Sample records for modular caustic side

  1. Life Extension Program for the Modular Caustic Side Solvent Extraction Unit at Savannah River Site - 13179

    SciTech Connect (OSTI)

    Samadi, Azadeh [Savannah River Remediation, Aiken, SC 29808 (United States)] [Savannah River Remediation, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. Currently, the Actinide Removal Process (ARP) and the CSSX process are deployed in the (ARP)/Modular CSSX Unit (MCU), to process salt waste for permanent disposition. The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. The original plant was permitted for a three year design life; however, given the successful operation of the plant, a life extension program was completed to continue operations. The program included detailed engineering analyses of the life-expectancy of passive and active components, resulting in component replacement and/or maintenance and monitoring program improvements. The program also included a review of the operations and resulted in a series of operational improvements. Since the improvements have been made, an accelerated processing rate has been demonstrated. In addition, plans for instituting a next-generation solvent are in place and will enhance the decontamination factors. (author)

  2. Waste and Solvent Composition Limits for Modular Caustic-Side Solvent Extraction Unit (MCU)

    SciTech Connect (OSTI)

    Adu-Wusu, Kofi; Waler, Douglas D.; Edwards, Thomas B

    2005-05-26T23:59:59.000Z

    This study examined waste feed and solvent limits for the Modular Caustic-Side Solvent Extraction Unit (MCU) currently being designed and built at the Savannah River Site (SRS) to remove cesium from highly alkaline radioactive waste. The study involved proposing ranges for 12 waste feed components (i.e., Na{sup +}, K{sup +}, Cs{sup +}, OH{sup -}, NO{sub 3}{sup -}, NO{sub 2}{sup -}, Cl{sup -}, F{sup -}, SO{sub 4}{sup 2-}, PO{sub 4}{sup 3-}, and CO{sub 3}{sup 2-}, and AlO{sub 2}{sup -}) through a compilation of SRS waste data. Statistical design methods were used to generate numerous wastes with varying compositions from the proposed ranges. An Oak Ridge National Laboratory (ORNL) model called SXFIT was used to predict the cesium extraction distribution coefficients (D-values) between the organic (solvent) phase and the aqueous waste phase using the waste component concentrations as inputs. The D-values from the SXFIT model were used as input along with MCU base case process parameters to a SASSE (Spreadsheet Algorithm for Stagewise Solvent Extraction) model to calculate final cesium concentrations for the MCU. The SASSE model was developed at Argonne National Laboratory (ANL). The SXFIT D-value and the waste component concentration data were used to develop a handier alternative model (neural network model) to the SXFIT model that predicts D-values within 15% of the SXFIT D-values. Both the SXFIT and the neural network model revealed the following. The solvent extractant concentration ratios are approximately equal to the corresponding D-value ratios; a useful feature that could be used to predict extraction D-values when the extractant concentration in the solvent changes in the MCU operation. Also, potassium is the only waste component out of the 12 that shows a distinct relationship with the cesium extraction D-values; an indication of potassium's competition with cesium in the Caustic-Side Solvent Extraction (CSSX) process. A waste feed acceptance model suitable for assessing wastes within relatively wide ranges of D-values (0.6-40) and initial cesium-137 concentrations (0.2-12.8 Ci/gal) has been developed from the SASSE outputs. The waste feed acceptance model is an equation involving initial cesium-137 concentration and D-value that results in a final cesium-137 concentration of 0.1 Ci/gal, the target concentration for the MCU. For example, the waste feed acceptance model shows the minimum acceptable extraction D-value based on MCU base conditions is 5.73. The waste feed acceptance model is defined by a simple linear relationship for extraction D-values {ge} 7. This facilitates quicker calculations. For a given extraction D-value, final cesium-137 concentration (C{sub f}) and initial cesium-137 concentration (C{sub 0}) are linearly related; while for a given C{sub 0}, log (C{sub f}) and log (extraction D-value) are linear with a slope of -1.43. These two relationships allow one to quickly calculate C{sub f} at other MCU conditions without resorting to the SASSE model. The SASSE runs indicate that broad changes in the MCU process parameters for the extraction, scrub and strip stages (i.e., flow rate, temperature, fraction of interstage carryover, total liquid volume per contactor stage, and efficiency per contactor stage) will not result in C{sub f} exceeding target, at least for the MCU base conditions.

  3. Life extension program for the modular caustic side solvent extraction unit at Savannah River Site

    SciTech Connect (OSTI)

    Samadi-Dezfouli, Azadeh

    2012-11-14T23:59:59.000Z

    Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. At SRS, the CSSX process is deployed in the Modular CSSX Unit (MCU). The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. Coalescers and decanters process the Decontaminated Salt Solution (DSS) and Strip Effluent (SE) streams to allow recovery and reuse of the organic solvent and to limit the quantity of solvent transferred to the downstream facilities. MCU is operated in series with the Actinide Removal Process (ARP) which removes strontium and actinides from salt waste utilizing monosodium titanate. ARP and MCU were developed and implemented as interim salt processing until future processing technology, the CSSX-based Salt Waste Processing Facility (SWPF), is operational. SWPF is slated to come on-line in October 2014. The three year design life of the ARP/MCU process, however, was reached in April 2011. Nevertheless, most of the individual process components are capable of operating longer. An evaluation determined ARP/MCU can operate until 2015 before major equipment failure is expected. The three year design life of the ARP/MCU Life Extension (ARP/MCU LE) program will bridge the gap between current ARP/MCU operations and the start of SWPF operation. The ARP/MCU LE program introduces no new technologies. As a portion of this program, a Next Generation Solvent (NGS) and corresponding flowsheet are being developed to provide a major performance enhancement at MCU. This paper discusses all the modifications performed in the facility to support the ARP/MCU Life Extension. It will also discuss the next generation chemistry, including NGS and new stripping chemistry, which will increase cesium removal efficiency in MCU. Possible implementation of the NGS chemistry in MCU accomplishes two objectives. MCU serves as a demonstration facility for improved flowsheet deployment at SWPF; operating with NGS and boric acid validates improved cesium removal performance and increased throughput as well as confirms Defense Waste Processing Facility (DWPF) ability to vitrify waste streams containing boron. NGS implementation at MCU also aids the ARP/MCU LE operation, mitigating the impacts of delays and sustaining operations until other technology is able to come on-line.

  4. NEXT GENERATION SOLVENT MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT

    SciTech Connect (OSTI)

    Fondeur, F.; Peters, T.; Fink, S.

    2011-09-29T23:59:59.000Z

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil{reg_sign}, Tefzel{reg_sign} and Isolast{reg_sign}) in the modified NGS (where the concentration of the guanidine suppressor and MaxCalix was varied systematically) showed that guanidine (LIX{reg_sign}79) selectively affected Tefzel{reg_sign} (by an increase in size and lowering its density). The copolymer structure of Tefzel{reg_sign} and possibly its porosity allows for the easier diffusion of guanidine. Tefzel{reg_sign} is used as the seat material in some of the valves at MCU. Long term exposure to guanidine, may make the valves hard to operate over time due to the seat material (Tefzel{reg_sign}) increasing in size. However, since the physical changes of Tefzel{reg_sign} in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel{reg_sign} seating material. PEEK, Grafoil{reg_sign} and Isolast{reg_sign} were not affected by guanidine and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and limited uptake of Isopar{reg_sign} L/Modifier by the polymers probably due to the polymers porosity and rough surfaces. Spectroscopic data on the organic liquid and the polymer surfaces showed no preferential adsorption of any component in the NGS to the polymers and no leachate was observed in the NGS from any of the polymers studied.

  5. MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT (MCU) GAMMA MONITORS SYSTEM FINAL REPORT

    SciTech Connect (OSTI)

    Casella, V

    2005-12-15T23:59:59.000Z

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, the Closure Business Unit (CBU) plans to process a portion of dissolved saltcake waste through a Modular CSSX Unit (MCU). This work was derived from Technical Task Request SP-TTR-2004-00013, ''Gamma Monitor for MCU''. The deliverables for this task are the hardware and software for the gamma monitors and a report summarizing the testing and acceptance of this equipment for use in the MCU. Gamma-ray monitors are required to: (1) Measure the Cs-137 concentration in the decontaminated salt solution before entering the DSS (Decontaminated Salt Solution) Hold Tank, (2) Measure the Cs-137 concentration in the strip effluent before entering the Strip Effluent Hold Tank, (3) Verify proper operation of the solvent extraction system by verifying material balance within the process (The DSS Hold Tank Cs-137 concentration will be very low and the Cs-137 concentration in the Strip Effluent Hold Tank will be fifteen times higher than the Cs-137 concentration in the Feed Tank.) Sodium iodide monitors are used to measure the Cs-137 concentration in the piping before the DSS Hold tank, while GM monitors are used for Cs-137 measurements before the Strip Effluent Hold Tank. Tungsten shields were designed using Monte Carlo calculations and fabricated to reduce the process background radiation at the detector positions. These monitors were calibrated with NIST traceable standards that were specially made to be the same as the piping being monitored. Since this gamma ray monitoring system is unique, specially designed software was written and acceptance tested by Savannah River National Laboratory personnel. The software is a LabView-based application that serves as a unified interface for controlling the monitor hardware and communicating with the host Distributed Control System (DCS). In order to provide user friendly software for the process personnel, the software was broken down into just a few software modules. These software modules are the Application Window, Detector Selection, Detector Configuration Settings, Background Counting, and Routine Data Acquisition. Instructions for using the software have been included in a user's manual that is appended to this report. The work presented in this report meets all of the requirements set forth in the project task plan to design and implement gamma ray monitors for the MCU. Additional setup and testing of the system will be required when it implemented in the process.

  6. THE CHEMICAL AND RADIATION RESISTANCE OF POLYPHENYLENE SULFIIDE AS ENCOUNTERED IN THE MODULAR CAUSTIC SIDE SOLVENT EXTRACTION PROCESSES

    SciTech Connect (OSTI)

    Fondeur, F.; Herman, D.; Poirier, M.; Fink, S.

    2011-06-30T23:59:59.000Z

    Polyphenylene sulfide (PPS) is a semicrystalline polymer with excellent engineering plastic properties and suitable processing temperatures. PPS can also be made containing branches (using a trifunctional monomer) and with crosslinked microstructure (when curing the monomer at high temperature in the presence of oxygen). PPS is made from the condensation reaction between para-dichlorobenzene and sodium sulfide with the assistance of a catalyst (to lower the activation barrier). The synthesis conditions for making PPS has evolved since its invention in the 1960's to the optimal conditions developed by the Philips Corporation in the 1970's. The resulting polymer consists of chemically stable molecular moieties such as benzene rings and ether like sulfur linkages between the aromatic rings. Polyphenylene sulfide (PPS) is extremely resistant to gamma irradiation, caustic solution, and dilute nitric acid. PPS is the material of construction for the coalescers used in the Modular Caustic-Side Solvent Extraction Unit (MCU). After applying the equivalent of 3.3 E8 rad (330 Mrad), or the equivalent of 11 years of gamma irradiation (assuming a stripping solution concentration of 7.5 Ci/gal), and several months of exposures to 3M caustic solution and caustic salt simulant, no dimensional changes nor chemical changes were detected in PPS whether the PPS was in fiber form or in a composite with E-glass fibers. However, PPS acts as a media for heterogeneous nucleation. In particular, PPS appears to favor aluminosilicate formation in saturated solutions of aluminum and silicon in caustic environments. Parallel testing, in progress, is examining the stability of PPS when exposed to the new solvent formulation under development for MCU. Preliminary data, after two months of exposure, demonstrates PPS is stable to the new solvent.

  7. NEXT GENERATION SOLVENT-MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT (FINAL REPORT)

    SciTech Connect (OSTI)

    Fondeur, F.; Peters, T.; Fink, S.

    2012-01-17T23:59:59.000Z

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX{reg_sign}79 and MaxCalix was varied systematically) showed that LIX{reg_sign}79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX{reg_sign}79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX{reg_sign}79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX{reg_sign}79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and limited uptake of Isopar{reg_sign} L/Modifier by the polymers probably due to the polymers porosity and rough surfaces. Spectroscopic data on the organic liquid and the polymer surfaces showed no preferential adsorption of any component in the NGS to the polymers and with the exception of CPVC, no leachate was observed in the NGS from any of the polymers studied. The testing shows no major concerns for compatibility over the short duration of these tests but does indicate that longer duration exposure studies are warranted, especially for Tefzel. However, the physical changes experienced by Tefzel in the improved solvent were comparable to the physical changes obtained when Tefzel is placed in CSSX baseline solvent. Therefore, there is no effect of the improved solvent beyond those observed in CSSX baseline solvent.

  8. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect (OSTI)

    Peters, T. B.

    2014-01-02T23:59:59.000Z

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from the Interim Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 6 have been analyzed for 238Pu, 90Sr, 137Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The Pu, Sr, and Cs results from the current Macrobatch 6 samples are similar to those from comparable samples in previous Macrobatch 5. In addition the SEHT and DSSHT heel samples (i.e. ‘preliminary’) have been analyzed and reported to meet NGS Demonstration Plan requirements. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous samples. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST has increased in ARP at the higher free hydroxide concentrations in the current feed.

  9. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect (OSTI)

    Peters, T. B.

    2013-10-01T23:59:59.000Z

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 6 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results from the current microbatch samples are similar to those from comparable samples in Macrobatch 5. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous macrobatch. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST in ARP continues to occur. Both the CST and CWT samples indicate that the target Free OH value of 0.03 has been surpassed. While at this time there is no indication that this has caused an operational problem, the CST should be adjusted into specification. The {sup 137}Cs results from the SRNL as well as F/H lab data indicate a potential decline in cesium decontamination factor. Further samples will be carefully monitored to investigate this.

  10. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, And Caustic Wash Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 4 Operations

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-10-25T23:59:59.000Z

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), and Caustic Wash Tank (CWT) samples from several of the ?microbatches? of Integrated Salt Disposition Project (ISDP) Salt Batch (?Macrobatch?) 4 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by inductively-coupled plasma emission spectroscopy (ICPES). Furthermore, samples from the CWT have been analyzed by a variety of methods to investigate a decline in the decontamination factor (DF) of the cesium observed at MCU. The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 3 samples indicate generally consistent operations. There is no indication of a disruption in plutonium and strontium removal. The average cesium DF and concentration factor (CF) for samples obtained from Macrobatch 4 are slightly lower than for Macrobatch 3, but still well within operating parameters. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in Actinide Removal Process (ARP).

  11. CAUSTIC SIDE SOLVENT EXTRACTION AT THE SAVANNAH RIVER SITE OPERATING EXPERIENCE AND LESSONS LEARNED

    SciTech Connect (OSTI)

    Brown, S.

    2010-01-06T23:59:59.000Z

    The Modular Caustic-Side Solvent Extraction Unit (MCU) is the first, production-scale Caustic-Side Solvent Extraction process for cesium separation to be constructed. The process utilizes an engineered solvent to remove cesium from waste alkaline salt solution resulting from nuclear processes. While the application of this solvent extraction process is unique, the process uses commercially available centrifugal contactors for the primary unit operation as well as other common methods of physical separation of immiscible liquids. The fission product, cesium-137, is the primary focus of the process due to the hazards associated with its decay. The cesium is extracted from the waste, concentrated, and stripped out of the solvent resulting in a low-level waste salt solution and a concentrated cesium nitrate stream. The concentrated cesium stream can be vitrified into borosilicate glass with almost no increase in glass volume, and the salt solution can be dispositioned as a low-level grout. The unit is deployed as an interim process to disposition waste prior to start-up of the Salt Waste Processing Facility. The Salt Waste Processing Facility utilizes the same cesium removal technology, but will treat more contaminated waste. The MCU is not only fulfilling a critical need, it is the first demonstration of the process at production-scale.

  12. CHEMICAL STABILITY OF POLYPHENYLENE SULFIDE IN THE NEXT GENERATION SOLVENT FOR CAUSTIC-SIDE SOLVENT EXTRACTION

    SciTech Connect (OSTI)

    Fondeur, F.; Fink, S.

    2011-12-08T23:59:59.000Z

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. For simplicity, this solvent is referred to as the Next Generation Solvent (NGS). The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The initial deployment target envisioned for the technology was within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with polyphenylene sulfide (PPS), the polymer used in the coalescers within MCU. This report provides the data from exposing PPS polymer to NGS. The test was conducted over a three month period. PPS is remarkably stable in the presence of the next generation solvent. Testing showed no indication of swelling or significant leaching. Preferential sorption of the Modifier on PPS was observed but the same behavior occurs with the baseline solvent. Therefore, PPS coalescers exposed to the NGS are expected to perform comparably to those in contact with the baseline solvent.

  13. ORNL/TM-2008/073 CAUSTIC-SIDE SOLVENT-EXTRACTION

    E-Print Network [OSTI]

    Pennycook, Steve

    .S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before) representatives, and International Nuclear Information System (INIS) representatives from the following sourceORNL/TM-2008/073 CAUSTIC-SIDE SOLVENT-EXTRACTION MODELING FOR HANFORD INTERIM PRETREATMENT SYSTEM

  14. FULL-SCALE TESTING OF A CAUSTIC SIDE SOLVENT EXTRACTION SYSTEM TO REMOVE CESIUM FROM SAVANNAH RIVER SITE RADIOACTIVE WASTE

    SciTech Connect (OSTI)

    Poirier, M; Thomas Peters, T; Earl Brass, E; Stanley Brown, S; Mark Geeting, M; Lcurtis Johnson, L; Charles02 Coleman, C; S Crump, S; Mark Barnes, M; Samuel Fink, S

    2007-10-15T23:59:59.000Z

    Savannah River Site (SRS) personnel have completed construction and assembly of the Modular Caustic Side Solvent Extraction Unit (MCU) facility. Following assembly, they conducted testing to evaluate the ability of the process to remove non-radioactive cesium and to separate the aqueous and organic phases. They conducted tests at salt solution flow rates of 3.5, 6.0, and 8.5 gpm. During testing, the MCU Facility collected samples and submitted them to Savannah River National Laboratory (SRNL) personnel for analysis of cesium, Isopar{reg_sign} L, and Modifier [1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol]. SRNL personnel analyzed the aqueous samples for cesium by Inductively-Coupled Plasma Mass Spectroscopy (ICP-MS) and the solvent samples for cesium using a Parr Bomb Digestion followed by ICP-MS. They analyzed aqueous samples for Isopar{reg_sign} L and Modifier by gas chromatography (GC).

  15. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIGUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.; Crowder, M.; Pak, D.; Fink, S.; Blessing, R.; Washington, A.; Caldwell, T.

    2011-11-29T23:59:59.000Z

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. A solvent extraction system for removal of cesium from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive is used to improve stripping performance and to mitigate the effects of any surfactants present in the feed stream. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008.

  16. Recommended Guanidine Suppressor for the Next-Generation Caustic-Side Solvent Extraction Process

    SciTech Connect (OSTI)

    Moyer, Bruce A [ORNL; Delmau, Laetitia Helene [ORNL; Duncan, Nathan C [ORNL; Ensor, Dale [Tennessee Technological University; Hill, Talon G [ORNL; Lee, Denise L [ORNL; Roach, Benjamin D [ORNL; Sloop Jr, Frederick {Fred} V [ORNL; Williams, Neil J [ORNL

    2013-01-01T23:59:59.000Z

    The guanidine recommended for the Next-Generation Caustic-Side is N,N ,N -tris(3,7-dimethyloctyl)guanidine (TiDG). Systematic testing has shown that it is significantly more lipophilic than the previously recommended guanidine DCiTG, the active extractant in the commercial guanidine product LIX -79, while not otherwise changing the solvent performance. Previous testing indicated that the extent of partitioning of the DCiTG suppressor to the aqueous strip solution is significantly greater than expected, potentially leading to rapid depletion of the suppressor from the solvent and unwanted organic concentrations in process effluents. Five candidate guanidines were tested as potential replacements for DCiTG. The tests included batch extraction with simulated waste and flowsheet solutions, third-phase formation, emulsion formation, and partition ratios of the guanidine between the solvent and aqueous strip solution. Preliminary results of a thermal stability test of the TiDG solvent at one month duration indicated performance approximately equivalent to DCiTG. Two of the guanidines proved adequate in all respects, and the choice of TiDG was deemed slightly preferable vs the next best guanidine BiTABG.

  17. Caustic-Side Solvent Extraction: Chemical and Physical Properties of the Optimized Solvent

    SciTech Connect (OSTI)

    Delmau, L.H.

    2002-10-08T23:59:59.000Z

    This work was undertaken to optimize the solvent used in the Caustic Side Solvent Extraction (CSSX) process and to measure key chemical and physical properties related to its performance in the removal of cesium from the alkaline high-level salt waste stored in tanks at the Savannah River Site. The need to adjust the solvent composition arose from the prior discovery that the previous baseline solvent was supersaturated with respect to the calixarene extractant. The following solvent-component concentrations in Isopar{reg_sign} L diluent are recommended: 0.007 M calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6) extractant, 0.75 M 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (Cs-7SB) phase modifier, and 0.003 M tri-n-octylamine (TOA) stripping aid. Criteria for this selection included BOBCalixC6 solubility, batch cesium distribution ratios (D{sub Cs}), calculated flowsheet robustness, third-phase formation, coalescence rate (dispersion numbers), and solvent density. Although minor compromises within acceptable limits were made in flowsheet robustness and solvent density, significant benefits were gained in lower risk of third-phase formation and lower solvent cost. Data are also reported for the optimized solvent regarding the temperature dependence of D{sub Cs} in extraction, scrubbing, and stripping (ESS); ESS performance on recycle; partitioning of BOBCalixC6, Cs-7SB, and TOA to aqueous process solutions; partitioning of organic anions; distribution of metals; solvent phase separation at low temperatures; solvent stability to elevated temperatures; and solvent density and viscosity. Overall, the technical risk of the CSSX process has been reduced by resolving previously identified issues and raising no new issues.

  18. Nestedness versus modularity in ecological networks: two sides of the same coin?

    E-Print Network [OSTI]

    Stouffer, Daniel B.

    Nestedness versus modularity in ecological networks: two sides of the same coin? Miguel A. Fortuna1 al. 2003; Teng & McCann 2004; Fortuna & Bascompte 2006; Bascompte, Jordano & Olesen 2006; Rooney et

  19. Side-by-Side Thermal Tests of Modular Offices: A Validation Study of the STEM Method

    SciTech Connect (OSTI)

    Judkoff, R.; Balcomb, J.D.; Hancock, C.E.; Barker, G.; Subbarao, K.

    2001-01-11T23:59:59.000Z

    Two modular office units were tested at the National Renewable Energy Laboratory (NREL) to establish each unit's thermal performance. The two units were nearly identical in appearance, but one was built with structural insulating panels (SIP), and the other was built using standard frame construction. The primary objective of these tests was to compare the thermal performance of buildings using SIP and standard frame construction. Both units were tested under carefully controlled steady-state conditions in the NREL large-scale environmental enclosure. They were then moved outdoors where Short-Term Energy Monitoring (STEM) tests were performed, and long-term heating and cooling energy use was measured. A secondary objective was to evaluate the accuracy of the NREL STEM method by comparing the results of outdoor STEM tests to steady-state indoor test results. STEM is a method developed by NREL to determine key thermal parameters of a building in-situ, based on a 3-day test sequence. The indoor test facility also provided the opportunity to investigate the phenomenon of infiltration heat recovery in a real building, under carefully controlled conditions, to evaluate the stability of the concentration decay method of tracer gas-based infiltration monitoring, and to compare the blower-door method with the tracer-gas technique in determining infiltration.This project was a cooperative effort with the Structural Insulated Panel Association, the Modular Building Institute, All-American Modular (AAM, the manufacturer of the units), and GE Capitol (the owner of the units). Richard Harmon, the president of AAM, requested NREL's assistance in exploring the feasibility of converting his manufacturing process to SIP construction. His engineering staff needed to assess which comfort and energy benefits might be associated with this new technology. AAM manufactured the two units, and NREL tested the modules for 8 months.

  20. SALTSTONE VAULT CLASSIFICATION SAMPLES MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT/ACTINIDE REMOVAL PROCESS WASTE STREAM APRIL 2011

    SciTech Connect (OSTI)

    Eibling, R.

    2011-09-28T23:59:59.000Z

    Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B&W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most of the inorganic species measured in the leachate do not exceed the MCL, SMCL or TW limits. (4) The inorganic waste species that exceeded the MCL by more than a factor of 10 were nitrate, nitrite and the sum of nitrate and nitrite. (5) Analyses met all quality assurance specifications of US EPA SW-846. (6) The organic species (benzene, toluene, 1-butanol, phenol) were either not detected or were less than reportable for the vault classification samples. (7) The gross alpha and radium isotopes could not be determined to the MCL because of the elevated background which raised the detection limits. (8) Most of the beta/gamma activity was from 137Cs and its daughter 137mBa. (9) The concentration of 137Cs and 90Sr were present in the leachate at concentrations 1/40th and 1/8th respectively than in the 2003 vault classification samples. The saltstone waste form placed in the Saltstone Disposal Facility in 2QCY11 met the SCHWMR R.61-79.261.24(b) RCRA metals requirements for a nonhazardous waste form. The TCLP leachate concentrations for nitrate, nitrite and the sum of nitrate and nitrite were greater than 10x the MCLs in SCDHEC Regulations R.61-107.19, Part I A, which confirms the Saltstone Disposal Facility classification as a Class 3 Landfill. The saltstone waste form placed in the Saltstone Disposal Facility in 2QCY11 met the R.61-79.268.48(a) non wastewater treatment standards.

  1. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIFUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.; Crowder, M.; Caldwell, T.; Pak, D; Fink, S.; Blessing, R.; Washington, A.

    2011-09-27T23:59:59.000Z

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. Conclusions from this work include the following. The CSSX process is capable of reducing {sup 137}Cs in high level radioactive waste by a factor of more than 40,000 using five extraction, two scrub, and five strip stages. Tests demonstrated extraction and strip section stage efficiencies of greater than 93% for the Tank 49H waste test and greater than 88% for the simulant waste test. During a test with HLW, researchers processed 39 liters of Tank 49H solution and the waste raffinate had an average decontamination factor (DF) of 6.78E+04, with a maximum of 1.08E+05. A simulant waste solution ({approx}34.5 liters) with an initial Cs concentration of 83.1 mg/L was processed and had an average DF greater than 5.9E+03, with a maximum DF of greater than 6.6E+03. The difference may be attributable to differences in contactor stage efficiencies. Test results showed the solvent can be stripped of cesium and recycled for {approx}25 solvent turnovers without the occurrence of any measurable solvent degradation or negative effects from minor components. Based on the performance of the 12-stage 2-cm apparatus with the Tank 49H HLW, the projected DF for MCU with seven extraction, two scrub, and seven strip stages operating at a nominal efficiency of 90% is {approx}388,000. At 95% stage efficiency, the DF in MCU would be {approx}3.2 million. Carryover of organic solvent in aqueous streams (and aqueous in organic streams) was less than 0.1% when processing Tank 49H HLW. The entrained solvent concentration measured in the decontaminated salt solution (DSS) was as much as {approx}140 mg/L, although that value may be overstated by as much as 50% due to modifier solubility in the DSS. The entrained solvent concentration was measured in the strip effluent (SE) and the results are pending. A steady-state concentration factor (CF) of 15.9 was achieved with Tank 49H HLW. Cesium distribution ratios [D(Cs)] were measured with non-radioactive Tank 49H waste simulant and actual Tank 49H waste. Below is a comparison of D(Cs) values of ESS and 2-cm tests. Batch Extraction-Strip-Scrub (ESS) tests yielded D(Cs) values for extraction of {approx}81-88 for tests with Tank 49H waste and waste simulant. The results from the 2-cm contactor tests were in agreement with values of 58-92 for the Tank 49H HLW test and 54-83 for the simulant waste test. These values are consistent with the reference D(Cs) for extraction of {approx}60. In tests with Tank 49H waste and waste simulant, batch ESS tests measured D(Cs) values for the two scrub stages as {approx}3.5-5.0 for the first scrub stage and {approx}1.0-3.0 for the second scrub stage. In the Tank 49H test, the D(Cs) values for the 2-cm test were far from the ESS values. A D(Cs) value of 161 was measured for the first scrub stage and 10.8 for the second scrub stage. The data suggest that the scrub stage is not operating as effectively as intended. For the simulant test, a D(Cs) value of 1.9 was measured for the first scrub stage; the sample from the second scrub stage was compromised. Measurements of the pH of all stage samples for the Tank 49H test showed that the pH for extraction and scrub stages was 14 and the pH for the strip stages was {approx}7. It is expected that the pH of the second scrub stage would be {approx}12-13. Batch ESS tests measured D(Cs) values for the strip stages to be {approx}0.002-0.010. A high value in Strip No.3 of a test with simulant solution has been attributed to issues associated with the limits of detection for the

  2. Caustics in turbulent aerosols

    E-Print Network [OSTI]

    M. Wilkinson; B. Mehlig

    2004-11-03T23:59:59.000Z

    Networks of caustics can occur in the distribution of particles suspended in a randomly moving gas. These can facilitate coagulation of particles by bringing them into close proximity, even in cases where the trajectories do not coalesce. We show that the long-time morphology of these caustic patterns is determined by the Lyapunov exponents lambda_1, lambda_2 of the suspended particles, as well as the rate J at which particles encounter caustics. We develop a theory determining the quantities J, lambda_1, lambda_2 from the statistical properties of the gas flow, in the limit of short correlation times.

  3. Electron caustic lithography

    SciTech Connect (OSTI)

    Kennedy, S. M.; Zheng, C. X.; Tang, W. X.; Paganin, D. M.; Jesson, D. E. [School of Physics, Monash University, Victoria, 3800 (Australia); Fu, J. [Department of Mechanical and Aerospace Engineering, Monash University, Victoria, 3800 (Australia)

    2012-06-15T23:59:59.000Z

    A maskless method of electron beam lithography is described which uses the reflection of an electron beam from an electrostatic mirror to produce caustics in the demagnified image projected onto a resist-coated wafer. By varying the electron optics, e.g. via objective lens defocus, both the morphology and dimensions of the caustic features may be controlled, producing a range of bright and tightly focused projected features. The method is illustrated for line and fold caustics and is complementary to other methods of reflective electron beam lithography.

  4. Results Of Routine Strip Effluent Hold Tank And Decontaminated Salt Solution Hold Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 5 Operations

    SciTech Connect (OSTI)

    Peters, T. B.; Fondeur, F. F.

    2013-04-30T23:59:59.000Z

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 5 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 4 samples indicate generally consistent operations. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in the Actinide Removal process (ARP).

  5. Physics of Caustics and Protein Folding: Mathematical Parallels

    E-Print Network [OSTI]

    Simmons, Walter

    2011-01-01T23:59:59.000Z

    The energy for protein folding arises from multiple sources and is not large in total. In spite of the many specific successes of energy landscape and other approaches, there still seems to be some missing guiding factor that explains how energy from diverse small sources can drive a complex molecule to a unique state. We explore the possibility that the missing factor is in the geometry. A comparison of folding with other physical phenomena, together with analytic modeling of a molecule, led us to analyze the physics of optical caustic formation and of folding behavior side-by-side. The physics of folding and caustics is ostensibly very different but there are several strong parallels. This comparison emphasizes the mathematical similarity and also identifies differences. Since the 1970's, the physics of optical caustics has been developed to a very high degree of mathematical sophistication using catastrophe theory. That kind of quantitative application of catastrophe theory has not previously been applied ...

  6. Summary - Caustic Recovery Technology

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the Passing of AdmiraltheOil and Less CO2Caustic Recovery

  7. Moist caustic leaching of coal

    DOE Patents [OSTI]

    Nowak, Michael A. (Elizabeth, PA)

    1994-01-01T23:59:59.000Z

    A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

  8. Physics of Caustics and Protein Folding: Mathematical Parallels

    E-Print Network [OSTI]

    Walter Simmons; Joel L. Weiner

    2011-08-13T23:59:59.000Z

    The energy for protein folding arises from multiple sources and is not large in total. In spite of the many specific successes of energy landscape and other approaches, there still seems to be some missing guiding factor that explains how energy from diverse small sources can drive a complex molecule to a unique state. We explore the possibility that the missing factor is in the geometry. A comparison of folding with other physical phenomena, together with analytic modeling of a molecule, led us to analyze the physics of optical caustic formation and of folding behavior side-by-side. The physics of folding and caustics is ostensibly very different but there are several strong parallels. This comparison emphasizes the mathematical similarity and also identifies differences. Since the 1970's, the physics of optical caustics has been developed to a very high degree of mathematical sophistication using catastrophe theory. That kind of quantitative application of catastrophe theory has not previously been applied to folding nor have the points of similarity with optics been identified or exploited. A putative underlying physical link between caustics and folding is a torsion wave of non-constant wave speed, propagating on the dihedral angles and $\\Psi$ found in an analytical model of the molecule. Regardless of whether we have correctly identified an underlying link, the analogy between caustic formation and folding is strong and the parallels (and differences) in the physics are useful.

