Powered by Deep Web Technologies
Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Computational Analysis of Fluid Flow in Pebble Bed Modular Reactor  

E-Print Network (OSTI)

High Temperature Gas-cooled Reactor (HTGR) is a Generation IV reactor under consideration by Department of Energy and in the nuclear industry. There are two categories of HTGRs, namely, Pebble Bed Modular Reactor (PBMR) and Prismatic reactor. Pebble...

Gandhir, Akshay

2012-10-19T23:59:59.000Z

2

Nuclear desalination with PBMR  

Science Journals Connector (OSTI)

The possibilities of using the high temperature exhaust heat of a Pebble Bed Modular Reactor (PBMR) in desalination processes are considered. An analysis of MED and MSF type desalination processes coupled with a PBMR are studied and a module for the DEEP code is prepared.

R.S. Sen; U. Colak; O.K. Kadiroglu

2004-01-01T23:59:59.000Z

3

SRS Small Modular Reactors  

SciTech Connect

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2012-04-27T23:59:59.000Z

4

SRS Small Modular Reactors  

ScienceCinema (OSTI)

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2014-05-21T23:59:59.000Z

5

Uncertainty Analysis for a De-pressurised Loss of Forced Cooling Event of the PBMR Reactor  

SciTech Connect

This paper presents an uncertainty analysis for a De-pressurised Loss of Forced Cooling (DLOFC) event that was performed with the systems CFD (Computational Fluid Dynamics) code Flownex for the PBMR reactor. An uncertainty analysis was performed to determine the variation in maximum fuel, core barrel and reactor pressure vessel (RPV) temperature due to variations in model input parameters. Some of the input parameters that were varied are: thermo-physical properties of helium and the various solid materials, decay heat, neutron and gamma heating, pebble bed pressure loss, pebble bed Nusselt number and pebble bed bypass flows. The Flownex model of the PBMR reactor is a 2-dimensional axisymmetrical model. It is simplified in terms of geometry and some other input values. However, it is believed that the model adequately indicates the effect of changes in certain input parameters on the fuel temperature and other components during a DLOFC event. Firstly, a sensitivity study was performed where input variables were varied individually according to predefined uncertainty ranges and the results were sorted according to the effect on maximum fuel temperature. In the sensitivity study, only seven variables had a significant effect on the maximum fuel temperature (greater that 5 deg. C). The most significant are power distribution profile, decay heat, reflector properties and effective pebble bed conductivity. Secondly, Monte Carlo analyses were performed in which twenty variables were varied simultaneously within predefined uncertainty ranges. For a one-tailed 95% confidence level, the conservatism that should be added to the best estimate calculation of the maximum fuel temperature for a DLOFC was determined as 53 deg. C. This value will probably increase after some model refinements in the future. Flownex was found to be a valuable tool for uncertainly analyses, facilitating both sensitivity studies and Monte Carlo analyses. (authors)

Jansen van Rensburg, Pieter A.; Sage, Martin G. [PBMR, 1279 Mike Crawford Avenue, Centurion 0046 (South Africa)

2006-07-01T23:59:59.000Z

6

Proliferation resistant fuel for pebble bed modular reactors  

SciTech Connect

We show that it is possible to denature the Plutonium produced in Pebble Bed Modular Reactors (PBMR) by doping the nuclear fuel with either 3050 ppm of {sup 237}Np or 2100 ppm of Am vector. A correct choice of these isotopes concentration yields denatured Plutonium with isotopic ratio {sup 238}Pu/Pu {>=} 6%, for the entire fuel burnup cycle. The penalty for introducing these isotopes into the nuclear fuel is a subsequent shortening of the fuel burnup cycle, with respect to a non-doped reference fuel, by 41.2 Full Power Days (FPDs) and 19.9 FPDs, respectively, which correspond to 4070 MWd/ton and 1965 MWd/ton reduction in fuel discharge burnup. (authors)

Ronen, Y.; Aboudy, M.; Regev, D.; Gilad, E. [Dept. of Nuclear Engineering, Ben-Gurion Univ. of the Negev, Beer-Sheva 84105 (Israel)

2012-07-01T23:59:59.000Z

7

PBMR as an Ideal Heat Source for High-Temperature Process Heat Applications  

SciTech Connect

The Pebble Bed Modular Reactor (PBMR) is an advanced helium-cooled, graphite-moderated High Temperature Gas-cooled Reactor (HTGR). A 400 MWt PBMR Demonstration Power Plant (DPP) for the production of electricity is being developed in South Africa. This PBMR technology is also an ideal heat source for process heat applications, including Steam Methane Reforming, steam for Oil Sands bitumen recovery, Hydrogen Production and co-generation (process heat and/or electricity and/or process steam) for petrochemical industries. The cycle configuration used to transport the heat of the reactor to the process plant or to convert the reactor's heat into electricity or steam directly influences the cycle efficiency and plant economics. The choice of cycle configuration depends on the process requirements and is influenced by practical considerations, component and material limitations, maintenance, controllability, safety, performance, risk and cost. This paper provides an overview of the use of a PBMR reactor for process applications and possible cycle configurations are presented for applications which require high temperature process heat and/or electricity. (authors)

Correia, Michael; Greyvenstein, Renee [PBMR - Pty Ltd., 1279 Mike Crawford Avenue, Centurion, 0046 (South Africa); Silady, Fred; Penfield, Scott [Technology Insights, 6540 Lusk Blvd, Suite C-102, San Diego, California 92121 (United States)

2006-07-01T23:59:59.000Z

8

Small Modular Nuclear Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Technologies » Small Modular Reactor Technologies » Small Modular Nuclear Reactors Small Modular Nuclear Reactors Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. The development of clean, affordable nuclear power options is a key element of the Department of Energy's Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. Begun

9

Microsoft Word - 20.1 Special Study Reactor Type Comparison_VS...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Source NRC Nuclear Regulatory Commission PBMR Pebble Bed Modular Reactor PHP Process Heat Plant PLOFC Pressurized Loss of Forced Cooling QA Quality Assurance R&D Research and...

10

Ordered bed modular reactor design proposal  

SciTech Connect

The Ordered Bed Modular Reactor (OBMR) is a design as an advanced modular HTGR in which the annular reactor core is filled with an ordered bed of fuel spheres. This arrangement allows fuel elements to be poured into the core cavity which is shaped so that an ordered bed is formed and to be discharged from the core through the opening holes in the reactor top. These operations can be performed in a shutdown shorter time. The OBMR has the most of advantages from both the pebble bed reactor and block type reactor. Its core has great structural flexibility and stability, which allow increasing reactor output power and outlet gas temperature as well as decreasing core pressure drop. This paper introduces ordered packing bed characteristics, unloading and loading technique of the fuel spheres and predicted design features of the OBMR. (authors)

Tian, J. [Inst. of Nuclear Energy Technology, Tsinghua Univ., Beijing 100084 (China)

2006-07-01T23:59:59.000Z

11

Modular Pebble Bed Reactor High Temperature Gas Reactor  

E-Print Network (OSTI)

Modular Pebble Bed Reactor High Temperature Gas Reactor Andrew C Kadak Massachusetts Institute For 1150 MW Combined Heat and Power Station Oil Refinery Hydrogen Production Desalinization Plant VHTR/Graphite Discrimination system Damaged Sphere ContainerGraphiteReturn FuelReturn Fresh Fuel Container Spent Fuel Tank #12

12

Small Modular Reactors (468th Brookhaven Lecture)  

SciTech Connect

With good reason, much more media attention has focused on nuclear power plants than solar farms, wind farms, or hydroelectric plants during the past month and a half. But as nations around the world demand more energy to power everything from cell phone batteries to drinking water pumps to foundries, nuclear plants are the only non-greenhouse-gas producing option that can be built to operate almost anywhere, and can continue to generate power during droughts, after the sun sets, and when winds die down. To supply this demand for power, designers around the world are competing to develop more affordable nuclear reactors of the future: small modular reactors. Brookhaven Lab is working with DOE to ensure that these reactors are designed to be safe for workers, members of surrounding communities, and the environment and to ensure that the radioactive materials and technology will only be used for peaceful purposes, not weapons. In his talk, Bari will discuss the advantages and challenges of small modular reactors and what drives both international and domestic interest in them. He will also explain how Brookhaven Lab and DOE are working to address the challenges and provide a framework for small modular reactors to be commercialized.

Bari, Robert

2011-04-20T23:59:59.000Z

13

Economic Aspects of Small Modular Reactors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Aspects of Small Modular Reactors March 1, 2012 Introduction The potential for SMR deployment will be largely determined by the economic value that these power plants would provide to interested power producers who would evaluate their prospects in relation to other options for generating electricity. To help better understand this proposition, DOE enlisted the Energy Policy Institute at Chicago in 2010 to conduct an economic analysis of SMRs based upon what is known today. Their findings were summarized in a paper by Robert Rosner and Stephen Goldberg, released in December, 2011, titled "Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S." This brief paper will highlight some of the key finding from the study

14

Small Modular Reactors Presentation to Secretary of Energy Advisory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly Small Modular Reactors Presentation to Secretary of Energy Advisory Board - Deputy...

15

Generic small modular reactor plant design.  

SciTech Connect

This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

2012-12-01T23:59:59.000Z

16

Xenon-induced axial power oscillations in the 400MW PBMR  

Science Journals Connector (OSTI)

The redistribution of the spatial xenon concentration in the 400MW Pebble Bed Modular Reactor (PBMR) core has a non-linear, time-dependent feedback effect on the spatial power density during several types of operational transient events. Due to the inherent weak coupling that exists between the iodine and xenon formation and destruction rates, as well as the complicating effect of spatial variance in the thermal flux field, reactor cores have been analyzed for a number of decades for the occurrence and severity of xenon-induced axial power oscillations. Of specific importance is the degree of oscillation damping exhibited by the core during transients, which involves axial variations in the local power density. In this paper the TINTE reactor dynamics code is used to assess the stability of the current 400MW PBMR core design with regard to axial xenon oscillations. The focus is mainly on the determination of the inherent xenon and power oscillation damping properties by utilizing a set of hypothetical control rod insertion transients at various power levels. The oscillation damping properties of two 100%50%100% load-follow transients, one of which includes the de-stabilizing axial effects of moving control rods, are also discussed in some detail. The study shows that, although first axial mode oscillations do occur in the 400MW PBMR core, the inherent damping of these oscillations is high, and that none of the investigated load-follow transients resulted in diverging oscillations. It is also shown that the PBMR core exhibits no radial oscillation components for these xenon-induced axial power oscillations.

Gerhard Strydom

2008-01-01T23:59:59.000Z

17

MODULAR PEBBLE BED REACTOR PROJECT UNIVERSITY RESEARCH CONSORTIUM  

E-Print Network (OSTI)

Annual Report Page ii MODULAR PEBBLE BED REACTOR ABSTRACT This project is developing a fundamental. Publication of an archival journal article covering this work is being prepared. · Detailed gas reactor Abstract

18

Human Reliability Analysis for Small Modular Reactors  

SciTech Connect

Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

Ronald L. Boring; David I. Gertman

2012-06-01T23:59:59.000Z

19

Proliferation resistance of small modular reactors fuels  

SciTech Connect

In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

Polidoro, F.; Parozzi, F. [RSE - Ricerca sul Sistema Energetico,Via Rubattino 54, 20134, Milano (Italy); Fassnacht, F.; Kuett, M.; Englert, M. [IANUS, Darmstadt University of Technology, Alexanderstr. 35, D-64283 Darmstadt (Germany)

2013-07-01T23:59:59.000Z

20

Small Modular Reactors Presentation to Secretary of Energy Advisory Board -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Modular Reactors Presentation to Secretary of Energy Advisory Small Modular Reactors Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly Small Modular Reactors Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly DOE Small Modular Reactor Program (SMR) Research, Development & Deployment (RD&D) to enable the deployment of a fleet of SMRs in the United States SMR Program is a new program for FY 2011 Structured to address the need to enable the deployment of mature, near-term SMR designs based on known LWR technology Conduct needed R&D activities to advance the understanding and demonstration of innovative reactor technologies and concepts John_Kelly-SEAB_SMRBriefing_July20_2011_final.pdf More Documents & Publications Meeting Materials: June 12, 2012

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Department Announces Small Modular Reactor Technology Partnerships  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Modular Reactor Technology Small Modular Reactor Technology Partnerships at Savannah River Site Energy Department Announces Small Modular Reactor Technology Partnerships at Savannah River Site March 2, 2012 - 10:27am Addthis WASHINGTON, D.C. -- The U.S. Energy Department and its Savannah River Site (SRS) announced today three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at SRS facilities, near Aiken, South Carolina. As part of the Energy Department's commitment to advancing the next generation of nuclear reactor technologies and breaking down the technical and economic barriers to deployment, these Memorandums of Agreement (MOA) will help leverage Savannah River's land assets, energy facilities and nuclear expertise to

22

Economic Aspects of Small Modular Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Aspects of Small Modular Reactors Economic Aspects of Small Modular Reactors Economic Aspects of Small Modular Reactors The potential for SMR deployment will be largely determined by the economic value that these power plants would provide to interested power producers who would evaluate their prospects in relation to other options for generating electricity. To help better understand this proposition, DOE enlisted the Energy Policy Institute at Chicago in 2010 to conduct an economic analysis of SMRs based upon what is known today. Their findings were summarized in a paper by Robert Rosner and Stephen Goldberg, released in December, 2011, titled "Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S." This brief paper will highlight some of the key finding from the study1

23

Cost-Shared Development of Innovative Small Modular Reactor Designs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost-Shared Development of Innovative Small Modular Reactor Designs Cost-Shared Development of Innovative Small Modular Reactor Designs Cost-Shared Development of Innovative Small Modular Reactor Designs The Small Modular Reactor (SMR) Licensing Technical Support (LTS) program, sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), through this Funding Opportunity Announcement (FOA) seeks to facilitate the development of innovative SMR designs that have the potential to address the nation's economic, environmental and energy security goals. Specifically, the Department is soliciting applications for SMR designs that offer unique and innovative solutions for achieving the objectives of enhanced safety, operations, and performance relative to currently certified designs. This FOA focuses on design development and

24

Economic Aspects of Small Modular Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Aspects of Small Modular Reactors Economic Aspects of Small Modular Reactors Economic Aspects of Small Modular Reactors The potential for SMR deployment will be largely determined by the economic value that these power plants would provide to interested power producers who would evaluate their prospects in relation to other options for generating electricity. To help better understand this proposition, DOE enlisted the Energy Policy Institute at Chicago in 2010 to conduct an economic analysis of SMRs based upon what is known today. Their findings were summarized in a paper by Robert Rosner and Stephen Goldberg, released in December, 2011, titled "Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S." This brief paper will highlight some of the key finding from the study1

25

Cost-Shared Development of Innovative Small Modular Reactor Designs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost-Shared Development of Innovative Small Modular Reactor Designs Cost-Shared Development of Innovative Small Modular Reactor Designs Cost-Shared Development of Innovative Small Modular Reactor Designs The Small Modular Reactor (SMR) Licensing Technical Support (LTS) program, sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), through this Funding Opportunity Announcement (FOA) seeks to facilitate the development of innovative SMR designs that have the potential to address the nation's economic, environmental and energy security goals. Specifically, the Department is soliciting applications for SMR designs that offer unique and innovative solutions for achieving the objectives of enhanced safety, operations, and performance relative to currently certified designs. This FOA focuses on design development and

26

Partnerships Help Advance Small Modular Reactor Technology | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology March 5, 2012 - 12:00pm Addthis WASHINGTON, D.C. - DOE recently announced three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at Savannah River Site (SRS) facilities near Aiken, S.C. Read the full story on the Memorandums of Agreement to help leverage SRS land assets, energy facilities and nuclear expertise to support potential private sector development, testing and licensing of prototype SMR technologies. Addthis Related Articles Energy Department Announces Small Modular Reactor Technology Partnerships at Savannah River Site The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. | Photo by the Energy Department.

27

ANALYSIS OF SEPCTRUM CHOICES FOR SMALL MODULAR REACTORS-PERFORMANCE AND DEVELOPMENT  

E-Print Network (OSTI)

. The research mainly focused on producing a small modular reactor (Pebble Bed Modular Reactor) design to analyze the fuel depletion and plutonium and minor actinide accumulation with varying power densities. The reactors running at low power densities were found...

Kafle, Nischal

2011-04-26T23:59:59.000Z

28

Human Reliability Considerations for Small Modular Reactors  

SciTech Connect

Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations. The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to illustrate how the issues can support SMR probabilistic risk analyses and their review by identifying potential human failure events for a subset of the issues. As part of addressing the human contribution to plant risk, human reliability analysis practitioners identify and quantify the human failure events that can negatively impact normal or emergency plant operations. The results illustrated here can be generalized to identify additional human failure events for the issues discussed and can be applied to those issues not discussed in this report.

OHara J. M.; Higgins, H.; DAgostino, A.; Erasmia, L.

2012-01-27T23:59:59.000Z

29

Advancing Small Modular Reactors: How We're Supporting Next-Gen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology...

30

Development of a system model for advanced small modular reactors.  

SciTech Connect

This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

2014-01-01T23:59:59.000Z

31

Hybrid energy systems (HESs) using small modular reactors (SMRs)  

SciTech Connect

Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations while still accommodating the desire to support renewable production sources.

S. Bragg-Sitton

2014-10-01T23:59:59.000Z

32

Modularity of the MIT Pebble Bed Reactor for use by the commercial power industry  

E-Print Network (OSTI)

The Modular Pebble Bed Reactor is a small high temperature helium cooled reactor that is being considered for both electric power and hydrogen production. Pebble bed reactors are being developed in South Africa, China and ...

Hanlon-Hyssong, Jaime E

2008-01-01T23:59:59.000Z

33

Baseline Concept Description of a Small Modular High Temperature Reactor  

SciTech Connect

The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both small or medium-sized and modular by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOEs ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

Hans Gougar

2014-05-01T23:59:59.000Z

34

Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Small Modular Reactors: How We're Supporting Next-Gen Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology December 12, 2013 - 4:00pm Addthis The basics of small modular reactor technology explained. | Infographic by Sarah Gerrity, Energy Department. The basics of small modular reactor technology explained. | Infographic by Sarah Gerrity, Energy Department. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy Nuclear energy continues to be an important part of America's diverse energy portfolio, and the Energy Department is committed to supporting a domestic nuclear industry.

35

Modular Inspection System for a Complete IN-Service Examination of Nuclear Reactor Pressure Vessel, Including Beltline Region  

SciTech Connect

Final Report for a DOE Phase II Contract Describing the design and fabrication of a reactor inspection modular rover prototype for reactor vessel inspection.

David H. Bothell

2000-04-30T23:59:59.000Z

36

Small Modular Reactors and U.S. Clean Energy Sources for Electricity |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Modular Reactors and U.S. Clean Energy Sources for Small Modular Reactors and U.S. Clean Energy Sources for Electricity Small Modular Reactors and U.S. Clean Energy Sources for Electricity For the clean energy goal to be met, then, the non-carbon emitting sources must provide some 2900 TWhr. Hydropower is generally assumed to have reached a maximum of 250 TWhr, so if we assume renewables reach 650 TWhr, (double the EIA estimate) that leaves 2000 TWhr for nuclear power. If the Administration's loan guarantee program for current large reactors is successful, then one might expect the large reactors to reach 1000 TWhr by 2035. This leaves some 1000 TWhr for SMR - that is a lot of electricity. SMR and Clean Energy.pdf More Documents & Publications Slide 1 Small Modular Reactor Report (SEAB) A Strategic Framework for SMR Deployment

37

An Overview of the Safety Case for Small Modular Reactors  

SciTech Connect

Several small modular reactor (SMR) designs emerged in the late 1970s and early 1980s in response to lessons learned from the many technical and operational challenges of the large Generation II light-water reactors. After the accident at the Three Mile Island plant in 1979, an ensuing reactor redesign effort spawned the term inherently safe designs, which later evolved into passively safe terminology. Several new designs were engineered to be deliberately small in order to fully exploit the benefits of passive safety. Today, new SMR designs are emerging with a similar philosophy of offering highly robust and resilient designs with increased safety margins. Additionally, because these contemporary designs are being developed subsequent to the September 11, 2001, terrorist attack, they incorporate a number of intrinsic design features to further strengthen their safety and security. Several SMR designs are being developed in the United States spanning the full spectrum of reactor technologies, including water-, gas-, and liquid-metal-cooled ones. Despite a number of design differences, most of these designs share a common set of design principles to enhance plant safety and robustness, such as eliminating plant design vulnerabilities where possible, reducing accident probabilities, and mitigating accident consequences. An important consequence of the added resilience provided by these design approaches is that the individual reactor units and the entire plant should be able to survive a broader range of extreme conditions. This will enable them to not only ensure the safety of the general public but also help protect the investment of the owner and continued availability of the power-generating asset. Examples of typical SMR design features and their implications for improved plant safety are given for specific SMR designs being developed in the United States.

Ingersoll, Daniel T [ORNL] [ORNL

2011-01-01T23:59:59.000Z

38

Small Modular Fast Reactor Design Description Joint Effort  

NLE Websites -- All DOE Office Websites (Extended Search)

July 1, 2005 ANL-SMFR-1 July 1, 2005 ANL-SMFR-1 Small Modular Fast Reactor Design Description Joint Effort by Argonne National Laboratory (ANL) Commissariat a l'Energie Atomique (CEA) and Japan Nuclear Cycle Development Institute (JNC) Project Leaders Y. I. Chang and C. Grandy, ANL P. Lo Pinto, CEA M. Konomura, JNC Technical Contributors ANL: J. Cahalan, F. Dunn, M. Farmer, S. Kamal, L. Krajtl, A. Moisseytsev, Y. Momozaki, J. Sienicki, Y. Park, Y. Tang, C. Reed, C. Tzanos, S. Wiedmeyer, and W. Yang CEA: P. Allegre, J. Astegiano, F. Baque, L. Cachon, M. S. Chenaud, J-L Courouau, Ph. Dufour, J. C. Klein, C. Latge, C. Thevenot, and F. Varaine JNC: M. Ando, Y. Chikazawa, M. Nagamura, Y. Okano, Y. Sakamoto,

39

Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Demonstration  

SciTech Connect

A key area of the Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) strategy is the development of methodologies and tools that will be used to predict the safety, security, safeguards, performance, and deployment viability of SMRs. The goal of the SMR PRA activity will be to develop quantitative methods and tools and the associated analysis framework for assessing a variety of risks. Development and implementation of SMR-focused safety assessment methods may require new analytic methods or adaptation of traditional methods to the advanced design and operational features of SMRs. We will need to move beyond the current limitations such as static, logic-based models in order to provide more integrated, scenario-based models based upon predictive modeling which are tied to causal factors. The development of SMR-specific safety models for margin determination will provide a safety case that describes potential accidents, design options (including postulated controls), and supports licensing activities by providing a technical basis for the safety envelope. This report documents the progress that was made to implement the PRA framework, specifically by way of demonstration of an advanced 3D approach to representing, quantifying and understanding flooding risks to a nuclear power plant.

Curtis Smith; Steven Prescott; Tony Koonce

2014-04-01T23:59:59.000Z

40

Energy Department Announces New Investment in U.S. Small Modular Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment in U.S. Small Modular Investment in U.S. Small Modular Reactor Design and Commercialization Energy Department Announces New Investment in U.S. Small Modular Reactor Design and Commercialization November 20, 2012 - 2:48pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced an award to support a new project to design, license and help commercialize small modular reactors (SMR) in the United States. This award follows a funding opportunity announcement in March 2012. The project supported by the award will be led by Babcock & Wilcox (B&W) in partnership with the Tennessee Valley Authority and Bechtel. In addition, the Department announced plans to issue a follow-on solicitation

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Step to Spur U.S. Manufacturing of Small Modular Nuclear First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors January 25, 2012 - 5:06pm Addthis Brenda DeGraffenreid The Energy Department recently announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration's commitment to advancing U.S. manufacturing leadership in low-carbon, next generation energy technologies and restarting the nation's nuclear industry. The release of a draft Funding Opportunity Announcement (FOA) last week presents supply-chain procurement opportunities for our nation's small businesses down the line, as industry provides input in advance of a full FOA on engineering, design certification, and licensing through a

42

Secretary Chu Op-Ed on Small Modular Reactors in the Wall Street Journal |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Op-Ed on Small Modular Reactors in the Wall Street Op-Ed on Small Modular Reactors in the Wall Street Journal Secretary Chu Op-Ed on Small Modular Reactors in the Wall Street Journal March 23, 2010 - 12:00am Addthis Washington, D.C. - Today, the Wall Street Journal published an op-ed by U.S. Secretary of Energy Steven Chu on small modular reactors. The op-ed can be viewed on the Wall Street Journal. The text of the op-ed is below: America's New Nuclear Option Small modular reactors will expand the ways we use atomic power. By Steven Chu Wall Street Journal, March 23, 2010 America is on the cusp of reviving its nuclear power industry. Last month President Obama pledged more than $8 billion in conditional loan guarantees for what will be the first U.S. nuclear power plant to break ground in nearly three decades. And with the new authority granted by the president's

43

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal March 23, 2010 - 12:24pm Addthis Washington, D.C. - Today, the Wall Street Journal published an op-ed by U.S. Secretary of Energy Steven Chu on small modular reactors. The op-ed can be found here. The text of the op-ed is below: Small modular reactors will expand the ways we use atomic power. By Steven Chu, Secretary of Energy Wall Street Journal America is on the cusp of reviving its nuclear power industry. Last month President Obama pledged more than $8 billion in conditional loan guarantees for what will be the first U.S. nuclear power plant to break ground in nearly three decades. And with the new authority granted by the president's

44

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal March 23, 2010 - 12:24pm Addthis Washington, D.C. - Today, the Wall Street Journal published an op-ed by U.S. Secretary of Energy Steven Chu on small modular reactors. The op-ed can be found here. The text of the op-ed is below: Small modular reactors will expand the ways we use atomic power. By Steven Chu, Secretary of Energy Wall Street Journal America is on the cusp of reviving its nuclear power industry. Last month President Obama pledged more than $8 billion in conditional loan guarantees for what will be the first U.S. nuclear power plant to break ground in nearly three decades. And with the new authority granted by the president's

45

Modularity in design of the MIT Pebble Bed Reactor  

E-Print Network (OSTI)

The future of new nuclear power plant construction will depend in large part on the ability of designers to reduce capital, operations, and maintenance costs. One of the methods proposed, is to enhance the modularity of ...

Berte, Marc Vincent, 1977-

2004-01-01T23:59:59.000Z

46

Energy Department Announces New Investment in U.S. Small Modular Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Department Announces New Investment in U.S. Small Modular Reactor Design and Commercialization Department to Issue Follow-on Solicitation on SMR Technology Innovation WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced an award to support a new project to design, license and help commercialize small modular reactors (SMR) in the United States. This award follows a funding opportunity announcement in March 2012. The project supported by the award will be led by Babcock & Wilcox (B&W) in partnership with the Tennessee Valley Authority and Bechtel International. In addition, the Department announced plans to issue a follow-on solicitation open to other companies and manufacturers, focused on furthering small modular reactor efficiency, operations and design.

47

SASSI Methodology-Based Sensitivity Studies for Deeply Embedded Structures, Such As Small Modular Reactors (SMRs)  

Energy.gov (U.S. Department of Energy (DOE))

SASSI Methodology-Based Sensitivity Studies for Deeply Embedded Structures, Such As Small Modular Reactors (SMRs) Dr. Dan M. Ghiocel Ghiocel Predictive Technologies Inc. http://www.ghiocel-tech.com 2014 DOE Natural Phenomena Hazards Meeting Germantown, MD, October 21-22, 2014

48

Small Modular Reactor Report (SEAB) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reactors Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly A Strategic Framework for SMR Deployment Meeting Materials: December 9, 2010...

49

Final report on the use of the modular-logic-nomenclature approach for the N-reactor probabilistic risk assessment  

SciTech Connect

The N-Reactor probabilistic risk assessment adaption of the modular logic approach for fault tree modeling has led to the update of the master logic diagram (MLD) nomenclature to conform with a standard modular-logic-model-nomeclature format. This report describes the MLD nomenclature system and provides a listing of the updated MLD label codes, along with the original codes.

NONE

1986-06-10T23:59:59.000Z

50

Material Control and Accounting Design Considerations for High-Temperature Gas Reactors  

SciTech Connect

The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work summarized in this report, namely the development of guidance to support the consideration of MC&A in the design of both pebble-bed and prismatic-fueled HTGRs. The objective is to identify and incorporate design features into the facility design that will cost effectively aid in making MC&A more effective and efficient, with minimum impact on operations. The theft of nuclear material is addressed through both MC&A and physical protection, while the threat of sabotage is addressed principally through physical protection.

Trond Bjornard; John Hockert

2011-08-01T23:59:59.000Z

51

Population Sensitivity Evaluation of Two Proposed Hampton Roads Area Sites for a Possible Small Modular Reactor  

SciTech Connect

The overall objective of this research project is to use the OR-SAGE tool to support the US Department of Energy (DOE) Office of Nuclear Energy (NE) in evaluating future electrical generation deployment options for small modular reactors (SMRs) in areas with significant energy demand from the federal sector. Deployment of SMRs in zones with high federal energy use can provide a means of meeting federal clean energy goals.

Belles, R. J. [ORNL; Omitaomu, O. A. [ORNL

2014-08-01T23:59:59.000Z

52

Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report  

SciTech Connect

This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).

Not Available

1986-10-01T23:59:59.000Z

53

Modular high temperature gas-cooled reactor plant design duty cycle. Revision 3  

SciTech Connect

This document defines the Plant Design Duty Cycle (PCDC) for the Modular High Temperature Gas-cooled Reactor (MHTGR). The duty cycle is a set of events and their design number of occurrences over the life of the plant for which the MHTGR plant shall be designed to ensure that the plant meets all the top-level requirements. The duty cycle is representative of the types of events to be expected in multiple reactor module-turbine plant configurations of the MHTGR. A synopsis of each PDDC event is presented to provide an overview of the plant response and consequence. 8 refs., 1 fig., 4 tabs.

Chan, T.

1989-12-31T23:59:59.000Z

54

Modular Pebble-Bed Reactor Project: Laboratory-Directed Research and Development Program FY 2002 Annual Report  

SciTech Connect

This report documents the results of our research in FY-02 on pebble-bed reactor technology under our Laboratory Directed Research and Development (LDRD) project entitled the Modular Pebble-Bed Reactor. The MPBR is an advanced reactor concept that can meet the energy and environmental needs of future generations under DOEs Generation IV initiative. Our work is focused in three areas: neutronics, core design and fuel cycle; reactor safety and thermal hydraulics; and fuel performance.

Petti, David Andrew; Dolan, Thomas James; Miller, Gregory Kent; Moore, Richard Leroy; Terry, William Knox; Ougouag, Abderrafi Mohammed-El-Ami; Oh, Chang H; Gougar, Hans D

2002-11-01T23:59:59.000Z

55

Small modular reactors and the future of nuclear power in the United States  

Science Journals Connector (OSTI)

Abstract Small modular reactors are the latest new technology that nuclear advocates tout as the game changer that will overcome previous economic failures of nuclear power. The debate over \\{SMRs\\} has been particularly intense because of the rapid failure of large nuclear renaissance reactors in market economies, the urgent need to address climate change, and the dramatic success of alternative, decentralized resources in lowering costs and increasing deployment. This paper assesses the prospects for SMR technology from three perspectives: the implications of the history of cost escalation in nuclear reactor construction for learning, economies of scale and other process that SMR advocates claim will lower cost; the challenges SMR technology faces in terms of high costs resulting from lost economies of scale, long lead time needed to develop a new design, the size of the task to create assembly lines for modular reactors and intense concern about safety; and the cost and other characteristics e.g. scalability, speed to market, flexibility, etc. of available alternatives compared SMR technology. The paper concludes that the decision of the major vendors (Westinghouse and B&W) to dramatically reduce SMR development efforts reflects the severe disadvantages that SMR technology faces in the next several decades.

