Powered by Deep Web Technologies
Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ordered bed modular reactor design proposal  

SciTech Connect (OSTI)

The Ordered Bed Modular Reactor (OBMR) is a design as an advanced modular HTGR in which the annular reactor core is filled with an ordered bed of fuel spheres. This arrangement allows fuel elements to be poured into the core cavity which is shaped so that an ordered bed is formed and to be discharged from the core through the opening holes in the reactor top. These operations can be performed in a shutdown shorter time. The OBMR has the most of advantages from both the pebble bed reactor and block type reactor. Its core has great structural flexibility and stability, which allow increasing reactor output power and outlet gas temperature as well as decreasing core pressure drop. This paper introduces ordered packing bed characteristics, unloading and loading technique of the fuel spheres and predicted design features of the OBMR. (authors)

Tian, J. [Inst. of Nuclear Energy Technology, Tsinghua Univ., Beijing 100084 (China)

2006-07-01T23:59:59.000Z

2

Generic small modular reactor plant design.  

SciTech Connect (OSTI)

This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

2012-12-01T23:59:59.000Z

3

Cost-Shared Development of Innovative Small Modular Reactor Designs |  

Broader source: Energy.gov (indexed) [DOE]

Cost-Shared Development of Innovative Small Modular Reactor Designs Cost-Shared Development of Innovative Small Modular Reactor Designs Cost-Shared Development of Innovative Small Modular Reactor Designs The Small Modular Reactor (SMR) Licensing Technical Support (LTS) program, sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), through this Funding Opportunity Announcement (FOA) seeks to facilitate the development of innovative SMR designs that have the potential to address the nation's economic, environmental and energy security goals. Specifically, the Department is soliciting applications for SMR designs that offer unique and innovative solutions for achieving the objectives of enhanced safety, operations, and performance relative to currently certified designs. This FOA focuses on design development and

4

Cost-Shared Development of Innovative Small Modular Reactor Designs |  

Broader source: Energy.gov (indexed) [DOE]

Cost-Shared Development of Innovative Small Modular Reactor Designs Cost-Shared Development of Innovative Small Modular Reactor Designs Cost-Shared Development of Innovative Small Modular Reactor Designs The Small Modular Reactor (SMR) Licensing Technical Support (LTS) program, sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), through this Funding Opportunity Announcement (FOA) seeks to facilitate the development of innovative SMR designs that have the potential to address the nation's economic, environmental and energy security goals. Specifically, the Department is soliciting applications for SMR designs that offer unique and innovative solutions for achieving the objectives of enhanced safety, operations, and performance relative to currently certified designs. This FOA focuses on design development and

5

Small Modular Fast Reactor Design Description Joint Effort  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 1, 2005 ANL-SMFR-1 July 1, 2005 ANL-SMFR-1 Small Modular Fast Reactor Design Description Joint Effort by Argonne National Laboratory (ANL) Commissariat a l'Energie Atomique (CEA) and Japan Nuclear Cycle Development Institute (JNC) Project Leaders Y. I. Chang and C. Grandy, ANL P. Lo Pinto, CEA M. Konomura, JNC Technical Contributors ANL: J. Cahalan, F. Dunn, M. Farmer, S. Kamal, L. Krajtl, A. Moisseytsev, Y. Momozaki, J. Sienicki, Y. Park, Y. Tang, C. Reed, C. Tzanos, S. Wiedmeyer, and W. Yang CEA: P. Allegre, J. Astegiano, F. Baque, L. Cachon, M. S. Chenaud, J-L Courouau, Ph. Dufour, J. C. Klein, C. Latge, C. Thevenot, and F. Varaine JNC: M. Ando, Y. Chikazawa, M. Nagamura, Y. Okano, Y. Sakamoto,

6

SRS Small Modular Reactors  

SciTech Connect (OSTI)

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2012-04-27T23:59:59.000Z

7

SRS Small Modular Reactors  

ScienceCinema (OSTI)

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2014-05-21T23:59:59.000Z

8

Modularity in design of the MIT Pebble Bed Reactor  

E-Print Network [OSTI]

The future of new nuclear power plant construction will depend in large part on the ability of designers to reduce capital, operations, and maintenance costs. One of the methods proposed, is to enhance the modularity of ...

Berte, Marc Vincent, 1977-

2004-01-01T23:59:59.000Z

9

Modular high temperature gas-cooled reactor plant design duty cycle. Revision 3  

SciTech Connect (OSTI)

This document defines the Plant Design Duty Cycle (PCDC) for the Modular High Temperature Gas-cooled Reactor (MHTGR). The duty cycle is a set of events and their design number of occurrences over the life of the plant for which the MHTGR plant shall be designed to ensure that the plant meets all the top-level requirements. The duty cycle is representative of the types of events to be expected in multiple reactor module-turbine plant configurations of the MHTGR. A synopsis of each PDDC event is presented to provide an overview of the plant response and consequence. 8 refs., 1 fig., 4 tabs.

Chan, T.

1989-12-31T23:59:59.000Z

10

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect (OSTI)

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the U.S.

McDonald, C.F.; Nichols, M.K.

1987-01-01T23:59:59.000Z

11

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect (OSTI)

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the US.

McDonald, C.F.; Nichols, M.K.

1986-12-01T23:59:59.000Z

12

High Temperature Gas-Cooled Reactor Program. Modular HTGR systems design and cost summary. [Methane reforming; steam cycle-cogeneration  

SciTech Connect (OSTI)

This report provides a summary description of the preconceptual design and energy product costs of the modular High Temperature Gas-Cooled Reactor (HTGR). The reactor system was studied for two applications: (1) reforming of methane to produce synthesis gas and (2) steam cycle/cogeneration to produce process steam and electricity.

Not Available

1983-09-01T23:59:59.000Z

13

Westinghouse Small Modular Reactor balance of plant and supporting systems design  

SciTech Connect (OSTI)

The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operation of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)

Memmott, M. J.; Stansbury, C.; Taylor, C. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

2012-07-01T23:59:59.000Z

14

ANALYSIS OF SEPCTRUM CHOICES FOR SMALL MODULAR REACTORS-PERFORMANCE AND DEVELOPMENT  

E-Print Network [OSTI]

. The research mainly focused on producing a small modular reactor (Pebble Bed Modular Reactor) design to analyze the fuel depletion and plutonium and minor actinide accumulation with varying power densities. The reactors running at low power densities were found...

Kafle, Nischal

2011-04-26T23:59:59.000Z

15

Small Modular Reactors (468th Brookhaven Lecture)  

SciTech Connect (OSTI)

With good reason, much more media attention has focused on nuclear power plants than solar farms, wind farms, or hydroelectric plants during the past month and a half. But as nations around the world demand more energy to power everything from cell phone batteries to drinking water pumps to foundries, nuclear plants are the only non-greenhouse-gas producing option that can be built to operate almost anywhere, and can continue to generate power during droughts, after the sun sets, and when winds die down. To supply this demand for power, designers around the world are competing to develop more affordable nuclear reactors of the future: small modular reactors. Brookhaven Lab is working with DOE to ensure that these reactors are designed to be safe for workers, members of surrounding communities, and the environment and to ensure that the radioactive materials and technology will only be used for peaceful purposes, not weapons. In his talk, Bari will discuss the advantages and challenges of small modular reactors and what drives both international and domestic interest in them. He will also explain how Brookhaven Lab and DOE are working to address the challenges and provide a framework for small modular reactors to be commercialized.

Bari, Robert

2011-04-20T23:59:59.000Z

16

Small Modular Reactors Presentation to Secretary of Energy Advisory Board -  

Broader source: Energy.gov (indexed) [DOE]

Small Modular Reactors Presentation to Secretary of Energy Advisory Small Modular Reactors Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly Small Modular Reactors Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly DOE Small Modular Reactor Program (SMR) Research, Development & Deployment (RD&D) to enable the deployment of a fleet of SMRs in the United States SMR Program is a new program for FY 2011 Structured to address the need to enable the deployment of mature, near-term SMR designs based on known LWR technology Conduct needed R&D activities to advance the understanding and demonstration of innovative reactor technologies and concepts John_Kelly-SEAB_SMRBriefing_July20_2011_final.pdf More Documents & Publications Meeting Materials: June 12, 2012

17

Small Modular Nuclear Reactors | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reactor Technologies » Small Modular Reactor Technologies » Small Modular Nuclear Reactors Small Modular Nuclear Reactors Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. The development of clean, affordable nuclear power options is a key element of the Department of Energy's Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. Begun

18

Design data needs modular high-temperature gas-cooled reactor. Revision 2  

SciTech Connect (OSTI)

The Design Data Needs (DDNs) provide summary statements for program management, of the designer`s need for experimental data to confirm or validate assumptions made in the design. These assumptions were developed using the Integrated Approach and are tabulated in the Functional Analysis Report. These assumptions were also necessary in the analyses or trade studies (A/TS) to develop selections of hardware design or design requirements. Each DDN includes statements providing traceability to the function and the associated assumption that requires the need.

NONE

1987-03-01T23:59:59.000Z

19

Modular Inspection System for a Complete IN-Service Examination of Nuclear Reactor Pressure Vessel, Including Beltline Region  

SciTech Connect (OSTI)

Final Report for a DOE Phase II Contract Describing the design and fabrication of a reactor inspection modular rover prototype for reactor vessel inspection.

David H. Bothell

2000-04-30T23:59:59.000Z

20

Development of a system model for advanced small modular reactors.  

SciTech Connect (OSTI)

This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Proliferation resistance of small modular reactors fuels  

SciTech Connect (OSTI)

In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

Polidoro, F.; Parozzi, F. [RSE - Ricerca sul Sistema Energetico,Via Rubattino 54, 20134, Milano (Italy); Fassnacht, F.; Kuett, M.; Englert, M. [IANUS, Darmstadt University of Technology, Alexanderstr. 35, D-64283 Darmstadt (Germany)

2013-07-01T23:59:59.000Z

22

Computational Analysis of Fluid Flow in Pebble Bed Modular Reactor  

E-Print Network [OSTI]

High Temperature Gas-cooled Reactor (HTGR) is a Generation IV reactor under consideration by Department of Energy and in the nuclear industry. There are two categories of HTGRs, namely, Pebble Bed Modular Reactor (PBMR) and Prismatic reactor. Pebble...

Gandhir, Akshay

2012-10-19T23:59:59.000Z

23

Modular Pebble Bed Reactor High Temperature Gas Reactor  

E-Print Network [OSTI]

Modular Pebble Bed Reactor High Temperature Gas Reactor Andrew C Kadak Massachusetts Institute For 1150 MW Combined Heat and Power Station Oil Refinery Hydrogen Production Desalinization Plant VHTR/Graphite Discrimination system Damaged Sphere ContainerGraphiteReturn FuelReturn Fresh Fuel Container Spent Fuel Tank #12

24

Human Reliability Considerations for Small Modular Reactors  

SciTech Connect (OSTI)

Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations. The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to illustrate how the issues can support SMR probabilistic risk analyses and their review by identifying potential human failure events for a subset of the issues. As part of addressing the human contribution to plant risk, human reliability analysis practitioners identify and quantify the human failure events that can negatively impact normal or emergency plant operations. The results illustrated here can be generalized to identify additional human failure events for the issues discussed and can be applied to those issues not discussed in this report.

OHara J. M.; Higgins, H.; DAgostino, A.; Erasmia, L.

2012-01-27T23:59:59.000Z

25

Economic Aspects of Small Modular Reactors  

Broader source: Energy.gov (indexed) [DOE]

Economic Aspects of Small Modular Reactors March 1, 2012 Introduction The potential for SMR deployment will be largely determined by the economic value that these power plants would provide to interested power producers who would evaluate their prospects in relation to other options for generating electricity. To help better understand this proposition, DOE enlisted the Energy Policy Institute at Chicago in 2010 to conduct an economic analysis of SMRs based upon what is known today. Their findings were summarized in a paper by Robert Rosner and Stephen Goldberg, released in December, 2011, titled "Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S." This brief paper will highlight some of the key finding from the study

26

Small Modular Reactors Presentation to Secretary of Energy Advisory...  

Broader source: Energy.gov (indexed) [DOE]

Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly Small Modular Reactors Presentation to Secretary of Energy Advisory Board - Deputy...

27

MODULAR PEBBLE BED REACTOR PROJECT UNIVERSITY RESEARCH CONSORTIUM  

E-Print Network [OSTI]

Annual Report Page ii MODULAR PEBBLE BED REACTOR ABSTRACT This project is developing a fundamental. Publication of an archival journal article covering this work is being prepared. · Detailed gas reactor Abstract

28

An Overview of the Safety Case for Small Modular Reactors  

SciTech Connect (OSTI)

Several small modular reactor (SMR) designs emerged in the late 1970s and early 1980s in response to lessons learned from the many technical and operational challenges of the large Generation II light-water reactors. After the accident at the Three Mile Island plant in 1979, an ensuing reactor redesign effort spawned the term inherently safe designs, which later evolved into passively safe terminology. Several new designs were engineered to be deliberately small in order to fully exploit the benefits of passive safety. Today, new SMR designs are emerging with a similar philosophy of offering highly robust and resilient designs with increased safety margins. Additionally, because these contemporary designs are being developed subsequent to the September 11, 2001, terrorist attack, they incorporate a number of intrinsic design features to further strengthen their safety and security. Several SMR designs are being developed in the United States spanning the full spectrum of reactor technologies, including water-, gas-, and liquid-metal-cooled ones. Despite a number of design differences, most of these designs share a common set of design principles to enhance plant safety and robustness, such as eliminating plant design vulnerabilities where possible, reducing accident probabilities, and mitigating accident consequences. An important consequence of the added resilience provided by these design approaches is that the individual reactor units and the entire plant should be able to survive a broader range of extreme conditions. This will enable them to not only ensure the safety of the general public but also help protect the investment of the owner and continued availability of the power-generating asset. Examples of typical SMR design features and their implications for improved plant safety are given for specific SMR designs being developed in the United States.

Ingersoll, Daniel T [ORNL] [ORNL

2011-01-01T23:59:59.000Z

29

Human Reliability Analysis for Small Modular Reactors  

SciTech Connect (OSTI)

Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

Ronald L. Boring; David I. Gertman

2012-06-01T23:59:59.000Z

30

Energy Department Announces New Investment in U.S. Small Modular Reactor  

Broader source: Energy.gov (indexed) [DOE]

Investment in U.S. Small Modular Investment in U.S. Small Modular Reactor Design and Commercialization Energy Department Announces New Investment in U.S. Small Modular Reactor Design and Commercialization November 20, 2012 - 2:48pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced an award to support a new project to design, license and help commercialize small modular reactors (SMR) in the United States. This award follows a funding opportunity announcement in March 2012. The project supported by the award will be led by Babcock & Wilcox (B&W) in partnership with the Tennessee Valley Authority and Bechtel. In addition, the Department announced plans to issue a follow-on solicitation

31

Modular design for increasing assembly automation  

Science Journals Connector (OSTI)

Abstract Modular design can address the need for a high number of product variants and further allow a higher degree of automation in the assembly line. A framework is developed for the simultaneous modular product design and the design of automated manufacturing system. Product designs are optimized for automation using Design Structure Matrix and Modular Function Deployment. Alternative production systems are designed and accessed based on the analysis of assembly steps hierarchically. The implementation of the framework on the design of a production system for furniture assembly, able to handle multiple variants with a large number of components, is demonstrated.

Konstantinos Salonitis

2014-01-01T23:59:59.000Z

32

Energy Department Announces Small Modular Reactor Technology Partnerships  

Broader source: Energy.gov (indexed) [DOE]

Small Modular Reactor Technology Small Modular Reactor Technology Partnerships at Savannah River Site Energy Department Announces Small Modular Reactor Technology Partnerships at Savannah River Site March 2, 2012 - 10:27am Addthis WASHINGTON, D.C. -- The U.S. Energy Department and its Savannah River Site (SRS) announced today three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at SRS facilities, near Aiken, South Carolina. As part of the Energy Department's commitment to advancing the next generation of nuclear reactor technologies and breaking down the technical and economic barriers to deployment, these Memorandums of Agreement (MOA) will help leverage Savannah River's land assets, energy facilities and nuclear expertise to

33

Modular CHP System for Utica College: Design Specification, March...  

Broader source: Energy.gov (indexed) [DOE]

Modular CHP System for Utica College: Design Specification, March 2007 Modular CHP System for Utica College: Design Specification, March 2007 This paper describes Utica College's...

34

Economic Aspects of Small Modular Reactors | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Economic Aspects of Small Modular Reactors Economic Aspects of Small Modular Reactors Economic Aspects of Small Modular Reactors The potential for SMR deployment will be largely determined by the economic value that these power plants would provide to interested power producers who would evaluate their prospects in relation to other options for generating electricity. To help better understand this proposition, DOE enlisted the Energy Policy Institute at Chicago in 2010 to conduct an economic analysis of SMRs based upon what is known today. Their findings were summarized in a paper by Robert Rosner and Stephen Goldberg, released in December, 2011, titled "Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S." This brief paper will highlight some of the key finding from the study1

35

Economic Aspects of Small Modular Reactors | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Economic Aspects of Small Modular Reactors Economic Aspects of Small Modular Reactors Economic Aspects of Small Modular Reactors The potential for SMR deployment will be largely determined by the economic value that these power plants would provide to interested power producers who would evaluate their prospects in relation to other options for generating electricity. To help better understand this proposition, DOE enlisted the Energy Policy Institute at Chicago in 2010 to conduct an economic analysis of SMRs based upon what is known today. Their findings were summarized in a paper by Robert Rosner and Stephen Goldberg, released in December, 2011, titled "Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S." This brief paper will highlight some of the key finding from the study1

36

First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors |  

Broader source: Energy.gov (indexed) [DOE]

First Step to Spur U.S. Manufacturing of Small Modular Nuclear First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors January 25, 2012 - 5:06pm Addthis Brenda DeGraffenreid The Energy Department recently announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration's commitment to advancing U.S. manufacturing leadership in low-carbon, next generation energy technologies and restarting the nation's nuclear industry. The release of a draft Funding Opportunity Announcement (FOA) last week presents supply-chain procurement opportunities for our nation's small businesses down the line, as industry provides input in advance of a full FOA on engineering, design certification, and licensing through a

37

Partnerships Help Advance Small Modular Reactor Technology | Department of  

Broader source: Energy.gov (indexed) [DOE]

Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology March 5, 2012 - 12:00pm Addthis WASHINGTON, D.C. - DOE recently announced three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at Savannah River Site (SRS) facilities near Aiken, S.C. Read the full story on the Memorandums of Agreement to help leverage SRS land assets, energy facilities and nuclear expertise to support potential private sector development, testing and licensing of prototype SMR technologies. Addthis Related Articles Energy Department Announces Small Modular Reactor Technology Partnerships at Savannah River Site The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. | Photo by the Energy Department.

38

Steam generator design considerations for modular HTGR plant  

SciTech Connect (OSTI)

Studies are in progress to develop a standard High Temperature Gas-Cooled Reactor (HTGR) plant design that is amenable to serial production and is licensable. Based on the results of trade studies performed in the DOE-funded HTGR program, activities are being focused to emphasize a modular concept based on a 350 MW(t) annular reactor core with prismatic fuel elements. Utilization of a multiplicity of the standard module affords flexibility in power rating for utility electricity generation. The selected modular HTGR concept has the reactor core and heat transport systems housed in separate steel vessels. This paper highlights the steam generator design considerations for the reference plant, and includes a discussion of the major features of the heat exchanger concept and the technology base existing in the US.

McDonald, C.F.; DeFur, D.D.

1986-05-01T23:59:59.000Z

39

Baseline Concept Description of a Small Modular High Temperature Reactor  

SciTech Connect (OSTI)

The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both small or medium-sized and modular by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOEs ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

Hans Gougar

2014-05-01T23:59:59.000Z

40

Energy Department Announces New Investment in U.S. Small Modular Reactor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Department Announces New Investment in U.S. Small Modular Reactor Design and Commercialization Department to Issue Follow-on Solicitation on SMR Technology Innovation WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced an award to support a new project to design, license and help commercialize small modular reactors (SMR) in the United States. This award follows a funding opportunity announcement in March 2012. The project supported by the award will be led by Babcock & Wilcox (B&W) in partnership with the Tennessee Valley Authority and Bechtel International. In addition, the Department announced plans to issue a follow-on solicitation open to other companies and manufacturers, focused on furthering small modular reactor efficiency, operations and design.

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A design flow based on modular refinement  

E-Print Network [OSTI]

We propose a practical methodology based on modular refinement to design complex systems. The methodology relies on modules with latency-insensitive interfaces so that the refinements can change the timing contract of a ...

Dave, Nirav H.

42

Advancing Small Modular Reactors: How We're Supporting Next-Gen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology...

43

Hybrid energy systems (HESs) using small modular reactors (SMRs)  

SciTech Connect (OSTI)

Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations while still accommodating the desire to support renewable production sources.

S. Bragg-Sitton

2014-10-01T23:59:59.000Z

44

Modular Pebble-Bed Reactor Project: Laboratory-Directed Research and Development Program FY 2002 Annual Report  

SciTech Connect (OSTI)

This report documents the results of our research in FY-02 on pebble-bed reactor technology under our Laboratory Directed Research and Development (LDRD) project entitled the Modular Pebble-Bed Reactor. The MPBR is an advanced reactor concept that can meet the energy and environmental needs of future generations under DOEs Generation IV initiative. Our work is focused in three areas: neutronics, core design and fuel cycle; reactor safety and thermal hydraulics; and fuel performance.

Petti, David Andrew; Dolan, Thomas James; Miller, Gregory Kent; Moore, Richard Leroy; Terry, William Knox; Ougouag, Abderrafi Mohammed-El-Ami; Oh, Chang H; Gougar, Hans D

2002-11-01T23:59:59.000Z

45

Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Demonstration  

SciTech Connect (OSTI)

A key area of the Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) strategy is the development of methodologies and tools that will be used to predict the safety, security, safeguards, performance, and deployment viability of SMRs. The goal of the SMR PRA activity will be to develop quantitative methods and tools and the associated analysis framework for assessing a variety of risks. Development and implementation of SMR-focused safety assessment methods may require new analytic methods or adaptation of traditional methods to the advanced design and operational features of SMRs. We will need to move beyond the current limitations such as static, logic-based models in order to provide more integrated, scenario-based models based upon predictive modeling which are tied to causal factors. The development of SMR-specific safety models for margin determination will provide a safety case that describes potential accidents, design options (including postulated controls), and supports licensing activities by providing a technical basis for the safety envelope. This report documents the progress that was made to implement the PRA framework, specifically by way of demonstration of an advanced 3D approach to representing, quantifying and understanding flooding risks to a nuclear power plant.

Curtis Smith; Steven Prescott; Tony Koonce

2014-04-01T23:59:59.000Z

46

Modular design of biological systems  

E-Print Network [OSTI]

The focus of my research is the development of technology for building compound biological systems from simpler pieces. I designed BioScaffold parts, a family of variable regions that can be inserted into a DNA sequence ...

Norville, Julie Erin, 1980-

2012-01-01T23:59:59.000Z

47

Modularity of the MIT Pebble Bed Reactor for use by the commercial power industry  

E-Print Network [OSTI]

The Modular Pebble Bed Reactor is a small high temperature helium cooled reactor that is being considered for both electric power and hydrogen production. Pebble bed reactors are being developed in South Africa, China and ...

Hanlon-Hyssong, Jaime E

2008-01-01T23:59:59.000Z

48

Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report  

SciTech Connect (OSTI)

This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).

Not Available

1986-10-01T23:59:59.000Z

49

Toward Infusing Modular and Reflective Design Learning throughout the Curriculum  

E-Print Network [OSTI]

Toward Infusing Modular and Reflective Design Learning throughout the Curriculum John C. Georgas intervention that cen- ters on the widespread infusion of design learning throughout the curriculum using: An emphasis on broadly infusing design learning through the curriculum using modular design challenges

Georgas, John

50

The gas turbine-modular helium reactor (GT-MHR), high efficiency, cost competitive, nuclear energy for the next century  

SciTech Connect (OSTI)

The Gas Turbine-Modular Helium Reactor (GT-MHR) is the result of coupling the evolution of a small passively safe reactor with key technology developments in the US during the last decade: large industrial gas turbines, large active magnetic bearings, and compact, highly effective plate-fin heat exchangers. The GT-MHR is the only reactor concept which provides a step increase in economic performance combined with increased safety. This is accomplished through its unique utilization of the Brayton cycle to produce electricity directly with the high temperature helium primary coolant from the reactor directly driving the gas turbine electrical generator. This cannot be accomplished with another reactor concept. It retains the high levels of passive safety and the standardized modular design of the steam cycle MHTGR, while showing promise for a significant reduction in power generating costs by increasing plant net efficiency to a remarkable 47%.

Zgliczynski, J.B.; Silady, F.A.; Neylan, A.J.

1994-04-01T23:59:59.000Z

51

Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Advancing Small Modular Reactors: How We're Supporting Next-Gen Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology December 12, 2013 - 4:00pm Addthis The basics of small modular reactor technology explained. | Infographic by Sarah Gerrity, Energy Department. The basics of small modular reactor technology explained. | Infographic by Sarah Gerrity, Energy Department. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy Nuclear energy continues to be an important part of America's diverse energy portfolio, and the Energy Department is committed to supporting a domestic nuclear industry.

52

Effects of Levels of Automation for Advanced Small Modular Reactors: Impacts on Performance, Workload, and Situation Awareness  

SciTech Connect (OSTI)

The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy (DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of capital costs as well as plant operations and maintenance costs (O&M), and factory production costs benefits.

Johanna Oxstrand; Katya Le Blanc

2014-07-01T23:59:59.000Z

53

Small Modular Reactors and U.S. Clean Energy Sources for Electricity |  

Broader source: Energy.gov (indexed) [DOE]

Small Modular Reactors and U.S. Clean Energy Sources for Small Modular Reactors and U.S. Clean Energy Sources for Electricity Small Modular Reactors and U.S. Clean Energy Sources for Electricity For the clean energy goal to be met, then, the non-carbon emitting sources must provide some 2900 TWhr. Hydropower is generally assumed to have reached a maximum of 250 TWhr, so if we assume renewables reach 650 TWhr, (double the EIA estimate) that leaves 2000 TWhr for nuclear power. If the Administration's loan guarantee program for current large reactors is successful, then one might expect the large reactors to reach 1000 TWhr by 2035. This leaves some 1000 TWhr for SMR - that is a lot of electricity. SMR and Clean Energy.pdf More Documents & Publications Slide 1 Small Modular Reactor Report (SEAB) A Strategic Framework for SMR Deployment

54

Small modular reactors and the future of nuclear power in the United States  

Science Journals Connector (OSTI)

Abstract Small modular reactors are the latest new technology that nuclear advocates tout as the game changer that will overcome previous economic failures of nuclear power. The debate over \\{SMRs\\} has been particularly intense because of the rapid failure of large nuclear renaissance reactors in market economies, the urgent need to address climate change, and the dramatic success of alternative, decentralized resources in lowering costs and increasing deployment. This paper assesses the prospects for SMR technology from three perspectives: the implications of the history of cost escalation in nuclear reactor construction for learning, economies of scale and other process that SMR advocates claim will lower cost; the challenges SMR technology faces in terms of high costs resulting from lost economies of scale, long lead time needed to develop a new design, the size of the task to create assembly lines for modular reactors and intense concern about safety; and the cost and other characteristics e.g. scalability, speed to market, flexibility, etc. of available alternatives compared SMR technology. The paper concludes that the decision of the major vendors (Westinghouse and B&W) to dramatically reduce SMR development efforts reflects the severe disadvantages that SMR technology faces in the next several decades.

Mark Cooper

2014-01-01T23:59:59.000Z

55

Proliferation resistant fuel for pebble bed modular reactors  

SciTech Connect (OSTI)

We show that it is possible to denature the Plutonium produced in Pebble Bed Modular Reactors (PBMR) by doping the nuclear fuel with either 3050 ppm of {sup 237}Np or 2100 ppm of Am vector. A correct choice of these isotopes concentration yields denatured Plutonium with isotopic ratio {sup 238}Pu/Pu {>=} 6%, for the entire fuel burnup cycle. The penalty for introducing these isotopes into the nuclear fuel is a subsequent shortening of the fuel burnup cycle, with respect to a non-doped reference fuel, by 41.2 Full Power Days (FPDs) and 19.9 FPDs, respectively, which correspond to 4070 MWd/ton and 1965 MWd/ton reduction in fuel discharge burnup. (authors)

Ronen, Y.; Aboudy, M.; Regev, D.; Gilad, E. [Dept. of Nuclear Engineering, Ben-Gurion Univ. of the Negev, Beer-Sheva 84105 (Israel)

2012-07-01T23:59:59.000Z

56

Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors  

SciTech Connect (OSTI)

The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

OHara J. M.; Higgins, J.; DAgostino, A.

2012-01-17T23:59:59.000Z

57

Thermionic Reactor Design Studies  

SciTech Connect (OSTI)

Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

Schock, Alfred

1994-08-01T23:59:59.000Z

58

Design of a modular motorcycle windshield wiper  

E-Print Network [OSTI]

Motorcycle windshield wipers are essentially non-existent in the United States. Customer and market research reveals a demand for such a product. This paper explores the product viability of a modular motorcycle windshield ...

Boyd, Robert Allen Michael

2010-01-01T23:59:59.000Z

59

Numerical Study on Crossflow Printed Circuit Heat Exchanger for Advanced Small Modular Reactors  

SciTech Connect (OSTI)

Various fluids such as water, gases (helium), molten salts (FLiNaK, FLiBe) and liquid metal (sodium) are used as a coolant of advanced small modular reactors (SMRs). The printed circuit heat exchanger (PCHE) has been adopted as the intermediate and/or secondary heat exchanger of SMR systems because this heat exchanger is compact and effective. The size and cost of PCHE can be changed by the coolant type of each SMR. In this study, the crossflow PCHE analysis code for advanced small modular reactor has been developed for the thermal design and cost estimation of the heat exchanger. The analytical solution of single pass, both unmixed fluids crossflow heat exchanger model was employed to calculate a two dimensional temperature profile of a crossflow PCHE. The analytical solution of crossflow heat exchanger was simply implemented by using built in function of the MATLAB program. The effect of fluid property uncertainty on the calculation results was evaluated. In addition, the effect of heat transfer correlations on the calculated temperature profile was analyzed by taking into account possible combinations of primary and secondary coolants in the SMR systems. Size and cost of heat exchanger were evaluated for the given temperature requirement of each SMR.

Su-Jong Yoon [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Piyush Sabharwall [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Eung-Soo Kim [Seoul National Univ., Seoul (Korea, Republic of)

2014-03-01T23:59:59.000Z

60

Thermionic Reactor Design Studies  

SciTech Connect (OSTI)

During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic losses in the electrodes of full-core-height diodes. Moreover, placing the fuel on the outside of the diode makes possible reactors with much higher fuel volume fractions, which enable power-flattened fast reactors scalable to very low power levels without the need for life-limiting hydride moderators or the use of efficiency-limiting driver fuel. In addition, with the fuel on the outside its swelling does not increase the emitter diameter or reduce the interelectrode gap. This should permit long lifetimes even with closer spacings, which can significantly improve the system efficiences. This was confirmed by coupled neutronic, thermal, thermionic, and electrical system analyses - some of which are presented in this paper - and by subsequent experiments. A companion paper presented next describes the fabrication and testing of full-scale converter elements, both fueled and unfueled, and summarizes the test results obtained. There is a duplicate copy in the file.

Schock, Alfred

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Framework to Expand and Advance Probabilistic Risk Assessment to Support Small Modular Reactors  

SciTech Connect (OSTI)

During the early development of nuclear power plants, researchers and engineers focused on many aspects of plant operation, two of which were getting the newly-found technology to work and minimizing the likelihood of perceived accidents through redundancy and diversity. As time, and our experience, has progressed, the realization of plant operational risk/reliability has entered into the design, operation, and regulation of these plants. But, to date, we have only dabbled at the surface of risk and reliability technologies. For the next generation of small modular reactors (SMRs), it is imperative that these technologies evolve into an accepted, encompassing, validated, and integral part of the plant in order to reduce costs and to demonstrate safe operation. Further, while it is presumed that safety margins are substantial for proposed SMR designs, the depiction and demonstration of these margins needs to be better understood in order to optimize the licensing process.

Curtis Smith; David Schwieder; Robert Nourgaliev; Cherie Phelan; Diego Mandelli; Kellie Kvarfordt; Robert Youngblood

2012-09-01T23:59:59.000Z

62

Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting  

SciTech Connect (OSTI)

During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modeling and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.

Curtis Smith

2013-09-01T23:59:59.000Z

63

EEL 4712 Digital Design 1. Catalog Description (3 credits) Advanced modular logic design, design languages,  

E-Print Network [OSTI]

EEL 4712 Digital Design 1. Catalog Description ­ (3 credits) Advanced modular logic design, design systems, using the state of the art technologies and design environments and tools. 4. Contribution containing an Altera Cyclone II EP2C8T144C8 FPGA (will be provided to you, included in lab fee) 13

Fang, Yuguang "Michael"

64

Secretary Chu Op-Ed on Small Modular Reactors in the Wall Street Journal |  

Broader source: Energy.gov (indexed) [DOE]

Op-Ed on Small Modular Reactors in the Wall Street Op-Ed on Small Modular Reactors in the Wall Street Journal Secretary Chu Op-Ed on Small Modular Reactors in the Wall Street Journal March 23, 2010 - 12:00am Addthis Washington, D.C. - Today, the Wall Street Journal published an op-ed by U.S. Secretary of Energy Steven Chu on small modular reactors. The op-ed can be viewed on the Wall Street Journal. The text of the op-ed is below: America's New Nuclear Option Small modular reactors will expand the ways we use atomic power. By Steven Chu Wall Street Journal, March 23, 2010 America is on the cusp of reviving its nuclear power industry. Last month President Obama pledged more than $8 billion in conditional loan guarantees for what will be the first U.S. nuclear power plant to break ground in nearly three decades. And with the new authority granted by the president's

65

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal March 23, 2010 - 12:24pm Addthis Washington, D.C. - Today, the Wall Street Journal published an op-ed by U.S. Secretary of Energy Steven Chu on small modular reactors. The op-ed can be found here. The text of the op-ed is below: Small modular reactors will expand the ways we use atomic power. By Steven Chu, Secretary of Energy Wall Street Journal America is on the cusp of reviving its nuclear power industry. Last month President Obama pledged more than $8 billion in conditional loan guarantees for what will be the first U.S. nuclear power plant to break ground in nearly three decades. And with the new authority granted by the president's

66

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal March 23, 2010 - 12:24pm Addthis Washington, D.C. - Today, the Wall Street Journal published an op-ed by U.S. Secretary of Energy Steven Chu on small modular reactors. The op-ed can be found here. The text of the op-ed is below: Small modular reactors will expand the ways we use atomic power. By Steven Chu, Secretary of Energy Wall Street Journal America is on the cusp of reviving its nuclear power industry. Last month President Obama pledged more than $8 billion in conditional loan guarantees for what will be the first U.S. nuclear power plant to break ground in nearly three decades. And with the new authority granted by the president's

67

Small Modular Reactor: First of a Kind (FOAK) and Nth of a Kind (NOAK) Economic Analysis  

SciTech Connect (OSTI)

Small modular reactors (SMRs) refer to any reactor design in which the electricity generated is less than 300 MWe. Often medium sized reactors with power less than 700 MWe are also grouped into this category. Internationally, the development of a variety of designs for SMRs is booming with many designs approaching maturity and even in or nearing the licensing stage. It is for this reason that a generalized yet comprehensive economic model for first of a kind (FOAK) through nth of a kind (NOAK) SMRs based upon rated power, plant configuration, and the fiscal environment was developed. In the model, a particular projects feasibility is assessed with regards to market conditions and by commonly utilized capital budgeting techniques, such as the net present value (NPV), internal rate of return (IRR), Payback, and more importantly, the levelized cost of energy (LCOE) for comparison to other energy production technologies. Finally, a sensitivity analysis was performed to determine the effects of changing debt, equity, interest rate, and conditions on the LCOE. The economic model is primarily applied to the near future water cooled SMR designs in the United States. Other gas cooled and liquid metal cooled SMR designs have been briefly outlined in terms of how the economic model would change. FOAK and NOAK SMR costs were determined for a site containing seven 180 MWe water cooled SMRs and compared to a site containing one 1260 MWe reactor. With an equal share of debt and equity and a 10% cost of debt and equity, the LCOE was determined to be $79 $84/MWh and $80/MWh for the SMR and large reactor sites, respectively. With a cost of equity of 15%, the SMR LCOE increased substantially to $103 $109/MWh. Finally, an increase in the equity share to 70% at the 15% cost of equity resulted in an even higher LCOE, demonstrating the large variation in results due to financial and market factors. The NPV and IRR both decreased with increasing LCOE. Unless the price of electricity increases along with the LCOE, the projects may become unprofitable. This is the case at the LCOE of $103 $109/MW, in which the NPV became negative. The IRR increased with increasing electricity price. Three cases, electric only base, storagecompressed air energy storage or pumped hydro, and hydrogen production, were performed incorporating SMRs into a nuclear wind natural gas hybrid energy system for the New York West Central region. The operational costs for three cases were calculated as $27/MWh, $25/MWh, and $28/MWh, respectively. A 3% increase in profits was demonstrated for the storage case over the electric only base case.