  9. Causticizing for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    Scott Sinquefeld; James Cantrell; Xiaoyan Zeng; Alan Ball; Jeff Empie

    2009-01-07T23:59:59.000Z

    The cost-benefit outlook of black liquor gasification (BLG) could be greatly improved if the smelt causticization step could be achieved in situ during the gasification step. Or, at a minimum, the increase in causticizing load associated with BLG could be mitigated. A number of chemistries have been proven successful during black liquor combustion. In this project, three in situ causticizing processes (titanate, manganate, and borate) were evaluated under conditions suitable for high temperature entrained flow BLG, and low temperature steam reforming of black liquor. The evaluation included both thermodynamic modeling and lab experimentation. Titanate and manganate were tested for complete direct causticizing (to thus eliminate the lime cycle), and borates were evaluated for partial causticizing (to mitigate the load increase associated with BLG). Criteria included high carbonate conversion, corresponding hydroxide recovery upon hydrolysis, non process element (NPE) removal, and economics. Of the six cases (three chemistries at two BLG conditions), only two were found to be industrially viable: titanates for complete causticizing during high temperature BLG, and borates for partial causticizing during high temperature BLG. These two cases were evaluated for integration into a gasification-based recovery island. The Larsen [28] BLG cost-benefit study was used as a reference case for economic forecasting (i.e. a 1500 tpd pulp mill using BLG and upgrading the lime cycle). By comparison, using the titanate direct causticizing process yielded a net present value (NPV) of $25M over the NPV of BLG with conventional lime cycle. Using the existing lime cycle plus borate autocausticizing for extra capacity yielded a NPV of $16M.

  10. CHARACTERIZATION AND EVALUATION OF CAUSTIC WASH TANK AND SOLVENT HOLD TANK SAMPLES FROM MCU FROM AUGUST TO SEPTEMBER 2011

    SciTech Connect (OSTI)

    Fondeur, F.; Fink, S.

    2012-08-01T23:59:59.000Z

    During processing of Salt Batches 3 and 4 in the Modular Caustic-Side Solvent Extraction Unit (MCU), the decontamination efficiency for cesium declined from historical values and from expectations based on laboratory testing. This report documents efforts to analyze samples of solvent and process solutions from MCU in an attempt to understand the cause of the reduced performance and to recommend mitigations. CWT Solutions from MCU from the time period of variable decontamination factor (DF) performance which covers from April 2011 to September 2011 (during processing of Salt Batch 4) were examined for impurities using chromatography and spectroscopy. The results indicate that impurities were found to be of two types: aromatic containing impurities most likely from Modifier degradation and aliphatic type impurities most likely from Isopar{reg_sign} L and tri-n-octylamine (TOA) degradation. Caustic washing the Solvent Hold Tank (SHT) solution with 1M NaOH improved its extraction ability as determined from {sup 22}Na uptake tests. Evidence from this work showed that pH variance in the aqueous solutions within the range of 1M nitric acid to 1.91M NaOH that contacted the solvent samples does not influence the analytical determination of the TOA concentration by GC-MS.

  11. Caustics in special multiple lenses

    E-Print Network [OSTI]

    V. Bozza

    2000-01-13T23:59:59.000Z

    Despite its mathematical complexity, the multiple gravitational lens can be studied in detail in every situation where a perturbative approach is possible. In this paper, we examine the caustics of a system with a lens very far from the others with respect to their Einstein radii, and a system where mutual distances between lenses are small compared to the Einstein radius of the total mass. Finally we review the case of a planetary system adding some new information (area of caustics, duality and higher order terms).

  12. Dark matter axions and caustic rings

    SciTech Connect (OSTI)

    Sikivie, P.

    1997-11-01T23:59:59.000Z

    This report contains discussions on the following topics: the strong CP problem; dark matter axions; the cavity detector of galactic halo axions; and caustic rings in the density distribution of cold dark matter halos.

  13. Caustic graphene plasmons with Kelvin angle

    E-Print Network [OSTI]

    Shi, Xihang; Gao, Fei; Xu, Hongyi; Yang, Zhaoju; Zhang, Baile

    2015-01-01T23:59:59.000Z

    A century-long argument made by Lord Kelvin that all swimming objects have an effective Mach number of 3, corresponding to the Kelvin angle of 19.5 degree for ship waves, has been recently challenged with the conclusion that the Kelvin angle should gradually transit to the Mach angle as the ship velocity increases. Here we show that a similar phenomenon can happen for graphene plasmons. By analyzing the caustic wave pattern of graphene plasmons stimulated by a swift charged particle moving uniformly above graphene, we show that at low velocities of the charged particle, the caustics of graphene plasmons form the Kelvin angle. At large velocities of the particle, the caustics disappear and the effective semi-angle of the wave pattern approaches the Mach angle. Our study introduces caustic wave theory to the field of graphene plasmonics, and reveals a novel physical picture of graphene plasmon excitation during electron energy-loss spectroscopy measurement.

  14. In Situ Causticizing for Black Liquor Gasification

    SciTech Connect (OSTI)

    Scott Alan Sinquefield

    2005-10-01T23:59:59.000Z

    Black liquor gasification offers a number of attractive incentives to replace Tomlinson boilers but it also leads to an increase in the causticizing load. Reasons for this have been described in previous reports (FY04 ERC, et.al.). The chemistries have also been covered but will be reviewed here briefly. Experimental results of the causticizing reactions with black liquor are presented here. Results of the modeling work were presented in detail in the Phase 1 report. They are included in Table 2 for comparison but will not be discussed in detail. The causticizing agents were added to black liquor in the ratios shown in Table 1, mixed, and then spray-dried. The mixture ratios (doping levels) reflect amount calculated from the stoichiometry above to achieve specified conversions shown in the table. The solids were sieved to 63-90 microns for use in the entrained flow reactors. The firing conditions are shown in Table 2. Pictures and descriptions of the reactors can be found in the Phase 1 annual report. Following gasification, the solids (char) was collected and analyzed by coulometric titration (for carbonate and total carbon), and by inductively coupled plasma emission spectroscopy (ICP) for a wide array of metals.

  15. Caustic Recycling Pilot Unit to Separate Sodium from LLW at Hanford Site - 12279

    SciTech Connect (OSTI)

    Pendleton, Justin; Bhavaraju, Sai; Priday, George; Desai, Aditya; Duffey, Kean; Balagopal, Shekar [Ceramatec Inc., Salt Lake City, UT 84119 (United States)

    2012-07-01T23:59:59.000Z

    As part of the Department of Energy (DOE) sponsored Advanced Remediation Technologies initiative, a scheme was developed to combine Continuous Sludge Leaching (CSL), Near-Tank Cesium Removal (NTCR), and Caustic Recycling Unit (CRU) using Ceramatec technology, into a single system known as the Pilot Near-Tank Treatment System (PNTTS). The Cesium (Cs) decontaminated effluent from the NTCR process will be sent to the caustic recycle process for recovery of the caustic which will be reused in another cycle of caustic leaching in the CSL process. Such an integrated mobile technology demonstration will give DOE the option to insert this process for sodium management at various sites in Hanford, and will minimize the addition of further sodium into the waste tanks. This allows for recycling of the caustic used to remove aluminum during sludge washing as a pretreatment step in the vitrification of radioactive waste which will decrease the Low Level Waste (LLW) volume by as much as 39%. The CRU pilot process was designed to recycle sodium in the form of pure sodium hydroxide. The basis for the design of the 1/4 scale pilot caustic recycling unit was to demonstrate the efficient operation of a larger scale system to recycle caustic from the NTCR effluent stream from the Parsons process. The CRU was designed to process 0.28 liter/minute of NTCR effluent, and generate 10 M concentration of 'usable' sodium hydroxide. The proposed process operates at 40 deg. C to provide additional aluminum solubility and then recover the sodium hydroxide to the point where the aluminum is saturated at 40 deg. C. A system was developed to safely separate and vent the gases generated during operation of the CRU with the production of 10 M sodium hydroxide. Caustic was produced at a rate between 1.9 to 9.3 kg/hr. The CRU was located inside an ISO container to allow for moving of the unit close to tank locations to process the LLW stream. Actual tests were conducted with the NTCR effluent simulant from the Parsons process in the CRU. The modular CRU is easily scalable as a standalone system for caustic recycling, or for NTTS integration or for use as an In-Tank Treatment System to process sodium bearing waste to meet LLW processing needs at the Hanford site. The standalone pilot operation of the CRU to recycle sodium from NTCR effluent places the technology demonstration at TRL level 6. Multiple operations were performed with the CRU to process up to 500 gallons of the NTCR effluent and demonstrate an efficient separation of up to 70 % of the sodium without solids precipitation while producing 10 M caustic. Batch mode operation was conducted to study the effects of chemistry variation, establish the processing rate, and optimize the process operating conditions to recycle caustic from the NTCR effluent. The performance of the CRU was monitored by tracking the density parameter to control the concentration of caustic produced. Different levels of sodium were separated in tests from the effluent at a fixed operating current density and temperature. The voltage of the modules remained stable during the unit operation which demonstrated steady operation to separate sodium from the NTCR effluent. The sodium transfer current efficiency was measured in testing based on the concentration of caustic produced. Measurements showed a current efficiency of 99.8% for sodium transfer from the NTCR effluent to make sodium hydroxide. The sodium and hydroxide contents of the anolyte (NTCR feed) and catholyte (caustic product) were measured before and after each batch test. In two separate batch tests, samples were taken at different levels of sodium separation and analyzed to determine the stability of the NTCR effluent after sodium separation. The stability characteristics and changes in physical and chemical properties of the NTCR effluent chemistry after separation of sodium hydroxide as a function of storage time were evaluated. Parameters such as level of precipitated alumina, total alkalinity, analysis of Al, Na, K, Cs, Fe, OH, nitrate, nitrite, total dissolved and

  16. Caustic Recovery Technology | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3CarolinaAdministration-Sierra NevadaNationalCaustic

  17. Progress in caustic dezincing of galvanized scrap

    SciTech Connect (OSTI)

    Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States); Morgan, W.A. [Metal Recovery Technologies, Inc., East Chicago, IN (United States)

    1997-08-01T23:59:59.000Z

    In response to the worldwide increase in consumption of galvanized steel for automobiles in the last fifteen years, and the cost of environmental compliance associated with remelting larger quantities of galvanized steel scrap, processes are being developed to separate and recover the steel and zinc from galvanized ferrous scrap. In the process discussed here, zinc is dissolved from the scrap in hot caustic and is recovered electrolytically as dendritic powder. The dezinced ferrous scrap is rinsed and used directly. The process is effective for zinc, lead, and aluminum removal on loose and baled scrap and on all types of galvanized steel. Pilot testing has been conducted in Hamilton, Ontario for batch treatment of 900 tonnes of mostly baled scrap. A pilot plant in East Chicago, Indiana, now in its second generation, has dezinced in a continuous process mode about 1,800 tonnes of loose clips and shredded stamping plant scrap; this scrap typically has residual zinc below 0.05% and sodium dragout below 0.001%. This paper reviews caustic dezincing pilot plant performance and economics.

  18. Caustic Leaching of Sludges from Selected Hanford Tanks

    SciTech Connect (OSTI)

    Chase, C.W.; Egan, B.Z.; Spencer, B.B.

    1998-08-01T23:59:59.000Z

    The objective of this project was to measure the caustic dissolution behavior of sludge components from selected Hanford waste tank sludge samples under different conditions. The dissolution of aluminum, chromium, and other constituents of actual sludge samples in aqueous sodium hydroxide solution was evaluated using various values of temperature, sodium hydroxide concentration, volume of caustic solution per unit mass of sludge (liquid:solids ratio), and leaching time.

  19. A mathematical and experimental study of caustic flooding

    E-Print Network [OSTI]

    Shen, Tsu-Cheng

    1985-01-01T23:59:59.000Z

    : Dr. Ching Buang Wu A simple non-equilibrium chemical displacement model for continuous, linear, caustic flooding of crude oil is presented. The laboratory experiments were conducted to support the numerical simulation and to verify the results...-water fractional flow curves depending on its local concentration and water saturation. The numerical study was supported by caustic displacement testing of Sacroc crude oil. Quantitative agreements were found between the results from mathematical and experimen...

  20. Modular shield

    DOE Patents [OSTI]

    Snyder, Keith W. (Sandia Park, NM)

    2002-01-01T23:59:59.000Z

    A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

  1. SRS Small Modular Reactors

    SciTech Connect (OSTI)

    None

    2012-04-27T23:59:59.000Z

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  2. SRS Small Modular Reactors

    ScienceCinema (OSTI)

    None

    2014-05-21T23:59:59.000Z

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  3. Modular robot

    DOE Patents [OSTI]

    Ferrante, T.A.

    1997-11-11T23:59:59.000Z

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  4. General calculations using graphics hardware, with application to interactive caustics

    E-Print Network [OSTI]

    Paris-Sud XI, UniversitĂŠ de

    General calculations using graphics hardware, with application to interactive caustics Chris Trendall and A. James Stewart iMAGIS­GRAVIR/IMAG and University of Toronto Abstract. Graphics hardware has general computation. This paper shows that graphics hardware can perform general calculations, which

  5. Experimental investigation of caustic steam injection for heavy oils 

    E-Print Network [OSTI]

    Madhavan, Rajiv

    2010-01-16T23:59:59.000Z

    An experimental study has been conducted to compare the effect of steam injection and caustic steam injection in improving the recovery of San Ardo and Duri heavy oils. A 67 cm long x 7.4 cm O.D (outer diameter), steel ...

  6. Economic Feasibility of Electrochemical Caustic Recycling at the Hanford Site

    SciTech Connect (OSTI)

    Poloski, Adam P.; Kurath, Dean E.; Holton, Langdon K.; Sevigny, Gary J.; Fountain, Matthew S.

    2009-03-01T23:59:59.000Z

    This report contains a review of potential cost benefits of NaSICON Ceramic membranes for the separation of sodium from Hanford tank waste. The primary application is for caustic recycle to the Waste Treatment and Immobilization Plant (WTP) pretreatment leaching operation. The report includes a description of the waste, the benefits and costs for a caustic-recycle facility, and Monte Carlo results obtained from a model of these costs and benefits. The use of existing cost information has been limited to publicly available sources. This study is intended to be an initial evaluation of the economic feasibility of a caustic recycle facility based on NaSICON technology. The current pretreatment flowsheet indicates that approximately 6,500 metric tons (MT) of Na will be added to the tank waste, primarily for removing Al from the high-level waste (HLW) sludge (Kirkbride et al. 2007). An assessment (Alexander et al. 2004) of the pretreatment flowsheet, equilibrium chemistry, and laboratory results indicates that the quantity of Na required for sludge leaching will increase by 6,000 to 12,000 MT in order to dissolve sufficient Al from the tank-waste sludge material to maintain the number of HLW canisters produced at 9,400 canisters as defined in the Office of River Protection (ORP) System Plan (Certa 2003). This additional Na will significantly increase the volume of LAW glass and extend the processing time of the Waste Treatment and Immobilization Plant (WTP). Future estimates on sodium requirements for caustic leaching are expected to significantly exceed the 12,000-MT value and approach 40,000-MT of total sodium addition for leaching (Gilbert, 2007). The cost benefit for caustic recycling is assumed to consist of four major contributions: 1) the cost savings realized by not producing additional immobilized low-activity waste (ILAW) glass, 2) caustic recycle capital investment, 3) caustic recycle operating and maintenance costs, and 4) research and technology costs needed to deploy the technology. In estimating costs for each of these components, several parameters are used as inputs. Due to uncertainty in assuming a singular value for each of these parameters, a range of possible values is assumed. A Monte Carlo simulation is then performed where the range of these parameters is exercised, and the resulting range of cost benefits is determined.

  7. Analysis of ray stability and caustic formation in a layered moving fluid medium

    E-Print Network [OSTI]

    Bergman, David R

    2015-01-01T23:59:59.000Z

    Caustic formation occurs within a ray skeleton as optical or acoustic fields propagate in a medium with variable refractive properties and are unphysical, their presence being an artifact of the ray approximation of the field, and methods of correcting the field near a caustic are well known. Differential geometry provides a novel approach to calculating acoustic intensity, assessing ray stability and locating caustics in acoustic ray traces when the properties of medium are completely arbitrary by identifying points on the caustic with conjugate points along various rays. The method of geodesic deviation is applied to the problem of determining ray stability and locating caustics in 2-dimensional acoustic ray traces in a layered moving medium. Specifically, a general treatment of caustic formation in sound ducts and in piecewise continuous media is presented and applied to various idealized and realistic scenarios.

  8. Modular tokamak magnetic system

    DOE Patents [OSTI]

    Yang, Tien-Fang (Wayland, MA)

    1988-01-01T23:59:59.000Z

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  9. Caustic Crossing Microlensing Event by Binary MACHOs and Time Scale Bias

    E-Print Network [OSTI]

    Mareki Honma

    1998-11-25T23:59:59.000Z

    Caustic crossing microlensing events provide us a unique opportunity to measure the relative proper motion of the lens to the source, and so those caused by binary MACHOs are of great importance for understanding the structure of the Galactic halo and the nature of MACHOs. The microlensing event 98-SMC-01, occurred in June 1998, is the first event for which the proper motion is ever measured through the caustic crossing, and this event may be caused by binary MACHOs as we argue in this Letter. Motivated by the possible existence of binary MACHOs, we have performed the Monte Carlo simulations of caustic crossing events by binary MACHOs and investigated the properties and detectability of the events. Our calculation shows that typical caustic crossing events have the interval between two caustic crossings ($t_{\\rm cc}$) of about 5 days. We argue that with the current strategy of binary event search the proper motions of these typical events are not measurable because of the short time scale. Therefore the proper motion distribution measured from caustic crossing events suffers significantly from {`}time scale bias{'}, which is a bias toward finding long time scale events and hence slowly moving lenses. We predict there are two times more short time scale events ($t_{\\rm cc}\\le 10$ days) than long time scale events ($t_{\\rm cc}\\ge 10$ days), and propose an hourly monitoring observation instead of the nightly monitoring currently undertaken to detect caustic crossing events by binary MACHOs more efficiently.

  10. Caustic Crossing in the Gravitational Lens Q2237+0305

    E-Print Network [OSTI]

    V. N. Shalyapin

    2001-02-22T23:59:59.000Z

    The monitoring of the gravitational lens Q2237+0305 carried out by the OGLE group during 1997--1999 is analyzed. The significant light amplifications in the C and A quasar components with maxima in mid- and late 1999, respectively, are interpreted as the crossing of microlens caustics by the source. A constraint on the emitting-region size R < 10^(15) cm has been obtained from the light-curve shape by assuming a power-law quasar brightness distribution (r^2+R^2)^(-p). To estimate the exponent p ~ 1.2 requires refining the standard model for the quasar continuum formation in an optically thick accretion disk with p = 1.5

  11. On calculation of microlensing light curve by gravitational lens caustic

    E-Print Network [OSTI]

    M. B. Bogdanov

    2001-02-02T23:59:59.000Z

    For an analysis of microlensing observational data in case of binary gravitational lenses as well as for an interpretation of observations of high magnification events in multiple images of a lensed quasar it is necessary to calculate for a given source the microlensing light curve by a fold caustic. This problem comes to the numerical calculation of a singular integral. We formulated the sufficient condition of a convergence of the integral sum for this singular integral. The strictly approach to the problem of a comparison of model results with the unequally sampled observational data consists in calculation of the model light curve in equidistant points of the canonical dissection of the integration segment and a following interpolation of its values at the moments of observations.

  12. MODULAR8 01/09 MODULAR8 CRADA

    E-Print Network [OSTI]

    Eisen, Michael

    MODULAR8 01/09 MODULAR8 CRADA TABLE OF CONTENTS ARTICLE I. DEFINITIONS. OBLIGATIONS AS TO PROTECTED CRADA INFORMATION ................ 6 ARTICLE IX. RIGHTS IN GENERATED INFORMATION XXV. ADMINISTRATION OF THE CRADA........................................................ 13 ARTICLE

  13. Design and Economic Evaluation of Thermionic Cogeneration in a Chlorine-Caustic Plant 

    E-Print Network [OSTI]

    Miskolezy, G.; Morgan, D.; Turner, R.

    1985-01-01T23:59:59.000Z

    The study shows that it is feasible to equip a chlorine-caustic plant with thermionic cogeneration. Thermionic combustors replace the existing burners of the boilers used to raise steam for the evaporators, and are capable of generating...

  14. Symmetric modular torsatron

    DOE Patents [OSTI]

    Rome, J.A.; Harris, J.H.

    1984-01-01T23:59:59.000Z

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  15. Modular optical detector system

    DOE Patents [OSTI]

    Horn, Brent A. (Livermore, CA); Renzi, Ronald F. (Tracy, CA)

    2006-02-14T23:59:59.000Z

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  16. Cusps of Hilbert modular varieties

    E-Print Network [OSTI]

    McReynolds, D B

    2007-01-01T23:59:59.000Z

    Motivated by a question of Hirzebruch on the possible topological types of cusp cross-sections of Hilbert modular varieties, we give a necessary and sufficient condition for a manifold M to be diffeomorphic to a cusp cross-section of a Hilbert modular variety. Specialized to Hilbert modular surfaces, this proves that every Sol 3-manifold is diffeomorphic to a cusp cross-section of a (generalized) Hilbert modular surface. We also deduce an obstruction to geometric bounding in this setting. Consequently, there exist Sol 3-manifolds that cannot arise as a cusp cross-section of a 1-cusped nonsingular Hilbert modular surface.

  17. Modular Integrated Energy Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Building 3147 Oak Ridge, TN 37831 April 27, 2006 Prepared by: Honeywell Laboratories 3660 Technology Drive Honeywell #12;Modular Integrated Energy Systems Task 5 Prototype Development Reference Design Documentation: Steve Gabel, Program Manager (612) 951-7555 Honeywell Laboratories 3660 Technology Drive Minneapolis

  18. Modular Integrated Energy Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Building 3147 Oak Ridge, TN 37831 July 22, 2005 Prepared by: Honeywell Laboratories 3660 Technology Drive­April 2005 Honeywell #12;Modular Integrated Energy Systems Task 6 Field Monitoring Interim Report Period Oak Ridge, TN 37831 Prepared by: Steve Gabel, Program Manager (612) 951-7555 Honeywell Laboratories

  19. Modular Integrated Energy Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Building 3147 Oak Ridge, TN 37831 March 24, 2005 Prepared by: Honeywell Laboratories 3660 Technology Drive­December 2004 Honeywell #12;Modular Integrated Energy Systems Task 6 Field Monitoring Interim Report Period Oak Ridge, TN 37831 Prepared by: Steve Gabel, Program Manager (612) 951-7555 Honeywell Laboratories

  20. Modular Integrated Energy Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Honeywell Modular Integrated Energy Systems Task 6 Field Monitoring Interim Report Period Covered 3147 Oak Ridge, TN 37831 Prepared by: Honeywell Laboratories 3660 Technology Drive Minneapolis, MN 3147 Oak Ridge, TN 37831 Prepared by: Steve Gabel, Program Manager (612) 951-7555 Honeywell

  1. Examination of Organic Carryover from 2-cm Contactors to Support the Modular CSSX Unit

    SciTech Connect (OSTI)

    Nash, Charles A.; Norato, Michael A.; Walker; D. Douglas; Pierce, Robert A.; Eubanks, Ronnye A.; Clark, James D.; Smith, Wilson M. Jr.; Crump, Stephen L.; Nelson, D. Zane; Fink, Samuel D.; Peters, Thomas B.; May, Cecil G.; Herman, David T.; Bolton, Henry L.

    2005-04-29T23:59:59.000Z

    A bank of four 2-cm centrifugal contactors was operated in countercurrent fashion to help address questions about organic carryover for the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The contactors, having weirs sized for strip operation, were used to examine carryover for both strip effluent (SE) and decontaminated salt solution (DSS). Since only one bank of contactors was available in the short time frame of this work, the organic phase and only one aqueous phase were present in the flow loops at a time. Personnel maintained flowsheet-typical organic phase to aqueous phase (O:A) flow ratios when varying flow rates. Solvent from two different batches were tested with strip solution. In addition, potential mitigations of pH adjustment and coalescing media were examined. The experiment found that organic carryover after decanting averaged 220 ppm by mass with a range of 74 to 417 ppm of Isopar{reg_sign} L for strip effluent (SE)/organic solvent contacts. These values are based on measured modifier. Values were bounded by a value of 95 ppm based upon Isopar{reg_sign} L values as reported. The higher modifier-based numbers are considered more reliable at this time. Carryover of Isopar{reg_sign} L in DSS simulant averaged 77 ppm by mass with a range of 70 to 88 ppm of Isopar{reg_sign} L based on modifier content. The carryover was bounded by a value of 19 ppm based upon Isopar{reg_sign} L values as reported. More work is needed to resolve the discrepancy between modifier and Isopar{reg_sign} L values. The work did not detect organic droplets greater than 18 microns in SE. Strip output contained droplets down to 0.5 micron in size. Droplets in DSS were almost monodisperse by comparison, having a size range 4.7 +/- 1.6 micron in one test and 5.2 +/- 0.8 micron in the second demonstration. Optical microscopy provided qualitative results confirming the integrity of droplet size measurements in this work. Acidic or basic adjustments of aqueous strip solution from pH 3 to 1 and from pH 3 to 11 were not effective in clarifying the aqueous dispersions of organic droplets. Use of a 0.7-micron rated glass fiber filter of 3/4 mm thickness under gravity flow provided significant reduction in organic content and increased clarity. A 2 inch element stack of ''Teflon{reg_sign} Fiber Interceptor-Pak{trademark}'' media from ACS Separations, Inc. was not effective in clarifying DSS simulant.

  2. Small Modular Reactors - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariateSite Map Main Menu Aboutsmr Small Modular

  3. Structural evaluation of mixer pump installed in Tank 241-AN-107 for caustic addition project

    SciTech Connect (OSTI)

    Leshikar, G.A.

    1995-06-16T23:59:59.000Z

    This report documents the structural analysis and evaluation of a mixer pump and caustic addition system to be used in Tank 107-AN. This pump will be installed in the central pump pit of this double- shell tank for the purpose of bringing the hydroxide ion concentration into compliance with Tank Farm operating specifications.

  4. Safety basis for the 241-AN-107 mixer pump installation and caustic addition

    SciTech Connect (OSTI)

    Van Vleet, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-10-05T23:59:59.000Z

    This safety Basis was prepared to determine whether or not the proposed activities of installing a 76 HP jet mixer pump and the addition of approximately 50,000 gallons of 19 M (50:50 wt %) aqueous caustic are within the safety envelope as described by Tank Farms (chapter six of WHC-SD-WM-ISB-001, Rev. 0). The safety basis covers the components, structures and systems for the caustic addition and mixer pump installation. These include: installation of the mixer pump and monitoring equipment; operation of the mixer pump, process monitoring equipment and caustic addition; the pump stand, caustic addition skid, the electrical skid, the video camera system and the two densitometers. Also covered is the removal and decontamination of the mixer pump and process monitoring system. Authority for this safety basis is WHC-IP-0842 (Waste Tank Administration). Section 15.9, Rev. 2 (Unreviewed Safety Questions) of WHC-IP-0842 requires that an evaluation be performed for all physical modifications.

  5. Chemical cleaning of coal by molten caustic leaching after pretreatment by low-temperature devolatilization

    DOE Patents [OSTI]

    Chriswell, Colin D. (Slater, IA); Kaushik, Surender M. (Socorro, NM); Shah, Navin D. (Houston, TX); Markuszewski, Richard (Ames, IA)

    1989-08-22T23:59:59.000Z

    Pretreatment of coal by devolatization at temperatures ranging from about 420.degree. C. to about 450.degree. C. for from about 10 minutes to about 30 minutes before leaching with molten caustic leads to a significant reduction in carbonate formation, greatly reducing the cost of cleaning coal on a per ton basis.

  6. A GEOCHEMICAL MODULE FOR "AMDTreat" TO COMPUTE CAUSTIC QUANTITY, EFFLUENT QUALITY, AND SLUDGE VOLUME1

    E-Print Network [OSTI]

    of sludge produced by the treatment, a titration simulation is being developed using the geochemical program The AMDTreat computer program ( . Treatment with caustic chemicals typically is used to increase pH (6 to 8), whereas active manganese removal requires treatment to alkaline pH (~10). The treatment

  7. An alternative parameterisation for binary-lens caustic-crossing events

    E-Print Network [OSTI]

    A. Cassan

    2008-10-15T23:59:59.000Z

    Microlensing events are being discovered and alerted by the two survey teams OGLE and MOA at an increasing rate. Around ten percent of these events involve binary lenses. Such events potentially contain much information on the physical properties of the observed binary systems, which can then be used for e.g. statistical studies on binary objects in the Galactic disk or bulge. However, such events are usually not straightforward to study, because the model equations are strongly non-linear and there are many local minima that can fool the search for the best solution if the parameter space is not inspected with great care. In this work an alternative parameterisation for the binary lens fitting problem is proposed, in which the parameters involved are defined to represent as closely as possible the caustic-crossing features observed in most binary lens light curves. Furthermore, we work out an extension of the method in order to make use of the straight line fold caustic approximation, when the latter applies for both the caustic entry and exit. We introduce an alternative parameterisation in order to confine the exploration of the parameter space to regions where the models only involve caustic crossing at the dates seen in the light curve. We find that the proposed parameterisation provides more robustness to the light curve fitting process, in particular in avoiding a code to get stuck in false minima.

  8. N,N'-DICYCLOHEXYL-N"-ISOTRIDECYLGUANIDINE AS SUPPRESSOR FOR THE NEXT GENERATION CAUSTIC SIDE SOLVENT EXTRACTION (NG-CSSX) PROCESS

    SciTech Connect (OSTI)

    Duncan, Nathan C [ORNL; Roach, Benjamin D [ORNL; Williams, Neil J [ORNL; Bonnesen, Peter V [ORNL; Rajbanshi, Arbin [ORNL; Moyer, Bruce A [ORNL

    2012-01-01T23:59:59.000Z

    ABSTRACT The purity, concentration, and source of the N,N'-dicyclohexyl-N"-isotridecylguanidine (DCiTG) suppressor (guanidine) used in the NG-CSSX process were found to influence solvent performance. As the starting isotridecanol used in the preparation of DCiTG is comprised of a mixture of branched-chain aliphatic alcohols, varying in composition with manufacturer, the resulting DCiTG itself is a mixture. Thus, it is necessary to address how the solvent performance will be affected by the different preparations of the DCiTG solvent component. In this study, four preparations of DCiTG from three sources were analyzed and evaluated for purity and performance, both in the absence and presence of an anionic surfactant impurity.

  9. Modular Interpreted Systems: A Preliminary Report

    E-Print Network [OSTI]

    Zachmann, Gabriel

    Zachmann (Computer Graphics) #12;Modular Interpreted Systems: A Preliminary Report Wojciech Jamroga1

  10. CX-010025: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Actinide Removal Process /Modular Caustic Side Solvent Extraction Unit Life Extension Support Testing CX(s) Applied: B3.6 Date: 01/24/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  11. Modular error embedding

    DOE Patents [OSTI]

    Sandford, II, Maxwell T. (Los Alamos, NM); Handel, Theodore G. (Los Alamos, NM); Ettinger, J. Mark (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.

  12. Modular Optical PDV System

    SciTech Connect (OSTI)

    Araceli Rutkowski, David Esquibel

    2008-12-11T23:59:59.000Z

    A modular optical photon Doppler velocimetry (PDV) detector system has been developed by using readily available optical components with a 20-GHz Miteq optical detector into eight channels of single-wide modules integrated into a 3U rack unit (1U = 1.75 inches) with a common power supply. Optical fibers were precisely trimmed, welded, and timed within each unit. This system has been used to collect dynamic velocity data on various physics experiments. An optical power meter displays the laser input power to the module and optical power at the detector. An adjustable micro-electromechanical system (MEMS) optical attenuator is used to adjust the amount of unshifted light entering the detector. Front panel LEDs show the presence of power to the module. A fully loaded chassis with eight channels consumes 45 watts of power. Each chassis requires 1U spacing above and below for heat management. Modules can be easily replaced.

  13. Formation of zeolite during caustic dissolution of fiberglass; Implications for studies of the kaolinite-to-mullite transformation

    SciTech Connect (OSTI)

    Jantzen, C.M. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1990-12-01T23:59:59.000Z

    This paper reports on insoluble zeolitic reaction products formed during the caustic dissolution of fiberglass filters. The zeolite that forms in Linde B{sub 1}, the higher temperature form of the zeolite identified during caustic dissolution of free SiO{sub 2} in kaolinite-to-mullite transformations. The Linde B{sub 1} is a sodium aluminosilicate hydrate that preferentially incorporates Ca{sup 2+} and Mg{sup 2+}. Formation of the Linde B{sub 1} zeolite from fiberglass dissolution in NaOH indicates that caustic dissolution of kaolinite does not preferentially dissolve free amorphous SiO{sub 2}, but dissolves any multicomponent amorphous phase present.

