Modular Wave Power Generation System  

SciTech Connect

The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

Vvedensky, Jane M.; Park, Robert Y.

2012-11-27T23:59:59.000Z

336

Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors  

SciTech Connect

Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

2005-10-01T23:59:59.000Z

337

Attrition reactor system  

DOE Patents (OSTI)

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

Scott, C.D.; Davison, B.H.

1993-09-28T23:59:59.000Z

338

Elementary Reactor Physics  

Science Journals Connector (OSTI)

... THERE are few subjects which have developed at the rate at which reactor physics and ... physics and reactor theory have done. This, of course, is largely due to the circumstances in ...

J. F. HILL

1962-02-10T23:59:59.000Z

339

Colliding Beam Fusion Reactors  

Science Journals Connector (OSTI)

The recirculating power for virtually all types of fusion reactors has previously been calculated [1] with the FokkerPlanck equation. The reactors involve non-Maxwellian plasmas. The calculations are ... the rec...

Norman Rostoker; Artan Qerushi; Michl Binderbauer

2003-06-01T23:59:59.000Z

340

Fukushima Nuclear Crisis Recovery: A Modular Water Treatment System Deployed in Seven Weeks - 12489  

SciTech Connect

On March 11, 2011, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. While recovery systems admirably survived the powerful earthquake, the seawater from the tsunami knocked the emergency cooling systems out and did extensive damage to the plant and site. Subsequent hydrogen generation caused explosions which extended this damage to a new level and further flooded the buildings with highly contaminated water. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. Teams were assembled in Tokyo the first week of April to lay out potential plans for the immediate treatment of some 63 million gallons (a number which later exceeded 110 million gallons) of highly contaminated water to avoid overflow from the buildings as well as supply the desperately needed clean cooling water for the reactors. A system had to be deployed with a very brief cold shake down and hot startup before the rainy season started in early June. Joined by team members Toshiba (oil removal system), AREVA (chemical precipitation system) and Hitachi-GE (RO system), Kurion (cesium removal system following the oil separator) proposed, designed, fabricated, delivered and started up a one of a kind treatment skid and over 100 metric tons of specially engineered and modified Ion Specific Media (ISM) customized for this very challenging seawater/oil application, all in seven weeks. After a very short cold shake down, the system went into operation on June 17, 2011 on actual waste waters far exceeding 1 million Bq/mL in cesium and many other isotopes. One must remember that, in addition to attempting to do isotope removal in the competition of seawater (as high as 18,000 ppm sodium due to concentration), some 350,000 gallons of turbine oil was dispersed into the flooded buildings as well. The proposed system consisted of a 4 guard vessel skid for the oil and debris, 4 skids containing 16 cesium towers in a lead-lag layout with removable vessels (sent to an interim storage facility), and a 4 polishing vessel skid for iodine removal and trace cesium levels. At a flow rate of at least 220 gallons per minute, the system has routinely removed over 99% of the cesium, the main component of the activity, since going on line. To date, some 50% of the original activity has been removed and stabilized and cold shutdown of the plant was announced on December 10, 2011. In March and April alone, 10 cubic feet of Engineered Herschelite was shipped to Seabrook Nuclear Power Plant, NPP, to support the April 1, 2011 outage cleanup; 400 cubic feet was shipped to Oak Ridge National Laboratory (ORNL) for strontium (Sr-90) ground water remediation; and 6000 cubic feet (100 metric tons, MT, or 220,400 pounds) was readied for the Fukushima Nuclear Power Station with an additional 100 MT on standby for replacement vessels. This experience and accelerated media production in the U.S. bore direct application to what was to soon be used in Fukushima. How such a sophisticated and totally unique system and huge amount of media could be deployable in such a challenging and changing matrix, and in only seven weeks, is outlined in this paper as well as the system and operation itself. As demonstrated herein, all ten major steps leading up to the readiness and acceptance of a modular emergency technology recovery system were met and in a very short period of time, thus utilizing three decades of experience to produce and deliver such a system literally in seven weeks: - EPRI - U.S. Testing and Experience Leading to Introduction to EPRI - Japan and Subsequently TEPCO Emergency Meetings - Three Mile Island (TMI) Media and Vitrification Experience

Denton, Mark S.; Mertz, Joshua L. [Kurion, Inc., P.O. Box 5901, Oak Ridge, Tennessee 37831 (United States); Bostick, William D. [Materials and Chemistry Laboratory, Inc. (MCL) ETTP, Building K-1006, 2010 Highway 58, Suite 1000, Oak Ridge, Tennessee 37830 (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Burnup concept for a long-life fast reactor core using MCNPX.  

SciTech Connect

This report describes a reactor design with a burnup concept for a long-life fast reactor core that was evaluated using Monte Carlo N-Particle eXtended (MCNPX). The current trend in advanced reactor design is the concept of a small modular reactor (SMR). However, very few of the SMR designs attempt to substantially increase the lifetime of a reactor core, especially without zone loading, fuel reshuffling, or other artificial mechanisms in the core that %E2%80%9Cflatten%E2%80%9D the power profile, including non-uniform cooling, non-uniform moderation, or strategic poison placement. Historically, the limitations of computing capabilities have prevented acceptable margins in the temporal component of the spatial excess reactivity in a reactor design, due primarily to the error in burnup calculations. This research was performed as an initial scoping analysis into the concept of a long-life fast reactor. It can be shown that a long-life fast reactor concept can be modeled using MCNPX to predict burnup and neutronics behavior. The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional Light Water Reactors (LWRs) or other SMR designs. For the purpose of this study, a single core design was investigated: a relatively small reactor core, yielding a medium amount of power (~200 to 400 MWth). The results of this scoping analysis were successful in providing a preliminary reactor design involving metal U-235/U-238 fuel with HT-9 fuel cladding and sodium coolant at a 20% volume fraction.

Holschuh, Thomas Vernon,; Lewis, Tom Goslee,; Parma, Edward J.,

2013-02-01T23:59:59.000Z

342

Direct Synthesis of 1-Butanol from Ethanol in a Plug Flow Reactor: Reactor and Reaction Kinetics Modeling  

Science Journals Connector (OSTI)

Bio-ethanol is well known for its use as ... continuous reactor technology and heterogeneous alumina catalysts, ethanol can be upgraded to 1-butanol in ... feasible properties as fuel component in comparison to ethanol

T. Riittonen; T. Salmi; J.-P. Mikkola; J. Wrn

2014-11-01T23:59:59.000Z

343

Prospects for spheromak fusion reactors  

Science Journals Connector (OSTI)

The reactor study of Hagenson and Krakowski demonstrated the attractiveness of the spheromak as a compact fusion reactor, based on...

T. K. Fowler; D. D. Hua

1995-06-01T23:59:59.000Z

344

Advanced Test Reactor Tour  

SciTech Connect

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2011-01-01T23:59:59.000Z

345

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

1995-01-01T23:59:59.000Z

346

Advanced Test Reactor Tour  

ScienceCinema (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2013-05-28T23:59:59.000Z

347

Substantiation of the feasibility of using fuel rods with tungsten spraying in power fast reactors of new generation  

Science Journals Connector (OSTI)

The contemporary development of nuclear power technologies in Russia made it possible ... to create projects of economic and safe fast reactors of new generation. These reactors will be a basis of the large-scale...

V. S. Okunev

2011-12-01T23:59:59.000Z

348

Progress and status of the integral fast reactor (IFR) development program  

SciTech Connect

This paper discusses the Integral Fast Reactor (IFR) development program, in which the entire reactor system - reactor, fuel cycle, and waste process is being developed and optimized at the same time as a single integral entity. Detailed discussions on the present status of the IFR technology development activities in the areas of fuels, pyroprocessing, safety, core design, and fuel cycle demonstration are also presented.