Lauren M. Boldon; Piyush Sabharwall

2014-08-01T23:59:59.000Z

68

SASSI Methodology-Based Sensitivity Studies for Deeply Embedded Structures, Such As Small Modular Reactors (SMRs)  

Broader source: Energy.gov [DOE]

SASSI Methodology-Based Sensitivity Studies for Deeply Embedded Structures, Such As Small Modular Reactors (SMRs) Dr. Dan M. Ghiocel Ghiocel Predictive Technologies Inc. http://www.ghiocel-tech.com 2014 DOE Natural Phenomena Hazards Meeting Germantown, MD, October 21-22, 2014

69

Small Modular Reactor Report (SEAB) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reactors Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly A Strategic Framework for SMR Deployment Meeting Materials: December 9, 2010...

70

Safety aspects of the Modular High-Temperature Gas-Cooled Reactor (MHTGR)  

SciTech Connect (OSTI)

The Modular High-Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry and the utilities. The design utilizes the basic high-temperature gas-cooled reactor (HTGR) features of ceramic fuel, helium coolant, and a graphite moderator. The qualitative top-level safety requirement is that the plant's operation not disturb the normal day-to-day activities of the public. The MHTGR safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles has been evaluated. A broad range of challenges to core heat removal have been examined which include a loss of helium pressure and a simultaneous loss of forced cooling of the core. The challenges to control of heat generation have considered not only the failure to insert the reactivity control systems, but the withdrawal of control rods. Finally, challenges to control chemical attack of the ceramic coated fuel have been considered, including catastrophic failure of the steam generator allowing water ingress or of the pressure vessels allowing air ingress. The plant's response to these extreme challenges is not dependent on operator action and the events considered encompass conceivable operator errors. In the same vein, reliance on radionuclide retention within the full particle and on passive features to perform a few key functions to maintain the fuel within acceptable conditions also reduced susceptibility to external events, site-specific events, and to acts of sabotage and terrorism. 4 refs., 14 figs., 1 tab.

Silady, F.A.; Millunzi, A.C.

1989-08-01T23:59:59.000Z

71

Final report on the use of the modular-logic-nomenclature approach for the N-reactor probabilistic risk assessment  

SciTech Connect (OSTI)

The N-Reactor probabilistic risk assessment adaption of the modular logic approach for fault tree modeling has led to the update of the master logic diagram (MLD) nomenclature to conform with a standard modular-logic-model-nomeclature format. This report describes the MLD nomenclature system and provides a listing of the updated MLD label codes, along with the original codes.

NONE

1986-06-10T23:59:59.000Z

72

Population Sensitivity Evaluation of Two Proposed Hampton Roads Area Sites for a Possible Small Modular Reactor  

SciTech Connect (OSTI)

The overall objective of this research project is to use the OR-SAGE tool to support the US Department of Energy (DOE) Office of Nuclear Energy (NE) in evaluating future electrical generation deployment options for small modular reactors (SMRs) in areas with significant energy demand from the federal sector. Deployment of SMRs in zones with high federal energy use can provide a means of meeting federal clean energy goals.

Belles, R. J. [ORNL; Omitaomu, O. A. [ORNL

2014-08-01T23:59:59.000Z

73

Nuclear Reactor Safety Design Criteria  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Certified 11-18-10.

1993-01-19T23:59:59.000Z

74

Steam generator conceptual design for the modular HTGR - Dissimilar metal weld considerations  

SciTech Connect (OSTI)

The steam generator for the current Modular High Temperature Gas-Cooled Reactor (MHTGR) has evolved from a technology basis developed in U.S. and European gas-cooled reactor programs. The MHTGR steam generator is a vertically-oriented, counterflow, shell-and-tube, once-through, non-reheat, helical heat exchanger with helium on the shell side and water/steam in the tubes. In the MHTGR applications, the normal operating temperatures of the steam generator tubes can be as high as 638/sup 0/C (1180/sup 0/F). Concerns such as cost, creep strength, steam side scaling and stress corrosion cracking often lead to a design decision to use two different tube materials, one for the evaporating portion and another for the superheating portion of the steam generator. The current MHTGR steam generator design utilizes 2 1/4 CR - 1 Mo material for the economizer/evaporator/initial superheater tube section and Alloy 800H material for the finishing superheat tube section. Therefore, a dissimilar metal weld (DMW) is incorporated in each tube circuit. This feature of the design imposes certain important constraints on the steam generator designer. This paper presents an overview of the MHTGR steam generator conceptual design, and then focuses on the DMW considerations and how these have influenced the design configuration.

Spring, A.H.; Basol, M.

1987-01-01T23:59:59.000Z

75

MORECA: A computer code for simulating modular high-temperature gas-cooled reactor core heatup accidents  

SciTech Connect (OSTI)

The design features of the modular high-temperature gas-cooled reactor (MHTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. This report describes the ORNL MORECA code, which was developed for analyzing postulated long-term core heatup scenarios for which active cooling systems used to remove afterheat following the accidents can be assumed to the unavailable. Simulations of long-term loss-of-forced-convection accidents, both with and without depressurization of the primary coolant, have shown that maximum core temperatures stay below the point at which any significant fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. MORECA models the US Department of Energy reference design of a standard MHTGR.

Ball, S.J. (Oak Ridge National Lab., TN (United States))

1991-10-01T23:59:59.000Z

76

Modular Hybrid Plasma Reactor for Low Cost Bulk Production of Nanomaterials  

SciTech Connect (OSTI)

INL developed a bench scale modular hybrid plasma system for gas phase nanomaterials synthesis. The system was being optimized for WO3 nanoparticles production and scale model projection to a 300 kW pilot system. During the course of technology development many modifications had been done to the system to resolve technical issues that had surfaced and also to improve the performance. All project tasks had been completed except 2 optimization subtasks. These 2 subtasks, a 4-hour and an 8-hour continuous powder production runs at 1 lb/hr powder feeding rate, were unable to complete due to technical issues developed with the reactor system. The 4-hour run had been attempted twice and both times the run was terminated prematurely. The modular electrode for the plasma system was significantly redesigned to address the technical issues. Fabrication of the redesigned modular electrodes and additional components had been completed at the end of the project life. However, not enough resource was available to perform tests to evaluate the performance of the new modifications. More development work would be needed to resolve these problems prior to scaling. The technology demonstrated a surprising capability of synthesizing a single phase of meta-stable delta-Al2O3 from pure alpha-phase large Al2O3 powder. The formation of delta-Al2O3 was surprising because this phase is meta-stable and only formed between 973-1073 K, and delta-Al2O3 is very difficult to synthesize as a single phase. Besides the specific temperature window to form this phase, this meta-stable phase may have been stabilized by nanoparticle size formed in a high temperature plasma process. This technology may possess the capability to produce unusual meta-stable nanophase materials that would be otherwise difficult to produce by conventional methods. A 300 kW INL modular hybrid plasma pilot scale model reactor had been projected using the experimental data from PPG Industries 300 kW hot wall plasma reactor. The projected size of the INL 300 kW pilot model reactor would be about 15% that of the PPG 300 kW hot wall plasma reactor. Including the safety net factor the projected INL pilot reactor size would be 25-30% of the PPG 300 kW hot wall plasma pilot reactor. Due to the modularity of the INL plasma reactor and the energy cascading effect from the upstream plasma to the downstream plasma the energy utilization is more efficient in material processing. It is envisioning that the material through put range for the INL pilot reactor would be comparable to the PPG 300 kW pilot reactor but the energy consumption would be lower. The INL hybrid plasma technology is rather close to being optimized for scaling to a pilot system. More near term development work is still needed to complete the process optimization before pilot scaling.

Peter C. Kong

2011-12-01T23:59:59.000Z

77

Modular CHP System for Utica College: Design Specification, March 2007  

Broader source: Energy.gov [DOE]

This report describes a system specification for purchasing the modularized components of a cogeneration facility for assembly, shipping, and onsite operation.

78

INITIATORS AND TRIGGERING CONDITIONS FOR ADAPTIVE AUTOMATION IN ADVANCED SMALL MODULAR REACTORS  

SciTech Connect (OSTI)

It is anticipated that Advanced Small Modular Reactors (AdvSMRs) will employ high degrees of automation. High levels of automation can enhance system performance, but often at the cost of reduced human performance. Automation can lead to human out-of the loop issues, unbalanced workload, complacency, and other problems if it is not designed properly. Researchers have proposed adaptive automation (defined as dynamic or flexible allocation of functions) as a way to get the benefits of higher levels of automation without the human performance costs. Adaptive automation has the potential to balance operator workload and enhance operator situation awareness by allocating functions to the operators in a way that is sensitive to overall workload and capabilities at the time of operation. However, there still a number of questions regarding how to effectively design adaptive automation to achieve that potential. One of those questions is related to how to initiate (or trigger) a shift in automation in order to provide maximal sensitivity to operator needs without introducing undesirable consequences (such as unpredictable mode changes). Several triggering mechanisms for shifts in adaptive automation have been proposed including: operator initiated, critical events, performance-based, physiological measurement, model-based, and hybrid methods. As part of a larger project to develop design guidance for human-automation collaboration in AdvSMRs, researchers at Idaho National Laboratory have investigated the effectiveness and applicability of each of these triggering mechanisms in the context of AdvSMR. Researchers reviewed the empirical literature on adaptive automation and assessed each triggering mechanism based on the human-system performance consequences of employing that mechanism. Researchers also assessed the practicality and feasibility of using the mechanism in the context of an AdvSMR control room. Results indicate that there are tradeoffs associated with each mechanism, but that some are more applicable to the AdvSMR domain. The two mechanisms that consistently improve performance in laboratory studies are operator initiated adaptive automation based on hierarchical task delegation and the Electroencephalogram(EEG) based measure of engagement. Current EEG methods are intrusive and require intensive analysis; therefore it is not recommended for an AdvSMR control rooms at this time. Researchers also discuss limitations in the existing empirical literature and make recommendations for further research.

Katya L Le Blanc; Johanna h Oxstrand

2014-04-01T23:59:59.000Z

79

646 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 5, OCTOBER 1997 Design of Assembly Systems for Modular Products  

E-Print Network [OSTI]

Systems for Modular Products David W. He and Andrew Kusiak, Member, IEEE Abstract--To respond systems. Given a family of modular products, designing low cost assembly systems is an important problem. In this paper, an approach for the design of assembly systems for modular products is proposed. The assembly

Kusiak, Andrew

80

Development of the Mathematics of Learning Curve Models for Evaluating Small Modular Reactor Economics  

SciTech Connect (OSTI)

The cost of nuclear power is a straightforward yet complicated topic. It is straightforward in that the cost of nuclear power is a function of the cost to build the nuclear power plant, the cost to operate and maintain it, and the cost to provide fuel for it. It is complicated in that some of those costs are not necessarily known, introducing uncertainty into the analysis. For large light water reactor (LWR)-based nuclear power plants, the uncertainty is mainly contained within the cost of construction. The typical costs of operations and maintenance (O&M), as well as fuel, are well known based on the current fleet of LWRs. However, the last currently operating reactor to come online was Watts Bar 1 in May 1996; thus, the expected construction costs for gigawatt (GW)-class reactors in the United States are based on information nearly two decades old. Extrapolating construction, O&M, and fuel costs from GW-class LWRs to LWR-based small modular reactors (SMRs) introduces even more complication. The per-installed-kilowatt construction costs for SMRs are likely to be higher than those for the GW-class reactors based on the property of the economy of scale. Generally speaking, the economy of scale is the tendency for overall costs to increase slower than the overall production capacity. For power plants, this means that doubling the power production capacity would be expected to cost less than twice as much. Applying this property in the opposite direction, halving the power production capacity would be expected to cost more than half as much. This can potentially make the SMRs less competitive in the electricity market against the GW-class reactors, as well as against other power sources such as natural gas and subsidized renewables. One factor that can potentially aid the SMRs in achieving economic competitiveness is an economy of numbers, as opposed to the economy of scale, associated with learning curves. The basic concept of the learning curve is that the more a new process is repeated, the more efficient the process can be made. Assuming that efficiency directly relates to cost means that the more a new process is repeated successfully and efficiently, the less costly the process can be made. This factor ties directly into the factory fabrication and modularization aspect of the SMR paradigmmanufacturing serial, standardized, identical components for use in nuclear power plants can allow the SMR industry to use the learning curves to predict and optimize deployment costs.

Harrison, T. J. [ORNL

2014-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Design principles of mammalian signaling networks : emergent properties at modular and global scales  

E-Print Network [OSTI]

This thesis utilizes modeling approaches rooted in statistical physics and physical chemistry to investigate several aspects of cellular signal transduction at both the modular and global levels. Design principles of ...

Locasale, Jason W

2008-01-01T23:59:59.000Z

82

Design and analysis of a concrete modular housing system constructed with 3D panels  

E-Print Network [OSTI]

An innovative modular house system design utilizing an alternative concrete residential building system called 3D panels is presented along with an overview of 3D panels as well as relevant methods and markets. The proposed ...

Sarcia, Sam Rhea, 1982-

2004-01-01T23:59:59.000Z

83

Passive solar strategies as a logic for improved architectural design: Two prototypes for modular housing  

SciTech Connect (OSTI)

This paper presents a project in which two passive solar housing prototypes were developed for mass production as modular housing. The prototypes have been built and are currently being marketed and thermally monitored. The project received support from the U.S. DOE under its Passive Solar Manufactured Buildings Program. The goal of this project was to develop a prototype which incorporated passive solar technologies into modular housing. Because modular housing is an industrialized product, this incorporation involved relating to a construction process as well as deriving the design of a new product. This paper addresses the issues of modular housing production that impact energy efficiency, passive solar design, and architectural quality. The product's design evolution is described, with emphasis upon how solutions for the prototype(s) were derived in response to factory construction processes, cost, existing and potential markets and the extended goal to improve both energy efficiency and architectural design while introducing passive solar strategies.

Reeder, B.C.

1983-12-01T23:59:59.000Z

84

13 - Generation IV reactor designs, operation and fuel cycle  

Science Journals Connector (OSTI)

Abstract: This chapter looks at Generation IV nuclear reactors, such as the very high-temperature reactor (VHTR), the supercritical water reactor (SCWR), the molten salt reactor (MSR), the sodium-cooled fast reactor (SFR), the lead-cooled fast reactor (LFR) and the gas-cooled fast reactor (GFR). Reactor designs and fuel cycles are also described.

N. Cerullo; G. Lomonaco

2012-01-01T23:59:59.000Z

85

Material Control and Accounting Design Considerations for High-Temperature Gas Reactors  

SciTech Connect (OSTI)

The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work summarized in this report, namely the development of guidance to support the consideration of MC&A in the design of both pebble-bed and prismatic-fueled HTGRs. The objective is to identify and incorporate design features into the facility design that will cost effectively aid in making MC&A more effective and efficient, with minimum impact on operations. The theft of nuclear material is addressed through both MC&A and physical protection, while the threat of sabotage is addressed principally through physical protection.

Trond Bjornard; John Hockert

2011-08-01T23:59:59.000Z

86

Representative Source Terms and the Influence of Reactor Attributes on Functional Containment in Modular High-Temperature Gas-Cooled Reactors  

SciTech Connect (OSTI)

Modular high-temperature gas-cooled reactors (MHTGRs) offer a high degree of passive safety. The low power density of the reactor and the high heat capacity of the graphite core result in slow transients that do not challenge the integrity of the robust TRISO fuel. Another benefit of this fuel form and the surrounding graphite is their superior ability to retain fission products under all anticipated normal and off-normal conditions, which limits reactor accident source terms to very low values. In this paper, we develop estimates of the source term for a generic MHTGR to illustrate the performance of the radionuclide barriers that comprise the MHTGR functional containment. We also examine the influence of initial fuel quality, fuel performance/failure, reactor outlet temperature, and retention outside of the reactor core on the resultant source term to the environment.

D. A. Petti; Hans Gougar; Dick Hobbins; Pete Lowry

2013-11-01T23:59:59.000Z

87

Energy Department Announces New Investment in Innovative Small Modular  

Broader source: Energy.gov (indexed) [DOE]

Announces New Investment in Innovative Small Announces New Investment in Innovative Small Modular Reactor Energy Department Announces New Investment in Innovative Small Modular Reactor December 12, 2013 - 4:04pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department today announced an award to NuScale Power LLC to support a new project to design, certify and help commercialize innovative small modular reactors (SMRs) in the United States. This award follows a funding opportunity announcement in March 2013. View a new Energy Department infographic on small modular reactors and their potential to provide clean, safe and cost-effective nuclear energy. "Small modular reactors represent a new generation of safe, reliable,

88

Mirror Advanced Reactor Study interim design report  

SciTech Connect (OSTI)

The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

Not Available

1983-04-01T23:59:59.000Z

89

Product modular design incorporating life cycle issues - Group Genetic Algorithm (GGA) based method  

Science Journals Connector (OSTI)

Traditional design methods lead to serious environmental problems because of the oversight of life cycle issues such as recycling. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the life cycle related ones. These attributes form what we call Modular Driving Forces (MDFs). The proposed method first determines what \\{MDFs\\} should be included and what their weights should be. Then the component to component relations with each specific MDF are generated and expressed in a matrix. After that, the comprehensive relations between components with different \\{MDFs\\} are established with the introduction of a comprehensive relation matrix for further modular optimization. Each element in the comprehensive matrix denotes the relation of every two components affected by all the MDFs. Finally, Group Genetic Algorithm (GGA) is employed to conduct modular optimization. The modular object adaptive function constructed for GGA optimization is to maximize the interactions between components within modules. The proposed method is explained by a case study of a refrigerator. Sensitivity analysis shows that the proposed method is robust.

Suiran Yu; Qingyan Yang; Jing Tao; Xia Tian; Fengfu Yin

2011-01-01T23:59:59.000Z

90

Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility  

Broader source: Energy.gov [DOE]

eSolar, under the Baseload CSP FOA, is designing a 100-MW, 75% capacity factor, molten salt power tower plant, based around a molten salt receiver and heliostat field module with a nominal thermal rating of 50 MWth. They are taking a modular approach, which can be scaled through replication of the receiver/field module to meet output and capacity factor requirements.

91

Design options for a bunsen reactor.  

SciTech Connect (OSTI)

This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

Moore, Robert Charles

2013-10-01T23:59:59.000Z

92

A Basic LEGO Reactor Design for the Provision of Lunar Surface Power  

SciTech Connect (OSTI)

A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces.

John Darrell Bess

2008-06-01T23:59:59.000Z

93

Computer simulations help design new nuclear reactors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer simulations help design new nuclear reactors Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Reprinted from "Argonne Now" - Spring 2008 Physicist Won-Sik Yang and computer scientist Andrew Siegel hold a fuel rod assembly in front of a model of the Experimental Breeder Reactor-II

94

The Argonaut Reactor - Reactors designed/built by Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Achievements > Achievements > Argonne Reactors > Training Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

95

Modular High-Temperature Gas-Cooled Reactor short term thermal response to flow and reactivity transients  

SciTech Connect (OSTI)

The analyses reported here have been conducted at the Oak Ridge National Laboratory (ORNL) for the US Nuclear Regulatory Commission's (NRC's) Division of Regulatory Applications of the Office of Nuclear Regulatory Research. The short-term thermal response of the Modular High-Temperature Gas-Cooled Reactor (MHTGR) is analyzed for a range of flow and reactivity transients. These include loss of forced circulation (LOFC) without scram, moisture ingress, spurious withdrawal of a control rod group, hypothetical large and rapid positive reactivity insertion, and a rapid core cooling event. The coupled heat transfer-neutron kinetics model is also described.

Cleveland, J.C.

1988-01-01T23:59:59.000Z

96

The passive safety characteristics of modular high temperature gas-cooled reactor fuel elements  

SciTech Connect (OSTI)

High-Temperature Gas-Cooled Reactors (HTGR) in both the US and West Germany use an all-ceramic, coated fuel particle to retain fission products. Data from irradiation, postirradiation examinations and postirradiation heating experiments are used to study the performance capabilities of the fuel particles. The experimental results from fission product release tests with HTGR fuel are discussed. These data are used for development of predictive fuel performance models for purposes of design, licensing, and risk analyses. During off normal events, where temperatures may reach up to 1600/degree/C, the data show that no significant radionuclide releases from the fuel will occur.

Goodin, D.T.; Kania, M.J.; Nabielek, H.; Schenk, W.; Verfondern, K.

1988-01-01T23:59:59.000Z

97

U.S. Department Of Energy Advanced Small Modular Reactor R&D Program: Instrumentation, Controls, and Human-Machine Interface (ICHMI) Pathway  

SciTech Connect (OSTI)

Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of modern ICHMI technology. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, several DOE programs have substantial ICHMI RD&D elements within their respective research portfolios. This paper describes current ICHMI research in support of advanced small modular reactors. The objectives that can be achieved through execution of the defined RD&D are to provide optimal technical solutions to critical ICHMI issues, resolve technology gaps arising from the unique measurement and control characteristics of advanced reactor concepts, provide demonstration of needed technologies and methodologies in the nuclear power application domain, mature emerging technologies to facilitate commercialization, and establish necessary technical evidence and application experience to enable timely and predictable licensing. 1 Introduction Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of m

Holcomb, David Eugene [ORNL; Wood, Richard Thomas [ORNL

2013-01-01T23:59:59.000Z

98

Modular design of the LED vehicle projector headlamp system  

Science Journals Connector (OSTI)

A well designed headlamp for a vehicle lighting system is very important as it provides drivers with safe and comfortable driving conditions at night or in dark places. With the...

Hsieh, Chi-Chang; Li, Yan-Huei; Hung, Chih-Ching

2013-01-01T23:59:59.000Z

99

Dependency models as a basis for analyzing software product platform modularity : a case study in strategic software design rationalization  

E-Print Network [OSTI]

It is broadly accepted among software managers and architects that maintaining the integrity of software designs is important for the long-term health and viability of software product platforms. The use of modular, ...

LaMantia, Matthew J. (Matthew John)

2006-01-01T23:59:59.000Z

100

Assessment of Algal Farm Designs using a Dynamic Modular Approach  

SciTech Connect (OSTI)

The notion of renewable energy provides an importantmechanism for diversifying an energy portfolio,which ultimately would have numerous benefits including increased energy resilience, reduced reliance on foreign energysupplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth,and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associatedwith algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the development and application of the Algae Logistics Model (ALM) which is tailored to help address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments ofmultiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tierwere sub-selected and assessed using daily site-specific algaebiomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass productivity and that integration of novel dewatering equipment, order of operations, and equipment scaling can also have significant impacts on economics.

Jared M. Abodeely; Daniel M. Stevens; Allison E. Ray; Deborah T. Newby; Andre M. Coleman; Kara G. Cafferty

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Assessment of Algal Farm Designs Using a Dynamic Modular Approach  

SciTech Connect (OSTI)

The notion of renewable energy provides an important mechanism for diversifying an energy portfolio, which ultimately would have numerous benefits including increased energy resilience, reduction of foreign energy supplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth, and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associated with algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the Algae Logistics Model (ALM) which helps to address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments of multiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tier were sub-selected and assessed using daily site-specific algae biomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass productivity and that integration of novel dewatering equipment, order of operations, and equipment scaling can also have significant impacts on economics.

Abodeely, Jared; Coleman, Andre M.; Stevens, Daniel M.; Ray, Allison E.; Cafferty, Kara G.; Newby, Deborah T.

2014-05-03T23:59:59.000Z

102

Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report  

SciTech Connect (OSTI)

Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

Lambarski, T.; Minyard, G. [Solar Electric Specialties Co., Willits, CA (United States)

1998-10-01T23:59:59.000Z

103

Using reactor operating experience to improve the design of a new Broad Application Test Reactor  

SciTech Connect (OSTI)

Increasing regulatory demands and effects of plant aging are limiting the operation of existing test reactors. Additionally, these reactors have limited capacities and capabilities for supporting future testing missions. A multidisciplinary team of experts developed sets of preliminary safety requirements, facility user needs, and reactor design concepts for a new Broad Application Test Reactor (BATR). Anticipated missions for the new reactor include fuels and materials irradiation testing, isotope production, space testing, medical research, fusion testing, intense positron research, and transmutation doping. The early BATR design decisions have benefited from operating experiences with existing reactors. This paper discusses these experiences and highlights their significance for the design of a new BATR.

Fletcher, C.D.; Ryskamp, J.M.; Drexler, R.L.; Leyse, C.F.

1993-07-01T23:59:59.000Z

104

International Effort to Design Nuclear Fusion Reactor Launched  

Science Journals Connector (OSTI)

International Effort to Design Nuclear Fusion Reactor Launched ... Their mission is to draw up a design concept for a thermonuclear fusion reactor by December 1990. ... The work at Garching is a direct outgrowth of the recently signed International Thermonuclear Experimental Reactor (ITER) pact involving the European Community, Japan, the Soviet Union, and the U.S. (C&EN, April 25, page 19). ...

DERMOT A. O'SULLLVAN

1988-05-23T23:59:59.000Z

105

Advanced thermionic reactor systems design code  

SciTech Connect (OSTI)

An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance.

Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C. (Department of Nuclear Engineering, Radiation Center, C116, Oregon State University, Corvallis, Oregon 97331-5902 (US))

1991-01-01T23:59:59.000Z

106

Neutron transport analysis for nuclear reactor design  

DOE Patents [OSTI]

Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values.

Vujic, Jasmina L. (Lisle, IL)

1993-01-01T23:59:59.000Z

107

A Methodology for the Neutronics Design of Space Nuclear Reactors  

SciTech Connect (OSTI)

A methodology for the neutronics design of space power reactors is presented. This methodology involves balancing the competing requirements of having sufficient excess reactivity for the desired lifetime, keeping the reactor subcritical at launch and during submersion accidents, and providing sufficient control over the lifetime of the reactor. These requirements are addressed by three reactivity values for a given reactor design: the excess reactivity at beginning of mission, the negative reactivity at shutdown, and the negative reactivity margin in submersion accidents. These reactivity values define the control worth and the safety worth in submersion accidents, used for evaluating the merit of a proposed reactor type and design. The Heat Pipe-Segmented Thermoelectric Module Converters space reactor core design is evaluated and modified based on the proposed methodology. The final reactor core design has sufficient excess reactivity for 10 years of nominal operation at 1.82 MW of fission power and is subcritical at launch and in all water submersion accidents.

King, Jeffrey C.; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States)

2004-02-04T23:59:59.000Z

108

Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors  

E-Print Network [OSTI]

a tool for reactor design optimization, and for design ofdesign tool for reactor design optimization, and for designdesign tool for reactor design optimization, and for design

Scarlat, Raluca Olga

2012-01-01T23:59:59.000Z

109

Technical Needs for Prototypic Prognostic Technique Demonstration for Advanced Small Modular Reactor Passive Components  

SciTech Connect (OSTI)

This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components that may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and potential synergies with other national laboratory and university partners.

Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.; Ramuhalli, Pradeep; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

2013-05-17T23:59:59.000Z

110

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...Schrattenholzer (S1) report learning...include technical progress economies...suggests, the result we report are probably...high temperature gas cooled reactor...adapted from the report in question (29...storage systems 3) Turbine plant equipmentHigh...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

111

Manhattan Project: Production Reactor (Pile) Design, Met Lab, 1942  

Office of Scientific and Technical Information (OSTI)

Schematic of the X-10 Graphite Reactor, Oak Ridge PRODUCTION REACTOR (PILE) DESIGN Schematic of the X-10 Graphite Reactor, Oak Ridge PRODUCTION REACTOR (PILE) DESIGN (Met Lab, 1942) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 By 1942, scientists had established that some of the uranium exposed to radioactivity in a reactor (pile) would eventually decay into plutonium, which could then be separated by chemical means from the uranium. Important theoretical research on this was ongoing, but the work was scattered at various universities from coast to coast. In early 1942, Arthur Compton arranged for all pile research to be moved to the Met Lab at the University of Chicago.

112

TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO  

E-Print Network [OSTI]

GA­A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO by C.P.C. WONG and R.D. STAMBAUGH or reflect those of the United States Government or any agency thereof. #12;GA­A23168 TOKAMAK REACTOR DESIGNS JULY 1999 #12;C.P.C. WONG AND R.D. STAMBAUGH TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO

California at Los Angeles, University of

113

Secretary Chu Statement on AP1000 Reactor Design Certification | Department  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu Statement on AP1000 Reactor Design Certification Secretary Chu Statement on AP1000 Reactor Design Certification Secretary Chu Statement on AP1000 Reactor Design Certification December 22, 2011 - 3:25pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu issued the following statement today in support of the Nuclear Regulatory Commission's (NRC) decision to certify Westinghouse Electric's AP1000 nuclear reactor design, a significant step towards constructing a new generation of U.S. nuclear reactors. In February 2010, the Obama Administration announced the offer of a conditional commitment for a $8.33 billion loan guarantee for the construction and operation of two AP1000 reactors at Alvin W. Vogtle Electric Generation Plant in Burke, Georgia. "The Administration and the Energy Department are committed to restarting

114

Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor  

SciTech Connect (OSTI)

The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge burnup level, while retaining its inherent safety characteristics. Using generic pebble bed reactor cores, this task will perform physics calculations to evaluate the capabilities of the pebble bed reactor to perform utilization and destruction of LWR used-fuel transuranics. The task will use established benchmarked models, and will introduce modeling advancements appropriate to the nature of the fuel considered (high TRU content and high burn-up).

B. Boer; A. M. Ougouag

2010-09-01T23:59:59.000Z

115

The design of a compact integral medium size PWR : the CIRIS  

E-Print Network [OSTI]

The International Reactor Innovative and Secure (IRIS) is an advanced medium size, modular integral light water reactor design, rated currently at 1000 MWt. IRIS design has been under development by over 20 organizations ...

Shirvan, Koroush

2010-01-01T23:59:59.000Z

116

Design of a 25-kWe Surface Reactor System Based on SNAP Reactor Technologies  

SciTech Connect (OSTI)

A Hastelloy-X clad, sodium-potassium (NaK-78) cooled, moderated spectrum reactor using uranium zirconium hydride (UZrH) fuel based on the SNAP program reactors is a promising design for use in surface power systems. This paper presents a 98 kWth reactor for a power system the uses multiple Stirling engines to produce 25 kWe-net for 5 years. The design utilizes a pin type geometry containing UZrHx fuel clad with Hastelloy-X and NaK-78 flowing around the pins as coolant. A compelling feature of this design is its use of 49.9% enriched U, allowing it to be classified as a category III-D attractiveness and reducing facility costs relative to highly-enriched space reactor concepts. Presented below are both the design and an analysis of this reactor's criticality under various safety and operations scenarios.

Dixon, David D. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Hiatt, Matthew T. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Poston, David I.; Kapernick, Richard J. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2006-01-20T23:59:59.000Z

117

Design of chemical reactors of the heat exchanger type  

E-Print Network [OSTI]

Operating Profile - Example I 23 , 53 Heat Rate Comparison - Example I Operating Profile - Example 2 Operating Profile - Example 3 Operating Profile - Example 4 Equations (113) and (114) at 790 Reactor Profile - Exan piss 5 and 6 Heat of Reaction.... simple inathematical function of time. While his work was a step forward, it is not directly applicable to the problem of reactor design. Hougen and Watsor. (3), and recently Fair and Rase (4), illustra- ted an exact non-machine method of reactor...

McBeth, Lloyd Theodore

2012-06-07T23:59:59.000Z

118

Modular Inverter for Advanced Control Applications In the fall of 2003, a team of graduate students was assembled to design and construct a  

E-Print Network [OSTI]

a set of well-documented inverters of various ratings capable of quickly implementing a new control-powernts2\\ece power design archives\\documents\\specification documents\\sd00004-001 modular inverter systemModular Inverter for Advanced Control Applications May 2006 In the fall of 2003, a team of graduate

Kimball, Jonathan W.

119

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...future, both lower up-front cost and new markets could yield a more attractive economic paradigm for SMR...that are designed to accelerate their market penetration. These investigations usually...monitoringEarthing equipmentDiesel and diesel control equipmentAux equipment: transformers...

Ahmed Abdulla; Ins Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

120

Design, Fabrication, and Certification of Advanced Modular PV Power Systems Final Technical Progress Report  

SciTech Connect (OSTI)

This report describes the overall accomplishments and benefits of Solar Electric Specialties Co. (SES) under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. SES addressed design issues related to their modular autonomous PV power supply (MAPPS) and a mobile photogenset. MAPPS investigations included gel-cell batteries mounted horizontally; redesign of the SES power supply; modified battery enclosure for increased safety and reduced cost; programmable, interactive battery charge controllers; and UL and FM listings. The photogenset systems incorporate generators, battery storage, and PV panels for a mobile power supply. The unit includes automatic oil-change systems for the propane generators, collapsible array mounts for the PV enclosure, and internal stowage of the arrays. Standardizing the products resulted in product lines of MAPPS and Photogensets that can be produced more economically and with shorter lead times, while increasing product quality and reliability. Product assembly and quality control have also been improved and streamlined with the development of standardized assembly processes and QC testing procedures. SES offers the UL-listed MAPPS at about the same price as its previous non-standardized, unlisted products.

Lambarski, T.; Minyard, G. (Solar Electric Specialties Co., Willits, California)

1998-10-06T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High temperature gas cooled reactor steam-methane reformer design  

SciTech Connect (OSTI)

The concept of the long distance transportation of process heat energy from a High Temperature Gas Cooled Reactor (HTGR) heat source, based on the steam-methane reforming reaction, is being evaluated by the Department of Energy as an energy source/application for use early in the 21st century. This paper summaries the design of a helium heated steam reformer utilized in conjunction with an intermediate loop, 850/degree/C reactor outlet temperature, HTGR process heat plant concept. This paper also discusses various design considerations leading to the mechanical design features, the thermochemical performance, the materials selection and the structural design analysis. 12 refs.

Impellezzeri, J.R.; Drendel, D.B.; Odegaard, T.K.

1981-01-01T23:59:59.000Z

122

DESIGN OF A TOKAMAK FUSION REACTOR FIRST WALL ARMOR AGAINST NEUTRAL BEAM IMPINGEMENT  

E-Print Network [OSTI]

et. a1. , "A Conceptual Tokamak Reactor Design, umtAK-II,"et. al.. "A Non-Circular Tokamak 'Power Reactor Design,"Contt'ol in Near Term Tokamak Reactors," Proceedings of the

Myers, Richard Allen

2011-01-01T23:59:59.000Z

123

Conceptual Design of a Large, Passive Pressure-Tube Light Water Reactor  

E-Print Network [OSTI]

A design for a large, passive, light water reactor has been developed. The proposed concept is a pressure tube reactor of similar design to CANDU reactors, but differing in three key aspects. First, a solid SiC-coated ...