  14. Direct Causticizing for Black Liquor Gasification in a Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Scott Sinquefield; Xiaoyan Zeng, Alan Ball

    2010-03-02T23:59:59.000Z

    Gasification of black liquor (BLG) has distinct advantages over direct combustion in Tomlinson recovery boilers. In this project we seek to resolve causticizing issues in order to make pressurized BLG even more efficient and cost-effective. One advantage of BLG is that the inherent partial separation of sulfur and sodium during gasification lends itself to the use of proven high yield variants to conventional kraft pulping which require just such a separation. Processes such as polysulfide, split sulfidity, ASAQ, and MSSAQ can increase pulp yield from 1% to 10% over conventional kraft but require varying degrees of sulfur/sodium separation, which requires additional [and costly] processing in a conventional Tomlinson recovery process. However during gasification, the sulfur is partitioned between the gas and smelt phases, while the sodium all leaves in the smelt; thus creating the opportunity to produce sulfur-rich and sulfur-lean white liquors for specialty pulping processes. A second major incentive of BLG is the production of a combustible product gas, rich in H2 and CO. This product gas (a.k.a. “syngas”) can be used in gas turbines for combined cycle power generation (which is twice as efficient as the steam cycle alone), or it can be used as a precursor to form liquid fuels, such as dimethyl ether or Fischer Tropsh diesel. There is drawback to BLG, which has the potential to become a third major incentive if this work is successful. The causticizing load is greater for gasification of black liquor than for combustion in a Tomlinson boiler. So implementing BLG in an existing mill would require costly increases to the causticizing capacity. In situ causticizing [within the gasifier] would handle the entire causticizing load and therefore eliminate the lime cycle entirely. Previous work by the author and others has shown that titanate direct causticizing (i.e. in situ) works quite well for high-temperature BLG (950°C), but was limited to pressures below about 5 bar. It is desirable however to operate BLG at 20-30 bar for efficiency reasons related to either firing the syngas in a turbine, or catalytically forming liquid fuels. This work focused on achieving high direct causticizing yields at 20 bars pressure. The titanate direct causticizing reactions are inhibited by CO2. Previous work has shown that the partial pressure of CO2 should be kept below about 0.5 bar in order for the process to work. This translates to a total reactor pressure limit of about 5 bar for airblown BLG, and only 2 bar for O2-blown BLG. In this work a process was developed in which the CO2 partial pressure could be manipulated to a level under 0.5 bar with the total system pressure at 10 bar during O2-blown BLG. This fell short of our 20 bar goal but still represents a substantial increase in the pressure limit. A material and energy balance was performed, as well as first-pass economics based on capital and utilities costs. Compared to a reference case of using BLG with a conventional lime cycle [Larson, 2003], the IRR and NVP were estimated for further replacing the lime kiln with direct causticizing. The economics are strongly dependent on the price of lime kiln fuel. At $6/mmBTU the lime cycle is the clear choice. At $8/mmBTU the NPV is $10M with IRR of 17%. At $12/mmBTU the NPV is $45M with IRR of 36%. To further increase the total allowable pressure, the CO2 could be further decreased by further decreasing the temperature. Testing should be done at 750C. Also a small pilot should be built.

  15. Washing and caustic leaching of Hanford tank sludge: Results of FY 1997 studies

    SciTech Connect (OSTI)

    Lumetta, G.J.; Burgeson, I.E.; Wagner, M.J.; Liu, J.; Chen, Y.L.

    1997-08-01T23:59:59.000Z

    The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The tank wastes will be partitioned into high-level and low-level fractions. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of immobilized high-level waste (IHLW). Caustic leaching (sometimes referred to as enhanced sludge washing or ESW) represents the baseline method for pretreating Hanford tank sludges. Caustic leaching is expected to remove a large fraction of the Al, which is present in large quantities in Hanford tank sludges. A significant portion of the P is also expected to be removed from the sludge by metathesis of water-insoluble metal phosphates to insoluble hydroxides and soluble Na{sub 3}PO{sub 4}. Similar metathesis reactions can occur for insoluble sulfate salts, allowing the removal of sulfate from the HLW stream. This report describes the sludge washing and caustic leaching tests performed at the Pacific Northwest National Laboratory in FY 1996. The sludges used in this study were taken from Hanford tanks AN-104, BY-108, S-101, and S-111.

  16. Abductive Analysis of Modular Logic Programs

    E-Print Network [OSTI]

    Giacobazzi, Roberto

    Abductive Analysis of Modular Logic Programs Roberto Giacobazzi LIX, Laboratoire d introduce a practical method for abductive analysis of modular logic programs. This is obtained of abductive reasoning in dataflow analysis of logic programs. 1 Introduction Dataflow analysis

  17. Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery

    SciTech Connect (OSTI)

    Adriaan van Heiningen

    2007-06-30T23:59:59.000Z

    MTCI/StoneChem developed a steam reforming, fluidized bed gasification technology for biomass. DOE supported the demonstration of this technology for gasification of spent wood pulping liquor (or 'black liquor') at Georgia-Pacific's Big Island, Virginia mill. The present pre-commercial R&D project addressed the opportunities as well as identified negative aspects when the MTCI/StoneChem gasification technology is integrated in a pulp mill production facility. The opportunities arise because black liquor gasification produces sulfur (as H{sub 2}S) and sodium (as Na{sub 2}CO{sub 3}) in separate streams which may be used beneficially for improved pulp yield and properties. The negative aspect of kraft black liquor gasification is that the amount of Na{sub 2}CO{sub 3} which must be converted to NaOH (the so called causticizing requirement) is increased. This arises because sulfur is released as Na{sub 2}S during conventional kraft black liquor recovery, while during gasification the sodium associated Na{sub 2}S is partly or fully converted to Na{sub 2}CO{sub 3}. The causticizing requirement can be eliminated by including a TiO{sub 2} based cyclic process called direct causticization. In this process black liquor is gasified in the presence of (low sodium content) titanates which convert Na{sub 2}CO{sub 3} to (high sodium content) titanates. NaOH is formed when contacting the latter titanates with water, thereby eliminating the causticizing requirement entirely. The leached and low sodium titanates are returned to the gasification process. The project team comprised the University of Maine (UM), North Carolina State University (NCSU) and MTCI/ThermoChem. NCSU and MTCI are subcontractors to UM. The principal organization for the contract is UM. NCSU investigated the techno-economics of using advanced pulping techniques which fully utilize the unique cooking liquors produced by steam reforming of black liquor (Task 1). UM studied the kinetics and agglomeration problems of the conversion of Na{sub 2}CO{sub 3} to (high sodium) titanates during gasification of black liquor in the presence of (low sodium) titanates or TiO{sub 2} (Task 2). MTCI/ThermoChem tested the performance and operability of the combined technology of steam reforming and direct causticization in their Process Development Unit (PDU) (Task 3). The specific objectives were: (1) to investigate how split sulfidity and polysulfide (+ AQ) pulping can be used to increase pulp fiber yield and properties compared to conventional kraft pulping; (2) to determine the economics of black liquor gasification combined with these pulping technologies in comparison with conventional kraft pulping and black liquor recovery; (3) to determine the effect of operating conditions on the kinetics of the titanate-based direct causticization reaction during black liquor gasification at relatively low temperatures ({le} 750 C); (4) to determine the mechanism of particle agglomeration during gasification of black liquor in the presence of titanates at relatively low temperatures ({le} 750 C); and (5) to verify performance and operability of the combined technology of steam reforming and direct causticization of black liquor in a pilot scale fluidized bed test facility.

  18. Spectral Modular Exponentiation Gokay Saldamli

    E-Print Network [OSTI]

    California at Davis, University of

    and exponentiation based on a new reduction oper- ation are proposed (Section 2). These methods work com- pletely to meet the asymptotic crossover of Sch¨onhage-Strassen, assuming the reduction has a constant cost describe a new method to perform the modular expo- nentiation operation, i.e., the computation of c = me

  19. Electrical machines and assemblies including a yokeless stator with modular lamination stacks

    DOE Patents [OSTI]

    Qu, Ronghai; Jansen, Patrick Lee; Bagepalli, Bharat Sampathkumar; Carl, Jr., Ralph James; Gadre, Aniruddha Dattatraya; Lopez, Fulton Jose

    2010-04-06T23:59:59.000Z

    An electrical machine includes a rotor with an inner rotor portion and an outer rotor portion, and a double-sided yokeless stator. The yokeless stator includes modular lamination stacks and is configured for radial magnetic flux flow. The double-sided yokeless stator is concentrically disposed between the inner rotor portion and the outer rotor portion of the electrical machine. Examples of particularly useful embodiments for the electrical machine include wind turbine generators, ship propulsion motors, switch reluctance machines and double-sided synchronous machines.

  20. P-Area Acid/Caustic Basin groundwater monitoring report. First quarter 1993

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    During first quarter 1993, samples from the six PAC monitoring wells at the P-Area Acid/Caustic Basin were analyzed for indicator parameters, groundwater quality parameters, and parameters characterizing suitability as a drinking water supply. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. During first quarter 1993, no constituents exceeded the final PDWS. Aluminum exceeded the SRS Flag 2 criterion in four of the wells. Iron and manganese each exceeded its Flag 2 criterion in wells PAC 2, 5, and 6.

  1. Side-Channel Oscilloscope

    E-Print Network [OSTI]

    Chaudhuri, Sumanta

    2011-01-01T23:59:59.000Z

    Side-Channel Analysis used for codebreaking could be used constructively as a probing tool for internal gates in integrated circuits. This paper outlines basic methods and mathematics for that purpose

  2. F-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1995

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    During second quarter 1995, samples from the FAC monitoring wells at the F-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, volatile organic compounds, and other constituents. Piezometer FAC 5P and monitoring well FAC 6 were dry and could not be sampled. New monitoring wells FAC 9C, 10C, 11C, and 12C were completed in the Barnwell/McBean aquifer and were sampled for the first time during third quarter 1994 (second quarter 1995 is the fourth of four quarters of data required to support the closure of the basin). Analytical results that exceeded final Primary Drinking Water Standards (PDWS) or Savannah River Site (SRS) Flag 2 criteria such as the SRS turbidity standard of 50 NTU during the quarter were as follows: gross alpha exceeded the final PDWS and aluminum, iron, manganese, and radium-226 exceeded the SRS Flag 2 criteria in one or more of the FAC wells. Turbidity exceeded the SRS standard (50 NTU) in well FAC 3. Groundwater flow direction in the water table beneath the F-Area Acid/Caustic Basin was to the west at a rate of 1300 feet per year. Groundwater flow in the Barnwell/McBean was to the northeast at a rate of 50 feet per year.

  3. Dynamics and Control for Nonholonomic Mobile Modular Manipulators

    E-Print Network [OSTI]

    Li, Yangmin

    Dynamics and Control for Nonholonomic Mobile Modular Manipulators Yangmin Li & Yugang Liu control for modular manipulators (Melek & Goldenberg, 2003; Shen et al., 2002; Stoy et al., 2002). Parameter identification and vibration control for a 9-DOF reconfigurable modular manipulator were

  4. Advanced Control and Protection system Design Methods for Modular HTGRs

    SciTech Connect (OSTI)

    Ball, Sydney J [ORNL; Wilson Jr, Thomas L [ORNL; Wood, Richard Thomas [ORNL

    2012-06-01T23:59:59.000Z

    The project supported the Nuclear Regulatory Commission (NRC) in identifying and evaluating the regulatory implications concerning the control and protection systems proposed for use in the Department of Energy's (DOE) Next-Generation Nuclear Plant (NGNP). The NGNP, using modular high-temperature gas-cooled reactor (HTGR) technology, is to provide commercial industries with electricity and high-temperature process heat for industrial processes such as hydrogen production. Process heat temperatures range from 700 to 950 C, and for the upper range of these operation temperatures, the modular HTGR is sometimes referred to as the Very High Temperature Reactor or VHTR. Initial NGNP designs are for operation in the lower temperature range. The defining safety characteristic of the modular HTGR is that its primary defense against serious accidents is to be achieved through its inherent properties of the fuel and core. Because of its strong negative temperature coefficient of reactivity and the capability of the fuel to withstand high temperatures, fast-acting active safety systems or prompt operator actions should not be required to prevent significant fuel failure and fission product release. The plant is designed such that its inherent features should provide adequate protection despite operational errors or equipment failure. Figure 1 shows an example modular HTGR layout (prismatic core version), where its inlet coolant enters the reactor vessel at the bottom, traversing up the sides to the top plenum, down-flow through an annular core, and exiting from the lower plenum (hot duct). This research provided NRC staff with (a) insights and knowledge about the control and protection systems for the NGNP and VHTR, (b) information on the technologies/approaches under consideration for use in the reactor and process heat applications, (c) guidelines for the design of highly integrated control rooms, (d) consideration for modeling of control and protection system designs for VHTR, and (e) input for developing the bases for possible new regulatory guidance to assist in the review of an NGNP license application. This NRC project also evaluated reactor and process heat application plant simulation models employed in the protection and control system designs for various plant operational modes and accidents, including providing information about the models themselves, and the appropriateness of the application of the models for control and protection system studies. A companion project for the NRC focused on the potential for new instrumentation that would be unique to modular HTGRs, as compared to light-water reactors (LWRs), due to both the higher temperature ranges and the inherent safety features.

  5. Quantum information with modular variables

    E-Print Network [OSTI]

    A. Ketterer; S. P. Walborn; A. Keller; T. Coudreau; P. Milman

    2014-06-24T23:59:59.000Z

    We introduce a novel strategy, based on the use of modular variables, to encode and deterministically process quantum information using states described by continuous variables. Our formalism leads to a general recipe to adapt existing quantum information protocols, originally formulated for finite dimensional quantum systems, to infinite dimensional systems described by continuous variables. This is achieved by using non unitary and non-gaussian operators, obtained from the superposition of gaussian gates, together with adaptative manipulations in qubit systems defined in infinite dimensional Hilbert spaces. We describe in details the realization of single and two qubit gates and briefly discuss their implementation in a quantum optical set-up.

  6. Modular Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker,ModernizingModular Wind

  7. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31T23:59:59.000Z

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  8. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01T23:59:59.000Z

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  9. Abductive Analysis of Modular Logic Programs

    E-Print Network [OSTI]

    Giacobazzi, Roberto

    Abductive Analysis of Modular Logic Programs Roberto Giacobazzi LIX, Laboratoire d introduce a practical method for abductive analysis of modular logic programs. This is obtained by reversing and in compile­time optimization. To the best of our knowledge this is the first application of abductive

  10. Modular bootstrap in Liouville field theory

    E-Print Network [OSTI]

    Leszek Hadasz; Zbigniew Jaskolski; Paulina Suchanek

    2009-11-22T23:59:59.000Z

    The modular matrix for the generic 1-point conformal blocks on the torus is expressed in terms of the fusion matrix for the 4-point blocks on the sphere. The modular invariance of the toric 1-point functions in the Liouville field theory with DOZZ structure constants is proved.

  11. Modularity of Termination Using Dependency Pairs ?

    E-Print Network [OSTI]

    Ábrahåm, Erika

    Modularity of Termination Using Dependency Pairs ? Thomas Arts 1 and J¨urgen Giesl 2 1 Computer@informatik.th­darmstadt.de Abstract. The framework of dependency pairs allows automated ter­ mination and innermost termination proofs of this framework in order to prove termination in a modular way. Our mod­ ularity results significantly increase

  12. PEP Integrated Test D Run Report Caustic and Oxidative Leaching in UFP-VSL-T02A

    SciTech Connect (OSTI)

    Sevigny, Gary J.; Bredt, Ofelia P.; Burns, Carolyn A.; Kurath, Dean E.; Geeting, John GH; Golovich, Elizabeth C.; Guzman-Leong, Consuelo E.; Josephson, Gary B.

    2009-12-11T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes" of the External Flowsheet Review Team (EFRT) issue response plan. The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario (Test B and D) has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario (Test A) has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP and vessels UFP VSL-00001A and B in the WTP PTF). In Test D, 19M sodium hydroxide (NaOH, caustic) was added to the waste slurry in the UFP VSL T02 vessel after the solids were concentrated to ~20% undissolved solids. The NaOH was added to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by heating to 85°C using direct injection of steam to accelerate the leach process. The main difference of Test D compared to Test B is that the leach temperature is 85°C for 24 hrs as compared to 100°C for 12 hours. The other difference is the Test D simulant had Cr in the simulant from the start of processing and Test B had Cr added to adjust the simulant composition after aluminum leaching. Following the caustic leach, the UFP-VSL-T02A vessel contents are cooled using the vessel cooling jacket. The slurry was then concentrated to 17 wt% undissolved solids and washed with inhibited water to remove NaOH and other soluble salts. Next, the slurry was oxidatively leached using sodium permanganate to solubilize chrome. The slurry was then washed to remove the dissolved chrome and concentrated.

  13. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31T23:59:59.000Z

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  14. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01T23:59:59.000Z

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  15. Siding | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbH Jump to: navigation, searchSiding Jump

  16. Small Modular Reactors: Institutional Assessment

    SciTech Connect (OSTI)

    Joseph Perkowski, Ph.D.

    2012-06-01T23:59:59.000Z

    ? Objectives include, among others, a description of the basic development status of “small modular reactors” (SMRs) focused primarily on domestic activity; investigation of the domestic market appeal of modular reactors from the viewpoints of both key energy sector customers and also key stakeholders in the financial community; and consideration of how to proceed further with a pro-active "core group" of stakeholders substantially interested in modular nuclear deployment in order to provide the basis to expedite design/construction activity and regulatory approval. ? Information gathering was via available resources, both published and personal communications with key individual stakeholders; published information is limited to that already in public domain (no confidentiality); viewpoints from interviews are incorporated within. Discussions at both government-hosted and private-hosted SMR meetings are reflected herein. INL itself maintains a neutral view on all issues described. Note: as per prior discussion between INL and CAP, individual and highly knowledgeable senior-level stakeholders provided the bulk of insights herein, and the results of those interviews are the main source of the observations of this report. ? Attachment A is the list of individual stakeholders consulted to date, including some who provided significant earlier assessments of SMR institutional feasibility. ? Attachments B, C, and D are included to provide substantial context on the international status of SMR development; they are not intended to be comprehensive and are individualized due to the separate nature of the source materials. Attachment E is a summary of the DOE requirements for winning teams regarding the current SMR solicitation. Attachment F deserves separate consideration due to the relative maturity of the SMART SMR program underway in Korea. Attachment G provides illustrative SMR design features and is intended for background. Attachment H is included for overview purposes and is a sampling of advanced SMR concepts, which will be considered as part of the current DOE SMR program but whose estimated deployment time is beyond CAP’s current investment time horizon. Attachment I is the public DOE statement describing the present approach of their SMR Program.

  17. Size reduction of complex networks preserving modularity

    SciTech Connect (OSTI)

    Arenas, A.; Duch, J.; Fernandez, A.; Gomez, S.

    2008-12-24T23:59:59.000Z

    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  18. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    SciTech Connect (OSTI)

    Joseph W. Geisinger, Ph.D.

    2001-07-31T23:59:59.000Z

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  19. The effect of concentration on the structure and crystallinity of a cementitious waste form for caustic wastes

    SciTech Connect (OSTI)

    Chung, Chul-Woo; Turo, Laura A.; Ryan, Joseph V.; Johnson, Bradley R.; McCloy, John S.

    2013-06-01T23:59:59.000Z

    Cement-based waste forms have long been considered economical technologies for disposal of various types of waste. A solidified cementitious waste form, Cast Stone, was developed to immobilize the radioactive secondary waste from vitrification processes. In this work, Cast Stone was considered for a Na-based caustic liquid waste, and its physical properties were analyzed as a function of liquid waste loading up to 2 M Na. Differences in crystallinity (phase composition), microstructure, mesostructure (pore size distribution, surface area), and macrostructure (density, compressive strength) were investigated using various analytical techniques, in order to assess the suitability of Cast Stone as a chemically durable waste. It was found that the concentration of secondary waste simulant (caustic waste) had little effect on the relevant engineering properties of Cast Stone, showing that Cast Stone could be an effective and tolerant waste form for a wide range of concentrations of high sodium waste.

  20. Design of a modular motorcycle windshield wiper

    E-Print Network [OSTI]

    Boyd, Robert Allen Michael

    2010-01-01T23:59:59.000Z

    Motorcycle windshield wipers are essentially non-existent in the United States. Customer and market research reveals a demand for such a product. This paper explores the product viability of a modular motorcycle windshield ...

  1. XAUV : modular high maneuverability autonomous underwater vehicle

    E-Print Network [OSTI]

    Walker, Daniel G. (Daniel George)

    2009-01-01T23:59:59.000Z

    The design and construction of a modular test bed autonomous underwater vehicle (AUV) is analyzed. Although a relatively common stacked-hull design is used, the state of the art is advanced through an aggressive power ...

  2. Caustic Precipitation of Plutonium and Uranium with Gadolinium as a Neutron Poison

    SciTech Connect (OSTI)

    VISSER, ANN E.; BRONIKOWSKI, MICHAEL G.; RUDISILL, TRACY S.

    2005-10-18T23:59:59.000Z

    The caustic precipitation of plutonium (Pu) and uranium (U) from Pu and U-containing waste solutions has been investigated to determine whether gadolinium (Gd) could be used as a neutron poison for precipitation with greater than a fissile mass containing both Pu and enriched U. Precipitation experiments were performed using both process solution samples and simulant solutions with a range of 2.6-5.16 g/L U and 0-4.3:1 U:Pu. Analyses were performed on solutions at intermediate pH to determine the partitioning of elements for accident scenarios. When both Pu and U were present in the solution, precipitation began at pH 4.5 and by pH 7, 99% of Pu and U had precipitated. When complete neutralization was achieved at pH > 14 with 1.2 M excess OH{sup -}, greater than 99% of Pu, U, and Gd had precipitated. At pH > 14, the particles sizes were larger and the distribution was a single mode. The ratio of hydrogen:fissile atoms in the precipitate was determined after both settling and centrifuging and indicates that sufficient water was associated with the precipitates to provide the needed neutron moderation for Gd to prevent a criticality in solutions containing up to 4.3:1 U:Pu and up to 5.16 g/L U.

  3. Laboratory Demonstration of the Pretreatment Process with Caustic and Oxidative Leaching Using Actual Hanford Tank Waste

    SciTech Connect (OSTI)

    Fiskum, Sandra K.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.

    2009-01-01T23:59:59.000Z

    This report describes the bench-scale pretreatment processing of actual tank waste materials through the entire baseline WTP pretreatment flowsheet in an effort to demonstrate the efficacy of the defined leaching processes on actual Hanford tank waste sludge and the potential impacts on downstream pretreatment processing. The test material was a combination of reduction oxidation (REDOX) tank waste composited materials containing aluminum primarily in the form of boehmite and dissolved S saltcake containing Cr(III)-rich entrained solids. The pretreatment processing steps tested included • caustic leaching for Al removal • solids crossflow filtration through the cell unit filter (CUF) • stepwise solids washing using decreasing concentrations of sodium hydroxide with filtration through the CUF • oxidative leaching using sodium permanganate for removing Cr • solids filtration with the CUF • follow-on solids washing and filtration through the CUF • ion exchange processing for Cs removal • evaporation processing of waste stream recycle for volume reduction • combination of the evaporated product with dissolved saltcake. The effectiveness of each process step was evaluated by following the mass balance of key components (such as Al, B, Cd, Cr, Pu, Ni, Mn, and Fe), demonstrating component (Al, Cr, Cs) removal, demonstrating filterability by evaluating filter flux rates under various processing conditions (transmembrane pressure, crossflow velocities, wt% undissolved solids, and PSD) and filter fouling, and identifying potential issues for WTP. The filterability was reported separately (Shimskey et al. 2008) and is not repeated herein.

  4. Figure 1. Recurrent modular network architecture Recurrent modular network architecture for sea ice

    E-Print Network [OSTI]

    Toussaint, Marc

    Figure 1. Recurrent modular network architecture Recurrent modular network architecture for sea ice classification in the Marginal Ice Zone using ERS SAR images Andrey V. Bogdanov1a , Marc Toussaint1b , Stein of SAR images of sea ice. Additionally to the local image information the algorithm uses spatial context

  5. A TAXONOMY OF MODULAR GRIME IN DESIGN PATTERNS Travis Steven Schanz

    E-Print Network [OSTI]

    Dyer, Bill

    A TAXONOMY OF MODULAR GRIME IN DESIGN PATTERNS by Travis Steven Schanz A thesis submitted .......................................................................................21 3. MODULAR GRIME TAXONOMY .........................

  6. Advanced Modular Inverter Technology Development

    SciTech Connect (OSTI)

    Adam Szczepanek

    2006-02-04T23:59:59.000Z

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

  7. Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1,

    E-Print Network [OSTI]

    Sontag, Eduardo

    Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1, *, Alexander J Ninfa2 a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation: computational methods; metabolic and regulatory networks Keywords: feedback; insulation; modularity; singular

  8. Caustic stress corrosion cracking of E-Brite and Carpenter 7-MO stainless steels welded to Nickel 200 and Inconel 600

    E-Print Network [OSTI]

    Stockman, Steven Miles

    1982-01-01T23:59:59.000Z

    steel, each welded separatelv to Nickel 200 and Inconel 600, were teated for stress corrosion cracking in caus- tic supplied by Dow Chemical of Freeport, Texas, The V-bend type of specimen was tested in the caustic at room temperature, 60C and 800... ' The oh/ective of the test was to determine whether either of the stainless steels could be used in re- pairing nickel and nickel alloy equipment at the Dow Chemical caustic plant. Both stainless steels passed the initial test- ing and are recommended...

  9. Piecing together modular : understanding the benefits and limitations of modular construction methods for multifamily development

    E-Print Network [OSTI]

    Cameron, Peter J. (Peter Jay)

    2007-01-01T23:59:59.000Z

    The primary purpose of this thesis is to explain the benefits and limitations of modular construction as it pertains to primarily wood-frame, multifamily housing in the United States. This thesis attempts to educate the ...

  10. Marketing Demand-Side Management

    E-Print Network [OSTI]

    O'Neill, M. L.

    1988-01-01T23:59:59.000Z

    Demand-Side Management is an organizational tool that has proven successful in various realms of the ever changing business world in the past few years. It combines the multi-faceted desires of the customers with the increasingly important...

  11. Overview of Demand Side Response

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses the utility PJM's demand side response (DSR) capabilities, including emergency and economic responses.

  12. Is the Human Mind Massively Modular?

    E-Print Network [OSTI]

    Samuels, Richard

    CHAPTER T H R E E Is the Human Mind Massively Modular? Richard Samuels Introduction: Minds as Mechanisms Among the most pervasive and fundamental assumptions in cognitive science is that the human mind (or mind-brain) is a mechanism of some sort: a physical device com- posed of functionally specifiable

  13. Improved Modular Termination Proofs Using Dependency Pairs

    E-Print Network [OSTI]

    Kobbelt, Leif

    Improved Modular Termination Proofs Using Dependency Pairs Renâ??e Thiemann, JË?urgen Giesl, Peter) termination proofs of term rewrite systems (TRSs). For any TRS, it generates inequality constraints that have to be satisfied by well­founded orders. However, proving innermost termination is considerably easier than

  14. Improved Modular Termination Proofs Using Dependency Pairs #

    E-Print Network [OSTI]

    Ábrahåm, Erika

    Improved Modular Termination Proofs Using Dependency Pairs # Renâ??e Thiemann, JË?urgen Giesl, Peter) termination proofs of term rewrite systems (TRSs). For any TRS, it generates inequality constraints that have to be satisfied by well­founded orders. However, proving innermost termination is considerably easier than

  15. Improved Modular Termination Proofs Using Dependency Pairs

    E-Print Network [OSTI]

    Middeldorp, Aart

    Improved Modular Termination Proofs Using Dependency Pairs Ren´e Thiemann, J¨urgen Giesl, Peter) termination proofs of term rewrite systems (TRSs). For any TRS, it generates inequality constraints that have to be satisfied by well-founded orders. However, proving innermost termination is considerably easier than

  16. Honeywell Modular Automation System Computer Software Documentation

    SciTech Connect (OSTI)

    CUNNINGHAM, L.T.

    1999-09-27T23:59:59.000Z

    This document provides a Computer Software Documentation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-211 and vertical denitration calciner in HC-230C-2.

  17. 1 INTRODUCTION The modular finitedifference groundwater flow

    E-Print Network [OSTI]

    Russell, Thomas F.

    1 INTRODUCTION The modular finite­difference ground­water flow model (MODFLOW) developed by the U­dimensional ground­water systems (McDonald & Harbaugh, 1988, Harbaugh & McDonald, 1996). MOC3D is a solute is optimal for advection­ dominated systems, which are typical of many field problems involving ground­water

  18. Managed Data: Modular Strategies for Data Abstraction

    E-Print Network [OSTI]

    Cook, William R.

    these mechanisms to define specific kinds of data. Managed Data allows program- mers to take control of many management mechanism, not properties of individ- ual data types. It is possible to define such featuresManaged Data: Modular Strategies for Data Abstraction Alex Loh University of Texas at Austin

  19. RESULTS OF CAUSTIC DISSOLUTION OF ALUMINOSILICATE SCALE AND CHARACTERIZATION DATA FOR SAMPLES FROM THE EVAPORATOR POT AND GRAVITY DRAIN LINE

    SciTech Connect (OSTI)

    Wilmarth, B; Rita Sullivan, R; Chris Martino, C

    2006-08-21T23:59:59.000Z

    The build-up of sodium aluminosilicate scale in the 2H Evaporator system continues to cause operational difficulties. The use of a nitric acid cleaning operation proved successful in 2001. However, the operation required additional facilities to support spent cleaning solution neutralization and was quite costly. A proposed caustic cleaning flowsheet has many advantages over the acid flowsheet. Therefore, samples were retrieved from the evaporator system (gravity drain line and pot) for both chemical and radiological characterization and dissolution testing. The characterization of these scale samples showed the presence of nitrated cancrinite along with a dehydrated zeolite. Small amounts of depleted uranium were also found in these samples as expected and the amount of uranium ranged from 0.5 wt% to 2 wt%. Dissolution in sodium hydroxide solutions of various caustic concentrations showed that the scale slowly dissolves at elevated temperature (90 C). Data from similar testing indicate that the scale removed from the GDL in 2005 dissolves slower than that removed in 1997. Differences in the particle size of these samples of scale may well explain the measured dissolution rate differences.

  20. The Modular Helium Reactor for Hydrogen Production

    SciTech Connect (OSTI)

    E. Harvego; M. Richards; A. Shenoy; K. Schultz; L. Brown; M. Fukuie

    2006-10-01T23:59:59.000Z

    For electricity and hydrogen production, an advanced reactor technology receiving considerable international interest is a modular, passively-safe version of the high-temperature, gas-cooled reactor (HTGR), known in the U.S. as the Modular Helium Reactor (MHR), which operates at a power level of 600 MW(t). For hydrogen production, the concept is referred to as the H2-MHR. Two concepts that make direct use of the MHR high-temperature process heat are being investigated in order to improve the efficiency and economics of hydrogen production. The first concept involves coupling the MHR to the Sulfur-Iodine (SI) thermochemical water splitting process and is referred to as the SI-Based H2-MHR. The second concept involves coupling the MHR to high-temperature electrolysis (HTE) and is referred to as the HTE-Based H2-MHR.

  1. Modular test facility for HTS insert coils

    SciTech Connect (OSTI)

    Lombardo, V; Bartalesi, A.; Barzi, E.; Lamm, M.; Turrioni, D.; Zlobin, A.V.; /Fermilab

    2009-10-01T23:59:59.000Z

    The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields in the range of 40-50 T. In this paper we will present a modular test facility developed for the purpose of investigating very high field levels with available 2G HTS superconducting materials. Performance of available conductors is presented, together with magnetic calculations and evaluation of Lorentz forces distribution on the HTS coils. Finally a test of a double pancake coil is presented.

  2. Modular architecture for robotics and teleoperation

    DOE Patents [OSTI]

    Anderson, Robert J. (11908 Ibex Ave., N.E., Albuquerque, NM 87111)

    1996-12-03T23:59:59.000Z

    Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

  3. RAMS (Risk Analysis - Modular System) methodology

    SciTech Connect (OSTI)

    Stenner, R.D.; Strenge, D.L.; Buck, J.W. [and others

    1996-10-01T23:59:59.000Z

    The Risk Analysis - Modular System (RAMS) was developed to serve as a broad scope risk analysis tool for the Risk Assessment of the Hanford Mission (RAHM) studies. The RAHM element provides risk analysis support for Hanford Strategic Analysis and Mission Planning activities. The RAHM also provides risk analysis support for the Hanford 10-Year Plan development activities. The RAMS tool draws from a collection of specifically designed databases and modular risk analysis methodologies and models. RAMS is a flexible modular system that can be focused on targeted risk analysis needs. It is specifically designed to address risks associated with overall strategy, technical alternative, and `what if` questions regarding the Hanford cleanup mission. RAMS is set up to address both near-term and long-term risk issues. Consistency is very important for any comparative risk analysis, and RAMS is designed to efficiently and consistently compare risks and produce risk reduction estimates. There is a wide range of output information that can be generated by RAMS. These outputs can be detailed by individual contaminants, waste forms, transport pathways, exposure scenarios, individuals, populations, etc. However, they can also be in rolled-up form to support high-level strategy decisions.