Chang, Y.I. (Argonne National Lab., Argonne, IL (US))

1992-01-01T23:59:59.000Z

349

NREL: Wind Research - New Modularization Framework Transforms FAST Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

New Modularization Framework Transforms FAST Wind Turbine Modeling Tool New Modularization Framework Transforms FAST Wind Turbine Modeling Tool January 3, 2014 The old and new versions of the FAST wind turbine modeling tool are represented in this illustration by boxes. The earlier version of FAST is represented by three boxes aligned in a column on the left side of the illustration. They contain the words AeroDyn, FAST, and Hydrodyn and represent the three modules that worked together to model aerodynamics, hydrodynamics and servo-elastics. Double ended arrows between the boxes indicate interaction between these modules. A large red arrow pointed from the three boxes to a large rectangle in the middle shows how this earlier software evolved into the new FAST Framework. The large rectangular box in the middle contains the words FAST Driver. Seven smaller boxes to the right of the FAST driver represent the new modules that feed into the driver.

350

Lessons Learned During the Manufacture of the NCSX Modular Coils  

SciTech Connect

The National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to their complex shapes, requirements for high dimensional accuracy and high current density requirements due to space constraints. Being the first of their kind, these coils required the implementation of many new manufacturing and measuring techniques and procedures. This was the first time that these manufacturing techniques and methods were applied in the production of coils at the laboratory. This resulted in a steep learning curve for the first several coils. Through the effective use of procedures, tooling modifications, involvement and ownership by the manufacturing workforce, and an emphasis on safety, the assembly team was able to reduce the manufacturing times and improve upon the manufacturing methods. This paper will discuss the learning curve and steps that were taken to improve the manufacturing efficiency and reduce the manufacturing times for the modular coils without forfeiting quality.

James H. Chrzanowski,Thomas G. Meighan, Steven Raftopoulos and Lawrence Dudek and Paul J. Fogarty

2009-09-15T23:59:59.000Z

351

Light Water Reactor Sustainability Nondestructive Evaluation for Concrete  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nondestructive Evaluation for Nondestructive Evaluation for Concrete Research and Development Roadmap Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap Materials issues are a key concern for the existing nuclear reactor fleet as material degradation can lead to increased maintenance, increased downtown, and increased risk. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. Additionally, new mechanisms of materials degradation are also possible. The purpose of the US Department of Energy Office of Nuclear Energy's Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend

352

Reactor vessel support system  

DOE Patents (OSTI)

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

1982-01-01T23:59:59.000Z

353

The Benefit of Lean Techniques Interfaced with Modular Construction  

E-Print Network (OSTI)

. was to implement the Lean principles in their manufacturing process. Upon implementation of Lean in the process, there was again another noticeable increase in the quality of the product being produced, a typical result form that implementation. Additionally... the same course. Douthit 22 #2; Chapter 5: Suggestions for Additional Work Further investigation of how Lean manufacturing, Lean construction, and modular construction interface should be pursued for the sake of the construction industry in the United...

Douthit, Colin

2013-12-20T23:59:59.000Z

354

Overland Tidal Power Generation Using Modular Tidal Prism  

SciTech Connect

Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

2010-03-01T23:59:59.000Z

355

E-Print Network 3.0 - ap600 testing program Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Modular Pebble Bed Reactor Collection: Fission and Nuclear Technologies 4 NUCLEAR ENERGY RENAISSANCE:NUCLEAR ENERGY RENAISSANCE: ADDRESSING THE CHALLENGES OF CLIMATE CHANGE...

356

E-Print Network 3.0 - accident release fractions Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering, Modular Pebble Bed Reactor Collection: Fission and Nuclear Technologies 4 Spatial Data Analysis and Modeling of Radioactively-Contaminated Territories: Lessons...

357

The Integral Fast Reactor: A practical approach to waste management  

SciTech Connect

This report discusses development of the method for pyroprocessing of spent fuel from the Integral Fast Reactor (or Advanced Liquid Metal Reactor). The technology demonstration phase, in which recycle will be demonstrated with irradiated fuel from the EBR-II reactor has been reached. Methods for recovering actinides from spent LWR fuel are at an earlier stage of development but appear to be technically feasible at this time, and a large-scale demonstration of this process has begun. The utilization of fully compatible processes for recycling valuable spent fuel materials promises to provide substantial economic incentives for future applications of the pyroprocessing technology.

Laidler, J.J.

1993-12-31T23:59:59.000Z

358

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

359

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

Gluntz, D.M.; Taft, W.E.

1994-12-20T23:59:59.000Z

360

The IAEA international conference on fast reactors and related fuel cycles: highlights and main outcomes  

SciTech Connect

The 'International Conference on Fast Reactors and Related Fuel Cycles', which is regularly held every four years, represents the main international event dealing with fast reactors technology and related fuel cycles options. Main topics of the conference were new fast reactor concepts, design and simulation capabilities, safety of fast reactors, fast reactor fuels and innovative fuel cycles, analysis of past experience, fast reactor knowledge management. Particular emphasis was put on safety aspects, considering the current need of developing and harmonizing safety standards for fast reactors at the international level, taking also into account the lessons learned from the accident occurred at the Fukushima- Daiichi nuclear power plant in March 2011. Main advances in the several key areas of technological development were presented through 208 oral presentations during 41 technical sessions which shows the importance taken by fast reactors in the future of nuclear energy.

Monti, S.; Toti, A. [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, PO Box 100, A-1400 Vienna (Austria)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer  

SciTech Connect

This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

Nexant Inc.

2006-05-01T23:59:59.000Z

362

Why SOFC Technology? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Why SOFC Technology? Why SOFC Technology? Why SOFC Technology? Why SOFC Technology? Like most fuel cell technologies, SOFCs are modular, scalable, and efficient. They are not subject to Carnot cycle limitations because they are not heat engines. Also, they benefit the public by minimizing emissions, such as oxides of nitrogen (NOx) <0.5 PPM compared to earlier combustion-based electrical power generation technologies due to lower operating temperatures. There are more reasons why SOFCs are the fuel cell technology of choice in USDOE/FE. First, relative to other fuel cell types, SOFCs are fuel-flexible - they can reform methane internally, use carbon monoxide as a fuel, and tolerate some degree of common fossil fuel impurities, such as ammonia and chlorides. Sulfur-bearing contaminants, such as hydrogen sulfide, are

363

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2009 20, 2009 CX-000438: Categorical Exclusion Determination A Modular Curriculum for Training University Students in Industry Standard Sequestration and Enhanced Oil Recovery Methods CX(s) Applied: A9, B3.8 Date: 11/20/2009 Location(s): Odessa, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 20, 2009 CX-000437: Categorical Exclusion Determination A Modular Curriculum for Training University Students in Industry Standard Sequestration and Enhanced Oil Recovery Methods CX(s) Applied: A9, B3.8 Date: 11/20/2009 Location(s): Odessa, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 20, 2009 CX-000373: Categorical Exclusion Determination Measurements of 222 Radon, 220 Radon, and Carbon Dioxide Emissions in Natural Carbon Dioxide Fields in Wyoming: Monitoring, Verification, and

364

The physics of magnetic fusion reactors  

Science Journals Connector (OSTI)

During the past two decades there have been substantial advances in magnetic fusion research. On the experimental front, progress has been led by the mainline tokamaks, which have achieved reactor-level values of temperature and plasma pressure. Comparable progress, when allowance is made for their smaller programs, has been made in complementary configurations such as the stellarator, reversed-field pinch and field-reversed configuration. In this paper, the status of understanding of the physics of toroidal plasmas is reviewed. It is shown how the physics performance, constrained by technological and economic realities, determines the form of reference toroidal reactors. A comparative study of example reactors is not made, because the level of confidence in projections of their performance varies widely, reflecting the vastly different levels of support which each has received. Success with the tokamak has led to the initiation of the International Thermonuclear Experimental Reactor project. It is designed to produce 1500 MW of fusion power from a deuterium-tritium plasma for pulses of 1000 s or longer and to demonstrate the integration of the plasma and nuclear technologies needed for a demonstration reactor.