Hejzlar, P.

124

Safety and core design of large liquid-metal cooled fast breeder reactors  

E-Print Network [OSTI]

reactor core design 7 Assembly Design and Optimization codePhysics Optimization of Breed and Burn Fast Reactor Systems.OPTIMIZATION CODE (ADOPT) Table 7.4: SWR B&B Reference Reactor

Qvist, Staffan Alexander

2013-01-01T23:59:59.000Z

125

Generation III reactors safety requirements and the design solutions  

SciTech Connect (OSTI)

Nuclear energy's public acceptance, and hence its development, depends on its safety. As a reactor designer, we will first briefly remind the basic safety principles of nuclear reactors' design. We will then show how the industry, and in particular Areva with its EPR, made design evolution in the wake of the Three Miles Island accident in 1979. In particular, for this new generation of reactors, severe accidents are taken into account beyond the standard design basis accidents. Today, Areva's EPR meets all so-called 'generation III' safety requirements and was licensed by several nuclear safety authorities in the world. Many innovative solutions are integrated in the EPR, some of which will be introduced here.

Felten, P. [Areva NP (France)

2009-03-31T23:59:59.000Z

126

Modular Integrated Energy Systems  

E-Print Network [OSTI]

Honeywell #12;Modular Integrated Energy Systems Task 5 Prototype Development Reference Design DocumentationModular Integrated Energy Systems Prepared for: Oak Ridge National Laboratory P.O. Box 2008 Building 3147 Oak Ridge, TN 37831 April 27, 2006 Prepared by: Honeywell Laboratories 3660 Technology Drive

Oak Ridge National Laboratory

127

Heavy Liquid Metal Reactor Development - Nuclear Engineering Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

> Heavy Liquid Metal Reactor Development > Heavy Liquid Metal Reactor Development Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Nuclear Data Program Advanced Reactor Development Overview Advanced Fast Reactor (AFR) Heavy Liquid Metal Reactor Development Generation IV Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Advanced Reactor Development and Technology Heavy Liquid Metal Reactor Development Bookmark and Share STAR-LM: Simplified, Modular, Small Reactor Featuring Flow-thru Fuel Cartridge STAR-LM: Simplified, Modular, Small Reactor Featuring Flow-thru Fuel Cartridge. Click on image to view larger image. Argonne has traditionally been the foremost institute in the US for

128

Status of Fusion Reactor Blanket Design  

Science Journals Connector (OSTI)

Blanket Design and Evaluation / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 1519, 1986)

D. L. Smith; D.-K. Sze

129

High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems  

Science Journals Connector (OSTI)

...solvers for analysing fine-scale nuclear reactor design problems Vijay S. Mahadevan...analysis of current and future nuclear reactor models is being investigated...in radiation hydrodynamics, nuclear reactor analysis, fluid-structure...

2014-01-01T23:59:59.000Z

130

RAMI Analysis Program Design and Research for CFETR (Chinese Fusion Engineering Testing Reactor) Tokamak Machine  

Science Journals Connector (OSTI)

Chinese Fusion Engineering Testing Reactor (CFETR) is a test reactor which shall be constructed by National Integration Design Group for Magnetic Confinement Fusion Reactor of China with an ambitious scientific ...

Shijun Qin; Yuntao Song; Damao Yao; Yuanxi Wan; Songtao Wu

2014-10-01T23:59:59.000Z

131

Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency  

SciTech Connect (OSTI)

Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving greater thermal efficiency, since it causes the fuel pins in the center of the subassembly to operate at higher temperatures than those near the hexcan walls, and it is the temperature limit(s) for those fuel pins that limits the average coolant outlet temperature. Fuel subassembly design changes are being investigated using computational fluid dynamics (CFD) to quantify the effect that the design changes have on reducing the intra-subassembly coolant flow and temperature distribution. Simulations have been performed for a 19-pin test subassembly geometry using typical fuel pin diameters and wire wrap spacers. The results have shown that it may be possible to increase the average coolant outlet temperature by 20 C or more without changing the peak temperatures within the subassembly. These design changes should also be effective for reactor designs using subassemblies with larger numbers of fuel pins. R. Wigeland, Idaho National Laboratory, P.O. Box 1625, Mail Stop 3860, Idaho Falls, ID, U.S.A., 83415-3860 email roald.wigeland@inl.gov fax (U.S.) 208-526-2930

R. Wigeland; K. Hamman

2009-09-01T23:59:59.000Z

132

Stress Analysis of Coated Particle Fuel in the Deep-Burn Pebble Bed Reactor Design  

SciTech Connect (OSTI)

High fuel temperatures and resulting fuel particle coating stresses can be expected in a Pu and minor actinide fueled Pebble Bed Modular Reactor (400 MWth) design as compared to the standard UO2 fueled core. The high discharge burnup aimed for in this Deep-Burn design results in increased power and temperature peaking in the pebble bed near the inner and outer reflector. Furthermore, the pebble power in a multi-pass in-core pebble recycling scheme is relatively high for pebbles that make their first core pass. This might result in an increase of the mechanical failure of the coatings, which serve as the containment of radioactive fission products in the PBMR design. To investigate the integrity of the particle fuel coatings as a function of the irradiation time (i.e. burnup), core position and during a Loss Of Forced Cooling (LOFC) incident the PArticle STress Analysis code (PASTA) has been coupled to the PEBBED code for neutronics, thermal-hydraulics and depletion analysis of the core. Two deep burn fuel types (Pu with or without initial MA fuel content) have been investigated with the new code system for normal and transient conditions including the effect of the statistical variation of thickness of the coating layers.

B. Boer; A. M. Ougouag

2010-05-01T23:59:59.000Z

133

System modeling and reactor design studies of the Advanced Thermionic Initiative space nuclear reactor  

SciTech Connect (OSTI)

In-core thermionic space reactor design concepts that operate at a nominal power output range of 20 to 50 kW(electric) are described. Details of the neutronic, thermionic, thermal hydraulics, and shielding performance are presented. Because of the strong absorption of thermal neutrons by natural tungsten and the large amount of natural tungsten within the reactor core, two designs are considered. An overall system design code has been developed at Oregon State University to model advanced in-core thermionic energy conversion-based nuclear reactor systems for space applications. The results show that the driverless single-cell Advanced Thermionic Initiative (ATI) configuration, which does not have driver fuel rods, proved to be more efficient than the driven core, which has driver rods. The results also show that the inclusion of the true axial and radial power distribution decrease the overall conversion efficiency. The flattening of the radial power distribution by three different methods would lead to a higher efficiency. The results show that only one TFE works at the optimum emitter temperature; all other TFEs are off the optimum performance and result in a 40% decrease of the efficiency of the overall system. The true axial profile is significantly different as there is a considerable amount of neutron leakage out of the top and bottom of the reactor. The analysis reveals that the axial power profile actually has a chopped cosine shape. For this axial profile, the reactor core overall efficiency for the driverless ATI reactor version is found to be 5.84% with a total electrical power of 21.92 kW(electric). By considering the true axial power profile instead of the uniform power profile, each TFE loses {approximately}80 W(electric).

Lee, H.H.; Abdul-Hamid, S.; Klein, A.C. [Oregon State Univ., Corvallis, OR (United States). Dept. of Nuclear Engineering Radiation Center] [Oregon State Univ., Corvallis, OR (United States). Dept. of Nuclear Engineering Radiation Center

1996-07-01T23:59:59.000Z

134

Discussion Paper for DOE SEAB/SMR Subcommittee V.H. Reis Small Modular Reactors and U.S. Clean Energy Sources for Electricity  

Broader source: Energy.gov (indexed) [DOE]

Discussion Paper for DOE SEAB/SMR Subcommittee Discussion Paper for DOE SEAB/SMR Subcommittee V.H. Reis Small Modular Reactors and U.S. Clean Energy Sources for Electricity In his 2011 State of the Union speech President Obama stated: "By 2035, 80 percent of America's electricity will come from clean energy sources." As yet, there is no official definition of a clean energy source, but a sensible definition is to suggest a "clean energy standard" where sources are weighted with respect to how much CO 2 they emit per unit of electrical energy produced. That is: Where F CE = Fraction of electricity for clean energy sources (multiply by 100 to get percent)

135

Assigning Seismic Design Category to Large Reactors: A Case Study of the ATR  

Broader source: Energy.gov [DOE]

Assigning Seismic Design Category to Large Reactors: A Case Study of the ATR Stuart Jensen October 21, 2014

136

Nuclear Design of the HOMER-15 Mars Surface Fission Reactor  

SciTech Connect (OSTI)

The next generation of robotic missions to Mars will most likely require robust power sources in the range of 3 to 20 kWe. Fission systems are well suited to provide safe, reliable, and economic power within this range. The goal of this study is to design a compact, low-mass fission system that meets Mars surface power requirements, while maintaining a high level of safety and reliability at a relatively low cost. The Heat pipe Power System (HPS) is one possible approach for producing near-term, low-cost, space fission power. The goal of the HPS project is to devise an attractive space fission system that can be developed quickly and affordably. The primary ways of doing this are by using existing technology and by designing the system for inexpensive testing. If the system can be designed to allow highly prototypic testing with electrical heating, then an exhaustive test program can be carried out quickly and inexpensively, and thorough testing of the actual flight unit can be performed - which is a major benefit to reliability. Over the past 4 years, three small HPS proof-of-concept technology demonstrations have been conducted, and each has been highly successful. The Heat pipe-Operated Mars Exploration Reactor (HOMER) is a derivative of the HPS designed especially for producing power on the surface of Mars. The HOMER-15 is a 15-kWt reactor that couples with a 3-kWe Stirling engine power system. The reactor contains stainless-steel (SS)-clad uranium nitride (UN) fuel pins that are structurally and thermally bonded to SS/sodium heat pipes. Fission energy is conducted from the fuel pins to the heat pipes, which then carry the heat to the Stirling engine. This paper describes conceptual design and nuclear performance the HOMER-15 reactor. (author)

Poston, David I. [Nuclear Systems Design Group, Decision Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 (United States)

2002-07-01T23:59:59.000Z

137

Novel Reactor Design for Solid Fuel Chemical Looping Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Reactor Design for Solid Fuel Novel Reactor Design for Solid Fuel Chemical Looping Combustion Opportunity Research is active on the patent pending technology, titled "Apparatus and Method for Solid Fuel Chemical Looping Combustion." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview The removal of CO2 from power plants is challenging because existing methods to separate CO2 from the gas mixture requires a significant fraction of the power plant output. Chemical-looping combustion (CLC) is a novel technology that utilizes a metal oxide oxygen carrier to transport oxygen to the fuel thereby avoiding direct contact between fuel and air. The use of CLC has the advantages of reducing the energy penalty while

138

Symmetric modular torsatron  

DOE Patents [OSTI]

A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

Rome, J.A.; Harris, J.H.

1984-01-01T23:59:59.000Z

139

Modularity Approach Modular Pebble Bed Reactor (MPBR)  

E-Print Network [OSTI]

°C 126.7kg/s Circulator HPT 52.8MW Precooler Inventory control Bypass Valve Intercooler IHX Hatch Equip Access Hatch Equip Access Hatch Oil Refinery Hydrogen Production Desalinization Plant VHTR

140

OPTIMAL DESIGN OF A HIGH PRESSURE ORGANOMETALLIC CHEMICAL VAPOR DEPOSITION REACTOR  

E-Print Network [OSTI]

OPTIMAL DESIGN OF A HIGH PRESSURE ORGANOMETALLIC CHEMICAL VAPOR DEPOSITION REACTOR K.J. BACHMANN of computer simulations as an optimal design tool which lessens the costs in time and effort in experimental vapor deposition (HPOMCVD) reactor for use in thin film crystal growth. The advantages of such a reactor

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Effects of an Advanced Reactors Design, Use of Automation, and Mission on Human Operators  

SciTech Connect (OSTI)

The roles, functions, and tasks of the human operator in existing light water nuclear power plants (NPPs) are based on sound nuclear and human factors engineering (HFE) principles, are well defined by the plants conduct of operations, and have been validated by years of operating experience. However, advanced NPPs whose engineering designs differ from existing light-water reactors (LWRs) will impose changes on the roles, functions, and tasks of the human operators. The plans to increase the use of automation, reduce staffing levels, and add to the mission of these advanced NPPs will also affect the operators roles, functions, and tasks. We assert that these factors, which do not appear to have received a lot of attention by the design engineers of advanced NPPs relative to the attention given to conceptual design of these reactors, can have significant risk implications for the operators and overall plant safety if not mitigated appropriately. This paper presents a high-level analysis of a specific advanced NPP and how its engineered design, its plan to use greater levels of automation, and its expanded mission have risk significant implications on operator performance and overall plant safety.

Jeffrey C. Joe; Johanna H. Oxstrand

2014-06-01T23:59:59.000Z

142

Achievements: Nuclear Reactors designed/built by Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Achievements > Achievements > Argonne National Laboratory Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

143

Analysis of the Reactor Cavity Cooling System for Very High Temperature Gas-cooled Reactors Using Computational Fluid Dynamics Tools  

E-Print Network [OSTI]

The design of passive heat removal systems is one of the main concerns for the modular Very High Temperature Gas-Cooled Reactors (VHTR) vessel cavity. The Reactor Cavity Cooling System (RCCS) is an important heat removal system in case of accidents...

Frisani, Angelo

2011-08-08T23:59:59.000Z

144

Design, optimization and evaluation of a free-fall biomass fast pyrolysis reactor and its products.  

E-Print Network [OSTI]

??The focus of this work is a radiatively heated, free-fall, fast pyrolysis reactor. The reactor was designed and constructed for the production of bio-oil from (more)

Ellens, Cody James

2009-01-01T23:59:59.000Z

145

NRC review of the CANDU-3 reactor design  

SciTech Connect (OSTI)

This paper presents an overview of the US Nuclear Regulatory Commission's (NRC's) effort to complete an early review of the Canada deuterium uranium (CANDU)-3 reactor design prior to formal submittal of an application for standard design certification. The NRC is conducting a review of the CANDU-3 design in support of a request by AECL Technologics, the US sponsor of the design. The purpose of this review is to encourage early interactions by applicants, vendors, and government agencies with the NRC. The CANDU-3 design is being developed by Atomic Energy of Canada, Limited (AECL), whose CANDU operations are based in Mississauga, Ontario. AECL Technologies, a US subsidiary of AECL, Incorporated, informed the NRC of its intent to seek design certification of the CANDU-3 design under the provisions of 10CFR52 in a letter to the NRC dated May 25, 1989. This paper describes the commission's basis for this type of early review, its purposes and objectives, key elements of the review, the intended product, and the schedule.

Kennedy, J.L. (Nuclear Regulatory Commission, Washington, DC (United States))

1993-01-01T23:59:59.000Z

146

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, P.R.; McLennan, G.A.

1984-08-30T23:59:59.000Z

147

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

1985-01-01T23:59:59.000Z

148

Early Exploration - Reactors designed/built by Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Early Exploration Early Exploration About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

149

Design of a Modular Multilevel Converter as an Active Front-End for a magnet supply application  

E-Print Network [OSTI]

The aim of this work is to describe the general design procedure of a Modular Multilevel Converter (MMC) applied as an Active Front-End (AFE) for a magnet supply for beam accelerators. The dimensioning criteria for the converter and the dc-link capacitance are presented and the grid transformer requirements are set. Considering the converter design, the arm inductance calculation is based on the specifications for the arm-current ripple and the DC-link fault tolerance, but, also, on the limitation of the second harmonic and the second-order LC resonance of the arm current. The module capacitance value is evaluated by focusing on the required switching dynamics and the capacitor-voltage ripple according to a newly proposed graphical method. The loading of each semiconductor in the half bridge is calculated via simulation, indicating the unsymmetrical current distribution. It is concluded that the current distribution for each semiconductor depends on the mode of operation of the converter. The different criter...

Panagiotis, Asimakopoulos; Massimo, Bongiorno

2015-01-01T23:59:59.000Z

150

DOI Designates B Reactor at DOE's Hanford Site as a National Historic  

Broader source: Energy.gov (indexed) [DOE]

DOI Designates B Reactor at DOE's Hanford Site as a National DOI Designates B Reactor at DOE's Hanford Site as a National Historic Landmark DOI Designates B Reactor at DOE's Hanford Site as a National Historic Landmark August 25, 2008 - 3:20pm Addthis DOE to offer regular public tours in 2009 WASHINGTON, DC - U.S. Department of the Interior (DOI) Deputy Secretary Lynn Scarlett and U.S. Department of Energy (DOE) Acting Deputy Secretary Jeffrey F. Kupfer today announced the designation of DOE's B Reactor as a National Historic Landmark and unveiled DOE's plan for a new public access program to enable American citizens to visit B Reactor during the 2009 tourist season. The B Reactor at DOE's Hanford Site in southeast Washington State was the world's first industrial-scale nuclear reactor and produced plutonium for the atomic weapon that was dropped on Nagasaki,

151

DOI Designates B Reactor at DOE's Hanford Site as a National Historic  

Broader source: Energy.gov (indexed) [DOE]

DOI Designates B Reactor at DOE's Hanford Site as a National DOI Designates B Reactor at DOE's Hanford Site as a National Historic Landmark DOI Designates B Reactor at DOE's Hanford Site as a National Historic Landmark August 25, 2008 - 3:20pm Addthis DOE to offer regular public tours in 2009 WASHINGTON, DC - U.S. Department of the Interior (DOI) Deputy Secretary Lynn Scarlett and U.S. Department of Energy (DOE) Acting Deputy Secretary Jeffrey F. Kupfer today announced the designation of DOE's B Reactor as a National Historic Landmark and unveiled DOE's plan for a new public access program to enable American citizens to visit B Reactor during the 2009 tourist season. The B Reactor at DOE's Hanford Site in southeast Washington State was the world's first industrial-scale nuclear reactor and produced plutonium for the atomic weapon that was dropped on Nagasaki,

152

Design Windows for a He Cooled Fusion Reactor* Dai-Kai Sze and Ahmed Hassanein  

E-Print Network [OSTI]

Design Windows for a He Cooled Fusion Reactor* Dai-Kai Sze and Ahmed Hassanein Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439 EQUATIONDERIVATION ABSTRACT A design window concept is developed for a He-cooled fusion reactor blanket and divertor design. This concept allows study

Harilal, S. S.

153

Innovative fusion reactor design analysis: Annual performance report, May 15, 1988--January 31, 1989  

SciTech Connect (OSTI)

This report discusses the following topics on fusion reactor component design: FLiBe intermediate heat exchanger design analysis; FLiBe properties; design methodology; FLiBe system steam generator freezeup; FLiBe reactor systems studies; tritium breeding ratio control; analysis of original objectives; and budget analysis. 15 refs., 13 figs., 3 tabs. (LSP)

Klein, A.C.

1989-01-31T23:59:59.000Z

154

The Integral Fast Reactor (IFR) - Reactors designed/built by Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integral Fast Reactor Integral Fast Reactor About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

155

Modular optical detector system  

DOE Patents [OSTI]

A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

Horn, Brent A. (Livermore, CA); Renzi, Ronald F. (Tracy, CA)

2006-02-14T23:59:59.000Z

156

Improved Design of Nuclear Reactor Control System | U.S. DOE...  

Office of Science (SC) Website

instrumentation: Improved Design of Nuclear Reactor Control System Developed at: Oak Ridge National Laboratory, Holifield Radioactive Ion Beam Facility (HRIBF) Developed...

157

Radiochemical characteristics of tritium to be considered in fusion reactor facility design  

Science Journals Connector (OSTI)

The results of research and development related to radiochemical characteristics of tritium to be considered in a fusion reactor facility design are summarized. Reactions induced by...

S. Ohira; T. Hayashi; W. Shu; T. Yamanishi

2007-06-01T23:59:59.000Z

158

High Flux Isotope Reactor cold neutron source reference design concept  

SciTech Connect (OSTI)

In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

1998-05-01T23:59:59.000Z

159

Why Nuclear Energy? - Reactors designed/built by Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy: Nuclear Energy: Why Nuclear Energy? About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

160

Carbon free energy development and the role of small modular reactors: A review and decision framework for deployment in developing countries  

Science Journals Connector (OSTI)

Abstract Global energy demand is projected to continue to grow over the next two decades, especially in developing economies. An emerging energy technology with distinct advantages for growing economies is small modular nuclear reactors (SMRs). Their smaller size makes them suitable for areas with limited grid capacities and dispersed populations while enabling flexibility in generating capacity and fuel sources. They have the ability to pair well with renewable energy sources, the major source of increased energy capacity for many developing economies. Further advantages include their passive safety features, lower capital requirements, and reduced construction times. As a result, \\{SMRs\\} have potential for overcoming energy poverty issues for growing economies without increasing carbon emissions. This study reviews the features and viability of \\{SMRs\\} to meet increasing energy capacity needs and develops a decision support framework to evaluate the market conditions for SMR deployment to emerging economies. The focus is on identifying countries best suited for domestic deployment of \\{SMRs\\} rather than vendor countries with ongoing or future SMR development programs for export. We begin by examining the characteristics of over two hundred countries and identifying those that satisfy several necessary economic, electrical grid capacity, and nuclear security conditions. Countries satisfying these necessary conditions are then evaluated using the Analytical Hierarchy Process (AHP) using criteria related to the economic and financial conditions, infrastructure and technological framework, and governmental policies within each country. The results find that countries with increasing GDP and energy demand that possess a robust infrastructure, energy production from high GHG sources, and governmental policies favorable to foreign investment are well-suited for future SMR deployment.

Geoffrey Black; Meredith A. Taylor Black; David Solan; David Shropshire

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

High flux isotope reactor cold source preconceptual design study report  

SciTech Connect (OSTI)

In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH{sub 2} moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project.

Selby, D.L.; Bucholz, J.A.; Burnette, S.E. [and others

1995-12-01T23:59:59.000Z

162

High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems  

Science Journals Connector (OSTI)

...methodology and software interfaces of...often used in radiation hydrodynamics...reactor design and safety analyses. In...enable appropriate software interfaces...Ragusa. 2007 Software design of SHARP...nuclear reactor safety: multi-scale...methods for the radiation-diffusion equations...

2014-01-01T23:59:59.000Z

163

Conceptual design of an annular-fueled superheat boiling water reactor  

E-Print Network [OSTI]

The conceptual design of an annular-fueled superheat boiling water reactor (ASBWR) is outlined. The proposed design, ASBWR, combines the boiler and superheater regions into one fuel assembly. This ensures good neutron ...

Ko, Yu-Chih, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

164

GCRA review and appraisal of HTGR reactor-core-design program. [HTGR-SC, -R, -NHSDR  

SciTech Connect (OSTI)

The reactor-core-design program has as its principal objective and responsibility the design and resolution of major technical issues for the reactor core and core components on a schedule consistent with the plant licensing and construction program. The task covered in this review includes three major design areas: core physics, core thermal and hydraulic performance fuel element design, and in-core fuel performance evaluation.

Not Available

1980-09-01T23:59:59.000Z

165

Obama Administration Announces $450 Million to Design and Commercialize  

Broader source: Energy.gov (indexed) [DOE]

$450 Million to Design and $450 Million to Design and Commercialize U.S. Small Modular Nuclear Reactors Obama Administration Announces $450 Million to Design and Commercialize U.S. Small Modular Nuclear Reactors March 22, 2012 - 2:15pm Addthis Today, as President Obama went to Ohio State University to discuss the all-out, all-of-the-above strategy for American energy, the White House announced new funding to advance the development of American-made small modular reactors (SMRs), an important element of the President's energy strategy. A total of $450 million will be made available to support first-of-its-kind engineering, design certification and licensing for up to two SMR designs over five years, subject to congressional appropriations. Manufacturing these reactors domestically will offer the United States

166

Obama Administration Announces $450 Million to Design and Commercialize  

Broader source: Energy.gov (indexed) [DOE]

450 Million to Design and 450 Million to Design and Commercialize U.S. Small Modular Nuclear Reactors Obama Administration Announces $450 Million to Design and Commercialize U.S. Small Modular Nuclear Reactors March 22, 2012 - 2:28pm Addthis COLUMBUS, Ohio - Today, as President Obama went to Ohio State University to discuss the all-out, all-of-the-above strategy for American energy, the White House announced new funding to advance the development of American-made small modular reactors (SMRs), an important element of the President's energy strategy. A total of $450 million will be made available to support first-of-its-kind engineering, design certification and licensing for up to two SMR designs over five years, subject to congressional appropriations. Manufacturing these reactors domestically

167

A Multi-Modular Neutronically Coupled Power Generation System  

E-Print Network [OSTI]

The High Temperature Integrated Multi-Modular Thermal Reactor is a small modular reactor that uses an enhanced conductivity BeO-UO2 fuel with supercritical CO2 coolant to drive turbo-machinery in a direct Brayton cycle. The core consists of several...

Patel, Vishal

2012-07-16T23:59:59.000Z

168

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer  

SciTech Connect (OSTI)

This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

Nexant Inc.

2006-05-01T23:59:59.000Z

169

Parallel Reacting Flow Calculations for Chemical Vapor Deposition Reactor Design 1  

E-Print Network [OSTI]

National Laboratories Albuquerque, NM 87185­1111 (To be published in Proceedings of the International at the synthesis of two important research areas: 3D flow and transport modeling of reactors and the simulationParallel Reacting Flow Calculations for Chemical Vapor Deposition Reactor Design 1 Andrew G

Devine, Karen

170

Reactor Design and Decommissioning - An Overview of International Activities in Post Fukushima Era1 - 12396  

SciTech Connect (OSTI)

Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimize the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new perspective in the post Fukushima -accident era. Accidents at the Fukushima Daiichi reactors in the aftermath of the devastating earthquake and tsunami of March 11, 2011 have slowed down the nuclear renaissance world-wide and may have accelerated decommissioning either because some countries have decided to halt or reduce nuclear, or because the new safety requirements may reduce life-time extensions. Even in countries such as the UK and France that favor nuclear energy production existing nuclear sites are more likely to be chosen as sites for future NPPs. Even as the site recovery efforts continue at Fukushima and any decommissioning decisions are farther into the future, the accidents have focused attention on the reactor designs in general and specifically on the Fukushima type BWRs. The regulatory authorities in many countries have initiated a re-examination of the design of the systems, structures and components and considerations of the capability of the station to cope with beyond-design basis events. Enhancements to SSCs and site features for the existing reactors and the reactors that will be built will also impact the decommissioning phase activities. The newer reactor designs of today not only have enhanced safety features but also take into consideration the features that will facilitate future decommissioning. Lessons learned from past management and operation of reactors as well as the lessons from decommissioning are incorporated into the new designs. However, in the post-Fukushima era, the emphasis on beyond-design-basis capability may lead to significant changes in SSCs, which eventually will also have impact on the decommissioning phase. Additionally, where some countries decide to phase out the nuclear power, many reactors may enter the decommissioning phase in the coming decade. While the formal updating and expanding of existing guidance documents for accident cleanup and decommissioning would benefit by waiting until the Fukushima project has progressed sufficiently for that experience to be reliably interpreted, the development of structured on-li

Devgun, Jas S. [Nuclear Power Technologies, Sargent and Lundy LLC, Chicago, IL (United States); Laraia, Michele [private consultant, formerly from IAEA, Kolonitzgasse 10/2, 1030, Vienna (Austria); Pescatore, Claudio [OECD, Nuclear Energy Agency, Issy-les-Moulineaux, Paris (France); Dinner, Paul [International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna (Austria)

2012-07-01T23:59:59.000Z

171

Radiation field modeling and optimization of a compact and modular  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation field modeling and optimization of a compact and modular Radiation field modeling and optimization of a compact and modular multi-plate photocatalytic reactor (MPPR) for air/water purification by Monte Carlo method Title Radiation field modeling and optimization of a compact and modular multi-plate photocatalytic reactor (MPPR) for air/water purification by Monte Carlo method Publication Type Journal Article Year of Publication 2013 Authors Zazueta, Ana Luisa Loo, Hugo Destaillats, and Gianluca Li Puma Journal Chemical Engineering Journal Volume 217 Pagination 475-485 Date Published 02/01/2013 Abstract The radiation field in a multi-plate photocatalytic reactor (MPPR) for air or water purification was modeled and optimized using a Monte Carlo stochastic method. The MPPR consists of parallel photocatalytic plates irradiated by cylindrical UV lamps orthogonal to the plates. The photocatalyst titanium dioxide (TiO2) is supported on the plates as a thin film. The photoreactor design is compact and offers a large irradiated photocatalytic surface area, a high degree of photon utilization, low pressure drop and a modular design which can facilitate scale-up. These features are desirable for the decontamination of indoor air in ventilation ducts or for water detoxification. The Monte Carlo method was applied to determine three dimensionless reactor performance parameters: the photon absorption efficiency (Φ), the uniformity of the distribution of the dimensionless radiation intensity (η) and the overall photonic efficiency (Φ). The emission of photons from the light sources was simulated by the extensive source with superficial emission (ESSE) model. Simulations were performed by varying the catalyst reflectivity albedo, the number and the diameter of lamps, and the dimensions and spacing of the photocatalytic plates. Optimal design for a basic reactor module with one lamp was accomplished for lamp-diameter-to-plate-height ratio (β) of 0.7, while the plate-spacing-to-plate-height ratio (α) was correlated by [αoptimum = 0.191 β2 - 0.5597 β + 0.3854]. A multilamp arrangement leads to a feasible increase in the size and number of the plates and the irradiated photocatalytic surface area. The optimum design was validated by measuring the apparent quantum yield of the oxidation of toluene (7 ppmv) in a humidified air stream using immobilized TiO2 (Degussa P25). Experiments performed varying the geometrical parameter α correlated well with the model calculations, with maximum apparent quantum yield for α = 0.137. The results are directly transferable to the treatment of water by photocatalysis.

172

Improved Design of Nuclear Reactor Control System | U.S. DOE Office of  

Office of Science (SC) Website

Improved Design of Nuclear Reactor Improved Design of Nuclear Reactor Control System Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Improved Design of Nuclear Reactor Control System Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Improved Design of Nuclear Reactor Control System Developed at: Oak Ridge National Laboratory, Holifield Radioactive Ion Beam Facility (HRIBF)

173

Conversion of methanol to light olefins on SAPO-34: kinetic modeling and reactor design  

E-Print Network [OSTI]

design of an MTO reactor, accounting for the strong exothermicity of the process. Multi-bed adiabatic and fluidized bed technologies show good potential for the industrial process for the conversion of methanol into olefins....

Al Wahabi, Saeed M. H.

2005-02-17T23:59:59.000Z

174

Design of Batch Tube Reactor 377 Applied Biochemistry and Biotechnology Vol. 9193, 2001  

E-Print Network [OSTI]

Design of Batch Tube Reactor 377 Applied Biochemistry and Biotechnology Vol. 91­93, 2001 Copyright Biochemistry and Biotechnology Vol. 91­93, 2001 pretreatment represents the most expensive single step

California at Riverside, University of

175

Reactor Design, Cold-Model Experiment and CFD Modeling for Chemical Looping Combustion  

Science Journals Connector (OSTI)

Chemical looping combustion (CLC) is an efficient, clean and...2...capture, and an interconnected fluidized bed is more appropriate solution for CLC. This paper aims to design a reactor system for CLC, carry out ...

Shaohua Zhang; Jinchen Ma; Xintao Hu

2013-01-01T23:59:59.000Z

176

Conceptual Design of Molten Salt Loop Experiment for MIT Research Reactor  

E-Print Network [OSTI]

Molten salt is a promising coolant candidate for Advanced High Temperature Reactor (AHTR) Gen-IV designs. The low neutron absorption, high thermal capacity, chemical inertness, and high boiling point at low pressure of ...

Bean, Malcolm K.

2011-08-01T23:59:59.000Z

177

Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors  

E-Print Network [OSTI]

The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

Gibbs, Jonathan Paul

2008-01-01T23:59:59.000Z

178

Design, construction and evaluation of a facility for the simulation of fast reactor blankets  

E-Print Network [OSTI]

A facility has been designed and constructed at the MIT Reactor for the experimental investigation of typical LMFBR breeding blankets. A large converter assembly, consisting of a 20-cm-thick layer of graphite followed by ...

Forbes, Ian Alexander

1970-01-01T23:59:59.000Z

179

Design of Slurry Bubble Column Reactors: Novel Technique for Optimum Catalyst Size Selection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Slurry Bubble Column Reactors: Novel Technique Slurry Bubble Column Reactors: Novel Technique for Optimum Catalyst Size Selection Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,619,011 entitled "Design of Slurry Bubble Column Reactors: Novel Technique for Optimum Catalyst Size Selection." Disclosed in this patent is a method to determine the optimum catalyst particle size for application in a fluidized bed reactor, such as a slurry bubble column reactor (SBCR), to convert synthesis gas into liquid fuels. The reactor can be gas-solid, liquid- solid, or gas-liquid-solid. The method considers the complete granular temperature balance based on the kinetic theory of

180

CESAR: Center for Exascale Simulation of Advanced Reactors | Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CESAR: Center for Exascale Simulation of Advanced Reactors CESAR: Center for Exascale Simulation of Advanced Reactors CESAR: Center for Exascale Simulation of Advanced Reactors CESAR is an interdisciplinary center for developing an innovative, next-generation nuclear reactor analysis tool that both utilizes and guides the development of exascale computing platforms. Existing reactor analysis codes are highly tuned and calibrated for commercial light-water reactors, but they lack the physics fidelity to seamlessly carry over to new classes of reactors with significantly different design characteristics-as, for example, innovative concepts such as TerraPower's Traveling Wave reactor and Small Modular Reactor concepts. Without vastly improved modeling capabilities, the economic and safety characteristics of these and other novel systems will require tremendous

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Inertial Fusion Energy reactor design studies: Prometheus-L, Prometheus-H. Volume 2, Final report  

SciTech Connect (OSTI)

This report contains a review of design studies for Inertial Confinement reactor. This second of three volumes discussions is some detail the following: Objectives, requirements, and assumptions; rationale for design option selection; key technical issues and R&D requirements; and conceptual design selection and description.

Waganer, L.M.; Driemeyer, D.E.; Lee, V.D.

1992-03-01T23:59:59.000Z

182

Design and Testing of a Boron Carbide Capsule for Spectral Tailoring in Mixed-Spectrum Reactors  

SciTech Connect (OSTI)

A boron carbide capsule has been designed and used for spectral-tailoring experiments at the TRIGA reactor at Washington State University. Irradiations were conducted in pulsed mode and in continuous operation for up to 4 hours. A cadmium cover was used to reduce thermal heating. The neutron spectrum calculated with MCNP was found to be in good agreement with reactor dosimetry measurements using the STAY'SL computer code. The neutron spectrum resembles that of a fast reactor. Design of a capsule using boron carbide enriched in {sup 10}B shows that it is possible to produce a neutron spectrum similar to {sup 235}U fission.

Greenwood, Lawrence R.; Wittman, Richard S.; Pierson, Bruce D.; Metz, Lori A.; Payne, Rosara F.; Finn, Erin C.; Friese, Judah I.

2012-03-01T23:59:59.000Z

183

11/04/02 G. W. Rubloff AVS 2002 MS MoA5 1 Spatially Programmable Reactor Design  

E-Print Network [OSTI]

optimization is constrained by fixed reactor design manufacturing #12;11/04/02 G. W. Rubloff ­ AVS 2002 ­ MS Mo spatial conditions in programmable reactor Uniformity unacceptable Produce high uniformity with optimal11/04/02 G. W. Rubloff ­ AVS 2002 ­ MS MoA5 1 Spatially Programmable Reactor Design: Toward a New

Rubloff, Gary W.