  4. INVESTIGATION OF THE POTENTIAL FOR CAUSTIC STRESS CORROSION CRACKING OF A537 CARBON STEEL NUCLEAR WASTE TANKS

    SciTech Connect (OSTI)

    Lam, P.

    2009-10-15T23:59:59.000Z

    The evaporator recycle streams contain waste in a chemistry and temperature regime that may be outside of the current waste tank corrosion control program, which imposes temperature limits to mitigate caustic stress corrosion cracking (CSCC). A review of the recent service history (1998-2008) of Tanks 30 and 32 showed that these tanks were operated in highly concentrated hydroxide solution at high temperature. Visual inspections, experimental testing, and a review of the tank service history have shown that CSCC has occurred in uncooled/un-stress relieved F-Area tanks. Therefore, for the Type III/IIIA waste tanks the efficacy of the stress relief of welding residual stress is the only corrosion-limiting mechanism. The objective of this experimental program is to test carbon steel small scale welded U-bend specimens and large welded plates (12 x 12 x 1 in.) in a caustic solution with upper bound chemistry (12 M hydroxide and 1 M each of nitrate, nitrite, and aluminate) and temperature (125 C). These conditions simulate worst-case situations in Tanks 30 and 32. Both as-welded and stress-relieved specimens have been tested. No evidence of stress corrosion cracking was found in the U-bend specimens after 21 days of testing. The large plate test is currently in progress, but no cracking has been observed after 9 weeks of immersion. Based on the preliminary results, it appears that the environmental conditions of the tests are unable to develop stress corrosion cracking within the duration of these tests.

  5. a32 modular polyketide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing. Gualdi, Giulia; Illuminati, Fabrizio 2010-01-01 6 Modular Entanglement...

  6. Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost High Energy Exhaust Heat Thermoelectric Generator with Closed-Loop Exhaust By-Pass System Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with...

  7. Small Modular Reactors Presentation to Secretary of Energy Advisory...

    Office of Environmental Management (EM)

    of Energy Advisory Board - Deputy Assistant Secretary John Kelly DOE Small Modular Reactor Program (SMR) Research, Development & Deployment (RD&D) to enable the deployment of a...

  8. Modular Process Equipment for Low Cost Manufacturing of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic...

  9. Demand Side Management in Rangan Banerjee

    E-Print Network [OSTI]

    Banerjee, Rangan

    Demand Side Management in Industry Rangan Banerjee Talk at Baroda in Birla Corporate Seminar August 31,2007 #12;Demand Side Management Indian utilities ­ energy shortage and peak power shortage. Supply for Options ­ Demand Side Management (DSM) & Load Management #12;DSM Concept Demand Side Management (DSM) - co

  10. Shifting responsibly: the importance of striatal modularity to reinforcement learning in uncertain environments

    E-Print Network [OSTI]

    Amemori, Ken-ichi

    We propose here that the modular organization of the striatum reflects a context-sensitive modular learning architecture in which clustered striosome–matrisome domains participate in modular reinforcement learning (RL). ...

  11. Caustic Leaching of SRS Tank 12H Sludge With and Without Chelating Agents

    SciTech Connect (OSTI)

    Spencer, B.B.

    2003-04-30T23:59:59.000Z

    The primary objective of this study was to measure the effect of adding triethanolamine (TEA) to caustic leaching solutions to improve the solubility of aluminum in actual tank-waste sludge. High-level radioactive waste sludge that had a high aluminum assay was used for the tests. This waste, which originated with the processing of aluminum-clad/aluminum-alloy fuels, generates high levels of heat because of the high {sup 90}Sr concentration and contains hard-to-dissolve boehmite phases. In concept, a chelating agent, such as TEA, can both improve the dissolution rate and increase the concentration in the liquid phase. For this reason, TEA could also increase the solubility of other sludge components that are potentially problematic to downstream processing. Tests were conducted to determine if this were the case. Because of its relatively high vapor pressure, process design should include methods to minimize losses of the TEA. Sludge was retrieved from tank 12H at the Savannah River Site by on-site personnel, and then shipped to Oak Ridge National Laboratory for the study. The sludge contained a small quantity of rocky debris. One slate-like flat piece, which had approximate dimensions of 1 1/4 x 1/2 x 1/8 in., was recovered. Additional gravel-like fragments with approximate diameters ranging from 1/8 to 1/4 in. were also recovered by sieving the sludge slurry through a 1.4-mm square-pitch stainless steel mesh. These particles ranged from a yellow quartz-like material to grey-colored gravel. Of the 32.50 g of sludge received, the mass of the debris was only 0.89 g, and the finely divided sludge comprised {approx}97% of the mass. The sludge was successfully subdivided into uniform aliquots during hot-cell operations. Analytical measurements confirmed the uniformity of the samples. The smaller sludge samples were then used as needed for leaching experiments conducted in a glove box. Six tests were performed with leachate concentrations ranging from 0.1 to 3.0 m NaOH, 0 to 3.0 m TEA and 0 to 2.9 m NaNO{sub 3}. Figure ES.1 illustrates the leaching of aluminum in all six tests. One test was performed at an operating temperature of 80 C to obtain baseline data, and the remaining five tests were all performed at 60 C. A leaching solution of 3.0 m NaOH was used for the test performed at 80 C and for one of the tests performed at 60 C. These results indicated that more aluminum entered the solution at the higher temperature, though equilibrium was achieved at both temperatures within {approx}10 days. The addition of TEA significantly increased the concentration of aluminum in the leachate, and the concentration continued to increase even after 11 days of processing. The fraction of aluminum dissolved at 60EC increased from {approx}35% using 3.0 m NaOH alone to {approx}87% using a combination of 3.0 m NaOH and 3.0 m TEA. The high-nitrate, low-hydroxide solutions did not significantly dissolve the aluminum, because aluminate ion could not be produced. A small addition of TEA had no effect on this process. The use of TEA also increased the solubility of some other sludge components. The fractions of copper, nickel, and iron that were dissolved increased to 72, 13, and 52%, respectively. However, the original fractions of these metals were only 0.055, 0.72, and 3.1%, respectively, of the dry mass of the sludge and therefore represent minor constituents. The presence of nickel in the leachate did have a dramatic effect on its color, which changed from light yellow to deep green as the nickel concentration increased. By comparison, the baseline leaching with 3.0 m NaOH at 60 C removed {approx}14% of the copper; iron and nickel were below the detectable limit.

  12. CX-012578: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Actinide Removal and Extraction-Scrub-Strip (ESS) Testing for Modular Caustic-side Solvent Extraction (MCU) Support (SB8) CX(s) Applied: B3.6Date: 41850 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  13. Performance Evaluation for Modular, Scalable Overhead Cooling Systems In Data Centers

    E-Print Network [OSTI]

    Xu, TengFang T.

    2009-01-01T23:59:59.000Z

    Scalable Overhead Cooling Systems In Data Centers FinalFOR MODULAR, SCALABLE OVERHEAD COOLING SYSTEMS IN DATATHE CHARACTERISTICS OF MODULAR, SCALABLE COOLING SYSTEMS AND

  14. Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers

    E-Print Network [OSTI]

    Adams, Barbara J

    2009-01-01T23:59:59.000Z

    Modular, Scalable Cooling Systems with Hot Aisle ContainmentMODULAR, SCALABLE COOLING SYSTEMS WITH HOT AISLE CONTAINMENTINFORMATION ON THE CHARACTERISTICS OF COOLING SYSTEMS AND

  15. Nucleic acid amplification using modular branched primers

    DOE Patents [OSTI]

    Ulanovsky, Levy (Westmont, IL)

    2001-01-01T23:59:59.000Z

    Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

  16. Modular power converter having fluid cooled support

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-09-06T23:59:59.000Z

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  17. Modular power converter having fluid cooled support

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-12-06T23:59:59.000Z

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  18. Modular fuel-cell stack assembly

    DOE Patents [OSTI]

    Patel, Pinakin (Danbury, CT); Urko, Willam (West Granby, CT)

    2008-01-29T23:59:59.000Z

    A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.

  19. Honeywell Modular Automation System Computer Software Documentation

    SciTech Connect (OSTI)

    STUBBS, A.M.

    2000-12-04T23:59:59.000Z

    The purpose of this Computer Software Document (CSWD) is to provide configuration control of the Honeywell Modular Automation System (MAS) in use at the Plutonium Finishing Plant (PFP). This CSWD describes hardware and PFP developed software for control of stabilization furnaces. The Honeywell software can generate configuration reports for the developed control software. These reports are described in the following section and are attached as addendum's. This plan applies to PFP Engineering Manager, Thermal Stabilization Cognizant Engineers, and the Shift Technical Advisors responsible for the Honeywell MAS software/hardware and administration of the Honeywell System.

  20. Toward Infusing Modular and Reflective Design Learning throughout the Curriculum

    E-Print Network [OSTI]

    Georgas, John

    Toward Infusing Modular and Reflective Design Learning throughout the Curriculum John C. Georgas intervention that cen- ters on the widespread infusion of design learning throughout the curriculum using: An emphasis on broadly infusing design learning through the curriculum using modular design challenges

  1. Modular Quantum Memories Using Passive Linear Optics and Coherent Feedback

    E-Print Network [OSTI]

    Modular Quantum Memories Using Passive Linear Optics and Coherent Feedback Hendra I. Nurdin photon pulsed optical field has a conceptually simple modular realization using only passive linear optics and coherent feedback. We exploit the idea that two decaying optical cavities can be coupled

  2. SUMMARY-BASED POINTER ANALYSIS FRAMEWORK FOR MODULAR BUG FINDING

    E-Print Network [OSTI]

    SUMMARY-BASED POINTER ANALYSIS FRAMEWORK FOR MODULAR BUG FINDING Marcio O. Buss Submitted of Arts and Sciences COLUMBIA UNIVERSITY 2007 #12;c 2007 Marcio O. Buss All Rights Reserved #12;ABSTRACT SUMMARY-BASED POINTER ANALYSIS FRAMEWORK FOR MODULAR BUG FINDING Marcio O. Buss Modern society

  3. Supply Chain Networks, Electronic Commerce, and Supply Side and Demand Side Risk

    E-Print Network [OSTI]

    Nagurney, Anna

    Supply Chain Networks, Electronic Commerce, and Supply Side and Demand Side Risk Anna Nagurney as well as demand side risk are included in the formulation. The model consists of three tiers of decision chain network equilibrium model with electronic com- merce and with supply side and demand side risk

  4. Modular control of fusion power heating applications

    SciTech Connect (OSTI)

    Demers, D. R.

    2012-08-24T23:59:59.000Z

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

  5. Modularity of Directed Networks: Cycle Decomposition Approach

    E-Print Network [OSTI]

    Natasa Djurdjevac Conrad; Ralf Banisch; Christof Schütte

    2014-07-31T23:59:59.000Z

    The problem of decomposing networks into modules (or clusters) has gained much attention in recent years, as it can account for a coarse-grained description of complex systems, often revealing functional subunits of these systems. A variety of module detection algorithms have been proposed, mostly oriented towards finding hard partitionings of undirected networks. Despite the increasing number of fuzzy clustering methods for directed networks, many of these approaches tend to neglect important directional information. In this paper, we present a novel random walk based approach for finding fuzzy partitions of directed, weighted networks, where edge directions play a crucial role in defining how well nodes in a module are interconnected. We will show that cycle decomposition of a random walk process connects the notion of network modules and information transport in a network, leading to a new, symmetric measure of node communication. walk process, for which we will prove that although being time-reversible it inherits all necessary information about directions and modular structure of the original network. Finally, we will use this measure to introduce a communication graph, for which we will show that although being undirected it inherits all necessary information about modular structures from the original network.

  6. Metastring Theory and Modular Space-time

    E-Print Network [OSTI]

    Laurent Freidel; Robert G. Leigh; Djordje Minic

    2015-02-27T23:59:59.000Z

    String theory is canonically accompanied with a space-time interpretation which determines S-matrix-like observables, and connects to the standard physics at low energies in the guise of local effective field theory. Recently, we have introduced a reformulation of string theory which does not rely on an {\\it a priori} space-time interpretation or a pre-assumption of locality. This \\hlt{metastring theory} is formulated in such a way that stringy symmetries (such as T-duality) are realized linearly. In this paper, we study metastring theory on a flat background and develop a variety of technical and interpretational ideas. These include a formulation of the moduli space of Lorentzian worldsheets, a careful study of the symplectic structure and consequently consistent closed and open boundary conditions, and the string spectrum and operator algebra. What emerges from these studies is a new quantum notion of space-time that we refer to as a quantum Lagrangian or equivalently a \\hlt{modular space-time}. This concept embodies the standard tenets of quantum theory and implements in a precise way a notion of {relative locality}. The usual string backgrounds (non-compact space-time along with some toroidally compactified spatial directions) are obtained from modular space-time by a limiting procedure that can be thought of as a correspondence limit.

  7. Water washes and caustic leaches of sludge from Hanford Tank S-101 and water washes of sludge from Hanford Tank C-103

    SciTech Connect (OSTI)

    Hunt, R.D.; Collins, J.L.; Chase, C.W.

    1998-07-01T23:59:59.000Z

    In 1993, the Department of Energy (DOE) selected the enhanced sludge washing (ESW) process as the baseline for pretreatment of Hanford tank sludges. The ESW process uses a series of water washes and caustic leaches to separate nonradioactive components such as aluminum, chromium, and phosphate from the high-level waste sludges. If the ESW process is successful, the volume of immobilized high-level waste will be significantly reduced. The tests on the sludge from Hanford Tank S-101 focused on the effects of process variables such as sodium hydroxide concentration (1 and 3 M), temperature (70 and 95 C), and leaching time (5, 24, 72, and 168 h) on the efficacy of the ESW process with realistic liquid-to-solid ratios. Another goal of this study was to evaluate the effectiveness of water washes on a sludge sample from hanford Tank C-103. The final objective of this study was to test potential process control monitors during the water washes and caustic leaches with actual sludge. Both {sup 137}Cs activity and conductance were measured for each of the water washes and caustic leaches. Experimental procedures, a discussion of results, conclusions and recommendations are included in this report.

  8. Dark Energy: Taking SidesDark Energy: Taking SidesDark Energy: Taking Sides The University of Chicago

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    Dark Energy: Taking SidesDark Energy: Taking SidesDark Energy: Taking Sides Rocky Kolb Barocky The University of Chicago #12;#12; Cold Dark Matter: (CDM) 25% Dark Energy (): 70% Stars: 0.5% H & He: gas 4 For Dark EnergyEvidence For Dark EnergyEvidence For Dark Energy 3) Baryon acoustic oscillations 4) Weak

  9. Demand Side Bidding. Final Report

    SciTech Connect (OSTI)

    Spahn, Andrew

    2003-12-31T23:59:59.000Z

    This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

  10. "Regulatory Side-by-Side Governing Permitting of Cross-Border...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Cross-Border Electricity Transmission Facilities between the United States and Canada" Now Available "Regulatory Side-by-Side Governing Permitting of Cross-Border...

  11. Valuing modular nuclear power plants in finite time decision horizon Shashi Jain a,b,

    E-Print Network [OSTI]

    Oosterlee, Cornelis W. "Kees"

    into account the value of flexibility arising due to modular construction, which traditional valuation methods

  12. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOE Patents [OSTI]

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

    1998-04-21T23:59:59.000Z

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

  13. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Dederer, Jeffrey T. (Valencia, PA); Zafred, Paolo R. (Pittsburgh, PA); Collie, Jeffrey C. (Pittsburgh, PA)

    1998-01-01T23:59:59.000Z

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

  14. Definition of Systematic, Approximately Separable and Modular Internal Coordinates (SASMIC) for macromolecular simulation

    E-Print Network [OSTI]

    Pablo Echenique; J. L. Alonso

    2006-12-04T23:59:59.000Z

    A set of rules is defined to systematically number the groups and the atoms of organic molecules and, particularly, of polypeptides in a modular manner. Supported by this numeration, a set of internal coordinates is defined. These coordinates (termed Systematic, Approximately Separable and Modular Internal Coordinates, SASMIC) are straightforwardly written in Z-matrix form and may be directly implemented in typical Quantum Chemistry packages. A number of Perl scripts that automatically generate the Z-matrix files for polypeptides are provided as supplementary material. The main difference with other Z-matrix-like coordinates normally used in the literature is that normal dihedral angles (``principal dihedrals'' in this work) are only used to fix the orientation of whole groups and a somewhat non-standard type of dihedrals, termed ``phase dihedrals'', are used to describe the covalent structure inside the groups. This physical approach allows to approximately separate soft and hard movements of the molecule using only topological information and to directly implement constraints. As an application, we use the coordinates defined and ab initio quantum mechanical calculations to assess the commonly assumed approximation of the free energy, obtained from ``integrating out'' the side chain degree of freedom chi, by the Potential Energy Surface (PES) in the protected dipeptide HCO-L-Ala-NH2. We also present a sub-box of the Hessian matrix in two different sets of coordinates to illustrate the approximate separation of soft and hard movements when the coordinates defined in this work are used.

  15. Modular, security enclosure and method of assembly

    DOE Patents [OSTI]

    Linker, Kevin L. (Albuquerque, NM); Moyer, John W. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A transportable, reusable rapidly assembled and disassembled, resizable modular, security enclosure utilizes a stepped panel construction. Each panel has an inner portion and an outer portion which form joints. A plurality of channels can be affixed to selected joints of the panels. Panels can be affixed to a base member and then affixed to one another by the use of elongated pins extending through the channel joints. Alternatively, the base member can be omitted and the panels themselves can be used as the floor of the enclosure. The pins will extend generally parallel to the joint in which they are located. These elongated pins are readily inserted into and removable from the channels in a predetermined sequence to allow assembly and disassembly of the enclosure. A door constructed from panels is used to close the opening to the enclosure.

  16. Generic small modular reactor plant design.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

    2012-12-01T23:59:59.000Z

    This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

  17. Dynamics on modular networks with heterogeneous correlations

    SciTech Connect (OSTI)

    Melnik, Sergey [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland) [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland); Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP (United Kingdom); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom) [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP (United Kingdom); Mucha, Peter J. [Department of Mathematics, Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250 (United States) [Department of Mathematics, Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250 (United States); Institute for Advanced Materials, Nanoscience and Technology, University of North Carolina, Chapel Hill, North Carolina 27599-3216 (United States); Gleeson, James P. [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland)] [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland)

    2014-06-15T23:59:59.000Z

    We develop a new ensemble of modular random graphs in which degree-degree correlations can be different in each module, and the inter-module connections are defined by the joint degree-degree distribution of nodes for each pair of modules. We present an analytical approach that allows one to analyze several types of binary dynamics operating on such networks, and we illustrate our approach using bond percolation, site percolation, and the Watts threshold model. The new network ensemble generalizes existing models (e.g., the well-known configuration model and Lancichinetti-Fortunato-Radicchi networks) by allowing a heterogeneous distribution of degree-degree correlations across modules, which is important for the consideration of nonidentical interacting networks.

  18. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

    1988-01-01T23:59:59.000Z

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  19. Honeywell Modular Automation System Acceptance Test Procedure

    SciTech Connect (OSTI)

    STUBBS, A.M.

    1999-09-21T23:59:59.000Z

    The purpose of this Acceptance Test Procedure (ATP) is to verify the operability of the three new furnaces as controlled by the new Honeywell Modular Automation System (MAS). The Honeywell MAS is being installed in PFP to control the three thermal stabilization furnaces in glovebox HA-211. The ATP provides instructions for testing the configuration of the Honeywell MAS at the Plutonium Finishing Plant(PFP). The test will be a field test of the analog inputs, analog outputs, and software interlocks. The interlock test will check the digital input and outputs. Field equipment will not be connected forth is test. Simulated signals will be used to test thermocouple, limit switch, and vacuum pump inputs to the PLUMAS.

  20. Honeywell modular automation system computer software documentation

    SciTech Connect (OSTI)

    STUBBS, A.M.

    2003-07-02T23:59:59.000Z

    The purpose of this Computer Software Document (CSWD) is to provide configuration control of the Honeywell Modular Automation System (MAS) in use at the Plutonium Finishing Plant (PFP). The Honeywell MAS is used to control the thermal stabilization furnaces in glovebox HA-211. The PFP developed software is being updated to reflect the Polycube Processing and Unwashed Salt Thermal Stabilization program addition. The polycube processing program was installed per HNF-FMP-02-11162-R2. The functional test of the program was performed in JCS work package 22-02-1031, The unwashed salt item program was installed per HNF-FMP-03-16577-RO. The functional test of the program completed in JCS work package 22-03-00654.

  1. Modular, multi-level groundwater sampler

    DOE Patents [OSTI]

    Nichols, Ralph L. (812 Plantation Point Dr., N. Augusta, SC 29841); Widdowson, Mark A. (4204 Havana Ct., Columbia, SC 29206); Mullinex, Harry (10 Cardross La., Columbia, SC 29209); Orne, William H. (12 Martha Ct., Sumter, SC 29150); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

    1994-01-01T23:59:59.000Z

    Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

  2. Focal plane array with modular pixel array components for scalability

    DOE Patents [OSTI]

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09T23:59:59.000Z

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  3. Modular hydride beds for mobile applications

    SciTech Connect (OSTI)

    Malinowski, M.E.; Stewart, K.D.

    1997-08-01T23:59:59.000Z

    Design, construction, initial testing and simple thermal modeling of modular, metal hydride beds have been completed. Originally designed for supplying hydrogen to a fuel cell on a mobile vehicle, the complete bed design consists of 8 modules and is intended for use on the Palm Desert Vehicle (PDV) under development at the Schatz Energy Center, Humbolt State University. Each module contains approximately 2 kg of a commercially available, low temperature, hydride-forming metal alloy. Waste heat from the fuel cell in the form of heated water is used to desorb hydrogen from the alloy for supplying feed hydrogen to the fuel cell. In order to help determine the performance of such a modular bed system, six modules were constructed and tested. The design and construction of the modules is described in detail. Initial testing of the modules both individually and as a group showed that each module can store {approximately} 30 g of hydrogen (at 165 PSIA fill pressure, 17 C), could be filled with hydrogen in 6 minutes at a nominal, 75 standard liters/min (slm) fueling rate, and could supply hydrogen during desorption at rates of 25 slm, the maximum anticipated hydrogen fuel cell input requirement. Tests made of 5 modules as a group indicated that the behavior of the group run in parallel both in fueling and gas delivery could be directly predicted from the corresponding, single module characteristics by using an appropriate scaling factor. Simple thermal modeling of a module as an array of cylindrical, hydride-filled tubes was performed. The predictions of the model are in good agreement with experimental data.

  4. Modular industrial solar retrofit project (MISR)

    SciTech Connect (OSTI)

    Alvis, R.L.

    1980-01-01T23:59:59.000Z

    The intent of this paper is to describe a major Department of Energy (DOE) thrust to bring line-focus solar thermal technology to commercial readiness. This effort is referred to as the MISR Project. The project is based upon the premise that thermal energy is the basic solar thermal system output and that low-temperature, fossil fuel applications are technically the first that should be retrofitted. Experience has shown that modularity in system design and construction offers potential for reducing engineering design costs, reduces manufacturing costs, reduces installation time and expense, and improves system operational reliability. The modular design effort will be sponsored by Sandia National Laboratories with industry doing the final designs. The operational credibility of the systems will be established by allowing selected industrial thermal energy users to purchase MISR systems from suppliers and operate them for two years. Industries will be solicited by DOE/Albuquerque Operations Office to conduct these experiments on a cost sharing basis. The MISR system allowed in the experiments will have been previously qualified for the application. The project is divided into three development phases which represent three design and experiment cycles. The first cycle will use commercially available trough-type solar collectors and will incorporate 5 to 10 experiments of up to 5000 m/sup 2/ of collectors each. The project effort began in March 1980, and the first cycle is to be completed in 1985. Subsequent cycles will begin at 3-year intervals. The project is success oriented, and if the first cycle reaches commercial readiness, the project will be terminated. If not, a second, and possibly a third, development cycle will be conducted.

  5. Human Reliability Analysis for Small Modular Reactors

    SciTech Connect (OSTI)

    Ronald L. Boring; David I. Gertman

    2012-06-01T23:59:59.000Z

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  6. Retroactivity, modularity, and insulation in synthetic biology circuits

    E-Print Network [OSTI]

    Lin, Allen

    2011-01-01T23:59:59.000Z

    A central concept in synthetic biology is the reuse of well-characterized modules. Modularity simplifies circuit design by allowing for the decomposition of systems into separate modules for individual construction. Complex ...

  7. A Multi-Modular Neutronically Coupled Power Generation System

    E-Print Network [OSTI]

    Patel, Vishal

    2012-07-16T23:59:59.000Z

    design and multi-modular approach eliminates engineering challenges associated with large pressure vessels. The subcriticality of the modules ensures inherent safety during construction, transportation, and after decommissioning. Serpent, a continuous...

  8. Constant-Optimized Quantum Circuits for Modular Multiplication and Exponentiation

    E-Print Network [OSTI]

    Igor L. Markov; Mehdi Saeedi

    2015-04-02T23:59:59.000Z

    Reversible circuits for modular multiplication $Cx$%$M$ with $xmodular exponentiation in Shor's quantum number-factoring algorithm. However, existing generic constructions focus on asymptotic gate count and circuit depth rather than actual values, producing fairly large circuits not optimized for specific $C$ and $M$ values. In this work, we develop such optimizations in a bottom-up fashion, starting with most convenient $C$ values. When zero-initialized ancilla registers are available, we reduce the search for compact circuits to a shortest-path problem. Some of our modular-multiplication circuits are asymptotically smaller than previous constructions, but worst-case bounds and average sizes remain $\\Theta(n^2)$. In the context of modular exponentiation, we offer several constant-factor improvements, as well as an improvement by a constant additive term that is significant for few-qubit circuits arising in ongoing laboratory experiments with Shor's algorithm.

  9. Modularity and Commonality Research: Past Developments and Future Opportunities

    E-Print Network [OSTI]

    Fixson, Sebastian K.

    2007-04-20T23:59:59.000Z

    Research on modularity and commonality has grown substantially over the past 15 years. Searching 36 journals over more than the past 35 years, I identify over 160 references in the engineering and management literature ...

  10. Detecting complex network modularity by dynamical clustering S. Boccaletti,1

    E-Print Network [OSTI]

    Aickelin, Uwe

    , 50019 Sesto Fiorentino (FI), Italy and the Italian Embassy in Tel Aviv, Trade Tower, 25 Hamered Street, 87.18.Sn, 89.65.Ef Hierarchical modular structures constitute one of the most important properties

  11. Analysis of Modular Arithmetic Markus Muller-Olm1

    E-Print Network [OSTI]

    MĂźller-Olm, Markus

    Analysis of Modular Arithmetic Markus M¨uller-Olm1 and Helmut Seidl2 1 Universit¨at Dortmund, Fachbereich Informatik, LS 5 Baroper Str. 301, 44221 Dortmund, Germany markus.mueller-olm@cs.uni-dortmund.de 2

  12. The Evolution of a Modular Software Network Miguel A. Fortuna

    E-Print Network [OSTI]

    Fortuna, Miguel A.

    The Evolution of a Modular Software Network Miguel A. Fortuna , Juan A. Bonachela, and Simon A the website of this journal as a zip folder. To whom correspondence should be addressed. E-mail: fortuna

  13. Computational Analysis of Fluid Flow in Pebble Bed Modular Reactor

    E-Print Network [OSTI]

    Gandhir, Akshay

    2012-10-19T23:59:59.000Z

    High Temperature Gas-cooled Reactor (HTGR) is a Generation IV reactor under consideration by Department of Energy and in the nuclear industry. There are two categories of HTGRs, namely, Pebble Bed Modular Reactor (PBMR) and Prismatic reactor. Pebble...

  14. Modularity in design of the MIT Pebble Bed Reactor

    E-Print Network [OSTI]

    Berte, Marc Vincent, 1977-

    2004-01-01T23:59:59.000Z

    The future of new nuclear power plant construction will depend in large part on the ability of designers to reduce capital, operations, and maintenance costs. One of the methods proposed, is to enhance the modularity of ...

  15. Cartwright on Causality: Methods, Metaphysics, and Modularity Daniel Steel

    E-Print Network [OSTI]

    Steel, Daniel

    Cartwright on Causality: Methods, Metaphysics, and Modularity Daniel Steel Department of Philosophy 503 S Kedzie Hall Michigan State University East Lansing, MI 48824-1032 USA Email: steel@msu.edu #12

  16. Modular ‘Click-in-Emulsion’ Bone-Targeted Nanogels

    E-Print Network [OSTI]

    Heller, Daniel A.

    A new class of nanogel demonstrates modular biodistribution and affinity for bone. Nanogels, ~70 nm in diameter and synthesized via an astoichiometric click-chemistry in-emulsion method, controllably display residual, free ...

  17. A MODULAR ACTUATOR ARCHITECTURE FOR ROBOTIC APPLICATIONS

    SciTech Connect (OSTI)

    None

    2001-07-01T23:59:59.000Z

    The United States Department of Energy (DOE) Complexes perform numerous hazardous material handling operations within the confines of a glovebox. The DOE is continuing to seek more efficient and safer means of handling these materials inside gloveboxes rather than the conventional, labor-intensive method through lead lined gloves. The use of glovebox automation technology will also be critical to the DOE in its efforts to comply with its mandated ALARA principles in handling the hazardous materials associated with the cleanup process. Operations associated with materials processing in a glovebox are similar to many industrial tasks, but the unique glovebox environment and Plutonium material properties create a unique set of challenges for conventional automation machinery. Such properties include: Low to moderate levels of ionizing radiation, high abrasiveness, corrosiveness, pyrophoric tendencies, rapid dispersal and permeation of environment, diffuses quickly, and possible incompatible material interaction. The glovebox presents the following challenges: existing gloveboxes may not be readily altered or even modified at all, complex mechanical operations for maintenance and repair are difficult or impossible through gloves, failed equipment may not be removed easily or at all. If a broken piece of equipment cannot be bagged-out through a glove port (approximately 216 mm (8 1/2 inch) diameter) it must remain in place. Broken equipment obstructs further operations. If it renders the entire glovebox unusable, a significant volume of waste is generated and an expensive system must be disposed of and replaced. A moderate sized glovebox alone costs between $250,000 and $500,000 and an equipment malfunction, which penetrates the glovebox and exposes the room to Plutonium or other toxic materials, is catastrophic. In addition to the human exposure issues, cleanup can easily run into the millions of dollars. A solution to the issues described above is ARM Automation Inc.'s (ARM) modular robotic manipulator technology developed for DOE EM operations, which addresses many of the issues discussed in the previous section. This manipulator system has the capability of custom configurations, which accommodate common glovebox tasks such as materials repackaging. The modular nature and quick connects of this system simplify installations into ''hot'' boxes and any potential modifications or repair therein. In the field of automation and robotics, a very common element is one used to generate motion for precise positioning of loads. One example of such an automation component would be an individual joint within an industrial robotic manipulator. This component consists of a tightly integrated package containing an electric motor, gear train, output support bearings, position sensors, brake, servo-amplifier and communications controller. Within the context of this paper, this key building block is referred to as an actuator module. With regard to the needs of the EM, [8] and [9] have shown that while each focus area has unique requirements for robotic automation at a system or manipulator level, their requirements at the actuator level are very similar. Thereby, a modular approach to automation which utilizes a small set of versatile actuator modules can be used to construct a broad range of robotic systems and automation cells suited to EM applications. By providing a pre-engineered, pre-integrated motion system to different robotics users within the DOE, new automation systems can be more quickly created without extensive expertise in motion control or the expense of building custom equipment.

  18. Efficient clustered server-side data analysis workflows using SWAMP

    E-Print Network [OSTI]

    Wang, Daniel L; Zender, Charles S; Jenks, Stephen F

    2009-01-01T23:59:59.000Z

    CS, Jenks SF (2007) Server-side parallel data reduction andEfficient clustered server-side data analysis workflowssystem provides safe server-side process- ing capabilities

  19. Industrial Demand-Side Management in Texas

    E-Print Network [OSTI]

    Jaussaud, D.

    of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

  20. DAB, South Side, ODH Analysis

    SciTech Connect (OSTI)

    Michael, J.; Mulholland, G.T.; /Fermilab

    1990-01-03T23:59:59.000Z

    This report covers the ODH concerns of the south side of the D0 Assembly Building. from the bottom (el. 700-feet) to the top (774-feet 6-inches). volume by volume. Each volume is covered in its own section. with each section broken down into three parts. The first is a description of the volume. including its function. dimensions. and all relative ODH concerns; cryogenic piping and ventilation. Second. the actual ODH analysis of the volume is shown. Third. the provisions for the ODH condition of the volume are detailed. including securing the area and the posting of signs. The liquid argon dewar room is at an elevation of 701-feet 6-inch (38-feet underground), with the dewar surrounded by 7700 cubic feet of air. The area is accessible only through a single door. which has a small window and a lock (lock out only). There is small metal scaffolding in front of the dewar to facilitate maintenance and U-tube pulling and installation. The room is directly on top of the Pipe Chase Well and the Cryo Sump, and the bottom of the Stairway is just outside the door. The dewar is designed to be completely operated by remote computer control and the area will be unmanned during normal operation. Room occupancy will occur only during dewar or central control junction box maintenance, or U-tube changes. The dewar has these additions to it: 20 valves, 10 bayonet connections (or 5 U-tubes), 8 bolted flanges, 100 pipe sections (approx.). 100 brazed joints and welds (approx.). and 10 pipe elbows. In addition, 3 of the U-tubes will be changed twice a year on average.