Mark Cooper

2014-01-01T23:59:59.000Z

56

Modular Hybrid Plasma Reactor for Low Cost Bulk Production of Nanomaterials  

SciTech Connect

INL developed a bench scale modular hybrid plasma system for gas phase nanomaterials synthesis. The system was being optimized for WO3 nanoparticles production and scale model projection to a 300 kW pilot system. During the course of technology development many modifications had been done to the system to resolve technical issues that had surfaced and also to improve the performance. All project tasks had been completed except 2 optimization subtasks. These 2 subtasks, a 4-hour and an 8-hour continuous powder production runs at 1 lb/hr powder feeding rate, were unable to complete due to technical issues developed with the reactor system. The 4-hour run had been attempted twice and both times the run was terminated prematurely. The modular electrode for the plasma system was significantly redesigned to address the technical issues. Fabrication of the redesigned modular electrodes and additional components had been completed at the end of the project life. However, not enough resource was available to perform tests to evaluate the performance of the new modifications. More development work would be needed to resolve these problems prior to scaling. The technology demonstrated a surprising capability of synthesizing a single phase of meta-stable delta-Al2O3 from pure alpha-phase large Al2O3 powder. The formation of delta-Al2O3 was surprising because this phase is meta-stable and only formed between 973-1073 K, and delta-Al2O3 is very difficult to synthesize as a single phase. Besides the specific temperature window to form this phase, this meta-stable phase may have been stabilized by nanoparticle size formed in a high temperature plasma process. This technology may possess the capability to produce unusual meta-stable nanophase materials that would be otherwise difficult to produce by conventional methods. A 300 kW INL modular hybrid plasma pilot scale model reactor had been projected using the experimental data from PPG Industries 300 kW hot wall plasma reactor. The projected size of the INL 300 kW pilot model reactor would be about 15% that of the PPG 300 kW hot wall plasma reactor. Including the safety net factor the projected INL pilot reactor size would be 25-30% of the PPG 300 kW hot wall plasma pilot reactor. Due to the modularity of the INL plasma reactor and the energy cascading effect from the upstream plasma to the downstream plasma the energy utilization is more efficient in material processing. It is envisioning that the material through put range for the INL pilot reactor would be comparable to the PPG 300 kW pilot reactor but the energy consumption would be lower. The INL hybrid plasma technology is rather close to being optimized for scaling to a pilot system. More near term development work is still needed to complete the process optimization before pilot scaling.

Peter C. Kong

2011-12-01T23:59:59.000Z

57

High Temperature Gas-Cooled Reactor Program. Modular HTGR systems design and cost summary. [Methane reforming; steam cycle-cogeneration  

SciTech Connect

This report provides a summary description of the preconceptual design and energy product costs of the modular High Temperature Gas-Cooled Reactor (HTGR). The reactor system was studied for two applications: (1) reforming of methane to produce synthesis gas and (2) steam cycle/cogeneration to produce process steam and electricity.

Not Available

1983-09-01T23:59:59.000Z

58

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the U.S.

McDonald, C.F.; Nichols, M.K.

1987-01-01T23:59:59.000Z

59

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the US.

McDonald, C.F.; Nichols, M.K.

1986-12-01T23:59:59.000Z

60

The gas turbine-modular helium reactor (GT-MHR), high efficiency, cost competitive, nuclear energy for the next century  

SciTech Connect

The Gas Turbine-Modular Helium Reactor (GT-MHR) is the result of coupling the evolution of a small passively safe reactor with key technology developments in the US during the last decade: large industrial gas turbines, large active magnetic bearings, and compact, highly effective plate-fin heat exchangers. The GT-MHR is the only reactor concept which provides a step increase in economic performance combined with increased safety. This is accomplished through its unique utilization of the Brayton cycle to produce electricity directly with the high temperature helium primary coolant from the reactor directly driving the gas turbine electrical generator. This cannot be accomplished with another reactor concept. It retains the high levels of passive safety and the standardized modular design of the steam cycle MHTGR, while showing promise for a significant reduction in power generating costs by increasing plant net efficiency to a remarkable 47%.

Zgliczynski, J.B.; Silady, F.A.; Neylan, A.J.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Numerical Study on Crossflow Printed Circuit Heat Exchanger for Advanced Small Modular Reactors  

SciTech Connect

Various fluids such as water, gases (helium), molten salts (FLiNaK, FLiBe) and liquid metal (sodium) are used as a coolant of advanced small modular reactors (SMRs). The printed circuit heat exchanger (PCHE) has been adopted as the intermediate and/or secondary heat exchanger of SMR systems because this heat exchanger is compact and effective. The size and cost of PCHE can be changed by the coolant type of each SMR. In this study, the crossflow PCHE analysis code for advanced small modular reactor has been developed for the thermal design and cost estimation of the heat exchanger. The analytical solution of single pass, both unmixed fluids crossflow heat exchanger model was employed to calculate a two dimensional temperature profile of a crossflow PCHE. The analytical solution of crossflow heat exchanger was simply implemented by using built in function of the MATLAB program. The effect of fluid property uncertainty on the calculation results was evaluated. In addition, the effect of heat transfer correlations on the calculated temperature profile was analyzed by taking into account possible combinations of primary and secondary coolants in the SMR systems. Size and cost of heat exchanger were evaluated for the given temperature requirement of each SMR.

Su-Jong Yoon [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Piyush Sabharwall [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Eung-Soo Kim [Seoul National Univ., Seoul (Korea, Republic of)

2014-03-01T23:59:59.000Z

62

Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors  

SciTech Connect

The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

OHara J. M.; Higgins, J.; DAgostino, A.

2012-01-17T23:59:59.000Z

63

Development of the Mathematics of Learning Curve Models for Evaluating Small Modular Reactor Economics  

SciTech Connect

The cost of nuclear power is a straightforward yet complicated topic. It is straightforward in that the cost of nuclear power is a function of the cost to build the nuclear power plant, the cost to operate and maintain it, and the cost to provide fuel for it. It is complicated in that some of those costs are not necessarily known, introducing uncertainty into the analysis. For large light water reactor (LWR)-based nuclear power plants, the uncertainty is mainly contained within the cost of construction. The typical costs of operations and maintenance (O&M), as well as fuel, are well known based on the current fleet of LWRs. However, the last currently operating reactor to come online was Watts Bar 1 in May 1996; thus, the expected construction costs for gigawatt (GW)-class reactors in the United States are based on information nearly two decades old. Extrapolating construction, O&M, and fuel costs from GW-class LWRs to LWR-based small modular reactors (SMRs) introduces even more complication. The per-installed-kilowatt construction costs for SMRs are likely to be higher than those for the GW-class reactors based on the property of the economy of scale. Generally speaking, the economy of scale is the tendency for overall costs to increase slower than the overall production capacity. For power plants, this means that doubling the power production capacity would be expected to cost less than twice as much. Applying this property in the opposite direction, halving the power production capacity would be expected to cost more than half as much. This can potentially make the SMRs less competitive in the electricity market against the GW-class reactors, as well as against other power sources such as natural gas and subsidized renewables. One factor that can potentially aid the SMRs in achieving economic competitiveness is an economy of numbers, as opposed to the economy of scale, associated with learning curves. The basic concept of the learning curve is that the more a new process is repeated, the more efficient the process can be made. Assuming that efficiency directly relates to cost means that the more a new process is repeated successfully and efficiently, the less costly the process can be made. This factor ties directly into the factory fabrication and modularization aspect of the SMR paradigmmanufacturing serial, standardized, identical components for use in nuclear power plants can allow the SMR industry to use the learning curves to predict and optimize deployment costs.

Harrison, T. J. [ORNL

2014-02-01T23:59:59.000Z

64

Effects of Levels of Automation for Advanced Small Modular Reactors: Impacts on Performance, Workload, and Situation Awareness  

SciTech Connect

The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy (DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of capital costs as well as plant operations and maintenance costs (O&M), and factory production costs benefits.

Johanna Oxstrand; Katya Le Blanc

2014-07-01T23:59:59.000Z

65

A Framework to Expand and Advance Probabilistic Risk Assessment to Support Small Modular Reactors  

SciTech Connect

During the early development of nuclear power plants, researchers and engineers focused on many aspects of plant operation, two of which were getting the newly-found technology to work and minimizing the likelihood of perceived accidents through redundancy and diversity. As time, and our experience, has progressed, the realization of plant operational risk/reliability has entered into the design, operation, and regulation of these plants. But, to date, we have only dabbled at the surface of risk and reliability technologies. For the next generation of small modular reactors (SMRs), it is imperative that these technologies evolve into an accepted, encompassing, validated, and integral part of the plant in order to reduce costs and to demonstrate safe operation. Further, while it is presumed that safety margins are substantial for proposed SMR designs, the depiction and demonstration of these margins needs to be better understood in order to optimize the licensing process.

Curtis Smith; David Schwieder; Robert Nourgaliev; Cherie Phelan; Diego Mandelli; Kellie Kvarfordt; Robert Youngblood

2012-09-01T23:59:59.000Z

66

Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting  

SciTech Connect

During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modeling and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.

Curtis Smith

2013-09-01T23:59:59.000Z

67

Safety aspects of the Modular High-Temperature Gas-Cooled Reactor (MHTGR)  

SciTech Connect

The Modular High-Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry and the utilities. The design utilizes the basic high-temperature gas-cooled reactor (HTGR) features of ceramic fuel, helium coolant, and a graphite moderator. The qualitative top-level safety requirement is that the plant's operation not disturb the normal day-to-day activities of the public. The MHTGR safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles has been evaluated. A broad range of challenges to core heat removal have been examined which include a loss of helium pressure and a simultaneous loss of forced cooling of the core. The challenges to control of heat generation have considered not only the failure to insert the reactivity control systems, but the withdrawal of control rods. Finally, challenges to control chemical attack of the ceramic coated fuel have been considered, including catastrophic failure of the steam generator allowing water ingress or of the pressure vessels allowing air ingress. The plant's response to these extreme challenges is not dependent on operator action and the events considered encompass conceivable operator errors. In the same vein, reliance on radionuclide retention within the full particle and on passive features to perform a few key functions to maintain the fuel within acceptable conditions also reduced susceptibility to external events, site-specific events, and to acts of sabotage and terrorism. 4 refs., 14 figs., 1 tab.

Silady, F.A.; Millunzi, A.C.

1989-08-01T23:59:59.000Z

68

Westinghouse Small Modular Reactor balance of plant and supporting systems design  

SciTech Connect

The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operation of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)

Memmott, M. J.; Stansbury, C.; Taylor, C. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

2012-07-01T23:59:59.000Z

69

Small Modular Reactor: First of a Kind (FOAK) and Nth of a Kind (NOAK) Economic Analysis  

SciTech Connect

Small modular reactors (SMRs) refer to any reactor design in which the electricity generated is less than 300 MWe. Often medium sized reactors with power less than 700 MWe are also grouped into this category. Internationally, the development of a variety of designs for SMRs is booming with many designs approaching maturity and even in or nearing the licensing stage. It is for this reason that a generalized yet comprehensive economic model for first of a kind (FOAK) through nth of a kind (NOAK) SMRs based upon rated power, plant configuration, and the fiscal environment was developed. In the model, a particular projects feasibility is assessed with regards to market conditions and by commonly utilized capital budgeting techniques, such as the net present value (NPV), internal rate of return (IRR), Payback, and more importantly, the levelized cost of energy (LCOE) for comparison to other energy production technologies. Finally, a sensitivity analysis was performed to determine the effects of changing debt, equity, interest rate, and conditions on the LCOE. The economic model is primarily applied to the near future water cooled SMR designs in the United States. Other gas cooled and liquid metal cooled SMR designs have been briefly outlined in terms of how the economic model would change. FOAK and NOAK SMR costs were determined for a site containing seven 180 MWe water cooled SMRs and compared to a site containing one 1260 MWe reactor. With an equal share of debt and equity and a 10% cost of debt and equity, the LCOE was determined to be $79 $84/MWh and $80/MWh for the SMR and large reactor sites, respectively. With a cost of equity of 15%, the SMR LCOE increased substantially to $103 $109/MWh. Finally, an increase in the equity share to 70% at the 15% cost of equity resulted in an even higher LCOE, demonstrating the large variation in results due to financial and market factors. The NPV and IRR both decreased with increasing LCOE. Unless the price of electricity increases along with the LCOE, the projects may become unprofitable. This is the case at the LCOE of $103 $109/MW, in which the NPV became negative. The IRR increased with increasing electricity price. Three cases, electric only base, storagecompressed air energy storage or pumped hydro, and hydrogen production, were performed incorporating SMRs into a nuclear wind natural gas hybrid energy system for the New York West Central region. The operational costs for three cases were calculated as $27/MWh, $25/MWh, and $28/MWh, respectively. A 3% increase in profits was demonstrated for the storage case over the electric only base case.

Lauren M. Boldon; Piyush Sabharwall

2014-08-01T23:59:59.000Z

70

Representative Source Terms and the Influence of Reactor Attributes on Functional Containment in Modular High-Temperature Gas-Cooled Reactors  

SciTech Connect

Modular high-temperature gas-cooled reactors (MHTGRs) offer a high degree of passive safety. The low power density of the reactor and the high heat capacity of the graphite core result in slow transients that do not challenge the integrity of the robust TRISO fuel. Another benefit of this fuel form and the surrounding graphite is their superior ability to retain fission products under all anticipated normal and off-normal conditions, which limits reactor accident source terms to very low values. In this paper, we develop estimates of the source term for a generic MHTGR to illustrate the performance of the radionuclide barriers that comprise the MHTGR functional containment. We also examine the influence of initial fuel quality, fuel performance/failure, reactor outlet temperature, and retention outside of the reactor core on the resultant source term to the environment.

D. A. Petti; Hans Gougar; Dick Hobbins; Pete Lowry

2013-11-01T23:59:59.000Z

71

Modular High-Temperature Gas-Cooled Reactor short term thermal response to flow and reactivity transients  

SciTech Connect

The analyses reported here have been conducted at the Oak Ridge National Laboratory (ORNL) for the US Nuclear Regulatory Commission's (NRC's) Division of Regulatory Applications of the Office of Nuclear Regulatory Research. The short-term thermal response of the Modular High-Temperature Gas-Cooled Reactor (MHTGR) is analyzed for a range of flow and reactivity transients. These include loss of forced circulation (LOFC) without scram, moisture ingress, spurious withdrawal of a control rod group, hypothetical large and rapid positive reactivity insertion, and a rapid core cooling event. The coupled heat transfer-neutron kinetics model is also described.

Cleveland, J.C.

1988-01-01T23:59:59.000Z

72

INITIATORS AND TRIGGERING CONDITIONS FOR ADAPTIVE AUTOMATION IN ADVANCED SMALL MODULAR REACTORS  

SciTech Connect

It is anticipated that Advanced Small Modular Reactors (AdvSMRs) will employ high degrees of automation. High levels of automation can enhance system performance, but often at the cost of reduced human performance. Automation can lead to human out-of the loop issues, unbalanced workload, complacency, and other problems if it is not designed properly. Researchers have proposed adaptive automation (defined as dynamic or flexible allocation of functions) as a way to get the benefits of higher levels of automation without the human performance costs. Adaptive automation has the potential to balance operator workload and enhance operator situation awareness by allocating functions to the operators in a way that is sensitive to overall workload and capabilities at the time of operation. However, there still a number of questions regarding how to effectively design adaptive automation to achieve that potential. One of those questions is related to how to initiate (or trigger) a shift in automation in order to provide maximal sensitivity to operator needs without introducing undesirable consequences (such as unpredictable mode changes). Several triggering mechanisms for shifts in adaptive automation have been proposed including: operator initiated, critical events, performance-based, physiological measurement, model-based, and hybrid methods. As part of a larger project to develop design guidance for human-automation collaboration in AdvSMRs, researchers at Idaho National Laboratory have investigated the effectiveness and applicability of each of these triggering mechanisms in the context of AdvSMR. Researchers reviewed the empirical literature on adaptive automation and assessed each triggering mechanism based on the human-system performance consequences of employing that mechanism. Researchers also assessed the practicality and feasibility of using the mechanism in the context of an AdvSMR control room. Results indicate that there are tradeoffs associated with each mechanism, but that some are more applicable to the AdvSMR domain. The two mechanisms that consistently improve performance in laboratory studies are operator initiated adaptive automation based on hierarchical task delegation and the Electroencephalogram(EEG) based measure of engagement. Current EEG methods are intrusive and require intensive analysis; therefore it is not recommended for an AdvSMR control rooms at this time. Researchers also discuss limitations in the existing empirical literature and make recommendations for further research.

Katya L Le Blanc; Johanna h Oxstrand

2014-04-01T23:59:59.000Z

73

MORECA: A computer code for simulating modular high-temperature gas-cooled reactor core heatup accidents  

SciTech Connect

The design features of the modular high-temperature gas-cooled reactor (MHTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. This report describes the ORNL MORECA code, which was developed for analyzing postulated long-term core heatup scenarios for which active cooling systems used to remove afterheat following the accidents can be assumed to the unavailable. Simulations of long-term loss-of-forced-convection accidents, both with and without depressurization of the primary coolant, have shown that maximum core temperatures stay below the point at which any significant fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. MORECA models the US Department of Energy reference design of a standard MHTGR.

Ball, S.J. (Oak Ridge National Lab., TN (United States))

1991-10-01T23:59:59.000Z

74

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...Schrattenholzer (S1) report learning...include technical progress economies...suggests, the result we report are probably...high temperature gas cooled reactor...adapted from the report in question (29...storage systems 3) Turbine plant equipmentHigh...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

75

Microsoft Word - NGNP_Special Study_20.2_01-31-07.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Layer Thickness PBMR Pebble Bed Modular Reactor PCU Power Conversion Unit PHP Process Heat Plant PLOFC Pressurized Loss of Forced Cooling R&D Research and Development RBMK...

76

Microsoft Word - 11-22708_HTGRSafetyBasis_Final-8-31-11-A LAR...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Company, LLC, and Pebble Bed Modular Reactor (PBMR) Pty Ltd. from South Africa, AREVA NP, Inc., and General Atomics. These plants were designed for production of...

77

Microsoft PowerPoint - Mod 2a - Background and Evolution - final...  

NLE Websites -- All DOE Office Websites (Extended Search)

AVR: Arbeitsgemeinschaft Versuchs Reactor THTR: Thorium High Temperature NP-MHTGR: New Production MHTGR GT-MHR: Gas-Turbine Modular i g Reactor PBMR: Pebble Bed Modular Reactor...

78

The passive safety characteristics of modular high temperature gas-cooled reactor fuel elements  

SciTech Connect

High-Temperature Gas-Cooled Reactors (HTGR) in both the US and West Germany use an all-ceramic, coated fuel particle to retain fission products. Data from irradiation, postirradiation examinations and postirradiation heating experiments are used to study the performance capabilities of the fuel particles. The experimental results from fission product release tests with HTGR fuel are discussed. These data are used for development of predictive fuel performance models for purposes of design, licensing, and risk analyses. During off normal events, where temperatures may reach up to 1600/degree/C, the data show that no significant radionuclide releases from the fuel will occur.

Goodin, D.T.; Kania, M.J.; Nabielek, H.; Schenk, W.; Verfondern, K.

1988-01-01T23:59:59.000Z

79

Technical Needs for Prototypic Prognostic Technique Demonstration for Advanced Small Modular Reactor Passive Components  

SciTech Connect

This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components that may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and potential synergies with other national laboratory and university partners.

Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.; Ramuhalli, Pradeep; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

2013-05-17T23:59:59.000Z

80

Discussion Paper for DOE SEAB/SMR Subcommittee V.H. Reis Small Modular Reactors and U.S. Clean Energy Sources for Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discussion Paper for DOE SEAB/SMR Subcommittee Discussion Paper for DOE SEAB/SMR Subcommittee V.H. Reis Small Modular Reactors and U.S. Clean Energy Sources for Electricity In his 2011 State of the Union speech President Obama stated: "By 2035, 80 percent of America's electricity will come from clean energy sources." As yet, there is no official definition of a clean energy source, but a sensible definition is to suggest a "clean energy standard" where sources are weighted with respect to how much CO 2 they emit per unit of electrical energy produced. That is: Where F CE = Fraction of electricity for clean energy sources (multiply by 100 to get percent)

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. Department Of Energy Advanced Small Modular Reactor R&D Program: Instrumentation, Controls, and Human-Machine Interface (ICHMI) Pathway  

SciTech Connect

Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of modern ICHMI technology. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, several DOE programs have substantial ICHMI RD&D elements within their respective research portfolios. This paper describes current ICHMI research in support of advanced small modular reactors. The objectives that can be achieved through execution of the defined RD&D are to provide optimal technical solutions to critical ICHMI issues, resolve technology gaps arising from the unique measurement and control characteristics of advanced reactor concepts, provide demonstration of needed technologies and methodologies in the nuclear power application domain, mature emerging technologies to facilitate commercialization, and establish necessary technical evidence and application experience to enable timely and predictable licensing. 1 Introduction Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of m

Holcomb, David Eugene [ORNL; Wood, Richard Thomas [ORNL

2013-01-01T23:59:59.000Z

82

Development of MELCOR Input Techniques for High Temperature Gas-Cooled Reactor Analysis  

E-Print Network (OSTI)

: : : : : : : : : : : : : : : : : : : : : : : : : : : 201 B.3 PBMR CVH volumes coupled to each COR cell : : : : : : : : : : : : : : 202 B.4 Mass of materials in the fuel component (PBMR) : : : : : : : : : : : : : 204 B.5 Mass of graphite in the clad component (PBMR) : : : : : : : : : : : : : 204 B.6... Mass of graphite in the re ector component (PBMR) : : : : : : : : : : : 205 B.7 PBMR supporting structure parameters : : : : : : : : : : : : : : : : : : 206 B.8 PBMR re ector geometry input : : : : : : : : : : : : : : : : : : : : : : : 207 B.9 PBMR...

Corson, James

2011-08-08T23:59:59.000Z

83

Symmetric modular torsatron  

DOE Patents (OSTI)

A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

Rome, J.A.; Harris, J.H.

1984-01-01T23:59:59.000Z

84

Modularity Approach Modular Pebble Bed Reactor (MPBR)  

E-Print Network (OSTI)

°C 126.7kg/s Circulator HPT 52.8MW Precooler Inventory control Bypass Valve Intercooler IHX Hatch Equip Access Hatch Equip Access Hatch Oil Refinery Hydrogen Production Desalinization Plant VHTR

85

Carbon free energy development and the role of small modular reactors: A review and decision framework for deployment in developing countries  

Science Journals Connector (OSTI)

Abstract Global energy demand is projected to continue to grow over the next two decades, especially in developing economies. An emerging energy technology with distinct advantages for growing economies is small modular nuclear reactors (SMRs). Their smaller size makes them suitable for areas with limited grid capacities and dispersed populations while enabling flexibility in generating capacity and fuel sources. They have the ability to pair well with renewable energy sources, the major source of increased energy capacity for many developing economies. Further advantages include their passive safety features, lower capital requirements, and reduced construction times. As a result, \\{SMRs\\} have potential for overcoming energy poverty issues for growing economies without increasing carbon emissions. This study reviews the features and viability of \\{SMRs\\} to meet increasing energy capacity needs and develops a decision support framework to evaluate the market conditions for SMR deployment to emerging economies. The focus is on identifying countries best suited for domestic deployment of \\{SMRs\\} rather than vendor countries with ongoing or future SMR development programs for export. We begin by examining the characteristics of over two hundred countries and identifying those that satisfy several necessary economic, electrical grid capacity, and nuclear security conditions. Countries satisfying these necessary conditions are then evaluated using the Analytical Hierarchy Process (AHP) using criteria related to the economic and financial conditions, infrastructure and technological framework, and governmental policies within each country. The results find that countries with increasing GDP and energy demand that possess a robust infrastructure, energy production from high GHG sources, and governmental policies favorable to foreign investment are well-suited for future SMR deployment.

Geoffrey Black; Meredith A. Taylor Black; David Solan; David Shropshire

2015-01-01T23:59:59.000Z

86

Stress Analysis of Coated Particle Fuel in the Deep-Burn Pebble Bed Reactor Design  

SciTech Connect

High fuel temperatures and resulting fuel particle coating stresses can be expected in a Pu and minor actinide fueled Pebble Bed Modular Reactor (400 MWth) design as compared to the standard UO2 fueled core. The high discharge burnup aimed for in this Deep-Burn design results in increased power and temperature peaking in the pebble bed near the inner and outer reflector. Furthermore, the pebble power in a multi-pass in-core pebble recycling scheme is relatively high for pebbles that make their first core pass. This might result in an increase of the mechanical failure of the coatings, which serve as the containment of radioactive fission products in the PBMR design. To investigate the integrity of the particle fuel coatings as a function of the irradiation time (i.e. burnup), core position and during a Loss Of Forced Cooling (LOFC) incident the PArticle STress Analysis code (PASTA) has been coupled to the PEBBED code for neutronics, thermal-hydraulics and depletion analysis of the core. Two deep burn fuel types (Pu with or without initial MA fuel content) have been investigated with the new code system for normal and transient conditions including the effect of the statistical variation of thickness of the coating layers.

B. Boer; A. M. Ougouag

2010-05-01T23:59:59.000Z

87

A Multi-Modular Neutronically Coupled Power Generation System  

E-Print Network (OSTI)

The High Temperature Integrated Multi-Modular Thermal Reactor is a small modular reactor that uses an enhanced conductivity BeO-UO2 fuel with supercritical CO2 coolant to drive turbo-machinery in a direct Brayton cycle. The core consists of several...

Patel, Vishal

2012-07-16T23:59:59.000Z

88

Energy Department Announces New Investment in Innovative Small Modular  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Investment in Innovative Small Announces New Investment in Innovative Small Modular Reactor Energy Department Announces New Investment in Innovative Small Modular Reactor December 12, 2013 - 4:04pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department today announced an award to NuScale Power LLC to support a new project to design, certify and help commercialize innovative small modular reactors (SMRs) in the United States. This award follows a funding opportunity announcement in March 2013. View a new Energy Department infographic on small modular reactors and their potential to provide clean, safe and cost-effective nuclear energy. "Small modular reactors represent a new generation of safe, reliable,

89

Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor  

SciTech Connect

The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge burnup level, while retaining its inherent safety characteristics. Using generic pebble bed reactor cores, this task will perform physics calculations to evaluate the capabilities of the pebble bed reactor to perform utilization and destruction of LWR used-fuel transuranics. The task will use established benchmarked models, and will introduce modeling advancements appropriate to the nature of the fuel considered (high TRU content and high burn-up).

B. Boer; A. M. Ougouag

2010-09-01T23:59:59.000Z

90

Modular robot  

DOE Patents (OSTI)

A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

Ferrante, Todd A. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

91

Modular robot  

DOE Patents (OSTI)

A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

Ferrante, T.A.

1997-11-11T23:59:59.000Z

92

The IAEA Coordinated Research Program on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis: Description of the Benchmark Test Cases and Phases  

SciTech Connect

The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest status and plans are presented.

Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov

2012-10-01T23:59:59.000Z

93

Analysis of granular flow in a pebble-bed nuclear reactor Chris H. Rycroft,1  

E-Print Network (OSTI)

-temperature reactor 2 , which offers meltdown-proof passive safety, convenient long-term waste storage, modular

Bazant, Martin Z.

94

Modular Integrated Energy Systems  

E-Print Network (OSTI)

Honeywell #12;Modular Integrated Energy Systems Task 5 Prototype Development Reference Design DocumentationModular Integrated Energy Systems Prepared for: Oak Ridge National Laboratory P.O. Box 2008 Building 3147 Oak Ridge, TN 37831 April 27, 2006 Prepared by: Honeywell Laboratories 3660 Technology Drive

Oak Ridge National Laboratory

95

Modular Integrated Energy Systems  

E-Print Network (OSTI)

-driven absorption chiller, · Install and monitor the performance of a prototype IES modular system employing consists of a gas turbine-generator, a heat recovery steam generator, and a waste heat fired absorption chiller. The key goals of the project are: · Develop a set of "reference" CAD-based IES modular system

Oak Ridge National Laboratory

96

Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study  

SciTech Connect

Task 5 report is part of a 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Created a virtual mockup of PBMR reactor cavity and discussed applications of virtual mockup technology to improve Gen IV design review, construction planning, and maintenance planning.

Timothy Shaw; Anthony Baratta; Vaughn Whisker

2005-02-28T23:59:59.000Z

97

Modular tokamak magnetic system  

DOE Patents (OSTI)

A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

Yang, Tien-Fang (Wayland, MA)

1988-01-01T23:59:59.000Z

98

Prismatic modular reactor analysis with melcor  

E-Print Network (OSTI)

, the calculation for the heat distribution in the graphite and fuel is unsatisfactory which requires MELCOR modification for the PCC simulation. For future work, a complete model of the NGNP under normal operation conditions will be developed when additional data...

Zhen, Ni

2009-05-15T23:59:59.000Z

99

Energy Department Announces Small Modular Reactor Technology...  

Energy Savers (EERE)

of Agreement (MOA) will help leverage Savannah River's land assets, energy facilities and nuclear expertise to support potential private sector development, testing and licensing...

100

Modular optical detector system  

DOE Patents (OSTI)

A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

Horn, Brent A. (Livermore, CA); Renzi, Ronald F. (Tracy, CA)

2006-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Laminar Entrained Flow Reactor (Fact Sheet)  

SciTech Connect

The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

Not Available

2014-02-01T23:59:59.000Z

102

Steam generator design considerations for modular HTGR plant  

SciTech Connect

Studies are in progress to develop a standard High Temperature Gas-Cooled Reactor (HTGR) plant design that is amenable to serial production and is licensable. Based on the results of trade studies performed in the DOE-funded HTGR program, activities are being focused to emphasize a modular concept based on a 350 MW(t) annular reactor core with prismatic fuel elements. Utilization of a multiplicity of the standard module affords flexibility in power rating for utility electricity generation. The selected modular HTGR concept has the reactor core and heat transport systems housed in separate steel vessels. This paper highlights the steam generator design considerations for the reference plant, and includes a discussion of the major features of the heat exchanger concept and the technology base existing in the US.

McDonald, C.F.; DeFur, D.D.

1986-05-01T23:59:59.000Z

103

Advanced Reactor Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Office of Nuclear Energy (NE) will pursue these advancements through RD&D activities at the Department of Energy (DOE) national laboratories and U.S. universities, as well as through collaboration with industry and international partners. These activities will focus on advancing scientific

104

Modular low aspect ratio-high beta torsatron  

DOE Patents (OSTI)

A fusion reactor device in which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low aspect ratio toroid in planes having the cylindrical coordinate relationship .phi.=.phi..sub.i +kz where k is a constant equal to each coil's pitch and .phi..sub.i is the toroidal angle at which the i'th coil intersects the z=o plane. The device may be described as a modular, high beta torsation whose screw symmetry is pointed along the systems major (z) axis. The toroid defined by the modular coils preferably has a racetrack minor cross section. When vertical field coils and preferably a toroidal plasma current are provided for magnetic field surface closure within the toroid, a vacuum magnetic field of racetrack shaped minor cross section with improved stability and beta valves is obtained.