184

Design of a nuclear reactor system for lunar base applications  

E-Print Network [OSTI]

disadvantages. U02 and Pu02 fuels both have extremely poor ther mal conductivities, about 4 W/m K at 500 C, which would normally limit the maximum linear power in the reactor core to unacceptably low levels. For tunately, the ver y high melting temperatur es... conversion, however, high reactor exit temperatures are both necessary and desirable. The efficiency of the power conversion cycle is directly related to the difference between the high and low temperatur es in the system. Since the heat rejection...

Griffith, Richard Odell

2012-06-07T23:59:59.000Z

185

Seismic design technology for Breeder Reactor structures. Volume 3: special topics in reactor structures  

SciTech Connect (OSTI)

This volume is divided into six chapters: analysis techniques, equivalent damping values, probabilistic design factors, design verifications, equivalent response cycles for fatigue analysis, and seismic isolation. (JDB)

Reddy, D.P. (ed)

1983-04-01T23:59:59.000Z

186

Manhattan Project: Final Reactor Design and X-10, 1942-1943  

Office of Scientific and Technical Information (OSTI)

Schematic of the X-10 Graphite Reactor, Oak Ridge FINAL REACTOR DESIGN AND X-10 Schematic of the X-10 Graphite Reactor, Oak Ridge FINAL REACTOR DESIGN AND X-10 (Met Lab and Oak Ridge [Clinton], 1942-1943) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 Before any plutonium could be chemically separated from uranium for a bomb, however, that uranium would first have to be irradiated in a production pile. CP-1 had been a success as a scientific experiment, but the pile was built on such a small scale that recovering any significant amounts of plutonium from it was impractical. In the fall of 1942, scientists of the Met Lab had decided to build a second Fermi pile at Argonne as soon as his experiments on the first were completed and to proceed with the "Mae West" design for a helium-cooled production pile as well. When DuPont engineers assessed the Met Lab's plans in the late fall, they agreed that helium should be given first priority. They placed heavy water second and urged an all-out effort to produce more of this highly effective moderator. Bismuth and water were ranked third and fourth in DuPont's analysis. Priorities began to change when Enrico Fermi's CP-1 calculations demonstrated a higher value for the neutron reproduction factor k (for a theoretical reactor of infinite size) than anyone had anticipated. Met Lab scientists concluded that a water-cooled pile was now feasible. Crawford Greenewalt, head of the DuPont effort, continued, however, to support helium cooling.

187

Use of sensitivity and uncertainty analysis in reactor design verification Part II: Flux measurement analysis  

Science Journals Connector (OSTI)

Abstract As for any new reactor design, the ACR-1000 design has to go through a comprehensive design verification process. One of the activities for supporting the ACR physics design calculations using the ACR physics code toolset, namely WIMS-AECL/DRAGON/RFSP, is to compare the flux distributions resulting from the calculation using this toolset at various power calibration monitor (PCM) detector locations against the flux measurement data from the Japanese Advanced Thermal Reactor (ATR) FUGEN. The discussion of this particular design verification exercise will be presented in a two-part paper. The usage of data from the FUGEN reactor qualifies this exercise as design verification by alternate analysis. In order to have meaningful results at the end of the design verification process, the similarity between the ACR-1000 and FUGEN reactors has to be demonstrated. It is accomplished through the sensitivity and uncertainty analysis using the TSUNAMI (Tools for Sensitivity and Uncertainty Analysis Methodology Implementation) methodology. The results from the similarity comparison have been presented in Part I of the paper. In Part II, results from flux distribution comparison will be presented. Favourable results from this design verification exercise give a high level of confidence that using the same physics toolset in calculating the flux distribution for ACR-1000 reactor will produce results with acceptable fidelity. In addition, the results will also give an indication of expected margins in the design calculations, not only at the locations of the PCM detectors but also at the derived bundle and channel powers obtained through the flux mapping calculation.

Doddy Kastanya; Mohamed Dahmani

2013-01-01T23:59:59.000Z

188

Microsoft Word - 3b - Basis for Reactor Design comments 081710...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on the demonstration power plant core design developed earlier by PBMR (Ltd) of South Africa, includes a direct Brayton cycle gas turbine for electricity production. The...

189

Modular Isotopic Thermoelectric Generator (MITG) Design and Development, Part A-E. Original was presented at 1983 Intersociety Energy Conversion Engineering Conference (IECEC)  

SciTech Connect (OSTI)

Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing 24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Detailed analysis indicates that the present generation of RTGs, using the same heat source modules. There is a duplicate copy of this document. OSTI has a copy of this paper.

Schock, A.

1983-04-29T23:59:59.000Z

190

Modular thermoacoustic refrigerator  

Science Journals Connector (OSTI)

A thermoacousticrefrigerator was built to explore scaling to large heat flux. The refrigerator was constructed according to a modular design so that various stack heat exchanger and resonator sections are easily interchangeable. The resonator is driven by a commercial 10?in. woofer. Initial tests using pure helium gas as the working fluid and steel honeycomb (0.8?mm cell) for the stack pumped 60 W of heat against a 10?C temperature gradient. Measurements of heat flux and efficiency will be reported as functions of stack structure (e.g. pore size and shape) and will be compared with theoretical predictions.

Steven R. Murrell; George Mozurkewich

1993-01-01T23:59:59.000Z

191

High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor  

SciTech Connect (OSTI)

The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

2010-09-01T23:59:59.000Z

192

A future for nuclear energy: pebble bed reactors  

Science Journals Connector (OSTI)

Pebble Bed Reactors could allow nuclear plants to support the goal of reducing global climate change in an energy hungry world. They are small, modular, inherently safe, use a demonstrated nuclear technology and can be competitive with fossil fuels. Pebble bed reactors are helium cooled reactors that use small tennis ball size fuel balls consisting of only 9 grams of uranium per pebble to provide a low power density reactor. The low power density and large graphite core provide inherent safety features such that the peak temperature reached even under the complete loss of coolant accident without any active emergency core cooling system is significantly below the temperature that the fuel melts. This feature should enhance public confidence in this nuclear technology. With advanced modularity principles, it is expected that this type of design and assembly could lower the cost of new nuclear plants removing a major impediment to deployment.

Andrew C. Kadak

2005-01-01T23:59:59.000Z

193

Modular robot  

DOE Patents [OSTI]

A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

Ferrante, Todd A. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

194

Modular robot  

DOE Patents [OSTI]

A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

Ferrante, T.A.

1997-11-11T23:59:59.000Z

195

Recommended practices in elevated temperature design: A compendium of breeder reactor experiences (1970-1986): An overview  

SciTech Connect (OSTI)

Significant experiences have been accumulated in the establishment of design methods and criteria applicable to the design of Liquid Metal Fast Breeder Reactor (LMFBR) components. The Subcommittee of the Elevated Temperature Design under the Pressure Vessel Research Council (PVRC) has undertaken to collect, on an international basis, design experience gained, and the lessons learned, to provide guidelines for next generation advanced reactor designs. This paper shall present an overview and describe the highlights of the work.

Wei, B.C.; Cooper, W.L. Jr.; Dhalla, A.K.

1987-09-01T23:59:59.000Z

196

Initial Design of a Dual Fluidized Bed Reactor  

E-Print Network [OSTI]

fluidized bed gaisifers (CFB) (Figure 1.6) 1.3.1. Bubblingbed gasifiers (BFB and CFB) have great features for SH.employed for the SHR design. CFB enables a circulation of

Yun, Minyoung

2014-01-01T23:59:59.000Z

197

Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor  

SciTech Connect (OSTI)

Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

2006-10-01T23:59:59.000Z

198

Shielding design aspects of thermionic space nuclear reactors  

SciTech Connect (OSTI)

It has been well documented that nuclear power sources will be required for the future exploration of space. Higher power levels (>10 kW (electric)) will be enabling, if not absolutely necessary, for the continued expansion of a human presence in the solar system and beyond. Space missions that will directly benefit continued life on Earth, including the monitoring for climate change and global warming, high-capacity communication satellites, and large, space-based radar systems to monitor the flow of airline traffic, will require progressively larger amounts of electrical power. Military applications, even with the ending of the Cold War, will continue to be needed for treaty verification activities. A thermionic energy conversion-based nuclear reactor system is one of the many different technologies proposed for the utilization of nuclear energy in space. How the energy conversion is accomplished and the equipment requiring shielding have a profound effect on the overall shielding requirements for the system. There exist two configurations of this technology that can be exploited and will have a significant effect on shielding needs. The paper discusses in-core thermionic conversion and out-of-core conversion concepts.

Klein, A.C.

1991-01-01T23:59:59.000Z

199

Design modification for the modular helium reactor for higher temperature operation and reliability studies for nuclear hydrogen production processes  

E-Print Network [OSTI]

of these modifications together, the PVT is reduced to ~350 0C while keeping the outlet temperature at 950 0C and maintaining the PFT within acceptable limits. The vessel and fuel temperatures during low pressure conduction cooldown and high pressure conduction cooldown...

Reza, S.M. Mohsin

2009-05-15T23:59:59.000Z

200

High-temperature gas-cooled-reactor steam-methane reformer design  

SciTech Connect (OSTI)

The concept of the long distance transportation of process heat energy from a High Temperature Gas Cooled Reactor (HTGR) heat source, based on the steam reforming reaction, is currently being evaluated as an energy source/application for use early in the 21st century. The steam-methane reforming reaction is an endothermic reaction at temperatures approximately 700/sup 0/C and higher, which produces hydrogen, carbon monoxide and carbon dioxide. The heat of the reaction products can then be released, after being pumped to industrial site users, in a methanation process producing superheated steam and methane which is then returned to the reactor plant site. In this application the steam reforming reaction temperatures are produced by the heat energy from the core of the HTGR through forced convection of the primary or secondary helium circuit to the catalytic chemical reactor (steam reformer). This paper summarizes the design of a helium heated steam reformer utilized in conjunction with a 1170 MW(t) intermediate loop, 850/sup 0/C reactor outlet temperature, HTGR process heat plant concept. This paper also discusses various design considerations leading to the mechanical design features, the thermochemical performance, materials selection and the structural design analysis.

Impellezzeri, J.R.; Drendel, D.B.; Odegaard, T.K.

1981-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Design Aspects of Hybrid Adsorbent?Membrane Reactors for Hydrogen Production  

Science Journals Connector (OSTI)

Design Aspects of Hybrid Adsorbent?Membrane Reactors for Hydrogen Production ... For hydrogen to replace fossil fuels as the fuel of choice for mobile applications, it will require the creation of a production and delivery infrastructure equivalent to those that currently exist for fossil fuels. ...

Babak Fayyaz; Aadesh Harale; Byoung-Gi Park; Paul K. T. Liu; Muhammad Sahimi; Theodore T. Tsotsis

2005-05-14T23:59:59.000Z

202

Spring design for use in the core of a nuclear reactor  

DOE Patents [OSTI]

A spring design particularly suitable for use in the core of a nuclear reactor includes one surface having a first material oriented in a longitudinal direction, and another surface having a second material oriented in a transverse direction. The respective surfaces exhibit different amounts of irraditation induced strain.

Willard, Jr., H. James (Bethel Park, PA)

1993-01-01T23:59:59.000Z

203

Plasma engineering design of a compact reversed-field pinch reactor (CRFPR)  

SciTech Connect (OSTI)

The rationale for and the characteristics of the high-power-density Compact Reversed-Field Pinch Reactor (CRFPR) are discussed. Particular emphasis is given to key plasma engineering aspects of the conceptual design, including plasma operations, current drive, and impurity/ash control by means of pumped limiters or magnetic divertors. A brief description of the Fusion-Power-Core integration is given.

Bathke, C.G.; Embrechts, M.J.; Hagenson, R.L.; Krakowski, R.A.; Miller, R.L.

1983-01-01T23:59:59.000Z

204

11/04/02 G. W. Rubloff AVS 2002 MS MoA5 1 Spatially Programmable Reactor Design  

E-Print Network [OSTI]

) reactor design · Process change impacts (often degrades) uniformity · Process optimization is constrained11/04/02 G. W. Rubloff ­ AVS 2002 ­ MS MoA5 1 Spatially Programmable Reactor Design: Toward a New recipe logic and timingProcess optimization requiresProcess optimization requires tradeoffs between

Rubloff, Gary W.

205

A graphical operations interface for modular surface systems  

E-Print Network [OSTI]

This paper presents the design and implementation of algorithms for a new graphical operations interface system specifically adapted to operating modular reconfigurable articulated surface systems. Geometric models of ...

Vona, Marsette A.

206

Innovative safety features of the modular HTGR  

SciTech Connect (OSTI)

The Modular High Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry, and the utilities. Near-term development is focused on electricity generation. The top-level safety requirement is that the plant's operation not disturb the normal day-to-day activities of the public. Quantitatively, this requires that the design meet the US Environmental Protection Agency's Protective Action Guides at the site boundary and hence preclude the need for sheltering or evacuation of the public. To meet these stringent safety requirements and at the same time provide a cost competitive design requires the innovative use of the basic high temperature gas-cooled reactor features of ceramic fuel, helium coolant, and a graphite moderator. The specific fuel composition and core size and configuration have been selected to the use the natural characteristics of these materials to develop significantly higher margins of safety. In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure of a simultaneous loss of forced cooling of the core. The challenges to control of heat generation consider not only the failure to insert the reactivity control systems but also the withdrawal of control rods. Finally, challenges to control of chemical attack of the ceramic-coated fuel are considered, including catastrophic failure of the steam generator, which allows water ingress, or failure of the pressure vessels, which allows air ingress. The plant's response to these extreme challenges is not dependent on operator action, and the events considered encompass conceivable operator errors.

Silady, F.A.; Simon, W.A.

1992-01-01T23:59:59.000Z

207

Innovative safety features of the modular HTGR  

SciTech Connect (OSTI)

The Modular High Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry, and the utilities. Near-term development is focused on electricity generation. The top-level safety requirement is that the plant`s operation not disturb the normal day-to-day activities of the public. Quantitatively, this requires that the design meet the US Environmental Protection Agency`s Protective Action Guides at the site boundary and hence preclude the need for sheltering or evacuation of the public. To meet these stringent safety requirements and at the same time provide a cost competitive design requires the innovative use of the basic high temperature gas-cooled reactor features of ceramic fuel, helium coolant, and a graphite moderator. The specific fuel composition and core size and configuration have been selected to the use the natural characteristics of these materials to develop significantly higher margins of safety. In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure of a simultaneous loss of forced cooling of the core. The challenges to control of heat generation consider not only the failure to insert the reactivity control systems but also the withdrawal of control rods. Finally, challenges to control of chemical attack of the ceramic-coated fuel are considered, including catastrophic failure of the steam generator, which allows water ingress, or failure of the pressure vessels, which allows air ingress. The plant`s response to these extreme challenges is not dependent on operator action, and the events considered encompass conceivable operator errors.

Silady, F.A.; Simon, W.A.

1992-01-01T23:59:59.000Z

208

Space power reactor in-core thermionic multicell evolutionary (S-prime) design  

SciTech Connect (OSTI)

A 5- to 40-kWe moderated in-core thermionic space nuclear power system (TI-SNPS) concept was developed to address the TI-SNPS program requirements. The 40-kWe baseline design uses multicell Thermionic Fuel Elements (TFEs) in a zirconium hydride moderated reactor to achieve a specific mass of 18.2 We/kg and a net end-of-mission (EOM) efficiency of 8.2%. The reactor is cooled with a single NaK-78 pumped loop, which rejects the heat through a 24 m[sup 2] heat pipe space radiator.

Determan, W.R. (Rocketdyne Division, Rockwell International, 6633 Canoga Avenue, P.O. Box 7922, anoga Park, California 91309-7922 (United States)); Van Hagan, T.H. (General Atomics, P.O. Box 85608, San Diego, California 92186-9784 (United States))

1993-01-20T23:59:59.000Z

209

Secondary heat exchanger design and comparison for advanced high temperature reactor  

SciTech Connect (OSTI)

Next generation nuclear reactors such as the advanced high temperature reactor (AHTR) are designed to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. This study considers two different types of heat exchangers - helical coiled heat exchanger and printed circuit heat exchanger - as possible options for the AHTR secondary heat exchangers with distributed load analysis and comparison. Comparison is provided for all different cases along with challenges and recommendations. (authors)

Sabharwall, P. [Idaho National Laboratory, Idaho Falls, ID 83415-3860 (United States); Kim, E. S. [Seoul National Univ., P.O. Box 1625, Idaho Falls, ID 83415-3860 (United States); Siahpush, A.; McKellar, M.; Patterson, M. [Idaho National Laboratory, Idaho Falls, ID 83415-3860 (United States)

2012-07-01T23:59:59.000Z

210

Fuel performance models for high-temperature gas-cooled reactor core design  

SciTech Connect (OSTI)

Mechanistic fuel performance models are used in high-temperature gas-cooled reactor core design and licensing to predict failure and fission product release. Fuel particles manufactured with defective or missing SiC, IPyC, or fuel dispersion in the buffer fail at a level of less than 5 x 10/sup -4/ fraction. These failed particles primarily release metallic fission products because the OPyC remains intact on 90% of the particles and retains gaseous isotopes. The predicted failure of particles using performance models appears to be conservative relative to operating reactor experience.

Stansfield, O.M.; Simon, W.A.; Baxter, A.M.

1983-09-01T23:59:59.000Z

211

Thermal analysis and design of a passive reflux condenser for the simplified boiling water reactor  

SciTech Connect (OSTI)

At present, the advanced light water reactors (ALWRS) in the United States are being designed to remove reactor decay heat for a period of 72 h following a postulated loss-of-coolant accident (LOCA). The water in the pools external to the containment is evaporated or boiled off to remove the decay heat. It is presumed that the water in the pools can be replenished within 72 h through operator actions or outside assistance. Some countries in Europe require that the plant be designed to remove the reactor decay heat for a much longer duration than 72 h without external assistance. This paper presents an analysis and design of a passive heat exchanger called a reflux condenser (RC), which was considered for an ALWR-the 600-MW(electric) simplified boiling water reactor. The RC is required to condense the steam formed when the water in the pool in which the passive containment cooling system (PCCS) is immersed boils following a LOCA. The RCs are nuclear non-safety related. This paper presents steady-state performance of an RC at various outdoor air dry-bulb temperatures under still air conditions.

Bijlani, C.; Patti, F. (Burns Roe Inc., Oradell, NJ (United States)); Prasad, V. (SUNY, Stony Brook, NY (United States))

1993-01-01T23:59:59.000Z

212

Role of Nuclear Grade Graphite in Oxidation in Modular HTGRs  

SciTech Connect (OSTI)

The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

Willaim Windes; G. Strydom; J. Kane; R. Smith

2014-11-01T23:59:59.000Z

213

Analysis of granular flow in a pebble-bed nuclear reactor Chris H. Rycroft,1  

E-Print Network [OSTI]

-temperature reactor 2 , which offers meltdown-proof passive safety, convenient long-term waste storage, modular

Bazant, Martin Z.

214

SCW Pressure-Channel Nuclear Reactors: Some Design Features and Concepts  

SciTech Connect (OSTI)

Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950's and 1960's in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with supercritical water (SCW) became attractive again as the ultimate development path for water-cooling. The main objectives of using SCW in nuclear reactors are 1) to increase the thermal efficiency of modern nuclear power plants (NPPs) from 33 -- 35% to about 40 -- 45%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs ({approx}$ 1000 US/kW). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625 deg. C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia. Design features related to both channels and fuel bundles are discussed in this paper. Also, Russian experience with operating supercritical steam heaters at NPP is presented. The main conclusion is that development of SCW pressure-channel nuclear reactors is feasible and significant benefits can be expected over other thermal energy systems. (authors)

Duffey, R.B.; Pioro, I.L. [Atomic Energy of Canada, Ltd. (Canada); Gabaraev, B.A.; Kuznetsov, Yu. N. [Research and Development Institute of Power Engineering, ul.M. Krasnoselskaya, 2/8 Moscow, Moscow 107140 (Russian Federation)

2006-07-01T23:59:59.000Z

215

Modular Isotopic Thermoelectric Generator  

SciTech Connect (OSTI)

Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

Schock, Alfred

1981-04-03T23:59:59.000Z

216

ORIGEN-ARP Cross-Section Libraries for Magnox, Advanced Gas-Cooled, and VVER Reactor Designs  

SciTech Connect (OSTI)

Cross-section libraries for the ORIGEN-ARP system were extended to include four non-U.S. reactor types: the Magnox reactor, the Advanced Gas-Cooled Reactor, the VVER-440, and the VVER-1000. Typical design and operational parameters for these four reactor types were determined by an examination of a variety of published information sources. Burnup simulation models of the reactors were then developed using the SAS2H sequence from the Oak Ridge National Laboratory SCALE code system. In turn, these models were used to prepare the burnup-dependent cross-section libraries suitable for use with ORIGEN-ARP. The reactor designs together with the development of the SAS2H models are described, and a small number of validation results using spent-fuel assay data are reported.

Murphy, BD

2004-03-10T23:59:59.000Z

217

Chapter 1 - Reactor configurations and design parameters for thermochemical conversion of biomass into fuels, energy, and chemicals  

Science Journals Connector (OSTI)

Abstract This chapter describes reactors for thermochemical conversion of lignocellulosic biomass into fuels, energy, and chemicals. The chapter covers basic definitions and concepts involved in biofuels and thermochemical conversion of biomass, and it also includes more advanced topics such as the main reactor configurations currently in use for thermochemical technologies, important parameters for reactor design, discussion of how parameters affect reactor performance, and several examples and case studies. The focus is on fast pyrolysis and gasification systems. The topics discussed include energy and carbon efficiencies, convenience of operation and scale-up, and several other parameters related to reactor design. After reading this chapter, the reader will understand the main characteristics of reactors for thermochemical conversion of biomass, their strengths, and their weaknesses for specific applications.

Fernando L.P. Resende

2014-01-01T23:59:59.000Z

218

Design and operation of a rotating drum radio frequency plasma reactor for the modification of free nanoparticles  

SciTech Connect (OSTI)

A rotating drum rf plasma reactor was designed to functionalize the surface of nanoparticles and other unusually shaped substrates through plasma polymerization and surface modification. This proof-of-concept reactor design utilizes plasma polymerized allyl alcohol to add OH functionality to Fe{sub 2}O{sub 3} nanoparticles. The reactor design is adaptable to current plasma hardware, eliminating the need for an independent reactor setup. Plasma polymerization performed on Si wafers, Fe{sub 2}O{sub 3} nanoparticles supported on Si wafers, and freely rotating Fe{sub 2}O{sub 3} nanoparticles demonstrated the utility of the reactor for a multitude of processes. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to characterize the surface of the substrates prior to and after plasma deposition, and scanning electron microscopy was used to verify that no extensive change in the size or shape of the nanoparticles occurred because of the rotating motion of the reactor. The reactor design was also extended to a non-depositing NH{sub 3} plasma modification system to demonstrate the reactor design is effective for multiple plasma processes.

Shearer, Jeffrey C.; Fisher, Ellen R. [Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States)

2013-06-15T23:59:59.000Z

219

DESIGN OF A TOKAMAK FUSION REACTOR FIRST WALL ARMOR AGAINST NEUTRAL BEAM IMPINGEMENT  

E-Print Network [OSTI]

Hoffman, et. a1. , "Fusion Reactor First Wall Cooling forTheir Signif- icance in Fusion Reactors," Fifth ConferenceProb- lems in Toroidal Fusion Reactors," Fifth Conference

Myers, Richard Allen

2011-01-01T23:59:59.000Z

220

SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modular and Scalable Baseload Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility to someone by E-mail Share SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Facebook Tweet about SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Twitter Bookmark SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Google Bookmark SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Delicious Rank SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Digg Find More places to share SunShot Initiative: Modular and Scalable

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Heat exchanger design considerations for high temperature gas-cooled reactor (HTGR) plants  

SciTech Connect (OSTI)

Various aspects of the high-temperature heat exchanger conceptual designs for the gas turbine (HTGR-GT) and process heat (HTGR-PH) plants are discussed. Topics include technology background, heat exchanger types, surface geometry, thermal sizing, performance, material selection, mechanical design, fabrication, and the systems-related impact of installation and integration of the units in the prestressed concrete reactor vessel. The impact of future technology developments, such as the utilization of nonmetallic materials and advanced heat exchanger surface geometries and methods of construction, is also discussed.

McDonald, C.F.; Vrable, D.L.; Van Hagan, T.H.; King, J.H.; Spring, A.H.

1980-02-01T23:59:59.000Z

222

A Study of Fast Reactor Fuel Transmutation in a Candidate Dispersion Fuel Design  

SciTech Connect (OSTI)

Dispersion fuels represent a significant departure from typical ceramic fuels to address swelling and radiation damage in high burnup fuel. Such fuels use a manufacturing process in which fuel particles are encapsulated within a non-fuel matrix. Dispersion fuels have been studied since 1997 as part of an international effort to develop and test very high density fuel types for the Reduced Enrichment for Research and Test Reactors (RERTR) program.[1] The Idaho National Laboratory is performing research in the development of an innovative dispersion fuel concept that will meet the challenges of transuranic (TRU) transmutation by providing an integral fission gas plenum within the fuel itself, to eliminate the swelling that accompanies the irradiation of TRU. In this process, a metal TRU vector produced in a separations process is atomized into solid microspheres. The dispersion fuel process overcoats the microspheres with a mixture of resin and hollow carbon microspheres to create a TRUC. The foam may then be heated and mixed with a metal power (e.g., Zr, Ti, or Si) and resin to form a matrix metal carbide, that may be compacted and extruded into fuel elements. In this paper, we perform reactor physics calculations for a core loaded with the conceptual fuel design. We will assume a typical TRU vector and a reference matrix density. We will employ a fuel and core design based on the Advanced Burner Test Reactor (ABTR) design.[2] Using the CSAS6 and TRITON modules of the SCALE system [3] for preliminary scoping studies, we will demonstrate the feasibility of reactor operations. This paper will describe the results of these analyses.

Mark DeHart; Hongbin Zhang; Eric Shaber; Matthew Jesse

2010-11-01T23:59:59.000Z

223

Analysis of Reference Design for Nuclear-Assisted Hydrogen Production at 750C Reactor Outlet Temperature  

SciTech Connect (OSTI)

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using a high-temperature gas-cooled reactor (HTGR) to provide the process heat and electricity to drive the electrolysis process. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This report describes the resulting new INL reference design coupled to two alternative HTGR power conversion systems, a Steam Rankine Cycle and a Combined Cycle (a Helium Brayton Cycle with a Steam Rankine Bottoming Cycle). Results of system analyses performed to optimize the design and to determine required plant performance and operating conditions when coupled to the two different power cycles are also presented. A 600 MWt high temperature gas reactor coupled with a Rankine steam power cycle at a thermal efficiency of 44.4% can produce 1.85 kg/s of hydrogen and 14.6 kg/s of oxygen. The same capacity reactor coupled with a combined cycle at a thermal efficiency of 42.5% can produce 1.78 kg/s of hydrogen and 14.0 kg/s of oxygen.

Michael G. McKellar; Edwin A. Harvego

2010-05-01T23:59:59.000Z

224

Advanced Core Design And Fuel Management For Pebble-Bed Reactors  

SciTech Connect (OSTI)

A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

2004-10-01T23:59:59.000Z

225

Design and analysis of megawatt-class heat-pipe reactor concepts  

SciTech Connect (OSTI)

There is growing interest in finding an alternative to diesel-powered systems at locations removed from a reliable electrical grid. One promising option is a 1- to 10-MW mobile reactor system, that could provide robust, self-contained, and long-term ({>=} 5 years) power in any environment. The reactor and required infrastructure could be transported to any location within one or a few standard transport containers. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than 'traditional' reactors that rely on pumped coolant through the core. This paper examines a heat pipe reactor that is fabricated and shipped as six identical core segments. Each core segment includes a heat-pipe-to-gas heat exchanger that is coupled to the condenser end of the heat pipes. The reference power conversion system is a CO{sub 2}-Brayton system. The segments by themselves are deeply subcritical during transport, and they would be locked into an operating configuration (with control inserted) at the final destination. Two design options are considered: a near-term option and an advanced option. The near-term option is a 5-MWt concept that uses uranium-dioxide fuel, a stainless-steel structure, and potassium as the heat-pipe working fluid. The advanced option is a 15-MWt concept that uses uranium-nitride fuel, a molybdenum/TZM structure, and sodium as the heat-pipe working fluid. The materials used in the advanced option allow for higher temperatures and power densities, and enhanced power throughput in the heat pipes. Higher powers can be obtained from both concepts by increasing the core size and the number of heat pipes. (authors)

Poston, D.; Kapernick, R. [Los Alamos National Laboratory, MS C921, Los Alamos, NM 87545 (United States)

2012-07-01T23:59:59.000Z

226

Conceptual design of fast-ignition laser fusion reactor FALCON-D  

Science Journals Connector (OSTI)

A new conceptual design of the laser fusion power plant FALCON-D (Fast-ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast-ignition method can achieve sufficient fusion gain for a commercial operation (~100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (56?m radius). 1D/2D simulations by hydrodynamic codes showed a possibility of achieving sufficient gain with a laser energy of 400?kJ, i.e. a 40?MJ target yield. The design feasibility of the compact dry wall chamber and the solid breeder blanket system was shown through thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. Moderate electric output (~400?MWe) can be achieved with a high repetition (30?Hz) laser. This dry wall reactor concept not only reduces several difficulties associated with a liquid wall system but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance period. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R&D issues required for this design are also discussed.

T. Goto; Y. Someya; Y. Ogawa; R. Hiwatari; Y. Asaoka; K Okano; A. Sunahara; T. Johzaki

2009-01-01T23:59:59.000Z

227

Modular Robot Systems From Self-Assembly to Self-Disassembly  

E-Print Network [OSTI]

We have presented a detailed retrospective on modular robots and discussed connections between modular robots and programmable matter. This field has seen a great deal of creativity and innovation at the level of designing ...

Rus, Daniela L.

228

Modular Integrated Energy Systems  

E-Print Network [OSTI]

-driven absorption chiller, · Install and monitor the performance of a prototype IES modular system employing consists of a gas turbine-generator, a heat recovery steam generator, and a waste heat fired absorption chiller. The key goals of the project are: · Develop a set of "reference" CAD-based IES modular system

Oak Ridge National Laboratory

229

Core and System Design of Reduced-Moderation Water Reactor with Passive Safety Features  

SciTech Connect (OSTI)

In order to ensure the sustainable energy supply in Japan, research and developments of reduced-moderation water reactor (RMWR) have been performed. The RMWR can attain the favorable characteristics such as high burn-up, long operation cycle, multiple recycling of plutonium and effective utilization of uranium resources, based on the matured LWR technologies. MOX fuel assemblies in the tight-lattice fuel rod arrangement are used to reduce the moderation of neutron, and hence, to increase the conversion ratio. The conceptual design has been accomplished for the small 330 MWe RMWR core with the discharge burn-up of 60 GWd/t and the operation cycle of 24 months, under the natural circulation cooling of the core. A breeding ratio of 1.01 and the negative void reactivity coefficient are simultaneously realized in the design. In the plant system design, the passive safety features are intended to be utilized mainly to improve the economy. At present, a hybrid one under the combination of the passive and the active components, and a fully passive one are proposed. The former has been evaluated to reduce the cost for the reactor components. (authors)

Iwamura, Takamichi; Okubo, Tsutomu; Yonomoto, Taisuke [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195 (Japan); Takeda, Renzo; Moriya, Kumiaki [Hitachi, Ltd. (Japan); Kanno, Minoru [The Japan Atomic Power Company (Japan)

2002-07-01T23:59:59.000Z

230

Ultracold neutron source at the PULSTAR reactor: Engineering design and cryogenic testing  

Science Journals Connector (OSTI)

Abstract Construction is completed and commissioning is in progress for an ultracold neutron (UCN) source at the PULSTAR reactor on the campus of North Carolina State University. The source utilizes two stages of neutron moderation, one in heavy water at room temperature and the other in solid methane at ~ 40 K , followed by a converter stage, solid deuterium at 5K, that allows a single down scattering of cold neutrons to provide UCN. The UCN source rolls into the thermal column enclosure of the PULSTAR reactor, where neutrons will be delivered from a bare face of the reactor core by streaming through a graphite-lined assembly. The source infrastructure, i.e., graphite-lined assembly, heavy-water system, gas handling system, and helium liquefier cooling system, has been tested and all systems operate as predicted. The research program being considered for the PULSTAR UCN source includes the physics of UCN production, fundamental particle physics, and material surface studies of nanolayers containing hydrogen. In the present paper we report details of the engineering and cryogenic design of the facility as well as results of critical commissioning tests without neutrons.

E. Korobkina; G. Medlin; B. Wehring; A.I. Hawari; P.R. Huffman; A.R. Young; B. Beaumont; G. Palmquist

2014-01-01T23:59:59.000Z

231

Steady state temperature profiles in two simulated liquid metal reactor fuel assemblies with identical design specifications  

SciTech Connect (OSTI)

Temperature data from steady state tests in two parallel, simulated liquid metal reactor fuel assemblies with identical design specifications have been compared to determine the extent to which they agree. In general, good agreement was found in data at low flows and in bundle-center data at higher flows. Discrepancies in the data wre noted near the bundle edges at higher flows. An analysis of bundle thermal boundary conditions showed that the possible eccentric placement of one bundle within the housing could account for these discrepancies.

Levin, A.E.; Carbajo, J.J.; Lloyd, D.B.; Montgomery, B.H.; Rose, S.D.; Wantland, J.L.

1985-01-01T23:59:59.000Z

232

Study of design parameters for minimizing the cost of electricity of tokamak fusion power reactors  

Science Journals Connector (OSTI)

The impact of the design parameters on the cost of electricity (COE) is studied through a parameter survey in order to minimize the COE. Three kinds of operating modes are considered; first stability (FS), second stability (SS) and reversed shear (RS). The COE is calculated by a coupled physics-engineering-cost computer system code. Deuterium-tritium type, 1000 MW(e) at electric bus bar, steady state tokamak reactors with aspect ratios A from 3 to 4.5 are assumed. Several criteria are used for the parameter survey; for example, (a) the thermal to electrical conversion efficiency is assumed to be 34.5% using water as a coolant; (b) the average neutron wall load must not exceed 5 MW/m2 for plasma major radius Rp > 5 m; (c) a 2 MeV neutral beam injector (NBI) is applied. It is found that the RS operating mode most minimizes the COE among the three operating modes by reducing the cost of the current drive and the coils and structures. The cost-minimized RS reactor can attain high fbs, high ?N and low q95 at the same time, which results in a short Rp of 5.1 m, a low Bmax of the maximum magnetic toroidal field (TF) of the TF coils of 13 T and a low A of 3.0. It can be concluded that this cost-minimized RS reactor is the most cost-minimized within the frameworks of this study. This cost-minimized RS reactor has two advantages: one is that a Bmax = 13 T TF coil can be made by use of ITER coil technology and the other is that the same cooling technology as that of ITER (water cooling) can be used.

K. Tokimatsu; K. Okano; T. Yoshida; K. Yamaji; M. Katsurai

1998-01-01T23:59:59.000Z

233

Research reactors - an overview  

SciTech Connect (OSTI)

A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

West, C.D.

1997-03-01T23:59:59.000Z

234

Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

235

Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

236

Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

237

Modular tokamak magnetic system  

DOE Patents [OSTI]

A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

Yang, Tien-Fang (Wayland, MA)

1988-01-01T23:59:59.000Z

238

Safeguards-by-Design: Guidance for High Temperature Gas Reactors (HTGRs) With Pebble Fuel  

SciTech Connect (OSTI)

The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA) time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on pebble fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEAs statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information Questionnaire (DIQ), prepared by the facility operator, typically with the support of the facility designer. The IAEA will verify design information over the life of the project. This design information is an important IAEA safeguards tool. Since the main interlocutor with the IAEA in each country is the State Regulatory Authority/SSAC (or Regional Regulatory Authority, e.g. EURATOM), the responsibility for conveying this design information to the IAEA falls to the State Regulatory Authority/SSAC.