  1. Caustic stress corrosion cracking of E-Brite and Carpenter 7-MO stainless steels welded to Nickel 200 and Inconel 600 

    E-Print Network [OSTI]

    Stockman, Steven Miles

    1982-01-01T23:59:59.000Z

    -Brite and Carpenter 7-MO Stainless Steels Welded to Nickel 200 and Znconel 600~ (December 1982) Steven Miles Stockman, B. S ~ , Texas AgM University Chairman of Advisory Committee: Dr, R. B. Griffin Samples of E-Brite stainless steel and Carpenter 7-MO stainless... steel, each welded separatelv to Nickel 200 and Inconel 600, were teated for stress corrosion cracking in caus- tic supplied by Dow Chemical of Freeport, Texas, The V-bend type of specimen was tested in the caustic at room temperature, 60C and 800...

  2. Modular Countermine Payload for Small Robots

    SciTech Connect (OSTI)

    Herman Herman; Doug Few; Roelof Versteeg; Jean-Sebastien Valois; Jeff McMahill; Michael Licitra; Edward Henciak

    2010-04-01T23:59:59.000Z

    Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multi-mission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.

  3. Metastring Theory and Modular Space-time

    E-Print Network [OSTI]

    Freidel, Laurent; Minic, Djordje

    2015-01-01T23:59:59.000Z

    String theory is canonically accompanied with a space-time interpretation which determines S-matrix-like observables, and connects to the standard physics at low energies in the guise of local effective field theory. Recently, we have introduced a reformulation of string theory which does not rely on an {\\it a priori} space-time interpretation or a pre-assumption of locality. This \\hlt{metastring theory} is formulated in such a way that stringy symmetries (such as T-duality) are realized linearly. In this paper, we study metastring theory on a flat background and develop a variety of technical and interpretational ideas. These include a formulation of the moduli space of Lorentzian worldsheets, a careful study of the symplectic structure and consequently consistent closed and open boundary conditions, and the string spectrum and operator algebra. What emerges from these studies is a new quantum notion of space-time that we refer to as a quantum Lagrangian or equivalently a \\hlt{modular space-time}. This conce...

  4. Modular, multi-level groundwater sampler

    DOE Patents [OSTI]

    Nichols, R.L.; Widdowson, M.A.; Mullinex, H.; Orne, W.H.; Looney, B.B.

    1994-03-15T23:59:59.000Z

    An apparatus is described for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations. 3 figures.

  5. Modular HTGR Safety Basis and Approach

    SciTech Connect (OSTI)

    Thomas Hicks

    2011-08-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) capable of producing electricity and/or high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) process, as recommended in the NGNP Licensing Strategy - A Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy [DOE/NRC 2008]. Nuclear Regulatory Commission (NRC) licensing of the NGNP plant utilizing this process will demonstrate the efficacy for licensing future HTGRs for commercial industrial applications. This information paper is one in a series of submittals that address key generic issues of the priority licensing topics as part of the process for establishing HTGR regulatory requirements. This information paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach with the NRC staff and public stakeholders. The NGNP project does not expect to receive comments on this information paper because other white papers are addressing key generic issues of the priority licensing topics in greater detail.

  6. Proliferation resistance of small modular reactors fuels

    SciTech Connect (OSTI)

    Polidoro, F.; Parozzi, F. [RSE - Ricerca sul Sistema Energetico,Via Rubattino 54, 20134, Milano (Italy); Fassnacht, F.; Kuett, M.; Englert, M. [IANUS, Darmstadt University of Technology, Alexanderstr. 35, D-64283 Darmstadt (Germany)

    2013-07-01T23:59:59.000Z

    In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

  7. Modular framization of the BMW algebra

    E-Print Network [OSTI]

    Juyumaya, Jesus

    2010-01-01T23:59:59.000Z

    In this work we introduce the concept of Modular Framization or simply Framization. We construct a framization $F_{d,n}$ of the Birman--Wenzl--Murakami algebra, also known as BMW algebra, and start a systematic study of this framization. We show that $F_{d,n}$ is finite dimensional and the \\lq braid generators\\rq\\ of this algebra satisfy a quartic relation which is of minimal degree not containing the generators $t_i$. They also satisfy a quintic relation, as the smallest closed relation. We conjecture that the algebras $F_{d,n}$ support a Markov trace which allow to define polynomial invariants for unoriented knots in an analogous way that the Kauffman polynomial is derived from the BMW algebra. The idea originates from the Yokonuma--Hecke algebra, built from the classical Hecke algebra by adding framing generators and changing the Hecke algebra quadratic relation by a new quadratic relation which involves the framing generators. Using the Yokonuma--Hecke algebras and a Markov trace constructed on them\\cite{...

  8. Budget Adjustment Single Sided Budget Adjustment

    E-Print Network [OSTI]

    Stephens, Graeme L.

    Budget Adjustment & Single Sided Budget Adjustment WELCOME! #12;Accessing Kuali ˇ Campus://busfin.colostate.edu #12;What will be covered today? ˇ When should I use a Budget Adjustment (BA) or Single Sided Budget ˇ Error correction ˇ Onesided vs. singlesided entries #12;When to use a Budget Adjustment ˇ How do I know

  9. Side-emitting fiber optic position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2008-02-12T23:59:59.000Z

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  10. Floating LNG terminal and LNG carrier interaction analysis for side-by-side offloading operation

    E-Print Network [OSTI]

    Kuriakose, Vinu P.

    2005-11-01T23:59:59.000Z

    Floating LNG terminals are a relatively new concept with the first such terminal in the world installed this year. The hydrodynamic interaction effects between the terminal and a LNG carrier in a side-by-side offloading arrangement is investigated...

  11. Back-side readout semiconductor photomultiplier

    DOE Patents [OSTI]

    Choong, Woon-Seng; Holland, Stephen E

    2014-05-20T23:59:59.000Z

    This disclosure provides systems, methods, and apparatus related to semiconductor photomultipliers. In one aspect, a device includes a p-type semiconductor substrate, the p-type semiconductor substrate having a first side and a second side, the first side of the p-type semiconductor substrate defining a recess, and the second side of the p-type semiconductor substrate being doped with n-type ions. A conductive material is disposed in the recess. A p-type epitaxial layer is disposed on the second side of the p-type semiconductor substrate. The p-type epitaxial layer includes a first region proximate the p-type semiconductor substrate, the first region being implanted with p-type ions at a higher doping level than the p-type epitaxial layer, and a second region disposed on the first region, the second region being doped with p-type ions at a higher doping level than the first region.

  12. AIAA 2002-3298 AERODYNAMICS OF TWO SIDE-BY-SIDE PLATES IN HYPERSONIC

    E-Print Network [OSTI]

    Riabov, Vladimir V.

    AIAA 2002-3298 AERODYNAMICS OF TWO SIDE-BY-SIDE PLATES IN HYPERSONIC RAREFIED-GAS FLOWS Vladimir V. Riabov* Rivier College, Nashua, New Hampshire 03060 Abstract Hypersonic rarefied-gas flows near two side transitional rarefied-gas-flow conditions (Knudsen numbers from 0.024 to 1.8). Strong influences

  13. Modular Power Converters for PV Applications

    SciTech Connect (OSTI)

    Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2012-05-01T23:59:59.000Z

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need for detailed design of new power converters for each new application or installation. One set of modules and controllers can be pre-developed and the only design question would be how many modules need to be in series or parallel for the specific power requirement. Then, a designer can put the modules together and add the intelligent reconfigurable controller. The controller determines how many modules are connected, but it might also ask for user input for the specific application during setup. The modules include protection against faults and can reset it, if necessary. In case of a power device failure, the controller reconfigures itself to continue limited operation until repair which might be as simple as taking the faulty module out and inserting a new module. The result is cost savings in design, maintenance, repair, and a grid that is more reliable and available. This concept would be a perfect fit for the recently announced funding opportunity announcement (DE-FOA-0000653) on Plug and Play Photovoltaics.

  14. Manufacturing Development of the NCSX Modular Coil Windings

    SciTech Connect (OSTI)

    Chrzanowsk, J. H.; Fogarty, P. J.; Heitzenroeder, P. J.; Meighan, T.; Nelson, B.; Raftopoulos, S.; Williamson, D.

    2005-09-27T23:59:59.000Z

    The modular coils on the National Compact Stellarator Experiment (NCSX) present a number of significant engineering challenges due to their complex shapes, requirements for high dimensional accuracy and the high current density required in the modular coils due to space constraints. In order to address these challenges, an R&D program was established to develop the conductor, insulation scheme, manufacturing techniques, and procedures. A prototype winding named Twisted Racetrack Coil (TRC) was of particular importance in dealing with these challenges. The TRC included a complex shaped winding form, conductor, insulation scheme, leads and termination, cooling system and coil clamps typical of the modular coil design. Even though the TRC is smaller in size than a modular coil, its similar complex geometry provided invaluable information in developing the final design, metrology techniques and development of manufacturing procedures. In addition a discussion of the development of the copper rope conductor including "Keystoning" concerns; the epoxy impregnation system (VPI) plus the tooling and equipment required to manufacture the modular coils will be presented.

  15. What exactly is Product Modularity? The answer depends on who you ask

    E-Print Network [OSTI]

    Fixson, Sebastian K.

    2007-04-20T23:59:59.000Z

    'Product modularity' has recently experienced a significant increase in interest in the academic literature. While the concept of product modularity is used across a wide range of academic research areas, substantial ...

  16. Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers

    E-Print Network [OSTI]

    Xu, TengFang

    2009-01-01T23:59:59.000Z

    the modular liquid cooling system with varying supply waterinlet supply air temperature, while modular system coolingcooling needed (up to 9.8 kW/rack) at various supply water

  17. Advancing Small Modular Reactors: How We're Supporting Next-Gen...

    Energy Savers [EERE]

    Nuclear Energy Technology Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology December 12, 2013 - 4:00pm Addthis The basics of small modular...

  18. A Network Approach to Define Modularity of Components in Complex Products

    E-Print Network [OSTI]

    Sosa, Manuel E.

    Modularity has been defined at the product and system levels. However, little effort has gone into defining and quantifying modularity at the component level. We consider complex products as a network of components that ...

  19. Clearwater: Extensible, Flexible, Modular Code Generation Galen S. Swint, Calton Pu,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Clearwater: Extensible, Flexible, Modular Code Generation Galen S. Swint, Calton Pu, Gueyoung Jung address the challenge of implementing code generators for two such DSLs that are flexible (resilient [4]. However, significant research challenges remain for generating flexible, reusable, and modular

  20. Modular Coils and Plasma Configurations for Quasi-axisymmetric Stellarators

    SciTech Connect (OSTI)

    L.P. Ku and A.H. Boozer

    2010-09-10T23:59:59.000Z

    Characteristics of modular coils for quasi-axisymmetric stellarators that are related to the plasma aspect ratio, number of field periods and rotational transform have been examined systematically. It is observed that, for a given plasma aspect ratio, the coil complexity tends to increase with the increased number of field periods. For a given number of field periods, the toroidal excursion of coil winding is reduced as the plasma aspect ratio is increased. It is also clear that the larger the coil-plasma separation is, the more complex the coils become. It is further demonstrated that it is possible to use other types of coils to complement modular coils to improve both the physics and the modular coil characteristics.

  1. Caustic Recovery Technology

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment ofSystems AreStorageof Energy

  2. Modularity, quaternion-Kähler spaces, and mirror symmetry

    SciTech Connect (OSTI)

    Alexandrov, Sergei; Banerjee, Sibasish [Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier (France)] [Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier (France)

    2013-10-15T23:59:59.000Z

    We provide an explicit twistorial construction of quaternion-Kähler manifolds obtained by deformation of c-map spaces and carrying an isometric action of the modular group SL(2,Z). The deformation is not assumed to preserve any continuous isometry and therefore this construction presents a general framework for describing NS5-brane instanton effects in string compactifications with N= 2 supersymmetry. In this context the modular invariant parametrization of twistor lines found in this work yields the complete non-perturbative mirror map between type IIA and type IIB physical fields.

  3. The Langlands Program and String Modular K3 Surfaces

    E-Print Network [OSTI]

    Rolf Schimmrigk

    2006-03-29T23:59:59.000Z

    A number theoretic approach to string compactification is developed for Calabi-Yau hypersurfaces in arbitrary dimensions. The motivic strategy involved is illustrated by showing that the Hecke eigenforms derived from Galois group orbits of the holomorphic two-form of a particular type of K3 surfaces can be expressed in terms of modular forms constructed from the worldsheet theory. The process of deriving string physics from spacetime geometry can be reversed, allowing the construction of K3 surface geometry from the string characters of the partition function. A general argument for K3 modularity follows from mirror symmetry, in combination with the proof of the Shimura-Taniyama conjecture.

  4. Modular high speed counter employing edge-triggered code

    DOE Patents [OSTI]

    Vanstraelen, G.F.

    1993-06-29T23:59:59.000Z

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a 0'' to 1'' transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  5. The Los Alamos VXI-based modular RF control system

    SciTech Connect (OSTI)

    Jachim, S.P.; Ziomek, C.; Natter, E.F.; Regan, A.H.; Hill, J.; Eaton, L.; Gutscher, W.D.; Curtin, M.; Denney, P.; Hansberry, E.; Brooks, T.

    1993-01-01T23:59:59.000Z

    This paper describes the design and implementation of the Los Alamos modular RF control system, which provides high-performance feedback and/or feedforward control of RF accelerator cavities. This is a flexible, modular control system which has been realized in the industry-standard VXI cardmodular format. A wide spectrum of system functionality can be accommodated simply by incorporating only those modules and features required for a particular application. The fundamental principles of the design approach are discussed. Details of the VXI implementation are given, including the system architecture and interfaces, performance capabilities, and available features.

  6. The Los Alamos VXI-based modular RF control system

    SciTech Connect (OSTI)

    Jachim, S.P.; Ziomek, C.; Natter, E.F.; Regan, A.H.; Hill, J.; Eaton, L.; Gutscher, W.D.; Curtin, M.; Denney, P.; Hansberry, E.; Brooks, T.

    1993-06-01T23:59:59.000Z

    This paper describes the design and implementation of the Los Alamos modular RF control system, which provides high-performance feedback and/or feedforward control of RF accelerator cavities. This is a flexible, modular control system which has been realized in the industry-standard VXI cardmodular format. A wide spectrum of system functionality can be accommodated simply by incorporating only those modules and features required for a particular application. The fundamental principles of the design approach are discussed. Details of the VXI implementation are given, including the system architecture and interfaces, performance capabilities, and available features.

  7. Micro economics for demand-side management

    E-Print Network [OSTI]

    Kibune, Hisao

    1991-01-01T23:59:59.000Z

    This paper aims to interpret Demand-Side Management (DSM) activity and to point out its problems, adopting microeconomics as an analytical tool. Two major findings follow. first, the cost-benefit analysis currently in use ...

  8. Junction-side illuminated silicon detector arrays

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30T23:59:59.000Z

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  9. Sliding Mode Adaptive Neural-network Control for Nonholonomic Mobile Modular Manipulators

    E-Print Network [OSTI]

    Li, Yangmin

    Sliding Mode Adaptive Neural-network Control for Nonholonomic Mobile Modular Manipulators Yangmin adaptive neural-network controller for trajectory following of nonholonomic mobile modular manipulators model of the mobile modular manipulator. Sliding mode control and direct adaptive technique are combined

  10. Sliding Mode Adaptive Neural-Network Control for Nonholonomic Mobile Modular Manipulators

    E-Print Network [OSTI]

    Li, Yangmin

    Sliding Mode Adaptive Neural-Network Control for Nonholonomic Mobile Modular Manipulators YUGANG the dynamic model of the mobile mod- ular manipulator. Sliding mode control and direct adaptive technique modular manipulator, sliding mode control. 1. Introduction In the past decades, modular manipulators have

  11. Semistable Models of Curves Resolution of singularities on the tower of modular

    E-Print Network [OSTI]

    Semistable Models of Curves Resolution of singularities on the tower of modular curves Jared on the tower of modular curves #12;Semistable Models of Curves Semistable models: Definition Let R Resolution of singularities on the tower of modular curves #12;Semistable Models of Curves Semistable models

  12. Real-Time Demand Side Energy Management

    E-Print Network [OSTI]

    Victor, A.; Brodkorb, M.

    2006-01-01T23:59:59.000Z

    Real-Time Demand Side Energy Management Annelize Victor Michael Brodkorb Sr. Business Consultant Business Development Manager Aspen Technology, Inc. Aspen Technology Espańa, S.A. Houston, TX Barcelona, Spain ABSTRACT To remain... competitive, manufacturers must capture opportunities to increase bottom-line profitability. The goal of this paper is to present a new methodology for reducing energy costs – “Demand-Side Energy Management.” Learn how process manufacturers assess energy...

  13. Modular container assembled from fiber reinforced thermoplastic sandwich panels

    DOE Patents [OSTI]

    Donnelly, Mathew William (Edgewood, NM); Kasoff, William Andrew (Albuquerque, NM); Mcculloch, Patrick Carl (Irvine, CA); Williams, Frederick Truman (Albuquerque, NM)

    2007-12-25T23:59:59.000Z

    An improved, load bearing, modular design container structure assembled from thermoformed FRTP sandwich panels in which is utilized the unique core-skin edge configuration of the present invention in consideration of improved load bearing performance, improved useful load volume, reduced manufacturing costs, structural weight savings, impact and damage tolerance and repair and replace issues.

  14. ORIGINAL PAPER Development and validation of a modular, extensible docking

    E-Print Network [OSTI]

    Rizzo, Robert C.

    ORIGINAL PAPER Development and validation of a modular, extensible docking program: DOCK 5 Demetri point out that success rates could be improved through more advanced modeling of the receptor prior non-covalent interactions are critical for bio- logical processes. The sequencing of a variety of ge

  15. Modular and Generic Control Software System for Scalable Automation

    E-Print Network [OSTI]

    Paris-Sud XI, UniversitĂŠ de

    Modular and Generic Control Software System for Scalable Automation Christian Brecher, Martin.freundt@ipt.fraunhofer.de Abstract. The development of automated production systems is subdivided in two mayor tasks. One production with a high rate of changes, this is why fully automated solutions don't pay off and manual

  16. Modular Algorithms for Transient Semiconductor Device Simulation, Part I

    E-Print Network [OSTI]

    Jerome, Joseph W.

    Modular Algorithms for Transient Semiconductor Device Simulation, Part I: Analysis of the Outer, is introduced at dis- crete time steps for the one-dimensional semiconductor device model. The it- eration as approximate Newton iterations. Continuation is employed as the time-stepping bridge. 1 Introduction In Part I

  17. architecture evolved modular: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    architecture evolved modular First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 High level architecture...

  18. A modular microfluidic architecture for integrated biochemical analysis

    E-Print Network [OSTI]

    Barron, Annelise E.

    A modular microfluidic architecture for integrated biochemical analysis Kashan A. Shaikh*, Kee Suk for review November 15, 2004) Microfluidic laboratory-on-a-chip (LOC) systems based on a mod- ular (lead) at a sensitivity of 500 nM in microfluidic breadboard

  19. Analysis of Modular Arithmetic MARKUS MULLER-OLM

    E-Print Network [OSTI]

    Seidl, Helmut

    Analysis of Modular Arithmetic MARKUS M¨ULLER-OLM Westf¨alische Wilhelms-Universit¨at M and Necula 2003; Leroux 2003; Reps et al. 2003; M¨uller-Olm and Seidl 2004d,2004b]. With the notable where Author's address: Markus M¨uller-Olm, Westf¨alische Wilhelms-Universit¨at M¨unster, Institut f

  20. Modular Verification of Timed Circuits Using Automatic Abstraction

    E-Print Network [OSTI]

    Zheng, Hao

    Modular Verification of Timed Circuits Using Automatic Abstraction Hao Zheng, Eric Mercer, Member for verification of timed circuits using automatic abstraction. This approach partitions the design into modules by the RAPPID instruction length decoder designed at Intel [2]. This design was 3 times faster while using only

  1. Modular Power Architectures for Microgrid Clusters Invited Paper

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Modular Power Architectures for Microgrid Clusters ­ Invited Paper ­ Hengwei Lin1 , Chengxi Liu1 distributed generation (DG) units, loads and energy storage systems [1]. However, although nowadays microgrid between microgrid and the conventional main power grid is also not clearly standardized. In fact

  2. Adaptive Aggregation of Modular Control H. Chris Tseng

    E-Print Network [OSTI]

    Lin, Tsau Young

    Engineering and Computer Science University of California Berkeley, California 94720 C. W. Chi Department of Electrical and Computer Engineering University of California Davis, California 95616 Modular methodology into modules. Some of the available approaches are listed below. Decentralized Approach: If a system is made up

  3. Online Scheduling in Modular Multimedia Systems with Stream Reuse

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    of services (for each combination of modules), some systems [13, 14, 10] automate the construction of pipelin-21 Abstract When properly constructed, a modular multimedia system can satisfy a client's request in multiple platform. Categories and Subject Descriptors: C.4: Design Studies General Terms: Algorithms, Design

  4. Modular Termination Analysis for java bytecode by Term Rewriting

    E-Print Network [OSTI]

    Ábrahåm, Erika

    Modular Termination Analysis for java bytecode by Term Rewriting J¨urgen Giesl LuFG Informatik 2, RWTH Aachen University, Germany joint work with C. Otto and M. Brockschmidt #12;Automated Termination (Eindhoven) TTT (Innsbruck) VMTL (Vienna) #12;Automated Termination Tools for TRSs AProVE (Aachen) CARIBOO

  5. Automated Modular Termination Proofs for Real Prolog Programs

    E-Print Network [OSTI]

    Stroetmann, Karl

    Automated Modular Termination Proofs for Real Prolog Programs Martin M¨uller Thomas Glaß Karl the termination of Prolog programs that can be automated and is scalable. Furthermore, the proposed method can of complexity to predicate calls. Then termination of a program is shown by proving this measure

  6. Modularization of the DADAISM Ada Database System Architecture

    E-Print Network [OSTI]

    Keller, Arthur M.

    the modularization of a new data- base management system architecture. This DBMS is not intended to be viewed 22, 1986 at Beijing, China. of modulespeci cations for a DBMS, which can be used to support any implemen- tation paradigm is necessary to handle the evolution of database systems over the next few

  7. Modularization of the DADAISM Ada Database System Architecture

    E-Print Network [OSTI]

    Keller, Arthur M.

    the modularization of a new data­ base management system architecture. This DBMS is not intended to be viewed--22, 1986 at Beijing, China. of module specifications for a DBMS, which can be used to support any of those implemen­ tation paradigm is necessary to handle the evolution of database systems over the next few

  8. Modular SMT Proofs for Fast Reflexive Checking inside Coq

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modular SMT Proofs for Fast Reflexive Checking inside Coq Fr´ed´eric Besson, Pierre methodology for exchanging unsatisfia- bility proofs between an untrusted SMT solver and a sceptical proof assistant with computation capabilities like Coq. We advocate modu- lar SMT proofs that separate boolean

  9. a Modular, Multi-Engine Simulator for Heterogeneous Swarm Robotics

    E-Print Network [OSTI]

    Libre de Bruxelles, Université

    ARGoS: a Modular, Multi-Engine Simulator for Heterogeneous Swarm Robotics Carlo Pinciroli, Vito, Gianni Di Caro, Frederick Ducatelle, Timothy Stirling§, ´Alvaro Guti´errez, Luca Maria Gambardella. A unique feature of ARGoS is the possibility to use multiple physics engines of different types

  10. Advanced Modularity Design for The MIT Pebble Bed Reactor

    E-Print Network [OSTI]

    Advanced Modularity Design for The MIT Pebble Bed Reactor Andrew C. Kadak Department of Nuclear Reactor Technology Institute of Nuclear and New Energy Technology Friendship Hotel, Haidian District Beijing, China September 22-24, 2004 Abstract The future of all reactors will depend on whether they can

  11. Pretreatment Engineering Platform (PEP) Integrated Test B Run Report--Caustic and Oxidative Leaching in UFP-VSL-T02A

    SciTech Connect (OSTI)

    Geeting, John GH; Bredt, Ofelia P.; Burns, Carolyn A.; Golovich, Elizabeth C.; Guzman-Leong, Consuelo E.; Josephson, Gary B.; Kurath, Dean E.; Sevigny, Gary J.; Aaberg, Rosanne L.

    2009-12-10T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

  12. PEP Run Report for Integrated Test A, Caustic Leaching in UFP-VSL-T01A, Oxidative Leaching in UFP-VSL-T02A

    SciTech Connect (OSTI)

    Guzman-Leong, Consuelo E.; Bredt, Ofelia P.; Burns, Carolyn A.; Daniel, Richard C.; Su, Yin-Fong; Geeting, John GH; Golovich, Elizabeth C.; Josephson, Gary B.; Kurath, Dean E.; Sevigny, Gary J.; Smith, Dennese M.; Valdez, Patrick LJ; Yokuda, Satoru T.; Young, Joan K.

    2009-12-04T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.”(a) The PEP, located in the Process Engineering Laboratory-West (PDLW) located in Richland, Washington, is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

  13. Modular cathode assemblies and methods of using the same for electrochemical reduction

    DOE Patents [OSTI]

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L

    2014-12-02T23:59:59.000Z

    Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.

  14. Deploying Server-side File System Monitoring at NERSC

    E-Print Network [OSTI]

    Uselton, Andrew

    2009-01-01T23:59:59.000Z

    Deploying Server-side File System Monitoring at NERSC Andrewcenter was equipped with the server-side I/O monitoringfor observing and recording server-side per- formance

  15. Demand-Side Management and Energy Efficiency Revisited

    E-Print Network [OSTI]

    Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

    2007-01-01T23:59:59.000Z

    EPRI). 1984. ”Demand Side Management. Vol. 1:Overview of Key1993. ”Industrial Demand-Side Management Programs: What’sJ. Kulick. 2004. ”Demand side management and energy e?ciency

  16. Dual-sided coded-aperture imager

    DOE Patents [OSTI]

    Ziock, Klaus-Peter (Clinton, TN)

    2009-09-22T23:59:59.000Z

    In a vehicle, a single detector plane simultaneously measures radiation coming through two coded-aperture masks, one on either side of the detector. To determine which side of the vehicle a source is, the two shadow masks are inverses of each other, i.e., one is a mask and the other is the anti-mask. All of the data that is collected is processed through two versions of an image reconstruction algorithm. One treats the data as if it were obtained through the mask, the other as though the data is obtained through the anti-mask.

  17. Side-by-Side Testing of Water Heating Systems: Results from the 2009-2010 Evaluation

    Broader source: Energy.gov [DOE]

    The performance of seven differing types of residential water heating systems was compared in a side-by-side test configuration over a full year period. The Hot Water System Laboratory (HWS Lab) test facility at the Florida Solar Energy Center (FSEC) in Cocoa, FL was used for the tests.

  18. AIAA 2002-3297 INTERFERENCE BETWEEN TWO SIDE-BY-SIDE CYLINDERS IN HYPERSONIC

    E-Print Network [OSTI]

    Riabov, Vladimir V.

    AIAA 2002-3297 INTERFERENCE BETWEEN TWO SIDE-BY-SIDE CYLINDERS IN HYPERSONIC RAREFIED-GAS FLOWS Vladimir V. Riabov* Rivier College, Nashua, New Hampshire 03060 Abstract Hypersonic rarefied-gas flows near-Carlo technique under transitional rarefied-gas-flow conditions (Knudsen numbers from 0.0167 to 10). Strong

  19. Forord Side 3 Vindenergi en af lsningerne p de energipolitiske udfordringer Side 4

    E-Print Network [OSTI]

    Vindmřller i Danmark #12;INDHOLD Forord Side 3 Vindenergi ­ en af lřsningerne pĺ de energipolitiske Husstandsmřller og smĺ-mřller Vindmřller pĺ havet Side 18 Havvindmřller i Danmark Energistyrelsen som one stop danmark #12;FORORD Formĺlet med pjecen "Vindmřller i Danmark" er at give en samlet introduktion til

  20. Environmental Remediation program to perform slope-side cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perform slope-side cleanup Environmental Remediation program to perform slope-side cleanup near Smith's Marketplace Los Alamos National Laboratory is performing a high-angle...

  1. Evaluation of Side Stream Filtration Technology at Oak Ridge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ssfevaluation.pdf More Documents & Publications Side Stream Filtration for Cooling Towers Technical Evaluation of Side Stream Filtration for Cooling Towers Cooling Towers:...

  2. BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES

    E-Print Network [OSTI]

    LBL-33887 UC-000 BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES Jonathan G. Koomey ............................................................................................... 2 Demand-Side Efficiency Technologies I. Energy Management Systems (EMSs

  3. Solar cell with back side contacts

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24T23:59:59.000Z

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  4. Cathode side hardware for carbonate fuel cells

    DOE Patents [OSTI]

    Xu, Gengfu (Danbury, CT); Yuh, Chao-Yi (New Milford, CT)

    2011-03-29T23:59:59.000Z

    Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of LSC (La.sub.0.8Sr.sub.0.2CoO.sub.3) and lithiated NiO (Li.sub.xNiO, where x is 0.1 to 1).

  5. Side Orders Potato Wedges 1.60

    E-Print Network [OSTI]

    Dixon, Peter

    Side Orders Potato Wedges Ł1.60 Choose your dip from: Soured Cream, Spicy Salsa or Barbecue Potato Wedges topped with Cheese Ł2.00 Choose your dip from: Soured Cream, Spicy Salsa or Barbecue Potato Wedges leaf salad, potato wedges and a soured cream dip. Refried Bean Burrito Ł5.25 Refried beans, onions

  6. Imaging corn plants with PhytoPET, a modular PET system for plant biology

    SciTech Connect (OSTI)

    Lee, S.; Kross, B.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.; Zorn, C.; Bonito, G.; Howell, C. R.; Reid, C. D.; Crowell, A.; Cumberbatch, L. C.; Topp, C.; Smith, M. F.

    2013-11-01T23:59:59.000Z

    PhytoPET is a modular positron emission tomography (PET) system designed specifically for plant imaging. The PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single Hamamatsu H8500 position sensitive photomultiplier tubes and pixelated LYSO arrays. We have used the PhytoPET system to perform preliminary corn plant imaging studies at the Duke University Biology Department Phytotron. Initial evaluation of the PhytoPET system to image the biodistribution of the positron emitting tracer {sup 11}C in corn plants is presented. {sup 11}CO{sub 2} is loaded into corn seedlings by a leaf-labeling cuvette and translocation of {sup 11}C-sugars is imaged by a flexible arrangement of PhytoPET modules on each side. The PhytoPET system successfully images {sup 11}C within corn plants and allows for the dynamic measurement of {sup 11}C-sugar translocation from the leaf to the roots.

  7. Modular low-aspect-ratio high-beta torsatron

    DOE Patents [OSTI]

    Sheffield, G.V.

    1982-04-01T23:59:59.000Z

    A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.

  8. Modular hybrid plasma reactor and related systems and methods

    DOE Patents [OSTI]

    Kong, Peter C.; Grandy, Jon D.; Detering, Brent A.

    2010-06-22T23:59:59.000Z

    A device, method and system for generating a plasma is disclosed wherein an electrical arc is established and the movement of the electrical arc is selectively controlled. In one example, modular units are coupled to one another to collectively define a chamber. Each modular unit may include an electrode and a cathode spaced apart and configured to generate an arc therebetween. A device, such as a magnetic or electromagnetic device, may be used to selectively control the movement of the arc about a longitudinal axis of the chamber. The arcs of individual modules may be individually controlled so as to exhibit similar or dissimilar motions about the longitudinal axis of the chamber. In another embodiment, an inlet structure may be used to selectively define the flow path of matter introduced into the chamber such that it travels in a substantially circular or helical path within the chamber.

  9. NGNP Project Regulatory Gap Analysis for Modular HTGRs

    SciTech Connect (OSTI)

    Wayne Moe

    2011-09-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) Project Regulatory Gap Analysis (RGA) for High Temperature Gas-Cooled Reactors (HTGR) was conducted to evaluate existing regulatory requirements and guidance against the design characteristics specific to a generic modular HTGR. This final report presents results and identifies regulatory gaps concerning current Nuclear Regulatory Commission (NRC) licensing requirements that apply to the modular HTGR design concept. This report contains appendices that highlight important HTGR licensing issues that were found during the RGA study. The information contained in this report will be used to further efforts in reconciling HTGR-related gaps in the NRC licensing structure, which has to date largely focused on light water reactor technology.