John Sheffield

1994-07-01T23:59:59.000Z

365

Relap5-3d model validation and benchmark exercises for advanced gas cooled reactor application  

E-Print Network (OSTI)

HTTR High Temperature engineering Test Reactor INET Institute of Nuclear Energy Technology LWR Light Water Reactor OKBM Test Design Bureau for Machine Building ORNL Oak Ridge National Laboratory RCCS Reactor Cavity Cooling System... to be at right angles to each other, ignoring an angular distribution of radiant heat.7 MORECA, used by ORNL, simulates accident scenarios for certain gas-cooled reactor types.7 INET conducts their analysis using Thermix, which performs two...

Moore, Eugene James Thomas

2006-08-16T23:59:59.000Z

366

RERTR program reduces use of enriched uranium in research reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

RERTR program reduces use of enriched uranium in research reactors RERTR program reduces use of enriched uranium in research reactors worldwide Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share RERTR program reduces use of enriched uranium in research reactors worldwide The High Flux Reactor in Petten, the Netherlands READY TO CONVERT - The High Flux Reactor in Petten, the Netherlands, has

367

Novel Catalytic Membrane Reactors  

SciTech Connect

There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

Stuart Nemser, PhD

2010-10-01T23:59:59.000Z

368

The integral fast reactor fuel cycle  

SciTech Connect

The liquid-metal reactor (LMR) has the potential to extend the uranium resource by a factor of 50 to 100 over current commercial light water reactors (LWRs). In the integral fast reactor (IFR) development program, the entire reactor system - reactor, fuel cycle, and waste process - is being developed and optimized at the same time as a single integral entity. A key feature of the IFR concept is the metallic fuel. The lead irradiation tests on the new U-Pu-Zr metallic fuel in the Experimental Breeder Reactor II have surpassed 185000 MWd/t burnup, and its high burnup capability has now been fully demonstrated. The metallic fuel also allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. Direct production of a metal product avoids expensive and cumbersome chemical conversion steps that would result from use of the conventional Purex solvent extraction process. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management.

Chang, Y.I. (Argonne National Lab., IL (United States))

1990-01-01T23:59:59.000Z

369

E-Print Network 3.0 - assessing modular concepts Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

the modular FORTRAN... . This program simulates the engine cycle, determines basic aerodynamic parameters and ... Source: Qubec, Universit du - cole de technologie...

370

Effects of Modularity and Connectivity on OADM Deployment in Ring Networks  

Science Journals Connector (OSTI)

For a class of Optical Add/Drop Multiplexers, we empirically study the effects of port modularity and connectivity on device deployment in ring networks. Designs with greater...

Nuzman, Carl; Kumaran, Krishnan; Nithi, Nachi; Saniee, Iraj; Levy, David; Mitev, Peter

371

A modular data analysis pipeline for the discovery of novel RNA motifs.  

E-Print Network (OSTI)

??This dissertation presents a modular software pipeline that searches collections of RNA sequences for novel RNA motifs. In this case the motifs incorporate elements of (more)

Schonfeld, Justin

2006-01-01T23:59:59.000Z

372

Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers  

E-Print Network (OSTI)

MSE): ratio of total cooling power to cooling provided, inGenerally, total modular cooling power demand was somewhathigher server loads. The cooling power demand decreased when

Adams, Barbara J

2009-01-01T23:59:59.000Z

373

Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers  

E-Print Network (OSTI)

MSE): ratio of total cooling power to cooling transported,Generally, total modular cooling power demand stabilized atrack) in this study. The cooling power demand decreased when

Xu, TengFang

2009-01-01T23:59:59.000Z

374

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics Power Electronics The power electronics activity focuses on research and development (R&D) for flexible, integrated, modular power electronics for power conditioning and control, including a power switch stage capable of running a variety of motors and loads. Efforts are underway to reduce overall system costs for these vehicles through the elimination of additional cooling loops to keep the power electronics within their safe operation ranges. These challenges are being met within the program through research in: Silicon carbide and Gallium Nitride semiconductors, which can be operated at much higher temperatures than current silicon semiconductors; Packaging innovations for higher temperature operation; Improved thermal control technologies; and

375

Deep Conservation in Urban India and its Implications for the Design of Conservation Technologies  

E-Print Network (OSTI)

-of-use feedback technologies, modular solutions, distributed energy storage, harnessing by-products and automated into these factors and their potential implications for technology design [11, 15, 25, 36, 44, 45]. However, most in national consumption of energy [18] and water [19]. The Indian electricity sector produces 880 billion k

Toronto, University of

376

Westinghouse Modular Grinding Process - Enhancement of Volume Reduction for Hot Resin Supercompaction - 13491  

SciTech Connect

In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. Spent resins can contain a significant amount of contaminates which makes treatment for disposal of spent resins mandatory. Several treatment processes are available such as direct immobilization with technologies like cementation, bitumisation, polymer solidification or usage of a high integrity container (HIC). These technologies usually come with a significant increase in final waste volume. The Hot Resin Supercompaction (HRSC) is a thermal treatment process which reduces the resin waste volume significantly. For a mixture of powdered and bead resins the HRSC process has demonstrated a volume reduction of up to 75 % [1]. For bead resins only the HRSC process is challenging because the bead resins compaction properties are unfavorable. The bead resin material does not form a solid block after compaction and shows a high spring back effect. The volume reduction of bead resins is not as good as for the mixture described in [1]. The compaction properties of bead resin waste can be significantly improved by grinding the beads to powder. The grinding also eliminates the need for a powder additive.Westinghouse has developed a modular grinding process to grind the bead resin to powder. The developed process requires no circulation of resins and enables a selective adjustment of particle size and distribution to achieve optimal results in the HRSC or in any other following process. A special grinding tool setup is use to minimize maintenance and radiation exposure to personnel. (authors)

Fehrmann, Henning [Westinghouse Electric Germany GmbH, Dudenstr. 44, D-68167 Mannheim (Germany)] [Westinghouse Electric Germany GmbH, Dudenstr. 44, D-68167 Mannheim (Germany); Aign, Joerg [Westinghouse Electric Germany GmbH, Global D and D and Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global D and D and Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)

2013-07-01T23:59:59.000Z

377

Power Reactor Progress  

Science Journals Connector (OSTI)

Argonne kicks off EBWR; Allis-Chalmers plans power reactor using both nuclear and conventional fuels ... NUCLEAR POWER took two giant steps last week. ... Just as the first nuclear power system in the U. S. designed and built solely for the generation of electric power went into full operation at Argonne, Allis-Chalmers came up with a new twist in power reactorsa controlled recirculation boiling reactor (CRBR) using both nuclear and conventional fuels (C&EN, Feb. 18, page 7). ...

1957-02-25T23:59:59.000Z

378

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

Diebold, J.P.; Scahill, J.W.

1995-05-09T23:59:59.000Z

379

AEC Pushes Fusion Reactors  

Science Journals Connector (OSTI)

AEC Pushes Fusion Reactors ... Project Sherwood, as the study program is called, began in 1951-52 soon after the first successful thermonuclear explosion in the Pacific. ...

1955-10-10T23:59:59.000Z

380

Tokamak reactor first wall  

DOE Patents (OSTI)

This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

1984-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Advanced Nuclear Research Reactor  

SciTech Connect

This report describes technical modifications implemented by INVAP to improve the safety of the Research Reactors the company designs and builds.

Lolich, J.V.

2004-10-06T23:59:59.000Z

382

INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION  

E-Print Network (OSTI)

LABORATORY C. Housiadas Dynamic Reliability of Complex System & Decision Analysis I.A. Papazoglou Laboratory: Research, Development and Services *reports to the Director of the Centre REACTOR SAFETY RADIATION PROTECTION HEALTH & PHYSICS OF THE REACTOR F.Tzika SUPPORT TO GAEC A.G. Youtsos TECHNOLOGICAL

383

Crosscutting Technology Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crosscutting Crosscutting Technology Development Crosscutting Technology Development The NEET Crosscutting Technology Development (CTD) activity provides R&D support to various reactor and fuel cycle technologies, both existing and under development. These include several areas that crosscut multiple nuclear technologies CTD aims to: Work with other NE R&D programs to identify critical capabilities and common technology needs. Encourage and lead coordinated research and development activities to deliver capabilities and technologies when needed to ensure NE R&D program success. Ensure scalability and compatibility of results across NE R&D programs. Reduce costs of resulting technologies and capabilities. Leverage programmatic investments to maximize benefits across the

384

Integral Fast Reactor Program annual progress report, FY 1991  

SciTech Connect

This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

Not Available

1992-06-01T23:59:59.000Z

385

Integral Fast Reactor Program annual progress report, FY 1991  

SciTech Connect

This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R D.