Philip Casey Durst; Mark Schanfein

2012-08-01T23:59:59.000Z

239

Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor  

SciTech Connect (OSTI)

An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

Ilas, Germina [ORNL; Primm, Trent [ORNL

2011-05-01T23:59:59.000Z

240

The effect of reactor design on the sustainability of grass biomethane  

Science Journals Connector (OSTI)

Grass biomethane is a sustainable transport biofuel. It can meet the 60% greenhouse gas saving requirements (as compared to the replaced fossil fuel) specified in the EU Renewable Energy Directive, if allowance is made for carbon sequestration, green electricity is used and the vehicle is optimized for gaseous biomethane. The issue in this paper is the effect of the digester type on the overall emissions savings. Examining three digestion configurations; dry continuous (DCAD), wet continuous (WCAD), and a two phase system (SLBR-UASB), it was found that the reactor type can result in a variation of 15% in emissions savings. The system that as modeled produced most biogas, and fuelled a vehicle most distance, the two phase system (SLBR-UASB), was the least sustainable due to biogas losses in the dry batch step. The system as modeled which produced the least biogas (DCAD) was the most sustainable as the parasitic demands on the system were least. Optimal reactor design for sustainability criteria should maximize biogas production, while minimizing biogas losses and parasitic demands.

Anoop Singh; Abdul-Sattar Nizami; Nicholas E. Korres; Jerry D. Murphy

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Design, development, and applications of a low-cost, dynamic neutron radiography system utilizing the TAMU NSC TRIGA reactor  

E-Print Network [OSTI]

partial fulfilment of the requirements for the degree of MASTER OF SC'IENCE May 1990 Major Subject: Nuclear Engineering DESIGN, DEVELOPMENT. AND APPLICATIONS OF A LOW ? COST, DYNAMIC NEUTRON RADIOGRAPHY SYSTEM UTILIZING THE TAMU NSC TRIGA REACTOR A...DESIGN, DEVELOPMENT. AND APPLICATIONS OF A LOW ? COST, DYNAMIC NEUTRON RADIOGRAPHY SYSTEM UTILIZING THE TAMU NSC TRIGA REACTOR A Thesis SC'OTT PATRIC'If ItIIDGETT Submitted to the Ofhce of Graduate Studies of Texas AklVI I!niversity rn...

Midgett, Scott Patrick

2012-06-07T23:59:59.000Z

242

Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors  

SciTech Connect (OSTI)

A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

Popa-Simil, L. [LAVM LLC, Los Alamos (United States)

2012-07-01T23:59:59.000Z

243

Burnup concept for a long-life fast reactor core using MCNPX.  

SciTech Connect (OSTI)

This report describes a reactor design with a burnup concept for a long-life fast reactor core that was evaluated using Monte Carlo N-Particle eXtended (MCNPX). The current trend in advanced reactor design is the concept of a small modular reactor (SMR). However, very few of the SMR designs attempt to substantially increase the lifetime of a reactor core, especially without zone loading, fuel reshuffling, or other artificial mechanisms in the core that %E2%80%9Cflatten%E2%80%9D the power profile, including non-uniform cooling, non-uniform moderation, or strategic poison placement. Historically, the limitations of computing capabilities have prevented acceptable margins in the temporal component of the spatial excess reactivity in a reactor design, due primarily to the error in burnup calculations. This research was performed as an initial scoping analysis into the concept of a long-life fast reactor. It can be shown that a long-life fast reactor concept can be modeled using MCNPX to predict burnup and neutronics behavior. The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional Light Water Reactors (LWRs) or other SMR designs. For the purpose of this study, a single core design was investigated: a relatively small reactor core, yielding a medium amount of power (~200 to 400 MWth). The results of this scoping analysis were successful in providing a preliminary reactor design involving metal U-235/U-238 fuel with HT-9 fuel cladding and sodium coolant at a 20% volume fraction.

Holschuh, Thomas Vernon,; Lewis, Tom Goslee,; Parma, Edward J.,

2013-02-01T23:59:59.000Z

244

Conceptual design of a passively safe thorium breeder Pebble Bed Reactor  

Science Journals Connector (OSTI)

Abstract More sustainable nuclear power generation might be achieved by combining the passive safety and high temperature applications of the Pebble Bed Reactor (PBR) design with the resource availability and favourable waste characteristics of the thorium fuel cycle. It has already been known that breeding can be achieved with the thorium fuel cycle inside a Pebble Bed Reactor if reprocessing is performed. This is also demonstrated in this work for a cylindrical core with a central driver zone, with 3g heavy metal pebbles for enhanced fission, surrounded by a breeder zone containing 30g thorium pebbles, for enhanced conversion. The main question of the present work is whether it is also possible to combine passive safety and breeding, within a practical operating regime, inside a thorium Pebble Bed Reactor. Therefore, the influence of several fuel design, core design and operational parameters upon the conversion ratio and passive safety is evaluated. A Depressurized Loss of Forced Cooling (DLOFC) is considered the worst safety scenario that can occur within a PBR. So, the response to a DLOFC with and without scram is evaluated for several breeder PBR designs using a coupled DALTON/THERMIX code scheme. With scram it is purely a heat transfer problem (THERMIX) demonstrating the decay heat removal capability of the design. In case control rods cannot be inserted, the temperature feedback of the core should also be able to counterbalance the reactivity insertion by the decaying xenon without fuel temperatures exceeding 1600C. Results show that high conversion ratios (CR >0.96) and passive safety can be combined in a thorium PBR within a practical operating regime, which means a thermal power of 100MW or higher, 1000days total residence time of the breeder pebbles and fuel pebble handling times longer than 14.5s, like in the HTR-PM. With an increased U-233 content of the fresh driver pebbles (18w%), breeding (CR=1.0135) can already be achieved for a 220cm core and 80cm driver zone radius. While the decay heat removal is sufficient in this design, the temperature feedback of the undermoderated driver pebbles is too weak to compensate the reactivity insertion due to the xenon decay during a DLOFC without scram. With a lower U-233 content per driver pebble (10w%) it was found possible to combine breeding(CR=1.0036) and passive safety for a 300cm core and 100cm driver zone radius, but this does require more than a doubling of the pebble handling speed and a high reprocessing rate of the fuel pebbles. The maximum fuel temperature during a DLOFC without scram was simulated to be 1481C for this design, still quite a bit below the TRISO failure temperature. The maximum reactivity insertion due to an ingress of water vapour is also limited with a value of +1497pcm.

F.J. Wols; J.L. Kloosterman; D. Lathouwers; T.H.J.J. van der Hagen

2015-01-01T23:59:59.000Z

245

A Comparison of the Performance of Compact Neutrino Detector Designs for Nuclear Reactor Safeguards and Monitoring  

E-Print Network [OSTI]

There has been an increasing interest in the monitoring of nuclear fuel for power reactors by detecting the anti-neutrinos produced during operation. Small liquid scintillator detectors have already demonstrated sensitivity to operational power levels, but more sensitive monitoring requires improvements in the efficiency and uniformity of these detectors. In this work, we use a montecarlo simulation to investigate the detector performance of four different detector configurations. Based on the analysis of neutron detection efficiency and positron energy response, we find that the optimal detector design will depend on the goals and restrictions of the specific installation or application. We have attempted to present the relevant information so that future detector development can proceed in a profitable direction.

McKeown, R W

2006-01-01T23:59:59.000Z

246

Prismatic modular reactor analysis with melcor  

E-Print Network [OSTI]

, the calculation for the heat distribution in the graphite and fuel is unsatisfactory which requires MELCOR modification for the PCC simulation. For future work, a complete model of the NGNP under normal operation conditions will be developed when additional data...

Zhen, Ni

2009-05-15T23:59:59.000Z

247

Energy Department Announces Small Modular Reactor Technology...  

Energy Savers [EERE]

of Agreement (MOA) will help leverage Savannah River's land assets, energy facilities and nuclear expertise to support potential private sector development, testing and licensing...

248

Design and optimization of a high thermal flux research reactor via Kriging-based algorithm  

E-Print Network [OSTI]

In response to increasing demands for the services of research reactors, a 5 MW LEU-fueled research reactor core is developed and optimized to provide high thermal flux within specified limits upon thermal hydraulic ...

Kempf, Stephanie Anne

2011-01-01T23:59:59.000Z

249

An autonomous long-term fast reactor system and the principal design limitations of the concept  

E-Print Network [OSTI]

Actinides MOX Mixed OXide MSR Molten-Salt Reactors NERI Nuclear Energy Research Initiative vii PWR Pressurized Water Reactor RGPu Reactor-Grade Plutonium SCNES Self-Consistent Nuclear Energy System STAR Secure Transportable Autonomous Reactor... of LWR?s, the drastic increase of Am and Cm inventories are observed after uranium fuel irradiation and the second recycling of MOX fuel.1 Therefore, partitioning and transmutation of the recovered MA?s could significantly reduce the long...

Tsvetkova, Galina Valeryevna

2004-09-30T23:59:59.000Z

250

Design and testing of a boron carbide capsule for spectral-tailoring in mixed-spectrum reactors  

SciTech Connect (OSTI)

A boron carbide capsule has been designed and used for spectral-tailoring experiments at the TRIGA reactor at Washington State Univ.. Irradiations were conducted in pulsed mode and in continuous operation for up to 4 h. A cadmium cover was used to reduce thermal heating. The neutron spectrum calculated with the Monte Carlo N-particle transport code was found to be in good agreement with reactor dosimetry measurements using the STAY'SL computer code. The neutron spectrum resembles that of a fast reactor. The design of a capsule using boron carbide fully enriched in {sup 10}B shows that it is possible to produce a neutron spectrum similar to that of {sup 235}U fission. (authors)

Greenwood, L.R.; Wittman, R. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Pierson, B.P. [Univ. of Michigan, Ann Arbor, MI 48109 (United States); Metz, L.A.; Payne, R.; Finn, E.C.; Friese, J.I. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

2011-07-01T23:59:59.000Z

251

Safeguards-by-Design:Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel  

SciTech Connect (OSTI)

Introduction and Purpose The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA) time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on prismatic fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEAs statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information Questionnaire (DIQ), prepared by the facility operator, typically with the support of the facility designer. The IAEA will verify design information over the life of the project. This design information is an important IAEA safeguards tool. Since the main interlocutor with the IAEA in each country is the State Regulatory Authority/SSAC (or Regional Regulatory Authority, e.g. EURATOM), the responsibility for conveying this design information to the IAEA falls to the State Regulatory Authority/SSAC. For the nuclear industry to reap the benefits of SBD (i.e. avoid cost overruns and construction schedule slippages), nuclear facility designers and operators should work closely with the State Regulatory Authority and IAEA as soon as a decision is taken to build a new nuclear facility. Ideally, this interaction should begin during the conceptual design phase and continue throughout construction and start-up of a nuclear facility. Such early coordination and planning could influence decisions on the design of the nuclear material processing flow-sheet, material storage and handling arrangements, and facility layout (including safeguards equipment), etc.

Mark Schanfein; Casey Durst

2012-11-01T23:59:59.000Z

252

Distributed algorithms for self-disassembly in modular robots  

E-Print Network [OSTI]

We developed a modular robotic system that behaves as programmable matter. Specifically, we designed, implemented, and tested a collection of robots that, starting from an amorphous arrangement, can be assembled into ...

Gilpin, Kyle W

2006-01-01T23:59:59.000Z

253

Retroactivity, modularity, and insulation in synthetic biology circuits  

E-Print Network [OSTI]

A central concept in synthetic biology is the reuse of well-characterized modules. Modularity simplifies circuit design by allowing for the decomposition of systems into separate modules for individual construction. Complex ...

Lin, Allen

2011-01-01T23:59:59.000Z

254

Preliminary neutronics design of china lead-alloy cooled demonstration reactor (CLEAR-III) for nuclear waste transmutation  

SciTech Connect (OSTI)

China Lead-Alloy cooled Demonstration Reactor (CLEAR-III), which is the concept of lead-bismuth cooled accelerator driven sub-critical reactor for nuclear waste transmutation, was proposed and designed by FDS team in China. In this study, preliminary neutronics design studies have primarily focused on three important performance parameters including Transmutation Support Ratio (TSR), effective multiplication factor and blanket thermal power. The constraint parameters, such as power peaking factor and initial TRU loading, were also considered. In the specific design, uranium-free metallic dispersion fuel of (TRU-Zr)-Zr was used as one of the CLEAR-III fuel types and the ratio between MA and Pu was adjusted to maximize transmutation ratio. In addition, three different fuel zones differing in the TRU fraction of the fuel were respectively employed for this subcritical reactor, and the zone sizes and TRU fractions were determined such that the linear powers of these zones were close to each other. The neutronics calculations and analyses were performed by using Multi-Functional 4D Neutronics Simulation System named VisualBUS and nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library). In the preliminary design, the maximum TSRLLMA was {approx}11 and the blanket thermal power was {approx}1000 MW when the effective multiplication factor was 0.98. The results showed that good performance of transmutation could be achieved based on the subcritical reactor loaded with uranium-free fuel. (authors)

Chen, Z. [Inst. of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Southwest Science and Technology Univ., No.350 Shushanhu Road, Shushan District, Hefei, Anhui, 230031 (China); Chen, Y.; Bai, Y.; Wang, W.; Chen, Z.; Hu, L.; Long, P. [Inst. of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, Univ. of Science and Technology of China, Hefei, Anhui, 230031 (China)

2012-07-01T23:59:59.000Z

255

TOKOPS: Tokamak Reactor Operations Study: The influence of reactor operations on the design and performance of tokamaks with solid-breeder blankets: Final report  

SciTech Connect (OSTI)

Reactor system operation and procedures have a profound impact on the conception and design of power plants. These issues are studied here using a model tokamak system employing a solid-breeder blanket. The model blanket is one which has evolved from the STARFIRE and BCSS studies. The reactor parameters are similar to those characterizing near-term fusion engineering reactors such as INTOR or NET (Next European Tokamak). Plasma startup, burn analysis, and methods for operation at various levels of output power are studied. A critical, and complicating, element is found to be the self-consistent electromagnetic response of the system, including the presence of the blanket and the resulting forces and loadings. Fractional power operation, and the strategy for burn control, is found to vary depending on the scaling law for energy confinement, and an extensive study is reported. Full-power reactor operation is at a neutron wall loading pf 5 MW/m/sup 2/ and a surface heat flux of 1 MW/m/sup 2/. The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiAlO/sub 2/ rods. The helium coolant pressure is 5 MPa, entering the module at 297/sup 0/C and exiting at 550/sup 0/C. The system power output is rated at 1000 MW(e). In this report, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented. Separate abstracts are included for each chapter.

Conn, R.W.; Ghoniem, N.M.; Firestone, M.A. (eds.)

1986-09-01T23:59:59.000Z

256

Conceptual design of the bimodal nuclear power system based on the Romashka type reactor with thermionic energy conversion system  

Science Journals Connector (OSTI)

The paper presents conceptual design of the bimodal space nuclear power system (NPS) based on the high?temperature reactor of ROMASHKA type with thermoninic energy conversion system. At the heart of the design is an employment of close?spaced thermionic diodes operating in a quasi?vacuum mode. The paper gives preliminary estimates of the NPS neutron?physical electric thermophysical and mass?dimensional parameters for the reactor electric power of 25 kW and propulsive thrust of about 80 N. Discussed are peculiarities of the combined mode wherein electric power is generated along with propulsive thrust. The paper contains results of the design studies performed by the Small Business NP Energotech under the Agreement with Rockwell International/Rocketdyne Division and according to the Rocketdyne Division provided Design Requirements. Involved in the work was the team of specialists of RRC Kurchatov Institute Red Star State Enterprise and Research Institute of SPA Luch

Nikolai N. Ponmarev?Stepnoi; Veniamin A. Usov; Yuri V. Nikolaev; Stanislav A. Yeriemin; Yevgeny Ye. Zhabotinski; Anatoly Ya. Galkin; Yevgeny D. Avdoshyn

1995-01-01T23:59:59.000Z

257

Computer analyses for the design, operation and safety of new isotope production reactors: A technology status review  

SciTech Connect (OSTI)

A review is presented on the currently available technologies for nuclear reactor analyses by computer. The important distinction is made between traditional computer calculation and advanced computer simulation. Simulation needs are defined to support the design, operation, maintenance and safety of isotope production reactors. Existing methods of computer analyses are categorized in accordance with the type of computer involved in their execution: micro, mini, mainframe and supercomputers. Both general and special-purpose computers are discussed. Major computer codes are described, with regard for their use in analyzing isotope production reactors. It has been determined in this review that conventional systems codes (TRAC, RELAP5, RETRAN, etc.) cannot meet four essential conditions for viable reactor simulation: simulation fidelity, on-line interactive operation with convenient graphics, high simulation speed, and at low cost. These conditions can be met by special-purpose computers (such as the AD100 of ADI), which are specifically designed for high-speed simulation of complex systems. The greatest shortcoming of existing systems codes (TRAC, RELAP5) is their mismatch between very high computational efforts and low simulation fidelity. The drift flux formulation (HIPA) is the viable alternative to the complicated two-fluid model. No existing computer code has the capability of accommodating all important processes in the core geometry of isotope production reactors. Experiments are needed (heat transfer measurements) to provide necessary correlations. It is important for the nuclear community, both in government, industry and universities, to begin to take advantage of modern simulation technologies and equipment. 41 refs.

Wulff, W.

1990-01-01T23:59:59.000Z

258

Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor  

SciTech Connect (OSTI)

This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safety basis. The simulations herein reported employed transport theory-based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of 235U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of {approx}23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel element's centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by {approx}50% and generate {approx}33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility.

Xoubi, Ned [ORNL; Primm, Trent [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2009-01-01T23:59:59.000Z

259

Effects of Modularity and Connectivity on OADM Deployment in Ring Networks  

Science Journals Connector (OSTI)

For a class of Optical Add/Drop Multiplexers, we empirically study the effects of port modularity and connectivity on device deployment in ring networks. Designs with greater...

Nuzman, Carl; Kumaran, Krishnan; Nithi, Nachi; Saniee, Iraj; Levy, David; Mitev, Peter

260

Small modular HTGR nuclear power plant concept to meet the total energy needs of the developing nations  

SciTech Connect (OSTI)

In this paper, a small modular High-Temperature Gas-Cooled Reactor (HTGR) is described that can support the total energy needs of the developing nations by supplying electrical power, process steam, low-grade heat for desalination, and hydrogen production. Major features of the nuclear power plant concept, currently under development by GA Technologies Inc. (GA), are discussed with emphasis on (1) plant simplicity, (2) inherent safety, (3) ease of operation, (4) design and licensing standardization, and (5) acceptable power generation economics.

McDonald, C.F.

1983-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Design of a boiling water reactor equilibrium core using thorium-uranium fuel  

SciTech Connect (OSTI)

In this paper the design of a Boiling Water Reactor (BWR) equilibrium core using thorium is presented; a heterogeneous blanket-seed core arrangement concept was adopted. The design was developed in three steps: in the first step two different assemblies were designed based on the integrated blanket-seed concept, they are the blanket-dummy assembly and the blanket-seed assembly. The integrated blanketseed concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned-out in a once-through cycle. In the second step, a core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the assembly. In the third step an in-house code was developed to evaluate the thorium equilibrium core under transient conditions. A stability analysis was also performed. Regarding the stability analysis, five operational states were analyzed; four of them define the traditional instability region corner of the power-flow map and the fifth one is the operational state for the full power condition. The frequency and the boiling length were calculated for each operational state. The frequency of the analyzed operational states was similar to that reported for BWRs; these are close to the unstable region that occurs due to the density wave oscillation phenomena in some nuclear power plants. Four transient analyses were also performed: manual SCRAM, recirculation pumps trip, main steam isolation valves closure and loss of feed water. The results of these transients are similar to those obtained with the traditional UO2 nuclear fuel.

Francois, J-L.; Nunez-Carrera, A.; Espinosa-Paredes, G.; Martin-del-Campo, C.

2004-10-06T23:59:59.000Z

262

Laminar Entrained Flow Reactor (Fact Sheet)  

SciTech Connect (OSTI)

The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

Not Available

2014-02-01T23:59:59.000Z

263

Fuel Grading Study on a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor  

SciTech Connect (OSTI)

An engineering design study that would enable the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel is ongoing at Oak Ridge National Laboratory. The computational models used to search for a low-enriched uranium (LEU) fuel design that would meet the requirements for the conversion study, and the recent results obtained with these models during FY 2009, are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating high-enriched uranium fuel core. These studies indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations.

Ilas, Germina [ORNL; Primm, Trent [ORNL

2009-11-01T23:59:59.000Z

264

Modular robotics overview of the `state of the art`  

SciTech Connect (OSTI)

The design of a robotic arm processing modular components and reconfigurable links is the general goal of a modular robotics development program. The impetus behind the pursuit of modular design is the remote engineering paradigm of improved reliability and availability provided by the ability to remotely maintain and repair a manipulator operating in a hazardous environment by removing and replacing worn or failed modules. Failed components can service off- line and away from hazardous conditions. The desire to reconfigure an arm to perform different tasks is also an important driver for the development of a modular robotic manipulator. In order to bring to fruition a truly modular manipulator, an array of technical challenges must be overcome. These range from basic mechanical and electrical design considerations such as desired kinematics, actuator types, and signal and transmission types and routings, through controls issues such as the need for control algorithms capable of stable free space and contact control, to computer and sensor design issues like consideration of the use of embedded processors and redundant sensors. This report presents a brief overview of the state of the art of technical issues relevant of modular robotic arm design. The focus is on breadth of coverage, rather than depth, in order to provide a reference frame for future development.

Kress, R.L.; Jansen, J.F.; Hamel, W.R.

1996-08-01T23:59:59.000Z

265

Nuclear Regulatory Commission Handling of Beyond Design Basis Events for Nuclear Power Reactors  

Broader source: Energy.gov [DOE]

Presenter: Bill Reckley, Chief, Policy and Support Branch, Japan Lessons-Learned Project Directorate, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission US Nuclear Regulatory Commission

266

Design and development of a special purpose SAFT system for nondestructive evaluation of nuclear reactor vessels and piping components  

SciTech Connect (OSTI)

This report describes the design details of a special purpose system for real-time nondestructive evaluation of reactor vessels and piping components. The system consists of several components and the report presents the results of the research aimed at the design of each component and recommendations based on the results. One major component of the NDE system, namely the real-time SAFT processor, was designed with sufficient details to enable the fabrications of a prototype by GARD Inc. under a subcontract from The University of Michigan and the report includes their results and conclusions.

Ganapathy, S.; Schmult, B.; Wu, W.S.; Dennehy, T.G.; Moayeri, N.; Kelly, P.

1985-08-01T23:59:59.000Z

267

Advanced Reactor Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Reactor Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Office of Nuclear Energy (NE) will pursue these advancements through RD&D activities at the Department of Energy (DOE) national laboratories and U.S. universities, as well as through collaboration with industry and international partners. These activities will focus on advancing scientific

268

Design, fabrication, and certification of advanced modular PV power systems. Annual technical progress report, 8 September 1995--7 September 1996  

SciTech Connect (OSTI)

This report summarizes the activities performed during the first year of a nominal 2-year effort by Solar Electric Specialties Company (SES) under the Photovoltaic Manufacturing Technology (PVMaT) project of the National Photovoltaic Program. The goal of the SES contract is to reduce the installed system life-cycle costs by developing certified and standardized prototype products for two SES product lines--MAPPS{trademark} and Photogenset{trademark}. The MAPPS (modular autonomous PV power supply) systems are used for DC applications up to about a thousand watt-hours. The Photogensets are hybrid PV/generator systems for AC applications. SES expects these products to provide the basis for future commercial product lines of standardized certified, packaged systems.

Lambarski, T.; Minyard, G. [Solar Electric Specialties, Willits, CA (United States)

1997-03-01T23:59:59.000Z

269

Status of axial heterogeneous liquid-metal fast breeder reactor core design studies and research and development  

SciTech Connect (OSTI)

The current status of axial heterogeneous core (AHC) design development in Japan, which consists of an AHC core design in a pool-type demonstration fast breeder reactor (DFBR) and research and development activities supporting AHC core design, is presented. The DFBR core design objectives developed by The Japan Atomic Power Company include (a) favorable core seismic response, (b) core compactness, (c) high availability, and (d) lower fuel cycle cost. The AHC concept was selected as a reference pool-type DFBR core because it met these objectives more suitably than the homogeneous core (HOC). The AHC core layouts were optimized emphasizing the reduction of the burnup reactivity swing, peak fast fluence, and power peaking. The key performance parameters resulting from the AHC, such as flat axial power/flux distribution, lower peak fast fluence, lower burnup reactivity swing, etc., were evaluated in comparison with the HOC. The critical experiments at the Japan Atomic Energy Research Institute's Fast Critical Assembly facility demonstrate the key AHC performance characteristics. The large AHC engineering benchmark experiments using the zero-power plutonium reactor and the AHC fuel pin irradiation test program using the JOYO reactor are also presented.

Nakagawa, H.; Inagaki, T.; Yoshimi, H.; Shirakata, K.; Watari, Y.; Suzuki, M.; Inoue, K.

1988-11-01T23:59:59.000Z

270

Advanced Test Reactor Safety Basis Upgrade Lessons Learned Relative to Design Basis Verification and Safety Basis Management  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzed in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR safety basis. The need for a design basis reconstitution program for the ATR has been identified along with the use of sound configuration management principles in order to support safe and efficient facility operation.

G. L. Sharp; R. T. McCracken

2004-05-01T23:59:59.000Z

271

Design of a continuous-flow reactor for in situ x-ray absorption spectroscopy of solids in supercritical fluids  

SciTech Connect (OSTI)

This paper presents the design and performance of a novel high-temperature and high-pressure continuous-flow reactor, which allows for x-ray absorption spectroscopy or diffraction in supercritical water and other fluids under high pressure and temperature. The in situ cell consists of a tube of sintered, polycrystalline aluminum nitride, which is tolerant to corrosive chemical media, and was designed to be stable at temperatures up to 500 deg. C and pressures up to 30 MPa. The performance of the reactor is demonstrated by the measurement of extended x-ray absorption fine structure spectra of a carbon-supported ruthenium catalyst during the continuous hydrothermal gasification of ethanol in supercritical water at 400 deg. C and 24 MPa.

Dreher, M.; De Boni, E.; Nachtegaal, M.; Wambach, J.; Vogel, F. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

2012-05-15T23:59:59.000Z

272

Advanced Light Water Reactor Plants System 80+{trademark} Design Certification Program. Annual progress report, October 1, 1992--September 30, 1993  

SciTech Connect (OSTI)

The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80+{trademark} during the US government`s 1993 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW{sub t} (1350 MWe) Pressurized Water Reactor (PWR). The design consists of an essentially complete plant. It is based on evolutionary improvements to the Standardized System 80 nuclear steam supply system in operation at Palo Verde Units 1, 2, and 3, and the Duke Power Company P-81 balance-of-plant (BOP) that was designed and partially constructed at the Cherokee plant site. The System 80/P-81 original design has been substantially enhanced to increase conformance with the EPRI ALWR Utility Requirements Document (URD). Some design enhancements incorporated in the System 80+ design are included in the four units currently under construction in the Republic of Korea. These units form the basis of the Korean standardization program. The full System 80+ standard design has been offered to the Republic of China, in response to their recent bid specification. The ABB-CE Standard Safety Analysis Report (CESSAR-DC) was submitted to the NRC and a Draft Safety Evaluation Report was issued by the NRC in October 1992. CESSAR-DC contains the technical basis for compliance with the EPRI URD for simplified emergency planning. The Nuclear Steam Supply System (NSSS) is the standard ABB-Combustion Engineering two-loop arrangement with two steam generators, two hot legs and four cold legs each with a reactor coolant pump. The System 80+ standard plant includes a sperical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual containment.

Not Available

1993-12-31T23:59:59.000Z

273

Design, construction, commissioning and use of a new cadmium-lined in-core irradiation tube for the Oregon State University TRIGA Reactor  

SciTech Connect (OSTI)

As a result of several requests from reactor users, it was recently decided to install a new cadmium-lined in-core irradiation tube (CLICIT) in the Oregon State University TRIGA Reactor (OSTR). As the title implies, this paper will describe the complete sequence of this process, from the design, and design constraints through manufacture to the actual use of the tube. The design is such that it offers a significant degree of flexibility in use, while still strictly adhering to ALARA concepts. In order to keep costs down, the facility was designed, installed and commissioned by the Oregon State University TRIGA Reactor (OSTR) staff and fabricated locally. As this facility is relatively cheap (about $2,000), and will fit all non-conversion TRIGAs other reactor owners may be interested in copying the OSTR tube design. (author)

Dodd, B.; Anderson, T.V

1990-07-01T23:59:59.000Z

274

Optimal control of xenon concentration by observer design under reactor model uncertainty  

SciTech Connect (OSTI)

The state feedback in control theory enjoys many advantages, such as stabilization and improved transient response, which could be beneficially used for control of the xenon oscillation in a power reactor. It is, however, not possible in nuclear reactors to measure the state variables, such as xenon and iodine concentrations. For implementation of the optimal state feedback control law, it is thus necessary to estimate the unmeasurable state variables. This paper uses the Luenberger observer to estimate the xenon and iodine concentrations to be used in a linear quadratic problem with state feedback. To overcome the stiffness problem in reactor kinetics, a singular perturbation method is used.

Cho, Nam Z.; Yang, Chae Y.; Woo, Hae S.

1989-01-01T23:59:59.000Z

275

Advanced light water reactor plants System 80+{trademark} design certification program. Annual progress report, October 1, 1994--September 30, 1995  

SciTech Connect (OSTI)

The purpose of this report is to provide the status of the progress that was made towards Design Certification of System 80+{trademark} during the US government`s 1995 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2, and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems.

NONE

1998-09-01T23:59:59.000Z

276

Optimized core design of a supercritical carbon dioxide-cooled fast reactor  

E-Print Network [OSTI]

Spurred by the renewed interest in nuclear power, Gas-cooled Fast Reactors (GFRs) have received increasing attention in the past decade. Motivated by the goals of the Generation-IV International Forum (GIF), a GFR cooled ...

Handwerk, Christopher S. (Christopher Stanley), 1974-

2007-01-01T23:59:59.000Z

277

Stability analysis of the boiling water reactor : methods and advanced designs  

E-Print Network [OSTI]

Density Wave Oscillations (DWOs) are known to be possible when a coolant undergoes considerable density reduction while passing through a heated channel. In the development of boiling water reactors (BWRs), there has been ...

Hu, Rui, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

278

IoT-Based Maintenance Process Design for Fusion Reactor Remote Handling System  

Science Journals Connector (OSTI)

Nuclear fusion is one of the most important ways ... to risk of ionizing radiation, the nuclear fusion reactor will relay on remote handling maintenance to ... the maintenance efficiency. The basic structure of fusion

Ruonan Zhang; Xinbao Liu

2014-12-01T23:59:59.000Z

279

An inverted pressurized water reactor design with twisted-tape swirl promoters  

E-Print Network [OSTI]

An Inverted Fuel Pressurized Water Reactor (IPWR) concept was previously investigated and developed by Paolo Ferroni at MIT with the effort to improve the power density and capacity of current PWRs by modifying the core ...

Nguyen, Nghia T. (Nghia Tat)

2014-01-01T23:59:59.000Z

280

Design and optimization of the heat rejection system for a liquid cooled thermionic space nuclear reactor power system  

SciTech Connect (OSTI)

The heat transport subsystem for a liquid metal cooled thermionic space nuclear power system was modelled using algorithms developed in support of previous nuclear power system study programs, which date back to the SNAP-10A flight system. The model was used to define the optimum dimensions of the various components in the heat transport subsystem subjected to the constraints of minimizing mass and achieving a launchable package that did not require radiator deployment. The resulting design provides for the safe and reliable cooling of the nuclear reactor in a proven lightweight design.

Moriarty, M.P. (Rocketdyne Division, Rockwell International Corporation, 6633 Canoga Avenue, P.O. Box 7922, Canoga Park, California 91309-7922 (United States))

1993-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Modular low aspect ratio-high beta torsatron  

DOE Patents [OSTI]

A fusion reactor device in which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low aspect ratio toroid in planes having the cylindrical coordinate relationship .phi.=.phi..sub.i +kz where k is a constant equal to each coil's pitch and .phi..sub.i is the toroidal angle at which the i'th coil intersects the z=o plane. The device may be described as a modular, high beta torsation whose screw symmetry is pointed along the systems major (z) axis. The toroid defined by the modular coils preferably has a racetrack minor cross section. When vertical field coils and preferably a toroidal plasma current are provided for magnetic field surface closure within the toroid, a vacuum magnetic field of racetrack shaped minor cross section with improved stability and beta valves is obtained.

Sheffield, George V. (Hopewell, NJ); Furth, Harold P. (Princeton, NJ)

1984-02-07T23:59:59.000Z

282

Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs  

SciTech Connect (OSTI)

This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

Yoder, G.L.

2005-10-03T23:59:59.000Z

283

Granular Dynamics in Pebble Bed Reactor Cores  

E-Print Network [OSTI]

pebble bed reactor, Nuclear Engineering and Design, vol.the AVR reactor, Nuclear Engineering and Design, vol. 121,Operating Experience, Nuclear Engineering and Design, vol.

Laufer, Michael Robert

2013-01-01T23:59:59.000Z

284

Design change management in regulation of nuclear fleets: World nuclear association's working groups on Cooperation in Reactor Design Evaluation and Licensing (CORDEL)  

SciTech Connect (OSTI)

The 60 year life of a reactor means that a plant will undergo change during its life. To ensure continuing safety, changes must be made with a full understanding of the design intent. With this aim, regulators require that each operating organisation should have a formally designated entity responsible for complete design knowledge in regard to plant safety. INSAG-19 calls such an entity 'Design Authority'. This requirement is difficult to achieve, especially as the number of countries and utilities operating plants increases. Some of these operating organisations will be new, and some will be small. For Gen III plants sold on a turnkey basis, it is even more challenging for the operating company to develop and retain the full knowledge needed for this role. CORDEL's Task Force entitled 'Design Change Management' is investigating options for effective design change management with the aim to support design standardization throughout a fleet's lifetime by means of enhanced international cooperation within industry and regulators. This paper starts with considering the causes of design change and identifies reasons for the increased beneficial involvement of the plant's original vendor in the design change process. A key central theme running through the paper is the definition of responsibilities for design change. Various existing mechanisms of vendor-operator interfaces over design change and how they are managed in different organisational and regulatory environments around the world are considered, with the functionality of Owners Groups and Design Authority being central. The roles played in the design change process by vendors, utilities, regulators, owners' groups and other organisations such as WANO are considered The aerospace industry approach to Design Authority has been assessed to consider what lessons might be learned. (authors)

Swinburn, R. [CORDEL DCM Task Force, Rolls-Royce Plc (United Kingdom); Borysova, I. [CORDEL, WNA, 22a St.James Sq., London SW1Y 4JH (United Kingdom); Waddington, J. [CORDEL Group (United Kingdom); Head, J. G. [CORDEL Group, GE-Hitachi Nuclear Energy (United Kingdom); Raidis, Z. [CORDEL Group, Candu Energy (United Kingdom)

2012-07-01T23:59:59.000Z

285

Design of an Actinide-Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low-Cost Electricity  

SciTech Connect (OSTI)

The purpose of this Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) University Research Consortium (URC) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, material compatibility, plant engineering, and coolant activation. In the area of core neutronic design, the reactivity vs. burnup and discharge isotopics of both non-fertile and fertile fuels were evaluated. An innovative core for pure actinide burning that uses streaming, fertile-free fuel assemblies was studied in depth. This particular core exhibits excellent reactivity performance upon coolant voiding, even for voids that occur in the core center, and has a transuranic (TRU) destruction rate that is comparable to the proposed accelerator transmutation of waste (ATW) facility. These studies suggest that a core can be designed to achieve a long life while maintaining safety and minimizing waste. In the area of material compatibility studies, an experimental apparatus for the investigation of the flow-assisted dissolution and precipitation (corrosion) of potential fuel cladding and structural materials has been designed and built at the INEEL. The INEEL forced-convection corrosion cell consists of a small heated vessel with a shroud and gas flow system. The corrosion cell is being used to test steel that is commercially available in the United States to temperatures above 650C. Progress in plant engineering was made for two reactor concepts, one utilizing an indirect cycle with heat exchangers and the other utilizing a direct-contact steam cycle. The evaluation of the indirect cycle designs has investigated the effects of various parameters to increase electric production at full power. For the direct-contact reactor, major issues related to the direct-contact heat transfer rate and entrainment and carryover of liquid lead-bismuth to the turbine have been identified and analyzed. An economic analysis approach was also developed to determine the cost of electricity production in the lead-bismuth reactor. The approach will be formulated into a model and applied to develop scientific cost estimates for the different reactor designs and thus aid in the selection of the most economic option. In the area of lead-bismuth coolant activation, the radiological hazard was evaluated with particular emphasis on the direct-contact reactor. In this system, the lack of a physical barrier between the primary and secondary coolant favors the release of the alpha-emitter Po?210 and its transport throughout the plant. Modeling undertaken on the basis of the scarce information available in the literature confirmed the importance of this issue, as well as the need for experimental work to reduce the uncertainties on the basic characteristics of volatile polonium chemical forms.