  10. Hybrid energy systems (HESs) using small modular reactors (SMRs)

    SciTech Connect (OSTI)

    S. Bragg-Sitton

    2014-10-01T23:59:59.000Z

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations – while still accommodating the desire to support renewable production sources.

  11. Overland Tidal Power Generation Using Modular Tidal Prism

    SciTech Connect (OSTI)

    Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

    2010-03-01T23:59:59.000Z

    Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

  12. A GLUING LEMMA AND OVERCONVERGENT MODULAR FORMS PAYMAN L KASSAEI

    E-Print Network [OSTI]

    Kassaei, Payman L.

    to p, and m1 and k integers. Let K be a finite extension of Qp. Let X1(Npm)K denote the modular curve of level 1(Npm) over K, and let be the invertible sheaf on X1(Npm)K which on the non-cuspidal locus is the push- forward of the sheaf of invariant differentials of the universal elliptic curve. Let X1(Npm) an K

  13. DC side filters for multiterminal HVDC systems

    SciTech Connect (OSTI)

    Shore, N.L.; Adamson, K.; Bard, P. [and others] [and others

    1996-10-01T23:59:59.000Z

    Multiterminal HVDC systems present challenges in the specification and design of suitable dc side filtering. This document examines the existing experience and addresses the particular technical problems posed by multiterminal systems. The filtering requirements of small taps are discussed, as is the potential use of active filters. Aspects of calculation and design are considered and recommendations made to guide the planners and designers of future multiterminal schemes.

  14. Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers

    E-Print Network [OSTI]

    Xu, TengFang

    2009-01-01T23:59:59.000Z

    Scalable Liquid-Rack Cooling Systems in Data Centers FinalFOR A MODULAR, SCALABLE LIQUID-RACK COOLING SYSTEM IN DATAINFORMATION ON THE CHARACTERISTICS OF COOLING SYSTEMS,

  15. Performance Evaluation for a Modular, Scalable Passive Cooling System in Data Centers

    E-Print Network [OSTI]

    Xu, TengFang

    2009-01-01T23:59:59.000Z

    Scalable Passive Cooling System in Data Centers Final ReportFOR A MODULAR, SCALABLE PASSIVE COOLING SYSTEM IN DATAINFORMATION ON THE CHARACTERISTICS OF COOLING SYSTEMS,

  16. Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A

    SciTech Connect (OSTI)

    Gary Mecham

    2010-08-01T23:59:59.000Z

    This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Plan for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.

  17. Cathode side hardware for carbonate fuel cells

    DOE Patents [OSTI]

    Xu, Gengfu (Danbury, CT); Yuh, Chao-Yi (New Milford, CT)

    2011-04-05T23:59:59.000Z

    Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of Perovskite AMeO.sub.3, wherein A is at least one of lanthanum and a combination of lanthanum and strontium and Me is one or more of transition metals, lithiated NiO (Li.sub.xNiO, where x is 0.1 to 1) and X-doped LiMeO.sub.2, wherein X is one of Mg, Ca, and Co.

  18. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

    2013-01-01T23:59:59.000Z

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  19. Side Stream Filtration for Cooling Towers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo ÂťUsageSecretary of EnergyFocus GroupSherrell R. Greene AboutSide Stream

  20. South Side Electric, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonixInformation ParkRiver ElecSouth Side

  1. Probing the Proton's Weak Side | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br BromineProbing the Proton's Weak Side

  2. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    SciTech Connect (OSTI)

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20T23:59:59.000Z

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using factory prefabricated structural modules, for application to external event shell and base isolated structures.

  3. Advanced LWR program for small modularized plants. Final report

    SciTech Connect (OSTI)

    Braun, H.E.; Tower, S.N.

    1985-07-01T23:59:59.000Z

    This report presents the results of a study of modular construction of a small, 600-MW(e), nuclear plant (NUPACK 600) to be built largely in a factory or shipyard and towed to a prelicensed site by barge. Design, economic, schedular, and licensing aspects are considered. It is concluded that the NUPACK 600 is feasible. NUPACK 600 has the potential for reducing the financial risks/uncertainties to the utilities for construction of future nuclear power plants. A development program is proposed, and additional studies are recommended to validate the benefits for the utility industry.

  4. A modular approach to the design of cold moderators

    SciTech Connect (OSTI)

    Lucas, A.T.

    1998-11-01T23:59:59.000Z

    Cold moderators are usually designed to the specific requirements of the parent neutron source. However since all cryogenic moderators within a broad design envelope require certain common parameters, it should be possible to create a central core design served by smaller packages designed, or selected to satisfy a wide range of individual requirements. This paper describes a modular design philosophy that has been applied to two very different cold sources with only minor changes to two of the modules in the system. Both of the systems and the basic differences between them are described in detail.

  5. Fusion Algebras Induced by Representations of the Modular Group

    E-Print Network [OSTI]

    W. Eholzer

    1992-11-27T23:59:59.000Z

    Using the representation theory of the subgroups SL_2(Z_p) of the modular group we investigate the induced fusion algebras in some simple examples. Only some of these representations lead to 'good' fusion algebras. Furthermore, the conformal dimensions and the central charge of the corresponding rational conformal field theories are calculated. Two series of representations which can be realized by unitary theories are presented. We show that most of the fusion algebras induced by admissible representations are realized in well known rational models.

  6. NUHOMS modular spent-fuel storage system: Performance testing

    SciTech Connect (OSTI)

    Strope, L.A.; McKinnon, M.A. (Pacific Northwest Lab., Richland, WA (USA)); Dyksterhouse, D.J.; McLean, J.C. (Carolina Power and Light Co., Raleigh, NC (USA))

    1990-09-01T23:59:59.000Z

    This report documents the results of a heat transfer and shielding performance evaluation of the NUTECH HOrizontal MOdular Storage (NUHOMS{reg sign}) System utilized by the Carolina Power and Light Co. (CP L) in an Independent Spent Fuel Storage Installation (ISFSI) licensed by the US Nuclear Regulatory Commission (NRC). The ISFSI is located at CP L's H. B. Robinson Nuclear Plant (HBR) near Hartsville, South Carolina. The demonstration included testing of three modules, first with electric heaters and then with spent fuel. The results indicated that the system was conservatively designed, with all heat transfer and shielding design criteria easily met. 5 refs., 45 figs., 9 tabs.

  7. Morphological methods for design of modular systems (a survey)

    E-Print Network [OSTI]

    Levin, Mark Sh

    2012-01-01T23:59:59.000Z

    The article addresses morphological approaches to design of modular systems. The following methods are briefly described: (i) basic version of morphological analysis (MA), (ii) modification of MA as method of closeness to ideal point(s), (iii reducing of MA to linear programming, (iv) multiple choice problem, (v) quadratic assignment problem, (vi) Pareto-based MA (i.e., revelation of Pareto-efficient solutions), (vii) Hierarchical Morphological Multicriteria Design (HMMD) approach, and (viii) Hierarchical Morphological Multicriteria Design (HMMD) approach based on fuzzy estimates. The above-mentioned methods are illustrated by schemes, models, and illustrative examples. An additional realistic example (design of GSM network) is presented to illustrate main considered methods.

  8. Modular Energy Devices Inc ModEnergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen PolymersModular Energy Devices Inc ModEnergy Jump

  9. Olkaria I - Modular/ Wellhead Geothermal Power Plant | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOffice ofInformation Olkaria I - Modular/

  10. Compositionality in Synchronous Data Flow: Modular Code Generation from Hierarchical SDF Graphs

    E-Print Network [OSTI]

    Compositionality in Synchronous Data Flow: Modular Code Generation from Hierarchical SDF Graphs in Synchronous Data Flow: Modular Code Generation from Hierarchical SDF Graphs Stavros Tripakis, Dai Bui, Bert of California, Berkeley stavros, daib, eal@eecs.berkeley.edu October 20, 2009 Abstract Hierarchical SDF models

  11. Abductive Analysis of Modular Logic ROBERTO GIACOBAZZI, Dipartimento di Informatica, Universit`a

    E-Print Network [OSTI]

    Giacobazzi, Roberto

    Abductive Analysis of Modular Logic Programs ROBERTO GIACOBAZZI, Dipartimento di Informatica a practical method for abductive analysis of modular logic programs. This is obtained by reversing knowledge this is the first application of abductive reasoning in dataflow analysis of logic programs

  12. Design and Evaluation of a Modular Resonant Switched Capacitors Equalizer for PV Panels

    E-Print Network [OSTI]

    Design and Evaluation of a Modular Resonant Switched Capacitors Equalizer for PV Panels Shmuel (Sam of shaded panels in a serially connected PV array. The proposed solution is based on a modular approach module was designed for 185W PV panels and was found to boost the maximum available power by about 50

  13. Flexible casting of modular self-aligning microfluidic assembly blocks Sean M. Langelier,a

    E-Print Network [OSTI]

    Walter, Nils G.

    of microfluidic technologies toward modularized ``plug and play'' construction reflects the steadily increasing is prohibitively complex and/or expensive. In this work, we present an advanced modular microfluidic construction.11 Glennon et al. went further, moving to direct printing of the lithographic mold--laser toner

  14. FOURIER COEFFICIENTS OF MODULAR FORMS ON G2 WEE TECK GAN, BENEDICT GROSS AND GORDAN SAVIN

    E-Print Network [OSTI]

    Gan, Wee Teck

    FOURIER COEFFICIENTS OF MODULAR FORMS ON G2 WEE TECK GAN, BENEDICT GROSS AND GORDAN SAVIN Abstract. We develop a theory of Fourier coefficients for modular forms on the split ex- ceptional group G2 on the group SL2(Z) is the wealth of information carried by the Fourier coefficients an(f), for n 0

  15. A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING, SIMULATION, AND ANALYSIS

    E-Print Network [OSTI]

    de Weck, Olivier L.

    A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING Students #12;2 A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING in Aeronautics and Astronautics #12;3 Abstract A space logistics modeling framework to support space exploration

  16. Low-Interest Loans for Customer-Side Distributed Resources

    Broader source: Energy.gov [DOE]

    Long-term financing is available to retail end-use customers for the installation of customer-side distributed resources. Customer-side distributed resources are defined by Conn. Gen. Stat. § 16-1...

  17. Prognostics Health Management for Advanced Small Modular Reactor Passive Components

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Mitchell, Mark R.; Wootan, David W.; Hirt, Evelyn H.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2013-10-18T23:59:59.000Z

    In the United States, sustainable nuclear power to promote energy security is a key national energy priority. Advanced small modular reactors (AdvSMR), which are based on modularization of advanced reactor concepts using non-light-water reactor (LWR) coolants such as liquid metal, helium, or liquid salt may provide a longer-term alternative to more conventional LWR-based concepts. The economics of AdvSMRs will be impacted by the reduced economy-of-scale savings when compared to traditional LWRs and the controllable day-to-day costs of AdvSMRs are expected to be dominated by operations and maintenance costs. Therefore, achieving the full benefits of AdvSMR deployment requires a new paradigm for plant design and management. In this context, prognostic health management of passive components in AdvSMRs can play a key role in enabling the economic deployment of AdvSMRs. In this paper, the background of AdvSMRs is discussed from which requirements for PHM systems are derived. The particle filter technique is proposed as a prognostics framework for AdvSMR passive components and the suitability of the particle filter technique is illustrated by using it to forecast thermal creep degradation using a physics-of-failure model and based on a combination of types of measurements conceived for passive AdvSMR components.

  18. Microcomputer applications of, and modifications to, the modular fault trees

    SciTech Connect (OSTI)

    Zimmerman, T.L.; Graves, N.L.; Payne, A.C. Jr.; Whitehead, D.W. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States)

    1994-10-01T23:59:59.000Z

    The LaSalle Probabilistic Risk Assessment was the first major application of the modular logic fault trees after the IREP program. In the process of performing the analysis, many errors were discovered in the fault tree modules that led to difficulties in combining the modules to form the final system fault trees. These errors are corrected in the revised modules listed in this report. In addition, the application of the modules in terms of editing them and forming them into the system fault trees was inefficient. Originally, the editing had to be done line by line and no error checking was performed by the computer. This led to many typos and other logic errors in the construction of the modular fault tree files. Two programs were written to help alleviate this problem: (1) MODEDIT - This program allows an operator to retrieve a file for editing, edit the file for the plant specific application, perform some general error checking while the file is being modified, and store the file for later use, and (2) INDEX - This program checks that the modules that are supposed to form one fault tree all link up appropriately before the files are,loaded onto the mainframe computer. Lastly, the modules were not designed for relay type logic common in BWR designs but for solid state type logic. Some additional modules were defined for modeling relay logic, and an explanation and example of their use are included in this report.

  19. Modular Electric Vehicle Program (MEVP). Final technical report

    SciTech Connect (OSTI)

    NONE

    1994-03-01T23:59:59.000Z

    The Modular Electric Vehicle Program (MEVP) was an EV propulsion system development program in which the technical effort was contracted by DOE to Ford Motor Company. The General Electric Company was a major subcontractor to Ford for the development of the electric subsystem. Sundstrand Power Systems was also a subcontractor to Ford, providing a modified gas turbine engine APU for emissions and performance testing as well as a preliminary design and producibility study for a Gas Turbine-APU for potential use in hybrid/electric vehicles. The four-year research and development effort was cost-shared between Ford, General Electric, Sundstrand Power Systems and DOE. The contract was awarded in response to Ford`s unsolicited proposal. The program objective was to bring electric vehicle propulsion system technology closer to commercialization by developing subsystem components which can be produced from a common design and accommodate a wide range of vehicles; i.e., modularize the components. This concept would enable industry to introduce electric vehicles into the marketplace sooner than would be accomplished via traditional designs in that the economies of mass production could be realized across a spectrum of product offerings. This would eliminate the need to dedicate the design and capital investment to a limited volume product offering which would increase consumer cost and/or lengthen the time required to realize a return on the investment.

  20. A Single Tower Configuration of the Modular Gamma Box Counter System - 13392

    SciTech Connect (OSTI)

    Morris, K.; Nakazawa, D.; Francalangia, J.; Gonzalez, H. [Canberra Industries Inc., 800 Research Parkway, Meriden, CT, 06450 (United States)] [Canberra Industries Inc., 800 Research Parkway, Meriden, CT, 06450 (United States)

    2013-07-01T23:59:59.000Z

    Canberra's Standard Gamma Box Counter System is designed to perform accurate quantitative assays of gamma emitting nuclides for a wide range of large containers including B-25 crates and ISO shipping containers. Using a modular building-block approach, the system offers tremendous flexibility for a variety of measurement situations with wide ranges of sample activities and throughput requirements, as well as the opportunity to modify the configuration for other applications at a later date. The typical configuration consists of two opposing towers each equipped with two high purity germanium detectors, and an automated container trolley. This paper presents a modified configuration, consisting of a single tower placed inside a measurement trailer with three detector assemblies, allowing for additional vertical segmentation as well as a viewing a container outside the trailer through the trailer wall. An automatic liquid nitrogen fill system is supplied for each of the detectors. The use of a forklift to move the container for horizontal segmentation is accommodated by creating an additional operational and calibration set-up in the NDA 2000 software to allow for the operator to rotate the container and assay the opposite side, achieving the same sensitivity as a comparable two-tower system. This Segmented Gamma Box Counter System retains the core technologies and design features of the standard configuration. The detector assemblies are shielded to minimize interference from environmental and plant background, and are collimated to provide segmentation of the container. The assembly positions can also be modified in height and distance from the container. The ISOCS calibration software provides for a flexible approach to providing the calibrations for a variety of measurement geometries. The NDA 2000 software provides seamless operation with the current configuration, handling the data acquisition and analysis. In this paper, an overview of this system is discussed, along with the measured performance results, calibration methodology and verification, and minimum detectable activity levels. (authors)

  1. Forord side 2 Neutroner i samfundets tjeneste isotopteknik og isotopforskning i Danmark side 4

    E-Print Network [OSTI]

    isotopforskning i Danmark side 4 Hellere nr. 1 pĺ Isotoplaboratoriet end nr. 2 i Direktionen - et for universiteter, hospitaler og industrivirksomheder i Danmark, har omrĺdet nćsten altid vćret blandt de mere villet dokumentere arbejdskulturen ved den store reaktor DR3, der var en af det industrielle Danmarks

  2. Industrial demand side management: A status report

    SciTech Connect (OSTI)

    Hopkins, M.F.; Conger, R.L.; Foley, T.J. [and others

    1995-05-01T23:59:59.000Z

    This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programs are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.

  3. Overview of the Westinghouse Small Modular Reactor building layout

    SciTech Connect (OSTI)

    Cronje, J. M. [Westinghouse Electric Company LLC, Centurion (South Africa); Van Wyk, J. J.; Memmott, M. J. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01T23:59:59.000Z

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of the plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed above grade. This is an improvement to conventional reactor design since it prevents failures of multiple trains during floods or fires and other external events. The main control room is located below grade, with a remote shutdown room in a different quadrant. All defense in depth systems are placed on the nuclear island, primarily above grade, while the safety systems are located on lower floors. The economics of the Westinghouse SMR challenges the established approach of large Light Water Reactors (LWR) that utilized the economies of scale to reach economic competitiveness. To serve the market expectation of smaller capital investment and cost competitive energy, a modular design approach is implemented within the Westinghouse SMR. The Westinghouse SMR building layout integrates the three basic design constraints of modularization; transportation, handling and module-joining technology. (authors)

  4. Comments on Non-holomorphic Modular Forms and Non-compact Superconformal Field Theories

    E-Print Network [OSTI]

    Yuji Sugawara

    2014-08-01T23:59:59.000Z

    We extend our previous work arXiv:1012.5721 [hep-th] on the non-compact N=2 SCFT_2 defined as the supersymmetric SL(2,R)/U(1)-gauged WZW model. Starting from path-integral calculations of torus partition functions of both the axial-type (`cigar') and the vector-type (`trumpet') models, we study general models of the Z_M-orbifolds and M-fold covers with an arbitrary integer M. We then extract contributions of the degenerate representations (`discrete characters') in such a way that good modular properties are preserved. The `modular completion' of the extended discrete characters introduced in arXiv:1012.5721 [hep-th] are found to play a central role as suitable building blocks in every model of orbifolds or covering spaces. We further examine a large M-limit (the `continuum limit'), which `deconstructs' the spectral flow orbits while keeping a suitable modular behavior. The discrete part of partition function as well as the elliptic genus is then expanded by the modular completions of irreducible discrete characters, which are parameterized by both continuous and discrete quantum numbers modular transformed in a mixed way. This limit is naturally identified with the universal cover of trumpet model. We finally discuss a classification of general modular invariants based on the modular completions of irreducible characters constructed above.

  5. Incentives for demand-side management

    SciTech Connect (OSTI)

    Reid, M.W.; Brown, J.B. (Barakat and Chamberlin, Inc., Oakland, CA (United States))

    1992-01-01T23:59:59.000Z

    This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state's progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

  6. Incentives for demand-side management

    SciTech Connect (OSTI)

    Reid, M.W.; Brown, J.B. [Barakat and Chamberlin, Inc., Oakland, CA (United States)] [Barakat and Chamberlin, Inc., Oakland, CA (United States)

    1992-01-01T23:59:59.000Z

    This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state`s progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

  7. Modular exhaust gas steam generator with common boiler casing

    SciTech Connect (OSTI)

    Kidaloski, R.G.; Olinger, H.S.; Bryk, S.A.

    1987-08-11T23:59:59.000Z

    A modular exhaust gas steam generator is described wherein each module comprises: (a) an open box frame through which hot exhaust gases travel, a portion of the frame being in contact with the gases; (b) casing means fixedly secured to selected perimeter surfaces of the box frame thereby forming an integral part of the box frame for sealably closing the surface of the box frame and for retaining the gases within the box frame; (c) tubing means extending within and nearly the height of the box frame, the tubing means being in contact with the hot gases for generating steam in the steam generator; (d) header means within the box frame and connected to the tubing means for distributing fluid thereto, and; (e) connecting means secured to an upper region of the box frame for top supporting the header and the tubing means; whereby adjacent modules are sealably secured together forming a unitary gas tight enclosure through which exhaust gases travel.

  8. Modular development and integration of a corrosion control system

    SciTech Connect (OSTI)

    Elder, M.S.; D'Alves, B.M. (Saudi Aramco (SA))

    1992-04-01T23:59:59.000Z

    This paper describes the consolidation and expansion of Saudi Aramco's computer systems used for capture and analysis of petroleum-facilities-related corrosion. Specifically, modular development techniques coupled with a prototyping methodology are highlighted as key contributors to the success of the project. A mainframe resident Corrosion Control System (CCS) was developed through joint efforts between the Northern Area Producing Operations Engineering (NAPOE) and Petroleum Engineering Applications Services (PEAS) departments. CCS takes full advantage of Saudi Aramco's extensive computing network to manage data on corrosion coupons, water quality, bacteria, chemical use, and cathodic protection. Selection of a centralized computer system over a distributed computing environment has yielded many benefits. The data management, user interface, and results presentation components are consistent. Remote users can take advantage of the installed computing infrastructure, workstations, and peripherals. The installed base of high-speed printers, color plotters, and slide equipment can be used easily for hard copy.

  9. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Janice Thomas

    2010-05-31T23:59:59.000Z

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  10. Battery with modular air cathode and anode cage

    DOE Patents [OSTI]

    Niksa, Marilyn J. (Painesville, OH); Pohto, Gerald R. (Mentor, OH); Lakatos, Leslie K. (Mentor, OH); Wheeler, Douglas J. (Cleveland Heights, OH); Niksa, Andrew J. (Painesville, OH); Schue, Thomas J. (Huntsburg, OH)

    1987-01-01T23:59:59.000Z

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  11. Battery with modular air cathode and anode cage

    DOE Patents [OSTI]

    Niksa, Marilyn J. (Painesville, OH); Pohto, Gerald R. (Mentor, OH); Lakatos, Leslie K. (Mentor, OH); Wheeler, Douglas J. (Cleveland Heights, OH); Niksa, Andrew J. (Painesville, OH); Schue, Thomas J. (Huntsburg, OH); Turk, Thomas R. (Mentor, OH)

    1988-01-01T23:59:59.000Z

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  12. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Hans Gougar

    2014-05-01T23:59:59.000Z

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  13. Development of a system model for advanced small modular reactors.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01T23:59:59.000Z

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  14. Evaluation of the Gas Turbine Modular Helium Reactor

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    Recent advances in gas-turbine and heat exchanger technology have enhanced the potential for a Modular Helium Reactor (MHR) incorporating a direct gas turbine (Brayton) cycle for power conversion. The resulting Gas Turbine Modular Helium Reactor (GT-MHR) power plant combines the high temperature capabilities of the MHR with the efficiency and reliability of modern gas turbines. While the passive safety features of the steam cycle MHR (SC-MHR) are retained, generation efficiencies are projected to be in the range of 48% and steam power conversion systems, with their attendant complexities, are eliminated. Power costs are projected to be reduced by about 20%, relative to the SC-MHR or coal. This report documents the second, and final, phase of a two-part evaluation that concluded with a unanimous recommendation that the direct cycle (DC) variant of the GT-MHR be established as the commercial objective of the US Gas-Cooled Reactor Program. This recommendation has been endorsed by industrial and utility participants and accepted by the US Department of Energy (DOE). The Phase II effort, documented herein, concluded that the DC GT-MHR offers substantial technical and economic advantages over both the IDC and SC systems. Both the DC and IDC were found to offer safety advantages, relative to the SC, due to elimination of the potential for water ingress during power operations. This is the dominant consequence event for the SC. The IDC was judged to require somewhat less development than the direct cycle, while the SC, which has the greatest technology base, incurs the least development cost and risk. While the technical and licensing requirements for the DC were more demanding, they were judged to be incremental and feasible. Moreover, the DC offers significant performance and cost improvements over the other two concepts. Overall, the latter were found to justify the additional development needs.

  15. Load-side Demand Management in Buildings using Controlled Electric Springs

    E-Print Network [OSTI]

    Soni, Jayantika; Krishnanand, KR; Panda, Sanjib

    2014-01-01T23:59:59.000Z

    The concept of demand-side management for electricand simulation of demand-side management potential in urbanin smart grids, demand side management has been a keen topic

  16. Double sided circuit board and a method for its manufacture

    DOE Patents [OSTI]

    Lindenmeyer, C.W.

    1988-04-14T23:59:59.000Z

    Conductance between the sides of a large double sided printed circuit board is provided using a method which eliminates the need for chemical immersion or photographic exposure of the entire large board. A plurality of through-holes are drilled or punched in a substratum according to the desired pattern, conductive laminae are made to adhere to both sides of the substratum covering the holes and the laminae are pressed together and permanently joined within the holes, providing conductive paths. 4 figs.

  17. additional side chain: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: FRUIT... 249 TOSSED GREEN SIDE SALAD... 299 SOUP OR SALAD & 12 TURKEY Wrap... 599 boneless CHICKEN Onion, with Blue Cheese Dressing HOUSEMADE TURKEY...

  18. acute side effects: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (free cooling... Shami, U. F. 1996-01-01 290 Incorporating side information into probabilistic matrix factorization using Gaussian Processes Edinburgh, University of - Research...

  19. Research Needs: Glass Solar Reflectance and Vinyl Siding

    E-Print Network [OSTI]

    Hart, Robert

    2012-01-01T23:59:59.000Z

    properties of reflected solar radiation from glass surfaces,transfer at the siding surface. Direct solar radiation tosiding, reflected solar radiation from nearby surfaces,

  20. Design of electronics for a high-resolution, multi-material, and modular 3D printer

    E-Print Network [OSTI]

    Kwan, Joyce G

    2013-01-01T23:59:59.000Z

    Electronics for a high-resolution, multi-material, and modular 3D printer were designed and implemented. The driver for a piezoelectric inkjet print head can fire its nozzles with one of three droplet sizes ranging from 6 ...

  1. Design and fabrication of a modular multi-material 3D printer

    E-Print Network [OSTI]

    Lan, Justin (Justin T.)

    2013-01-01T23:59:59.000Z

    This thesis presents 3DP-0, a modular, multi-material 3D printer. Currently, 3D printers available on the market are typically expensive and difficult to develop. In addition, the simultaneous use of multiple materials in ...

  2. Offsite Construction Comparative Study of Panelized and Modular Construction for Rio Mesa Facilities

    E-Print Network [OSTI]

    Tipple, Brett

    Offsite Construction Comparative Study of Panelized and Modular Construction: This research is to evaluate the opportunities of prefabricated construction for remote the logistics of prefab construction on the Rio Mesa site, we hope that this project

  3. Modularity of the MIT Pebble Bed Reactor for use by the commercial power industry

    E-Print Network [OSTI]

    Hanlon-Hyssong, Jaime E

    2008-01-01T23:59:59.000Z

    The Modular Pebble Bed Reactor is a small high temperature helium cooled reactor that is being considered for both electric power and hydrogen production. Pebble bed reactors are being developed in South Africa, China and ...

  4. Order and diversity within a modular system for housing : a computational approach

    E-Print Network [OSTI]

    Duarte, José Pinto

    1993-01-01T23:59:59.000Z

    This thesis introduces elements of a methodology to achieve order and diversity in the systematic design of street facades within a modular system for housing. In its context both order and diversity refer to the spatial ...

  5. Design principles of mammalian signaling networks : emergent properties at modular and global scales

    E-Print Network [OSTI]

    Locasale, Jason W

    2008-01-01T23:59:59.000Z

    This thesis utilizes modeling approaches rooted in statistical physics and physical chemistry to investigate several aspects of cellular signal transduction at both the modular and global levels. Design principles of ...

  6. Abductive Analysis of Modular Logic ROBERTO GIACOBAZZI, Dipartimento di Informatica, Universit`a

    E-Print Network [OSTI]

    Giacobazzi, Roberto

    ___________________________________________________________________________ Abductive a practical method for abductive analysis of modular logic program* *s. This is obtained by reversing k* *nowledge this is the first application of abductive reasoning in dataflow analysis of lo* *gic

  7. Design, analysis and optimization of the power conversion system for the Modular Pebble Bed Reactor System

    E-Print Network [OSTI]

    Wang, Chunyun, 1968-

    2003-01-01T23:59:59.000Z

    The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a GenIV nuclear system. The availability of controllable ...

  8. Power management as a system-level inhibitor of modularity in the mobile computer industry

    E-Print Network [OSTI]

    Weinstein, Samuel K. (Samuel Keith), 1974-

    2004-01-01T23:59:59.000Z

    Since the mid-90s, the computer industry has been very modular with respect to both product architecture and industry structure. The growing market size of mobile computers means that the challenges facing this segment are ...

  9. Modular Lorentz force actuators for efficient biomimetic propulsion of Autonomous Underwater Vehicles

    E-Print Network [OSTI]

    Church, Joseph Christopher

    2014-01-01T23:59:59.000Z

    In this thesis, we developed a highly scalable design for modular Lorentz force actuators for use in segmented flexible-hull undersea vehicles such as the RoboTuna being developed at Franklin W, Olin College of Engineering. ...

  10. RAMANUJAN AND THE MODULAR j-INVARIANT BRUCE C. BERNDT AND HENG HUAT CHAN

    E-Print Network [OSTI]

    Berndt, Bruce C.

    RAMANUJAN AND THE MODULAR j-INVARIANT BRUCE C. BERNDT AND HENG HUAT CHAN Abstract. A new infinite. BERNDT AND HENG HUAT CHAN At the top of page 392 in [21, vol. 2], which inexplicably is printed upside

  11. Design and analysis of a concrete modular housing system constructed with 3D panels

    E-Print Network [OSTI]

    Sarcia, Sam Rhea, 1982-

    2004-01-01T23:59:59.000Z

    An innovative modular house system design utilizing an alternative concrete residential building system called 3D panels is presented along with an overview of 3D panels as well as relevant methods and markets. The proposed ...

  12. Road Map for a Modular Magnetic Fusion Program Dale M. Meade

    E-Print Network [OSTI]

    are now being done at the energy production scale. This paper describes a modular approach that addresses were described in John Lawson's original paper[1] describing the conditions for energy production

  13. Design, Control and Motion Planning for a Novel Modular Extendable Robotic Manipulator

    E-Print Network [OSTI]

    Yi, Hak 1979-

    2012-12-05T23:59:59.000Z

    This dissertation discusses an implementation of a design, control and motion planning for a novel extendable modular redundant robotic manipulator in space constraints, which robots may encounter for completing required tasks in small...

  14. A Comparative Study of Modular Axial Flux Podded Generators for Marine Current Turbines

    E-Print Network [OSTI]

    Brest, Université de

    A Comparative Study of Modular Axial Flux Podded Generators for Marine Current Turbines Sofiane turbines (MCTs). Due to the submarine environment, maintenance operations are very hard, very costly current turbine, axial flux permanent magnet generator, design, optimization. Nomenclature MCT = Marine

  15. Cleanup Verification Package for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils

    SciTech Connect (OSTI)

    L. D. Habel

    2008-03-18T23:59:59.000Z

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils. The rectangular-shaped concrete basin on the south side of the 105-F Reactor building served as an underwater collection, storage, and transfer facility for irradiated fuel elements discharged from the reactor.

  16. Generic Side-Channel Distinguishers: Improvements and Limitations

    E-Print Network [OSTI]

    to the application of side-channel analysis against emerging cryptographic imple- mentations. First, we describe. On the industrial side, security against such attacks is now required to reach high certification levels be large. Hence, profiled and non-profiled attacks are complementary and shed a different light

  17. Site Suitability and Hazard Assessment Guide for Small Modular Reactors

    SciTech Connect (OSTI)

    Wayne Moe

    2013-10-01T23:59:59.000Z

    Commercial nuclear reactor projects in the U.S. have traditionally employed large light water reactors (LWR) to generate regional supplies of electricity. Although large LWRs have consistently dominated commercial nuclear markets both domestically and abroad, the concept of small modular reactors (SMRs) capable of producing between 30 MW(t) and 900 MW(t) to generating steam for electricity is not new. Nor is the idea of locating small nuclear reactors in close proximity to and in physical connection with industrial processes to provide a long-term source of thermal energy. Growing problems associated continued use of fossil fuels and enhancements in efficiency and safety because of recent advancements in reactor technology suggest that the likelihood of near-term SMR technology(s) deployment at multiple locations within the United States is growing. Many different types of SMR technology are viable for siting in the domestic commercial energy market. However, the potential application of a particular proprietary SMR design will vary according to the target heat end-use application and the site upon which it is proposed to be located. Reactor heat applications most commonly referenced in connection with the SMR market include electric power production, district heating, desalinization, and the supply of thermal energy to various processes that require high temperature over long time periods, or a combination thereof. Indeed, the modular construction, reliability and long operational life purported to be associated with some SMR concepts now being discussed may offer flexibility and benefits no other technology can offer. Effective siting is one of the many early challenges that face a proposed SMR installation project. Site-specific factors dealing with support to facility construction and operation, risks to the plant and the surrounding area, and the consequences subsequent to those risks must be fully identified, analyzed, and possibly mitigated before a license will be granted to construct and operate a nuclear facility. Examples of significant site-related concerns include area geotechnical and geological hazard properties, local climatology and meteorology, water resource availability, the vulnerability of surrounding populations and the environmental to adverse effects in the unlikely event of radionuclide release, the socioeconomic impacts of SMR plant installation and the effects it has on aesthetics, proximity to energy use customers, the topography and area infrastructure that affect plant constructability and security, and concerns related to the transport, installation, operation and decommissioning of major plant components.