Sheffield, George V. (Hopewell, NJ); Furth, Harold P. (Princeton, NJ)

1984-02-07T23:59:59.000Z

105

Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors  

SciTech Connect

The Deep-Burn (DB) concept [ ] focuses on the destruction of transuranic nuclides from used light water reactor (LWR) fuel. These transuranic nuclides are incorporated into tri-isotopic (TRISO) coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400) [ ]. Although it has been shown in the previous Fiscal Year (FY) (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking, and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239Pu, 240Pu, and 241Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. Regarding the coated particle performance, the FY 2009 investigations showed that no significant failure is to be expected for the reference fuel particle during normal operation. It was found, however, that the sensitivity of the coating stress to the CO production in the kernel was large. The CO production is expected to be higher in DB fuel than in UO2 fuel, but its exact level has a high uncertainty. Furthermore, in the fuel performance analysis transient conditions were not yet taken into account. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge burnup level, while retaining its inherent safety characteristics. Using generic pebble bed reactor cores, this task will perform physics calculations to evaluate the capabilities of the pebble bed reactor to perform utilization and destruction of LWR used-fuel transuranics. The task will use established benchmarked models, and will introduce modeling advancements appropriate to the nature of the fuel considered (high transuranic [TRU] content and high burn-up). Accomplishments of this work include: Core analysis of a HTR-MODULE design loaded with Deep-Burn fuel. Core analysis of a HTR-MODULE design loaded with Deep-Burn fuel and Uranium. Core analysis of a HTR-MODULE design loaded with Deep-Burn fuel and Modified Open Cycle Components. Core analysis of a HTR-MODULE design loaded with Deep-Burn fuel and Americium targets.

Brian Boer; Abderrafi M. Ougouag

2011-03-01T23:59:59.000Z

106

Modular thermoacoustic refrigerator  

Science Journals Connector (OSTI)

A thermoacousticrefrigerator was built to explore scaling to large heat flux. The refrigerator was constructed according to a modular design so that various stack heat exchanger and resonator sections are easily interchangeable. The resonator is driven by a commercial 10?in. woofer. Initial tests using pure helium gas as the working fluid and steel honeycomb (0.8?mm cell) for the stack pumped 60 W of heat against a 10?C temperature gradient. Measurements of heat flux and efficiency will be reported as functions of stack structure (e.g. pore size and shape) and will be compared with theoretical predictions.

Steven R. Murrell; George Mozurkewich

1993-01-01T23:59:59.000Z

107

Preheating After Modular Inflation  

E-Print Network (OSTI)

We study (p)reheating in modular (closed string) inflationary scenarios, with a special emphasis on Kahler moduli/Roulette models. It is usually assumed that reheating in such models occurs through perturbative decays. However, we find that there are very strong non-perturbative preheating decay channels related to the particular shape of the inflaton potential (which is highly nonlinear and has a very steep minimum). Preheating after modular inflation, proceeding through a combination of tachyonic instability and broad-band parametric resonance, is perhaps the most violent example of preheating after inflation known in the literature. Further, we consider the subsequent transfer of energy to the standard model sector in scenarios where the standard model particles are confined to a D7-brane wrapping the inflationary blow-up cycle of the compactification manifold or, more interestingly, a non-inflationary blow up cycle. We explicitly identify the decay channels of the inflaton in these two scenarios. We also consider the case where the inflationary cycle shrinks to the string scale at the end of inflation; here a field theoretical treatment of reheating is insufficient and one must turn instead to a stringy description. We estimate the decay rate of the inflaton and the reheat temperature for various scenarios.

Neil Barnaby; J. Richard Bond; Zhiqi Huang; Lev Kofman

2009-09-02T23:59:59.000Z

108

Heavy Liquid Metal Reactor Development - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

> Heavy Liquid Metal Reactor Development > Heavy Liquid Metal Reactor Development Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Nuclear Data Program Advanced Reactor Development Overview Advanced Fast Reactor (AFR) Heavy Liquid Metal Reactor Development Generation IV Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Advanced Reactor Development and Technology Heavy Liquid Metal Reactor Development Bookmark and Share STAR-LM: Simplified, Modular, Small Reactor Featuring Flow-thru Fuel Cartridge STAR-LM: Simplified, Modular, Small Reactor Featuring Flow-thru Fuel Cartridge. Click on image to view larger image. Argonne has traditionally been the foremost institute in the US for

109

Honeywell modular automation system acceptance test report  

SciTech Connect

This document provides the results of the Acceptance Test Procedure for the Honeywell Modular Automation System.

Cunningham, L.T., Westinghouse Hanford

1996-06-14T23:59:59.000Z

110

Improved Prediction of the Temperature Feedback in TRISO-Fueled Reactors  

SciTech Connect

The Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic coated particles. It follows that the correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. We present a fuel conduction model for obtaining better estimates of the temperature feedback during moderate and fast transients. The fuel model has been incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes as a single TRISO particle within each calculation cell. The heat generation rate is scaled down from the neutronic solution and a Dirichlet boundary condition is imposed as the bulk graphite temperature from the thermal-hydraulic solution. This simplified approach yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume, but with much less computational effort. An analysis of the hypothetical total control ejection in the PBMR-400 design verifies the performance of the code during fast transients. In addition, the analysis of the earthquake-initiated event in the PBMR-400 design verifies the performance of the code during slow transients. These events clearly depict the improvement in the predictions of the fuel temperature, and consequently, of the power escalations. In addition, a brief study of the potential effects of particle layer de-bonding on the transient behavior of high temperature reactors is included. Although the formation of a gap occurs under special conditions its consequences on the dynamic behavior of the reactor should be analyzed. The presence of a gap in the fuel can cause some unusual reactor behavior during fast transients, but still the reactor shuts down due to the strong feedback effects.

Javier Ortensi; Abderrafi M. Ougouag

2009-08-01T23:59:59.000Z

111

Modular Optical PDV System  

SciTech Connect

A modular optical photon Doppler velocimetry (PDV) detector system has been developed by using readily available optical components with a 20-GHz Miteq optical detector into eight channels of single-wide modules integrated into a 3U rack unit (1U = 1.75 inches) with a common power supply. Optical fibers were precisely trimmed, welded, and timed within each unit. This system has been used to collect dynamic velocity data on various physics experiments. An optical power meter displays the laser input power to the module and optical power at the detector. An adjustable micro-electromechanical system (MEMS) optical attenuator is used to adjust the amount of unshifted light entering the detector. Front panel LEDs show the presence of power to the module. A fully loaded chassis with eight channels consumes 45 watts of power. Each chassis requires 1U spacing above and below for heat management. Modules can be easily replaced.

Araceli Rutkowski, David Esquibel

2008-12-11T23:59:59.000Z

112

Nuclear Reactor Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Technologies Reactor Technologies Nuclear Reactor Technologies TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Small Modular Reactor Technologies Small modular reactors can also be made in factories and transported to sites where they would be ready to "plug and play" upon arrival, reducing both capital costs and construction times. The smaller size also makes these reactors ideal for small electric grids and for locations that

113

Microsoft Word - 3b - Basis for Reactor Design comments 081710...  

NLE Websites -- All DOE Office Websites (Extended Search)

on the demonstration power plant core design developed earlier by PBMR (Ltd) of South Africa, includes a direct Brayton cycle gas turbine for electricity production. The...

114

Modular Isotopic Thermoelectric Generator  

SciTech Connect

Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

Schock, Alfred

1981-04-03T23:59:59.000Z

115

Modular low-aspect-ratio high-beta torsatron  

DOE Patents (OSTI)

A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.

Sheffield, G.V.

1982-04-01T23:59:59.000Z

116

Radiation field modeling and optimization of a compact and modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation field modeling and optimization of a compact and modular Radiation field modeling and optimization of a compact and modular multi-plate photocatalytic reactor (MPPR) for air/water purification by Monte Carlo method Title Radiation field modeling and optimization of a compact and modular multi-plate photocatalytic reactor (MPPR) for air/water purification by Monte Carlo method Publication Type Journal Article Year of Publication 2013 Authors Zazueta, Ana Luisa Loo, Hugo Destaillats, and Gianluca Li Puma Journal Chemical Engineering Journal Volume 217 Pagination 475-485 Date Published 02/01/2013 Abstract The radiation field in a multi-plate photocatalytic reactor (MPPR) for air or water purification was modeled and optimized using a Monte Carlo stochastic method. The MPPR consists of parallel photocatalytic plates irradiated by cylindrical UV lamps orthogonal to the plates. The photocatalyst titanium dioxide (TiO2) is supported on the plates as a thin film. The photoreactor design is compact and offers a large irradiated photocatalytic surface area, a high degree of photon utilization, low pressure drop and a modular design which can facilitate scale-up. These features are desirable for the decontamination of indoor air in ventilation ducts or for water detoxification. The Monte Carlo method was applied to determine three dimensionless reactor performance parameters: the photon absorption efficiency (Φ), the uniformity of the distribution of the dimensionless radiation intensity (η) and the overall photonic efficiency (Φ). The emission of photons from the light sources was simulated by the extensive source with superficial emission (ESSE) model. Simulations were performed by varying the catalyst reflectivity albedo, the number and the diameter of lamps, and the dimensions and spacing of the photocatalytic plates. Optimal design for a basic reactor module with one lamp was accomplished for lamp-diameter-to-plate-height ratio (β) of 0.7, while the plate-spacing-to-plate-height ratio (α) was correlated by [αoptimum = 0.191 β2 - 0.5597 β + 0.3854]. A multilamp arrangement leads to a feasible increase in the size and number of the plates and the irradiated photocatalytic surface area. The optimum design was validated by measuring the apparent quantum yield of the oxidation of toluene (7 ppmv) in a humidified air stream using immobilized TiO2 (Degussa P25). Experiments performed varying the geometrical parameter α correlated well with the model calculations, with maximum apparent quantum yield for α = 0.137. The results are directly transferable to the treatment of water by photocatalysis.

117

Invertible Program Restructurings for Continuing Modular Maintenance  

E-Print Network (OSTI)

Invertible Program Restructurings for Continuing Modular Maintenance Julien Cohen ASCOLA team (EMN in main- tenance with invertible program transformations. We illustrate this on the typical Expression problems with our approach. Keywords-modular maintenance; restructuring; invertible pro- gram

Paris-Sud XI, Université de

118

Modular multivariable control improves hydrocracking  

SciTech Connect

Modular multivariable control (MMC), a system of interconnected, single process variable controllers, can be a user-friendly, reliable and cost-effective alternative to centralized, large-scale multivariable control packages. MMC properties and features derive directly from the properties of the coordinated controller which, in turn, is based on internal model control technology. MMC was applied to a hydrocracking unit involving two process variables and three controller outputs. The paper describes modular multivariable control, MMC properties, tuning considerations, application at the DCS level, constraints handling, and process application and results.

Chia, T.L.; Lefkowitz, I. [ControlSoft, Inc., Cleveland, OH (United States); Tamas, P.D. [Marathon Oil Co., Robinson, IL (United States)

1996-10-01T23:59:59.000Z

119

Innovative safety features of the modular HTGR  

SciTech Connect

The Modular High Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry, and the utilities. Near-term development is focused on electricity generation. The top-level safety requirement is that the plant's operation not disturb the normal day-to-day activities of the public. Quantitatively, this requires that the design meet the US Environmental Protection Agency's Protective Action Guides at the site boundary and hence preclude the need for sheltering or evacuation of the public. To meet these stringent safety requirements and at the same time provide a cost competitive design requires the innovative use of the basic high temperature gas-cooled reactor features of ceramic fuel, helium coolant, and a graphite moderator. The specific fuel composition and core size and configuration have been selected to the use the natural characteristics of these materials to develop significantly higher margins of safety. In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure of a simultaneous loss of forced cooling of the core. The challenges to control of heat generation consider not only the failure to insert the reactivity control systems but also the withdrawal of control rods. Finally, challenges to control of chemical attack of the ceramic-coated fuel are considered, including catastrophic failure of the steam generator, which allows water ingress, or failure of the pressure vessels, which allows air ingress. The plant's response to these extreme challenges is not dependent on operator action, and the events considered encompass conceivable operator errors.

Silady, F.A.; Simon, W.A.

1992-01-01T23:59:59.000Z

120

Innovative safety features of the modular HTGR  

SciTech Connect

The Modular High Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry, and the utilities. Near-term development is focused on electricity generation. The top-level safety requirement is that the plant`s operation not disturb the normal day-to-day activities of the public. Quantitatively, this requires that the design meet the US Environmental Protection Agency`s Protective Action Guides at the site boundary and hence preclude the need for sheltering or evacuation of the public. To meet these stringent safety requirements and at the same time provide a cost competitive design requires the innovative use of the basic high temperature gas-cooled reactor features of ceramic fuel, helium coolant, and a graphite moderator. The specific fuel composition and core size and configuration have been selected to the use the natural characteristics of these materials to develop significantly higher margins of safety. In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure of a simultaneous loss of forced cooling of the core. The challenges to control of heat generation consider not only the failure to insert the reactivity control systems but also the withdrawal of control rods. Finally, challenges to control of chemical attack of the ceramic-coated fuel are considered, including catastrophic failure of the steam generator, which allows water ingress, or failure of the pressure vessels, which allows air ingress. The plant`s response to these extreme challenges is not dependent on operator action, and the events considered encompass conceivable operator errors.

Silady, F.A.; Simon, W.A.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Acoustics of modular constructionIndustry overview  

Science Journals Connector (OSTI)

This session will provide an overview of the issues and efforts impacting the commercial modular construction industry throughout North America with particular focus on acoustics in relocatable classrooms. The Modular Building Institute is the international nonprofit trade association representing manufacturers and dealers of commercial modular facilites both temporary and permanent serving educational health care retail industrial military and multi?family markets.

Thomas E. Hardiman

2007-01-01T23:59:59.000Z

122

Nuclear Reactor (atomic reactor)  

Science Journals Connector (OSTI)

A nuclear reactor splits Uranium or Plutonium nuclei, and the...235 is fissionable but more than 99% of the naturally occurring Uranium is U238 that makes enrichment mandatory. In some reactors U238 and Thorium23...

2008-01-01T23:59:59.000Z

123

Analysis of the Reactor Cavity Cooling System for Very High Temperature Gas-cooled Reactors Using Computational Fluid Dynamics Tools  

E-Print Network (OSTI)

The design of passive heat removal systems is one of the main concerns for the modular Very High Temperature Gas-Cooled Reactors (VHTR) vessel cavity. The Reactor Cavity Cooling System (RCCS) is an important heat removal system in case of accidents...

Frisani, Angelo

2011-08-08T23:59:59.000Z

124

A Carbon Dioxide Gas Turbine Direct Cycle with Partial Condensation for Nuclear Reactors  

SciTech Connect

A carbon dioxide gas turbine power generation system with a partial condensation cycle has been proposed for thermal and fast nuclear reactors, in which compression is done partly in the liquid phase and partly in the gas phase. This cycle achieves higher cycle efficiency than a He direct cycle mainly due to reduced compressor work of the liquid phase and of the carbon dioxide real gas effect, especially in the vicinity of the critical point. If this cycle is applied to a thermal reactor, efficiency of this cycle is about 55% at a reactor outlet temperature of 900 deg. C and pressure of 12.5 MPa, which is higher by about 10% than a typical helium direct gas turbine cycle plant (PBMR) at 900 deg. C and 8.4 MPa; this cycle also provides comparable cycle efficiency at the moderate core outlet temperature of 600 deg. C with that of the helium cycle at 900 deg. C. If this cycle is applied to a fast reactor, it is anticipated to be an alternative to liquid metal cooled fast reactors that can provide slightly higher cycle efficiency at the same core outlet temperature; it would eliminate safety problems, simplify the heat transport system and simplify plant maintenance. A passive decay heat removal system is realized by connecting a liquid carbon dioxide storage tank with the reactor vessel and by supplying carbon dioxide gasified from the tank to the core in case of depressurization event. (authors)

Yasuyoshi Kato; Takeshi Nitawaki; Yoshio Yoshizawa [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550 (Japan)

2002-07-01T23:59:59.000Z

125

Optimization of actinide transmutation in innovative lead-cooled fast reactors  

E-Print Network (OSTI)

The thesis investigates the potential of fertile free fast lead-cooled modular reactors as efficient incinerators of plutonium and minor actinides (MAs) for application to dedicated fuel cycles for transmutation. A methodology ...

Romano, Antonino, 1972-

2003-01-01T23:59:59.000Z

126

Role of Nuclear Grade Graphite in Oxidation in Modular HTGRs  

SciTech Connect

The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

Willaim Windes; G. Strydom; J. Kane; R. Smith

2014-11-01T23:59:59.000Z

127

Modular CHP System for Utica College: Design Specification, March...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modular CHP System for Utica College: Design Specification, March 2007 Modular CHP System for Utica College: Design Specification, March 2007 This paper describes Utica College's...

128

Regulator of modular units and Mahler measures.  

E-Print Network (OSTI)

We present a proof of the formula, due to Mellit and Brunault, which evaluates an integral of the regulator of two modular units to the value of the $L$-series of a modular form of weight 2 at $s=2$. Applications of the formula to computing Mahler measures are discussed.

Wadim Zudilin.

129

Performance and Safety Analysis of a Generic Small Modular Reactor  

E-Print Network (OSTI)

for spent fuel from a Westinghouse AP1000. The results showed that from a fuel material standpoint, the SMR and AP1000 had effectively the same PR value. Unable to analyze security systems and methods employed at specific nuclear power plant sites...

Kitcher, Evans Damenortey, 1987-

2012-11-07T23:59:59.000Z

130

CESAR: Center for Exascale Simulation of Advanced Reactors | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

CESAR: Center for Exascale Simulation of Advanced Reactors CESAR: Center for Exascale Simulation of Advanced Reactors CESAR: Center for Exascale Simulation of Advanced Reactors CESAR is an interdisciplinary center for developing an innovative, next-generation nuclear reactor analysis tool that both utilizes and guides the development of exascale computing platforms. Existing reactor analysis codes are highly tuned and calibrated for commercial light-water reactors, but they lack the physics fidelity to seamlessly carry over to new classes of reactors with significantly different design characteristics-as, for example, innovative concepts such as TerraPower's Traveling Wave reactor and Small Modular Reactor concepts. Without vastly improved modeling capabilities, the economic and safety characteristics of these and other novel systems will require tremendous

131

TEPP Training - Modular Emergency Response Radiological Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Packaging and Transportation » Services » Waste Management » Packaging and Transportation » Transportation Emergency Preparedness Program » TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) Once the jurisdiction has completed an evaluation of their plans and procedures, they will need to address any gaps in training. To assist, TEPP has developed the Modular Emergency Response Radiological Transportation Training (MERRTT) program. MERRTT provides fundamental knowledge for responding to transportation incidents involving radiological material and builds on training in existing hazardous materials curricula. MERRTT satisfies the training requirements outlined in the Waste Isolation Pilot

132

Modular design for increasing assembly automation  

Science Journals Connector (OSTI)

Abstract Modular design can address the need for a high number of product variants and further allow a higher degree of automation in the assembly line. A framework is developed for the simultaneous modular product design and the design of automated manufacturing system. Product designs are optimized for automation using Design Structure Matrix and Modular Function Deployment. Alternative production systems are designed and accessed based on the analysis of assembly steps hierarchically. The implementation of the framework on the design of a production system for furniture assembly, able to handle multiple variants with a large number of components, is demonstrated.

Konstantinos Salonitis

2014-01-01T23:59:59.000Z

133

A MODULAR, SCALABLE, ARCHITECTURE FOR UNMANNED VEHICLES  

E-Print Network (OSTI)

1 A MODULAR, SCALABLE, ARCHITECTURE FOR UNMANNED VEHICLES David G. Armstrong II, Carl D. Crane III://www.me.ufl.edu/CIMAR Ralph English Wintec, Inc. Ft. Walton Beach, Florida Phillip Adsit Applied Research Associates Tyndall

Florida, University of

134

Honeywell modular automation system computer software documentation  

SciTech Connect

This document provides a Computer Software Docuemntation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-21I.

Cunningham, L.T.

1997-01-20T23:59:59.000Z

135

A design flow based on modular refinement  

E-Print Network (OSTI)

We propose a practical methodology based on modular refinement to design complex systems. The methodology relies on modules with latency-insensitive interfaces so that the refinements can change the timing contract of a ...

Dave, Nirav H.

136

Design of a modular motorcycle windshield wiper  

E-Print Network (OSTI)

Motorcycle windshield wipers are essentially non-existent in the United States. Customer and market research reveals a demand for such a product. This paper explores the product viability of a modular motorcycle windshield ...

Boyd, Robert Allen Michael

2010-01-01T23:59:59.000Z

137

Modular ITT Module D Modular ITT Module D Version 1 16/02/2012  

E-Print Network (OSTI)

manage health and safety at work. Your responses should include: basic statement on safety awarenessModular ITT ­ Module D Modular ITT ­ Module D Version 1 16/02/2012 Module D ­ Health & Safety an overall failing of your bid. This section allows us to assess your competency for health and safety. We

138

Figure 1. Recurrent modular network architecture Recurrent modular network architecture for sea ice  

E-Print Network (OSTI)

). Classification of sea ice in MIZ is important for navigation in these regions and for accurate evaluation of heatFigure 1. Recurrent modular network architecture Recurrent modular network architecture for sea ice classification in the Marginal Ice Zone using ERS SAR images Andrey V. Bogdanov1a , Marc Toussaint1b , Stein

Toussaint, Marc

139

A future for nuclear energy: pebble bed reactors  

Science Journals Connector (OSTI)

Pebble Bed Reactors could allow nuclear plants to support the goal of reducing global climate change in an energy hungry world. They are small, modular, inherently safe, use a demonstrated nuclear technology and can be competitive with fossil fuels. Pebble bed reactors are helium cooled reactors that use small tennis ball size fuel balls consisting of only 9 grams of uranium per pebble to provide a low power density reactor. The low power density and large graphite core provide inherent safety features such that the peak temperature reached even under the complete loss of coolant accident without any active emergency core cooling system is significantly below the temperature that the fuel melts. This feature should enhance public confidence in this nuclear technology. With advanced modularity principles, it is expected that this type of design and assembly could lower the cost of new nuclear plants removing a major impediment to deployment.

Andrew C. Kadak

2005-01-01T23:59:59.000Z

140

Advanced Modular Inverter Technology Development  

SciTech Connect

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1,  

E-Print Network (OSTI)

Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1, *, Alexander J Ninfa2 a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation: computational methods; metabolic and regulatory networks Keywords: feedback; insulation; modularity; singular

Sontag, Eduardo

142

Introduction and Condensation The 2-modular characters of Fi23  

E-Print Network (OSTI)

Introduction and Condensation The 2-modular characters of Fi23 Problem, Perfidy, Tricks, and Tackling them Verification, Overview and Outlook Computing the 2-modular characters of Fi23 Max Neunhöffer23 #12;Introduction and Condensation The 2-modular characters of Fi23 Problem, Perfidy, Tricks

Neunhöffer, Max

143

Piecing together modular : understanding the benefits and limitations of modular construction methods for multifamily development  

E-Print Network (OSTI)

The primary purpose of this thesis is to explain the benefits and limitations of modular construction as it pertains to primarily wood-frame, multifamily housing in the United States. This thesis attempts to educate the ...

Cameron, Peter J. (Peter Jay)

2007-01-01T23:59:59.000Z

144

Honeywell Modular Automation System Computer Software Documentation  

SciTech Connect

This document provides a Computer Software Documentation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-211 and vertical denitration calciner in HC-230C-2.

CUNNINGHAM, L.T.

1999-09-27T23:59:59.000Z

145

Creating value for the business service buyer through modularity  

Science Journals Connector (OSTI)

The present study explores how modularity makes services visible and how it enables the customers to participate in service co-creation. We review the literature on buying business services to determine the buying challenges and we define service modularity and especially concentrate on defining the attributes of a modular service offering. Theoretical framework describing the connections of the attributes and challenges in service buying is elaborated through a single case study of a modular service in a professional service firm. We argue that a modular service offering can help customers by increasing the visibility of the service offering.

Pauliina Ulkuniemi; Saara Pekkarinen

2011-01-01T23:59:59.000Z

146

NUCLEAR REACTORS.  

E-Print Network (OSTI)

??Nuclear reactors are devices containing fissionable material in sufficient quantity and so arranged as to be capable of maintaining a controlled, self-sustaining NUCLEAR FISSION chain (more)

Belachew, Dessalegn

2010-01-01T23:59:59.000Z

147

Modular architecture for robotics and teleoperation  

DOE Patents (OSTI)

Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

Anderson, Robert J. (11908 Ibex Ave., N.E., Albuquerque, NM 87111)

1996-12-03T23:59:59.000Z

148

Modular test facility for HTS insert coils  

SciTech Connect

The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields in the range of 40-50 T. In this paper we will present a modular test facility developed for the purpose of investigating very high field levels with available 2G HTS superconducting materials. Performance of available conductors is presented, together with magnetic calculations and evaluation of Lorentz forces distribution on the HTS coils. Finally a test of a double pancake coil is presented.

Lombardo, V; Bartalesi, A.; Barzi, E.; Lamm, M.; Turrioni, D.; Zlobin, A.V.; /Fermilab

2009-10-01T23:59:59.000Z

149

Copper vapor laser modular packaging assembly  

DOE Patents (OSTI)

A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

Alger, Terry W. (Tracy, CA); Ault, Earl R. (Dublin, CA); Moses, Edward I. (Castro Valley, CA)

1992-01-01T23:59:59.000Z

150

Modular CHP System for Utica College: Design Specification, March 2007  

Energy.gov (U.S. Department of Energy (DOE))

This report describes a system specification for purchasing the modularized components of a cogeneration facility for assembly, shipping, and onsite operation.

151

A graphical operations interface for modular surface systems  

E-Print Network (OSTI)

This paper presents the design and implementation of algorithms for a new graphical operations interface system specifically adapted to operating modular reconfigurable articulated surface systems. Geometric models of ...

Vona, Marsette A.

152

naval reactors  

National Nuclear Security Administration (NNSA)

After operating for 34 years and training over 14,000 sailors, the Department of Energy S1C Prototype Reactor Site in Windsor, Connecticut, was returned to "green field"...

153

Language constructs for modular parallel programs  

SciTech Connect

We describe programming language constructs that facilitate the application of modular design techniques in parallel programming. These constructs allow us to isolate resource management and processor scheduling decisions from the specification of individual modules, which can themselves encapsulate design decisions concerned with concurrence, communication, process mapping, and data distribution. This approach permits development of libraries of reusable parallel program components and the reuse of these components in different contexts. In particular, alternative mapping strategies can be explored without modifying other aspects of program logic. We describe how these constructs are incorporated in two practical parallel programming languages, PCN and Fortran M. Compilers have been developed for both languages, allowing experimentation in substantial applications.

Foster, I.

1996-03-01T23:59:59.000Z

154

Honeywell Modular Automation System Computer Software Documentation  

SciTech Connect

The purpose of this Computer Software Document (CSWD) is to provide configuration control of the Honeywell Modular Automation System (MAS) in use at the Plutonium Finishing Plant (PFP). This CSWD describes hardware and PFP developed software for control of stabilization furnaces. The Honeywell software can generate configuration reports for the developed control software. These reports are described in the following section and are attached as addendum's. This plan applies to PFP Engineering Manager, Thermal Stabilization Cognizant Engineers, and the Shift Technical Advisors responsible for the Honeywell MAS software/hardware and administration of the Honeywell System.

STUBBS, A.M.

2000-12-04T23:59:59.000Z

155

Nucleic acid amplification using modular branched primers  

DOE Patents (OSTI)

Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

Ulanovsky, Levy (Westmont, IL)

2001-01-01T23:59:59.000Z

156

Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers  

E-Print Network (OSTI)

for Modular, Scalable Liquid-Rack Cooling Systems in DataFOR A MODULAR, SCALABLE LIQUID-RACK COOLING SYSTEM IN DATA3 M ODULAR LIQUID - RACK COOLING

Xu, TengFang

2009-01-01T23:59:59.000Z

157

Research reactors - an overview  

SciTech Connect

A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

West, C.D.

1997-03-01T23:59:59.000Z

158

Fast Machine Code for Modular Multiplication Michael Scott  

E-Print Network (OSTI)

Fast Machine Code for Modular Multiplication Michael Scott School of Computer Applications Dublin, that is the calculation of a = b e mod n where for acceptable levels of security a, b, e, and n are large multiprecision will be not much larger than the number of bits in the binary representation of e. Therefore fast modular

Bernstein, Daniel

159

On -Induction, Chiral Generators and Modular Invariants for Subfactors  

E-Print Network (OSTI)

On -Induction, Chiral Generators and Modular Invariants for Subfactors Jens B¨ockenhauer and David apply -induction and, developing further some ideas of Ocneanu, we define chiral generators -Induction, Chiral Generators and Modular Invariants 43 5.1 Relating -induction to chiral generators

Kawahigashi, Yasuyuki

160

Toward Infusing Modular and Reflective Design Learning throughout the Curriculum  

E-Print Network (OSTI)

Toward Infusing Modular and Reflective Design Learning throughout the Curriculum John C. Georgas intervention that cen- ters on the widespread infusion of design learning throughout the curriculum using: An emphasis on broadly infusing design learning through the curriculum using modular design challenges

Georgas, John

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Light Water Reactor Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Light Water Reactor Sustainability ACCOMPLISHMENTS REPORT 2014 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

162

Modular Biomass Systems Could Boost Rural Areas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas June 16, 2010 - 1:09pm Addthis Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Stephen Graff Former Writer & editor for Energy Empowers, EERE Increased ethanol production will help revitalize the rural economy and decrease America's dependence on foreign oil, but there are other ways to create opportunities in the farmlands. For Robb Walt, president of Community Power Corporation (CPC) in Littleton, Colo., one answer is community-scale, bio-energy service companies, or

163

Z-score-based modularity for community detection in networks  

E-Print Network (OSTI)

Identifying community structure in networks is an issue of particular interest in network science. The modularity introduced by Newman and Girvan [Phys. Rev. E 69, 026113 (2004)] is the most popular quality function for community detection in networks. In this study, we identify a problem in the concept of modularity and suggest a solution to overcome this problem. Specifically, we obtain a new quality function for community detection. We refer to the function as Z-modularity because it measures the Z-score of a given division with respect to the fraction of the number of edges within communities. Our theoretical analysis shows that Z-modularity mitigates the resolution limit of the original modularity in certain cases. Computational experiments using both artificial networks and well-known real-world networks demonstrate the validity and reliability of the proposed quality function.