Mac Donald, Philip Elsworth; Weaver, Kevan Dean; Davis, Cliff Bybee; MIT folks

2000-07-01T23:59:59.000Z

286

Implementation of the SAM-CE Monte Carlo benchmark analysis capability for validating nuclear data and reactor design codes  

SciTech Connect (OSTI)

The National Nuclear Data Center is continuing its program to improve the nuclear data base used as input for commercial reactor analysis and design. In the most recent phase of this project the Monte Carlo program SAM-CE, developed by the Mathematical Applications Group, Inc. (MAGI), was made operational at BNL. This program was implemented on the BNL-CDC-7600 Computer, and also on the PDP-10 in-house computer. The NNDC made operational and developed techniques for processing ENDF/B-V cross sections for SAM-CE. A limited ENDF/B-V based library was produced. Use of the SAM-CE program in thermal reactor problems was validated using detailed comparisons of results with other Monte Carlo codes such as RECAP, RCP01 and VIM as well as with experimental data.

Beer, M.; Rose, P.

1981-04-01T23:59:59.000Z

287

Maintenance building structural design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant  

SciTech Connect (OSTI)

The Maintenance Building is a grade-founded, two-story, steel-framed structure, located adjacent to the Turbine Building in the Energy Conversion Area. It has a reinforced concrete foundation and slab on grade, and insulated sheet metal exterior walls and roof decking.

NONE

1986-06-01T23:59:59.000Z

288

Single channel flow blockage accident phenomena identification and ranking table (PIRT) for the advanced Candu reactor  

SciTech Connect (OSTI)

The Advanced Candu Reactor (ACRTM) is an evolutionary advancement of the current Candu 6{sup R} reactor, aimed at producing electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The ACR retains the modular concept of horizontal fuel channels surrounded by a heavy water moderator, as with all Candu reactors. However, ACR uses slightly enriched uranium (SEU) fuel, compared to the natural uranium used in Candu 6. This achieves the twin goals of improved economics (e.g., via reductions in the heavy water requirements and the use of a light water coolant), as well as improved safety. This paper documents the results of Phenomena Identification and Ranking Table (PIRT) results for a very limited frequency, beyond design basis event of the ACR design. This PIRT is developed in a highly structured process of expert elicitation that is well supported by experimental data and analytical results. The single-channel flow blockage event in an ACR reactor assumes a severe flow blockage of one of the reactor fuel channels, which leads to a reduction of the flow in the affected channel, leading to fuel cladding and fuel temperature increase. The paper outlines the design characteristics of the ACR reactor that impact the PIRT process and computer code applicability. It also describes the flow blockage phenomena, lists all components and systems that have an important role during the event, discusses the PIRT process and results, and presents the finalized PIRT tables. (authors)

Popov, N.K.; Abdul-Razzak, A.; Snell, V.G.; Langman, V. [Atomic Energy of Canada Ltd., 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada); Sills, H. [Consultant, Deep River, Ontario (Canada)

2004-07-01T23:59:59.000Z

289

Preheating After Modular Inflation  

E-Print Network [OSTI]

We study (p)reheating in modular (closed string) inflationary scenarios, with a special emphasis on Kahler moduli/Roulette models. It is usually assumed that reheating in such models occurs through perturbative decays. However, we find that there are very strong non-perturbative preheating decay channels related to the particular shape of the inflaton potential (which is highly nonlinear and has a very steep minimum). Preheating after modular inflation, proceeding through a combination of tachyonic instability and broad-band parametric resonance, is perhaps the most violent example of preheating after inflation known in the literature. Further, we consider the subsequent transfer of energy to the standard model sector in scenarios where the standard model particles are confined to a D7-brane wrapping the inflationary blow-up cycle of the compactification manifold or, more interestingly, a non-inflationary blow up cycle. We explicitly identify the decay channels of the inflaton in these two scenarios. We also consider the case where the inflationary cycle shrinks to the string scale at the end of inflation; here a field theoretical treatment of reheating is insufficient and one must turn instead to a stringy description. We estimate the decay rate of the inflaton and the reheat temperature for various scenarios.

Neil Barnaby; J. Richard Bond; Zhiqi Huang; Lev Kofman

2009-09-02T23:59:59.000Z

290

Reliable-linac design for accelerator-driven subcritical reactor systems.  

SciTech Connect (OSTI)

Accelerator reliability corresponding to a very low frequency of beam interrupts is an important new accelerator requirement for accelerator-driven subcritical reactor systems. In this paper we review typical accelerator-reliability requirements and discuss possible methods for meeting these goals with superconducting proton-linac technology.

Wangler, Thomas P.,

2002-01-01T23:59:59.000Z

291

Analyses in support of the Laboratory Microfusion Facility and ICF commercial reactor designs  

SciTech Connect (OSTI)

Our work on this contract was divided into two major categories; two thirds of the total effort was in support of the Laboratory Microfusion Facility (LMF), and one third of the effort was in support of Inertial Confinement Fusion (ICF) commercial reactors. This final report includes copies of the formal reports, memoranda, and viewgraph presentations that were completed under this contract.

Meier, W.R.; Monsler, M.J.

1988-12-28T23:59:59.000Z

292

Language constructs for modular parallel programs  

SciTech Connect (OSTI)

We describe programming language constructs that facilitate the application of modular design techniques in parallel programming. These constructs allow us to isolate resource management and processor scheduling decisions from the specification of individual modules, which can themselves encapsulate design decisions concerned with concurrence, communication, process mapping, and data distribution. This approach permits development of libraries of reusable parallel program components and the reuse of these components in different contexts. In particular, alternative mapping strategies can be explored without modifying other aspects of program logic. We describe how these constructs are incorporated in two practical parallel programming languages, PCN and Fortran M. Compilers have been developed for both languages, allowing experimentation in substantial applications.

Foster, I.

1996-03-01T23:59:59.000Z

293

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...  

Office of Scientific and Technical Information (OSTI)

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor Design and Feasibility Problem Re-direct Destination: Temp Data Fields Rosen, M. A.; Coburn, D. B.; Flynn, T....

294

Conceptual design of thorium-fuelled Mitrailleuse accelerator-driven subcritical reactor using D-Be neutron source  

SciTech Connect (OSTI)

A distributed accelerator is a charged-particle accelerator that uses a new acceleration method based on repeated electrostatic acceleration. This method offers outstanding benefits not possible with the conventional radio-frequency acceleration method, including: (1) high acceleration efficiency, (2) large acceleration current, and (3) lower failure rate made possible by a fully solid-state acceleration field generation circuit. A 'Mitrailleuse Accelerator' is a product we have conceived to optimize this distributed accelerator technology for use with a high-strength neutron source. We have completed the conceptual design of a Mitrailleuse Accelerator and of a thorium-fuelled subcritical reactor driven by a Mitrailleuse Accelerator. This paper presents the conceptual design details and approach to implementing the subcritical reactor core. We will spend the next year or so on detailed design work, and then will start work on developing a prototype for demonstration. If there are no obstacles in setting up a development organization, we expect to finish verifying the prototype's performance by the third quarter of 2015. (authors)

Kokubo, Y. [Quan Japan Company Limited, 3-9-15 Sannomiya-cho, Chuo-ku, Kobe, Hyogo, 650-0021 (Japan); Kamei, T. [Research Inst. for Applied Sciences, 49 Tanaka Ohicho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8202 (Japan)

2012-07-01T23:59:59.000Z

295

Design and Testing of a 10B4C Capsule for Spectral-Tailoring in Mixed-Spectrum Reactors  

SciTech Connect (OSTI)

A boron carbide capsule highly enriched in 10B has been designed and used for spectral-tailoring experiments at the TRIGA reactor at Washington State University. New experiments show that enriching the boron to 96% B-10 results in additional absorption of neutrons in the resonance region thereby producing a neutron spectrum that is much closer to a pure 235U fission spectrum. A cadmium outer cover was used to reduce thermal heating. The neutron spectrum calculated with MCNP was found to be in very good agreement with measured activation rates from neutron fluence monitors.

Greenwood, Lawrence R.; Wittman, Richard S.; Metz, Lori A.; Finn, Erin C.; Friese, Judah I.

2014-04-11T23:59:59.000Z

296

Conceptual design analysis of an MHD power conversion system for droplet-vapor core reactors. Final report  

SciTech Connect (OSTI)

A nuclear driven magnetohydrodynamic (MHD) generator system is proposed for the space nuclear applications of few hundreds of megawatts. The MHD generator is coupled to a vapor-droplet core reactor that delivers partially ionized fissioning plasma at temperatures in range of 3,000 to 4,000 K. A detailed MHD model is developed to analyze the basic electrodynamics phenomena and to perform the design analysis of the nuclear driven MHD generator. An incompressible quasi one dimensional model is also developed to perform parametric analyses.

Anghaie, S.; Saraph, G.

1995-12-31T23:59:59.000Z

297

Honeywell modular automation system acceptance test report  

SciTech Connect (OSTI)

This document provides the results of the Acceptance Test Procedure for the Honeywell Modular Automation System.

Cunningham, L.T., Westinghouse Hanford

1996-06-14T23:59:59.000Z

298

Modular Optical PDV System  

SciTech Connect (OSTI)

A modular optical photon Doppler velocimetry (PDV) detector system has been developed by using readily available optical components with a 20-GHz Miteq optical detector into eight channels of single-wide modules integrated into a 3U rack unit (1U = 1.75 inches) with a common power supply. Optical fibers were precisely trimmed, welded, and timed within each unit. This system has been used to collect dynamic velocity data on various physics experiments. An optical power meter displays the laser input power to the module and optical power at the detector. An adjustable micro-electromechanical system (MEMS) optical attenuator is used to adjust the amount of unshifted light entering the detector. Front panel LEDs show the presence of power to the module. A fully loaded chassis with eight channels consumes 45 watts of power. Each chassis requires 1U spacing above and below for heat management. Modules can be easily replaced.

Araceli Rutkowski, David Esquibel

2008-12-11T23:59:59.000Z

299

Fuel element design for the enhanced destruction of plutonium in a nuclear reactor  

DOE Patents [OSTI]

A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr--Hf alloy or an alloy of Pu--Zr--Hf or a combination of both. 7 figs.

Crawford, D.C.; Porter, D.L.; Hayes, S.L.; Hill, R.N.

1999-03-23T23:59:59.000Z

300

Fuel element design for the enhanced destruction of plutonium in a nuclear reactor  

DOE Patents [OSTI]

A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr--Hf alloy or an alloy of Pu--Zr--Hf or a combination of both.

Crawford, Douglas C. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Hayes, Steven L. (Idaho Falls, ID); Hill, Robert N. (Bolingbrook, IL)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Los Alamos VXI-based modular RF control system  

SciTech Connect (OSTI)

This paper describes the design and implementation of the Los Alamos modular RF control system, which provides high-performance feedback and/or feedforward control of RF accelerator cavities. This is a flexible, modular control system which has been realized in the industry-standard VXI cardmodular format. A wide spectrum of system functionality can be accommodated simply by incorporating only those modules and features required for a particular application. The fundamental principles of the design approach are discussed. Details of the VXI implementation are given, including the system architecture and interfaces, performance capabilities, and available features.

Jachim, S.P.; Ziomek, C.; Natter, E.F.; Regan, A.H.; Hill, J.; Eaton, L.; Gutscher, W.D.; Curtin, M.; Denney, P.; Hansberry, E.; Brooks, T.

1993-01-01T23:59:59.000Z

302

The Los Alamos VXI-based modular RF control system  

SciTech Connect (OSTI)

This paper describes the design and implementation of the Los Alamos modular RF control system, which provides high-performance feedback and/or feedforward control of RF accelerator cavities. This is a flexible, modular control system which has been realized in the industry-standard VXI cardmodular format. A wide spectrum of system functionality can be accommodated simply by incorporating only those modules and features required for a particular application. The fundamental principles of the design approach are discussed. Details of the VXI implementation are given, including the system architecture and interfaces, performance capabilities, and available features.

Jachim, S.P.; Ziomek, C.; Natter, E.F.; Regan, A.H.; Hill, J.; Eaton, L.; Gutscher, W.D.; Curtin, M.; Denney, P.; Hansberry, E.; Brooks, T.

1993-06-01T23:59:59.000Z

303

Major Safety Aspects of Advanced Candu Reactor and Associated Research and Development  

SciTech Connect (OSTI)

The Advanced Candu{sup R} Reactor design is built on the proven technology of existing Candu plants and on AECL's knowledge base acquired over decades of nuclear power plant design, engineering, construction and research. Two prime objectives of ACR-700TM1 are cost reduction and enhanced safety. To achieve them some new features were introduced and others were improved from the previous Candu 6 and Candu 9 designs. The ACR-700 reactor design is based on the modular concept of horizontal fuel channels surrounded by a heavy water moderator, the same as with all Candu reactors. The major novelty in the ACR-700 is the use of slightly enriched fuel and light water as coolant circulating in the fuel channels. This results in a more compact reactor design and a reduction of heavy water inventory, both contributing to a significant decrease in cost compared to Candu reactors, which employ natural uranium as fuel and heavy water as coolant. The reactor core design adopted for ACR-700 also has some features that have a bearing on inherent safety, such as negative power and coolant void reactivity coefficient. Several improvements in engineered safety have been made as well, such as enhanced separation of the safety support systems. Since the ACR-700 design is an evolutionary development of the currently operating Candu plants, limited research is required to extend the validation database for the design and the supporting safety analysis. A program of safety related research and development has been initiated to address the areas where the ACR-700 design is significantly different from the Candu designs. This paper describes the major safety aspects of the ACR-700 with a particular focus on novel features and improvements over the existing Candu reactors. It also outlines the key areas where research and development efforts are undertaken to demonstrate the effectiveness and robustness of the design. (authors)

Bonechi, M.; Wren, D.J.; Hopwood, J.M. [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

2002-07-01T23:59:59.000Z

304

Nuclear design of the burst power ultrahigh temperature UF4 vapor core reactor system  

Science Journals Connector (OSTI)

Static and dynamic neutronic analyses are being performed as part of an integrated series of studies on an innovative burst power UF4 Ultrahigh Temperature Vapor Core Reactor (UTVR)/Disk Magnetohydrodynamic (MHD) generator for space nuclear power applications. This novel reactor concept operates on a direct closed Rankine cycle in the burst power mode (hundreds of MWe for thousands of seconds). The fuel/working fluid is a mixture of UF4 and metal fluoride. Preliminary calculations indicate high overall system efficiencies (?20%) small radiator size (?5 m2/MWe) and high specific power (?5 kWe/kg). Neutronic analysis has revealed a number of attractive features for this novel reactor concept. These include some unique and very effective inherent negative reactivity control mechanisms such as the vapor?fuel density power coefficient of reactivity the direct neutronic coupling among the multiple fissioning core regions (the central vapor core and the surrounding boiler columns) and the mass flow coupling feedback between the fissioning cores.

Samer D. Kahook; Edward T. Dugan

1991-01-01T23:59:59.000Z

305

Design of a Receding Horizon Control System for Nuclear Reactor Power Distribution  

SciTech Connect (OSTI)

A receding horizon control method is applied to the axial power distribution control in a pressurized water reactor. The basic concept of receding horizon control is to solve on-line, at each sampling instant, an optimization problem for a finite future and to implement the first optimal control input as the current control input. Thus, it is a suitable control strategy for time-varying systems. The reactor model used for computer simulations is a two-point xenon oscillation model based on the nonlinear xenon and iodine balance equations and a one-group, one-dimensional, neutron diffusion equation with nonlinear power reactivity feedback that adequately describes axial oscillations and treats the nonlinearities explicitly. The reactor core is axially divided into two regions, and each region has one input and one output and is coupled with the other region. Through numerical simulations, it is shown that the proposed control algorithm exhibits very fast tracking responses due to the step and ramp changes of axial target shape and also works well in a time-varying parameter condition.

Na, Man Gyun [Chosun University (Korea, Republic of)

2001-07-15T23:59:59.000Z

306

TR-IIS-06-001 On the Satisfiability of Modular  

E-Print Network [OSTI]

TR-IIS-06-001 On the Satisfiability of Modular Arithmetic Formula Bow-Yaw Wang January 24, 2006 the Satisfiability of Modular Arithmetic Formula Bow-Yaw Wang Institute of Information Science Academia Sinica Taiwan used in the design of cryptosystems and pseudo random number generators. In the RSA public key system

Chen, Sheng-Wei

307

Advanced Modular Inverter Technology Development  

SciTech Connect (OSTI)

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

308

Lead-Cooled Fast Reactor (LFR) Design: Safety, Neutronics, Thermal Hydraulics, Structural Mechanics, Fuel, Core, and Plant Design  

SciTech Connect (OSTI)

The idea of developing fast spectrum reactors with molten lead (or lead alloy) as a coolant is not a new one. Although initially considered in the West in the 1950s, such technology was not pursued to completion because of anticipated difficulties associated with the corrosive nature of these coolant materials. However, in the Soviet Union, such technology was actively pursued during the same time frame (1950s through the 1980s) for the specialized role of submarine propulsion. More recently, there has been a renewal of interest in the West for such technology, both for critical systems as well as for Accelerator Driven Subcritical (ADS) systems. Meanwhile, interest in the former Soviet Union, primarily Russia, has remained strong and has expanded well beyond the original limited mission of submarine propulsion. This section reviews the past and current status of LFR development.

Smith, C

2010-02-22T23:59:59.000Z

309

Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels -- Final Report under the International Nuclear Energy Research Initiative (I-NERI)  

SciTech Connect (OSTI)

The objective of this INERI project was to develop improved fuel behavior models for gas reactor coated-particle fuels and to explore improved coated-particle fuel designs that could be used reliably at very high burnups and potentially in gas-cooled fast reactors. Project participants included the Idaho National Engineering Laboratory (INEEL), Centre tude Atomique (CEA), and the Massachusetts Institute of Technology (MIT). To accomplish the project objectives, work was organized into five tasks.

David Petti; Philippe Martin; Mayeul Phlip; Ronald Ballinger; Petti does not have NT account

2004-12-01T23:59:59.000Z

310

Design of central irradiation facilities for the MITR-II research reactor  

E-Print Network [OSTI]

Design analysis studies have been made for various in-core irradiation facility designs which are presently used, or proposed for future use in the MITR-II. The information obtained includes reactivity effects, core flux ...

Meagher, Paul Christopher

1976-01-01T23:59:59.000Z

311

Portfolio for fast reactor collaboration  

SciTech Connect (OSTI)

The development of the LMFBR type reactor in the United Kingdom is reviewed. Design characteristics of a commercial demonstration fast reactor are presented and compared with the Super Phenix reactor.

Rippon, S.

1981-12-01T23:59:59.000Z

312

INTEGRATED FISCHER TROPSCH MODULAR PROCESS MODEL  

SciTech Connect (OSTI)

With declining petroleum reserves, increased world demand, and unstable politics in some of the worlds richest oil producing regions, the capability for the U.S. to produce synthetic liquid fuels from domestic resources is critical to national security and economic stability. Coal, biomass and other carbonaceous materials can be converted to liquid fuels using several conversion processes. The leading candidate for large-scale conversion of coal to liquid fuels is the Fischer Tropsch (FT) process. Process configuration, component selection, and performance are interrelated and dependent on feed characteristics. This paper outlines a flexible modular approach to model an integrated FT process that utilizes a library of key component models, supporting kinetic data and materials and transport properties allowing rapid development of custom integrated plant models. The modular construction will permit rapid assessment of alternative designs and feed stocks. The modeling approach consists of three thrust areas, or strands model/module development, integration of the model elements into an end to end integrated system model, and utilization of the model for plant design. Strand 1, model/module development, entails identifying, developing, and assembling a library of codes, user blocks, and data for FT process unit operations for a custom feedstock and plant description. Strand 2, integration development, provides the framework for linking these component and subsystem models to form an integrated FT plant simulation. Strand 3, plant design, includes testing and validation of the comprehensive model and performing design evaluation analyses.

Donna Post Guillen; Richard Boardman; Anastasia M. Gribik; Rick A. Wood; Robert A. Carrington

2007-12-01T23:59:59.000Z

313

Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor  

SciTech Connect (OSTI)

The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangershelical coiled heat exchanger and printed circuit heat exchangeras possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.

Piyush Sabharwall; Ali Siahpush; Michael McKellar; Michael Patterson; Eung Soo Kim

2012-06-01T23:59:59.000Z

314

Reactor design for uniform chemical vapor deposition-grown films without substrate rotation  

DOE Patents [OSTI]

A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

Wanlass, Mark (Golden, CO)

1987-01-01T23:59:59.000Z

315

Reactor design for uniform chemical vapor deposition-grown films without substrate rotation  

DOE Patents [OSTI]

A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

Wanlass, M.

1985-02-19T23:59:59.000Z

316

Nuclear Reactor Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reactor Technologies Reactor Technologies Nuclear Reactor Technologies TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Small Modular Reactor Technologies Small modular reactors can also be made in factories and transported to sites where they would be ready to "plug and play" upon arrival, reducing both capital costs and construction times. The smaller size also makes these reactors ideal for small electric grids and for locations that

317

Incorporating reliability analysis into the design of passive cooling systems with an application to a gas-cooled reactor  

Science Journals Connector (OSTI)

A time-dependent reliability evaluation of a two-loop passive decay heat removal (DHR) system was performed as part of the iterative design process for a helium-cooled fast reactor. The system was modeled using RELAP5-3D. The uncertainties in input parameters were assessed and were propagated through the model using Latin hypercube sampling. An important finding was the discovery that the smaller pressure loss through the DHR heat exchanger than through the core would make the flow to bypass the core through one DHR loop, if two loops operated in parallel. This finding is a warning against modeling only one lumped DHR loop and assuming that n of them will remove n times the decay power. Sensitivity analyses revealed that there are values of some input parameters for which failures are very unlikely. The calculated conditional (i.e., given the LOCA) failure probability was deemed to be too high leading to the identification of several design changes to improve system reliability. This study is an example of the kinds of insights that can be obtained by including a reliability assessment in the design process. It is different from the usual use of PSA in design, which compares different system configurations, because it focuses on the thermalhydraulic performance of a safety function.

Francisco J. Mackay; George E. Apostolakis; Pavel Hejzlar

2008-01-01T23:59:59.000Z

318

GT-MHR design, performance, and safety  

SciTech Connect (OSTI)

The Gas Turbine-Modular Helium Reactor (GT-MHR) is the result of coupling the evolution of a low power density passively safe modular reactor with key technology developments in the U.S. during the last decade: large industrial gas turbines; large active magnetic bearings; and compact, highly effective plate-fin heat exchangers. This is accomplished through the unique use of the Brayton cycle to produce electricity with the helium as primary coolant from the reactor directly driving the gas turbine electrical generator. This cycle can achieve a high net efficiency in the range of 45% to 48%. In the design of the GT-MHR the desirable inherent characteristics of the inert helium coolant, graphite core, and the coated fuel particles are supplemented with specific design features such as passive heat removal to achieve the safety objective of not disturbing the normal day-to-day activities of the public even for beyond design basis rare accidents. Each GT-MHR plant consists of four modules. The GT-MHR module components are contained within steel pressure vessels: a reactor vessel, a power conversion vessel, and a connecting cross vessel. All vessels are sited underground in a concrete silo, which serves as an independent vented low pressure containment structure. By capitalizing on industrial and aerospace gas turbine development, highly effective heat exchanger designs, and inherent gas cooled reactor temperature characteristics, the passively safe GT-MHR provides a sound technical, monetary, and environmental basis for new nuclear power generating capacity. This paper provides an update on the status of the design, which has been under development on the US-DOE program since February 1993. An assessment of plant performance and safety is also included.

Neylan, A.J.; Shenoy, A.; Silady, F.A.; Dunn, T.D.

1994-11-01T23:59:59.000Z

319

Export possibilities for small nuclear reactors  

SciTech Connect (OSTI)

The worldwide deployment of peaceful nuclear technology is predicated on conformance with the Nuclear Non-Proliferation Treaty of 1972. Under this international treaty, countries have traded away pursuit of nuclear weapons in exchange for access to commercial nuclear technology that could help them grow economically. Realistically, however, most nuclear technology has been beyond the capacity of the NPT developing countries to afford. Even if the capital cost of the plant is managed, the costs of the infrastructure and the operational complexity of most nuclear technology have taken it out of the hands of the nations who need it the most. Now, a new class of small sodium cooled reactors has been specifically designed to meet the electrical power, water, hydrogen and heat needs of small and remote users. These reactors feature small size, long refueling interval, no onsite fuel storage, and simplified operations. Sized in the 10 MW(e) to 50 MW(e) range these reactors are modularized for factory production and for rapid site assembly. The fuel would be <20% U-235 uranium fuel with a 30-year core life. This new reactor type more appropriately fills the needs of countries for lower power distributed systems that can fill the gap between large developed infrastructure and primitive distributed energy systems. Looking at UN Resolution 1540 and the impact of other agreements, there is a need to address the issues of nuclear security, fuel, waste, and economic/legal/political-stakeholder concerns. This paper describes the design features of this new reactor type that specifically address these issues in a manner that increases the availability of commercial nuclear technology to the developing nations of the world. (authors)

Campagna, M.S.; Hess, C.; Moor, P. [Burns and Roe Enterprises, Inc., Oradell, NJ (United States); Sawruk, W. [ABSG Consulting, Inc., Shillington, PA (United States)

2007-07-01T23:59:59.000Z

320

Safety approaches for high power modular laser operation  

SciTech Connect (OSTI)

Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest has been the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program has progressed to the point where a plant-scale facility to demonstrate commercial feasibility has been built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a >90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities ({approximately}3000 gal) of ethanol dye solutions. The Laboratory`s safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

Handren, R.T.

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming  

Science Journals Connector (OSTI)

Abstract A bench-scale annular microchannel reactor (AMR) prototype with microchannel width of 0.3mm and total catalyst length of 9.53נ10?2m active for the endothermic steam reforming of methane is presented. Experimental results at a steam to methane feed molar ratio of 3.3:1, reactor temperature of 1023K, and pressure of 11bar confirm catalyst power densities upwards of 1380W per cm3 of catalyst at hydrogen yields >98% of thermodynamic equilibrium. A two-dimensional steady-state computational fluid dynamic model of the AMR prototype was validated using experimental data and subsequently employed to identify suitable operating conditions for an envisioned mass-production AMR design with 0.3mm annular channel width and a single catalyst length of 254mm. Thermal efficiencies, defined based upon methane and product hydrogen higher heating values (HHVs), of 72.757.7% were obtained from simulations for methane capacities of 0.52SLPM (space velocities of 195,000782,000h?1) at hydrogen yields corresponding to 99%75% of equilibrium values. Under these conditions, analysis of local composition, temperature and pressure indicated that catalyst deactivation via coke formation or Nickel oxidation is not thermodynamically favorable. Lastly, initial analysis of an envisioned 10kW autothermal reformer combining 19 parallel \\{AMRs\\} within a single methane-air combustion chamber, based upon existing manufacturing capabilities within Power & Energy, Inc., is presented.

Holly Butcher; Casey J.E. Quenzel; Luis Breziner; Jacques Mettes; Benjamin A. Wilhite; Peter Bossard

2014-01-01T23:59:59.000Z

322

Development and Features EatSafe: Modular Portable Food Sensor  

E-Print Network [OSTI]

. The convenience of the EatSafe Sensor allows for this. PRONE TO FOOD-POISONING Seniors, children, pregnant womenDevelopment and Features EatSafe: Modular Portable Food Sensor ECE-Rady Design Competition FOOD INDUSTRY Every year >76 million people become sick from the consumption of contaminated food. PACKAGING

California at San Diego, University of

323

Contribution of Clinch River Breeder Reactor plant design and development to the LMFBR fuel cycle  

SciTech Connect (OSTI)

This paper describes how the CRBRP development and CRBRP focus of the LMFBR base technology program have led to advances in the state of the art in physics, thermal-hydraulics, structural analysis, core restraint, seismic analysis, and analysis of hypothetical core-disruptive accident energetics, all of which have been incorporated through disciplined engineering into the final CRBRP design. The total development in the US of fuels and materials, the analytical advances made on CRBRP design, and the incorporation of the latest experimental results into that design have put the US technology in general and the CRBRP design in particular at the forefront of technology. This has placed the US in a position to develop the most favorable LMFBR fuel cycle.

Riley, D.R.; Dickson, P.W.

1981-01-01T23:59:59.000Z

324

Preventing fuel failure for a beyond design basis accident in a fluoride salt cooled high temperature reactor  

E-Print Network [OSTI]

The fluoride salt-cooled high-temperature reactor (FHR) combines high-temperature coated-particle fuel with a high-temperature salt coolant for a reactor with unique market and safety characteristics. This combination can ...

Minck, Matthew J. (Matthew Joseph)

2013-01-01T23:59:59.000Z

325

Modular low-aspect-ratio high-beta torsatron  

DOE Patents [OSTI]

A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.

Sheffield, G.V.

1982-04-01T23:59:59.000Z

326

Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input  

SciTech Connect (OSTI)

A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

Monado, Fiber, E-mail: fiber.monado@gmail.com [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia and Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Ariani, Menik [Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung (Indonesia); Aziz, Ferhat [National Nuclear Energy Agency of Indonesia (BATAN) (Indonesia); Sekimoto, Hiroshi [CRINES, Tokyo Institute of Technology, O-okoyama, Meguro-ku, Tokyo 152-8550 (Japan)

2014-02-12T23:59:59.000Z

327

Order and diversity within a modular system for housing : a computational approach  

E-Print Network [OSTI]

This thesis introduces elements of a methodology to achieve order and diversity in the systematic design of street facades within a modular system for housing. In its context both order and diversity refer to the spatial ...

Duarte, Jos Pinto

1993-01-01T23:59:59.000Z

328

Free and bound generics: two techniques for abstract data types in modular C  

Science Journals Connector (OSTI)

A description of two fundamentally distinct techniques for the implementation of abstract data types within Modular C, a preprocessor extension of C. Issues of reusability, environmental design, and efficiency are discussed as criteria for the selection ...

Stowe Boyd

1984-03-01T23:59:59.000Z

329

Reactor design for uniform chemical vapor deposition-grown films without substrate rotation  

SciTech Connect (OSTI)

A reactor vessel is described for chemical vapor deposition of a uniform semiconductor film on a substrate, comprising: a generally cylindrical reaction chamber for receiving a substrate and a flow of reaction gas capable of depositing a film on the substrate under the conditions of the chamber, the chamber having upper and lower portion and being oriented about a vertical axis; a supporting means having a substrate support surface generally perpendicular to the vertical axis for carrying the substrate within the lower portion of the reaction chamber in a predetermined relative position with respect to the upper portion of the reaction chamber, the upper portion including a cylindrically shaped confinement chamber. The confinement chamber has a smaller diameter than the lower portion of the reaction chamber and is positioned above the substrate support surface; and a means for introducing a reaction gas into the confinement chamber in a nonaxial direction so as to direct the reaction gas into the lower portion of the reaction chamber with a non-axial flow having a rotational component with respect to the vertical axis. In this way the reaction gas defines an inward vortex flow pattern with respect to the substrate surface.

Wanlass, M.

1987-03-17T23:59:59.000Z

330

Invertible Program Restructurings for Continuing Modular Maintenance  

E-Print Network [OSTI]

Invertible Program Restructurings for Continuing Modular Maintenance Julien Cohen ASCOLA team (EMN in main- tenance with invertible program transformations. We illustrate this on the typical Expression problems with our approach. Keywords-modular maintenance; restructuring; invertible pro- gram

Paris-Sud XI, Université de

331

Conceptual design for a fast neutron ionization chamber for fusion reactor plasma diagnostics  

SciTech Connect (OSTI)

A conceptual design for a radiation-hard ``pointing`` fast neutron ionization chamber that is capable of delivering a 1 MHz countrate of T(D,n) events at ITER is given. The detector will use a {approximately}1 cm{sup 3} volume of CO{sub 2} fill gas at 0.1 bar pressure in a 500 V/cm electric field. The pulse widths will be {approximately}10 ns, enabling it to operate in a flux of {approximately} 6 {times} 10{sup 13} DT n/cm{sup 2}/sec. A special collimator design is used, giving an estimated angular resolution of 4.5 degrees HWHM.

Sailor, W.C.; Barnes, C.W.

1994-06-01T23:59:59.000Z

332

Estimation of the recycled power associated with the cryogenic refrigeration power of a fusion reactor based on TORE SUPRA experiment and ITER design  

Science Journals Connector (OSTI)

The refrigeration power associated with the superconducting magnets and cryopumps of a steady-state fusion reactor is not negligible. The power has to be minimized because it plays a role in the power station global efficiency and in the required amplification factor Q. On the one hand, the long plasma discharges obtained in December 2003 on TORE SUPRA give an insight of the cryogenic losses that might be expected for a steady-state fusion reactor equipped with superconducting magnets. The superfluid bath of the windings in TORE SUPRA allows a simple calorimetric estimation of the cryogenic losses through the temperature evolution of the bath during the long discharge. The different kinds of losses in TORE SUPRA are estimated, discussed and explained. Not all of them will be present in a real reactor. On the other hand, in the framework of ITER preparation, the magnet system and the associated refrigerator have been dimensioned taking into account again all kinds of cold losses. This exercise is important because ITER, by its size, could be relevant to the steady-state reactor situation regarding refrigeration. Based on TORE SUPRA experiment and ITER design it is, therefore, possible to propose for the first time a preliminary figure for the cryoplant power of a steady-state reactor. The order of magnitude of the cryoplant power is ten times lower than that of the fusion reactor recycled power which can be considered acceptable.

J.L. Duchateau; J.Y. Journeaux; F. Millet

2006-01-01T23:59:59.000Z

333

Modular multivariable control improves hydrocracking  

SciTech Connect (OSTI)

Modular multivariable control (MMC), a system of interconnected, single process variable controllers, can be a user-friendly, reliable and cost-effective alternative to centralized, large-scale multivariable control packages. MMC properties and features derive directly from the properties of the coordinated controller which, in turn, is based on internal model control technology. MMC was applied to a hydrocracking unit involving two process variables and three controller outputs. The paper describes modular multivariable control, MMC properties, tuning considerations, application at the DCS level, constraints handling, and process application and results.