Not Available

1992-06-01T23:59:59.000Z

386

Improving Indoor Environmental Quality and Energy Performance of Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Environmental Quality and Energy Performance of Modular Indoor Environmental Quality and Energy Performance of Modular Classroom HVAC Systems Title Improving Indoor Environmental Quality and Energy Performance of Modular Classroom HVAC Systems Publication Type Conference Proceedings Year of Publication 2005 Authors Apte, Michael G., Michael Spears, Chi-Ming Lai, and Derek G. Shendell Conference Name Proceedings of Sustainable Buildings 2005 Conference Pagination 1432-1437 Conference Location Tokyo, Japan, September 27-29, 2005 Abstract The factory-built relocatable classroom (RC) is a dominant force in the school facility construction industry in the United States (U.S.) and elsewhere. It is estimated that there are approximately 650,000 RCs currently occupied in the U.S., housing about 16 million students. RCs receive public attention due to complaints about poor indoor environmental quality (IEQ). Both measured data and anecdotal evidence in California have suggested excessive acoustical noise from heating, ventilation, and air conditioning (HVAC) equipment as a central factor leading to degraded IEQ. In the U.S., RCs are typically equipped with unitary exterior wall-mount HVAC systems, and interior acoustical noise due to structural and airborne transmission can reach levels of about 58dB(A) with compressor cycling, under unoccupied conditions. Due to these noise levels teachers often simply choose to turn off the HVAC, leading to inadequate ventilation, as well as poor thermal conditioning, and thus to poor indoor air quality. Elevated levels of carbon dioxide and volatile organic compounds including formaldehyde are common. We discuss the acoustic component of our efforts to develop and test energy efficient HVAC systems that address the ventilation, controls, and acoustic requirements necessary to ensure high quality indoor environments in RCs

387

Single channel flow blockage accident phenomena identification and ranking table (PIRT) for the advanced Candu reactor  

SciTech Connect

The Advanced Candu Reactor (ACRTM) is an evolutionary advancement of the current Candu 6{sup R} reactor, aimed at producing electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The ACR retains the modular concept of horizontal fuel channels surrounded by a heavy water moderator, as with all Candu reactors. However, ACR uses slightly enriched uranium (SEU) fuel, compared to the natural uranium used in Candu 6. This achieves the twin goals of improved economics (e.g., via reductions in the heavy water requirements and the use of a light water coolant), as well as improved safety. This paper documents the results of Phenomena Identification and Ranking Table (PIRT) results for a very limited frequency, beyond design basis event of the ACR design. This PIRT is developed in a highly structured process of expert elicitation that is well supported by experimental data and analytical results. The single-channel flow blockage event in an ACR reactor assumes a severe flow blockage of one of the reactor fuel channels, which leads to a reduction of the flow in the affected channel, leading to fuel cladding and fuel temperature increase. The paper outlines the design characteristics of the ACR reactor that impact the PIRT process and computer code applicability. It also describes the flow blockage phenomena, lists all components and systems that have an important role during the event, discusses the PIRT process and results, and presents the finalized PIRT tables. (authors)

Popov, N.K.; Abdul-Razzak, A.; Snell, V.G.; Langman, V. [Atomic Energy of Canada Ltd., 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada); Sills, H. [Consultant, Deep River, Ontario (Canada)

2004-07-01T23:59:59.000Z

388

Nuclear Thermal Rocket/Stage Technology Options for NASA's Future Human Exploration Missions to the Moon and Mars  

Science Journals Connector (OSTI)

The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners and designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (Isp ? 8501000 seconds) and engine thrust?to?weight ratio (? 310) the NTR can also be configured as a dual mode system capable of generating stage electrical power. At present NASA is examining a variety of mission applications for the NTR ranging from an expendable single burn trans?lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive multi?burn spacecraft supporting a split cargo/piloted sprint Mars mission architecture. Two proven solid core NTR concepts are examined ?one based on NERVA (Nuclear Engine for Rocket Vehicle Application)?derivative reactor (NDR) technology and a second concept which utilizes a ternary carbide twisted ribbon fuel form developed by the Commonwealth of Independent States (CIS). Integrated systems and mission study results are used in designing aerobraked and all propulsive Mars vehicle concepts which are mass? and volume?compatible with both a reference 240 metric tonne (t) heavy lift launch vehicle (HLLV) and a smaller 120 t HLLV option. For the aerobraked scenario the 2010 piloted mission determines the size of the expendable trans?Mars injection (TMI) stage which is a growth version of the FLO TLI stage. An all?propulsive Moon/Mars mission architecture is also described which uses common modular engine and stage hardware consisting of: (1) clustered 15 thousand pounds force (klbf) NDR or CIS engines; (2) two standardized liquid hydrogen (LH2) tank sizes; and (3) dual mode NTR and refrigeration system technologies for long duration missions. The modular NTR approach can form the basis for a faster safer and cheaper space transportation system for tomorrow's piloted missions to the Moon and Mars.

Stanley K. Borowski; Robert R. Corban; Melissa L. McGuire; Erik G. Beke

1994-01-01T23:59:59.000Z

389

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network (OSTI)

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four: business administration, wind farm management, aircraft maintenance, tooling production, quality and safety or selected program track focus. Transfer students must talk to their advisor about transferring their courses

390

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network (OSTI)

: business administration, energy management, wind farm management, automation and controls, aircraft, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four students must talk to their advisor about transferring their courses over for WSU credit. Laboratory

391

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

392

Modular airborne remote sampling and sensing system (MARSSS)  

SciTech Connect

Sandia is developing a modular airborne instrumentation system for the Environmental Protection Agency. This system will allow flexibility in the choice of instruments by standardizing mountings, power supplies and sampling modes. The objective is to make it possible to perform aerial surveys from chartered aircraft that have not been adapted in a more than superficial manner. It will also allow the experimenter to tailor his choice of instruments to the specific problem. Since the equipment will have a stand-alone capability, it can be applied to other problems such as long-term unattended use at remote locations or in toxic or otherwise hazardous environments.

Woods, R.O.

1982-04-01T23:59:59.000Z

393

Savannah River Technology Center monthly report  

SciTech Connect

This document contains many small reports from personnel at the technology center under the umbrella topics of reactors, tritium, separations, environment, waste management, and general engineering. Progress and accomplishments are given.

Not Available

1992-10-01T23:59:59.000Z

394

Fluoride Salt-Cooled High-Temperature Reactor Development Roadmap  

SciTech Connect

Fluoride salt-cooled high-temperature reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics and fully passive safety. This paper provides an overview of a technology development pathway for expeditious commercial deployment of first-generation FHRs. The paper describes the principal remaining FHR technology challenges and the development path needed to address the challenges. First-generation FHRs do not appear to require any technology breakthroughs, but will require significant technology development and demonstration. FHRs are currently entering early phase engineering development. As such, the development roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant; the lack of an approved licensing framework; the lack of qualified, salt-compatible structural materials; and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

Holcomb, David Eugene [ORNL] [ORNL; Flanagan, George F [ORNL] [ORNL; Mays, Gary T [ORNL] [ORNL; Pointer, William David [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Yoder Jr, Graydon L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

395

NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS  

SciTech Connect

Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

2004-12-01T23:59:59.000Z

396

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...  

Office of Scientific and Technical Information (OSTI)

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor Design and Feasibility Problem Re-direct Destination: Temp Data Fields Rosen, M. A.; Coburn, D. B.; Flynn, T....