Miyauchi, Atsushi

2015-01-01T23:59:59.000Z

164

Modular Biomass Systems Could Boost Rural Areas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas June 16, 2010 - 1:09pm Addthis Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Stephen Graff Former Writer & editor for Energy Empowers, EERE Increased ethanol production will help revitalize the rural economy and decrease America's dependence on foreign oil, but there are other ways to create opportunities in the farmlands. For Robb Walt, president of Community Power Corporation (CPC) in Littleton, Colo., one answer is community-scale, bio-energy service companies, or

165

Intelligent Control of Modular Robotic Welding Cell  

SciTech Connect

Although robotic machines are routinely used for welding, such machines do not normally incorporate intelligent capabilities. We are studying the general problem of formulating usable levels of intelligence into welding machines. From our perspective, an intelligent machine should: incorporate knowledge of the welding process, know if the process is operating correctly, know if the weld it is making is good or bad, have the ability to learn from its experience to perform welds, and be able to optimize its own performance. To this end, we are researching machine architecture, methods of knowledge representation, decision making and conflict resolution algorithms, methods of learning and optimization, human/machine interfaces, and various sensors. This paper presents work on the machine architecture and the human/machine interface specifically for a robotic, gas metal arc welding cell. Although the machine control problem is normally approached from the perspective of having a central body of control in the machine, we present a design using distributed agents. A prime goal of this work is to develop an architecture for an intelligent machine that will support a modular, plug and play standard. A secondary goal of this work is to formulate a human/machine interface that treats the human as an active agent in the modular structure.

Smartt, Herschel Bernard; Kenney, Kevin Louis; Tolle, Charles Robert

2002-04-01T23:59:59.000Z

166

INTEGRATED FISCHER TROPSCH MODULAR PROCESS MODEL  

SciTech Connect

With declining petroleum reserves, increased world demand, and unstable politics in some of the worlds richest oil producing regions, the capability for the U.S. to produce synthetic liquid fuels from domestic resources is critical to national security and economic stability. Coal, biomass and other carbonaceous materials can be converted to liquid fuels using several conversion processes. The leading candidate for large-scale conversion of coal to liquid fuels is the Fischer Tropsch (FT) process. Process configuration, component selection, and performance are interrelated and dependent on feed characteristics. This paper outlines a flexible modular approach to model an integrated FT process that utilizes a library of key component models, supporting kinetic data and materials and transport properties allowing rapid development of custom integrated plant models. The modular construction will permit rapid assessment of alternative designs and feed stocks. The modeling approach consists of three thrust areas, or strands model/module development, integration of the model elements into an end to end integrated system model, and utilization of the model for plant design. Strand 1, model/module development, entails identifying, developing, and assembling a library of codes, user blocks, and data for FT process unit operations for a custom feedstock and plant description. Strand 2, integration development, provides the framework for linking these component and subsystem models to form an integrated FT plant simulation. Strand 3, plant design, includes testing and validation of the comprehensive model and performing design evaluation analyses.

Donna Post Guillen; Richard Boardman; Anastasia M. Gribik; Rick A. Wood; Robert A. Carrington

2007-12-01T23:59:59.000Z

167

Safety approaches for high power modular laser operation  

SciTech Connect

Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest has been the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program has progressed to the point where a plant-scale facility to demonstrate commercial feasibility has been built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a >90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities ({approximately}3000 gal) of ethanol dye solutions. The Laboratory`s safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

Handren, R.T.

1993-03-01T23:59:59.000Z

168

Catalytic reactor  

DOE Patents (OSTI)

A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

2009-03-10T23:59:59.000Z

169

Small modular HTGR nuclear power plant concept to meet the total energy needs of the developing nations  

SciTech Connect

In this paper, a small modular High-Temperature Gas-Cooled Reactor (HTGR) is described that can support the total energy needs of the developing nations by supplying electrical power, process steam, low-grade heat for desalination, and hydrogen production. Major features of the nuclear power plant concept, currently under development by GA Technologies Inc. (GA), are discussed with emphasis on (1) plant simplicity, (2) inherent safety, (3) ease of operation, (4) design and licensing standardization, and (5) acceptable power generation economics.

McDonald, C.F.

1983-09-26T23:59:59.000Z

170

Dynamics on modular networks with heterogeneous correlations  

SciTech Connect

We develop a new ensemble of modular random graphs in which degree-degree correlations can be different in each module, and the inter-module connections are defined by the joint degree-degree distribution of nodes for each pair of modules. We present an analytical approach that allows one to analyze several types of binary dynamics operating on such networks, and we illustrate our approach using bond percolation, site percolation, and the Watts threshold model. The new network ensemble generalizes existing models (e.g., the well-known configuration model and Lancichinetti-Fortunato-Radicchi networks) by allowing a heterogeneous distribution of degree-degree correlations across modules, which is important for the consideration of nonidentical interacting networks.

Melnik, Sergey [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland) [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland); Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP (United Kingdom); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom) [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP (United Kingdom); Mucha, Peter J. [Department of Mathematics, Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250 (United States) [Department of Mathematics, Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250 (United States); Institute for Advanced Materials, Nanoscience and Technology, University of North Carolina, Chapel Hill, North Carolina 27599-3216 (United States); Gleeson, James P. [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland)] [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland)

2014-06-15T23:59:59.000Z

171

Honeywell modular automation system computer software documentation  

SciTech Connect

The purpose of this Computer Software Document (CSWD) is to provide configuration control of the Honeywell Modular Automation System (MAS) in use at the Plutonium Finishing Plant (PFP). The Honeywell MAS is used to control the thermal stabilization furnaces in glovebox HA-211. The PFP developed software is being updated to reflect the Polycube Processing and Unwashed Salt Thermal Stabilization program addition. The polycube processing program was installed per HNF-FMP-02-11162-R2. The functional test of the program was performed in JCS work package 22-02-1031, The unwashed salt item program was installed per HNF-FMP-03-16577-RO. The functional test of the program completed in JCS work package 22-03-00654.

STUBBS, A.M.

2003-07-02T23:59:59.000Z

172

Honeywell Modular Automation System Acceptance Test Procedure  

SciTech Connect

The purpose of this Acceptance Test Procedure (ATP) is to verify the operability of the three new furnaces as controlled by the new Honeywell Modular Automation System (MAS). The Honeywell MAS is being installed in PFP to control the three thermal stabilization furnaces in glovebox HA-211. The ATP provides instructions for testing the configuration of the Honeywell MAS at the Plutonium Finishing Plant(PFP). The test will be a field test of the analog inputs, analog outputs, and software interlocks. The interlock test will check the digital input and outputs. Field equipment will not be connected forth is test. Simulated signals will be used to test thermocouple, limit switch, and vacuum pump inputs to the PLUMAS.

STUBBS, A.M.

1999-09-21T23:59:59.000Z

173

Modular, multi-level groundwater sampler  

DOE Patents (OSTI)

Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

Nichols, Ralph L. (812 Plantation Point Dr., N. Augusta, SC 29841); Widdowson, Mark A. (4204 Havana Ct., Columbia, SC 29206); Mullinex, Harry (10 Cardross La., Columbia, SC 29209); Orne, William H. (12 Martha Ct., Sumter, SC 29150); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

1994-01-01T23:59:59.000Z

174

Kahler stabilized, modular invariant heterotic string models  

SciTech Connect

We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Bintruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.

Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.

2007-03-19T23:59:59.000Z

175

Focal plane array with modular pixel array components for scalability  

DOE Patents (OSTI)

A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

2014-12-09T23:59:59.000Z

176

Modular Applied General Equilibrium Tool (MAGNET) | Open Energy Information  

Open Energy Info (EERE)

Modular Applied General Equilibrium Tool (MAGNET) Modular Applied General Equilibrium Tool (MAGNET) Jump to: navigation, search Tool Summary Name: Modular Applied General Equilibrium Tool (MAGNET) Agency/Company /Organization: LEI Wageningen UR, the Netherlands Complexity/Ease of Use: Moderate Related Tools Ex Ante Appraisal Carbon-Balance Tool (EX-ACT) Climate Rapid Overview and Decision Support (C-ROADS) Simulator Partnership for Economic Policy Modeling and Policy Impact Analysis (MPIA) ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS A modular global computable general equilibrium model that covers the whole economy and has been used extensively in agricultural, environmental, and trade policy analysis; builds on the GTAP model, and is the successor of LEITAP. Approach MAGNET is based on the Global Trade Analysis Project (GTAP) model and

177

DOE Hydrogen Analysis Repository: Renewable Energy Power System Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Power System Modular Simulator (RPM-Sim) Renewable Energy Power System Modular Simulator (RPM-Sim) Project Summary Full Title: Renewable Energy Power System Modular Simulator (RPM-Sim) Project ID: 104 Principal Investigator: Edward Muljadi Keywords: Renewable; hybrid electric vehicles (HEV) Purpose This is a package software program developed based on a modular concept. Each module consists of a type of equipment or an element of a power system (for example, diesel-genset, wind turbine generator, village load, rotary converter, PV-inverter module, fuel cell-inverter module (developed by Prof. Hashem Nehrir, Montana State University), electrolysis module (developed by Prof. Hosein Salehfar and Prof. Mann University of North Dakota). Performer Principal Investigator: Edward Muljadi Organization: National Renewable Energy Laboratory (NREL)

178

Modularity and Commonality Research: Past Developments and Future Opportunities  

E-Print Network (OSTI)

Research on modularity and commonality has grown substantially over the past 15 years. Searching 36 journals over more than the past 35 years, I identify over 160 references in the engineering and management literature ...

Fixson, Sebastian K.

2007-04-20T23:59:59.000Z

179

Improving link failover efficiency in MANETs using modular prediction  

Science Journals Connector (OSTI)

In this paper, we present a flexible, modular architecture to combine various link state related measurements and prediction algorithms in order to accurately predict link failure in MANETs, while keeping bandwidth and energy overhead low. Our architecture ...

E. Van Den Berg; A. Cisneros; I. Hokelek; K. Parmeswaran; S. Samtani; J. Sucec; J. L. Simbol; A. Staikos; G. B. Rucker

2010-04-01T23:59:59.000Z

180

Distributed algorithms for self-disassembly in modular robots  

E-Print Network (OSTI)

We developed a modular robotic system that behaves as programmable matter. Specifically, we designed, implemented, and tested a collection of robots that, starting from an amorphous arrangement, can be assembled into ...

Gilpin, Kyle W

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Retroactivity, modularity, and insulation in synthetic biology circuits  

E-Print Network (OSTI)

A central concept in synthetic biology is the reuse of well-characterized modules. Modularity simplifies circuit design by allowing for the decomposition of systems into separate modules for individual construction. Complex ...

Lin, Allen

2011-01-01T23:59:59.000Z

182

Modular redundancy without voters decreases complexity of restoring organ  

Science Journals Connector (OSTI)

Fault-tolerant modules have usually been implemented through the use of static fault-masking or dynamic spare-switching. But a new class of MR (Modular Redundancy), the Responsive schemes, promises higher reliability levels and more efficient implementations ...

P. T. DeSousa; F. P. Mathur

1977-06-01T23:59:59.000Z

183

Distributed Online Learning of Central Pattern Generators in Modular Robots  

Science Journals Connector (OSTI)

In this paper we study distributed online learning of locomotion gaits for modular robots. The learning is based on a stochastic approximation method, SPSA, which optimizes the parameters of coupled oscillator...

David Johan Christensen; Alexander Sprwitz

2010-01-01T23:59:59.000Z

184

Light Water Reactors Technology Development - Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

185

Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors  

SciTech Connect

A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

Popa-Simil, L. [LAVM LLC, Los Alamos (United States)

2012-07-01T23:59:59.000Z

186

On the modular curve X0(23) Rene Schoof  

E-Print Network (OSTI)

that the extension does not split over Z[ 1 23 ]. The group scheme J0(23)[2] even has irreducible featuresOn the modular curve X0(23) Ren´e Schoof Abstract. The Jacobian J0(23) of the modular curve X0(23) is a semi-stable abelian variety over Q with good reduction outside 23. It is simple. We prove that every

Schoof, René

187

A MODULAR ACTUATOR ARCHITECTURE FOR ROBOTIC APPLICATIONS  

SciTech Connect

The United States Department of Energy (DOE) Complexes perform numerous hazardous material handling operations within the confines of a glovebox. The DOE is continuing to seek more efficient and safer means of handling these materials inside gloveboxes rather than the conventional, labor-intensive method through lead lined gloves. The use of glovebox automation technology will also be critical to the DOE in its efforts to comply with its mandated ALARA principles in handling the hazardous materials associated with the cleanup process. Operations associated with materials processing in a glovebox are similar to many industrial tasks, but the unique glovebox environment and Plutonium material properties create a unique set of challenges for conventional automation machinery. Such properties include: Low to moderate levels of ionizing radiation, high abrasiveness, corrosiveness, pyrophoric tendencies, rapid dispersal and permeation of environment, diffuses quickly, and possible incompatible material interaction. The glovebox presents the following challenges: existing gloveboxes may not be readily altered or even modified at all, complex mechanical operations for maintenance and repair are difficult or impossible through gloves, failed equipment may not be removed easily or at all. If a broken piece of equipment cannot be bagged-out through a glove port (approximately 216 mm (8 1/2 inch) diameter) it must remain in place. Broken equipment obstructs further operations. If it renders the entire glovebox unusable, a significant volume of waste is generated and an expensive system must be disposed of and replaced. A moderate sized glovebox alone costs between $250,000 and $500,000 and an equipment malfunction, which penetrates the glovebox and exposes the room to Plutonium or other toxic materials, is catastrophic. In addition to the human exposure issues, cleanup can easily run into the millions of dollars. A solution to the issues described above is ARM Automation Inc.'s (ARM) modular robotic manipulator technology developed for DOE EM operations, which addresses many of the issues discussed in the previous section. This manipulator system has the capability of custom configurations, which accommodate common glovebox tasks such as materials repackaging. The modular nature and quick connects of this system simplify installations into ''hot'' boxes and any potential modifications or repair therein. In the field of automation and robotics, a very common element is one used to generate motion for precise positioning of loads. One example of such an automation component would be an individual joint within an industrial robotic manipulator. This component consists of a tightly integrated package containing an electric motor, gear train, output support bearings, position sensors, brake, servo-amplifier and communications controller. Within the context of this paper, this key building block is referred to as an actuator module. With regard to the needs of the EM, [8] and [9] have shown that while each focus area has unique requirements for robotic automation at a system or manipulator level, their requirements at the actuator level are very similar. Thereby, a modular approach to automation which utilizes a small set of versatile actuator modules can be used to construct a broad range of robotic systems and automation cells suited to EM applications. By providing a pre-engineered, pre-integrated motion system to different robotics users within the DOE, new automation systems can be more quickly created without extensive expertise in motion control or the expense of building custom equipment.

None

2001-07-01T23:59:59.000Z

188

Modular robotics overview of the `state of the art`  

SciTech Connect

The design of a robotic arm processing modular components and reconfigurable links is the general goal of a modular robotics development program. The impetus behind the pursuit of modular design is the remote engineering paradigm of improved reliability and availability provided by the ability to remotely maintain and repair a manipulator operating in a hazardous environment by removing and replacing worn or failed modules. Failed components can service off- line and away from hazardous conditions. The desire to reconfigure an arm to perform different tasks is also an important driver for the development of a modular robotic manipulator. In order to bring to fruition a truly modular manipulator, an array of technical challenges must be overcome. These range from basic mechanical and electrical design considerations such as desired kinematics, actuator types, and signal and transmission types and routings, through controls issues such as the need for control algorithms capable of stable free space and contact control, to computer and sensor design issues like consideration of the use of embedded processors and redundant sensors. This report presents a brief overview of the state of the art of technical issues relevant of modular robotic arm design. The focus is on breadth of coverage, rather than depth, in order to provide a reference frame for future development.

Kress, R.L.; Jansen, J.F.; Hamel, W.R.

1996-08-01T23:59:59.000Z

189

Issues in acoustic field testing of quiet modular classrooms  

Science Journals Connector (OSTI)

Modular classrooms are important to American education: About 300 000 modular classrooms are currently in use by public school systems here. Good acoustical conditions for learning are no less vital for students in modular classrooms than stick?built classrooms. In an effort to promote good acoustics in modular classrooms ANSI S12 Working Group 46 is seeking to standardize acoustic field testing. Their efforts are in response to key acoustical issues of modular classrooms: Excessive noise from HVAC (heating ventilating and air conditioning) systems and poor airborne sound insulation from exterior noise sources. In a recent and notable advance an HVAC system provider reported good progress in modular HVACnoise reduction: A ducted wall mounted system was used instead of the usual free blowing system with exposed fans. HVACnoise in the unoccupied room was near the maximum 35 dB level required by ANSI S12.60. Interior noise levels were so low that efforts to confirm their values were confounded by noise contamination from exterior sources. The relatively high interior ambient noise levels were due to poor airborne sound insulation. Lessons learned from recent field testing will be discussed. Results of airborne sound insulation tests now in planning stages will be reported if available.

David Lubman; Louis C. Sutherland

2007-01-01T23:59:59.000Z

190

Modular Countermine Payload for Small Robots  

SciTech Connect

Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multi-mission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.

Herman Herman; Doug Few; Roelof Versteeg; Jean-Sebastien Valois; Jeff McMahill; Michael Licitra; Edward Henciak

2010-04-01T23:59:59.000Z

191

Photocatalytic reactor  

DOE Patents (OSTI)

A photocatalytic reactor is described for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane. 4 figs.

Bischoff, B.L.; Fain, D.E.; Stockdale, J.A.D.

1999-01-19T23:59:59.000Z

192

Hybrid adsorptive membrane reactor  

DOE Patents (OSTI)

A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

2011-03-01T23:59:59.000Z

193

Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who  

SciTech Connect

The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

Forsberg, C.W.; Reich, W.J.

1991-09-01T23:59:59.000Z

194

GEN-IV Reactors  

Science Journals Connector (OSTI)

Generation-IV reactors are a set of nuclear reactors currently being developed under international collaborations targeting ... economics, proliferation resistance, and physical protection of nuclear energy. Nuclear

Taek K. Kim

2013-01-01T23:59:59.000Z

195

The Netherlands Reactor Centre  

Science Journals Connector (OSTI)

... Two illustrated brochures in English have recently J. been issued by the Netherlands Reactor Centre ( ... Centre (Reactor Centrum Nederland). The first* gives a general survey of the ...

S. WEINTROUB

1964-04-04T23:59:59.000Z

196

Steam generator conceptual design for the modular HTGR - Dissimilar metal weld considerations  

SciTech Connect

The steam generator for the current Modular High Temperature Gas-Cooled Reactor (MHTGR) has evolved from a technology basis developed in U.S. and European gas-cooled reactor programs. The MHTGR steam generator is a vertically-oriented, counterflow, shell-and-tube, once-through, non-reheat, helical heat exchanger with helium on the shell side and water/steam in the tubes. In the MHTGR applications, the normal operating temperatures of the steam generator tubes can be as high as 638/sup 0/C (1180/sup 0/F). Concerns such as cost, creep strength, steam side scaling and stress corrosion cracking often lead to a design decision to use two different tube materials, one for the evaporating portion and another for the superheating portion of the steam generator. The current MHTGR steam generator design utilizes 2 1/4 CR - 1 Mo material for the economizer/evaporator/initial superheater tube section and Alloy 800H material for the finishing superheat tube section. Therefore, a dissimilar metal weld (DMW) is incorporated in each tube circuit. This feature of the design imposes certain important constraints on the steam generator designer. This paper presents an overview of the MHTGR steam generator conceptual design, and then focuses on the DMW considerations and how these have influenced the design configuration.

Spring, A.H.; Basol, M.

1987-01-01T23:59:59.000Z

197

Kernel for modular robot applications: Automatic modeling techniques  

SciTech Connect

A modular robotic system consists of standardized joint and link units that an be assembled into various kinematic configurations for different types of tasks. For the control and simulation of such a system, manual derivation of the kinematic and dynamic models, as well as the error model for kinematic calibration, require tremendous effort, because the models constantly change as the robot geometry is altered after module reconfiguration. This paper presents a frame-work to facilitate the model-generation procedure for the control and simulation of the modular robot system. A graph technique, termed kinematic graphs and realized through assembly incidence matrices (AIM), is introduced to represent the module-assembly sequence and robot geometry. The kinematics and dynamics are formulated based on a local representation of the theory of lie groups and Lie algebras. The automatic model-generation procedure starts with a given assembly graph of the modular robot. Kinematic, dynamic, and error models of the robot are then established, based on the local representations and iterative graph-traversing algorithms. This approach can be applied to a modular robot with both serial and branch-type geometries, and arbitrary degrees of freedom. Furthermore, the AIM of the robot naturally leads to solving the task-oriented optimal configuration problem in modular robots. There is no need to maintain a huge library of robot models, and the footprint of the overall software system can be reduced.

Chen, I.M.; Yeo, S.H.; Chen, G. [Nanyang Technological Univ. (Singapore). School of Mechanical and production Engineering] [Nanyang Technological Univ. (Singapore). School of Mechanical and production Engineering; Yang, G. [Gintic Inst. of Manufacturing Technology (Singapore). Automation Technology Div.] [Gintic Inst. of Manufacturing Technology (Singapore). Automation Technology Div.

1999-02-01T23:59:59.000Z

198

DOE Hydrogen Analysis Repository: All Modular Industry Growth Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

All Modular Industry Growth Assessment (AMIGA) Model All Modular Industry Growth Assessment (AMIGA) Model Project Summary Full Title: All Modular Industry Growth Assessment (AMIGA) Model Project ID: 139 Principal Investigator: Donald Hanson Purpose A comprehensive economic model of energy markets, primarily used to simulate a wide range of technology and policy issues. Performer Principal Investigator: Donald Hanson Organization: Argonne National Laboratory (ANL) Address: 9700 S. Cass Ave. Argonne, IL 60439 Telephone: 630-252-5061 Email: dhanson@anl.gov Additional Performers: Peter Balash, NETL; John Marano, NETL Sponsor(s) Name: Peter Balash Organization: National Energy Technology Laboratory (NETL) Telephone: 412-386-5753 Email: Peter.Balash@NETL.DOE.GOV Period of Performance Start: January 2001 Project Description

199

Modular Robot Systems From Self-Assembly to Self-Disassembly  

E-Print Network (OSTI)

We have presented a detailed retrospective on modular robots and discussed connections between modular robots and programmable matter. This field has seen a great deal of creativity and innovation at the level of designing ...

Rus, Daniela L.

200

What exactly is Product Modularity? The answer depends on who you ask  

E-Print Network (OSTI)

'Product modularity' has recently experienced a significant increase in interest in the academic literature. While the concept of product modularity is used across a wide range of academic research areas, substantial ...

Fixson, Sebastian K.

2007-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Concepts and technology development for the autonomous assembly and reconfiguration of modular space systems  

E-Print Network (OSTI)

This thesis will present concepts of modular space systems, including definitions and specific examples of how modularity has been incorporated into past and present space missions. In addition, it will present two ...

Rodgers, Lennon Patrick

2006-01-01T23:59:59.000Z

202

SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Modular and Scalable Baseload Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility to someone by E-mail Share SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Facebook Tweet about SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Twitter Bookmark SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Google Bookmark SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Delicious Rank SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Digg Find More places to share SunShot Initiative: Modular and Scalable

203

Export possibilities for small nuclear reactors  

SciTech Connect

The worldwide deployment of peaceful nuclear technology is predicated on conformance with the Nuclear Non-Proliferation Treaty of 1972. Under this international treaty, countries have traded away pursuit of nuclear weapons in exchange for access to commercial nuclear technology that could help them grow economically. Realistically, however, most nuclear technology has been beyond the capacity of the NPT developing countries to afford. Even if the capital cost of the plant is managed, the costs of the infrastructure and the operational complexity of most nuclear technology have taken it out of the hands of the nations who need it the most. Now, a new class of small sodium cooled reactors has been specifically designed to meet the electrical power, water, hydrogen and heat needs of small and remote users. These reactors feature small size, long refueling interval, no onsite fuel storage, and simplified operations. Sized in the 10 MW(e) to 50 MW(e) range these reactors are modularized for factory production and for rapid site assembly. The fuel would be <20% U-235 uranium fuel with a 30-year core life. This new reactor type more appropriately fills the needs of countries for lower power distributed systems that can fill the gap between large developed infrastructure and primitive distributed energy systems. Looking at UN Resolution 1540 and the impact of other agreements, there is a need to address the issues of nuclear security, fuel, waste, and economic/legal/political-stakeholder concerns. This paper describes the design features of this new reactor type that specifically address these issues in a manner that increases the availability of commercial nuclear technology to the developing nations of the world. (authors)

Campagna, M.S.; Hess, C.; Moor, P. [Burns and Roe Enterprises, Inc., Oradell, NJ (United States); Sawruk, W. [ABSG Consulting, Inc., Shillington, PA (United States)

2007-07-01T23:59:59.000Z

204

Modularity, quaternion-Khler spaces, and mirror symmetry  

SciTech Connect

We provide an explicit twistorial construction of quaternion-Khler manifolds obtained by deformation of c-map spaces and carrying an isometric action of the modular group SL(2,Z). The deformation is not assumed to preserve any continuous isometry and therefore this construction presents a general framework for describing NS5-brane instanton effects in string compactifications with N= 2 supersymmetry. In this context the modular invariant parametrization of twistor lines found in this work yields the complete non-perturbative mirror map between type IIA and type IIB physical fields.

Alexandrov, Sergei; Banerjee, Sibasish [Universit Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier (France)] [Universit Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier (France)

2013-10-15T23:59:59.000Z

205

The Los Alamos VXI-based modular RF control system  

SciTech Connect

This paper describes the design and implementation of the Los Alamos modular RF control system, which provides high-performance feedback and/or feedforward control of RF accelerator cavities. This is a flexible, modular control system which has been realized in the industry-standard VXI cardmodular format. A wide spectrum of system functionality can be accommodated simply by incorporating only those modules and features required for a particular application. The fundamental principles of the design approach are discussed. Details of the VXI implementation are given, including the system architecture and interfaces, performance capabilities, and available features.

Jachim, S.P.; Ziomek, C.; Natter, E.F.; Regan, A.H.; Hill, J.; Eaton, L.; Gutscher, W.D.; Curtin, M.; Denney, P.; Hansberry, E.; Brooks, T.

1993-01-01T23:59:59.000Z

206

The Los Alamos VXI-based modular RF control system  

SciTech Connect

This paper describes the design and implementation of the Los Alamos modular RF control system, which provides high-performance feedback and/or feedforward control of RF accelerator cavities. This is a flexible, modular control system which has been realized in the industry-standard VXI cardmodular format. A wide spectrum of system functionality can be accommodated simply by incorporating only those modules and features required for a particular application. The fundamental principles of the design approach are discussed. Details of the VXI implementation are given, including the system architecture and interfaces, performance capabilities, and available features.

Jachim, S.P.; Ziomek, C.; Natter, E.F.; Regan, A.H.; Hill, J.; Eaton, L.; Gutscher, W.D.; Curtin, M.; Denney, P.; Hansberry, E.; Brooks, T.

1993-06-01T23:59:59.000Z

207

Model-Based Testing for the Second Generation of Integrated Modular Avionics Christof Efkemann, Jan Peleska  

E-Print Network (OSTI)

activities regarding automated testing of Integrated Modular Avionics controllers in the European research, specialised electronics devices, many of them with cus- tom interfaces. In the Integrated Modular AvionicsModel-Based Testing for the Second Generation of Integrated Modular Avionics Christof Efkemann, Jan

Peleska, Jan - Fachbereich 3

208

Nuclear reactor  

DOE Patents (OSTI)

A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

Thomson, Wallace B. (Severna Park, MD)

2004-03-16T23:59:59.000Z

209

MHTGR: New production reactor summary of experience base  

SciTech Connect

Worldwide interest in the Modular High-Temperature Gas-Cooled Reactor (MHTGR) stems from the capability of the system to retain the advanced fuel and thermal performance while providing unparalleled levels of safety. The small power level of the MHTGR and its passive systems give it a margin of safety not attained by other concepts being developed for power generation. This report covers the experience base for the key nuclear system, components, and processes related to the MHTGR-NPR. 9 refs., 39 figs., 9 tabs.

Not Available

1988-03-01T23:59:59.000Z

210

Modular PM Motor Drives for Automotive Traction Applications  

SciTech Connect

This paper presents modular permanent magnet (PM) motor drives for automotive traction applications. A partially modularized drive system consisting of a single PM motor and multiple inverters is described. The motor has multiple three-phase stator winding sets and each winding set is driven with a separate three-phase inverter module. A truly modularized inverter and motor configuration based on an axial-gap PM motor is then introduced, in which identical PM motor modules are mounted on a common shaft and each motor module is powered by a separate inverter module. The advantages of the modular approach for both inverter and motor include: (1) power rating scalability--one design meets different power requirements by simply stacking an adequate number of modules, thus avoiding redesigning and reducing the development cost, (2) increased fault tolerance, and (3) easy repairing. A prototype was constructed by using two inverters and an axial-gap PM motor with two sets of three-phase stat or windings, and it is used to assist the diesel engine in a hybrid electric vehicle converted from a Chevrolet Suburban. The effect of different pulse-width-modulation strategies for both motoring and regenerative modes on current control is analyzed. Torque and regenerative control algorithms are implemented with a digital signal processor. Analytical and initial testing results are included in the paper.

Su, G.J.

2001-10-29T23:59:59.000Z

211

New Modularization Framework Transforms FAST Wind Turbine Modeling Tool  

Energy.gov (U.S. Department of Energy (DOE))

The National Renewable Energy Laboratory recently released an expanded version of its FAST wind turbine computer-aided engineering tool under a new modularization framework. The new framework will transform FAST into a powerful, robust, and flexible modeling software for wind and water power technology developers.

212

Should one always use Repeated Squaring for Modular Exponentiation?  

E-Print Network (OSTI)

squaring, which is based on representing the exponent in the standard binary numeration system. We show here that for certain applications, replacing the standard system by one based on Fibonacci numbers may, Fibonacci number system, cryptog­ raphy 1. Introduction Modular exponentiation is defined as the task

Klein Shmuel Tomi

213

A modular microfluidic architecture for integrated biochemical analysis  

E-Print Network (OSTI)

A modular microfluidic architecture for integrated biochemical analysis Kashan A. Shaikh*, Kee Suk for review November 15, 2004) Microfluidic laboratory-on-a-chip (LOC) systems based on a mod- ular (lead) at a sensitivity of 500 nM in microfluidic breadboard

Barron, Annelise E.

214

Modular Exponentiation Algorithm Analysis for Energy Consumption and Performance  

E-Print Network (OSTI)

Modular Exponentiation Algorithm Analysis for Energy Consumption and Performance Lin Zhong lzhong of their complexity, parallelism and latency. Insights are found for tradeoff between energy consumption of a tree structure. For example, Figure 1.3 shows to add 5 k-bit integers together in a tree sequence. It

Zhong, Lin

215

Development and Features EatSafe: Modular Portable Food Sensor  

E-Print Network (OSTI)

. The convenience of the EatSafe Sensor allows for this. PRONE TO FOOD-POISONING Seniors, children, pregnant womenDevelopment and Features EatSafe: Modular Portable Food Sensor ECE-Rady Design Competition FOOD INDUSTRY Every year >76 million people become sick from the consumption of contaminated food. PACKAGING

California at San Diego, University of

216

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...viability of SMRs as an energy source. These include...variable and intermittent renewable power into systems...likely evolution of the energy system over the next...25-150 26 2 FBNR FURGS Brazil iPWR 72 26 3 ACP100...HTR 240 26 20 G4M Gen 4 Energy USA LMR 25 26 21 SMR-160...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

217

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...future, both lower up-front cost and new markets could yield a more attractive economic paradigm for SMR...that are designed to accelerate their market penetration. These investigations usually...monitoringEarthing equipmentDiesel and diesel control equipmentAux equipment: transformers...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

218

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...the Post-Fukushima Age. Presentation to the Nuclear Energy Standards Coordination Collaborative, July 17, 2012, Washington, DC...computers, monitoring equipment, instrumentation equipment 8) HVAC and fire fighting equipmentVentilation and air conditioning...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

219

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...nuclear plants. An even more fundamental point is that this strategy...agreed that this is one of the fundamental benefits of SMRs...monitoringEarthing equipmentDiesel and diesel control equipmentAux equipment...during constructionFuel for engines, turbines, and boilersWaste...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

220

Design data needs modular high-temperature gas-cooled reactor. Revision 2  

SciTech Connect

The Design Data Needs (DDNs) provide summary statements for program management, of the designer`s need for experimental data to confirm or validate assumptions made in the design. These assumptions were developed using the Integrated Approach and are tabulated in the Functional Analysis Report. These assumptions were also necessary in the analyses or trade studies (A/TS) to develop selections of hardware design or design requirements. Each DDN includes statements providing traceability to the function and the associated assumption that requires the need.