Chia, T.L.; Lefkowitz, I. [ControlSoft, Inc., Cleveland, OH (United States); Tamas, P.D. [Marathon Oil Co., Robinson, IL (United States)

1996-10-01T23:59:59.000Z

334

Fusion reactor theory and conceptual design. January 1982-May 1990 (A Bibliography from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for January 1982-May 1990  

SciTech Connect (OSTI)

This bibliography contains citations concerning theoretical and conceptual aspects of fusion reactor physics and designs. Conceptual design studies for a wide variety of fusion reactors are covered. Some experimental and demonstrational results of studies are considered. (This updated bibliography contains 290 citations, 189 of which are new entries to the previous edition.)

Not Available

1990-06-01T23:59:59.000Z

335

Acoustics of modular constructionIndustry overview  

Science Journals Connector (OSTI)

This session will provide an overview of the issues and efforts impacting the commercial modular construction industry throughout North America with particular focus on acoustics in relocatable classrooms. The Modular Building Institute is the international nonprofit trade association representing manufacturers and dealers of commercial modular facilites both temporary and permanent serving educational health care retail industrial military and multi?family markets.

Thomas E. Hardiman

2007-01-01T23:59:59.000Z

336

Advanced Nuclear Research Reactor  

SciTech Connect (OSTI)

This report describes technical modifications implemented by INVAP to improve the safety of the Research Reactors the company designs and builds.

Lolich, J.V.

2004-10-06T23:59:59.000Z

337

Development of a novel modular mid-infrared sensor for the in-situ detection of the BTEX compounds in water.  

E-Print Network [OSTI]

?? This research thesis describes the design, construction and testing of a novel modular mid-infrared fibre optic sensing system for the detection of hydrocarbons in (more)

McCue, Raymond, (Thesis)

2007-01-01T23:59:59.000Z

338

Seismic design technology for breeder reactor structures. Volume 1. Special topics in earthquake ground motion  

SciTech Connect (OSTI)

This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions. (DLC)

Reddy, D.P.

1983-04-01T23:59:59.000Z

339

Insights from the WGRISK workshop on the PSA of advanced and new reactors  

SciTech Connect (OSTI)

Probabilistic Safety Assessment /Probabilistic Risk Assessment for new and advanced reactors is recognized as an essential complement of the deterministic approaches to achieve improved safety and performances of new nuclear power plants, comparing to the operating plants. However, the development of PSA to these reactors is encountered to concurrent challenges, mainly due to the limited available design information, as well as due to potentially new initiating events, accident sequences and phenomena. The use of PSA in the decision making process is also challenging since the resulting PSA may not sufficiently reflect the future as-built, as-operated plant information. In order to address these aspects, the OECD/NEA/WGRISK initiated two coordinated tasks on 'PSA for Advanced Reactors' and 'PSA in the frame of Design and Commissioning of New NPPs'. In this context, a joint workshop was organized by OECD, during which related subjects were presented and discussed, including PSA for generation IV reactors, PSA for evolutionary reactors, PSA for small modular reactors, severe accidents and Level 2 PSA, Level 3 PSA and consequences analysis, digital I and C modeling, passive systems reliability, safety-security interface, as well as the results of the surveys performed in the frame of theses WGRISK tasks. (authors)

Georgescu, G. [Inst. for Radioprotection and Nuclear Safety IRSN, BP17, 92262 Fontenay aux Roses (France); Ahn, K. I. [Korea Atomic Energy Research Inst. KAERI, 150-1 Deokjin-Dong, 1045 Daedeokdaero, Yuseong, Daejeon (Korea, Republic of); Amri, A. [OCED/NEA, Le Seine St.Germain, Bd des Iles, 92130 Issy-les-Moulineaux (France)

2012-07-01T23:59:59.000Z

340

Modular & Scalable Molten Salt Plant Design  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Accelerating Innovation through Modular Design (API)  

Science Journals Connector (OSTI)

API scope is not limited to external exposure: ... . Reuse capability is the killer app of API, as demonstrated in Orange and Socit Gnrale...

Nicolas Bry; Richard Hababou

2014-01-01T23:59:59.000Z

342

A modular programming language for engineering design  

E-Print Network [OSTI]

We introduce a new universal model of computation called MDPL that generalizes other functional models like the lambda calculus and combinatory logic. This model leads naturally to a new type of programming language that ...

Coffee, Thomas Merritt

2008-01-01T23:59:59.000Z

343

Design of a modular motorcycle windshield wiper .  

E-Print Network [OSTI]

??Motorcycle windshield wipers are essentially non-existent in the United States. Customer and market research reveals a demand for such a product. This paper explores the (more)

Boyd, Robert Allen Michael

2010-01-01T23:59:59.000Z

344

Intelligent Control of Modular Robotic Welding Cell  

SciTech Connect (OSTI)

Although robotic machines are routinely used for welding, such machines do not normally incorporate intelligent capabilities. We are studying the general problem of formulating usable levels of intelligence into welding machines. From our perspective, an intelligent machine should: incorporate knowledge of the welding process, know if the process is operating correctly, know if the weld it is making is good or bad, have the ability to learn from its experience to perform welds, and be able to optimize its own performance. To this end, we are researching machine architecture, methods of knowledge representation, decision making and conflict resolution algorithms, methods of learning and optimization, human/machine interfaces, and various sensors. This paper presents work on the machine architecture and the human/machine interface specifically for a robotic, gas metal arc welding cell. Although the machine control problem is normally approached from the perspective of having a central body of control in the machine, we present a design using distributed agents. A prime goal of this work is to develop an architecture for an intelligent machine that will support a modular, plug and play standard. A secondary goal of this work is to formulate a human/machine interface that treats the human as an active agent in the modular structure.

Smartt, Herschel Bernard; Kenney, Kevin Louis; Tolle, Charles Robert

2002-04-01T23:59:59.000Z

345

Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels (I-NERI Annual Report)  

SciTech Connect (OSTI)

The objective of this INERI project is to develop improved fuel behavior models for gas reactor coated particle fuels and to develop improved coated-particle fuel designs that can be used reliably at very high burnups and potentially in fast gas-cooled reactors. Thermomechanical, thermophysical, and physiochemical material properties data were compiled by both the US and the French and preliminary assessments conducted. Comparison between U.S. and European data revealed many similarities and a few important differences. In all cases, the data needed for accurate fuel performance modeling of coated particle fuel at high burnup were lacking. The development of the INEEL fuel performance model, PARFUME, continued from earlier efforts. The statistical model being used to simulate the detailed finite element calculations is being upgraded and improved to allow for changes in fuel design attributes (e.g. thickness of layers, dimensions of kernel) as well as changes in important material properties to increase the flexibility of the code. In addition, modeling of other potentially important failure modes such as debonding and asphericity was started. A paper on the status of the model was presented at the HTR-2002 meeting in Petten, Netherlands in April 2002, and a paper on the statistical method was submitted to the Journal of Nuclear Material in September 2002. Benchmarking of the model against Japanese and an older DRAGON irradiation are planned. Preliminary calculations of the stresses in a coated particle have been calculated by the CEA using the ATLAS finite element model. This model and the material properties and constitutive relationships will be incorporated into a more general software platform termed Pleiades. Pleiades will be able to analyze different fuel forms at different scales (from particle to fuel body) and also handle the statistical variability in coated particle fuel. Diffusion couple experiments to study Ag and Pd transport through SiC were conducted. Analysis and characterization of the samples continues. Two active transport mechanisms are proposed: diffusion in SiC and release through SiC cracks or another, as yet undetermined, path. Silver concentration profiles determined by XPS analysis suggest diffusion within the SiC layer, most likely dominated by grain boundary diffusion. However, diffusion coefficients calculated from mass loss measurements suggest a much faster release path, postulated as small cracks or flaws that provide open paths with little resistance to silver migration. Work is ongoing to identify and characterize this path. Work on Pd behavior has begun and will continue next year.

Petti, David Andrew; Maki, John Thomas; Languille, Alain; Martin, Philippe; Ballinger, Ronald

2002-11-01T23:59:59.000Z

346

Shielding calculation techniques used in the design of fuel storage systems  

SciTech Connect (OSTI)

To augment the existing at-reactor fuel storage capacity, many utilities are implementing modular dry storage systems. This paper addresses the shielding design and analysis of one such storage system. Particular attention will be given to comparing various computer and hand calculation techniques. The Nutech horizontal modular storage (NUHOMS) system consists of a dry canister (a stainless steel canister containing seven pressurized water reactor fuel assemblies), a horizontal storage module (a concrete storage module), an on-site transfer cask, a trailer and cask skid, and a hydraulic ram. The shielding analyses utilized hand calculations of direct and scattered radiation, the QADMOD (three-dimensional point kernal computer program and the ANISN (one-dimensional) and DOT-IV (two-dimensional) transport theory computer programs. Each calculational technique has its advantages and disadvantages.

Wang, S.S.; Massey, J.V.

1985-11-01T23:59:59.000Z

347

Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors  

E-Print Network [OSTI]

Safety. The Accident at TEPCOs Fukushima Nuclear Power2: Accident and Thermal Fluids Analysis PIRTs. (Nuclearmolten nuclear reactor core debris following accidents such

Scarlat, Raluca Olga

2012-01-01T23:59:59.000Z

348

Design Study of Pb-Bi-Cooled and NaK-Cooled Small Reactors: PBWFR and DSFR  

SciTech Connect (OSTI)

The liquid lead-bismuth eutectic (Pb-Bi) has good compatibility with water, which is different from sodium. It is expected that the Pb-Bi could be used as a coolant of the deep sea fast reactor (DSFR) and the Pb-Bi- cooled direct contact boiling water small fast reactor (PBWFR). Physics analysis of the Pb-Bi-cooled small reactor cores with and without inner control rods was performed using the computer program of General Purpose Neutronics Code System (SRAC95) developed by Japan Atomic Energy Research Institute (JAERI). The coolant of Pb-Bi seems to be good as well as NaK for small reactors. (authors)

Otsubo, Akira; Takahashi, Minoru [N1-18, Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

2004-07-01T23:59:59.000Z

349

Catalytic reactor  

DOE Patents [OSTI]

A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

2009-03-10T23:59:59.000Z

350

Nuclear Reactor (atomic reactor)  

Science Journals Connector (OSTI)

A nuclear reactor splits Uranium or Plutonium nuclei, and the...235 is fissionable but more than 99% of the naturally occurring Uranium is U238 that makes enrichment mandatory. In some reactors U238 and Thorium23...

2008-01-01T23:59:59.000Z

351

The Fast-spectrum Transmutation Experimental Facility FASTEF: Main design achievements (part 2: Reactor building design and plant layout) within the FP7-CDT collaborative project of the European Commission  

SciTech Connect (OSTI)

MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is the flexible experimental accelerator-driven system (ADS) in development at SCK-CEN in replacement of its material testing reactor BR2. SCK-CEN in association with 17 European partners from industry, research centres and academia, responded to the FP7 (Seventh Framework Programme) call from the European Commission to establish a Central Design Team (CDT) for the design of a Fast Spectrum Transmutation Experimental Facility (FASTEF) able to demonstrate efficient transmutation and associated technology through a system working in subcritical and/or critical mode. The project has started on April 01, 2009 for a period of three years. In this paper, we present the latest concept of the reactor building and the plant layout. The FASTEF facility has evolved quite a lot since the intermediate reporting done at the ICAPP'10 and ICAPP'11 conferences 1,2. Many iterations have been performed to take into account the safety requirements. The present configuration enables an easy operation and maintenance of the facility, including the possibility to change large components of the reactor. In a companion paper 3, we present the latest configuration of the reactor core and primary system. (authors)

De Bruyn, D.; Engelen, J. [Belgian Nuclear Research Centre SCK CEN, Boeretang 200, 2400 Mol (Belgium); Ortega, A.; Aguado, M. P. [Empresarios Agrupados A.I.E., Magallanes 3, 28015 Madrid (Spain)

2012-07-01T23:59:59.000Z

352

Modular Aneutronic Fusion Engine  

SciTech Connect (OSTI)

NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

2012-05-11T23:59:59.000Z

353

Designing an enzymatic oscillator: Bistability and feedback controlled oscillations with glucose oxidase in a continuous flow stirred tank reactor  

E-Print Network [OSTI]

oxidase in a continuous flow stirred tank reactor Vladimir K. Vanag,a David G. Míguez,b and Irving R as the flow rate is varied in a continuous flow stirred tank reactor. Oscillations in pH can be obtained

Epstein, Irving R.

354

Modular, multi-level groundwater sampler  

DOE Patents [OSTI]

Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

Nichols, Ralph L. (812 Plantation Point Dr., N. Augusta, SC 29841); Widdowson, Mark A. (4204 Havana Ct., Columbia, SC 29206); Mullinex, Harry (10 Cardross La., Columbia, SC 29209); Orne, William H. (12 Martha Ct., Sumter, SC 29150); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

1994-01-01T23:59:59.000Z

355

Modular PM Motor Drives for Automotive Traction Applications  

SciTech Connect (OSTI)

This paper presents modular permanent magnet (PM) motor drives for automotive traction applications. A partially modularized drive system consisting of a single PM motor and multiple inverters is described. The motor has multiple three-phase stator winding sets and each winding set is driven with a separate three-phase inverter module. A truly modularized inverter and motor configuration based on an axial-gap PM motor is then introduced, in which identical PM motor modules are mounted on a common shaft and each motor module is powered by a separate inverter module. The advantages of the modular approach for both inverter and motor include: (1) power rating scalability--one design meets different power requirements by simply stacking an adequate number of modules, thus avoiding redesigning and reducing the development cost, (2) increased fault tolerance, and (3) easy repairing. A prototype was constructed by using two inverters and an axial-gap PM motor with two sets of three-phase stat or windings, and it is used to assist the diesel engine in a hybrid electric vehicle converted from a Chevrolet Suburban. The effect of different pulse-width-modulation strategies for both motoring and regenerative modes on current control is analyzed. Torque and regenerative control algorithms are implemented with a digital signal processor. Analytical and initial testing results are included in the paper.

Su, G.J.

2001-10-29T23:59:59.000Z

356

Radiation Shielding Design and Orientation Considerations for a 1 kWe Heat Pipe Cooled Reactor Utilized to Bore Through the Ice Caps of Mars  

SciTech Connect (OSTI)

The goal in designing any space power system is to develop a system able to meet the mission requirements for success while minimizing the overall costs. The mission requirements for the this study was to develop a reactor (with Stirling engine power conversion) and shielding configuration able to fit, along with all the other necessary science equipment, in a Cryobot 3 m high with {approx}0.5 m diameter hull, produce 1 kWe for 5yrs, and not adversely affect the mission science by keeping the total integrated dose to the science equipment below 150 krad. Since in most space power missions the overall system mass dictates the mission cost, the shielding designs in this study incorporated Martian water extracted at the startup site in order to minimize the tungsten and LiH mass loading at launch. Different reliability and mass minimization concerns led to three design configuration evolutions. With the help of implementing Martian water and configuring the reactor as far from the science equipment as possible, the needed tungsten and LiH shield mass was minimized. This study further characterizes the startup dose and the necessary mission requirements in order to ensure integrity of the surface equipment during reactor startup phase.

Fensin, Michael L. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Elliott, John O. [Jet Propulsion Laboratories, California Institute of Technology, Pasedena, Ca 91109 (United States); Lipinski, Ronald J. [Sandia National Laboratory, Albuquerque, NM 87185 (United States); Poston, David I. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2006-01-20T23:59:59.000Z

357

Thermal hydraulic design of a 2400 MW t?h? direct supercritical CO?-cooled fast reactor  

E-Print Network [OSTI]

The gas cooled fast reactor (GFR) has received new attention as one of the basic concepts selected by the Generation-IV International Forum (GIF) for further investigation. Currently, the reference GFR is a helium-cooled ...

Pope, Michael A. (Michael Alexander)

2006-01-01T23:59:59.000Z

358

Application of USNRC NUREG/CR-6661 and draft DG-1108 to evolutionary and advanced reactor designs  

SciTech Connect (OSTI)

For the seismic design of evolutionary and advanced nuclear reactor power plants, there are definite financial advantages in the application of USNRC NUREG/CR-6661 and draft Regulatory Guide DG-1108. NUREG/CR-6661, 'Benchmark Program for the Evaluation of Methods to Analyze Non-Classically Damped Coupled Systems', was by Brookhaven National Laboratory (BNL) for the USNRC, and Draft Regulatory Guide DG-1108 is the proposed revision to the current Regulatory Guide (RG) 1.92, Revision 1, 'Combining Modal Responses and Spatial Components in Seismic Response Analysis'. The draft Regulatory Guide DG-1108 is available at http://members.cox.net/apolloconsulting, which also provides a link to the USNRC ADAMS site to search for NUREG/CR-6661 in text file or image file. The draft Regulatory Guide DG-1108 removes unnecessary conservatism in the modal combinations for closely spaced modes in seismic response spectrum analysis. Its application will be very helpful in coupled seismic analysis for structures and heavy equipment to reduce seismic responses and in piping system seismic design. In the NUREG/CR-6661 benchmark program, which investigated coupled seismic analysis of structures and equipment or piping systems with different damping values, three of the four participants applied the complex mode solution method to handle different damping values for structures, equipment, and piping systems. The fourth participant applied the classical normal mode method with equivalent weighted damping values to handle differences in structural, equipment, and piping system damping values. Coupled analysis will reduce the equipment responses when equipment, or piping system and structure are in or close to resonance. However, this reduction in responses occurs only if the realistic DG-1108 modal response combination method is applied, because closely spaced modes will be produced when structure and equipment or piping systems are in or close to resonance. Otherwise, the conservatism in the current Regulatory Guide 1.92, Revision 1, will overshadow the advantage of coupled analysis. All four participants applied the realistic modal combination method of DG-1108. Consequently, more realistic and reduced responses were obtained. (authors)

Chang 'Apollo', Chen [Apollo Consulting, Inc., Surprise, AZ 85374-4605 (United States)

2006-07-01T23:59:59.000Z

359

Optimization of actinide transmutation in innovative lead-cooled fast reactors  

E-Print Network [OSTI]

The thesis investigates the potential of fertile free fast lead-cooled modular reactors as efficient incinerators of plutonium and minor actinides (MAs) for application to dedicated fuel cycles for transmutation. A methodology ...

Romano, Antonino, 1972-

2003-01-01T23:59:59.000Z

360

Microsoft Word - 20.1 Special Study Reactor Type Comparison_VS...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Source NRC Nuclear Regulatory Commission PBMR Pebble Bed Modular Reactor PHP Process Heat Plant PLOFC Pressurized Loss of Forced Cooling QA Quality Assurance R&D Research and...

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Utilization of Refractory Metals and Alloys in Fusion Reactor Structures  

Science Journals Connector (OSTI)

In design of fusion reactors, structural material selection is very crucial to improve reactors performance. Different types of materials have been proposed for use in fusion reactor structures. Among these mate...

Mustafa beyli; ?enay Yal?n

2006-12-01T23:59:59.000Z

362

Overland Tidal Power Generation Using Modular Tidal Prism  

SciTech Connect (OSTI)

Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

2010-03-01T23:59:59.000Z

363

Power Reactor Progress  

Science Journals Connector (OSTI)

Argonne kicks off EBWR; Allis-Chalmers plans power reactor using both nuclear and conventional fuels ... NUCLEAR POWER took two giant steps last week. ... Just as the first nuclear power system in the U. S. designed and built solely for the generation of electric power went into full operation at Argonne, Allis-Chalmers came up with a new twist in power reactorsa controlled recirculation boiling reactor (CRBR) using both nuclear and conventional fuels (C&EN, Feb. 18, page 7). ...

1957-02-25T23:59:59.000Z

364

B Reactor | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Operational Management » History » Manhattan Project » Signature Operational Management » History » Manhattan Project » Signature Facilities » B Reactor B Reactor B Reactor Completed in September 1944, the B Reactor was the world's first large-scale plutonium production reactor. As at Oak Ridge, the need for labor turned Hanford into an atomic boomtown, with the population reaching 50,000 by summer 1944. Similar to the X-10 Graphite Reactor at Oak Ridge in terms of loading and unloading fuel, the B Reactor was built on a much larger scale and used water rather than air as a coolant. Whereas the X-10 had an initial design output of 1,000 kilowatts, the B Reactor was designed to operate at 250,000 kilowatts. Consisting of a 28- by 36-foot, 1,200-ton graphite cylinder lying on its side, the reactor was penetrated through its

365

Regulator of modular units and Mahler measures.  

E-Print Network [OSTI]

We present a proof of the formula, due to Mellit and Brunault, which evaluates an integral of the regulator of two modular units to the value of the $L$-series of a modular form of weight 2 at $s=2$. Applications of the formula to computing Mahler measures are discussed.

Wadim Zudilin.

366

Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008  

SciTech Connect (OSTI)

This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

2009-03-01T23:59:59.000Z

367

Performance and Safety Analysis of a Generic Small Modular Reactor  

E-Print Network [OSTI]

for spent fuel from a Westinghouse AP1000. The results showed that from a fuel material standpoint, the SMR and AP1000 had effectively the same PR value. Unable to analyze security systems and methods employed at specific nuclear power plant sites...

Kitcher, Evans Damenortey, 1987-

2012-11-07T23:59:59.000Z

368

Fully Automated Radiation Hardened by Design Circuit Construction.  

E-Print Network [OSTI]

??A fully automated logic design methodology for radiation hardened by design (RHBD) high speed logic using fine grained triple modular redundancy (TMR) is presented. The (more)

Hindman, Nathan David

2012-01-01T23:59:59.000Z

369

Modular Countermine Payload for Small Robots  

SciTech Connect (OSTI)

Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multi-mission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.

Herman Herman; Doug Few; Roelof Versteeg; Jean-Sebastien Valois; Jeff McMahill; Michael Licitra; Edward Henciak

2010-04-01T23:59:59.000Z

370

Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration  

SciTech Connect (OSTI)

Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus on meeting two of the eight needs outlined in the recently published 'Technology Roadmap on Instrumentation, Control, and Human-Machine Interface (ICHMI) to Support DOE Advanced Nuclear Energy Programs' which was created 'to provide a systematic path forward for the integration of new ICHMI technologies in both near-term and future nuclear power plants and the reinvigoration of the U.S. nuclear ICHMI community and capabilities.' The research consortium is led by The University of Tennessee (UT) and is focused on three interrelated topics: Topic 1 (simulator development and measurement sensitivity analysis) is led by Dr. Mike Doster with Dr. Paul Turinsky of North Carolina State University (NCSU). Topic 2 (multivariate autonomous control of modular reactors) is led by Dr. Belle Upadhyaya of the University of Tennessee (UT) and Dr. Robert Edwards of Penn State University (PSU). Topic 3 (monitoring, diagnostics, and prognostics system development) is led by Dr. Wes Hines of UT. Additionally, South Carolina State University (SCSU, Dr. Ken Lewis) participated in this research through summer interns, visiting faculty, and on-campus research projects identified throughout the grant period. Lastly, Westinghouse Science and Technology Center (Dr. Mario Carelli) was a no-cost collaborator and provided design information related to the IRIS demonstration platform and defining needs that may be common to other SMR designs. The results of this research are reported in a six-volume Final Report (including the Executive Summary, Volume 1). Volumes 2 through 6 of the report describe in detail the research and development under the topical areas. This volume serves to introduce the overall NERI-C project and to summarize the key results. Section 2 provides a summary of the significant contributions of this project. A list of all the publications under this project is also given in Section 2. Section 3 provides a brief summary of each of the five volumes (2-6) of the report. The contributions of SCSU are described in Section 4, including a summary of undergraduate research exper

J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

2011-05-31T23:59:59.000Z

371

The neutronics studies of fusion fission hybrid power reactor  

SciTech Connect (OSTI)

In this paper, a series of neutronics analysis of hybrid power reactor is proposed. The ideas of loading different fuels in a modular-type fission blanket is analyzed, fitting different level of fusion developments, i.e., the current experimental power output, the level can be obtained in the coming future and the high-power fusion reactor like ITER. The energy multiplication of fission blankets and tritium breeding ratio are evaluated as the criterion of design. The analysis is implemented based on the D-type simplified model, aiming to find a feasible 1000MWe hybrid power reactor for 5 years' lifetime. Three patterns are analyzed: 1) for the low fusion power, the reprocessed fuel is chosen. The fuel with high plutonium content is loaded to achieve large energy multiplication. 2) For the middle fusion power, the spent fuel from PWRs can be used to realize about 30 times energy multiplication. 3) For the high fusion power, the natural uranium can be directly used and about 10 times energy multiplication can be achieved.

Zheng Youqi; Wu Hongchun; Zu Tiejun; Yang Chao; Cao Liangzhi [School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 (China)

2012-06-19T23:59:59.000Z

372

Application of RCC-MR for the structural design of tube sheet of intermediate heat exchanger for a sodium cooled fast reactor  

Science Journals Connector (OSTI)

Abstract The structural mechanics behavior of tube sheets of a sodium to sodium heat exchanger for a fast reactor, with circular tube holes pattern, less addressed subject in the literature, is investigated in detail. The tube sheet design rules recommended in the French design code RCC-MR-2007 and the associated solid mechanics basis are explained. A finite element analysis of tube sheets of intermediate heat exchanger of a typical 500MWe pool type fast reactor is presented to study the effects of some specific parameters viz., (i) small solid rim portion with connecting shell and (ii) grooves on rim area. For the analysis, the distribution of holes on the last row is assumed to be symmetric and axial stiffening of tubes on tube sheet is included toward realistic estimation of stresses in the tube sheets. The effects are studied on the primary and secondary stresses induced along the interface between solid to perforated region. The aspects covered include linearization of radial and circumferential stress components, thereby deriving primary membrane and bending stress intensities along the radial directions with particular focus at the interfaces between solid portions and perforated portions including the effect of filet radius at the junction of tube sheet and shell. These investigations thus help to optimize the design of IHX tube sheets with high confidence. The analysis has been carried out by CAST3M, a structure analysis software granted by CEA, France.

Suman Gupta; P. Chellapandi

2014-01-01T23:59:59.000Z

373

New fast-reactor approach. [LMFBR  

SciTech Connect (OSTI)

The design parameters for a 1000 MW LMFBR type reactor are presented. The design requires the multiple primary coolant pumps and heat exchangers to be located around the core within the reactor vessel.

Folkrod, J.R.; Kann, W.J.; Klocksieben, R.H.

1983-01-01T23:59:59.000Z

374

TEPP Training - Modular Emergency Response Radiological Transportation  

Broader source: Energy.gov (indexed) [DOE]

Services » Waste Management » Packaging and Transportation » Services » Waste Management » Packaging and Transportation » Transportation Emergency Preparedness Program » TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) Once the jurisdiction has completed an evaluation of their plans and procedures, they will need to address any gaps in training. To assist, TEPP has developed the Modular Emergency Response Radiological Transportation Training (MERRTT) program. MERRTT provides fundamental knowledge for responding to transportation incidents involving radiological material and builds on training in existing hazardous materials curricula. MERRTT satisfies the training requirements outlined in the Waste Isolation Pilot

375

Work Domain Analysis of a Predecessor Sodium-cooled Reactor as Baseline for AdvSMR Operational Concepts  

SciTech Connect (OSTI)

This report presents the results of the Work Domain Analysis for the Experimental Breeder Reactor (EBR-II). This is part of the phase of the research designed to incorporate Cognitive Work Analysis in the development of a framework for the formalization of an Operational Concept (OpsCon) for Advanced Small Modular Reactors (AdvSMRs). For a new AdvSMR design, information obtained through Cognitive Work Analysis, combined with human performance criteria, can and should be used in during the operational phase of a plant to assess the crew performance aspects associated with identified AdvSMR operational concepts. The main objective of this phase was to develop an analytical and descriptive framework that will help systems and human factors engineers to understand the design and operational requirements of the emerging generation of small, advanced, multi-modular reactors. Using EBR-II as a predecessor to emerging sodium-cooled reactor designs required the application of a method suitable to the structured and systematic analysis of the plant to assist in identifying key features of the work associated with it and to clarify the operational and other constraints. The analysis included the identification and description of operating scenarios that were considered characteristic of this type of nuclear power plant. This is an invaluable aspect of Operational Concept development since it typically reveals aspects of future plant configurations that will have an impact on operations. These include, for example, the effect of core design, different coolants, reactor-to-power conversion unit ratios, modular plant layout, modular versus central control rooms, plant siting, and many more. Multi-modular plants in particular are expected to have a significant impact on overall OpsCon in general, and human performance in particular. To support unconventional modes of operation, the modern control room of a multi-module plant would typically require advanced HSIs that would provide sophisticated operational information visualization, coupled with adaptive automation schemes and operator support systems to reduce complexity. These all have to be mapped at some point to human performance requirements. The EBR-II results will be used as a baseline that will be extrapolated in the extended Cognitive Work Analysis phase to the analysis of a selected advanced sodium-cooled SMR design as a way to establish non-conventional operational concepts. The Work Domain Analysis results achieved during this phase have not only established an organizing and analytical framework for describing existing sociotechnical systems, but have also indicated that the method is particularly suited to the analysis of prospective and immature designs. The results of the EBR-II Work Domain Analysis have indicated that the methodology is scientifically sound and generalizable to any operating environment.

Ronald Farris; David Gertman; Jacques Hugo

2014-03-01T23:59:59.000Z

376

Reactor operation safety information document  

SciTech Connect (OSTI)

The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

Not Available

1990-01-01T23:59:59.000Z

377

A MODULAR, SCALABLE, ARCHITECTURE FOR UNMANNED VEHICLES  

E-Print Network [OSTI]

1 A MODULAR, SCALABLE, ARCHITECTURE FOR UNMANNED VEHICLES David G. Armstrong II, Carl D. Crane III://www.me.ufl.edu/CIMAR Ralph English Wintec, Inc. Ft. Walton Beach, Florida Phillip Adsit Applied Research Associates Tyndall

Florida, University of

378

Honeywell modular automation system computer software documentation  

SciTech Connect (OSTI)

This document provides a Computer Software Docuemntation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-21I.

Cunningham, L.T.

1997-01-20T23:59:59.000Z

379

Radiation physics and shielding codes and analyses applied to design-assist and safety analyses of CANDU{sup R} and ACR{sup TM} reactors  

SciTech Connect (OSTI)

This paper discusses the radiation physics and shielding codes and analyses applied in the design of CANDU and ACR reactors. The focus is on the types of analyses undertaken rather than the inputs supplied to the engineering disciplines. Nevertheless, the discussion does show how these analyses contribute to the engineering design. Analyses in radiation physics and shielding can be categorized as either design-assist or safety and licensing (accident) analyses. Many of the analyses undertaken are designated 'design-assist' where the analyses are used to generate recommendations that directly influence plant design. These recommendations are directed at mitigating or reducing the radiation hazard of the nuclear power plant with engineered systems and components. Thus the analyses serve a primary safety function by ensuring the plant can be operated with acceptable radiation hazards to the workers and public. In addition to this role of design assist, radiation physics and shielding codes are also deployed in safety and licensing assessments of the consequences of radioactive releases of gaseous and liquid effluents during normal operation and gaseous effluents following accidents. In the latter category, the final consequences of accident sequences, expressed in terms of radiation dose to members of the public, and inputs to accident analysis, e.g., decay heat in fuel following a loss-of-coolant accident, are also calculated. Another role of the analyses is to demonstrate that the design of the plant satisfies the principle of ALARA (as low as reasonably achievable) radiation doses. This principle is applied throughout the design process to minimize worker and public doses. The principle of ALARA is an inherent part of all design-assist recommendations and safety and licensing assessments. The main focus of an ALARA exercise at the design stage is to minimize the radiation hazards at the source. This exploits material selection and impurity specifications and relies heavily on experience and engineering judgement, consistent with the ALARA philosophy. Special care is taken to ensure that the best estimate dose rates are used to the extent possible when applying ALARA. Provisions for safeguards equipment are made throughout the fuel-handling route in CANDU and ACR reactors. For example, the fuel bundle counters rely on the decay gammas from the fission products in spent-fuel bundles to record the number of fuel movements. The International Atomic Energy Agency (IAEA) Safeguards system for CANDU and ACR reactors is based on item (fuel bundle) accounting. It involves a combination of IAEA inspection with containment and surveillance, and continuous unattended monitoring. The spent fuel bundle counter monitors spent fuel bundles as they are transferred from the fuelling machine to the spent fuel bay. The shielding and dose-rate analysis need to be carried out so that the bundle counter functions properly. This paper includes two codes used in criticality safety analyses. Criticality safety is a unique phenomenon and codes that address criticality issues will demand specific validations. However, it is recognised that some of the codes used in radiation physics will also be used in criticality safety assessments. (authors)

Aydogdu, K.; Boss, C. R. [Atomic Energy of Canada Limited, Sheridan Science and Technology Park, Mississauga, Ont. L5K 1B2 (Canada)

2006-07-01T23:59:59.000Z

380

Use of phenomena identification and ranking (PIRT) process in research related to design certification of the AP600 advanced passive light water reactor (LWR)  

SciTech Connect (OSTI)

The AP600 LWR is a new advanced passive design that has been submitted to the USNRC for design certification. Within the certification process the USNRC will perform selected system thermal hydraulic response audit studies to help confirm parts of the vendor`s safety analysis submittal. Because of certain innovative design features of the safety systems, new experimental data and related advances in the system thermal hydraulic analysis computer code are being developed by the USNRC. The PIRT process is being used to focus the experimental and analytical work to obtain a sufficient and cost effective research effort. The objective of this paper is to describe the application and most significant results of the PIRT process, including several innovative features needed in the application to accommodate the short design certification schedule. The short design certification schedule has required that many aspects of the USNRC experimental and analytical research be performed in parallel, rather than in series as was normal for currently operating LWRS. This has required development and use of management techniques that focus and integrate the various diverse parts of the research. The original PIRTs were based on inexact knowledge of an evolving reactor design, and concentrated on the new passive features of the design. Subsequently, the PIRTs have evolved in two more stages as the design became more firm and experimental and analytical data became available. A fourth and final stage is planned and in progress to complete the PIRT development. The PIRTs existing at the end of each development stage have been used to guide the experimental program, scaling analyses and code development supporting the audit studies.

Wilson, G.E.; Fletcher, C.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Eltawila, F. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Design Study for a Low-enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2007  

SciTech Connect (OSTI)

This report documents progress made during fiscal year 2007 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low enriched uranium fuel (LEU). Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. A high volume fraction U/Mo-in-Al fuel could attain the same neutron flux performance as with the current, HEU fuel but materials considerations appear to preclude production and irradiation of such a fuel. A diffusion barrier would be required if Al is to be retained as the interstitial medium and the additional volume required for this barrier would degrade performance. Attaining the high volume fraction (55 wt. %) of U/Mo assumed in the computational study while maintaining the current fuel plate acceptance level at the fuel manufacturer is unlikely, i.e. no increase in the percentage of plates rejected for non-compliance with the fuel specification. Substitution of a zirconium alloy for Al would significantly increase the weight of the fuel element, the cost of the fuel element, and introduce an as-yet untried manufacturing process. A monolithic U-10Mo foil is the choice of LEU fuel for HFIR. Preliminary calculations indicate that with a modest increase in reactor power, the flux performance of the reactor can be maintained at the current level. A linearly-graded, radial fuel thickness profile is preferred to the arched profile currently used in HEU fuel because the LEU fuel media is a metal alloy foil rather than a powder. Developments in analysis capability and nuclear data processing techniques are underway with the goal of verifying the preliminary calculations of LEU flux performance. A conceptual study of the operational cost of an LEU fuel fabrication facility yielded the conclusion that the annual fuel cost to the HFIR would increase significantly from the current, HEU fuel cycle. Though manufacturing can be accomplished with existing technology, several engineering proof-of-principle tests would be required. The RERTR program is currently conducting a series of generic fuel qualification tests at the Advanced Test Reactor. A review of these tests and a review of the safety basis for the current, HEU fuel cycle led to the identification of a set of HFIR-specific fuel qualification tests. Much additional study is required to formulate a HFIR-specific fuel qualification plan from this set. However, one such test - creating a graded fuel profile across a flat foil - has been initiated with promising results.