  18. Load-side Demand Management in Buildings using Controlled Electric Springs

    E-Print Network [OSTI]

    Soni, Jayantika; Krishnanand, KR; Panda, Sanjib

    2014-01-01T23:59:59.000Z

    Load-side Demand Management in Buildings using Controlleddemand side management has been a keen topic of interest. Buildings,

  19. Research Needs: Glass Solar Reflectance and Vinyl Siding

    SciTech Connect (OSTI)

    Hart, Robert; Curcija, Charlie; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian; Selkowitz, Stephen

    2011-07-07T23:59:59.000Z

    The subject of glass solar reflectance and its contribution to permanent vinyl siding distortion has not been extensively studied, and some phenomena are not yet well understood. This white paper presents what is known regarding the issue and identifies where more research is needed. Three primary topics are discussed: environmental factors that control the transfer of heat to and from the siding surface; vinyl siding properties that may affect heat build-up and permanent distortion; and factors that determine the properties of reflected solar radiation from glass surfaces, including insulating window glass. Further research is needed to fully characterize the conditions associated with siding distortion, the scope of the problem, physical properties of vinyl siding, insulating window glass reflection characteristics, and possible mitigation or prevention strategies.

  20. Performance and Safety Analysis of a Generic Small Modular Reactor

    E-Print Network [OSTI]

    Kitcher, Evans Damenortey, 1987-

    2012-11-07T23:59:59.000Z

    .................................... 39 Figure 23: Effective Multiplication Factor for Optimized Core over Core Lifetime ............. 42 Figure 24: Effective Delayed Neutron Fraction for Optimized Core ..................................... 45 Figure 25: Mean Generation Time... to produce 500MWth power for 150-200MWe assuming a secondary side efficiency of 30-40%. The desired core lifetime is four years. These desired design parameters drove the development of the SMR model and the optimization of the other relevant parameters...

  1. Human Factors Issues For Multi-Modular Reactor Units

    SciTech Connect (OSTI)

    Tuan Q Tran; Humberto E. Garcia; Ronald L. Boring; Jeffrey C. Joe; Bruce P. Hallbert

    2007-08-01T23:59:59.000Z

    Smaller and multi-modular reactor (MMR) will be highly technologically-advanced systems allowing more system flexibility to reactors configurations (e.g., addition/deletion of reactor units). While the technical and financial advantages of systems may be numerous, MMR presents many human factors challenges that may pose vulnerability to plant safety. An important human factors challenge in MMR operation and performance is the monitoring of data from multiple plants from centralized control rooms where human operators are responsible for interpreting, assessing, and responding to different system’s states and failures (e.g., simultaneously monitoring refueling at one plant while keeping an eye on another plant’s normal operating state). Furthermore, the operational, safety, and performance requirements for MMR can seriously change current staffing models and roles, the mode in which information is displayed, procedures and training to support and guide operators, and risk analysis. For these reasons, addressing human factors concerns in MMR are essential in reducing plant risk.

  2. Johnson Noise Thermometry for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.; Holcomb, D.E.; Wood, R.T.

    2012-09-15T23:59:59.000Z

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.

  3. Johnson Noise Thermometry for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Britton Jr, Charles L [ORNL; Roberts, Michael [ORNL; Bull, Nora D [ORNL; Holcomb, David Eugene [ORNL; Wood, Richard Thomas [ORNL

    2012-10-01T23:59:59.000Z

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor s physical condition. In and near core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small, Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of this project is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.

  4. Two low-cost, modular sub-? test cryostats

    SciTech Connect (OSTI)

    Fuerst, J. D.; Kaluzny, J. A. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2014-01-29T23:59:59.000Z

    Two general-purpose liquid helium (LHe) test cryostats have been developed in support of a major upgrade to the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The cryostats are capable of sustained operation below 1.8 K and currently support tests of prototype superconducting rf (srf) cavities for the APS Upgrade’s Short Pulse X-ray (SPX) initiative. To save cost, two existing test vessels were reconditioned: one “bucket dewar” supporting bare cavity tests and one shielded vacuum vessel with an integral LHe reservoir for jacketed/dressed cavity tests. A new feedbox containing a heat exchanger and associated valves was also designed and fabricated to support either cryostat. The resulting modular design permits tests on a wide variety of srf cavities in various states of completion, minimizing cost and maximizing use of the hardware. Together with a dedicated vacuum pump, control system, and helium supply via storage dewar or cryoplant, these cryostats are vital to the srf cavity development effort within the APS Upgrade.

  5. Role of Nuclear Grade Graphite in Oxidation in Modular HTGRs

    SciTech Connect (OSTI)

    Willaim Windes; G. Strydom; J. Kane; R. Smith

    2014-11-01T23:59:59.000Z

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

  6. Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Demonstration

    SciTech Connect (OSTI)

    Curtis Smith; Steven Prescott; Tony Koonce

    2014-04-01T23:59:59.000Z

    A key area of the Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) strategy is the development of methodologies and tools that will be used to predict the safety, security, safeguards, performance, and deployment viability of SMRs. The goal of the SMR PRA activity will be to develop quantitative methods and tools and the associated analysis framework for assessing a variety of risks. Development and implementation of SMR-focused safety assessment methods may require new analytic methods or adaptation of traditional methods to the advanced design and operational features of SMRs. We will need to move beyond the current limitations such as static, logic-based models in order to provide more integrated, scenario-based models based upon predictive modeling which are tied to causal factors. The development of SMR-specific safety models for margin determination will provide a safety case that describes potential accidents, design options (including postulated controls), and supports licensing activities by providing a technical basis for the safety envelope. This report documents the progress that was made to implement the PRA framework, specifically by way of demonstration of an advanced 3D approach to representing, quantifying and understanding flooding risks to a nuclear power plant.

  7. Modular Inspection System for a Complete IN-Service Examination of Nuclear Reactor Pressure Vessel, Including Beltline Region

    SciTech Connect (OSTI)

    David H. Bothell

    2000-04-30T23:59:59.000Z

    Final Report for a DOE Phase II Contract Describing the design and fabrication of a reactor inspection modular rover prototype for reactor vessel inspection.

  8. Demand Side Dispatching, Part 2: An Industrial Application

    E-Print Network [OSTI]

    Nath, R.; Cerget, D. A.; Henderson, E. T.

    DEMAND SIDE DISPATCHING, Part 2: AN INDUSTRIAL APPUCATION Ravi Nath Donald A. Cerget Edward T. Henderson Sr. Consultant Sr. Account Executive Sr. Engineer Linnhoff March, Inc. Detroit Edison Detroit Edison Houston, TX Detroit, M1 Detroit, M1...

  9. U.S. electric utility demand-side management 1993

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  10. Triptycene side unit effects on compressive yield strength in polycarbonates

    E-Print Network [OSTI]

    Fraser, Douglas (Douglas H.)

    2006-01-01T23:59:59.000Z

    Polycarbonates have long been studied for their excellent mechanical toughness. Adding side units to polycarbonate could increase physical properties of the polymer. The role of triptycene in polycarbonate was studied by ...

  11. Optimizing Electric Humidifier Operation with an Air Side Economizer

    E-Print Network [OSTI]

    Shami, U. F.

    1996-01-01T23:59:59.000Z

    Air side economizer cycle is a control scheme that is often used in WAC systems to reduce cooling energy consumption by introducing variable quantities of ambient air into a conditioned space to satisfy the space cooling load (free cooling...

  12. Emerging Technologies for Industrial Demand-Side Management

    E-Print Network [OSTI]

    Neely, J. E.; Kasprowicz, L. M.

    Demand-side management (DSM) is a set of actions taken by an electric utility to influence the electricity usage by a customer. Typical DSM activities include rebates for higher efficiency appliances and discounted electric rates for electric...

  13. Conceptual designs for modular OTEC SKSS. Final report

    SciTech Connect (OSTI)

    None

    1980-02-29T23:59:59.000Z

    This volume presents the results of the first phase of the Station Keeping Subsystem (SKSS) design study for 40 MW/sub e/ capacity Modular Experiment OTEC Platforms. The objectives of the study were: (1) establishment of basic design requirements; (2) verification of technical feasibility of SKSS designs; (3) identification of merits and demerits; (4) estimates of sizes for major components; (5) estimates of life cycle costs; (6) deployment scenarios and time/cost/risk assessments; (7) maintenance/repair and replacement scenarios; (8) identifications of interface with other OTEC subsystems; (9) recommendations for and major problems in preliminary design; and (10) applicability of concepts to commercial plant SKSS designs. A brief site suitability study was performed with the objective of determining the best possible location at the Punta Tuna (Puerto Rico) site from the standpoint of anchoring. This involved studying the vicinity of the initial location in relation to the prevailing bottom slopes and distances from shore. All subsequent studies were performed for the final selected site. The two baseline OTEC platforms were the APL BARGE and the G and C SPAR. The results of the study are presented in detail. The overall objective of developing two conceptual designs for each of the two baseline OTEC platforms has been accomplished. Specifically: (1) a methodology was developed for conceptual designs and followed to the extent possible. At this stage, a full reliability/performance/optimization analysis based on a probabilistic approach was not used due to the numerous SKSS candidates to be evaluated. A deterministic approach was used. (2) For both of the two baseline platforms, the APL BARGE and the G and C SPAR, all possible SKSS candidate concepts were considered and matrices of SKSS concepts were developed.

  14. Safety approaches for high power modular laser operation

    SciTech Connect (OSTI)

    Handren, R.T.

    1993-03-01T23:59:59.000Z

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest has been the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program has progressed to the point where a plant-scale facility to demonstrate commercial feasibility has been built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a >90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities ({approximately}3000 gal) of ethanol dye solutions. The Laboratory`s safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  15. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    SciTech Connect (OSTI)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01T23:59:59.000Z

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next Generation Safeguards Initiative (NGSI).

  16. An Overview of the Safety Case for Small Modular Reactors

    SciTech Connect (OSTI)

    Ingersoll, Daniel T [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    Several small modular reactor (SMR) designs emerged in the late 1970s and early 1980s in response to lessons learned from the many technical and operational challenges of the large Generation II light-water reactors. After the accident at the Three Mile Island plant in 1979, an ensuing reactor redesign effort spawned the term inherently safe designs, which later evolved into passively safe terminology. Several new designs were engineered to be deliberately small in order to fully exploit the benefits of passive safety. Today, new SMR designs are emerging with a similar philosophy of offering highly robust and resilient designs with increased safety margins. Additionally, because these contemporary designs are being developed subsequent to the September 11, 2001, terrorist attack, they incorporate a number of intrinsic design features to further strengthen their safety and security. Several SMR designs are being developed in the United States spanning the full spectrum of reactor technologies, including water-, gas-, and liquid-metal-cooled ones. Despite a number of design differences, most of these designs share a common set of design principles to enhance plant safety and robustness, such as eliminating plant design vulnerabilities where possible, reducing accident probabilities, and mitigating accident consequences. An important consequence of the added resilience provided by these design approaches is that the individual reactor units and the entire plant should be able to survive a broader range of extreme conditions. This will enable them to not only ensure the safety of the general public but also help protect the investment of the owner and continued availability of the power-generating asset. Examples of typical SMR design features and their implications for improved plant safety are given for specific SMR designs being developed in the United States.

  17. Demand-Side and Supply-Side Load Management: Optimizing with Thermal Energy Storage (TES) for the Restructuring Energy Marketplace

    E-Print Network [OSTI]

    Andrepont, J. S.

    -side regarding power generation. Thermal Energy Storage (TES) can provide the flexibility essential to the economical management of power. In large industrial applications, the added value of TES has been demonstrated, not only in managing operating costs...

  18. Modular multi-element high energy particle detector

    DOE Patents [OSTI]

    Coon, Darryl D. (Pittsburgh, PA); Elliott, John P. (Pittsburgh, PA)

    1990-01-02T23:59:59.000Z

    Multi-element high energy particle detector modules comprise a planar heavy metal carrier of tungsten alloy with planar detector units uniformly distributed over one planar surface. The detector units are secured to the heavy metal carrier by electrically conductive adhesive so that the carrier serves as a common ground. The other surface of each planar detector unit is electrically connected to a feedthrough electrical terminal extending through the carrier for front or rear readout. The feedthrough electrical terminals comprise sockets at one face of the carrier and mating pins porjecting from the other face, so that any number of modules may be plugged together to create a stack of modules of any desired number of radiation lengths. The detector units each comprise four, preferably rectangular, p-i-n diode chips arranged around the associated feedthrough terminal to form a square detector unit providing at least 90% detector element coverage of the carrier. Integral spacers projecting from the carriers extend at least partially along the boundaries between detector units to space the p-i-n diode chips from adjacent carriers in a stack. The spacers along the perimeters of the modules are one-half the width of the interior spacers so that when stacks of modules are arranged side by side to form a large array of any size or shape, distribution of the detector units is uniform over the entire array.

  19. Modular multi-element high energy particle detector

    DOE Patents [OSTI]

    Coon, D.D.; Elliott, J.P.

    1990-01-02T23:59:59.000Z

    Multi-element high energy particle detector modules comprise a planar heavy metal carrier of tungsten alloy with planar detector units uniformly distributed over one planar surface. The detector units are secured to the heavy metal carrier by electrically conductive adhesive so that the carrier serves as a common ground. The other surface of each planar detector unit is electrically connected to a feedthrough electrical terminal extending through the carrier for front or rear readout. The feedthrough electrical terminals comprise sockets at one face of the carrier and mating pins projecting from the other face, so that any number of modules may be plugged together to create a stack of modules of any desired number of radiation lengths. The detector units each comprise four, preferably rectangular, p-i-n diode chips arranged around the associated feedthrough terminal to form a square detector unit providing at least 90% detector element coverage of the carrier. Integral spacers projecting from the carriers extend at least partially along the boundaries between detector units to space the p-i-n diode chips from adjacent carriers in a stack. The spacers along the perimeters of the modules are one-half the width of the interior spacers so that when stacks of modules are arranged side by side to form a large array of any size or shape, distribution of the detector units is uniform over the entire array. 5 figs.

  20. 342 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 8, NO. 3, SEPTEMBER 2003 Novel Active Connector for Modular

    E-Print Network [OSTI]

    Mavroidis, Constantinos

    represent the current response of the robotics industry to the shift from product-oriented toward client of the modules in a modular robot. In many applications such as robotic systems that operate in remote for Modular Robotic Systems Mircea Badescu and Constantinos Mavroidis, Member, IEEE Abstract--In this paper

  1. Duality and Modularity in Elliptic Integrable Systems and Vacua of N=1* Gauge Theories

    E-Print Network [OSTI]

    Antoine Bourget; Jan Troost

    2015-01-21T23:59:59.000Z

    We study complexified elliptic Calogero-Moser integrable systems. We determine the value of the potential at isolated extrema, as a function of the modular parameter of the torus on which the integrable system lives. We calculate the extrema for low rank B,C,D root systems using a mix of analytical and numerical tools. For so(5) we find convincing evidence that the extrema constitute a vector valued modular form for a congruence subgroup of the modular group. For so(7) and so(8), the extrema split into two sets. One set contains extrema that constitute vector valued modular forms for congruence subgroups, and a second set contains extrema that exhibit monodromies around points in the interior of the fundamental domain. The former set can be described analytically, while for the latter, we provide an analytic value for the point of monodromy for so(8), as well as extensive numerical predictions for the Fourier coefficients of the extrema. Our results on the extrema provide a rationale for integrality properties observed in integrable models, and embed these into the theory of vector valued modular forms. Moreover, using the data we gather on the modularity of complexified integrable system extrema, we analyse the massive vacua of mass deformed N=4 supersymmetric Yang-Mills theories with low rank gauge group of type B,C and D. We map out their transformation properties under the infrared electric-magnetic duality group as well as under triality for N=1* with gauge algebra so(8). We compare the exact massive vacua to those found in a semi-classical analysis, and find surprising properties of the quantum gauge theories.

  2. Duality and Modularity in Elliptic Integrable Systems and Vacua of N=1* Gauge Theories

    E-Print Network [OSTI]

    Antoine Bourget; Jan Troost

    2015-04-09T23:59:59.000Z

    We study complexified elliptic Calogero-Moser integrable systems. We determine the value of the potential at isolated extrema, as a function of the modular parameter of the torus on which the integrable system lives. We calculate the extrema for low rank B,C,D root systems using a mix of analytical and numerical tools. For so(5) we find convincing evidence that the extrema constitute a vector valued modular form for a congruence subgroup of the modular group. For so(7) and so(8), the extrema split into two sets. One set contains extrema that make up vector valued modular forms for congruence subgroups, and a second set contains extrema that exhibit monodromies around points in the interior of the fundamental domain. The former set can be described analytically, while for the latter, we provide an analytic value for the point of monodromy for so(8), as well as extensive numerical predictions for the Fourier coefficients of the extrema. Our results on the extrema provide a rationale for integrality properties observed in integrable models, and embed these into the theory of vector valued modular forms. Moreover, using the data we gather on the modularity of complexified integrable system extrema, we analyse the massive vacua of mass deformed N=4 supersymmetric Yang-Mills theories with low rank gauge group of type B,C and D. We map out their transformation properties under the infrared electric-magnetic duality group as well as under triality for N=1* with gauge algebra so(8). We find several intriguing properties of the quantum gauge theories.

  3. Westinghouse Small Modular Reactor nuclear steam supply system design

    SciTech Connect (OSTI)

    Memmott, M. J.; Harkness, A. W.; Van Wyk, J. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

    2012-07-01T23:59:59.000Z

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development and integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam generator, and eight reactor coolant pumps (RCP). The containment vessel is 27.1 m (89 ft) long and 9.8 m (32 ft) in diameter, and is designed to withstand pressures up to 1.7 MPa (250 psi). It is completely submerged in a pool of water serving as a heat sink and radiation shield. Housed within the containment are four combined core makeup tanks (CMT)/passive residual heat removal (PRHR) heat exchangers, two in-containment pools (ICP), two ICP tanks and four valves which function as the automatic depressurization system (ADS). The PRHR heat exchangers are thermally connected to two different ultimate heat sink (UHS) tanks which provide transient cooling capabilities. (authors)

  4. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01T23:59:59.000Z

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  5. Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids

    E-Print Network [OSTI]

    Harper, Meg

    2014-01-01T23:59:59.000Z

    Technologies for Demand-Side Management on Isolated Mini-technologies used for demand- side management (DSM) on mini-can provide additional demand-side management based on the

  6. U.S. electric utility demand-side management 1995

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  7. U.S. electric utility demand-side management 1996

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  8. US electric utility demand-side management, 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-26T23:59:59.000Z

    The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

  9. Side Stream Filtration for Cooling Towers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo ÂťUsageSecretary of EnergyFocus GroupSherrell R. Greene AboutSide StreamSide

  10. TESLA Report 2005-04 Modular & reconfigurable common PCB-platform of

    E-Print Network [OSTI]

    TESLA Report 2005-04 Modular & reconfigurable common PCB-platform of FPGA based LLRF control system for TESLA Test Facility Krzysztof T. Pozniak, Ryszard S. Romaniuk Institute of Electronic Systems in a universal motherboard (MB) for the next generation of LLRF control system for TESLA. The motherboard bases

  11. Modularity and Integration in the Design of a Socially Interactive Robot

    E-Print Network [OSTI]

    Kabanza, Froduald

    Modularity and Integration in the Design of a Socially Interactive Robot Franc¸ois Michaud, Yannick Brosseau, Carle C^ot´e, Dominic L´etourneau, Pierre Moisan, Arnaud Ponchon, Cl´ement Ra¨ievsky, Jean:{laborius-challenge}@listes.USherbrooke.ca Abstract-- Designing robots that are capable of interacting with humans in real life settings

  12. A modular object-oriented framework for hierarchical multi-resolution robot simulation

    E-Print Network [OSTI]

    Treuille, Adrien

    of a commercial industrial robot. KEYWORDS: Robot simulation; Object orientation; Hierarchical simulation. 1 available today are more concerned with robot task programming applications rather than design. WhileA modular object-oriented framework for hierarchical multi- resolution robot simulation Sanghoon

  13. Modular Operational Test Plans for Inferences on Software Reliability Based on a Markov Model

    E-Print Network [OSTI]

    Mazumdar, Mainak

    Modular Operational Test Plans for Inferences on Software Reliability Based on a Markov Model reliabilities. An operational test procedure is considered in which only the individual modules are tested and the system is considered acceptable if, and only if, no failures are observed. The minimum number of tests

  14. MoDPepInt: An interactive webserver for prediction of modular domain-peptide interactions

    E-Print Network [OSTI]

    Brendel, Volker

    MoDPepInt: An interactive webserver for prediction of modular domain-peptide interactions-Supervised Prediction of SH2-Peptide Interactions from Imbalanced High-Throughput Data PLoS One, 8(5), pp. e62732, 2013-peptide interaction prediction with an application to human SH3 domains Bioinformatics, 29(13), pp. i335-i343, 2013

  15. On the modular structure of the genus-one Type II superstring low energy expansion

    E-Print Network [OSTI]

    Eric D'Hoker; Michael B. Green; Pierre Vanhove

    2015-02-24T23:59:59.000Z

    The analytic contribution to the low energy expansion of Type II string amplitudes at genus-one is a power series in space-time derivatives with coefficients that are determined by integrals of modular functions over the complex structure modulus of the world-sheet torus. These modular functions are associated with world-sheet vacuum Feynman diagrams and given by multiple sums over the discrete momenta on the torus. In this paper we exhibit exact differential and algebraic relations for a certain infinite class of such modular functions by showing that they satisfy Laplace eigenvalue equations with inhomogeneous terms that are polynomial in non-holomorphic Eisenstein series. Furthermore, we argue that the set of modular functions that contribute to the coefficients of interactions up to order D**10 R*4 are linear sums of functions in this class and quadratic polynomials in Eisenstein series and odd Riemann zeta values. Integration over the complex structure results in coefficients of the low energy expansion that are rational numbers multiplying monomials in odd Riemann zeta values.

  16. Utility/user requirements for the Modular High Temperature Gas-Cooled Reactor Plant

    SciTech Connect (OSTI)

    Swart, F.E.

    1987-06-01T23:59:59.000Z

    The purpose of this document is to set forth the top level Utilty/User requirements for a Modular High Temperature Gas-Cooled Reactor electric generating plant that incorporates 4 reactors and 2 turbine-generators to produce a nominal electrical output of 550 MW net.

  17. New Modularization Framework for the FAST Wind Turbine CAE Tool: Preprint

    SciTech Connect (OSTI)

    Jonkman, J.

    2013-01-01T23:59:59.000Z

    NREL has recently put considerable effort into improving the overall modularity of its FAST wind turbine aero-hydro-servo-elastic tool to (1) improve the ability to read, implement, and maintain source code; (2) increase module sharing and shared code development across the wind community; (3) improve numerical performance and robustness; and (4) greatly enhance flexibility and expandability to enable further developments of functionality without the need to recode established modules. The new FAST modularization framework supports module-independent inputs, outputs, states, and parameters; states in continuous-time, discrete-time, and in constraint form; loose and tight coupling; independent time and spatial discretizations; time marching, operating-point determination, and linearization; data encapsulation; dynamic allocation; and save/retrieve capability. This paper explains the features of the new FAST modularization framework, as well as the concepts and mathematical background needed to understand and apply it correctly. It is envisioned that the new modularization framework will transform FAST into a powerful, robust, and flexible wind turbine modeling tool with a large number of developers and a range of modeling fidelities across the aerodynamic, hydrodynamic, servo-dynamic, and structural-dynamic components.

  18. Modular Permanent Magnet Machine Based on Soft Magnetic *** Burgess-Norton Mfg.Co.

    E-Print Network [OSTI]

    Lipo, Thomas

    2005-30 Modular Permanent Magnet Machine Based on Soft Magnetic Composite *** Burgess-Norton Mfg of Wisconsin-Madison College of Engineering Wisconsin Power Electronics Research Center 2559D Engineering Hall 1415 Engineering Drive Madison, WI 53706-1691 Š 2005 Confidential Research Report W. Ouyang*, S. Huang

  19. Scheduling for a Modular Activity Recognition System to Reduce Energy Consumption on SmartPhones

    E-Print Network [OSTI]

    Beigl, Michael

    Scheduling for a Modular Activity Recognition System to Reduce Energy Consumption on Smart Computing Systems, Karlsruhe Institute of Technology (KIT) Abstract During the last years, mobile phones the activity recognition is totally switched off for certain periods, the power saving mechanisms native

  20. Analysis of Modular Arithmetic Markus MullerOlm 1 and Helmut Seidl 2

    E-Print Network [OSTI]

    MĂźller-Olm, Markus

    Analysis of Modular Arithmetic Markus MË?uller­Olm 1 and Helmut Seidl 2 1 UniversitË?at Dortmund, Fachbereich Informatik, LS 5 Baroper Str. 301, 44221 Dortmund, Germany markus.mueller­olm@cs.uni­dortmund.de 2

  1. Modular Invariant Soft Breaking, WMAP, Dark Matter and Sparticle Mass Limits

    E-Print Network [OSTI]

    Chattopadhyay, Utpal; Chattopadhyay, Utpal; Nath, Pran

    2004-01-01T23:59:59.000Z

    An analysis of soft breaking under the constraint of modular invariance is given. The role of dilaton and moduli dependent front factors in achieving a modular invariant $V_{soft}$ is emphasized. Further, it is shown that in string models $\\tan\\beta$ is no longer a free parameter but is determined in terms of $\\alpha_{string}$ and the other soft parameters by the constraints of modular invariance and radiative electroweak symmetry breaking. The above framework is then used to analyze the neutralino relic density consistent with the WMAP data at self dual points in the Kahler and complex structure moduli. One finds that the combined set of constraints arising from modular invariant soft breaking, radiative electroweak symmetry breaking and WMAP lead to upper limits on sparticle masses for $\\mu>0$. These limits are investigated for a class of models and found to lie within reach of the Tevatron and of the Large Hadron Collider (LHC). Further, an analysis of the neutralino-proton cross section shows that dark ma...

  2. Systematic control of protein interaction using a modular ERK -helix linker

    E-Print Network [OSTI]

    Spudich, James A.

    Systematic control of protein interaction using a modular ERK -helix linker Sivaraj, genetically encoded linker, namely, an ERK [genetically encoded polypeptide motif based on alternating between calmodulin and its binding pep- tides, combined with FRET to determine the effect of the ERK

  3. Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant

    SciTech Connect (OSTI)

    James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk

    2011-09-20T23:59:59.000Z

    A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers and towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.

  4. Metastability and chimera states in modular delay and pulse-coupled oscillator Mark Wildiea)

    E-Print Network [OSTI]

    Shanahan, Murray

    Metastability and chimera states in modular delay and pulse-coupled oscillator networks Mark of a large number of "chimera" states characterized by coexistent synchronized and desynchronized subsystems, and a critical region is found that maximizes indices of both metastability and the prevalence of chimera states

  5. Control of a Mobile Modular Manipulator Moving on a Slope Yangmin Li, Yugang Liu

    E-Print Network [OSTI]

    Li, Yangmin

    Control of a Mobile Modular Manipulator Moving on a Slope Yangmin Li, Yugang Liu Department. An effective control method is applied to the ntobile mudular manipulator control in case of moving on a slope mobile basis and manipulator were studied in [I]. A hybrid control idea was presented for robot control

  6. Development of Modular Real-Time Software for the TALARIS Lunar Hopper Testbed

    E-Print Network [OSTI]

    , Michael C. Johnson, David W. Miller June 2011 SSL #6-11 #12;2 #12;Development of Modular Real 2011 SSL #6-11 This work is based on the unaltered text of the thesis by Christopher J. Han submitted

  7. Large-Scale Patent Classification with Min-Max Modular Support Vector Machines

    E-Print Network [OSTI]

    Lu, Bao-Liang

    Large-Scale Patent Classification with Min-Max Modular Support Vector Machines Xiao-Lei Chu, Chao Ma, Jing Li, Bao-Liang Lu Senior Member, IEEE, Masao Utiyama, and Hitoshi Isahara Abstract-- Patent-world patent classification typically exceeds one million, and this number increases every year. An effective

  8. ASHRAE Transactions: Symposia 1107 The interest in both modular simulation and alternative

    E-Print Network [OSTI]

    a limited Modular HVAC Simulation and the Future Integration of Alternative Cooling Systems in a New cooling systems continues to rise both in the United States and in other countries, particularly those method of the new program as back- ground and then discusses some of the alternative cooling system

  9. Modular Topology Control and Energy Model for Wireless Ad Hoc Sensor Networks

    E-Print Network [OSTI]

    Jay Yang, Shanchieh

    Modular Topology Control and Energy Model for Wireless Ad Hoc Sensor Networks Niranjan in a harsh terrain typically are battery operated and, therefore, require energy efficient network protocols. In order to ease the analysis of the energy usage of proposed network protocols, this paper proposes

  10. RAMANUJAN AND THE MODULAR j-INVARIANT BRUCE C. BERNDT AND HENG HUAT CHAN

    E-Print Network [OSTI]

    Berndt, Bruce C.

    RAMANUJAN AND THE MODULAR j-INVARIANT BRUCE C. BERNDT AND HENG HUAT CHAN Abstract. A new infinite­functions, Hilbert class fields. 1 #12; 2 BRUCE C. BERNDT AND HENG HUAT CHAN At the top of page 392 in [21, vol. 2

  11. On the modular structure of the genus-one Type II superstring low energy expansion

    E-Print Network [OSTI]

    Eric D'Hoker; Michael B. Green; Pierre Vanhove

    2015-06-03T23:59:59.000Z

    The analytic contribution to the low energy expansion of Type II string amplitudes at genus-one is a power series in space-time derivatives with coefficients that are determined by integrals of modular functions over the complex structure modulus of the world-sheet torus. These modular functions are associated with world-sheet vacuum Feynman diagrams and given by multiple sums over the discrete momenta on the torus. In this paper we exhibit exact differential and algebraic relations for a certain infinite class of such modular functions by showing that they satisfy Laplace eigenvalue equations with inhomogeneous terms that are polynomial in non-holomorphic Eisenstein series. Furthermore, we argue that the set of modular functions that contribute to the coefficients of interactions up to order D**10 R*4 are linear sums of functions in this class and quadratic polynomials in Eisenstein series and odd Riemann zeta values. Integration over the complex structure results in coefficients of the low energy expansion that are rational numbers multiplying monomials in odd Riemann zeta values.

  12. Modular Dual Coolant Pb-17Li Blanket Design For ARIES-CS Compact Stellarator Power Plant

    E-Print Network [OSTI]

    Raffray, A. René

    of the study. The preferred blanket concept is a dual coolant blanket with a He- cooled ferritic steel firstModular Dual Coolant Pb-17Li Blanket Design For ARIES-CS Compact Stellarator Power Plant X.R. Wanga from the engineering effort during the second phase of ARIES-CS study on the conceptual design

  13. Prediction of Protein Subcellular Multi-locations with a Min-Max Modular

    E-Print Network [OSTI]

    Lu, Bao-Liang

    -location problem. In addition, there are a large portion of proteins lack the information like GO and FunPrediction of Protein Subcellular Multi-locations with a Min-Max Modular Support Vector Machine subcellular multi-locations of proteins with machine learning techniques is a challenging problem

  14. To appear in the Journal of Symbolic Computation Modular Termination Proofs for Rewriting

    E-Print Network [OSTI]

    Ábrahåm, Erika

    To appear in the Journal of Symbolic Computation Modular Termination Proofs for Rewriting Using Recently, Arts and Giesl developed the dependency pair approach which allows automated termination and innermost termination proofs for many term rewriting systems for which such proofs were not possible before

  15. Modular Termination of Basic Narrowing Maria Alpuente, Santiago Escobar, and Jose Iborra

    E-Print Network [OSTI]

    Escobar, Santiago

    Modular Termination of Basic Narrowing Mar´ia Alpuente, Santiago Escobar, and Jos´e Iborra theories. Another application is analyzing ter- mination of narrowing by checking the termination of basic narrowing, as done in pioneering work by Hullot. In this work, we study the modu- larity of termination

  16. An approach for improving Fault-Tolerance in Automotive Modular Embedded Software*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , brought by new customer services (i.e. chassis control), motivate the automotive industry to search and control mechanisms provided by current standard in the automotive industry. 1. Introduction ImprovingAn approach for improving Fault-Tolerance in Automotive Modular Embedded Software* * This work has

  17. Energy Conservation Through the Use of Modular Refractory Fiber Linings - An Unexpected Divided

    E-Print Network [OSTI]

    Kleeman, L. A.; Mewhinney, T. R.; Proctor, S. J.