NONE

1987-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

INEEL/EXT-01-01623 MODULAR PEBBLE-BED REACTOR PROJECT  

E-Print Network (OSTI)

of Energy Assistant Secretary for Environmental Management Under DOE Idaho Operations Office Contract DE Product Chemistry Module 17 2.2 Studies at MIT 20 2.2.1 In-Core Environment: Simulation of Core Fueling 21 3.1.2.4 Enhancements to the Geometric Modeling Capability 31 3.1.2.5 Ex-Core Radionuclide Decay 32 3

222

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...computers, monitoring equipment, instrumentation equipment 8) HVAC and fire fighting equipmentVentilation and air conditioning...buildings that are not in controlled areas Both of the above include filters, heaters, coolers, fans, blowers, humidifiers, ducts...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

223

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...our questions. The specifications we developed for the...SMR [160 megawatts-thermal (MW th ), 45 MW e...from NuScale. Specifications for the...valves, piping, insulation, instrumentation...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

224

Fredericton, New Brunswick, 5 June 2010 CMS Summer Meeting slide 1 Modular Invariant Theory of the Cyclic Group  

E-Print Network (OSTI)

Fredericton, New Brunswick, 5 June 2010 CMS Summer Meeting ­ slide 1 Modular Invariant Theory Some Consequences Fredericton, New Brunswick, 5 June 2010 CMS Summer Meeting ­ slide 2 Modular 2010 CMS Summer Meeting ­ slide 3 #12;The Modular Group of Prime Order Modular Representation Theory

Wehlau, David

225

Modular cathode assemblies and methods of using the same for electrochemical reduction  

DOE Patents (OSTI)

Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.

Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L

2014-12-02T23:59:59.000Z

226

Attrition reactor system  

DOE Patents (OSTI)

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

Scott, C.D.; Davison, B.H.

1993-09-28T23:59:59.000Z

227

Elementary Reactor Physics  

Science Journals Connector (OSTI)

... THERE are few subjects which have developed at the rate at which reactor physics and ... physics and reactor theory have done. This, of course, is largely due to the circumstances in ...

J. F. HILL

1962-02-10T23:59:59.000Z

228

Colliding Beam Fusion Reactors  

Science Journals Connector (OSTI)

The recirculating power for virtually all types of fusion reactors has previously been calculated [1] with the FokkerPlanck equation. The reactors involve non-Maxwellian plasmas. The calculations are ... the rec...

Norman Rostoker; Artan Qerushi; Michl Binderbauer

2003-06-01T23:59:59.000Z

229

A Basic LEGO Reactor Design for the Provision of Lunar Surface Power  

SciTech Connect

A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces.

John Darrell Bess

2008-06-01T23:59:59.000Z

230

Burnup concept for a long-life fast reactor core using MCNPX.  

SciTech Connect

This report describes a reactor design with a burnup concept for a long-life fast reactor core that was evaluated using Monte Carlo N-Particle eXtended (MCNPX). The current trend in advanced reactor design is the concept of a small modular reactor (SMR). However, very few of the SMR designs attempt to substantially increase the lifetime of a reactor core, especially without zone loading, fuel reshuffling, or other artificial mechanisms in the core that %E2%80%9Cflatten%E2%80%9D the power profile, including non-uniform cooling, non-uniform moderation, or strategic poison placement. Historically, the limitations of computing capabilities have prevented acceptable margins in the temporal component of the spatial excess reactivity in a reactor design, due primarily to the error in burnup calculations. This research was performed as an initial scoping analysis into the concept of a long-life fast reactor. It can be shown that a long-life fast reactor concept can be modeled using MCNPX to predict burnup and neutronics behavior. The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional Light Water Reactors (LWRs) or other SMR designs. For the purpose of this study, a single core design was investigated: a relatively small reactor core, yielding a medium amount of power (~200 to 400 MWth). The results of this scoping analysis were successful in providing a preliminary reactor design involving metal U-235/U-238 fuel with HT-9 fuel cladding and sodium coolant at a 20% volume fraction.

Holschuh, Thomas Vernon,; Lewis, Tom Goslee,; Parma, Edward J.,

2013-02-01T23:59:59.000Z

231

Prospects for spheromak fusion reactors  

Science Journals Connector (OSTI)

The reactor study of Hagenson and Krakowski demonstrated the attractiveness of the spheromak as a compact fusion reactor, based on...

T. K. Fowler; D. D. Hua

1995-06-01T23:59:59.000Z

232

Advanced Test Reactor Tour  

SciTech Connect

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2011-01-01T23:59:59.000Z

233

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

1995-01-01T23:59:59.000Z

234

Advanced Test Reactor Tour  

ScienceCinema (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2013-05-28T23:59:59.000Z

235

NREL: Wind Research - New Modularization Framework Transforms FAST Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

New Modularization Framework Transforms FAST Wind Turbine Modeling Tool New Modularization Framework Transforms FAST Wind Turbine Modeling Tool January 3, 2014 The old and new versions of the FAST wind turbine modeling tool are represented in this illustration by boxes. The earlier version of FAST is represented by three boxes aligned in a column on the left side of the illustration. They contain the words AeroDyn, FAST, and Hydrodyn and represent the three modules that worked together to model aerodynamics, hydrodynamics and servo-elastics. Double ended arrows between the boxes indicate interaction between these modules. A large red arrow pointed from the three boxes to a large rectangle in the middle shows how this earlier software evolved into the new FAST Framework. The large rectangular box in the middle contains the words FAST Driver. Seven smaller boxes to the right of the FAST driver represent the new modules that feed into the driver.

236

Lessons Learned During the Manufacture of the NCSX Modular Coils  

SciTech Connect

The National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to their complex shapes, requirements for high dimensional accuracy and high current density requirements due to space constraints. Being the first of their kind, these coils required the implementation of many new manufacturing and measuring techniques and procedures. This was the first time that these manufacturing techniques and methods were applied in the production of coils at the laboratory. This resulted in a steep learning curve for the first several coils. Through the effective use of procedures, tooling modifications, involvement and ownership by the manufacturing workforce, and an emphasis on safety, the assembly team was able to reduce the manufacturing times and improve upon the manufacturing methods. This paper will discuss the learning curve and steps that were taken to improve the manufacturing efficiency and reduce the manufacturing times for the modular coils without forfeiting quality.

James H. Chrzanowski,Thomas G. Meighan, Steven Raftopoulos and Lawrence Dudek and Paul J. Fogarty

2009-09-15T23:59:59.000Z

237

The Argonaut Reactor - Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne Reactors > Training Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

238

Reactor vessel support system  

DOE Patents (OSTI)

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

1982-01-01T23:59:59.000Z

239

The Benefit of Lean Techniques Interfaced with Modular Construction  

E-Print Network (OSTI)

. was to implement the Lean principles in their manufacturing process. Upon implementation of Lean in the process, there was again another noticeable increase in the quality of the product being produced, a typical result form that implementation. Additionally... the same course. Douthit 22 #2; Chapter 5: Suggestions for Additional Work Further investigation of how Lean manufacturing, Lean construction, and modular construction interface should be pursued for the sake of the construction industry in the United...

Douthit, Colin

2013-12-20T23:59:59.000Z

240

Overland Tidal Power Generation Using Modular Tidal Prism  

SciTech Connect

Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

242

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

Gluntz, D.M.; Taft, W.E.

1994-12-20T23:59:59.000Z

243

E-Print Network 3.0 - assessing modular concepts Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

the modular FORTRAN... . This program simulates the engine cycle, determines basic aerodynamic parameters and ... Source: Qubec, Universit du - cole de technologie...

244

Effects of Modularity and Connectivity on OADM Deployment in Ring Networks  

Science Journals Connector (OSTI)

For a class of Optical Add/Drop Multiplexers, we empirically study the effects of port modularity and connectivity on device deployment in ring networks. Designs with greater...

Nuzman, Carl; Kumaran, Krishnan; Nithi, Nachi; Saniee, Iraj; Levy, David; Mitev, Peter

245

A modular data analysis pipeline for the discovery of novel RNA motifs.  

E-Print Network (OSTI)

??This dissertation presents a modular software pipeline that searches collections of RNA sequences for novel RNA motifs. In this case the motifs incorporate elements of (more)

Schonfeld, Justin

2006-01-01T23:59:59.000Z

246

Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers  

E-Print Network (OSTI)

MSE): ratio of total cooling power to cooling provided, inGenerally, total modular cooling power demand was somewhathigher server loads. The cooling power demand decreased when

Adams, Barbara J

2009-01-01T23:59:59.000Z

247

Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers  

E-Print Network (OSTI)

MSE): ratio of total cooling power to cooling transported,Generally, total modular cooling power demand stabilized atrack) in this study. The cooling power demand decreased when

Xu, TengFang

2009-01-01T23:59:59.000Z

248

Generation -IV Reactor Concepts  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation-IV Reactor Concepts Generation-IV Reactor Concepts Thomas H. Fanning Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439, USA The Generation-IV International Forum (GIF) is a multi-national research and development (R&D) collaboration. The GIF pursues the development of advanced, next generation reactor technology with goals to improve: a) sustainability (effective fuel utilization and minimization of waste) b) economics (competitiveness with respect to other energy sources) c) safety and reliability (e.g., no need for offsite emergency response), and d) proliferation resistance and physical protection The GIF Technology Roadmap exercise selected six generic systems for further study: the Gas- cooled Fast Reactor (GFR), the Lead-cooled Fast Reactor (LFR), the Molten Salt Reactor (MSR),

249

Power Reactor Progress  

Science Journals Connector (OSTI)

Argonne kicks off EBWR; Allis-Chalmers plans power reactor using both nuclear and conventional fuels ... NUCLEAR POWER took two giant steps last week. ... Just as the first nuclear power system in the U. S. designed and built solely for the generation of electric power went into full operation at Argonne, Allis-Chalmers came up with a new twist in power reactorsa controlled recirculation boiling reactor (CRBR) using both nuclear and conventional fuels (C&EN, Feb. 18, page 7). ...

1957-02-25T23:59:59.000Z

250

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

Diebold, J.P.; Scahill, J.W.

1995-05-09T23:59:59.000Z

251

AEC Pushes Fusion Reactors  

Science Journals Connector (OSTI)

AEC Pushes Fusion Reactors ... Project Sherwood, as the study program is called, began in 1951-52 soon after the first successful thermonuclear explosion in the Pacific. ...

1955-10-10T23:59:59.000Z

252

Tokamak reactor first wall  

DOE Patents (OSTI)

This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

1984-11-20T23:59:59.000Z

253

Advanced Nuclear Research Reactor  

SciTech Connect

This report describes technical modifications implemented by INVAP to improve the safety of the Research Reactors the company designs and builds.

Lolich, J.V.

2004-10-06T23:59:59.000Z

254

Improving Indoor Environmental Quality and Energy Performance of Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Environmental Quality and Energy Performance of Modular Indoor Environmental Quality and Energy Performance of Modular Classroom HVAC Systems Title Improving Indoor Environmental Quality and Energy Performance of Modular Classroom HVAC Systems Publication Type Conference Proceedings Year of Publication 2005 Authors Apte, Michael G., Michael Spears, Chi-Ming Lai, and Derek G. Shendell Conference Name Proceedings of Sustainable Buildings 2005 Conference Pagination 1432-1437 Conference Location Tokyo, Japan, September 27-29, 2005 Abstract The factory-built relocatable classroom (RC) is a dominant force in the school facility construction industry in the United States (U.S.) and elsewhere. It is estimated that there are approximately 650,000 RCs currently occupied in the U.S., housing about 16 million students. RCs receive public attention due to complaints about poor indoor environmental quality (IEQ). Both measured data and anecdotal evidence in California have suggested excessive acoustical noise from heating, ventilation, and air conditioning (HVAC) equipment as a central factor leading to degraded IEQ. In the U.S., RCs are typically equipped with unitary exterior wall-mount HVAC systems, and interior acoustical noise due to structural and airborne transmission can reach levels of about 58dB(A) with compressor cycling, under unoccupied conditions. Due to these noise levels teachers often simply choose to turn off the HVAC, leading to inadequate ventilation, as well as poor thermal conditioning, and thus to poor indoor air quality. Elevated levels of carbon dioxide and volatile organic compounds including formaldehyde are common. We discuss the acoustic component of our efforts to develop and test energy efficient HVAC systems that address the ventilation, controls, and acoustic requirements necessary to ensure high quality indoor environments in RCs

255

Single channel flow blockage accident phenomena identification and ranking table (PIRT) for the advanced Candu reactor  

SciTech Connect

The Advanced Candu Reactor (ACRTM) is an evolutionary advancement of the current Candu 6{sup R} reactor, aimed at producing electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The ACR retains the modular concept of horizontal fuel channels surrounded by a heavy water moderator, as with all Candu reactors. However, ACR uses slightly enriched uranium (SEU) fuel, compared to the natural uranium used in Candu 6. This achieves the twin goals of improved economics (e.g., via reductions in the heavy water requirements and the use of a light water coolant), as well as improved safety. This paper documents the results of Phenomena Identification and Ranking Table (PIRT) results for a very limited frequency, beyond design basis event of the ACR design. This PIRT is developed in a highly structured process of expert elicitation that is well supported by experimental data and analytical results. The single-channel flow blockage event in an ACR reactor assumes a severe flow blockage of one of the reactor fuel channels, which leads to a reduction of the flow in the affected channel, leading to fuel cladding and fuel temperature increase. The paper outlines the design characteristics of the ACR reactor that impact the PIRT process and computer code applicability. It also describes the flow blockage phenomena, lists all components and systems that have an important role during the event, discusses the PIRT process and results, and presents the finalized PIRT tables. (authors)

Popov, N.K.; Abdul-Razzak, A.; Snell, V.G.; Langman, V. [Atomic Energy of Canada Ltd., 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada); Sills, H. [Consultant, Deep River, Ontario (Canada)

2004-07-01T23:59:59.000Z

256

Modular airborne remote sampling and sensing system (MARSSS)  

SciTech Connect

Sandia is developing a modular airborne instrumentation system for the Environmental Protection Agency. This system will allow flexibility in the choice of instruments by standardizing mountings, power supplies and sampling modes. The objective is to make it possible to perform aerial surveys from chartered aircraft that have not been adapted in a more than superficial manner. It will also allow the experimenter to tailor his choice of instruments to the specific problem. Since the equipment will have a stand-alone capability, it can be applied to other problems such as long-term unattended use at remote locations or in toxic or otherwise hazardous environments.

Woods, R.O.

1982-04-01T23:59:59.000Z

257

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...  

Office of Scientific and Technical Information (OSTI)

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor Design and Feasibility Problem Re-direct Destination: Temp Data Fields Rosen, M. A.; Coburn, D. B.; Flynn, T....

258

Portfolio for fast reactor collaboration  

SciTech Connect

The development of the LMFBR type reactor in the United Kingdom is reviewed. Design characteristics of a commercial demonstration fast reactor are presented and compared with the Super Phenix reactor.

Rippon, S.

1981-12-01T23:59:59.000Z

259

TR-IIS-06-001 On the Satisfiability of Modular  

E-Print Network (OSTI)

TR-IIS-06-001 On the Satisfiability of Modular Arithmetic Formula Bow-Yaw Wang January 24, 2006 the Satisfiability of Modular Arithmetic Formula Bow-Yaw Wang Institute of Information Science Academia Sinica Taiwan used in the design of cryptosystems and pseudo random number generators. In the RSA public key system

Chen, Sheng-Wei

260

A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING, SIMULATION, AND ANALYSIS  

E-Print Network (OSTI)

A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING Students #12;2 A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING in Aeronautics and Astronautics #12;3 Abstract A space logistics modeling framework to support space exploration

de Weck, Olivier L.

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ris-M-2652 s Development ofA Two-level Modular  

E-Print Network (OSTI)

IS Risø-M-2652 · s Development ofA Two-level Modular Simulation Tool for Dysim Jan Eggert Kofoed-LEVEL MODULAR SIMULATION TOOL FOR DYSIM Jan Eggert Kofoed Abstract. In this report a simulation tool that assists the user when constructing continuous simulation models will be described. The simulation tool can

262

The rigid analytical regulator and K_2 of Drinfeld modular curves.  

E-Print Network (OSTI)

We evaluate a rigid analytical analogue of the Beilinson-Bloch-Deligne regulator on certain explicit elements in the K_2 of Drinfeld modular curves, constructed from analogues of modular units, and relate its value to special values of L-series using the Rankin-Selberg method.

Ambrus Pal

263

Modular RNA architecture revealed by computational analysis of existing pseudoknots and  

E-Print Network (OSTI)

Modular RNA architecture revealed by computational analysis of existing pseudoknots and ribosomal architecture is a hallmark of RNA structures, implying structural, and possibly functional, similar- ity among functional molecules (2­6). Modular architecture also implies similarity of substructural motifs among

Schlick, Tamar

264

Handbook of Reactor Physics  

Science Journals Connector (OSTI)

... THIS handbook is one volume in a series sponsored by the United States Atomic Energy Commission with ... data and reference information in the field of reactors. The volume is devoted to reactor physics and radiation shielding, the latter subject occupying approximately a quarter of the book.

PETER W. MUMMERY

1956-08-25T23:59:59.000Z

265

Fast reactor safety  

Science Journals Connector (OSTI)

... SIR, - In his article on fast reactor safety (26 July, page 270) Norman Dombey claims to introduce to non-specialists ... , page 270) Norman Dombey claims to introduce to non-specialists some features of fast reactors that are not available outside the technical literature. The non-specialist would do well ...

R.D. SMITH

1979-08-23T23:59:59.000Z

266

Instrumentation of Nuclear Reactors  

Science Journals Connector (OSTI)

... s Lecture Theatre on January 8, a symposium of papers on the instrumentation of nuclear reactors was organized, at which about five hundred members and visitors attended, including guests from ... the Institution, took the chair and introduced Sir John Cockcroft, whose lecture on "Nuclear Reactors and their Applications" provided a general background for the three specialized papers which followed. ...

1953-03-07T23:59:59.000Z

267

Nuclear Research Reactors  

Science Journals Connector (OSTI)

... their countries for the advent of nuclear power. A few countries had built large research reactors for the production of isotopes and to study the behaviour of nuclear fuel, but ... production of isotopes and to study the behaviour of nuclear fuel, but the small training reactor had not been developed. Since then, research ...

T. E. ALLIBONE

1963-07-20T23:59:59.000Z

268

Canadian university research reactors  

SciTech Connect

In Canada there are seven university research reactors: one medium-power (2-MW) swimming pool reactor at McMaster University and six low-power (20-kW) SLOWPOKE reactors at Dalhousie University, Ecole Polytechnique, the Royal Military College, the University of Toronto, the University of Saskatchewan, and the University of Alberta. This paper describes primarily the McMaster Nuclear Reactor (MNR), which operates on a wider scale than the SLOWPOKE reactors. The MNR has over a hundred user groups and is a very broad-based tool. The main applications are in the following areas: (1) neutron activation analysis (NAA); (2) isotope production; (3) neutron beam research; (4) nuclear engineering; (5) neutron radiography; and (6) nuclear physics.

Ernst, P.C.; Collins, M.F.

1989-11-01T23:59:59.000Z

269

Reactor & Nuclear Systems Publications | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science Home | Science & Discovery | Nuclear Science | Publications and Reports | Reactor and Nuclear Systems Publications SHARE Reactor and Nuclear Systems Publications...

270

NETL: Methane Hydrates - ANS Research Project - Modular Dynamics Tester  

NLE Websites -- All DOE Office Websites (Extended Search)

Well Well Modular Formation Dynamics Tester (MDT) Tool The scientific plan for the Mt. Elbert Prospect includes multiple tests using Schlumberger’s Modular Formation Dynamics Tester (MDT) tool. This device is deployed on wireline and will be used to sample formation fluids, and measure formation pressure and permeability. The tool’s design involves extension of a sampling probe pad against the borehole wall by backup pistons and the insertion of a smaller test probe a small distance into the formation. The probe is then opened to a sampling chamber within the tool, where fluids from the formation can flow, free of contamination by the borehole fluid. The formation pressure is measured using an extremely accurate gauge that can resolve small pressure differences. The pressure and the rate of fluid flow into the sample chamber can be used to calculate reservoir permeability. Multiple probes can also be used to determine both vertical and horizontal permeability data, which can be used to assess near-wellbore permeability anisotropy (i.e., the degree to which vertical and horizontal permeability within the same reservoir differ). All of these data are useful to engineers interested in predicting the productive capability of a reservoir. Various configurations of the MDT tool can be used to accomplish specific testing goals.

271

Modular Integrated Monitoring System (MIMS) field test installations  

SciTech Connect

The MIMS program is funded by the Department of Energy under the Office of Nonproliferation and National Security. The program objective is to develop cost effective, modular, multi-sensor monitoring systems. Both in-plant and ground based sensors are envisioned. It is also desirable to develop sensors/systems that can be fielded/deployed in a rapid fashion. A MIMS architecture was selected to allow modular integration of sensors and systems and is based on LonWorks technology, commercially developed by Echelon Corporation. The first MIMS fieldable hardware was demonstrated at Lawrence Livermore National Laboratory. The field test, known within the DOE as the Item Tracking and Transparency (IT&I) demonstration, involved the collaboration and cooperation of five DOE laboratories (Sandia (SNL), Lawrence Livermore (LLNL), Pacific Northwest (PNL), Los Alamos (LANL), and Oak Ridge (ORNL)). The IT&T demonstration involved the monitoring of special nuclear material as it was transported around the facility utilizing sensors from the participating labs. The scenario was programmed to ignore normal activity in the facility until entry into the room where the material was stored. A second demonstration, which involved three separate scenarios, was conducted at Idaho National Engineering Laboratory (INEL). The participants included representatives from SNL, LLNL, PNL, and INEL. DOE has selected INEL as the long term testbed for MIMS developed sensors, systems, and scenarios. This paper will describe the installation, intended purpose, and results of the field demonstrations at LLNL and INEL under the MIMS program.

Martinez, R.L.; Waymire, D.R. [Sandia National Labs., Albuquerque, NM (United States); Fuess, D.A. [Lawrence Livermore National Lab., CA (United States)] [and others

1995-07-01T23:59:59.000Z

272

646 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 5, OCTOBER 1997 Design of Assembly Systems for Modular Products  

E-Print Network (OSTI)

Systems for Modular Products David W. He and Andrew Kusiak, Member, IEEE Abstract--To respond systems. Given a family of modular products, designing low cost assembly systems is an important problem. In this paper, an approach for the design of assembly systems for modular products is proposed. The assembly

Kusiak, Andrew

273

Nuclear reactor control column  

DOE Patents (OSTI)

The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

Bachovchin, Dennis M. (Plum Borough, PA)

1982-01-01T23:59:59.000Z

274

Reactor Safety Research Programs  

SciTech Connect

This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Edler, S. K.

1981-07-01T23:59:59.000Z

275

Nuclear reactor reflector  

DOE Patents (OSTI)

A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

1994-01-01T23:59:59.000Z

276

Spherical torus fusion reactor  

DOE Patents (OSTI)

The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

Martin Peng, Y.K.M.

1985-10-03T23:59:59.000Z

277

Office of Nuclear Energy | Department of Energy  

Office of Environmental Management (EM)

Office of Nuclear Energy Small Modular Reactors Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation...

278

The neutronics studies of fusion fission hybrid power reactor  

SciTech Connect

In this paper, a series of neutronics analysis of hybrid power reactor is proposed. The ideas of loading different fuels in a modular-type fission blanket is analyzed, fitting different level of fusion developments, i.e., the current experimental power output, the level can be obtained in the coming future and the high-power fusion reactor like ITER. The energy multiplication of fission blankets and tritium breeding ratio are evaluated as the criterion of design. The analysis is implemented based on the D-type simplified model, aiming to find a feasible 1000MWe hybrid power reactor for 5 years' lifetime. Three patterns are analyzed: 1) for the low fusion power, the reprocessed fuel is chosen. The fuel with high plutonium content is loaded to achieve large energy multiplication. 2) For the middle fusion power, the spent fuel from PWRs can be used to realize about 30 times energy multiplication. 3) For the high fusion power, the natural uranium can be directly used and about 10 times energy multiplication can be achieved.

Zheng Youqi; Wu Hongchun; Zu Tiejun; Yang Chao; Cao Liangzhi [School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 (China)

2012-06-19T23:59:59.000Z

279

Improving Ventilation and Saving Energy: Laboratory Study in a Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Laboratory Study in a Modular Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Title Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Publication Type Report Year of Publication 2005 Authors Apte, Michael G., Ian S. Buchanan, David Faulkner, William J. Fisk, Chi-Ming Lai, Michael Spears, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory Abstract The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms

280

Insights from the WGRISK workshop on the PSA of advanced and new reactors  

SciTech Connect

Probabilistic Safety Assessment /Probabilistic Risk Assessment for new and advanced reactors is recognized as an essential complement of the deterministic approaches to achieve improved safety and performances of new nuclear power plants, comparing to the operating plants. However, the development of PSA to these reactors is encountered to concurrent challenges, mainly due to the limited available design information, as well as due to potentially new initiating events, accident sequences and phenomena. The use of PSA in the decision making process is also challenging since the resulting PSA may not sufficiently reflect the future as-built, as-operated plant information. In order to address these aspects, the OECD/NEA/WGRISK initiated two coordinated tasks on 'PSA for Advanced Reactors' and 'PSA in the frame of Design and Commissioning of New NPPs'. In this context, a joint workshop was organized by OECD, during which related subjects were presented and discussed, including PSA for generation IV reactors, PSA for evolutionary reactors, PSA for small modular reactors, severe accidents and Level 2 PSA, Level 3 PSA and consequences analysis, digital I and C modeling, passive systems reliability, safety-security interface, as well as the results of the surveys performed in the frame of theses WGRISK tasks. (authors)

Georgescu, G. [Inst. for Radioprotection and Nuclear Safety IRSN, BP17, 92262 Fontenay aux Roses (France); Ahn, K. I. [Korea Atomic Energy Research Inst. KAERI, 150-1 Deokjin-Dong, 1045 Daedeokdaero, Yuseong, Daejeon (Korea, Republic of); Amri, A. [OCED/NEA, Le Seine St.Germain, Bd des Iles, 92130 Issy-les-Moulineaux (France)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Enhanced modularity-based community detection by random walk network preprocessing  

Science Journals Connector (OSTI)

The representation of real systems with network models is becoming increasingly common and critical to both capture and simplify systems complexity, notably, via the partitioning of networks into communities. In this respect, the definition of modularity, a common and broadly used quality measure for networks partitioning, has induced a surge of efficient modularity-based community detection algorithms. However, recently, the optimization of modularity has been found to show a resolution limit, which reduces its effectiveness and range of applications. Therefore, one recent trend in this area of research has been related to the definition of novel quality functions, alternative to modularity. In this paper, however, instead of laying aside the important body of knowledge developed so far for modularity-based algorithms, we propose to use a strategy to preprocess networks before feeding them into modularity-based algorithms. This approach is based on the observation that dynamic processes triggered on vertices in the same community possess similar behavior patterns but dissimilar on vertices in different communities. Validations on real-world and synthetic networks demonstrate that network preprocessing can enhance the modularity-based community detection algorithms to find more natural clusters and effectively alleviates the problem of resolution limit.

Darong Lai; Hongtao Lu; Christine Nardini

2010-06-23T23:59:59.000Z

282

Reactor Thermal-Hydraulics  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

283

Reactor hot spot analysis  

SciTech Connect

The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

Vilim, R.B.

1985-08-01T23:59:59.000Z

284

Molten metal reactors  

DOE Patents (OSTI)

A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

2013-11-05T23:59:59.000Z

285

F Reactor Inspection  

ScienceCinema (OSTI)

Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

2014-11-24T23:59:59.000Z

286

F Reactor Inspection  

SciTech Connect

Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

2014-10-29T23:59:59.000Z

287

Retrieval and Repackaging of RH-TRU Waste - General Presentation Modular Hot Cell Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paul Murray Paul Murray Oak Ridge, TN July 29, 2009 Retrieval and Repackaging of RH-TRU Waste- GENERAL PRESENTATION MODULAR HOT CELL TECHNOLOGY AREVA FEDERAL SERVICES - OAK RIDGE, TN - GENERAL PRESENTATION OF MODULAR HOT CELL TECHNOLOGY - July 29, 2009 ADAPTING AREVA'S TECHNOLOGY AREVA Worldwide Nuclear Lifecycle Transmission & Distribution Renewable Energy AREVA US Nuclear Fuel Services Nuclear Engineering Services AREVA Federal Services, LLC. (AFS) Federal Services Major Projects * MOX-MFFF * Yucca Mountain Project * DUF6 * Plateau Remediation Contract * Washington River Closure Project * SRS Liquid Waste AREVA FEDERAL SERVICES - OAK RIDGE, TN - GENERAL PRESENTATION OF MODULAR HOT CELL TECHNOLOGY - July 29, 2009 ADAPTING AREVA'S TECHNOLOGY AFS Technology Provider

288

REACTOR GROUT THERMAL PROPERTIES  

SciTech Connect

Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

2011-01-28T23:59:59.000Z

289

Reactor Safety Planning for Prometheus Project, for Naval Reactors Information  

SciTech Connect

The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

P. Delmolino

2005-05-06T23:59:59.000Z

290

B Reactor | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operational Management » History » Manhattan Project » Signature Operational Management » History » Manhattan Project » Signature Facilities » B Reactor B Reactor B Reactor Completed in September 1944, the B Reactor was the world's first large-scale plutonium production reactor. As at Oak Ridge, the need for labor turned Hanford into an atomic boomtown, with the population reaching 50,000 by summer 1944. Similar to the X-10 Graphite Reactor at Oak Ridge in terms of loading and unloading fuel, the B Reactor was built on a much larger scale and used water rather than air as a coolant. Whereas the X-10 had an initial design output of 1,000 kilowatts, the B Reactor was designed to operate at 250,000 kilowatts. Consisting of a 28- by 36-foot, 1,200-ton graphite cylinder lying on its side, the reactor was penetrated through its

291

New Approach for Feature Selection of Thermomechanically Processed HSLA Steel using Pruned-Modular Neural Networks  

Science Journals Connector (OSTI)

A new approach has been used in modeling of strength and ductility of high strength low alloy (HSLA) steel, where a comparative study among fully-connected neural network, modular network and pruned-module arc...

Prasun Das; Avishek Ghosh

2012-10-01T23:59:59.000Z

292

Design principles of mammalian signaling networks : emergent properties at modular and global scales  

E-Print Network (OSTI)

This thesis utilizes modeling approaches rooted in statistical physics and physical chemistry to investigate several aspects of cellular signal transduction at both the modular and global levels. Design principles of ...