397

Computer simulations help design new nuclear reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer simulations help design new nuclear reactors Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Reprinted from "Argonne Now" - Spring 2008 Physicist Won-Sik Yang and computer scientist Andrew Siegel hold a fuel rod assembly in front of a model of the Experimental Breeder Reactor-II

398

2012_AdvReactor_Factsheet.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear.gov nuclear.gov February 15, 2011 A ADVANCED REACTOR CONCEPTS DVANCED REACTOR CONCEPTS The U.S. Department of Energy's Offi ce of Nuclear Energy T he Advanced Reactor Concepts (ARC) program, an expanded version of the Generation IV research, development and demonstration (RD&D) program, sponsors research, development and deployment activities leading to further safety, technical, economical, and environmental advancements of innovative nuclear energy technologies. The Office of Nuclear Energy (NE) will pursue these advancements through RD&D activities at the Department of Energy (DOE) national laboratories and U.S. universities, as well as through collaboration with nuclear industry and international partners. These activities will focus on advancing

399

Mirror Advanced Reactor Study interim design report  

SciTech Connect

The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

Not Available

1983-04-01T23:59:59.000Z

400

Device Scale Model Development for Transport Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Gary J. stiegel Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Chris Guenther Computational Science Division National Energy Technology Laboratory 3610 Collins Ferry Road P. O. Box 880 Morgantown, WV 26507 304-285-4483 chris.guenther@netl.doe.gov 8/2006 Gasification Technologies Device Scale MoDel DevelopMent for tranSport reactor Background Coal gasification is an efficient and environmentally acceptable technology that can utilize the vast coal reserves in the United States to produce clean affordable power and reduce dependence on foreign oil. Coal and other carbon containing materials can be gasified to produce a synthesis gas. This syngas can be fed to a

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Portfolio for fast reactor collaboration  

SciTech Connect

The development of the LMFBR type reactor in the United Kingdom is reviewed. Design characteristics of a commercial demonstration fast reactor are presented and compared with the Super Phenix reactor.

Rippon, S.

1981-12-01T23:59:59.000Z

402

TR-IIS-06-001 On the Satisfiability of Modular  

E-Print Network (OSTI)

TR-IIS-06-001 On the Satisfiability of Modular Arithmetic Formula Bow-Yaw Wang January 24, 2006 the Satisfiability of Modular Arithmetic Formula Bow-Yaw Wang Institute of Information Science Academia Sinica Taiwan used in the design of cryptosystems and pseudo random number generators. In the RSA public key system

Chen, Sheng-Wei

403

A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING, SIMULATION, AND ANALYSIS  

E-Print Network (OSTI)

A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING Students #12;2 A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING in Aeronautics and Astronautics #12;3 Abstract A space logistics modeling framework to support space exploration

de Weck, Olivier L.

404

Ris-M-2652 s Development ofA Two-level Modular  

E-Print Network (OSTI)

IS Risø-M-2652 · s Development ofA Two-level Modular Simulation Tool for Dysim Jan Eggert Kofoed-LEVEL MODULAR SIMULATION TOOL FOR DYSIM Jan Eggert Kofoed Abstract. In this report a simulation tool that assists the user when constructing continuous simulation models will be described. The simulation tool can

405

The rigid analytical regulator and K_2 of Drinfeld modular curves.  

E-Print Network (OSTI)

We evaluate a rigid analytical analogue of the Beilinson-Bloch-Deligne regulator on certain explicit elements in the K_2 of Drinfeld modular curves, constructed from analogues of modular units, and relate its value to special values of L-series using the Rankin-Selberg method.

Ambrus Pal

406

Modular RNA architecture revealed by computational analysis of existing pseudoknots and  

E-Print Network (OSTI)

Modular RNA architecture revealed by computational analysis of existing pseudoknots and ribosomal architecture is a hallmark of RNA structures, implying structural, and possibly functional, similar- ity among functional molecules (2­6). Modular architecture also implies similarity of substructural motifs among

Schlick, Tamar

407

Handbook of Reactor Physics  

Science Journals Connector (OSTI)

... THIS handbook is one volume in a series sponsored by the United States Atomic Energy Commission with ... data and reference information in the field of reactors. The volume is devoted to reactor physics and radiation shielding, the latter subject occupying approximately a quarter of the book.

PETER W. MUMMERY

1956-08-25T23:59:59.000Z

408

Fast reactor safety  

Science Journals Connector (OSTI)

... SIR, - In his article on fast reactor safety (26 July, page 270) Norman Dombey claims to introduce to non-specialists ... , page 270) Norman Dombey claims to introduce to non-specialists some features of fast reactors that are not available outside the technical literature. The non-specialist would do well ...

R.D. SMITH

1979-08-23T23:59:59.000Z

409

Instrumentation of Nuclear Reactors  

Science Journals Connector (OSTI)

... s Lecture Theatre on January 8, a symposium of papers on the instrumentation of nuclear reactors was organized, at which about five hundred members and visitors attended, including guests from ... the Institution, took the chair and introduced Sir John Cockcroft, whose lecture on "Nuclear Reactors and their Applications" provided a general background for the three specialized papers which followed. ...

1953-03-07T23:59:59.000Z

410

Nuclear Research Reactors  

Science Journals Connector (OSTI)

... their countries for the advent of nuclear power. A few countries had built large research reactors for the production of isotopes and to study the behaviour of nuclear fuel, but ... production of isotopes and to study the behaviour of nuclear fuel, but the small training reactor had not been developed. Since then, research ...

T. E. ALLIBONE

1963-07-20T23:59:59.000Z

411

Canadian university research reactors  

SciTech Connect

In Canada there are seven university research reactors: one medium-power (2-MW) swimming pool reactor at McMaster University and six low-power (20-kW) SLOWPOKE reactors at Dalhousie University, Ecole Polytechnique, the Royal Military College, the University of Toronto, the University of Saskatchewan, and the University of Alberta. This paper describes primarily the McMaster Nuclear Reactor (MNR), which operates on a wider scale than the SLOWPOKE reactors. The MNR has over a hundred user groups and is a very broad-based tool. The main applications are in the following areas: (1) neutron activation analysis (NAA); (2) isotope production; (3) neutron beam research; (4) nuclear engineering; (5) neutron radiography; and (6) nuclear physics.

Ernst, P.C.; Collins, M.F.

1989-11-01T23:59:59.000Z

412

Reactor & Nuclear Systems Publications | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science Home | Science & Discovery | Nuclear Science | Publications and Reports | Reactor and Nuclear Systems Publications SHARE Reactor and Nuclear Systems Publications...

413

NETL: Methane Hydrates - ANS Research Project - Modular Dynamics Tester  

NLE Websites -- All DOE Office Websites (Extended Search)

Well Well Modular Formation Dynamics Tester (MDT) Tool The scientific plan for the Mt. Elbert Prospect includes multiple tests using Schlumberger’s Modular Formation Dynamics Tester (MDT) tool. This device is deployed on wireline and will be used to sample formation fluids, and measure formation pressure and permeability. The tool’s design involves extension of a sampling probe pad against the borehole wall by backup pistons and the insertion of a smaller test probe a small distance into the formation. The probe is then opened to a sampling chamber within the tool, where fluids from the formation can flow, free of contamination by the borehole fluid. The formation pressure is measured using an extremely accurate gauge that can resolve small pressure differences. The pressure and the rate of fluid flow into the sample chamber can be used to calculate reservoir permeability. Multiple probes can also be used to determine both vertical and horizontal permeability data, which can be used to assess near-wellbore permeability anisotropy (i.e., the degree to which vertical and horizontal permeability within the same reservoir differ). All of these data are useful to engineers interested in predicting the productive capability of a reservoir. Various configurations of the MDT tool can be used to accomplish specific testing goals.