Primm, Trent [ORNL; Ellis, Ronald James [ORNL; Gehin, Jess C [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL

2007-11-01T23:59:59.000Z

382

Examples of the use of PSA in the design process and to support modifications at two research reactors  

SciTech Connect (OSTI)

Many, if not most, of the world`s commercial nuclear power plants have been the subject of plant-specific probabilistic safety assessments (PSA). A growing number of other nuclear facilities as well as other types of industrial installations have been the focus of plant-specific PSAs. Such studies have provided valuable information concerning the nature of the risk of the individual facility and have been used to identify opportunities to manage that risk. This paper explores the risk management activities associated with two research reactors in the United States as a demonstration of the versatility of the use of PSA to support risk-related decision making.

Johnson, D.H.; Bley, D.C.; Lin, J.C. [PLG, Inc., Newport Beach, CA (United States); Ramsey, C.T.; Linn, M.A. [Oak Ridge National Lab., TN (United States)

1994-03-01T23:59:59.000Z

383

Modular ITT Module D Modular ITT Module D Version 1 16/02/2012  

E-Print Network [OSTI]

manage health and safety at work. Your responses should include: basic statement on safety awarenessModular ITT ­ Module D Modular ITT ­ Module D Version 1 16/02/2012 Module D ­ Health & Safety an overall failing of your bid. This section allows us to assess your competency for health and safety. We

384

Figure 1. Recurrent modular network architecture Recurrent modular network architecture for sea ice  

E-Print Network [OSTI]

). Classification of sea ice in MIZ is important for navigation in these regions and for accurate evaluation of heatFigure 1. Recurrent modular network architecture Recurrent modular network architecture for sea ice classification in the Marginal Ice Zone using ERS SAR images Andrey V. Bogdanov1a , Marc Toussaint1b , Stein

Toussaint, Marc

385

Modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program  

SciTech Connect (OSTI)

This paper describes the modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program. This effort represents a complete 'white sheet of paper' rewrite of the code. In this paper, the motivation driving this project, the design objectives for the new version of the program, and the design choices and their consequences will be discussed. The design itself will also be described, including the important subsystems as well as the key classes within those subsystems.

Moskowitz, B.S.

2000-02-01T23:59:59.000Z

386

Physics implications of oxide and metal fuel on the design of small LMFBR cores  

SciTech Connect (OSTI)

In order to maintain momentum in the US LMFBR program, much attention has recently been focused on the possibility of new design approaches consistent with the slower deployment scenarios currently envisioned. To this end, the slower rate of deployment of LMFBR capacity lends itself to a scenario wherein small capacity reactors are constructed as demand requires, in a reactor complex where they share a single secondary system. The focus of this effort is to seek economies in the cost of the LMFBR outside the economies of scale associated with large plants and a rapid deployment of LMFBRs. Some current effort is being directed to small modular reactor concepts which suggest that significant construction cost savings can be realized, if the reactor vessel size allows for factory fabrication and testing, and for subsequent transportation to the plant site. These constraints dictate reactor outputs of about 100 MWe and 300 MWe respectively for rail shippable and barge shippable modules. The following analysis focuses on the core design issues in the context of constraints imposed by the mode of transportation of the reactor vessel.

Orechwa, Y.; Khalil, H.

1984-01-01T23:59:59.000Z

387

A Comparative Study of Modular Axial Flux Podded Generators for Marine Current Turbines  

E-Print Network [OSTI]

for MCTs. For that purpose, a comparative study is proposed, to assess modular axial flux permanent magnet current turbine, axial flux permanent magnet generator, design, optimization. Nomenclature MCT = Marine Current Turbine; AFPM = Axial Flux Permanent Magnet. I. Introduction Marine energy has become an issue

Brest, Université de

388

Towards a modular and scalable architecture for high-level smart grid applications  

Science Journals Connector (OSTI)

Sensor and actor population within future smart distribution grids is much denser than within transmission grids. Thereby, future grid management systems have to cope with larger amounts of data than today's grid management systems. Also, future high-level ... Keywords: component-oriented software development, modular software design, smart grids, software architecture

Niels Streekmann, Simon Giesecke, Gerriet Reents, Matthias Rohr, Michael Stadler, Nils Vogel, Martin Frenzel, Jrg Friebe, Till Luhmann

2012-06-01T23:59:59.000Z

389

ASHRAE Transactions: Symposia 1107 The interest in both modular simulation and alternative  

E-Print Network [OSTI]

model HVAC systems that are different from the "standard" systems that one tends to encounter in most simulationsallowprogramuserstotestoutconfigurationsthat are different from the standard systems and may sometimes lead to innovative design solutions, EnergyPlus. Its integration of a modular HVAC simulation within the framework of a comprehensive building

390

Passive-solar techniques for the mobile/modular housing industry  

SciTech Connect (OSTI)

Using a fairly typical mobile home design, it is shown that state-of-the-art mobile/modular housing and passive solar techniques can be used together. Computer simulations are used to analyze the concept. Size conditions at a mobile home park are considered. Glazing orientation, shading, and thermal storage are included in the analysis. (LEW)

Osborn, D.C.

1983-01-31T23:59:59.000Z

391

Enhancing VHTR passive safety and economy with thermal radiation based direct reactor auxiliary cooling system  

SciTech Connect (OSTI)

One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The RVACS can be characterized as a surface-based decay heat removal system. It is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to the core volume) and decay heat removal capability (proportional to the vessel surface area). Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environmental side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps or annular regions formed between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions among the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very effective in removing decay heat. By removing the limit on the decay heat removal capability due to the limited available surface area as in a RVACS, the reactor power density and therefore the reactor power can be significantly increased, without losing the passive heat removal feature. This paper introduces the concept of using DRACS to enhance VHTR passive safety and economics. Three design options with different cooling pipe locations are discussed. Analysis results from a lumped volume based model and CFD simulations are presented. (authors)

Zhao, H.; Zhang, H.; Zou, L. [Idaho National Laboratory (United States); Sun, X. [Ohio State Univ. (United States)

2012-07-01T23:59:59.000Z

392

Plant Design and Cost Assessment of Forced Circulation Lead-Bismuth Cooled Reactor with Conventional Power Conversion Cycles  

E-Print Network [OSTI]

Cost of electricity is the key factor that determines competitiveness of a power plant. Thus the proper selection, design and optimization of the electric power generating cycle is of main importance. This report makes an ...

Dostal, Vaclav

393

Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen  

SciTech Connect (OSTI)

This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study.

Krikorian, O.H. (ed.)

1982-02-09T23:59:59.000Z

394

Spherical torus fusion reactor  

DOE Patents [OSTI]

The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

Martin Peng, Y.K.M.

1985-10-03T23:59:59.000Z

395

Physics design of a 100 keV acceleration grid system for the diagnostic neutral beam for international tokamak experimental reactor  

SciTech Connect (OSTI)

This paper describes the physics design of a 100 keV, 60 A H{sup -} accelerator for the diagnostic neutral beam (DNB) for international tokamak experimental reactor (ITER). The accelerator is a three grid system comprising of 1280 apertures, grouped in 16 groups with 80 apertures per beam group. Several computer codes have been used to optimize the design which follows the same philosophy as the ITER Design Description Document (DDD) 5.3 and the 1 MeV heating and current drive beam line [R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H. P. L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, and P. Zaccaria, Nucl. Fusion 49, 045006 (2009)]. The aperture shapes, intergrid distances, and the extractor voltage have been optimized to minimize the beamlet divergence. To suppress the acceleration of coextracted electrons, permanent magnets have been incorporated in the extraction grid, downstream of the cooling water channels. The electron power loads on the extractor and the grounded grids have been calculated assuming 1 coextracted electron per ion. The beamlet divergence is calculated to be 4 mrad. At present the design for the filter field of the RF based ion sources for ITER is not fixed, therefore a few configurations of the same have been considered. Their effect on the transmission of the electrons and beams through the accelerator has been studied. The OPERA-3D code has been used to estimate the aperture offset steering constant of the grounded grid and the extraction grid, the space charge interaction between the beamlets and the kerb design required to compensate for this interaction. All beamlets in the DNB must be focused to a single point in the duct, 20.665 m from the grounded grid, and the required geometrical aimings and aperture offsets have been calculated.

Singh, M. J. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); De Esch, H. P. L. [CEA-Cadarache, IRFM, F-13108 Saint-Paul-lez-Durance (France)

2010-01-15T23:59:59.000Z

396

Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report  

SciTech Connect (OSTI)

This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

John Saurwein

2011-07-15T23:59:59.000Z

397

Evaluation of the economic simplified boiling water reactor human reliability analysis using the SHARP framework .  

E-Print Network [OSTI]

??General Electric plans to complete a design certification document for the Economic Simplified Boiling Water Reactor to have the new reactor design certified by the (more)

Dawson, Phillip Eng

2007-01-01T23:59:59.000Z

398

Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1,  

E-Print Network [OSTI]

Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1, *, Alexander J Ninfa2 a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation: computational methods; metabolic and regulatory networks Keywords: feedback; insulation; modularity; singular

Sontag, Eduardo

399

Light Water Reactor Sustainability Program Operator Performance Metrics for Control Room Modernization: A Practical Guide for Early Design Evaluation  

SciTech Connect (OSTI)

As control rooms are modernized with new digital systems at nuclear power plants, it is necessary to evaluate the operator performance using these systems as part of a verification and validation process. There are no standard, predefined metrics available for assessing what is satisfactory operator interaction with new systems, especially during the early design stages of a new system. This report identifies the process and metrics for evaluating human system interfaces as part of control room modernization. The report includes background information on design and evaluation, a thorough discussion of human performance measures, and a practical example of how the process and metrics have been used as part of a turbine control system upgrade during the formative stages of design. The process and metrics are geared toward generalizability to other applications and serve as a template for utilities undertaking their own control room modernization activities.

Ronald Boring; Roger Lew; Thomas Ulrich; Jeffrey Joe

2014-03-01T23:59:59.000Z

400

Simulated Performance of the Integrated PNAR and SINRD Detector Designed for Spent Fuel Measurements at the Fugen Reactor in Japan  

SciTech Connect (OSTI)

Objective is to investigate the use of Passive Neutron Albedo Reactivity (PNAR) and Self-Interrogation Neutron Resonance Densitometry (SINRD) to quantify fissile content in FUGEN spent fuel assemblies (FAs). Methodology used is: (1) Detector was designed using fission chambers (FCs); (2) Optimized design via MCNPX simulations; and (3) Plan to build and field test instrument in FY13. Significance was to improve safeguards verification of spent fuel assemblies in water and increase sensitivity to partial defects. MCNPX simulations were performed to optimize the design of the SINRD+PNAR detector. PNAR ratio was less sensitive to FA positioning than SINRD and SINRD ratio was more sensitive to Pu fissile mass than PNAR. Significance was that the integration of these techniques can be used to improve verification of spent fuel assemblies in water.

Lafleur, Adrienne M. [Los Alamos National Laboratory; Ulrich, Timothy J. II [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory; Seya, Michio [Japan Atomic Energy Agency; Bolind, Alan M. [Japan Atomic Energy Agency

2012-07-13T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Introduction and Condensation The 2-modular characters of Fi23  

E-Print Network [OSTI]

Introduction and Condensation The 2-modular characters of Fi23 Problem, Perfidy, Tricks, and Tackling them Verification, Overview and Outlook Computing the 2-modular characters of Fi23 Max Neunhöffer23 #12;Introduction and Condensation The 2-modular characters of Fi23 Problem, Perfidy, Tricks

Neunhöffer, Max

402

Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2006  

SciTech Connect (OSTI)

Neutronics and thermal-hydraulics studies show that, for equivalent operating power [85 MW(t)], a low-enriched uranium (LEU) fuel cycle based on uranium-10 wt % molybdenum (U-10Mo) metal foil with radially, continuously graded fuel meat thickness results in a 15% reduction in peak thermal flux in the beryllium reflector of the High Flux Isotope Reactor (HFIR) as compared to the current highly enriched uranium (HEU) cycle. The uranium-235 content of the LEU core is almost twice the amount of the HEU core when the length of the fuel cycle is kept the same for both fuels. Because the uranium-238 content of an LEU core is a factor of 4 greater than the uranium-235 content, the LEU HFIR core would weigh 30% more than the HEU core. A minimum U-10Mo foil thickness of 84 ?m is required to compensate for power peaking in the LEU core although this value could be increased significantly without much penalty. The maximum U-10Mo foil thickness is 457?m. Annual plutonium production from fueling the HFIR with LEU is predicted to be 2 kg. For dispersion fuels, the operating power for HFIR would be reduced considerably below 85 MW due to thermal considerations and due to the requirement of a 26-d fuel cycle. If an acceptable fuel can be developed, it is estimated that $140 M would be required to implement the conversion of the HFIR site at Oak Ridge National Laboratory from an HEU fuel cycle to an LEU fuel cycle. To complete the conversion by fiscal year 2014 would require that all fuel development and qualification be completed by the end of fiscal year 2009. Technological development areas that could increase the operating power of HFIR are identified as areas for study in the future.

Primm, R. T. [ORNL] [ORNL; Ellis, R. J. [ORNL] [ORNL; Gehin, J. C. [ORNL] [ORNL; Clarno, K. T. [ORNL] [ORNL; Williams, K. A. [ORNL] [ORNL; Moses, D. L. [ORNL] [ORNL

2006-11-01T23:59:59.000Z

403

Validation of nuclear design method by measured data obtained in the physics test at a small fast reactor  

SciTech Connect (OSTI)

The present paper discusses applicability of the measured data of Joyo cores from a view point of integral validation for the 4S nuclear design methodology. Through the evaluation of isothermal reactivity coefficients and reactivity losses due to burnup, the results confirm that those MK-I and MK-II database are effective in order to increase the dataset for uncertainty estimation for the prediction. Discussions on the 4S design method validation are also done through the analyses of criticality, power distributions and reactivity loss due to burn-up. The C/E values for criticality and reaction rate distributions are confirmed to be consistent with those obtained from the physics benchmark experiments. Through an analysis of burnup coefficient of the MK-I core by the detailed Monte Carlo calculations, the C/E value is 1.1, which is close to 1.06 obtained by the deterministic transport analysis. (authors)

Nagata, A.; Tsuboi, Y. [Advanced Energy Design and Engineering Dep., Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama, 235-8523 (Japan); Moriki, Y. [Power and Industrial Systems Research and Development Center, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama, 235-8523 (Japan); Kawashima, M. [Nuclear Technology Application Dept., Toshiba Nuclear Engineering Services Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama, 235-8523 (Japan)

2012-07-01T23:59:59.000Z

404

Piecing together modular : understanding the benefits and limitations of modular construction methods for multifamily development  

E-Print Network [OSTI]

The primary purpose of this thesis is to explain the benefits and limitations of modular construction as it pertains to primarily wood-frame, multifamily housing in the United States. This thesis attempts to educate the ...

Cameron, Peter J. (Peter Jay)

2007-01-01T23:59:59.000Z

405

Semi-finished modular cells  

E-Print Network [OSTI]

This thesis subject is a pre-fabricated element (cell): a system that employs natural, light, and economic materials to produce a near-finished portion of a building. The intent is to introduce sustainable design into ...

Bachelder, Laura Govoni, 1971-

2002-01-01T23:59:59.000Z

406

Honeywell Modular Automation System Computer Software Documentation  

SciTech Connect (OSTI)

This document provides a Computer Software Documentation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-211 and vertical denitration calciner in HC-230C-2.

CUNNINGHAM, L.T.

1999-09-27T23:59:59.000Z

407

Creating value for the business service buyer through modularity  

Science Journals Connector (OSTI)

The present study explores how modularity makes services visible and how it enables the customers to participate in service co-creation. We review the literature on buying business services to determine the buying challenges and we define service modularity and especially concentrate on defining the attributes of a modular service offering. Theoretical framework describing the connections of the attributes and challenges in service buying is elaborated through a single case study of a modular service in a professional service firm. We argue that a modular service offering can help customers by increasing the visibility of the service offering.

Pauliina Ulkuniemi; Saara Pekkarinen

2011-01-01T23:59:59.000Z

408

NETL: Methane Hydrates - ANS Research Project - Modular Dynamics Tester  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Well Well Modular Formation Dynamics Tester (MDT) Tool The scientific plan for the Mt. Elbert Prospect includes multiple tests using Schlumberger’s Modular Formation Dynamics Tester (MDT) tool. This device is deployed on wireline and will be used to sample formation fluids, and measure formation pressure and permeability. The tool’s design involves extension of a sampling probe pad against the borehole wall by backup pistons and the insertion of a smaller test probe a small distance into the formation. The probe is then opened to a sampling chamber within the tool, where fluids from the formation can flow, free of contamination by the borehole fluid. The formation pressure is measured using an extremely accurate gauge that can resolve small pressure differences. The pressure and the rate of fluid flow into the sample chamber can be used to calculate reservoir permeability. Multiple probes can also be used to determine both vertical and horizontal permeability data, which can be used to assess near-wellbore permeability anisotropy (i.e., the degree to which vertical and horizontal permeability within the same reservoir differ). All of these data are useful to engineers interested in predicting the productive capability of a reservoir. Various configurations of the MDT tool can be used to accomplish specific testing goals.

409

Summary of the Preliminary Optical ICHMI Design Study: A Preliminary Engineering Design Study for a Standpipe Viewport  

SciTech Connect (OSTI)

This summary report examines an in-vessel optical access concept intended to support standoff optical instrumentation, control and human-machine interface (ICHMI) systems for future advanced small modular reactor (AdvSMR) applications. Optical-based measurement and sensing systems for AdvSMR applications have several key benefits over traditional instrumentation and control systems used to monitor reactor process parameters, such as temperature, flow rate, pressure, and coolant chemistry (Anheier et al. 2013). Direct and continuous visualization of the in-vessel components can be maintained using external cameras. Many optical sensing techniques can be performed remotely using open optical beam path configurations. Not only are in-vessel cables eliminated by these configurations, but also sensitive optical monitoring components (e.g., electronics, lasers, detectors, and cameras) can be placed outside the reactor vessel in the instrument vault, containment building, or other locations where temperatures and radiation levels are much lower. However, the extreme AdvSMR environment present challenges for optical access designs and optical materials. Optical access is not provided in any commercial nuclear power plant or featured in any reactor design, although successful implementation of optical access has been demonstrated in test reactors (Arkani and Gharib 2009). This report outlines the key engineering considerations for an AdvSMR optical access concept. Strict American Society of Mechanical Engineers (ASME) construction codes must be followed for any U.S. nuclear facility component (ASME 2013); however, the scope of this study is to evaluate the preliminary engineering issues for this concept, rather than developing a nuclear-qualified design. In addition, this study does not consider accident design requirements. In-vessel optical access using a standpipe viewport concept serves as a test case to explore the engineering challenges and performance requirements for sodium fast reactor (SFR) and high-temperature gas reactor (HTGR) AdvSMR applications. The expected environmental conditions for deployment are reviewed for both AdvSMR designs. Optical and mechanical materials that maximize component lifetime are evaluated for the standpipe viewport design under these conditions. Optical components and opto-mechanical designs that provide robust optical-to-metal seals and stress-free optical component mounting are identified, and then key performance specifications are developed for a sapphire optical viewport concept. Design strategies are examined that protect the internal optical surfaces from liquid-coolant condensation and impurity deposits. Finally, a conceptual standpipe viewport design that is suggestive of how this concept could be assembled using standard nuclear-qualified pipe components, is presented.

Anheier, Norman C.; Qiao, Hong (Amy) [Amy; Berglin, Eric J.; Hatchell, Brian K.

2013-12-26T23:59:59.000Z

410

Reactor hot spot analysis  

SciTech Connect (OSTI)

The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

Vilim, R.B.

1985-08-01T23:59:59.000Z

411

Novel, fiber optic, hybrid pressure and temperature sensor designed for high-temperature gen-IV reactor applications  

SciTech Connect (OSTI)

A novel, fiber optic, hybrid pressure-temperature sensor is presented. The sensor is designed for reliable operation up to 1050 C, and is based on the high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were also tested for operability in a relatively high neutron radiation environment up to 6.9x10{sup 17} n/cm{sup 2}. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for nuclear power applications including small size, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future nuclear power plant designs would provide a substantial improvement in system health monitoring and safety instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to emerging nuclear power plants. Successes and lessons learned will be highlighted. (authors)

Palmer, M. E.; Fielder, R. S.; Davis, M. A. [Luna Innovations, Incorporated, 2851 Commerce St., Blacksburg, VA 24060 (United States)

2006-07-01T23:59:59.000Z

412

NEW OPTIMIZATION-BASED APPROACH TO CHEMICAL REACTOR SYNTHESIS TOWARDS THE FULL INTEGRATION OF REACTOR  

E-Print Network [OSTI]

NEW OPTIMIZATION-BASED APPROACH TO CHEMICAL REACTOR SYNTHESIS ­ TOWARDS THE FULL INTEGRATION solutions. However, it does not provide optimal reactor design from both economical and environmental and methods for reactor design. It also explores the possibilities for actuation improvement for the optimal

Van den Hof, Paul

413

Advanced Safeguards Approaches for New Fast Reactors  

SciTech Connect (OSTI)

This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to breed nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and burn actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is fertile or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing TRU-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II EBR-II at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

2007-12-15T23:59:59.000Z

414

NUCLEAR REACTORS.  

E-Print Network [OSTI]

??Nuclear reactors are devices containing fissionable material in sufficient quantity and so arranged as to be capable of maintaining a controlled, self-sustaining NUCLEAR FISSION chain (more)

Belachew, Dessalegn

2010-01-01T23:59:59.000Z

415

Ssessment methodology for proliferation resistant fast breeder reactor  

E-Print Network [OSTI]

Due to perceived proliferation risks, current US fast reactor designs have avoided the use of uranium blankets. While reducing the amount of plutonium produced, this omission also restrains the reactor design space and has ...

Singh, Mohit, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

416

Interfacial effects in fast reactors  

E-Print Network [OSTI]

The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed ...

Saidi, Mohammad Said

1979-01-01T23:59:59.000Z

417

Design, performance, and grounding aspects of the International Thermonuclear Experimental Reactor ion cyclotron range of frequencies antenna  

SciTech Connect (OSTI)

ITER's Ion Cyclotron Range of Frequencies (ICRF) system [Lamalle et al., Fusion Eng. Des. 88, 517520 (2013)] comprises two antenna launchers designed by CYCLE (a consortium of European associations listed in the author affiliations above) on behalf of ITER Organisation (IO), each inserted as a Port Plug (PP) into one of ITER's Vacuum Vessel (VV) ports. Each launcher is an array of 4 toroidal by 6 poloidal RF current straps specified to couple up to 20?MW in total to the plasma in the frequency range of 40 to 55 MHz but limited to a maximum system voltage of 45?kV and limits on RF electric fields depending on their location and direction with respect to, respectively, the torus vacuum and the toroidal magnetic field. A crucial aspect of coupling ICRF power to plasmas is the knowledge of the plasma density profiles in the Scrape-Off Layer (SOL) and the location of the RF current straps with respect to the SOL. The launcher layout and details were optimized and its performance estimated for a worst case SOL provided by the IO. The paper summarizes the estimated performance obtained within the operational parameter space specified by IO. Aspects of the RF grounding of the whole antenna PP to the VV port and the effect of the voids between the PP and the Blanket Shielding Modules (BSM) surrounding the antenna front are discussed. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, which could lead to large voltages in the gaps between the blanket modules and perturb the RF properties of the antenna if they are in the ICRF operating range. The effect on the wave propagation along the wall structure, which is acting as a spatially periodic (toroidally and poloidally) corrugated structure, and hence constitutes a slow wave structure modifying the wall boundary condition, is examined.

Durodi, F., E-mail: frederic.durodie@rma.ac.be; Dumortier, P.; Vrancken, M.; Messiaen, A.; Huygen, S.; Louche, F.; Van Schoor, M.; Vervier, M. [LPP-ERM/KMS, Association EURATOM-Belgian State, Brussels (Belgium); Bamber, R.; Hancock, D.; Lockley, D.; Nightingale, M. P. S.; Shannon, M.; Tigwell, P.; Wilson, D. [EURATOM/CCFE Assoc., Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Maggiora, R.; Milanesio, D. [Associazione EURATOM-ENEA, Politechnico di Torino (Italy); Winkler, K. [IPP-MPI, EURATOM-Assoziation, Garching (Germany)

2014-06-15T23:59:59.000Z

418

Modular architecture for robotics and teleoperation  

DOE Patents [OSTI]

Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

Anderson, Robert J. (11908 Ibex Ave., N.E., Albuquerque, NM 87111)

1996-12-03T23:59:59.000Z

419

Modular test facility for HTS insert coils  

SciTech Connect (OSTI)

The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields in the range of 40-50 T. In this paper we will present a modular test facility developed for the purpose of investigating very high field levels with available 2G HTS superconducting materials. Performance of available conductors is presented, together with magnetic calculations and evaluation of Lorentz forces distribution on the HTS coils. Finally a test of a double pancake coil is presented.

Lombardo, V; Bartalesi, A.; Barzi, E.; Lamm, M.; Turrioni, D.; Zlobin, A.V.; /Fermilab

2009-10-01T23:59:59.000Z

420

Copper vapor laser modular packaging assembly  

DOE Patents [OSTI]

A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

Alger, Terry W. (Tracy, CA); Ault, Earl R. (Dublin, CA); Moses, Edward I. (Castro Valley, CA)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modular reactor designs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Supporting development of modular products utilising simplified LCA and fuzzy logic  

Science Journals Connector (OSTI)

The application of life cycle assessment (LCA) is usually aimed at products where most parameters relating to architecture, processes and materials are defined and known. However, application of conventional LCA for products or services that are incomplete in their specification is quite difficult or even impossible, if too many significant parameters are unknown. In our previous work targeting the development of eco-design tools, an approach integrating LCA methodology with the concept of product modularity has been introduced. In this paper, further improvements of this novel approach, being based on fuzzy logic and its application, are presented. In this context, fuzzy logic is being used to increase user friendliness of the interface while avoiding any circumstances of compromising the precision of quantitative results computed. A set of fuzzy attributes, membership functions and an inference algorithm are used to evaluate the modification of design parameters of modular products regarding their influence on environmental impact indicators.

Marco Recchioni; Ferruccio Mandorli; Harald E. Otto

2009-01-01T23:59:59.000Z

422

Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program  

SciTech Connect (OSTI)

Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.

David Petti

2014-06-01T23:59:59.000Z

423

Design and Construction Solutions in the Accurate Realization of NCSX Magnetic Fields  

SciTech Connect (OSTI)

The National Compact Stellarator Experiment, NCSX, is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge national Laboratory. The goal of NCSX is to provide the understanding necessary to develop an attractive, disruption free, steady state compact stellaratorbased reactor design. This paper describes the recently revised designs of the critical interfaces between the modular coils, the construction solutions developed to meet assembly tolerances, and the recently revised trim coil system that provides the required compensation to correct for the as built conditions and to allow flexibility in the disposition of as-built conditions. In May, 2008, the sponsor decided to terminate the NCSX project due to growth in the projects cost and schedule estimates. However significant technical challenges in design and construction were overcome, greatly reducing the risk in the remaining work to complete the project.

Heitzenroeder, P.; Dudek, Lawrence E.; Brooks, Arthur W.; Viola, Michael E.; Brown, Thomas; Neilson, George H.; Zarnstorff, Michael C.; Rej, Donald; Cole,Michael J.; Freudenberg, Kevin D.; Harris J. H.; McGinnis, Gary

2008-09-29T23:59:59.000Z

424

Assessment and reduction of proliferation risk of reactor-grade plutonium regarding construction of fizzle bombs by terrorists  

Science Journals Connector (OSTI)

Abstract The approximately 23.7wt% 240Pu in reactor-grade plutonium denatures the 239Pu to the extent that it cannot fuel high yield nuclear weapons. 240Pu has a high spontaneous fission rate, which increases the spontaneous neutron flux within the fuel. When such a nuclear weapon is triggered, these neutrons cause the nuclear fission chain reaction to pre-detonate which blows the imploding fuel shell apart before the designed level of compression and reactivity could be attained, thereby greatly reducing the average energy yield of such fizzle bombs. Therefore reactor-grade plutonium is normally viewed as highly proliferation resistant. In this article the literature on the proliferation resistance of reactor-grade plutonium and on the mechanism and effect of fizzle bombs is reviewed in order to test this view. It is shown that even very low yield fizzle bombs, exploded in urban areas, would still cause serious blast damage as well as radioactive contamination. Combined with the high levels of induced terror, fizzle bombs might thus be attractive psychological weapons for terrorists. Therefore reactor-grade plutonium may not be sufficiently proliferation resistant against nuclear terrorism. However, denaturisation with more than 9% 238Pu produces high levels of decay heat which will melt or explode the high explosives around uncooled implosion type weapons, rendering them useless. Unfortunately, reactor-grade Pu contains only 2.7% 238Pu and is thus not sufficiently proliferation resistant in this respect. It is also shown that the associated neptunium poses a substantial proliferation risk. In the present study strong improvement of the proliferation resistance was demonstrated by simulation of incineration of reactor-grade plutonium in the 400MWth Pebble Bed Modular Reactor Demonstration Power Plant. Results for modified fuel cycles, aimed at transmutating 237Np to 238Pu are also reported. However, these modifications increased the disloaded heavy metal mass, thereby substantially increasing the radiotoxicity of the spent fuel. Therefore this intervention is not recommended. 237NP should thus rather be incinerated it in fast reactors, light-water reactors or CANDU reactors.

Dawid E. Serfontein; Eben J. Mulder; Frederik Reitsma

2014-01-01T23:59:59.000Z

425

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Prototype Vehicle Design, build, and validate a new CD-segment passenger vehicle architecture and modular vehicle assembly method using lightweight materials. 09 21 2011...

426

naval reactors  

National Nuclear Security Administration (NNSA)

After operating for 34 years and training over 14,000 sailors, the Department of Energy S1C Prototype Reactor Site in Windsor, Connecticut, was returned to "green field"...

427

Lessons Learned From Gen I Carbon Dioxide Cooled Reactors  

SciTech Connect (OSTI)

This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

David E. Shropshire

2004-04-01T23:59:59.000Z

428

E-Print Network 3.0 - advanced fast reactor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANNULAR FAST REACTOR (3000 MWth) Fuel... and NRE Design Class., "Advances in the Subcritical, Gas-Cooled Fast Transmutation Reactor Concept", Nucl... Cooled, Fast, ... Source:...

429

E-Print Network 3.0 - advanced reactors coupled Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANNULAR FAST REACTOR (3000 MWth) Fuel... and NRE Design Class., "Advances in the Subcritical, Gas-Cooled Fast Transmutation Reactor Concept", Nucl... Cooled, Fast, Subcritical...

430

E-Print Network 3.0 - advanced reactor analyses Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANNULAR FAST REACTOR (3000 MWth) Fuel... and NRE Design Class., "Advances in the Subcritical, Gas-Cooled Fast Transmutation Reactor Concept", Nucl... Cooled, Fast, Subcritical...

431

A Controllability Study of TRUMOX Fuel for Load Following Operation in a CANDU-900 Reactor.  

E-Print Network [OSTI]

?? The CANDU-900 reactor design is an improvement on the current CANDU-6 reactor in the areas of economics, safety of operation and fuel cycle flexibility. (more)

Trudell, David A

2012-01-01T23:59:59.000Z

432

PROTEUS - Simulation Toolset for Reactor Physics and Fuel Cycle Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulation Toolset for Simulation Toolset for Reactor Physics and Fuel Cycle Analysis PROTEUS Faster and more accurate neutronics calculations enable optimum reactor design... Argonne National Laboratory's powerful reactor physics toolset, PROTEUS, empowers users to create optimal reactor designs quickly, reliably and accurately. ...Reducing costs for designers of fast spectrum reactors. PROTEUS' long history of validation provides confidence in predictive simulations Argonne's simulation tools have more than 30 years of validation history against numerous experiments and measurements. The tools within PROTEUS work together, using the same interface files for easier integration of calculations. Multi-group Fast Reactor Cross Section Processing: MC 2 -3 No other fast spectrum multigroup generation tool

433

Honeywell Modular Automation System Computer Software Documentation  

SciTech Connect (OSTI)

The purpose of this Computer Software Document (CSWD) is to provide configuration control of the Honeywell Modular Automation System (MAS) in use at the Plutonium Finishing Plant (PFP). This CSWD describes hardware and PFP developed software for control of stabilization furnaces. The Honeywell software can generate configuration reports for the developed control software. These reports are described in the following section and are attached as addendum's. This plan applies to PFP Engineering Manager, Thermal Stabilization Cognizant Engineers, and the Shift Technical Advisors responsible for the Honeywell MAS software/hardware and administration of the Honeywell System.

STUBBS, A.M.

2000-12-04T23:59:59.000Z

434

Nucleic acid amplification using modular branched primers  

DOE Patents [OSTI]

Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

Ulanovsky, Levy (Westmont, IL)

2001-01-01T23:59:59.000Z

435

Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers  

E-Print Network [OSTI]

for Modular, Scalable Liquid-Rack Cooling Systems in DataFOR A MODULAR, SCALABLE LIQUID-RACK COOLING SYSTEM IN DATA3 M ODULAR LIQUID - RACK COOLING

Xu, TengFang

2009-01-01T23:59:59.000Z

436

Transport reactor development status  

SciTech Connect (OSTI)

This project is part of METC`s Power Systems Development Facility (PSDF) located at Wilsonville, Alabama. The primary objective of the Advanced Gasifier module is to produce vitiated gases for intermediate-term testing of Particulate Control Devices (PCDs). The Transport reactor potentially allows particle size distribution, solids loading, and particulate characteristics in the off-gas stream to be varied in a number of ways. Particulates in the hot gases from the Transport reactor will be removed in the PCDs. Two PCDs will be initially installed in the module; one a ceramic candle filter, the other a granular bed filter. After testing of the initial PCDs they will be removed and replaced with PCDs supplied by other vendors. A secondary objective is to verify the performance of a Transport reactor for use in advanced Integrated Gasification Combined Cycle (IGCC), Integrated Gasification Fuel Cell (IG-FC), and Pressurized Combustion Combined Cycle (PCCC) power generation units. This paper discusses the development of the Transport reactor design from bench-scale testing through pilot-scale testing to design of the Process Development Unit (PDU-scale) facility at Wilsonville.

Rush, R.E.; Fankhanel, M.O.; Campbell, W.M.

1994-10-01T23:59:59.000Z

437

Game theoretic analysis of physical protection system design  

SciTech Connect (OSTI)

The physical protection system (PPS) of a fictional small modular reactor (SMR) facility have been modeled as a platform for a game theoretic approach to security decision analysis. To demonstrate the game theoretic approach, a rational adversary with complete knowledge of the facility has been modeled attempting a sabotage attack. The adversary adjusts his decisions in response to investments made by the defender to enhance the security measures. This can lead to a conservative physical protection system design. Since defender upgrades were limited by a budget, cost benefit analysis may be conducted upon security upgrades. One approach to cost benefit analysis is the efficient frontier, which depicts the reduction in expected consequence per incremental increase in the security budget.

Canion, B.; Schneider, E. [Nuclear and Radiation Engineering Program, University of Texas, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712 (United States); Bickel, E.; Hadlock, C.; Morton, D. [Operations Research Program, University of Texas, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712 (United States)

2013-07-01T23:59:59.000Z

438

Fast Machine Code for Modular Multiplication Michael Scott  

E-Print Network [OSTI]

Fast Machine Code for Modular Multiplication Michael Scott School of Computer Applications Dublin, that is the calculation of a = b e mod n where for acceptable levels of security a, b, e, and n are large multiprecision will be not much larger than the number of bits in the binary representation of e. Therefore fast modular

Bernstein, Daniel

439

On -Induction, Chiral Generators and Modular Invariants for Subfactors  

E-Print Network [OSTI]

On -Induction, Chiral Generators and Modular Invariants for Subfactors Jens B¨ockenhauer and Da