Locasale, Jason W

2008-01-01T23:59:59.000Z

293

Abstract--We present progress on a comprehensive, modular, interactive modeling environment centered on overall  

E-Print Network (OSTI)

in a cell membrane ion transport protein. In this paper, we present progress on a comprehensive, modular, epithelial transport, or even whole organ physiology, there is presently, no comprehensive, organism

Boyer, Edmond

294

Order and diversity within a modular system for housing : a computational approach  

E-Print Network (OSTI)

This thesis introduces elements of a methodology to achieve order and diversity in the systematic design of street facades within a modular system for housing. In its context both order and diversity refer to the spatial ...

Duarte, Jos Pinto

1993-01-01T23:59:59.000Z

295

Modular invariants and subfactors e-mail: yasuyuki@ms.u-tokyo.ac.jp  

E-Print Network (OSTI)

###### 1994 ###### chiral generator ## Longo-Rehren [13] # 1994 ###### Xu [26, 27] # 1995 ## ####### braided endomorphism (### B"ockenhauer-Evans [1, 2, 3] #### ff-induction ####### net of subfactors ###### subfactor #### 2 ff-induction # modular invariant Ocneanu # double

Kawahigashi, Yasuyuki

296

Prototype Fault Current Limiter Using Transformer and a Modular Device of YBCO Coated Conductor  

Science Journals Connector (OSTI)

A superconducting fault current limiter (SCFL) consisted of a transformer with ... secondary winding short-circuited by a modular superconducting limiter device with 16 elements connected in series ... a 0.125? ...

C. A. Baldan; J. S. Lamas; A. A. Bernardes

2013-04-01T23:59:59.000Z

297

Design and analysis of a concrete modular housing system constructed with 3D panels  

E-Print Network (OSTI)

An innovative modular house system design utilizing an alternative concrete residential building system called 3D panels is presented along with an overview of 3D panels as well as relevant methods and markets. The proposed ...

Sarcia, Sam Rhea, 1982-

2004-01-01T23:59:59.000Z

298

Power management as a system-level inhibitor of modularity in the mobile computer industry  

E-Print Network (OSTI)

Since the mid-90s, the computer industry has been very modular with respect to both product architecture and industry structure. The growing market size of mobile computers means that the challenges facing this segment are ...

Weinstein, Samuel K. (Samuel Keith), 1974-

2004-01-01T23:59:59.000Z

299

Free and bound generics: two techniques for abstract data types in modular C  

Science Journals Connector (OSTI)

A description of two fundamentally distinct techniques for the implementation of abstract data types within Modular C, a preprocessor extension of C. Issues of reusability, environmental design, and efficiency are discussed as criteria for the selection ...

Stowe Boyd

1984-03-01T23:59:59.000Z

300

Passive solar strategies as a logic for improved architectural design: Two prototypes for modular housing  

SciTech Connect

This paper presents a project in which two passive solar housing prototypes were developed for mass production as modular housing. The prototypes have been built and are currently being marketed and thermally monitored. The project received support from the U.S. DOE under its Passive Solar Manufactured Buildings Program. The goal of this project was to develop a prototype which incorporated passive solar technologies into modular housing. Because modular housing is an industrialized product, this incorporation involved relating to a construction process as well as deriving the design of a new product. This paper addresses the issues of modular housing production that impact energy efficiency, passive solar design, and architectural quality. The product's design evolution is described, with emphasis upon how solutions for the prototype(s) were derived in response to factory construction processes, cost, existing and potential markets and the extended goal to improve both energy efficiency and architectural design while introducing passive solar strategies.

Reeder, B.C.

1983-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Introducing MARF: a Modular Audio Recognition Framework and its Applications for Scientific and Software Engineering Research  

Science Journals Connector (OSTI)

In this paper we introduce a Modular Audio Recognition Framework (MARF), as an open ... recognition algorithms and beyond in areas such as audio and text processing (NLP) and may ... learning and extension as it ...

Serguei A. Mokhov

2008-01-01T23:59:59.000Z

302

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from

303

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations, which govern the operation of commercial nuclear power plants, require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including

304

Reactor for exothermic reactions  

DOE Patents (OSTI)

A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

1993-03-02T23:59:59.000Z

305

Thermionic Reactor Design Studies  

SciTech Connect

Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

Schock, Alfred

1994-08-01T23:59:59.000Z

306

Diagnostics for hybrid reactors  

SciTech Connect

The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

Orsitto, Francesco Paolo [ENEA Unita' Tecnica Fusione , Associazione ENEA-EURATOM sulla Fusione C R Frascati v E Fermi 45 00044 Frascati (Italy)

2012-06-19T23:59:59.000Z

307

Structural materials for fusion reactors  

Science Journals Connector (OSTI)

Fusion Reactors will require specially engineered structural materials, which ... on safety considerations. The fundamental differences between fusion and other nuclear reactors arise due to the 14MeV neutronics ...

P. M. Raole; S. P. Deshpande

2009-04-01T23:59:59.000Z

308

Modeling of fission product release from HTR (high temperature reactor) fuel for risk analyses  

SciTech Connect

The US and FRG have developed methodologies to determine the performance of and fission product release from TRISO-coated fuel particles under postulated accident conditions. The paper presents a qualitative and quantitative comparison of US and FRG models. The models are those used by General Atomics (GA) and by the German Nuclear Research Center at Juelich (KFA/ISF). A benchmark calculation was performed for fuel temperatures predicted for the US Department of Energy sponsored Modular High Temperature Gas Cooled Reactor (MHTGR). Good agreement in the benchmark calculations supports the on-going efforts to verify and validate the independently developed codes of GA and KFA/ISF. This work was performed under the US/FRG Umbrella Agreement for Cooperation on Gas Cooled Reactor Development. 6 refs., 3 figs., 3 tabs.

Bolin, J.; Verfondern, K.; Dunn, T.; Kania, M.

1989-07-01T23:59:59.000Z

309

Coal-fueled diesels for modular power generation  

SciTech Connect

Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

Wilson, R.P. [Little (Arthur D.), Inc., Cambridge, MA (United States); Rao, A.K. [Cooper-Bessemer Reciprocating, Grove City, PA (United States); Smith, W.C. [Department of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center

1993-11-01T23:59:59.000Z

310

Two low-cost, modular sub-? test cryostats  

SciTech Connect

Two general-purpose liquid helium (LHe) test cryostats have been developed in support of a major upgrade to the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The cryostats are capable of sustained operation below 1.8 K and currently support tests of prototype superconducting rf (srf) cavities for the APS Upgrades Short Pulse X-ray (SPX) initiative. To save cost, two existing test vessels were reconditioned: one bucket dewar supporting bare cavity tests and one shielded vacuum vessel with an integral LHe reservoir for jacketed/dressed cavity tests. A new feedbox containing a heat exchanger and associated valves was also designed and fabricated to support either cryostat. The resulting modular design permits tests on a wide variety of srf cavities in various states of completion, minimizing cost and maximizing use of the hardware. Together with a dedicated vacuum pump, control system, and helium supply via storage dewar or cryoplant, these cryostats are vital to the srf cavity development effort within the APS Upgrade.

Fuerst, J. D.; Kaluzny, J. A. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

2014-01-29T23:59:59.000Z

311

Geometric Modularity in the Thermal Modeling of Solar Steam Turbines  

Science Journals Connector (OSTI)

Abstract To optimize the start-up schedules of steam turbines operating in concentrating solar power plants, accurate predictions of the temperatures within the turbine are required. In previous work by the authors, thermal models of steam turbines have been developed and validated for parabolic trough solar power plant applications. Building on these results, there is an interest to increase the adaptability of the models with respect to different turbine geometries due to the growing trend of having larger steam turbines in parabolic trough and solar tower power plants. In this work, a modular geometric approach has been developed and compared against both the previous modeling approach and 96h of measured data from an operational parabolic trough power plant. Results show a large degree of agreement with respect to the measured data in spite of the different detail levels. The new model allows for simple and fast prediction of the thermal behavior of different steam turbine sizes and geometries, which is expected to be of significant importance for future concentrating solar power plants.

M. Topel; J. Spelling; M. Jcker; B. Laumert

2014-01-01T23:59:59.000Z

312

Reactor Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benefits Crosscutting Technology Development Reactor Materials Advanced Sensors and Instrumentation Proliferation and Terrorism Risk Assessment Advanced Methods for Manufacturing...

313

Reactor operation safety information document  

SciTech Connect

The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

Not Available

1990-01-01T23:59:59.000Z

314

Fossil fuel furnace reactor  

DOE Patents (OSTI)

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

315

Transport reactor development status  

SciTech Connect

This project is part of METC`s Power Systems Development Facility (PSDF) located at Wilsonville, Alabama. The primary objective of the Advanced Gasifier module is to produce vitiated gases for intermediate-term testing of Particulate Control Devices (PCDs). The Transport reactor potentially allows particle size distribution, solids loading, and particulate characteristics in the off-gas stream to be varied in a number of ways. Particulates in the hot gases from the Transport reactor will be removed in the PCDs. Two PCDs will be initially installed in the module; one a ceramic candle filter, the other a granular bed filter. After testing of the initial PCDs they will be removed and replaced with PCDs supplied by other vendors. A secondary objective is to verify the performance of a Transport reactor for use in advanced Integrated Gasification Combined Cycle (IGCC), Integrated Gasification Fuel Cell (IG-FC), and Pressurized Combustion Combined Cycle (PCCC) power generation units. This paper discusses the development of the Transport reactor design from bench-scale testing through pilot-scale testing to design of the Process Development Unit (PDU-scale) facility at Wilsonville.

Rush, R.E.; Fankhanel, M.O.; Campbell, W.M.

1994-10-01T23:59:59.000Z

316

Thermal Reactor Safety  

SciTech Connect

Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

Not Available

1980-06-01T23:59:59.000Z

317

NETL - Chemical Looping Reactor  

ScienceCinema (OSTI)

NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

None

2014-06-26T23:59:59.000Z

318

Modular Extrapolation Approach for Crop LCA MEXALCA: Global Warming Potential of Different Crops and its Relationship to the Yield  

Science Journals Connector (OSTI)

MEXALCA (Modular EXtrapolation of Agricultural LCA) extrapolates crop inventory data and impacts from an original country inventory to all producing countries worldwide. This allows estimates of worldwide mean...

Thomas Nemecek; Karin Weiler

2011-01-01T23:59:59.000Z

319

Hybrid reliability model for nuclear reactor safety system  

Science Journals Connector (OSTI)

The dependability of critical safety systems needs to be quantitatively determined in order to verify their effectiveness, e.g. with regard to regulatory requirements. Since modular redundant safety systems are not required for normal operation, their reliability is strongly dependent on periodic inspection. Several modeling methods for the quantitative assessment of dependability are described in the literature, with a broad variation in complexity and modeling power. Static modeling techniques such as fault tree analysis (FTA) or reliability block diagrams (RBD) are not capable of capturing redundancy and repair or test activities. Dynamic state space based models such as continuous time Markov chains (CTMC) are more powerful but often result in very large, intractable models. Moreover, exponentially distributed state residence times are not a correct representation of actual residence times associated with repair activities or periodic inspection. In this study, a hybrid model combines a system level RBD with a CTMC to describe the dynamics. The effects of periodic testing are modeled by redistributing state probabilities at deterministic test times. Applying the method to the primary safety shutdown system of the BR2(Belgian Reactor 2)nuclear research reactor, resulted in a quantitative as well as a qualitative assessment of its reliability.

Steven Verlinden; Geert Deconinck; Bernard Coup

2012-01-01T23:59:59.000Z

320

Reliability analysis for Atucha II reactor protection system signals  

Science Journals Connector (OSTI)

Atucha II is a 745 MW Argentine Power Nuclear Reactor constructed by ENACE SA, Nuclear Argentine Company for Electrical Power Generation and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal folloos an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed.

Jose Luis Roca

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Reactor vessel support system. [LMFBR  

DOE Patents (OSTI)

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, M.P.; Holley, J.C.

1980-05-09T23:59:59.000Z

322

Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration  

SciTech Connect

Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus on meeting two of the eight needs outlined in the recently published 'Technology Roadmap on Instrumentation, Control, and Human-Machine Interface (ICHMI) to Support DOE Advanced Nuclear Energy Programs' which was created 'to provide a systematic path forward for the integration of new ICHMI technologies in both near-term and future nuclear power plants and the reinvigoration of the U.S. nuclear ICHMI community and capabilities.' The research consortium is led by The University of Tennessee (UT) and is focused on three interrelated topics: Topic 1 (simulator development and measurement sensitivity analysis) is led by Dr. Mike Doster with Dr. Paul Turinsky of North Carolina State University (NCSU). Topic 2 (multivariate autonomous control of modular reactors) is led by Dr. Belle Upadhyaya of the University of Tennessee (UT) and Dr. Robert Edwards of Penn State University (PSU). Topic 3 (monitoring, diagnostics, and prognostics system development) is led by Dr. Wes Hines of UT. Additionally, South Carolina State University (SCSU, Dr. Ken Lewis) participated in this research through summer interns, visiting faculty, and on-campus research projects identified throughout the grant period. Lastly, Westinghouse Science and Technology Center (Dr. Mario Carelli) was a no-cost collaborator and provided design information related to the IRIS demonstration platform and defining needs that may be common to other SMR designs. The results of this research are reported in a six-volume Final Report (including the Executive Summary, Volume 1). Volumes 2 through 6 of the report describe in detail the research and development under the topical areas. This volume serves to introduce the overall NERI-C project and to summarize the key results. Section 2 provides a summary of the significant contributions of this project. A list of all the publications under this project is also given in Section 2. Section 3 provides a brief summary of each of the five volumes (2-6) of the report. The contributions of SCSU are described in Section 4, including a summary of undergraduate research exper

J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

2011-05-31T23:59:59.000Z

323

Fusion reactor systems  

Science Journals Connector (OSTI)

In this review we consider deuterium-tritium (D-T) fusion reactors based on four different plasma-confinement and heating approaches: the tokamak, the theta-pinch, the magnetic-mirror, and the laser-pellet system. We begin with a discussion of the dynamics of reacting plasmas and basic considerations of reactor power balance. The essential plasma physical aspects of each system are summarized, and the main characteristics of the corresponding conceptual power plants are described. In tokamak reactors the plasma densities are about 1020 m-3, and the ? values (ratio of plasma pressure to confining magnetic pressure) are approximately 5%. Plasma burning times are of the order of 100-1000 sec. Large superconducting dc magnets furnish the toroidal magnetic field, and 2-m thick blankets and shields prevent heat deposition in the superconductor. Radially diffusing plasma is diverted away from the first wall by means of null singularities in the poloidal (or transverse) component of the confining magnetic field. The toroidal theta-pinch reactor has a much smaller minor diameter and a much larger major diameter, and operates on a 10-sec cycle with 0.1-sec burning pulses. It utilizes shock heating from high-voltage sources and adabatic-compression heating powered by low-voltage, pulsed cryogenic magnetic or inertial energy stores, outside the reactor core. The plasma has a density of about 1022 m-3 and ? values of nearly unity. In the power balance of the reactor, direct-conversion energy obtained by expansion of the burning high-? plasma against the containing magnetic field is an important factor. No divertor is necessary since neutral-gas flow cools and replaces the "spent" plasma between pulses. The open-ended mirror reactor uses both thermal conversion of neutron energy and direct conversion of end-loss plasma energy to dc electrical power. A fraction of this direct-convertor power is then fed back to the ioninjection system to sustain the reaction and maintain the plasma. The average ion energy is 600 keV, plasma diameter 6 m, and the plasma beta 85%. The power levels of the three magnetic-confinement devices are in the 500-2000 MWe range, with the exception of the mirror reactor, for which the output is approximately 200 MWe. In Laser-Pellet reactors, frozen D-T pellets are ignited in a cavity which absorbs the electromagnetic, charged particle, and neutron energy from the fusion reaction. The confinement is "inertial," since the fusion reaction occurs during the disassembly of the heated pellet. A pellet-cavity unit would produce about 200 MWt in pulses with a repetition rate of the order of 10 sec-1. Such units could be clustered to give power plants with outputs in the range of 1000 MWe.

F. L. Ribe

1975-01-01T23:59:59.000Z

324

Major Safety Aspects of Advanced Candu Reactor and Associated Research and Development  

SciTech Connect

The Advanced Candu{sup R} Reactor design is built on the proven technology of existing Candu plants and on AECL's knowledge base acquired over decades of nuclear power plant design, engineering, construction and research. Two prime objectives of ACR-700TM1 are cost reduction and enhanced safety. To achieve them some new features were introduced and others were improved from the previous Candu 6 and Candu 9 designs. The ACR-700 reactor design is based on the modular concept of horizontal fuel channels surrounded by a heavy water moderator, the same as with all Candu reactors. The major novelty in the ACR-700 is the use of slightly enriched fuel and light water as coolant circulating in the fuel channels. This results in a more compact reactor design and a reduction of heavy water inventory, both contributing to a significant decrease in cost compared to Candu reactors, which employ natural uranium as fuel and heavy water as coolant. The reactor core design adopted for ACR-700 also has some features that have a bearing on inherent safety, such as negative power and coolant void reactivity coefficient. Several improvements in engineered safety have been made as well, such as enhanced separation of the safety support systems. Since the ACR-700 design is an evolutionary development of the currently operating Candu plants, limited research is required to extend the validation database for the design and the supporting safety analysis. A program of safety related research and development has been initiated to address the areas where the ACR-700 design is significantly different from the Candu designs. This paper describes the major safety aspects of the ACR-700 with a particular focus on novel features and improvements over the existing Candu reactors. It also outlines the key areas where research and development efforts are undertaken to demonstrate the effectiveness and robustness of the design. (authors)

Bonechi, M.; Wren, D.J.; Hopwood, J.M. [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

2002-07-01T23:59:59.000Z

325

Nuclear reactor construction with bottom supported reactor vessel  

DOE Patents (OSTI)

An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

Sharbaugh, John E. (Bullskin Township, Fayette County, PA)

1987-01-01T23:59:59.000Z

326

Design modification for the modular helium reactor for higher temperature operation and reliability studies for nuclear hydrogen production processes  

E-Print Network (OSTI)

of these modifications together, the PVT is reduced to ~350 0C while keeping the outlet temperature at 950 0C and maintaining the PFT within acceptable limits. The vessel and fuel temperatures during low pressure conduction cooldown and high pressure conduction cooldown...

Reza, S.M. Mohsin

2009-05-15T23:59:59.000Z

327

Product modular design incorporating life cycle issues - Group Genetic Algorithm (GGA) based method  

Science Journals Connector (OSTI)

Traditional design methods lead to serious environmental problems because of the oversight of life cycle issues such as recycling. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the life cycle related ones. These attributes form what we call Modular Driving Forces (MDFs). The proposed method first determines what \\{MDFs\\} should be included and what their weights should be. Then the component to component relations with each specific MDF are generated and expressed in a matrix. After that, the comprehensive relations between components with different \\{MDFs\\} are established with the introduction of a comprehensive relation matrix for further modular optimization. Each element in the comprehensive matrix denotes the relation of every two components affected by all the MDFs. Finally, Group Genetic Algorithm (GGA) is employed to conduct modular optimization. The modular object adaptive function constructed for GGA optimization is to maximize the interactions between components within modules. The proposed method is explained by a case study of a refrigerator. Sensitivity analysis shows that the proposed method is robust.

Suiran Yu; Qingyan Yang; Jing Tao; Xia Tian; Fengfu Yin

2011-01-01T23:59:59.000Z

328

Spherical torus fusion reactor  

DOE Patents (OSTI)

A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

Peng, Yueng-Kay M. (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

329

Nuclear divisional reactor  

SciTech Connect

A nuclear divisional reactor including a reactor core having side and top walls, a heat exchanger substantially surrounding the core, the heat exchanger including a plurality of separate fluid holding and circulating chambers each in contact with a portion of the core, control rod means associated with the core and external of the heat exchanger including control rods and means for moving said control rods, each of the chambers having separate means for delivering and removing fluid therefrom, separate means associated with each of the delivering and removing means for producing useable energy external of the chambers, each of the means for producing useable energy having separate variable capacity energy outputs thereby making available a plurality of individual sources of useable energy of varying degrees.

Administratrix, A.P.; Rugh, J.L.

1982-11-02T23:59:59.000Z

330

Fusion reactor pumped laser  

DOE Patents (OSTI)

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

Jassby, D.L.

1987-09-04T23:59:59.000Z

331

Modular Systems Biology applied to TGFbeta and DNA Damage Response Signaling following Low Dose Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Modular Systems Biology applied to TGFbeta and DNA Damage Response Signaling following Modular Systems Biology applied to TGFbeta and DNA Damage Response Signaling following Low Dose Radiation Francis A. Cucinotta 1 , Yongfeng Li 2 , Minli Wang 2 , Claudio Carra 2 , Janice Pluth 3 , and Peter O'Neill 4 1 NASA Johnson Space Center, Houston, TX 2 U.S.R.A. Division of Life Sciences, Houston TX 3 Lawrence Berkeley National Laboratory, Berkeley CA 4 Oxford University, Oxford UK Abstract: Modular systems biology (MSB) describes the complexity of biological systems using well defined modules that represent distinct biological response pathways or sub-systems within pathways. We review mathematical concepts from control theory that can be used to identify and construct well defined modules for describing complex biological processes. The DNA damage response and TGFbeta/Smad signaling are two important response pathways following

332

Benefits Department 320 Panama Street, Bambi Modular Stanford, CA 94305-4160 650.736.2985 http://benefits.stanford.edu  

E-Print Network (OSTI)

Benefits Department 320 Panama Street, Bambi Modular Stanford, CA 94305-4160 650.736.2985 http. In the lobby of the Human Resources /Stanford Benefits office in the Bambi Modular (320 Panama Street). If you

Wechsler, Risa H.

333

Thermionic Reactor Design Studies  

SciTech Connect

During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic losses in the electrodes of full-core-height diodes. Moreover, placing the fuel on the outside of the diode makes possible reactors with much higher fuel volume fractions, which enable power-flattened fast reactors scalable to very low power levels without the need for life-limiting hydride moderators or the use of efficiency-limiting driver fuel. In addition, with the fuel on the outside its swelling does not increase the emitter diameter or reduce the interelectrode gap. This should permit long lifetimes even with closer spacings, which can significantly improve the system efficiences. This was confirmed by coupled neutronic, thermal, thermionic, and electrical system analyses - some of which are presented in this paper - and by subsequent experiments. A companion paper presented next describes the fabrication and testing of full-scale converter elements, both fueled and unfueled, and summarizes the test results obtained. There is a duplicate copy in the file.

Schock, Alfred

1994-06-01T23:59:59.000Z

334

IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 4, APRIL 2013 1493 Comparison of Complementary and Modular Linear Flux-Switching  

E-Print Network (OSTI)

mover length. Index Terms--Complementary and modular, flux-switching permanent magnet motor, linear and Modular Linear Flux-Switching Motors With Different Mover and Stator Pole Pitch Ruiwu Cao , Ming Cheng], flux reversal permanent magnet (FRPM) motors [12], and flux-switching permanent magnet (FSPM) motors

Mi, Chunting "Chris"

335

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 27, NO. 2, JUNE 2012 489 Modeling of a Complementary and Modular Linear  

E-Print Network (OSTI)

and Modular Linear Flux-Switching Permanent Magnet Motor for Urban Rail Transit Applications Ruiwu Cao on a prototype motor. Index Terms--Flux-switching permanent magnet (FSPM) motor, linear motor, modeling. I Wang, and Wenxiang Zhao, Member, IEEE Abstract--In this paper, a complementary and modular linear flux-switching

Mi, Chunting "Chris"

336

Mental Models of Ambient Systems: A Modular Research Felix Schmitt, Jrg Cassens, Martin Christof Kindsmller, and Michael Herczeg  

E-Print Network (OSTI)

Mental Models of Ambient Systems: A Modular Research Framework Felix Schmitt, Jörg Cassens, Martin which we intend to test empirically. A modular framework for implementing and assessing situation most widespread use in embedded platforms. Washing machines, refrigerators, television sets, alarm

Lübeck, Universität zu

337

Massive Hanford Test Reactor Removed - Plutonium Recycle Test...  

Office of Environmental Management (EM)

Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed...

338

Modular multimorphic kinematic arm structure and pitch and yaw joint for same  

DOE Patents (OSTI)

A multimorphic kinematic manipulator arm is provided with seven degrees of freedom and modular kinematic redundancy through identical pitch/yaw, shoulder, elbow and wrist joints and a wrist roll device at the wrist joint, which further provides to the manipulator arm an obstacle avoidance capability. The modular pitch/yaw joints are traction drive devices which provide backlash free operation with smooth torque transmission and enhanced rigidity. A dual input drive arrangement is provided for each joint resulting in a reduction of the load required to be assumed by each drive and providing selective pitch and yaw motions by control of the relative rotational directions of the input drive.

Martin, H. Lee (Knoxville, TN); Williams, Daniel M. (Oliver Springs, TN); Holt, W. Eugene (Knoxville, TN)

1989-01-01T23:59:59.000Z

339

Nuclear Reactor Severe Accident Experiments  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Reactor Severe Accident Experiments Nuclear Reactor Severe Accident Experiments Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Nuclear Reactor Severe Accident Experiments 1 2 3 4 5 6 7 We perform experiments simulating reactor core melt phenomena in which molten core debris ("corium") erodes the concrete floor of a containment building. This occurred during the Fukushima nuclear power plant accident though the extent of concrete damage is yet unknown. This video shows the top view of a churning molten pool of uranium oxide at 2000°C (3600°F) seen during an experiment at Argonne. Corium behaves much like lava.

340

Nuclear Reactor Materials and Fuels  

Science Journals Connector (OSTI)

Nuclear reactor materials and fuels can be classified into six categories: Nuclear fuel materials Nuclear clad materials Nuclear coolant materials Nuclear poison materials Nuclear moderator materials

Dr. James S. Tulenko

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermonuclear Reflect AB-Reactor  

E-Print Network (OSTI)

The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical project. The main point of preference for the offered reactor is its likely cheapness as a power source. Key words: Micro-thermonuclear reactor, Multi-reflex AB-thermonuclear reactor, Self-magnetic AB-thermonuclear reactor, aerospace thermonuclear engine.

Alexander Bolonkin

2008-03-26T23:59:59.000Z

342

Light Water Reactor Sustainability Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

hydraulics software RELAP-7 (which is under development in the Light Water Reactor Sustainability LWRS Program). A novel interaction between the probabilistic part (i.e., RAVEN)...

343

Enhancing VHTR passive safety and economy with thermal radiation based direct reactor auxiliary cooling system  

SciTech Connect

One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The RVACS can be characterized as a surface-based decay heat removal system. It is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to the core volume) and decay heat removal capability (proportional to the vessel surface area). Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environmental side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps or annular regions formed between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions among the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very effective in removing decay heat. By removing the limit on the decay heat removal capability due to the limited available surface area as in a RVACS, the reactor power density and therefore the reactor power can be significantly increased, without losing the passive heat removal feature. This paper introduces the concept of using DRACS to enhance VHTR passive safety and economics. Three design options with different cooling pipe locations are discussed. Analysis results from a lumped volume based model and CFD simulations are presented. (authors)

Zhao, H.; Zhang, H.; Zou, L. [Idaho National Laboratory (United States); Sun, X. [Ohio State Univ. (United States)

2012-07-01T23:59:59.000Z

344

Reactor coolant pump flywheel  

DOE Patents (OSTI)

A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

2013-11-26T23:59:59.000Z

345

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1995-04-25T23:59:59.000Z

346

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1996-02-27T23:59:59.000Z

347

Nuclear reactor control apparatus  

DOE Patents (OSTI)

Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additional magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.

Sridhar, Bettadapur N. (Cupertino, CA)

1983-11-01T23:59:59.000Z

348

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of High Value Surveillance Materials Assessment of High Value Surveillance Materials Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Assessment of High Value Surveillance Materials The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely

349

Dynamic Modeling and Control of Nuclear Reactors Coupled to Closed-Loop Brayton Cycle Systems using SIMULINK{sup TM}  

SciTech Connect

The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK{sup TM} (Simulink, 2004). SIMULINK{sup TM} is a development environment packaged with MatLab{sup TM} (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion components such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK{sup TM} models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK{sup TM} modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator)

Wright, Steven A.; Sanchez, Travis [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

2005-02-06T23:59:59.000Z

350

DOE Drops Plan to Restart Reactor  

Science Journals Connector (OSTI)

...longer in flux. Hanford research reactor...decision to scrap the Hanford reactor, which...research. At public meetings, however...decision to scrap the Hanford reactor, which...research. At public meetings, however, FFTF...

Robert F. Service

2000-12-01T23:59:59.000Z

351

Operational Analysis of Multiregional Nuclear Reactor Kinetics  

Science Journals Connector (OSTI)

......Operational Analysis of Multiregional Nuclear Reactor Kinetics NASSAR H. S. HAIDAR...analytically for a multiregional nuclear reactor whose subregions are of arbitrary...Operational Analysis of Multiregional Nuclear Reactor Kinetics NASSAU H. S. HAIDAR......

NASSAR H. S. HAIDAR

1983-05-01T23:59:59.000Z

352

A Comparative Study of Modular Axial Flux Podded Generators for Marine Current Turbines  

E-Print Network (OSTI)

for MCTs. For that purpose, a comparative study is proposed, to assess modular axial flux permanent magnet current turbine, axial flux permanent magnet generator, design, optimization. Nomenclature MCT = Marine Current Turbine; AFPM = Axial Flux Permanent Magnet. I. Introduction Marine energy has become an issue

Brest, Université de

353

Z-Tiles: Building Blocks for Modular, Pressure-Sensing Floorspaces  

E-Print Network (OSTI)

Z-Tiles: Building Blocks for Modular, Pressure-Sensing Floorspaces Bruce Richardson, Krispin Leydon, University of Limerick, Limerick, Ireland {bruce.richardson | krispin.leydon | mikael.fernstrom}@ul.ie Joseph acting parallel to the z axis. Copyright is held by the author/owner(s). CHI 2004, April 24-29, 2004

354

A Modular Approach to Redox-active Multimetallic Amphiphiles of Discotic Topology  

SciTech Connect

A new modular [Fe{sup II}(Fe{sup III}L{sup 2}){sub 3}](PF{sub 6}){sub 2} species with discoid (disk-like) topology exhibits redox and surfactant properties and points to a new approach for multimetallic Langmuir film precursors.