414

646 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 5, OCTOBER 1997 Design of Assembly Systems for Modular Products  

E-Print Network (OSTI)

Systems for Modular Products David W. He and Andrew Kusiak, Member, IEEE Abstract--To respond systems. Given a family of modular products, designing low cost assembly systems is an important problem. In this paper, an approach for the design of assembly systems for modular products is proposed. The assembly

Kusiak, Andrew

415

A Home for Heffalump and Pooh - Argonne's Nuclear Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

A Home for Heffalump and Pooh A Home for Heffalump and Pooh About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

416

Nuclear Systems Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuel Cycle Systems Criticality Safety Irradiation Experiment Development and Execution Robotics & Remote Systems Engineering and Applications Thermal & Hydraulic Experiments & Analysis Used Nuclear Fuel Storage, Transportation, and Disposal Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research Areas | Nuclear Systems Technology SHARE Nuclear Systems Technology Nuclear Systems Technology Image 2 ORNL has had historic involvement in a broad set of nuclear research areas: irradiated materials and isotopes R&D, fission and fusion reactors development, neutron scattering, fuel enrichment, used fuel recycling and disposal, etc. The skills and knowledge required to succeed in these research areas often cultivated core areas of expertise in which ORNL is

417

With good reason, much more media attention has focused on  

E-Print Network (OSTI)

solar farms, wind farms, or hydro- electric plants during the past month and a half. But as nations to develop more affordable nuclear reactors of the future: small modular reactors. Brookhaven Lab is working & Technology Depart- ment for the 468th Brookhaven Lecture, titled, "Small Modular Reactors." All are invited

418

Modeling and Simulation for Nuclear Reactors Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub August 1, 2010 - 4:20pm Addthis Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. The Department's Energy Innovation Hubs are helping to advance promising areas of energy science and engineering from the earliest stages of research to the point of commercialization where technologies can move to the private sector by bringing together leadings scientists to collaborate on critical energy challenges. The Energy Innovation Hubs aim to develop innovation through a unique

419

Development of Materials for Supercritical-Water-Cooled Reactor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of Materials for Supercritical-Water-Cooled Reactor Development of Materials for Supercritical-Water-Cooled Reactor Development of Materials for Supercritical-Water-Cooled Reactor Supercritical-Water-Cooled Reactor (SCWR) was selected as one of the promising candidates in Generation IV reactors for its prominent advantages; those are the high thermal efficiency, the system simplification, the R&D cost minimization and the flexibility for core design. As the demand for advanced nuclear system increases, Japanese R&D project started in 1999 aiming to provide technical information essential to demonstration of SCPR technologies through three sub-themes of 1. Plant conceptual design, 2. Thermal-hydraulics, and 3. Material. Although the material development is critical issue of SCWR development, previous studies were limited for the screening tests on commercial alloys

420

Nuclear reactor control column  

DOE Patents (OSTI)

The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

Bachovchin, Dennis M. (Plum Borough, PA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Reactor Safety Research Programs  

SciTech Connect

This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Edler, S. K.

1981-07-01T23:59:59.000Z

422

MHK Technologies/WET NZ | Open Energy Information  

Open Energy Info (EERE)

NZ NZ < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WET NZ.jpg Technology Profile Primary Organization Wave Energy Technology New Zealand WET NZ Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The WET NZ device is planned to have a modular generation capability of up to 500 kW with onboard controls that will be able to accurately forecast incoming waves and adjust the response to changing wave patterns The device will be largely sub surface so that as much of the device as possible interacts directly with the wave energy Technology Dimensions

423

Nuclear reactor reflector  

DOE Patents (OSTI)

A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

1994-01-01T23:59:59.000Z

424

Spherical torus fusion reactor  

DOE Patents (OSTI)

The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

Martin Peng, Y.K.M.

1985-10-03T23:59:59.000Z

425

Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program  

SciTech Connect

Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions.

Not Available

1987-05-01T23:59:59.000Z

426

Office of Nuclear Energy | Department of Energy  

Office of Environmental Management (EM)

Office of Nuclear Energy Small Modular Reactors Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation...

427

Design, Fabrication, and Certification of Advanced Modular PV Power Systems Final Technical Progress Report  

SciTech Connect

This report describes the overall accomplishments and benefits of Solar Electric Specialties Co. (SES) under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. SES addressed design issues related to their modular autonomous PV power supply (MAPPS) and a mobile photogenset. MAPPS investigations included gel-cell batteries mounted horizontally; redesign of the SES power supply; modified battery enclosure for increased safety and reduced cost; programmable, interactive battery charge controllers; and UL and FM listings. The photogenset systems incorporate generators, battery storage, and PV panels for a mobile power supply. The unit includes automatic oil-change systems for the propane generators, collapsible array mounts for the PV enclosure, and internal stowage of the arrays. Standardizing the products resulted in product lines of MAPPS and Photogensets that can be produced more economically and with shorter lead times, while increasing product quality and reliability. Product assembly and quality control have also been improved and streamlined with the development of standardized assembly processes and QC testing procedures. SES offers the UL-listed MAPPS at about the same price as its previous non-standardized, unlisted products.

Lambarski, T.; Minyard, G. (Solar Electric Specialties Co., Willits, California)

1998-10-06T23:59:59.000Z

428

The neutronics studies of fusion fission hybrid power reactor  

SciTech Connect

In this paper, a series of neutronics analysis of hybrid power reactor is proposed. The ideas of loading different fuels in a modular-type fission blanket is analyzed, fitting different level of fusion developments, i.e., the current experimental power output, the level can be obtained in the coming future and the high-power fusion reactor like ITER. The energy multiplication of fission blankets and tritium breeding ratio are evaluated as the criterion of design. The analysis is implemented based on the D-type simplified model, aiming to find a feasible 1000MWe hybrid power reactor for 5 years' lifetime. Three patterns are analyzed: 1) for the low fusion power, the reprocessed fuel is chosen. The fuel with high plutonium content is loaded to achieve large energy multiplication. 2) For the middle fusion power, the spent fuel from PWRs can be used to realize about 30 times energy multiplication. 3) For the high fusion power, the natural uranium can be directly used and about 10 times energy multiplication can be achieved.

Zheng Youqi; Wu Hongchun; Zu Tiejun; Yang Chao; Cao Liangzhi [School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 (China)

2012-06-19T23:59:59.000Z

429

Improving Ventilation and Saving Energy: Laboratory Study in a Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Laboratory Study in a Modular Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Title Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Publication Type Report Year of Publication 2005 Authors Apte, Michael G., Ian S. Buchanan, David Faulkner, William J. Fisk, Chi-Ming Lai, Michael Spears, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory Abstract The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms

430

Insights from the WGRISK workshop on the PSA of advanced and new reactors  

SciTech Connect

Probabilistic Safety Assessment /Probabilistic Risk Assessment for new and advanced reactors is recognized as an essential complement of the deterministic approaches to achieve improved safety and performances of new nuclear power plants, comparing to the operating plants. However, the development of PSA to these reactors is encountered to concurrent challenges, mainly due to the limited available design information, as well as due to potentially new initiating events, accident sequences and phenomena. The use of PSA in the decision making process is also challenging since the resulting PSA may not sufficiently reflect the future as-built, as-operated plant information. In order to address these aspects, the OECD/NEA/WGRISK initiated two coordinated tasks on 'PSA for Advanced Reactors' and 'PSA in the frame of Design and Commissioning of New NPPs'. In this context, a joint workshop was organized by OECD, during which related subjects were presented and discussed, including PSA for generation IV reactors, PSA for evolutionary reactors, PSA for small modular reactors, severe accidents and Level 2 PSA, Level 3 PSA and consequences analysis, digital I and C modeling, passive systems reliability, safety-security interface, as well as the results of the surveys performed in the frame of theses WGRISK tasks. (authors)

Georgescu, G. [Inst. for Radioprotection and Nuclear Safety IRSN, BP17, 92262 Fontenay aux Roses (France); Ahn, K. I. [Korea Atomic Energy Research Inst. KAERI, 150-1 Deokjin-Dong, 1045 Daedeokdaero, Yuseong, Daejeon (Korea, Republic of); Amri, A. [OCED/NEA, Le Seine St.Germain, Bd des Iles, 92130 Issy-les-Moulineaux (France)

2012-07-01T23:59:59.000Z

431

Enhanced modularity-based community detection by random walk network preprocessing  

Science Journals Connector (OSTI)

The representation of real systems with network models is becoming increasingly common and critical to both capture and simplify systems complexity, notably, via the partitioning of networks into communities. In this respect, the definition of modularity, a common and broadly used quality measure for networks partitioning, has induced a surge of efficient modularity-based community detection algorithms. However, recently, the optimization of modularity has been found to show a resolution limit, which reduces its effectiveness and range of applications. Therefore, one recent trend in this area of research has been related to the definition of novel quality functions, alternative to modularity. In this paper, however, instead of laying aside the important body of knowledge developed so far for modularity-based algorithms, we propose to use a strategy to preprocess networks before feeding them into modularity-based algorithms. This approach is based on the observation that dynamic processes triggered on vertices in the same community possess similar behavior patterns but dissimilar on vertices in different communities. Validations on real-world and synthetic networks demonstrate that network preprocessing can enhance the modularity-based community detection algorithms to find more natural clusters and effectively alleviates the problem of resolution limit.

Darong Lai; Hongtao Lu; Christine Nardini

2010-06-23T23:59:59.000Z

432

Pollution prevention drives membrane technologies  

SciTech Connect

Currently, such membrane technologies as crossflow micro-, ultra-, and nanofiltration, reverse osmosis, electrodialysis and pervaporation offer interesting possibilities, each tackling a specific aspect of pollution control. Although none of these methods can, on its own, alter or break down pollutants, each has the ability to separate, fractionate and concentrate contaminants. In addition, they: permit continuous, uninterrupted processing via automatic control; use far less energy than traditional treatment methods; require only minimal temperature changes and no chemical additives; exert no impact on contaminants, and keep them physically separated from the stream; and are easy to install, either alone or combined with other treatment systems, since they are modular and contain few moving parts. The paper discusses the benefits and disadvantages of membrane technology and recommends thorough testing.

Cartwright, P.

1994-09-01T23:59:59.000Z

433

Reactor Thermal-Hydraulics  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

434

Reactor hot spot analysis  

SciTech Connect

The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

Vilim, R.B.

1985-08-01T23:59:59.000Z

435

Molten metal reactors  

DOE Patents (OSTI)

A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

2013-11-05T23:59:59.000Z

436

F Reactor Inspection  

ScienceCinema (OSTI)

Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

2014-11-24T23:59:59.000Z

437

F Reactor Inspection  

SciTech Connect

Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

2014-10-29T23:59:59.000Z

438

REACTOR GROUT THERMAL PROPERTIES  

SciTech Connect

Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

2011-01-28T23:59:59.000Z

439

Reactor Safety Planning for Prometheus Project, for Naval Reactors Information  

SciTech Connect

The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

P. Delmolino

2005-05-06T23:59:59.000Z

440

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Life extension program for the modular caustic side solvent extraction unit at Savannah River Site  

SciTech Connect

Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. At SRS, the CSSX process is deployed in the Modular CSSX Unit (MCU). The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. Coalescers and decanters process the Decontaminated Salt Solution (DSS) and Strip Effluent (SE) streams to allow recovery and reuse of the organic solvent and to limit the quantity of solvent transferred to the downstream facilities. MCU is operated in series with the Actinide Removal Process (ARP) which removes strontium and actinides from salt waste utilizing monosodium titanate. ARP and MCU were developed and implemented as interim salt processing until future processing technology, the CSSX-based Salt Waste Processing Facility (SWPF), is operational. SWPF is slated to come on-line in October 2014. The three year design life of the ARP/MCU process, however, was reached in April 2011. Nevertheless, most of the individual process components are capable of operating longer. An evaluation determined ARP/MCU can operate until 2015 before major equipment failure is expected. The three year design life of the ARP/MCU Life Extension (ARP/MCU LE) program will bridge the gap between current ARP/MCU operations and the start of SWPF operation. The ARP/MCU LE program introduces no new technologies. As a portion of this program, a Next Generation Solvent (NGS) and corresponding flowsheet are being developed to provide a major performance enhancement at MCU. This paper discusses all the modifications performed in the facility to support the ARP/MCU Life Extension. It will also discuss the next generation chemistry, including NGS and new stripping chemistry, which will increase cesium removal efficiency in MCU. Possible implementation of the NGS chemistry in MCU accomplishes two objectives. MCU serves as a demonstration facility for improved flowsheet deployment at SWPF; operating with NGS and boric acid validates improved cesium removal performance and increased throughput as well as confirms Defense Waste Processing Facility (DWPF) ability to vitrify waste streams containing boron. NGS implementation at MCU also aids the ARP/MCU LE operation, mitigating the impacts of delays and sustaining operations until other technology is able to come on-line.

Samadi-Dezfouli, Azadeh

2012-11-14T23:59:59.000Z

442

B Reactor | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operational Management » History » Manhattan Project » Signature Operational Management » History » Manhattan Project » Signature Facilities » B Reactor B Reactor B Reactor Completed in September 1944, the B Reactor was the world's first large-scale plutonium production reactor. As at Oak Ridge, the need for labor turned Hanford into an atomic boomtown, with the population reaching 50,000 by summer 1944. Similar to the X-10 Graphite Reactor at Oak Ridge in terms of loading and unloading fuel, the B Reactor was built on a much larger scale and used water rather than air as a coolant. Whereas the X-10 had an initial design output of 1,000 kilowatts, the B Reactor was designed to operate at 250,000 kilowatts. Consisting of a 28- by 36-foot, 1,200-ton graphite cylinder lying on its side, the reactor was penetrated through its

443

i TrT\\YT(V^/f%\\ Ris-R-435 Department of Reactor  

E-Print Network (OSTI)

of Reliability Techniques 15 3. REACTOR PHYSICS AND DYNAMICS 19 3.1. Interface Methods for Solving the Neutron Accident Analysis 36 4.2. Experiments 39 5. THE DR 1 REACTOR 42 5.1. Neutron Radiography 42 5.2. Reactivityi« TrT\\YT(V^/f%\\ Risø-R-435 · e £ Department of Reactor Technology Annual Progress Report 1January

444

New Approach for Feature Selection of Thermomechanically Processed HSLA Steel using Pruned-Modular Neural Networks  

Science Journals Connector (OSTI)

A new approach has been used in modeling of strength and ductility of high strength low alloy (HSLA) steel, where a comparative study among fully-connected neural network, modular network and pruned-module arc...

Prasun Das; Avishek Ghosh

2012-10-01T23:59:59.000Z

445

Design principles of mammalian signaling networks : emergent properties at modular and global scales  

E-Print Network (OSTI)

This thesis utilizes modeling approaches rooted in statistical physics and physical chemistry to investigate several aspects of cellular signal transduction at both the modular and global levels. Design principles of ...

Locasale, Jason W

2008-01-01T23:59:59.000Z

446

Abstract--We present progress on a comprehensive, modular, interactive modeling environment centered on overall  

E-Print Network (OSTI)

in a cell membrane ion transport protein. In this paper, we present progress on a comprehensive, modular, epithelial transport, or even whole organ physiology, there is presently, no comprehensive, organism

Boyer, Edmond

447

Order and diversity within a modular system for housing : a computational approach  

E-Print Network (OSTI)

This thesis introduces elements of a methodology to achieve order and diversity in the systematic design of street facades within a modular system for housing. In its context both order and diversity refer to the spatial ...