F Lesh; R Shanmugam; M Allard; M Lanznaster; M Hegg; M Rodgers; J Shearer; C Verani

2011-12-31T23:59:59.000Z

355

Modular Formalization of Reactive Modules in Ming-Hsien Tsai1,2  

E-Print Network (OSTI)

Modular Formalization of Reactive Modules in COQ Ming-Hsien Tsai1,2 and Bow-Yaw Wang1 1 Institute systems in proof assistants consists of several tedious tasks. Firstly, system behavior has, interleaving versus concur- rent semantics need be resolved in behavioral specification. Secondly, system

Wang, Bow-Yaw

356

Towards a modular and scalable architecture for high-level smart grid applications  

Science Journals Connector (OSTI)

Sensor and actor population within future smart distribution grids is much denser than within transmission grids. Thereby, future grid management systems have to cope with larger amounts of data than today's grid management systems. Also, future high-level ... Keywords: component-oriented software development, modular software design, smart grids, software architecture

Niels Streekmann, Simon Giesecke, Gerriet Reents, Matthias Rohr, Michael Stadler, Nils Vogel, Martin Frenzel, Jrg Friebe, Till Luhmann

2012-06-01T23:59:59.000Z

357

EEL 4712 Digital Design 1. Catalog Description (3 credits) Advanced modular logic design, design languages,  

E-Print Network (OSTI)

EEL 4712 Digital Design 1. Catalog Description ­ (3 credits) Advanced modular logic design, design systems, using the state of the art technologies and design environments and tools. 4. Contribution containing an Altera Cyclone II EP2C8T144C8 FPGA (will be provided to you, included in lab fee) 13

Fang, Yuguang "Michael"

358

ASHRAE Transactions: Symposia 1107 The interest in both modular simulation and alternative  

E-Print Network (OSTI)

model HVAC systems that are different from the "standard" systems that one tends to encounter in most simulationsallowprogramuserstotestoutconfigurationsthat are different from the standard systems and may sometimes lead to innovative design solutions, EnergyPlus. Its integration of a modular HVAC simulation within the framework of a comprehensive building

359

Ris-R-1202(EN) IAU 00-A-891 Modular supervisory  

E-Print Network (OSTI)

diesel generators. Nevertheless hybrid power systems may constitute the most economical solution in manyRisø-R-1202(EN) IAU 00-A-891 Modular supervisory controller for hybrid power systems Alexandre de;Abstract The power supply of remote places has been commonly provided by thermal power plants, usually

360

Passive-solar techniques for the mobile/modular housing industry  

SciTech Connect

Using a fairly typical mobile home design, it is shown that state-of-the-art mobile/modular housing and passive solar techniques can be used together. Computer simulations are used to analyze the concept. Size conditions at a mobile home park are considered. Glazing orientation, shading, and thermal storage are included in the analysis. (LEW)

Osborn, D.C.

1983-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

MODULAR MULTI-LEVEL CONVERTER BASED HVDC SYSTEM FOR GRID CONNECTION OF OFFSHORE WIND  

E-Print Network (OSTI)

MODULAR MULTI-LEVEL CONVERTER BASED HVDC SYSTEM FOR GRID CONNECTION OF OFFSHORE WIND POWER PLANT U off-shore wind power plants. The MMC consists of a large number of simple voltage sourced converter offshore wind power plants (WPP) because they offer higher energy yield due to a superior wind profile

Chaudhary, Sanjay

362

Road Map for a Modular Magnetic Fusion Program Dale M. Meade  

E-Print Network (OSTI)

1 Road Map for a Modular Magnetic Fusion Program Dale M. Meade Princeton Plasma Physics Laboratory Princeton University During the past several decades magnetic fusion has made outstanding progress in understanding the science of fusion plasmas, the achievement of actual fusion plasmas and the development of key

363

An algorithm for modularization of MAPK and calcium signaling pathways: Comparative analysis among different species  

Science Journals Connector (OSTI)

Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a whole. In the present article, we have proposed an algorithm for modularization of signal transduction pathways. Unlike ... Keywords: Biological networks, Community finding algorithm, Graphs, Modules, Signal transduction, Systems biology

Losiana Nayak; Rajat K. De

2007-12-01T23:59:59.000Z

364

Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility  

Energy.gov (U.S. Department of Energy (DOE))

eSolar, under the Baseload CSP FOA, is designing a 100-MW, 75% capacity factor, molten salt power tower plant, based around a molten salt receiver and heliostat field module with a nominal thermal rating of 50 MWth. They are taking a modular approach, which can be scaled through replication of the receiver/field module to meet output and capacity factor requirements.

365

Self-assembly, modularity and physical complexity S. E. Ahnert,1  

E-Print Network (OSTI)

Self-assembly, modularity and physical complexity S. E. Ahnert,1 I. Johnston,2 T. M. A. Fink,3, 4 structure through self-assembly. Our procedure can be adapted to any given geometry, and thus to any given type of physical system. We illustrate our approach using self-assembling polyominoes, and demonstrate

Halligan, Daniel

366

UCD 2006/7/non-Modular Page 1 of X WINTER EXAMINATIONS -2006  

E-Print Network (OSTI)

principles for computer network software are hierarchical modularity, encapsulation, and distributed scripts. Briefly explain these principles in the context of layered computer network architectures. (1-b) 200 nodes/second, where the average frame length is 2,000 bits. The transmission rate at each node is 100 Mbps (where 1

Murphy, John

367

UCD 2006/7/non-Modular Page 1 of X AUTUMN EXAMINATIONS 2006/2007  

E-Print Network (OSTI)

architectural principles for computer network software are hierarchical modularity and distributed scripts. Briefly explain these principles in the context of layered computer network architectures. (1-b) Briefly no collisions among the nodes' transmissions. (1-d) 100 nodes are connected to a 1,000 metre length of coaxial

Murphy, John

368

Focal Brain Lesions to Critical Locations Cause Widespread Disruption of the Modular Organization of the Brain  

E-Print Network (OSTI)

Focal Brain Lesions to Critical Locations Cause Widespread Disruption of the Modular Organization of the Brain Caterina Gratton*, Emi M. Nomura*, Fernando Pérez, and Mark DEsposito Abstract Although it is generally assumed that brain damage pre- dominantly affects only the function of the damaged region, here we

369

Active vibration suppression of a exible structure using smart material and a modular control patch  

E-Print Network (OSTI)

Active vibration suppression of a ¯exible structure using smart material and a modular control of vibration suppression of a ¯exible structure using smart materials and a miniaturized digital controller and was developed by TRW for the United States Air Force for future space vibration control. In this research

370

Experimental Study of Active Vibration Suppression Structure Using Modular Control Patch*  

E-Print Network (OSTI)

Experimental Study of Active Vibration Suppression Structure Using Modular Control Patch* Gangbing results of vibration suppressicln of a flexible structure using a miniaturized digital controller, called for the United States Air Force for future space vibration control. In this research, the MCP is used

371

Modular Topology Control and Energy Model for Wireless Ad Hoc Sensor Networks  

E-Print Network (OSTI)

Modular Topology Control and Energy Model for Wireless Ad Hoc Sensor Networks Niranjan in a harsh terrain typically are battery operated and, therefore, require energy efficient network protocols. In order to ease the analysis of the energy usage of proposed network protocols, this paper proposes

Jay Yang, Shanchieh

372

CONDENSATION OF INDUCED REPRESENTATIONS AND AN APPLICATION: THE 2-MODULAR DECOMPOSITION  

E-Print Network (OSTI)

CONDENSATION OF INDUCED REPRESENTATIONS AND AN APPLICATION: THE 2-MODULAR DECOMPOSITION NUMBERS OF Co 2 J  URGEN M  ULLER AND JENS ROSENBOOM Abstract. We present an algorithm to condense induced, condensation has become one of the most valuable tools in computational representation theory of #12;nite

Mueller, Jürgen

373

CONDENSATION OF INDUCED REPRESENTATIONS AND AN APPLICATION: THE 2-MODULAR DECOMPOSITION  

E-Print Network (OSTI)

CONDENSATION OF INDUCED REPRESENTATIONS AND AN APPLICATION: THE 2-MODULAR DECOMPOSITION an algorithm to condense induced modules for a finite group over a finite field. It is built. Introduction In recent years, condensation has become one of the most valuable tools in computational

Mueller, Jürgen

374

CONDENSATION OF INDUCED REPRESENTATIONS AND AN APPLICATION: THE 2-MODULAR DECOMPOSITION  

E-Print Network (OSTI)

CONDENSATION OF INDUCED REPRESENTATIONS AND AN APPLICATION: THE 2-MODULAR DECOMPOSITION NUMBERS OF Co2 J¨URGEN M¨ULLER AND JENS ROSENBOOM Abstract. We present an algorithm to condense induced modules, condensation has become one of the most valuable tools in computational representation theory of finite groups

Mueller, Jürgen

375

Solvent refined coal reactor quench system  

DOE Patents (OSTI)

There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

Thorogood, R.M.

1983-11-08T23:59:59.000Z

376

Temperature effects on chemical reactor  

Science Journals Connector (OSTI)

In this paper we had to study some characteristics of the chemical reactors from which we can understand the reactor operation in different circumstances; from these and the most important factor that has a great effect on the reactor operation is the temperature it is a mathematical processing of a chemical problem that was already studied but it may be developed by introducing new strategies of control; in our case we deal with the analysis of a liquid?gas reactor which can make the flotation of the benzene to produce the ethylene; this type of reactors can be used in vast domains of the chemical industry especially in refinery plants where we find the oil separation and its extractions whether they are gases or liquids which become necessary for industrial technology especially in our century.

M. Azzouzi

2008-01-01T23:59:59.000Z

377

THE MATERIALS OF FAST BREEDER REACTORS  

E-Print Network (OSTI)

metal fast breeder reactor (LMFBR) concern the behavior ofmetal fast breeder reactor (LMFBR). Despite the simplicityinduced by irradiation. LMFBR funding is the largest single

Olander, Donald R.

2013-01-01T23:59:59.000Z

378

Nuclear reactors in the United States  

Science Journals Connector (OSTI)

Nuclear reactors in the United States ... A chart listing the operating and planned nuclear reactors in the United States. ... Nuclear / Radiochemistry ...

Hubert N. Alyea

1956-01-01T23:59:59.000Z

379

Advanced Reactor Research and Development Funding Opportunity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE)...

380

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1...

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

MOOSE simulating nuclear reactor CRUD buildup  

SciTech Connect

This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

None

2014-02-06T23:59:59.000Z

382

Granular Dynamics in Pebble Bed Reactor Cores  

E-Print Network (OSTI)

pebble bed reactor, Nuclear Engineering and Design, vol.the AVR reactor, Nuclear Engineering and Design, vol. 121,Operating Experience, Nuclear Engineering and Design, vol.

Laufer, Michael Robert

2013-01-01T23:59:59.000Z

383

F Reactor Inspection | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Inspection F Reactor Inspection Addthis Description Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor last week before...

384

Physics of nuclear reactor safety  

Science Journals Connector (OSTI)

Provides a concise review of the physical aspects of safety of nuclear fission reactors. It covers the developments of roughly the last decade. The introductory chapter contains an analysis of the changes in safety philosophy that are characteristic of the last decade and that have given rise to an increased importance of physical aspects because of the emphasis on passive or natural safety. The second chapter focuses on the basics of reactor safety, identifying the main risk sources and the main principles for a safe design. The third chapter concerns a systematic treatment of the physical processes that are fundamental for the properties of fission chain reacting processes and the control of those processes. Because of the rather specialized nature of the field of reactor physics, each paragraph contains a very concise description of the theory of the phenomenon under consideration, before presenting a review of the developments. Chapter 4 contains a short review of the thermal aspects of reactor safety, restricted to those aspects that are characteristic of the nuclear reactor field, because thermal hydraulics of fission reactors is not principally different from that of other physical systems. In chapter 5 the consequences of the physics treated in the preceding chapters for the dynamics and safety of actual reactors are reviewed. The systematics of the treatment is mainly based on a division of reactors into three categories according to the type of coolant, which to a large extent determines the safety properties of the reactors. The last chapter contains a physical analysis of the Chernobyl accident that occurred in 1986. The reason for an attempt to give a review of this accident, as complete as possible within the space limits set by the editors, is twofold: the Chernobyl accident is the most severe accident in history and physical properties of the reactor played a decisive role, thereby serving as an illustration of the material of the preceding chapters.

H van Dam

1992-01-01T23:59:59.000Z

385

13 - Generation IV reactor designs, operation and fuel cycle  

Science Journals Connector (OSTI)

Abstract: This chapter looks at Generation IV nuclear reactors, such as the very high-temperature reactor (VHTR), the supercritical water reactor (SCWR), the molten salt reactor (MSR), the sodium-cooled fast reactor (SFR), the lead-cooled fast reactor (LFR) and the gas-cooled fast reactor (GFR). Reactor designs and fuel cycles are also described.

N. Cerullo; G. Lomonaco

2012-01-01T23:59:59.000Z

386

University Reactor Conversion Lessons Learned Workshop for Purdue University Reactor  

SciTech Connect

The Department of Energys Idaho National Laboratory, under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at Purdue University Reactor. With this work completed and in anticipation of other impending conversion projects, the INL convened and engaged the project participants in a structured discussion to capture the lessons learned. The lessons learned process has allowed us to capture gaps, opportunities, and good practices, drawing from the project teams experiences. These lessons will be used to raise the standard of excellence, effectiveness, and efficiency in all future conversion projects.

Eric C. Woolstenhulme; Dana M. Hewit

2008-09-01T23:59:59.000Z

387

Assessment of torsatrons as reactors  

SciTech Connect

Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors because stellarators have no dangerous disruptions and no need for continuous current drive or power recirculated to the plasma, both easing the first wall, blanket, and shield design; less severe constraints on the plasma parameters and profiles; and better access for maintenance. This study shows that a reactor based on the torsatron configuration (a stellarator variant) could also have up to double the mass utilization efficiency (MUE) and a significantly lower cost of electricity (COE) than a conventional tokamak reactor (ARIES-I) for a range of assumptions. Torsatron reactors can have much smaller coil systems than tokamak reactors because the coils are closer to the plasma and they have a smaller cross section (higher average current density because of the lower magnetic field). The reactor optimization approach and the costing and component models are those used in the current stage of the ARIES-I tokamak reactor study. Typical reactor parameters for a 1-GW(e) Compact Torsatron reactor example are major radius R[sub 0] = 6.6-8.8 m, on-axis magnetic field B[sup 0] = 4.8-7.5 T, B[sub max] (on coils) = 16 T, MUE 140-210 kW(e)/tonne, and COE (in constant 1990 dollars) = 67-79 mill/kW(e)h. The results are relatively sensitive to assumptions on the level of confinement improvement and the blanket thickness under the inboard half of the helical windings but relatively insensitive to other assumptions.

Lyon, J.F. (Oak Ridge National Lab., TN (United States)) [Oak Ridge National Lab., TN (United States); Painter, S.L. (Australian National Univ., Canberra, ACT (Australia)) [Australian National Univ., Canberra, ACT (Australia)

1992-12-01T23:59:59.000Z

388

Assessment of torsatrons as reactors  

SciTech Connect

Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors because stellarators have no dangerous disruptions and no need for continuous current drive or power recirculated to the plasma, both easing the first wall, blanket, and shield design; less severe constraints on the plasma parameters and profiles; and better access for maintenance. This study shows that a reactor based on the torsatron configuration (a stellarator variant) could also have up to double the mass utilization efficiency (MUE) and a significantly lower cost of electricity (COE) than a conventional tokamak reactor (ARIES-I) for a range of assumptions. Torsatron reactors can have much smaller coil systems than tokamak reactors because the coils are closer to the plasma and they have a smaller cross section (higher average current density because of the lower magnetic field). The reactor optimization approach and the costing and component models are those used in the current stage of the ARIES-I tokamak reactor study. Typical reactor parameters for a 1-GW(e) Compact Torsatron reactor example are major radius R{sub 0} = 6.6-8.8 m, on-axis magnetic field B{sup 0} = 4.8-7.5 T, B{sub max} (on coils) = 16 T, MUE 140-210 kW(e)/tonne, and COE (in constant 1990 dollars) = 67-79 mill/kW(e)h. The results are relatively sensitive to assumptions on the level of confinement improvement and the blanket thickness under the inboard half of the helical windings but relatively insensitive to other assumptions.

Lyon, J.F. [Oak Ridge National Lab., TN (United States); Painter, S.L. [Australian National Univ., Canberra, ACT (Australia)

1992-12-01T23:59:59.000Z

389

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initial Assessment of Thermal Annealing Needs and Challenges Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from 40y to 80y implies a doubling of the neutron exposure for the RPV. Thus,

390

Nuclear reactor downcomer flow deflector  

DOE Patents (OSTI)

A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

Gilmore, Charles B. (Greensburg, PA); Altman, David A. (Pittsburgh, PA); Singleton, Norman R. (Murrysville, PA)

2011-02-15T23:59:59.000Z

391

Work Domain Analysis of a Predecessor Sodium-cooled Reactor as Baseline for AdvSMR Operational Concepts  

SciTech Connect

This report presents the results of the Work Domain Analysis for the Experimental Breeder Reactor (EBR-II). This is part of the phase of the research designed to incorporate Cognitive Work Analysis in the development of a framework for the formalization of an Operational Concept (OpsCon) for Advanced Small Modular Reactors (AdvSMRs). For a new AdvSMR design, information obtained through Cognitive Work Analysis, combined with human performance criteria, can and should be used in during the operational phase of a plant to assess the crew performance aspects associated with identified AdvSMR operational concepts. The main objective of this phase was to develop an analytical and descriptive framework that will help systems and human factors engineers to understand the design and operational requirements of the emerging generation of small, advanced, multi-modular reactors. Using EBR-II as a predecessor to emerging sodium-cooled reactor designs required the application of a method suitable to the structured and systematic analysis of the plant to assist in identifying key features of the work associated with it and to clarify the operational and other constraints. The analysis included the identification and description of operating scenarios that were considered characteristic of this type of nuclear power plant. This is an invaluable aspect of Operational Concept development since it typically reveals aspects of future plant configurations that will have an impact on operations. These include, for example, the effect of core design, different coolants, reactor-to-power conversion unit ratios, modular plant layout, modular versus central control rooms, plant siting, and many more. Multi-modular plants in particular are expected to have a significant impact on overall OpsCon in general, and human performance in particular. To support unconventional modes of operation, the modern control room of a multi-module plant would typically require advanced HSIs that would provide sophisticated operational information visualization, coupled with adaptive automation schemes and operator support systems to reduce complexity. These all have to be mapped at some point to human performance requirements. The EBR-II results will be used as a baseline that will be extrapolated in the extended Cognitive Work Analysis phase to the analysis of a selected advanced sodium-cooled SMR design as a way to establish non-conventional operational concepts. The Work Domain Analysis results achieved during this phase have not only established an organizing and analytical framework for describing existing sociotechnical systems, but have also indicated that the method is particularly suited to the analysis of prospective and immature designs. The results of the EBR-II Work Domain Analysis have indicated that the methodology is scientifically sound and generalizable to any operating environment.

Ronald Farris; David Gertman; Jacques Hugo

2014-03-01T23:59:59.000Z

392

2012 Annual Report Research Reactor Infrastructure Program  

SciTech Connect

The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

Douglas Morrell

2012-11-01T23:59:59.000Z

393

Tritium diagnostics in a fusion reactor  

Science Journals Connector (OSTI)

Methods for controlling tritium in a fusion reactor are reviewed. The characteristic features of the...

A. I. Markin; N. I. Syromyatnikov; A. M. Belov

2010-05-01T23:59:59.000Z

394

Dependency models as a basis for analyzing software product platform modularity : a case study in strategic software design rationalization  

E-Print Network (OSTI)

It is broadly accepted among software managers and architects that maintaining the integrity of software designs is important for the long-term health and viability of software product platforms. The use of modular, ...

LaMantia, Matthew J. (Matthew John)

2006-01-01T23:59:59.000Z

395

Feasibility, benefits and challenges of modular construction in high rise development in the United States : a developer's perspective  

E-Print Network (OSTI)

Modular construction has long been utilized in the construction of residential and many other commercial product types as a means for potentially quicker construction delivery times. Over the past 5 years this construction ...

Velamati, Sri

2012-01-01T23:59:59.000Z

396

Fukushima Nuclear Crisis Recovery: A Modular Water Treatment System Deployed in Seven Weeks - 12489  

SciTech Connect

On March 11, 2011, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. While recovery systems admirably survived the powerful earthquake, the seawater from the tsunami knocked the emergency cooling systems out and did extensive damage to the plant and site. Subsequent hydrogen generation caused explosions which extended this damage to a new level and further flooded the buildings with highly contaminated water. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. Teams were assembled in Tokyo the first week of April to lay out potential plans for the immediate treatment of some 63 million gallons (a number which later exceeded 110 million gallons) of highly contaminated water to avoid overflow from the buildings as well as supply the desperately needed clean cooling water for the reactors. A system had to be deployed with a very brief cold shake down and hot startup before the rainy season started in early June. Joined by team members Toshiba (oil removal system), AREVA (chemical precipitation system) and Hitachi-GE (RO system), Kurion (cesium removal system following the oil separator) proposed, designed, fabricated, delivered and started up a one of a kind treatment skid and over 100 metric tons of specially engineered and modified Ion Specific Media (ISM) customized for this very challenging seawater/oil application, all in seven weeks. After a very short cold shake down, the system went into operation on June 17, 2011 on actual waste waters far exceeding 1 million Bq/mL in cesium and many other isotopes. One must remember that, in addition to attempting to do isotope removal in the competition of seawater (as high as 18,000 ppm sodium due to concentration), some 350,000 gallons of turbine oil was dispersed into the flooded buildings as well. The proposed system consisted of a 4 guard vessel skid for the oil and debris, 4 skids containing 16 cesium towers in a lead-lag layout with removable vessels (sent to an interim storage facility), and a 4 polishing vessel skid for iodine removal and trace cesium levels. At a flow rate of at least 220 gallons per minute, the system has routinely removed over 99% of the cesium, the main component of the activity, since going on line. To date, some 50% of the original activity has been removed and stabilized and cold shutdown of the plant was announced on December 10, 2011. In March and April alone, 10 cubic feet of Engineered Herschelite was shipped to Seabrook Nuclear Power Plant, NPP, to support the April 1, 2011 outage cleanup; 400 cubic feet was shipped to Oak Ridge National Laboratory (ORNL) for strontium (Sr-90) ground water remediation; and 6000 cubic feet (100 metric tons, MT, or 220,400 pounds) was readied for the Fukushima Nuclear Power Station with an additional 100 MT on standby for replacement vessels. This experience and accelerated media production in the U.S. bore direct application to what was to soon be used in Fukushima. How such a sophisticated and totally unique system and huge amount of media could be deployable in such a challenging and changing matrix, and in only seven weeks, is outlined in this paper as well as the system and operation itself. As demonstrated herein, all ten major steps leading up to the readiness and acceptance of a modular emergency technology recovery system were met and in a very short period of time, thus utilizing three decades of experience to produce and deliver such a system literally in seven weeks: - EPRI - U.S. Testing and Experience Leading to Introduction to EPRI - Japan and Subsequently TEPCO Emergency Meetings - Three Mile Island (TMI) Media and Vitrification Experience

Denton, Mark S.; Mertz, Joshua L. [Kurion, Inc., P.O. Box 5901, Oak Ridge, Tennessee 37831 (United States); Bostick, William D. [Materials and Chemistry Laboratory, Inc. (MCL) ETTP, Building K-1006, 2010 Highway 58, Suite 1000, Oak Ridge, Tennessee 37830 (United States)

2012-07-01T23:59:59.000Z

397

Combustion synthesis continuous flow reactor  

DOE Patents (OSTI)

The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

Maupin, Gary D. (Richland, WA); Chick, Lawrence A. (West Richland, WA); Kurosky, Randal P. (Maple Valley, WA)

1998-01-01T23:59:59.000Z

398

Interfacial effects in fast reactors  

E-Print Network (OSTI)

The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed ...

Saidi, Mohammad Said

1979-01-01T23:59:59.000Z

399

Unique features of space reactors  

SciTech Connect

Space reactors are designed to meet a unique set of requirements; they must be sufficiently compact to be launched in a rocket to their operational location, operate for many years without maintenance and servicing, operate in extreme environments, and reject heat by radiation to space. To meet these restrictions, operating temperatures are much greater than in terrestrial power plants, and the reactors tend to have a fast neutron spectrum. Currently, a new generation of space reactor power plants is being developed. The major effort is in the SP-100 program, where the power plant is being designed for seven years of full power, and no maintenance operation at a reactor outlet operating temperature of 1350 K. 8 refs., 3 figs., 1 tab.

Buden, D.

1990-01-01T23:59:59.000Z

400

Nuclear Reactors and Technology; (USA)  

SciTech Connect

Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

Cason, D.L.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Reactor physics project final report  

E-Print Network (OSTI)

This is the final report in an experimental and theoretical program to develop and apply single- and few-element methods for the determination of reactor lattice parameters. The period covered by the report is January 1, ...

Driscoll, Michael J.

1970-01-01T23:59:59.000Z

402

Alternate-fuel reactor studies  

SciTech Connect

A number of studies related to improvements and/or greater understanding of alternate-fueled reactors is presented. These studies cover the areas of non-Maxwellian distributions, materials and lifetime analysis, a /sup 3/He-breeding blanket, tritium-rich startup effects, high field magnet support, and reactor operation spanning the range from full D-T operation to operation with no tritium breeding.

Evans, K. Jr.; Ehst, D.A.; Gohar, Y.; Jung, J.; Mattas, R.F.; Turner, L.R.

1983-02-01T23:59:59.000Z

403

Solar solids reactor  

DOE Patents (OSTI)

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, Bernard D. (Chicago, IL)

1987-01-01T23:59:59.000Z

404

Solar solids reactor  

DOE Patents (OSTI)

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, B.D.

1986-02-24T23:59:59.000Z

405

Novel Catalytic Membrane Reactors  

SciTech Connect

There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

Stuart Nemser, PhD

2010-10-01T23:59:59.000Z

406

Evaluation of Torsatrons as reactors  

SciTech Connect

Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors. This scoping study, which uses an integrated cost-minimization code that incorporates costing and reactor component models self-consistently with a 1-D energy transport calculation, shows that a torsatron reactor could also be economically competitive with a tokamak reactor. The projected cost of electricity (COE) estimated using the Advanced Reactor Innovation and Evaluation Studies (ARIES) costing algorithms is 65.6 mill/kW(e)h in constant 1992 dollars for a reference 1-GW(e) Compact Torsatron reactor case. The COE is relatively insensitive (<10% variation) over a wide range of assumptions, including variations in the maximum field allowed on the coils, the coil elongation, the shape of the density profile, the beta limit, the confinement multiplier, and the presence of a large loss region for alpha particles. The largest variations in the COE occur for variations in the electrical power output demanded and the plasma-coil separation ratio.

Lyon, J.F. [Oak Ridge National Lab., TN (United States); Gulec, K. [Univ. of Tennessee, Knoxville, TN (United States); Miller, R.L. [Los Alamos National Lab., NM (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States)

1994-03-01T23:59:59.000Z

407

When Do Commercial Reactors Permanently Shut Down?  

Reports and Publications (EIA)

For those wishing to obtain current data, the following resources are available: U.S. reactors, go to the Energy Information Administration's nuclear reactor shutdown list. (Note: As of April 30, 2010, the last U.S. reactor to permanently shut down was Big Rock Point in 1997.) Foreign Reactors, go to the Power Reactor Information System (PRIS) on the International Atomic Energy Agency's website.

2011-01-01T23:59:59.000Z

408

ESS 2012 Peer Review - Modular Undersea Compressed Air Energy Storage (UCAES) System - James Kesseli, Brayton Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

solar.energy.gov/sunshot/csp.html solar.energy.gov/sunshot/csp.html ENERGY STORAGE SYSTEMS: Sept. 27, 2012 Modular Undersea Compressed Air Energy Storage (UCAES) System Bill Caruso www.BraytonEnergy.com Brayton Energy LLC Project Overview UCAES has the potential to offer modular, grid scale storage capability at competitive costs when coupled with high efficiency power conversion systems. The nature of the design minimizes vessel stress and aesthetic impact, while utilizing readily available material and construction techniques. Progress Future Work Further feasibility and cost studies must be conducted by experienced maritime construction contractors. The market for UCAES systems must be explored further by conducting broader case studies of bathymetry, terrain, infrastructure and natural and/or renewable energy resource potential.

409

Modular Approach for Continuous Cell-Level Balancing to Improve Performance of Large Battery Packs: Preprint  

SciTech Connect

Energy storage systems require battery cell balancing circuits to avoid divergence of cell state of charge (SOC). A modular approach based on distributed continuous cell-level control is presented that extends the balancing function to higher level pack performance objectives such as improving power capability and increasing pack lifetime. This is achieved by adding DC-DC converters in parallel with cells and using state estimation and control to autonomously bias individual cell SOC and SOC range, forcing healthier cells to be cycled deeper than weaker cells. The result is a pack with improved degradation characteristics and extended lifetime. The modular architecture and control concepts are developed and hardware results are demonstrated for a 91.2-Wh battery pack consisting of four series Li-ion battery cells and four dual active bridge (DAB) bypass DC-DC converters.

Muneed ur Rehman, M.; Evzelman, M.; Hathaway, K.; Zane, R.; Plett, G. L.; Smith, K.; Wood, E.; Maksimovic, D.

2014-10-01T23:59:59.000Z

410

Supporting development of modular products utilising simplified LCA and fuzzy logic  

Science Journals Connector (OSTI)

The application of life cycle assessment (LCA) is usually aimed at products where most parameters relating to architecture, processes and materials are defined and known. However, application of conventional LCA for products or services that are incomplete in their specification is quite difficult or even impossible, if too many significant parameters are unknown. In our previous work targeting the development of eco-design tools, an approach integrating LCA methodology with the concept of product modularity has been introduced. In this paper, further improvements of this novel approach, being based on fuzzy logic and its application, are presented. In this context, fuzzy logic is being used to increase user friendliness of the interface while avoiding any circumstances of compromising the precision of quantitative results computed. A set of fuzzy attributes, membership functions and an inference algorithm are used to evaluate the modification of design parameters of modular products regarding their influence on environmental impact indicators.

Marco Recchioni; Ferruccio Mandorli; Harald E. Otto

2009-01-01T23:59:59.000Z

411

Modular multimorphic kinematic arm structure and pitch and yaw joint for same  

DOE Patents (OSTI)

A multimorphic kinematic manipulator arm is provided with seven degrees of freedom and modular kinematic redundancy through identical pitch/yaw, shoulder, elbow and wrist joints and a wrist roll device at the wrist joint, which further provides to the manipulator arm an obstacle avoidance capability. The modular pitch/yaw joints are traction drive devices which provide backlash free operation with smooth torque transmission and enhanced rigidity. A dual input drive arrangement is provided for each joint resulting in a reduction of the load required to be assumed by each drive means and providing selective pitch and yaw motions by control of the relative rotational directions of the input drive means. 12 figs.

Martin, H.L.; Williams, D.M.; Holt, W.E.

1987-04-21T23:59:59.000Z

412

Axial Flux, Modular, Permanent-Magnet Generator with a Toroidal Winding for Wind Turbine Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

CP-500-24996 Ÿ UC Category: 1213 CP-500-24996 Ÿ UC Category: 1213 Axial Flux, Modular, Permanent- Magnet Generator with a Toroidal Winding for Wind Turbine Applications E. Muljadi C.P. Butterfield Yih-Huei Wan National Wind Technology Center National Renewable Energy Laboratory Presented at IEEE Industry Applications Conference St. Louis, MO November 5-8, 1998 National Renewable Energy Laboratory 1617 Cole Boulevard

413

Modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program  

SciTech Connect

This paper describes the modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program. This effort represents a complete 'white sheet of paper' rewrite of the code. In this paper, the motivation driving this project, the design objectives for the new version of the program, and the design choices and their consequences will be discussed. The design itself will also be described, including the important subsystems as well as the key classes within those subsystems.

Moskowitz, B.S.