Duarte, Jos Pinto

1993-01-01T23:59:59.000Z

448

Modular invariants and subfactors e-mail: yasuyuki@ms.u-tokyo.ac.jp  

E-Print Network (OSTI)

###### 1994 ###### chiral generator ## Longo-Rehren [13] # 1994 ###### Xu [26, 27] # 1995 ## ####### braided endomorphism (### B"ockenhauer-Evans [1, 2, 3] #### ff-induction ####### net of subfactors ###### subfactor #### 2 ff-induction # modular invariant Ocneanu # double

Kawahigashi, Yasuyuki

449

Prototype Fault Current Limiter Using Transformer and a Modular Device of YBCO Coated Conductor  

Science Journals Connector (OSTI)

A superconducting fault current limiter (SCFL) consisted of a transformer with ... secondary winding short-circuited by a modular superconducting limiter device with 16 elements connected in series ... a 0.125? ...

C. A. Baldan; J. S. Lamas; A. A. Bernardes

2013-04-01T23:59:59.000Z

450

Design and analysis of a concrete modular housing system constructed with 3D panels  

E-Print Network (OSTI)

An innovative modular house system design utilizing an alternative concrete residential building system called 3D panels is presented along with an overview of 3D panels as well as relevant methods and markets. The proposed ...

Sarcia, Sam Rhea, 1982-

2004-01-01T23:59:59.000Z

451

Power management as a system-level inhibitor of modularity in the mobile computer industry  

E-Print Network (OSTI)

Since the mid-90s, the computer industry has been very modular with respect to both product architecture and industry structure. The growing market size of mobile computers means that the challenges facing this segment are ...

Weinstein, Samuel K. (Samuel Keith), 1974-

2004-01-01T23:59:59.000Z

452

Free and bound generics: two techniques for abstract data types in modular C  

Science Journals Connector (OSTI)

A description of two fundamentally distinct techniques for the implementation of abstract data types within Modular C, a preprocessor extension of C. Issues of reusability, environmental design, and efficiency are discussed as criteria for the selection ...

Stowe Boyd

1984-03-01T23:59:59.000Z

453

Introducing MARF: a Modular Audio Recognition Framework and its Applications for Scientific and Software Engineering Research  

Science Journals Connector (OSTI)

In this paper we introduce a Modular Audio Recognition Framework (MARF), as an open ... recognition algorithms and beyond in areas such as audio and text processing (NLP) and may ... learning and extension as it ...

Serguei A. Mokhov

2008-01-01T23:59:59.000Z

454

E-Print Network 3.0 - advanced technologies based Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Bed Reactor Collection: Fission and Nuclear Technologies 18 Kompetenzzentrum fr Automobil-und Industrieelektronik Summary: of materials for these advanced semiconductor...

455

PNNL's Lab Homes Run Energy-Efficient Technologies Through the Paces |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNNL's Lab Homes Run Energy-Efficient Technologies Through the PNNL's Lab Homes Run Energy-Efficient Technologies Through the Paces PNNL's Lab Homes Run Energy-Efficient Technologies Through the Paces November 14, 2013 - 10:10am Addthis At the Energy Department's Pacific Northwest National Laboratory (PNNL), researchers are using two modular homes to test energy-efficient products and calculate their energy savings. Researchers test new technologies in the Experimental home (pictured above), while the Baseline home (not pictured) serves as a control and doesn’t get changed during any of the experiments. | Photo courtesy of PNNL. At the Energy Department's Pacific Northwest National Laboratory (PNNL), researchers are using two modular homes to test energy-efficient products and calculate their energy savings. Researchers test new technologies in

456

Solid oxide electrochemical reactor science.  

SciTech Connect

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

2010-09-01T23:59:59.000Z

457

Report on the Scientific Committee for the Evaluation of the Institute of Nuclear Technology and Radiation Protection (INTRP)  

E-Print Network (OSTI)

and radiobiology Radioecology Environmental pollution Reliability and risk analysis of industrial installations and evaluated the Institute of Nuclear Reactor Technology and Radiation Protection, following the instructions characterization for Fusion The Institute operates the Research Reactor with main activities

458

Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a worst-case simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

2011-04-06T23:59:59.000Z

459

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from

460

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations, which govern the operation of commercial nuclear power plants, require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including

Note: This page contains sample records for the topic "modular reactor technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Reactor for exothermic reactions  

DOE Patents (OSTI)

A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

1993-03-02T23:59:59.000Z

462

Thermionic Reactor Design Studies  

SciTech Connect

Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

Schock, Alfred

1994-08-01T23:59:59.000Z

463

Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing{  

E-Print Network (OSTI)

Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing{ Ryan D-at-a-time). Microfluidic processors that enable multi-stage fluidic reactions with suspended microparticles (e-on-a-chip technologies. Here we present a single-layer microfluidic reactor that utilizes a microfluidic railing

Lin, Liwei

464

Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor  

SciTech Connect

The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge burnup level, while retaining its inherent safety characteristics. Using generic pebble bed reactor cores, this task will perform physics calculations to evaluate the capabilities of the pebble bed reactor to perform utilization and destruction of LWR used-fuel transuranics. The task will use established benchmarked models, and will introduce modeling advancements appropriate to the nature of the fuel considered (high TRU content and high burn-up).

B. Boer; A. M. Ougouag

2010-09-01T23:59:59.000Z

465

Diagnostics for hybrid reactors  

SciTech Connect

The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

Orsitto, Francesco Paolo [ENEA Unita' Tecnica Fusione , Associazione ENEA-EURATOM sulla Fusione C R Frascati v E Fermi 45 00044 Frascati (Italy)

2012-06-19T23:59:59.000Z

466

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

467

Novel Reactor Design for Solid Fuel Chemical Looping Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Reactor Design for Solid Fuel Novel Reactor Design for Solid Fuel Chemical Looping Combustion Opportunity Research is active on the patent pending technology, titled "Apparatus and Method for Solid Fuel Chemical Looping Combustion." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview The removal of CO2 from power plants is challenging because existing methods to separate CO2 from the gas mixture requires a significant fraction of the power plant output. Chemical-looping combustion (CLC) is a novel technology that utilizes a metal oxide oxygen carrier to transport oxygen to the fuel thereby avoiding direct contact between fuel and air. The use of CLC has the advantages of reducing the energy penalty while

468

Conversion of methanol to light olefins on SAPO-34: kinetic modeling and reactor design  

E-Print Network (OSTI)

design of an MTO reactor, accounting for the strong exothermicity of the process. Multi-bed adiabatic and fluidized bed technologies show good potential for the industrial process for the conversion of methanol into olefins....

Al Wahabi, Saeed M. H.

2005-02-17T23:59:59.000Z

469

Research and educational activities at the MIT Research Reactor : Fiscal year 1968  

E-Print Network (OSTI)

A report of research and educational activities which utilized the Massachusetts Institute of Technology, five-megawatt, heavy water, research reactor during fiscal year 1968 has been prepared for administrative use at MIT ...

Massachusetts Institute of Technology. Department of Nuclear Engineering; 7102 Massachusetts Institute of Technology. Research Reactor. Staff; U.S. Atomic Energy Commission

1968-01-01T23:59:59.000Z

470

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

471

Decommissioning of the Tokamak Fusion Test Reactor  

SciTech Connect

The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

2003-10-28T23:59:59.000Z

472

Argonne's pyroprocessing and advanced reactor research featured on WGN  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's pyroprocessing and advanced reactor research featured on WGN Argonne's pyroprocessing and advanced reactor research featured on WGN radio Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Argonne's pyroprocessing and advanced reactor research featured on WGN radio Uranium dendrites These tiny branches, or "dendrites," of pure uranium form when engineers

473

Advanced Neutron Source Reactor thermal analysis of fuel plate defects  

SciTech Connect

The Advanced Neutron Source Reactor (ANSR) is a research reactor designed to provide the highest continuous neutron beam intensity of any reactor in the world. The present technology for determining safe operations were developed for the High Flux Isotope Reactor (HFIR). These techniques are conservative and provide confidence in the safe operation of HFIR. However, the more intense requirements of ANSR necessitate the development of more accurate, but still conservative, techniques. This report details the development of a Local Analysis Technique (LAT) that provides an appropriate approach. Application of the LAT to two ANSR core designs are presented. New theories of the thermal and nuclear behavior of the U{sub 3}Si{sub 2} fuel are utilized. The implications of low