2000-02-01T23:59:59.000Z

414

Static balance checking for first-class modular systems of equations  

Science Journals Connector (OSTI)

Characterising a problem in terms of a system of equations is common to many branches of science and engineering. Due to their size, such systems are often described in a modular fashion by composition of individual equation system fragments. Checking ... Keywords: equation-based, equation-variable balance, first-class components, linear constraints, non-causal modelling, refinement types, structural analysis, systems of equations

John Capper; Henrik Nilsson

2010-05-01T23:59:59.000Z

415

Modular symbols for reductive groups and p-adic Rankin-Selberg convolutions over number fields  

E-Print Network (OSTI)

We give a construction of a wide class of modular symbols attached to reductive groups. As an application we construct a p-adic distribution interpolating the special values of the twisted Rankin-Selberg L-function attached to cuspidal automorphic representations of GL(n) and GL(n-1) over number fields. If the representations are ordinary at p, our distribution is bounded and gives rise to a p-adic L-function.

Januszewski, Fabian

2009-01-01T23:59:59.000Z

416

Modular Gas-to-Liquid: Converting a Liability into Economic Value  

Science Journals Connector (OSTI)

Modular Gas-to-Liquid: Converting a Liability into Economic Value ... In the 1950s, several plants started again using the FT process, one in Brownsville, TX, with a capacity of 10800 bbl/day based on methane and one in Sasolburg, South Africa, based on coal-derived gas. ... Commercial-scale technologies do not apply to associated gas because the technologies benefit from economies of scale based on high feed rates and sustained gas flow rates. ...

Johannes G. Koortzen; Sabjinder Bains; Lary L. Kocher; Iain K. Baxter; Ross A. Morgan

2013-09-19T23:59:59.000Z

417

Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report  

SciTech Connect

Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

Lambarski, T.; Minyard, G. [Solar Electric Specialties Co., Willits, CA (United States)

1998-10-01T23:59:59.000Z

418

(Liquid metal reactor/fast breeder reactor research and development)  

SciTech Connect

The second meeting of the UJCC was held in Japan on June 6--8, 1990. The first day was devoted to presentations of the status of the US and Japanese Fast Breeder Reactor (FBR) programs and the status of specific areas of cooperative work. Briefly, the Japanese are following the FBR development program which has been in place since the 1970s. This program includes an FBR test reactor (JOYO), a pilot-scale reactor (MONJU), a demonstration-scale plant, and commercial-scale plants by about 2020. The US program has been redirected toward an actinide recycle mission using metal fuel and pyroprocessing of spent fuel to recovery both Pu and the higher actinides for return to the Liquid Metal Reactor (LMR). The second day was spent traveling from Tokyo to Tsuruga for a tour of the MONJU reactor. The tour was especially interesting. The third day was spent writing the minutes of the meeting and the return trip to Tokyo.

Homan, F.J.

1990-06-20T23:59:59.000Z

419

Advanced Nuclear Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Nuclear Advanced Nuclear Reactors Advanced Nuclear Reactors Turbulent Flow of Coolant in an Advanced Nuclear Reactor Visualizing Coolant Flow in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor vessel where all the nuclear reactions occur to produce the heat and steam used for power generation. Nonetheless, an entire power plant consists of many other support components and key structures like coolant pipes; pumps and tanks including their surrounding steel framing; and concrete containment and support structures. The Reactors Product Line within NEAMS is concerned with modeling the reactor vessel as well as those components of a complete power plant that

420

Advanced Reactor Technology Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Reactor Technologies » Advanced Reactor Nuclear Reactor Technologies » Advanced Reactor Technologies » Advanced Reactor Technology Documents Advanced Reactor Technology Documents January 30, 2013 Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. A goal of the process is to facilitate greater engagement between DOE and industry. The process involved establishing evaluation criteria, conducting a pilot review, soliciting concept inputs from industry entities, reviewing the concepts by TRP members and compiling the

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Microsoft Word - power_reactors_briggs.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Most common - Boiling Water and Pressurized Most common - Boiling Water and Pressurized Water Reactors About 80% of the world's nuclear reactors used for generating electricity are either boiling water reactors or pressurized water reactors. Of these, about 30% are boiling water reactors and 70% are pressurized water reactors. All power reactors currently in use in the United States are of these two types. Both types of reactors have been very successfully used for reliable, on-demand, emissions-free electricity generation for decades. How does a boiling water reactor work? Water flows from the bottom of the fuel to the top of the fuel, and as it moves past the fuel, it carries away the heat produced by the

422

PIA - Advanced Test Reactor National Scientific User Facility...  

Energy Savers (EERE)

Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

423

Global Optimization of Chemical Reactors and Kinetic Optimization  

E-Print Network (OSTI)

Model; 3-D; Monolith; Reactor; Optimization Introduction TheAngeles Global Optimization of Chemical Reactors and KineticGlobal Optimization of Chemical Reactors and Kinetic

ALHUSSEINI, ZAYNA ISHAQ

2013-01-01T23:59:59.000Z

424

UCLA program in reactor studies: The ARIES tokamak reactor study  

SciTech Connect

The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D-{sup 3}He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs.

Not Available

1991-01-01T23:59:59.000Z

425

Assessment and reduction of proliferation risk of reactor-grade plutonium regarding construction of fizzle bombs by terrorists  

Science Journals Connector (OSTI)

Abstract The approximately 23.7wt% 240Pu in reactor-grade plutonium denatures the 239Pu to the extent that it cannot fuel high yield nuclear weapons. 240Pu has a high spontaneous fission rate, which increases the spontaneous neutron flux within the fuel. When such a nuclear weapon is triggered, these neutrons cause the nuclear fission chain reaction to pre-detonate which blows the imploding fuel shell apart before the designed level of compression and reactivity could be attained, thereby greatly reducing the average energy yield of such fizzle bombs. Therefore reactor-grade plutonium is normally viewed as highly proliferation resistant. In this article the literature on the proliferation resistance of reactor-grade plutonium and on the mechanism and effect of fizzle bombs is reviewed in order to test this view. It is shown that even very low yield fizzle bombs, exploded in urban areas, would still cause serious blast damage as well as radioactive contamination. Combined with the high levels of induced terror, fizzle bombs might thus be attractive psychological weapons for terrorists. Therefore reactor-grade plutonium may not be sufficiently proliferation resistant against nuclear terrorism. However, denaturisation with more than 9% 238Pu produces high levels of decay heat which will melt or explode the high explosives around uncooled implosion type weapons, rendering them useless. Unfortunately, reactor-grade Pu contains only 2.7% 238Pu and is thus not sufficiently proliferation resistant in this respect. It is also shown that the associated neptunium poses a substantial proliferation risk. In the present study strong improvement of the proliferation resistance was demonstrated by simulation of incineration of reactor-grade plutonium in the 400MWth Pebble Bed Modular Reactor Demonstration Power Plant. Results for modified fuel cycles, aimed at transmutating 237Np to 238Pu are also reported. However, these modifications increased the disloaded heavy metal mass, thereby substantially increasing the radiotoxicity of the spent fuel. Therefore this intervention is not recommended. 237NP should thus rather be incinerated it in fast reactors, light-water reactors or CANDU reactors.

Dawid E. Serfontein; Eben J. Mulder; Frederik Reitsma

2014-01-01T23:59:59.000Z

426

Rapid starting methanol reactor system  

DOE Patents (OSTI)

The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

1984-01-01T23:59:59.000Z

427

Vehicle Technologies Office Merit Review 2014: Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Applied Materials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modular process equipment...

428

On the Simulation of an All Electric Ship Powertrain Utilizing a Surface Piercing Propeller Via a Modular Main Propulsion Plant Model.  

E-Print Network (OSTI)

??A modular simulation model of a marine powertrain consisting of a prime mover, propeller shaft, propulsor, and control system was developed, tested, and used to (more)

Zisman, Zachary Samuel

2011-01-01T23:59:59.000Z

429

Development of a novel modular mid-infrared sensor for the in-situ detection of the BTEX compounds in water.  

E-Print Network (OSTI)

?? This research thesis describes the design, construction and testing of a novel modular mid-infrared fibre optic sensing system for the detection of hydrocarbons in (more)

McCue, Raymond, (Thesis)

2007-01-01T23:59:59.000Z

430

N Reactor Placed In Interim Safe Storage: Largest Hanford Reactor Cocooning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

N Reactor Placed In Interim Safe Storage: Largest Hanford Reactor N Reactor Placed In Interim Safe Storage: Largest Hanford Reactor Cocooning Project Now Complete N Reactor Placed In Interim Safe Storage: Largest Hanford Reactor Cocooning Project Now Complete June 14, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy Cameron.Hardy@rl.doe.gov 509-376-5365 Mark McKenna mmckenna@wch-rcc.com 509-372-9032 RICHLAND, WASH. - The U.S. Department of Energy's (DOE's) River Corridor contractor, Washington Closure Hanford, has completed placing N Reactor in interim safe storage, a process also known as "cocooning." N Reactor was the last of nine plutonium production reactors to be shut down at DOE's Hanford Site in southeastern Washington state. It was Hanford's longest-running reactor, operating from 1963 to 1987. "In the 1960's, N Reactor represented the future of energy in America.

431

Graphite Reactor | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphite Reactor Graphite Reactor 'In the early, desperate days of World War II, the United States launched the top-secret, top-priority Manhattan Project...' In the early, desperate days of U.S. involvement in World War II, American scientists began to fear that the German discovery of uranium fission in 1939 might enable the Nazis to develop a super bomb. Afraid of losing this crucial race, the United States launched the top-secret, top-priority Manhattan Project. The plan was to create two atomic weapons-one fueled by plutonium, the other by enriched uranium. Hanford, Washington, was selected as the site for plutonium production, but before large reactors could be built there, a pilot plant was necessary to prove the feasibility of scaling up from laboratory experiments. A secluded, rural area near Clinton, Tennessee, was

432

Business Opportunities for Small Reactors  

SciTech Connect

This report assesses the market potential and identifies a number of potential paths for developing the small nuclear reactor business. There are several potential opportunities identified and evaluated. Selecting a specific approach for the business development requires additional information related to a specific market and sources of capital to support the investment. If and how a market for small nuclear plants may develop is difficult to predict because of the complexity of the economic and institutional factors that will influence such development. Key factors are; economics, safety, proliferation resistance and investment risk. The economic and political interest of any of the identified markets is also dependent on successful demonstration of the safety and reliability of small nuclear reactor. Obtaining a US-NRC Standard Design approval would be an important development step toward establishing a market for small reactors. (authors)

Minato, Akio; Nishimura, Satoshi [Central Research Institute of Electric Power Industry - CRIEPI, 2-11-1 Iwado-Kita, Komae, Tokyo 201-8511 (Japan); Brown, Neil W. [Lawrence Livermore National Laboratory - LLNL, PO Box 808, Livermore, CA 94551 (United States)

2007-07-01T23:59:59.000Z

433

Actinide Burning in CANDU Reactors  

SciTech Connect

Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

Hyland, B.; Dyck, G.R. [Atomic Energy of Canada Limited, Chalk River, Ontario, K0J 1J0 (Canada)

2007-07-01T23:59:59.000Z

434

A new, very massive modular Liquid Argon Imaging Chamber to detect low energy off-axis neutrinos from the CNGS beam. (Project MODULAr)  

E-Print Network (OSTI)

The paper is considering an opportunity for the CERN/GranSasso (CNGS) neutrino complex, concurrent time-wise with T2K and NOvA, to search for theta_13 oscillations and CP violation. Compared with large water Cherenkov (T2K) and fine grained scintillators (NOvA), the LAr-TPC offers a higher detection efficiency and a lower backgrounds, since virtually all channels may be unambiguously recognized. The present proposal, called MODULAr, describes a 20 kt fiducial volume LAr-TPC, following very closely the technology developed for the ICARUS-T60o, and is focused on the following activities, for which we seek an extended international collaboration: (1) the neutrino beam from the CERN 400 GeV proton beam and an optimised horn focussing, eventually with an increased intensity in the framework of the LHC accelerator improvement program; (2) A new experimental area LNGS-B, of at least 50000 m3 at 10 km off-axis from the main Laboratory, eventually upgradable to larger sizes. A location is under consideration at about 1.2 km equivalent water depth; (3) A new LAr Imaging detector of at least 20 kt fiducial mass. Such an increase in the volume over the current ICARUS T600 needs to be carefully considered. It is concluded that a very large mass is best realised with a set of many identical, independent units, each of 5 kt, "cloning" the technology of the T600. Further phases may foresee extensions of MODULAr to meet future physics goals. The experiment might reasonably be operational in about 4/5 years, provided a new hall is excavated in the vicinity of the Gran Sasso Laboratory and adequate funding and participation are made available.

B. Baibussinov; M. Baldo Ceolin; G. Battistoni; P. Benetti; A. Borio; E. Calligarich; M. Cambiaghi; F. Cavanna; S. Centro; A. G. Cocco; R. Dolfini; A. Gigli Berzolari; C. Farnese; A. Fava; A. Ferrari; G. Fiorillo; D. Gibin; A. Guglielmi; G. Mannocchi; F. Mauri; A. Menegolli; G. Meng; C. Montanari; O. Palamara; L. Periale; A. Piazzoli; P. Picchi; F. Pietropaolo; A. Rappoldi; G. L. Raselli; C. Rubbia; P. Sala; G. Satta; F. Varanini; S. Ventura; C. Vignoli

2007-04-11T23:59:59.000Z

435

BNL | Our History: Reactors as Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

> See also: Accelerators > See also: Accelerators Brookhaven History: Using Reactors as Research Tools BGRR Brookhaven Graphite Research Reactor The Brookhaven Graphite Research Reactor (BGRR) was the Laboratory's first big machine and the first peace-time reactor built in the United States following World War II. The reactor's primary mission was to produce neutrons for scientific experimentation and to refine reactor technology. At the time, the BGRR could accommodate more simultaneous experiments than any other reactor. Scientists and engineers from every corner of the U.S. came to use the reactor, which was not only a source of neutrons for experiments, but also an excellent training facility. Researchers used the BGRR's neutrons as tools for studying atomic nuclei and the structure of solids, and to investigate many physical, chemical and

436

New fast-reactor approach. [LMFBR  

SciTech Connect

The design parameters for a 1000 MW LMFBR type reactor are presented. The design requires the multiple primary coolant pumps and heat exchangers to be located around the core within the reactor vessel.

Folkrod, J.R.; Kann, W.J.; Klocksieben, R.H.

1983-01-01T23:59:59.000Z

437

Reactor accelerator coupling experiments: a feasability study  

E-Print Network (OSTI)

The Reactor Accelerator Coupling Experiments (RACE) are a set of neutron source driven subcritical experiments under temperature feedback conditions. These experiments will involve coupling an accelerator driven neutron source to a TRIGA reactor...

Woddi Venkat Krishna, Taraknath

2006-08-16T23:59:59.000Z

438

Reactivity control assembly for nuclear reactor  

DOE Patents (OSTI)

Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

Bollinger, Lawrence R. (Schenectady, NY)

1984-01-01T23:59:59.000Z

439

Inherent safety concepts in nuclear power reactors  

Science Journals Connector (OSTI)

Different inherent safety concepts being considered in fast and thermal reactors are presented after outlining the basic goals of nuclear reactor safety, the defence in depth philosophy to achieve these goal...

O M Pal Singh; R Shankar Singh

1989-06-01T23:59:59.000Z

440

Choice of coils for a fusion reactor  

Science Journals Connector (OSTI)

...configurations. The most ambitious is the International Thermonuclear Experimental Reactor, a large tokamak planned for construction...configuration has features in common with the International Thermonuclear Experimental Reactor experiment. Mathematical Model We...

Romeo Alexander; Paul R. Garabedian

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The development of structural materials for fusion reactors  

Science Journals Connector (OSTI)

...severely exposed parts of future fusion reactors and pose key problems...successful implementation of fusion reactors as an efficient source...conditions in the International Thermonuclear Experimental Reactor (ITER...environmental attractiveness of fusion reactors. In this paper...

1999-01-01T23:59:59.000Z

442

Utilization of Refractory Metals and Alloys in Fusion Reactor Structures  

Science Journals Connector (OSTI)

In design of fusion reactors, structural material selection is very crucial to improve reactors performance. Different types of materials have been proposed for use in fusion reactor structures. Among these mate...

Mustafa beyli; ?enay Yal?n

2006-12-01T23:59:59.000Z

443

Digital computer operation of a nuclear reactor  

DOE Patents (OSTI)

A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

Colley, Robert W. (Richland, WA)

1984-01-01T23:59:59.000Z

444

Liquid metal cooled nuclear reactor plant system  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

445

Digital computer operation of a nuclear reactor  

DOE Patents (OSTI)

A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

Colley, R.W.

1982-06-29T23:59:59.000Z

446

Light Water Reactor Sustainability (LWRS) Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactor Sustainability (LWRS) Program Login Instructions go here. User ID: Password: Log In Forgot your password?...

447

High-Fidelity Light Water Reactor Analysis with the Numerical Nuclear Reactor  

Science Journals Connector (OSTI)

Technical Paper / Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications

David P. Weber; Tanju Sofu; Won Sik Yang; Thomas J. Downar; Justin W. Thomas; Zhaopeng Zhong; Jin Young Cho; Kang Seog Kim; Tae Hyun Chun; Han Gyu Joo; Chang Hyo Kim

448

How far is a Fusion Power Reactor from an Experimental Reactor?  

E-Print Network (OSTI)

be able to move directly and safely to a "first of a kind" reactor. The main conditions to be satisfied / experimental evidence. To assess the reactor relevance of ITER, rather than a comparison between ITER and one1 How far is a Fusion Power Reactor from an Experimental Reactor? R. Toschi(1) , P. Barabaschi(2

449

Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation  

E-Print Network (OSTI)

Physics Optimization of Breed and Burn Fast Reactor Systems.reactors: Fabrication and properties and their optimization.

Heidet, Florent

2010-01-01T23:59:59.000Z

450

DOSE RATES FROM NEUTRON ACTIVATION OF FUSION REACTOR COMPONENTS  

E-Print Network (OSTI)

NEUTRON ACTIVATION OF FUSION REACTOR C01WONENTS LawrenceNeutron Activation of Fusion Reactor Components Lawrence

Ruby, Lawrence

2014-01-01T23:59:59.000Z

451

HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS  

SciTech Connect

This report documents a detailed study to determine the expected efficiency and product costs for producing hydrogen via water-splitting using energy from an advanced nuclear reactor. It was determined that the overall efficiency from nuclear heat to hydrogen is high, and the cost of hydrogen is competitive under a high energy cost scenario. It would require over 40% more nuclear energy to generate an equivalent amount of hydrogen using conventional water-cooled nuclear reactors combined with water electrolysis compared to the proposed plant design described herein. There is a great deal of interest worldwide in reducing dependence on fossil fuels, while also minimizing the impact of the energy sector on global climate change. One potential opportunity to contribute to this effort is to replace the use of fossil fuels for hydrogen production by the use of water-splitting powered by nuclear energy. Hydrogen production is required for fertilizer (e.g. ammonia) production, oil refining, synfuels production, and other important industrial applications. It is typically produced by reacting natural gas, naphtha or coal with steam, which consumes significant amounts of energy and produces carbon dioxide as a byproduct. In the future, hydrogen could also be used as a transportation fuel, replacing petroleum. New processes are being developed that would permit hydrogen to be produced from water using only heat or a combination of heat and electricity produced by advanced, high temperature nuclear reactors. The U.S. Department of Energy (DOE) is developing these processes under a program known as the Nuclear Hydrogen Initiative (NHI). The Republic of South Africa (RSA) also is interested in developing advanced high temperature nuclear reactors and related chemical processes that could produce hydrogen fuel via water-splitting. This report focuses on the analysis of a nuclear hydrogen production system that combines the Pebble Bed Modular Reactor (PBMR), under development by PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

2009-05-12T23:59:59.000Z

452

Nuclear Reactor Safety Design Criteria  

Directives, Delegations, and Requirements

The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Certified 11-18-10.

1993-01-19T23:59:59.000Z

453

Computer aided nuclear reactor modeling  

E-Print Network (OSTI)

Nuclear reactor modeling is an important activity that lets us analyze existing as well as proposed systems for safety, correct operation, etc. The quality of a analysis is directly proportional to the quality of the model used. In this work we look...

Warraich, Khalid Sarwar

2012-06-07T23:59:59.000Z

454

Nozzle for electric dispersion reactor  

DOE Patents (OSTI)

A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

Sisson, Warren G. (Oak Ridge, TN); Basaran, Osman A. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN)

1998-01-01T23:59:59.000Z

455

Nozzle for electric dispersion reactor  

DOE Patents (OSTI)

A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

Sisson, W.G.; Basaran, O.A.; Harris, M.T.

1998-04-14T23:59:59.000Z

456

International Journal of Chemical Reactor Engineering  

E-Print Network (OSTI)

International Journal of Chemical Reactor Engineering Volume 3 2005 Article A17 Optimal Operation, a single re- action takes place in the reactor and the operational objective is to compute the optimal feed is illustrated via simulation of two semi-batch reactor applications. KEYWORDS: Dynamic Optimization, Batch

Palanki, Srinivas

457

The Integral Fast Reactor (IFR) - Reactors designed/built by Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Integral Fast Reactor Integral Fast Reactor About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

458

Modular Sampling and Analysis Techniques for the Real-Time Analysis of Human Breath  

SciTech Connect

At LLNL and UC Davis, we are developing several techniques for the real-time sampling and analysis of trace gases, aerosols and exhaled breath that could be useful for a modular, integrated system for breath analysis. Those techniques include single-particle bioaerosol mass spectrometry (BAMS) for the analysis of exhaled aerosol particles or droplets as well as breath samplers integrated with gas chromatography mass spectrometry (GC-MS) or MEMS-based differential mobility spectrometry (DMS). We describe these techniques and present recent data obtained from human breath or breath condensate, in particular, addressing the question of how environmental exposure influences the composition of breath.

Frank, M; Farquar, G; Adams, K; Bogan, M; Martin, A; Benner, H; Spadaccini, C; Steele, P; Davis, C; Loyola, B; Morgan, J; Sankaran, S

2007-07-09T23:59:59.000Z

459

Honeywell Modular Automation System Computer Software Documentation for the Magnesium Hydroxide Precipitation Process  

SciTech Connect

The purpose of this Computer Software Document (CSWD) is to provide configuration control of the Honeywell Modular Automation System (MAS) in use at the Plutonium Finishing Plant (PFP) for the Magnesium Hydroxide Precipitation Process in Rm 230C/234-5Z. The magnesium hydroxide process control software Rev 0 is being updated to include control programming for a second hot plate. The process control programming was performed by the system administrator. Software testing for the additional hot plate was performed per PFP Job Control Work Package 2Z-00-1703. The software testing was verified by Quality Control to comply with OSD-Z-184-00044, Magnesium Hydroxide Precipitation Process.

STUBBS, A.M.

2001-06-25T23:59:59.000Z

460

Modular axial-flux permanent-magnet motor for ship propulsion drives  

SciTech Connect

Original features such as compactness and lightness make slotless axial-flux permanent-magnet machines (AFPMs) eligible for application in large power motor drives devoted to the direct drive of ship propellers. This paper discusses characteristics of AFPMs designed for application in marine propulsion, and machine performances such as efficiency, weight and torque density are evaluated for a comparison with those of conventional synchronous machines. A newly-conceived modular arrangement of the machine stator winding is proposed and experimental results taken from a small-size machine prototype are finally shown.

Caricchi, F.; Crescimbini, F.; Honorati, O.

1999-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Heterogeneous Recycling in Fast Reactors  

SciTech Connect

Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

Dr. Benoit Forget; Michael Pope; Piet, Steven J.; Michael Driscoll

2012-07-30T23:59:59.000Z

462

Control of reactor coolant flow path during reactor decay heat removal  

DOE Patents (OSTI)

An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

Hunsbedt, Anstein N. (Los Gatos, CA)

1988-01-01T23:59:59.000Z

463

Modular Inverter for Advanced Control Applications In the fall of 2003, a team of graduate students was assembled to design and construct a  

E-Print Network (OSTI)

a set of well-documented inverters of various ratings capable of quickly implementing a new control-powernts2\\ece power design archives\\documents\\specification documents\\sd00004-001 modular inverter systemModular Inverter for Advanced Control Applications May 2006 In the fall of 2003, a team of graduate

Kimball, Jonathan W.

464

Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program  

SciTech Connect

Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.

David Petti

2014-06-01T23:59:59.000Z

465

Reactor and Nuclear Systems Division (RNSD)  

NLE Websites -- All DOE Office Websites (Extended Search)

RNSD Home RNSD Home Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Staff Details (CV/Bios) Publications Org Chart Contact Us ORNL Staff Only Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Reactor and Nuclear Systems Division News Highlights U.S. Rep. Fleischmann touts ORNL as national energy treasure Martin Peng wins Fusion Power Associates Leadership Award

466

Shutdown system for a nuclear reactor  

DOE Patents (OSTI)

An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.

Groh, Edward F. (Naperville, IL); Olson, Arne P. (Western Springs, IL); Wade, David C. (Naperville, IL); Robinson, Bryan W. (Oak Lawn, IL)

1984-01-01T23:59:59.000Z

467

Reactor monitoring and safeguards using antineutrino detectors  

Science Journals Connector (OSTI)

Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore orer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several erorts to develop this monitoring technique are underway across the globe.

N S Bowden

2008-01-01T23:59:59.000Z

468

Self isolating high frequency saturable reactor  

DOE Patents (OSTI)

The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

Moore, James A. (Powell, TN)

1998-06-23T23:59:59.000Z

469

Fast-acting nuclear reactor control device  

DOE Patents (OSTI)

A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

Kotlyar, Oleg M. (Idaho Falls, ID); West, Phillip B. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

470

Research Program of a Super Fast Reactor  

SciTech Connect

Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is not breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)

Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie; Terai, Takayuki; Nagasaki, Shinya; Muroya, Yusa; Abe, Hiroaki [Nuclear Professional School / Department of Nuclear Engineering and Management, The University of Tokyo, Tokaimura, Naka-gun, Ibaraki, 319-1188 (Japan); Mori, Hideo [Department of Mechanical Engineering, Kyushu University (Japan); Akiba, Masato; Akimoto, Hajime; Okumura, Keisuke; Akasaka, Naoaki [Japan Atomic Energy Agency (Japan); GOTO, Shoji [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

471

Nuclear reactor vessel fuel thermal insulating barrier  

DOE Patents (OSTI)

The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

2013-03-19T23:59:59.000Z

472

History of Research Reactors at Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

History of Research Reactors at Brookhaven History of Research Reactors at Brookhaven Brookhaven National Laboratory has three nuclear reactors on its site that were used for scientific research. The reactors are all shut down, and the Laboratory is addressing environmental issues associated with their operations. photo of BGRR Brookhaven Graphite Research Reactor - Beginning operations in 1950, the graphite reactor was used for research in medicine, biology, chemistry, physics and nuclear engineering. One of the most significant achievements at this facility was the development of technetium-99m, a radiopharmaceutical widely used to image almost any organ in the body. The graphite reactor was shut down in 1969. Parts of it have been decommissioned, with the remainder to be addressed by 2011. More history

473

A Modular Building Controls Virtual Test Bed for the Integrations of Heterogeneous Systems  

SciTech Connect

This paper describes the Building Controls Virtual Test Bed (BCVTB) that is currently under development at Lawrence Berkeley National Laboratory. An earlier prototype linked EnergyPlus with controls hardware through embedded SPARK models and demonstrated its value in more cost-effective envelope design and improved controls sequences for the San Francisco Federal Building. The BCVTB presented here is a more modular design based on a middleware that we built using Ptolemy II, a modular software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. Our additions to Ptolemy II allow users to couple to Ptolemy II a prototype version of EnergyPlus,MATLAB/Simulink or other simulation programs for data exchange during run-time. In future work we will also implement a BACnet interface that allows coupling BACnet compliant building automation systems to Ptolemy II. We will present the architecture of the BCVTB and explain how users can add their own simulation programs to the BCVTB. We will then present an example application in which the building envelope and the HVAC system was simulated in EnergyPlus, the supervisory control logic was simulated in MATLAB/Simulink and Ptolemy II was used to exchange data during run-time and to provide realtime visualization as the simulation progresses.

Wetter, Michael; Wetter, Michael; Haves, Philip

2008-06-30T23:59:59.000Z

474

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs  

SciTech Connect

Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version [a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version [a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV) concepts, such as the NGNP, it is fully expected that the behavior of these graphites will conform to the recognized trends for near isotropic nuclear graphite. Thus, much of the data needed is confirmatory in nature. Theories that can explain graphite behavior have been postulated and, in many cases, shown to represent experimental data well. However, these theories need to be tested against data for the new graphites and extended to higher neutron doses and temperatures pertinent to the new Gen IV reactor concepts. It is anticipated that current and planned future graphite irradiation experiments will provide the data needed to validate many of the currently accepted models, as well as providing the needed data for design confirmation.

Burchell, Timothy D [ORNL; Bratton, Rob [Idaho National Laboratory (INL); Marsden, Barry [University of Manchester, UK; Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission; Penfield, Scott [Technology Insights; Mitchell, Mark [PBMR (Pty) Ltd.; Windes, Will [Idaho National Laboratory (INL)

2008-03-01T23:59:59.000Z

475

Nuclear reactor alignment plate configuration  

DOE Patents (OSTI)

An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

2014-01-28T23:59:59.000Z

476

Parallel Monte Carlo reactor neutronics  

SciTech Connect

The issues affecting implementation of parallel algorithms for large-scale engineering Monte Carlo neutron transport simulations are discussed. For nuclear reactor calculations, these include load balancing, recoding effort, reproducibility, domain decomposition techniques, I/O minimization, and strategies for different parallel architectures. Two codes were parallelized and tested for performance. The architectures employed include SIMD, MIMD-distributed memory, and workstation network with uneven interactive load. Speedups linear with the number of nodes were achieved.

Blomquist, R.N.; Brown, F.B.

1994-03-01T23:59:59.000Z

477

The ARIES tokamak reactor study  

SciTech Connect

The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

Not Available

1989-10-01T23:59:59.000Z

478

Nuclear power reactor education and training at the Ford nuclear reactor  

SciTech Connect

Since 1977, staff members of the University of Michigan's Ford nuclear reactor have provided courses and reactor laboratory training programs for reactor operators, engineers, and technicians from seven electric utilities, including Cleveland Electric Illuminating, Consumers Power, Detroit Edison, Indiana and Michigan Electric, Nebraska Public Power, Texas Utilities Generating Company, and Toledo Edison. Reactor laboratories, instrument technician training, and reactor physics courses have been conducted at the university. Courses conducted at plant sites include reactor physics, thermal sciences, materials sciences, and health physics and radiation protection.

Burn, R.R.

1989-01-01T23:59:59.000Z

479

Using reactor operating experience to improve the design of a new Broad Application Test Reactor  

SciTech Connect

Increasing regulatory demands and effects of plant aging are limiting the operation of existing test reactors. Additionally, these reactors have limited capacities and capabilities for supporting future testing missions. A multidisciplinary team of experts developed sets of preliminary safety requirements, facility user needs, and reactor design concepts for a new Broad Application Test Reactor (BATR). Anticipated missions for the new reactor include fuels and materials irradiation testing, isotope production, space testing, medical research, fusion testing, intense positron research, and transmutation doping. The early BATR design decisions have benefited from operating experiences with existing reactors. This paper discusses these experiences and highlights their significance for the design of a new BATR.

Fletcher, C.D.; Ryskamp, J.M.; Drexler, R.L.; Leyse, C.F.

1993-07-01T23:59:59.000Z

480

Advanced Safeguards Approaches for New Fast Reactors  

SciTech Connect

This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to breed nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and burn actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is fertile or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing TRU-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II EBR-II at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

2007-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor pbmr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.