    1979-01-01T23:59:59.000Z

    temperature, heat loss, velocity, etc.), and was free of operation failures. These efforts produced the Z-BLOK* Module Refractory Fiber Lining, which was first installed in an operating furnace in April, 1975. After obtaining a patent for this unique modular...

  18. Towards Energy Homeostasis in an Autonomous Self-Reconfigurable Modular Robotic Organism

    E-Print Network [OSTI]

    Timmis, Jon

    to adapt to new scenarios overtime [6]. This paper focuses on an artificial energy homeostasis systemTowards Energy Homeostasis in an Autonomous Self-Reconfigurable Modular Robotic Organism Raja Humza Department of Electronics University of York York, United Kingdom {mm520, jt517, amt}@ohm.york.ac.uk Abstract

  19. Towards a Minimal Architecture for a Printable, Modular, and Robust Sensing Skin

    E-Print Network [OSTI]

    Fearing, Ron

    . Bachrach, and R.S. Fearing Abstract-- This work presents a low-complexity modular sensor grid architecture to provide a smart skin to non-convex shapes, such as a robot body and legs. To configure a sensing skin shaped by arbitrary cuts and rapid changes in designs, we use a wavefront planning approach to generate

  20. MIT Modular Pebble Bed Reactor (MPBR) A Summary of Research Activities and Accomplishments

    E-Print Network [OSTI]

    Disposal ˇ Reactor Research/ Demonstration Facility ˇ License by Test ˇ Expert I&C System - Hands free.71MPa 69.7 C 4.67MPa Cooling RPV #12;BOP System Analysis and Dynamic Simulation Model DevelopmentMIT Modular Pebble Bed Reactor (MPBR) A Summary of Research Activities and Accomplishments Andrew C

  1. STRIPS Planning with Modular Behavior Selection Networks for Smart Home Agents

    E-Print Network [OSTI]

    Cho, Sung-Bae

    STRIPS Planning with Modular Behavior Selection Networks for Smart Home Agents Kyon-Mo Yang Dept Science Yonsei University Seoul, Korea sbcho@yonsei.ac.kr Abstract--A smart home has highly advanced of intelligent service agents in smart home, the service agent should collect the information using sensors

  2. Platform-of-Platforms: A Modular, Integrated Resource Framework for Large-Scale Services

    E-Print Network [OSTI]

    Weissman, Jon

    Platform-of-Platforms: A Modular, Integrated Resource Framework for Large-Scale Services Rahul there has been a great deal of research ac- tivity in the development of diverse network service platforms-tier resource platform may be a natural fit for such multi-tier network services. Figure 1: Hierarchical

  3. MODULAR MULTI-LEVEL CONVERTER BASED HVDC SYSTEM FOR GRID CONNECTION OF OFFSHORE WIND

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    MODULAR MULTI-LEVEL CONVERTER BASED HVDC SYSTEM FOR GRID CONNECTION OF OFFSHORE WIND POWER PLANT U off-shore wind power plants. The MMC consists of a large number of simple voltage sourced converter offshore wind power plants (WPP) because they offer higher energy yield due to a superior wind profile

  4. Deep-Burn Modular Helium Reactor Fuel Development Plan

    SciTech Connect (OSTI)

    McEachern, D

    2002-12-02T23:59:59.000Z

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes the Design Data Needs to: (1) fabricate the coated particle fuel, (2) predict its performance in the reactor core, (3) predict the radionuclide release rates from the reactor core, and (4) predict the performance of spent fuel in a geological repository. The heart of this fuel development plan is Section 6, which describes the development activities proposed to satisfy the DDNs presented in Section 5. The development scope is divided into Fuel Process Development, Fuel Materials Development, Fission Product Transport, and Spent Fuel Disposal. Section 7 describes the facilities to be used. Generally, this program will utilize existing facilities. While some facilities will need to be modified, there is no requirement for major new facilities. Section 8 states the Quality Assurance requirements that will be applied to the development activities. Section 9 presents detailed costs organized by WBS and spread over time. Section 10 presents a list of the types of deliverables that will be prepared in each of the WBS elements. Four Appendices contain supplementary information on: (a) design data needs, (b) the interface with the separations plant, (c) the detailed development schedule, and (d) the detailed cost estimate.

  5. Double-Sided Cooling Design for Novel Planar Module

    SciTech Connect (OSTI)

    Ning, Puqi [ORNL; Liang, Zhenxian [ORNL; Marlino, Laura D [ORNL; Wang, Fei [ORNL

    2013-01-01T23:59:59.000Z

    A novel packaging structure for medium power modules featuring power semiconductor switches sandwiched between two symmetric substrates that fulfill electrical conduction and insulation functions is presented. Large bonding areas between dies and substrates allow this packaging technology to offer significant improvements in electrical, thermal performance. Double-sided cooling system was dedicatedly analyzed and designed for different applications.

  6. Uncovering Facebook Side Channels and User Attitudes Rutgers University

    E-Print Network [OSTI]

    Wright, Rebecca N.

    Uncovering Facebook Side Channels and User Attitudes Sai Lu Rutgers University sl914@cs.wright@rutgers.edu Abstract--Over the course of the last decade, Facebook has become an incredibly popular social networking site, reporting around a billion visitors monthly. Like any social networking site, Facebook's design

  7. Continued on other side Mission of an Engaged Museum

    E-Print Network [OSTI]

    Continued on other side Mission of an Engaged Museum The Michigan State University (MSU) Museum-grant university museum, this commitment to society is met through education, exhibitions, research and the world beyond. About the MSU Museum The Museum is the state's natural history and culture museum

  8. pV3 Programmer's Guide Client Side & Concentrator Programming

    E-Print Network [OSTI]

    Peraire, Jaime

    pV3 Programmer's Guide Rev. 2.05 Client Side & Concentrator Programming Bob Haimes Massachusetts.I.T., and USER agrees to preserve same. 2 #12;Contents 1 Introduction 6 2 pV3 in the Message Passing Environment 7 2.1 Using PVM Message Passing with the Simulation . . . . . . . . . . . . . . . . . . . . 7 2.2 pV

  9. Research Needs: Glass Solar Reflectance and Vinyl Siding

    E-Print Network [OSTI]

    .S. for residential buildings. To meet IECC's U-factor and solar heat gain coefficient (SHGC) requirements insulatingLBNL-5022E Research Needs: Glass Solar Reflectance and Vinyl Siding Authors: R. Hart*, C. Curcija of any information, apparatus, product, or process disclosed, or represents that its use would

  10. Gas compressor with side branch absorber for pulsation control

    DOE Patents [OSTI]

    Harris, Ralph E. (San Antonio, TX); Scrivner, Christine M. (San Antonio, TX); Broerman, III, Eugene L. (San Antonio, TX)

    2011-05-24T23:59:59.000Z

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  11. Emerging Technologies for Industrial Demand-Side Management 

    E-Print Network [OSTI]

    Neely, J. E.; Kasprowicz, L. M.

    1993-01-01T23:59:59.000Z

    as demand-side management strategies for industrial consumers of electricity. An alternative strategy to replacing aging electric motors with high efficiency or ASD motors is a turbine let-down. A turbine letdown is a turbine which uses pressure reduction...

  12. National Chemistry Week Theme: "Candy: The Sweet Side of Chemistry"

    E-Print Network [OSTI]

    Stephens, Jacqueline

    National Chemistry Week Theme: "Candy: The Sweet Side of Chemistry" Super Science Saturday Saturday-on chemistry and science demonstrations! All students & families are welcome! Fun & educational for all ages! Sponsored by: American Chemical Society LSU Department of Chemistry LSU Athletic Department Free admission

  13. Post-Mubarak Egypt: The Dark Side of Islamic Utopia

    E-Print Network [OSTI]

    Anat, Maril,

    23 Post-Mubarak Egypt: The Dark Side of Islamic Utopia Robert S. Wistrich Robert S. Wistrich victor in the first two rounds of the democratic elections currently taking place in post-Mubarak Egypt. Though they did not initiate the wider popular movement toward democracy, the Islamist forces in Egypt

  14. Fault and Side-Channel Attacks on Pairing Based Cryptography ?

    E-Print Network [OSTI]

    such devices will be carried into and used in hostile environments and often house sensitive information devices need to be aware of similar problems in their operational environments. We can extend this passive information as passive attacks. Although side-channel attack and defence techniques are becoming increas

  15. A Demand-Side Management Experience in Existing Building Commissioning

    E-Print Network [OSTI]

    Franconi, E.; Selch, M.; Bradford, J.; Gruen, B.

    2003-01-01T23:59:59.000Z

    As part of a suite of demand-side management (DSM) program offerings, Xcel Energy provides a recommissioning program to its Colorado commercial customers. The program has a summer peak-demand savings goal of 7.8 MW to be achieved by 2005. Commenced...

  16. Process and Data: Two Sides of the Same Coin?

    E-Print Network [OSTI]

    Ulm, Universität

    1 of 54 Process and Data: Two Sides of the Same Coin? Manfred Reichert University of Ulm Databases Agenda Backgrounds Data as Driver of Large Processes Object-Aware Processes The PHILharmonic Acquisition Modality RIS HIS PACS Page 3 Backgrounds Process-Aware Information System (PAIS) Š M. Reichert

  17. Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers

    SciTech Connect (OSTI)

    Xu, TengFang

    2009-05-01T23:59:59.000Z

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. In the meanwhile, the trend toward higher power density resulting from current and future generations of servers has created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 3. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable liquid-rack cooling system in this study. The scope is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures, under various chilled-water supply temperatures. The information generated from this testing when combined with documented energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  18. Performance Evaluation for Modular, Scalable Overhead Cooling Systems In Data Centers

    SciTech Connect (OSTI)

    Xu, TengFang T.

    2009-05-01T23:59:59.000Z

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants' input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 1. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable overhead cooling system. The system was tested in a hot/cold aisle environment without separation, or containment or the hot or cold aisles. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  19. Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers

    SciTech Connect (OSTI)

    Adams, Barbara J

    2009-05-01T23:59:59.000Z

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 2. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable pair of chilled water cooling modules that were tested in a hot/cold aisle environment with hot aisle containment. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  20. Performance Evaluation for a Modular, Scalable Passive Cooling System in Data Centers

    SciTech Connect (OSTI)

    Xu, TengFang

    2009-05-01T23:59:59.000Z

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. In the meanwhile, the trend toward higher power density resulting from current and future generations of servers has created significant opportunities for precision cooling to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected passive, modular localized cooling solution provided by vendor 4. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a passive, modular, scalable liquid cooling system in this study. The scope is to quantify energy performance of the modular cooling unit corresponding to various server loads and inlet air temperatures, under various chilled-water supply temperatures. The information generated from this testing when combined with documented energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  1. An MILP Formulation for Load-Side Demand Control Zhonghui Luo, Ratnesh Kumar*

    E-Print Network [OSTI]

    Kumar, Ratnesh

    Demand control systems can be divided functionally into supply-side and load-side control/management systems. Supply-side demand management systems, implemented by the utilities, choose between maintainingAn MILP Formulation for Load-Side Demand Control Zhonghui Luo, Ratnesh Kumar* , Joseph Sottile

  2. Design modification for the modular helium reactor for higher temperature operation and reliability studies for nuclear hydrogen production processes

    E-Print Network [OSTI]

    Reza, S.M. Mohsin

    2009-05-15T23:59:59.000Z

    Design options have been evaluated for the Modular Helium Reactor (MHR) for higher temperature operation. An alternative configuration for the MHR coolant inlet flow path is developed to reduce the peak vessel temperature (PVT). The coolant inlet...

  3. The design of a reduced diameter Pebble Bed Modular Reactor for reactor pressure vessel transport by railcar

    E-Print Network [OSTI]

    Everson, Matthew S

    2009-01-01T23:59:59.000Z

    Many desirable locations for Pebble Bed Modular Reactors are currently out of consideration as construction sites for current designs due to limitations on the mode of transportation for large RPVs. In particular, the ...

  4. Feasibility, benefits and challenges of modular construction in high rise development in the United States : a developer's perspective

    E-Print Network [OSTI]

    Velamati, Sri

    2012-01-01T23:59:59.000Z

    Modular construction has long been utilized in the construction of residential and many other commercial product types as a means for potentially quicker construction delivery times. Over the past 5 years this construction ...

  5. MHD channel gas-side element erosion-corrosion studies

    SciTech Connect (OSTI)

    Pollina, R.J.; Simpsom, W. (Avco-Everett Research Lab., Inc., Everett, MA (USA)); Farrar, L.C. (Montec Associates, Inc., Butte, MT (USA))

    1990-01-01T23:59:59.000Z

    The problems connected with gas side corrosion for the design of the 1A4 channel hardware are explored and the authors present the results to date of gas side wear rate tests in the Mark 7 facility. They show that the proposed designs meet a 2000 hour lifetime criterion based upon materials test results. They also show the improvement in cathode lifetime obtained with lower voltage intercathode gaps. Finally the authors discuss the corrosion of these materials and show how lifetimes are dependent upon gap voltage and average metal temperature. The final choice of materials is determined primarily by the outcome of these tests and also by the question of the manufacturability of the prospective designs. 6 figs., 6 tabs.

  6. Paying for demand-side response at the wholesale level

    SciTech Connect (OSTI)

    Falk, Jonathan

    2010-11-15T23:59:59.000Z

    The recent FERC Notice of Public Rulemaking regarding the payment to demand-side resources in wholesale markets has engendered a great deal of comments including FERC's obligation to ensure just and reasonable rates in the wholesale market and criteria for what FERC should do (on grounds of economic efficiency) without any real focus on what that commitment would really mean if FERC actually pursued it. (author)

  7. EDM, Axions, AxionEDM, Axions, Axion--Like ParticlesLike Particles, and, and TheThe Dark SideDark SideTheThe Dark SideDark Side

    E-Print Network [OSTI]

    Pines, Alexander

    EDM, Axions, AxionEDM, Axions, Axion--Like ParticlesLike Particles, and, and TheThe Dark Side EDM ˇ Proposed search for cosmic domains of A i Lik P i lAxion Like Particles 3 CP violation workshop 2013 #12;10-12 ˇ Introduced to solve strong CP problem in QCD: ˇ why is n-EDM so small?y ˇ Axions may

  8. Demand Side Management (DSM) Through Absorption Refrigeration Systems

    E-Print Network [OSTI]

    Chao, P. Y.; Shukla, D.; Amarnath, A.; Mergens, E.

    DEMAND SIDE MANAGEMENT (DSM) TIIROUGH ABSORPTION REFRIGERATION SYSTEMS Peter Y. Chao, PhD, Deepak Shukla, PhD, Sr. Process Engineers, TENSA Services, Inc. Ammi Amarnath, Sr. Project Manager, Electrical Power Research Institute Ed. Mergens.... They are Peak Clipping, Valley filling, Load Shifting, Strategic Conservation, Strategic Load Growth, and Flexible Load Shaping. Absorption Refrigeration from waste heat offers a viable option for DSM. This will either reduce the peak load (peak clipping...

  9. Demonstration of a Small Modular Biopower System Using Poultry Litter-Final Report

    SciTech Connect (OSTI)

    John Reardon; Art Lilley

    2004-06-15T23:59:59.000Z

    On-farm conversion of poultry litter into energy is a unique market connected opportunity for commercialization of small modular bioenergy systems. The United States Department of Energy recognized the need in the poultry industry for alternative litter management as an opportunity for bioenergy. The DOE created a relevant topic in the December 2000 release of the small business innovative research (SBIR) grant solicitation. Community Power Corporation responded to this solicitation by proposing the development of a small modular gasification and gas cleanup system to produce separate value streams of clean producer gas and mineral rich solids. This phase II report describes our progress in the development of an on-farm litter to energy system.

  10. Modular Approach for Continuous Cell-Level Balancing to Improve Performance of Large Battery Packs: Preprint

    SciTech Connect (OSTI)

    Muneed ur Rehman, M.; Evzelman, M.; Hathaway, K.; Zane, R.; Plett, G. L.; Smith, K.; Wood, E.; Maksimovic, D.

    2014-10-01T23:59:59.000Z

    Energy storage systems require battery cell balancing circuits to avoid divergence of cell state of charge (SOC). A modular approach based on distributed continuous cell-level control is presented that extends the balancing function to higher level pack performance objectives such as improving power capability and increasing pack lifetime. This is achieved by adding DC-DC converters in parallel with cells and using state estimation and control to autonomously bias individual cell SOC and SOC range, forcing healthier cells to be cycled deeper than weaker cells. The result is a pack with improved degradation characteristics and extended lifetime. The modular architecture and control concepts are developed and hardware results are demonstrated for a 91.2-Wh battery pack consisting of four series Li-ion battery cells and four dual active bridge (DAB) bypass DC-DC converters.

  11. Conceptual modular description of the high-level waste management system for system studies model development

    SciTech Connect (OSTI)

    McKee, R.W.; Young, J.R.; Konzek, G.J.

    1992-08-01T23:59:59.000Z

    This document presents modular descriptions of possible alternative components of the federal high-level radioactive waste management system and the procedures for combining these modules to obtain descriptions for alternative configurations of that system. The 20 separate system component modules presented here can be combined to obtain a description of any of the 17 alternative system configurations (i.e., scenarios) that were evaluated in the MRS Systems Studies program (DOE 1989a). First-approximation descriptions of other yet-undefined system configurations could also be developed for system study purposes from this database. The descriptions include, in a modular format, both functional descriptions of the processes in the waste management system, plus physical descriptions of the equipment and facilities necessary for performance of those functions.

  12. Identifying modular flows on multilayer networks reveals highly overlapping organization in social systems

    E-Print Network [OSTI]

    De Domenico, Manlio; Arenas, Alex; Rosvall, Martin

    2014-01-01T23:59:59.000Z

    Unveiling the community structure of networks is a powerful methodology to comprehend interconnected systems across the social and natural sciences. To identify different types of functional modules in interaction data aggregated in a single network layer, researchers have developed many powerful methods. For example, flow-based methods have proven useful for identifying modular dynamics in weighted and directed networks that capture constraints on flow in the systems they represent. However, many networked systems consist of agents or components that exhibit multiple layers of interactions. Inevitably, representing this intricate network of networks as a single aggregated network leads to information loss and may obscure the actual organization. Here we propose a method based on compression of network flows that can identify modular flows in non-aggregated multilayer networks. Our numerical experiments on synthetic networks show that the method can accurately identify modules that cannot be identified in agg...

  13. Analysis of Modular Arithmetic Markus MullerOlm 1 and Helmut Seidl 2

    E-Print Network [OSTI]

    Seidl, Helmut

    Analysis of Modular Arithmetic Markus MË?uller­Olm 1 and Helmut Seidl 2 1 UniversitË?at Dortmund, Fachbereich Informatik, LS 5 Baroper Str. 301, 44221 Dortmund, Germany markus.mueller­olm@cs.uni­dortmund.de 2 . In order to work with mathematical structures #12; 2 Markus MË?uller­Olm and Helmut Seidl x := 2x + 1 x

  14. Construction and properties of the modules for patching (Modularity 5.20.10)

    E-Print Network [OSTI]

    Conrad, Brian

    1, 2010 1 Introduction/Motivation Recall that our ultimate goal is to prove a modularity lifting will describe later. We'll construct maps Rn Tn lifting R0 T0 , and certain Rn -modules Mn . By a pigeonhole by the Tv for v (U). (It comes from the double coset Uv 1 0 0 v Uv.) Now let's fix the "ground level" U

  15. Population Sensitivity Evaluation of Two Proposed Hampton Roads Area Sites for a Possible Small Modular Reactor

    SciTech Connect (OSTI)

    Belles, R. J. [ORNL; Omitaomu, O. A. [ORNL

    2014-08-01T23:59:59.000Z

    The overall objective of this research project is to use the OR-SAGE tool to support the US Department of Energy (DOE) Office of Nuclear Energy (NE) in evaluating future electrical generation deployment options for small modular reactors (SMRs) in areas with significant energy demand from the federal sector. Deployment of SMRs in zones with high federal energy use can provide a means of meeting federal clean energy goals.

  16. Overall plant design specification Modular High Temperature Gas-cooled Reactor. Revision 9

    SciTech Connect (OSTI)

    NONE

    1990-05-01T23:59:59.000Z

    Revision 9 of the ``Overall Plant Design Specification Modular High Temperature Gas-Cooled Reactor,`` DOE-HTGR-86004 (OPDS) has been completed and is hereby distributed for use by the HTGR Program team members. This document, Revision 9 of the ``Overall Plant Design Specification`` (OPDS) reflects those changes in the MHTGR design requirements and configuration resulting form approved Design Change Proposals DCP BNI-003 and DCP BNI-004, involving the Nuclear Island Cooling and Spent Fuel Cooling Systems respectively.

  17. Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01T23:59:59.000Z

    This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).

  18. A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses M. Armand1 , G. Faure2 , B.Faure,Chantal.Keller,Benjamin.Werner}@inria.fr Abstract We present a way to enjoy the power of SAT and SMT provers in Coq without compromising soundness witnesses from the SAT solver ZChaff and from the SMT solver veriT. Experiments highlight the efficiency

  19. Direct Integration for Mirror Curves of Genus Two and an Almost Meromorphic Siegel Modular Form

    E-Print Network [OSTI]

    Albrecht Klemm; Maximilian Poretschkin; Thorsten Schimannek; Martin Westerholt-Raum

    2015-06-16T23:59:59.000Z

    This work considers aspects of almost holomorphic and meromorphic Siegel modular forms from the perspective of physics and mathematics. The first part is concerned with (refined) topological string theory and the direct integration of the holomorphic anomaly equations. Here, a central object to compute higher genus amplitudes, which serve as the generating functions of various enumerative invariants, is provided by the so-called propagator. We derive a universal expression for the propagator for geometries that have mirror curves of genus two which is given by the derivative of the logarithm of Igusa's cusp form of weight 10. In addition, we illustrate our findings by solving the refined topological string on the resolutions of the three toric orbifolds of order three, five and six. In the second part, we give explicit expressions for lowering and raising operators on Siegel modular forms, and define almost holomorphic Siegel modular forms based on them. Extending the theory of Fourier-Jacobi expansions to almost holomorphic Siegel modular forms and building up on recent work by Pitale, Saha, and Schmidt, we can show that there is no analogue of the almost holomorphic elliptic second Eisenstein series. In the case of genus 2, we provide an almost meromorphic substitute for it. This, in particular, leads us to a generalization of Ramanujan's differential equation for the second Eisenstein series. The two parts are intertwined by the observation that the meromorphic analogue of the almost holomorphic second Eisenstein series coincides with the physical propagator. In addition, the generalized Ramanujan identities match precisely the physical consistency conditions that need to be imposed on the propagator.

  20. Studies on the closed-loop digital control of multi-modular reactors

    SciTech Connect (OSTI)

    Bernard, J.A. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Nuclear Reactor Lab.); Henry, A.F.; Lanning, D.D.; Meyer, J.E. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering)

    1992-11-01T23:59:59.000Z

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  1. Studies on the closed-loop digital control of multi-modular reactors. Final report

    SciTech Connect (OSTI)

    Bernard, J.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Nuclear Reactor Lab.; Henry, A.F.; Lanning, D.D.; Meyer, J.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering

    1992-11-01T23:59:59.000Z

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  2. Split green fluorescent protein as a modular binding partner for protein crystallization

    SciTech Connect (OSTI)

    Nguyen, Hau B. [Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545 (United States); Hung, Li-Wei [Los Alamos National Laboratory, MS D454, Los Alamos, NM 87545 (United States); Yeates, Todd O. [University of California, PO Box 951569, Los Angeles, CA 90095 (United States); Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov; Waldo, Geoffrey S., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545 (United States)

    2013-12-01T23:59:59.000Z

    A strategy using a new split green fluorescent protein (GFP) as a modular binding partner to form stable protein complexes with a target protein is presented. The modular split GFP may open the way to rapidly creating crystallization variants. A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP ?-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10–11) hairpin in complex with GFP(1–9) was determined at a resolution of 2.6 Ĺ. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10–11) hairpin with a variety of GFP(1–9) mutants engineered for favorable crystallization.

  3. Non-Perturbative Corrections and Modularity in N=1 Type IIB Compactifications

    E-Print Network [OSTI]

    Thomas W. Grimm

    2007-06-04T23:59:59.000Z

    Non-perturbative corrections and modular properties of four-dimensional type IIB Calabi-Yau orientifolds are discussed. It is shown that certain non-perturbative alpha' corrections survive in the large volume limit of the orientifold and periodically correct the Kahler potential. These corrections depend on the NS-NS two form and have to be completed by D-instanton contributions to transform covariantely under symmetries of the type IIB orientifold background. It is shown that generically also the D-instanton superpotential depends on the two-form moduli as well as on the complex dilaton. These contributions can arise through theta-functions with the dilaton as modular parameter. An orientifold of the Enriques Calabi-Yau allows to illustrate these general considerations. It is shown that this compactification leads to a controlled four-dimensional N=1 effective theory due to the absence of various quantum corrections. Making contact to the underlying topological string theory the D-instanton superpotential is proposed to be related to a specific modular form counting D3, D1, D(-1) degeneracies on the Enriques Calabi-Yau.

  4. Deploying Server-side File System Monitoring at NERSC

    SciTech Connect (OSTI)

    Uselton, Andrew

    2009-05-01T23:59:59.000Z

    The Franklin Cray XT4 at the NERSC center was equipped with the server-side I/O monitoring infrastructure Cerebro/LMT, which is described here in detail. Insights gained from the data produced include a better understanding of instantaneous data rates during file system testing, file system behavior during regular production time, and long-term average behaviors. Information and insights gleaned from this monitoring support efforts to proactively manage the I/O infrastructure on Franklin. A simple model for I/O transactions is introduced and compared with the 250 million observations sent to the LMT database from August 2008 to February 2009.

  5. Construction of a Demand Side Plant with Thermal Energy Storage

    E-Print Network [OSTI]

    Michel, M.

    1989-01-01T23:59:59.000Z

    in num- ber. Wind and solar power hold promise for some day in the future, but they are generally not cost effective today with the exception of remote, off-grid locations. They are also not the most reliable forms of electrical genera- tion. One...- tion of new technologies and/or changes in be- havior. This is generally acceptable to regu- lators and provides a means for the utilities to meet their requirement to provide reliable service to their customer base. At the same time, demand side...

  6. Draft Chapter 3: Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 FederalDonnaDraft3: Demand-Side Resources

  7. Vehicle Technologies Office Merit Review 2014: Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Materials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modular process equipment...

  8. A modular VME or IBM PC based data acquisition system for multi-modality PET/CT scanners of different sizes and detector types

    E-Print Network [OSTI]

    Crosetto, D B

    2000-01-01T23:59:59.000Z

    A modular VME or IBM PC based data acquisition system for multi-modality PET/CT scanners of different sizes and detector types

  9. Photovoltaics for demand-side management: Opportunities for early commercialization

    SciTech Connect (OSTI)

    Byrne, J.; Letendre, S.; Govindarajalu, C.; Wang, Y.D. [Univ. of Delaware, Newark, DE (United States). Center for Energy and Environmental Policy; Nigro, R. [Delmarva Power, Newark, DE (United States); Wallace, W. [National Renewable Energy Lab., Golden, CO (United States)

    1995-10-01T23:59:59.000Z

    Recently, interest in utilizing photovoltaics (PV) in a demand-side management (DSM) role has been increasing. Research has shown that many utilities across the US have a good match between peak loads and the availability of the solar resource. Maximum value for PV in DSM applications can be achieved by incorporating a dispatching capability to PV systems (through the addition of storage). This enables utilities to evaluate PV systems as a peak-shaving technology. To date, peak-shaving has been a high-value DSM application for US utilities. The authors analysis of the value of dispatchable PV-DSM systems indicates that small-scale, customer-sited systems are approaching competitive cost levels in several regions of the US that have favorable load matching and high demand charges. This paper presents the results of an economic analysis for high-value PV-DSM systems located in the service territories of five case study utilities. The results suggest that PV is closer to commercialization when viewed as a DSM technology relative to analyses that focus on the technology as a supply-side option.

  10. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs

    E-Print Network [OSTI]

    Victoria, University of

    Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs Supervisory Committee Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management of Environmental Studies) Departmental Member For energy utilities faced with expanded jurisdictional energy

  11. Los Alamos Lab to perform slope-side cleanup near Smith's Marketplace

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Lab to perform slope-side cleanup near Smith's Marketplace Los Alamos National Laboratory to perform slope-side cleanup near Smith's Marketplace The Lab is performing a...

  12. Protein side-chain placement: probabilistic inference and integer programming methods

    E-Print Network [OSTI]

    Hong, Eun-Jong

    The prediction of energetically favorable side-chain conformations is a fundamental element in homology modeling of proteins and the design of novel protein sequences. The space of side-chain conformations can be approximated ...

  13. Squeezing the Sandwich: A Mobile Pressure-Sensitive Two-Sided Multi-Touch Prototype

    E-Print Network [OSTI]

    .rohs,sven.kratz}@telekom.de ABSTRACT Two-sided pressure input is common in everyday interac- tions such as grabbing, sliding, twistingSqueezing the Sandwich: A Mobile Pressure-Sensitive Two-Sided Multi-Touch Prototype Georg Essl1,2 1 which allows for two- sided multitouch sensing with continuous pressure input at interactive rates

  14. Predictive Modeling for Glass-Side Laser Scribing of Thin Film Photovoltaic Cells

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    with reduced thermal effect. Film side laser scribing is governed by heating, melting and vaporizing of selective films. Glass side laser scribing is a thermal-mechanical process which involves stress inducedPredictive Modeling for Glass-Side Laser Scribing of Thin Film Photovoltaic Cells Hongliang Wang

  15. Cytochrome c maturation system on the negative side of bioenergetic membranes: CCB or System IV

    E-Print Network [OSTI]

    MINIREVIEW Cytochrome c maturation system on the negative side of bioenergetic membranes: CCB versions (i.e. Systems I­III) are found on the positive side of bioenergetic mem- branes in different on the positive (or p) side of bioenergetic membranes (bacte- rial periplasm, chloroplast lumen and mitochondrial

  16. Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under

    E-Print Network [OSTI]

    Boutaba, Raouf

    Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under Real-time Demand of appliance specific adapters. Designed and implemented GHS Modeled the demand-side energy management problem (NP-hard) Designed a scheduling algorithm for demand side energy management Showed that our

  17. CSEM WP 165R Demand-Side Management and Energy Efficiency

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    CSEM WP 165R Demand-Side Management and Energy Efficiency Revisited Maximilian Auffhammer, Carl, California 94720-5180 www.ucei.org #12;Demand-Side Management and Energy Efficiency Revisited Maximilian associated with energy efficiency demand side management (DSM) programs. This claim is based on point

  18. Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services

    E-Print Network [OSTI]

    Victoria, University of

    Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services by Simon Sustainable Demand-side Infrastructure for Power System Ancillary Services by Simon Christopher Parkinson B highly-distributed sustainable demand- side infrastructure, in the form of heat pumps, electric vehicles

  19. A Coinductive Calculus for Asynchronous Side-effecting Processes

    E-Print Network [OSTI]

    Goncharov, Sergey

    2011-01-01T23:59:59.000Z

    We present an abstract framework for concurrent processes in which atomic steps have generic side effects, handled according to the principle of monadic encapsulation of effects. Processes in this framework are potentially infinite resumptions, modelled using final coalgebras over the monadic base. As a calculus for such processes, we introduce a concurrent extension of Moggi's monadic metalanguage of effects. We establish soundness and completeness of a natural equational axiomatisation of this calculus. Moreover, we identify a corecursion scheme that is explicitly definable over the base language and provides flexible expressive means for the definition of new operators on processes, such as parallel composition. As a worked example, we prove the safety of a generic mutual exclusion scheme using a verification logic built on top of the equational calculus.

  20. Send-side matching of data communications messages

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2014-07-01T23:59:59.000Z

    Send-side matching of data communications messages includes a plurality of compute nodes organized for collective operations, including: issuing by a receiving node to source nodes a receive message that specifies receipt of a single message to be sent from any source node, the receive message including message matching information, a specification of a hardware-level mutual exclusion device, and an identification of a receive buffer; matching by two or more of the source nodes the receive message with pending send messages in the two or more source nodes; operating by one of the source nodes having a matching send message the mutual exclusion device, excluding messages from other source nodes with matching send messages and identifying to the receiving node the source node operating the mutual exclusion device; and sending to the receiving node from the source node operating the mutual exclusion device a matched pending message.

  1. Plugging Side-Channel Leaks with Timing Information Flow Control

    E-Print Network [OSTI]

    Ford, Bryan

    2012-01-01T23:59:59.000Z

    The cloud model's dependence on massive parallelism and resource sharing exacerbates the security challenge of timing side-channels. Timing Information Flow Control (TIFC) is a novel adaptation of IFC techniques that may offer a way to reason about, and ultimately control, the flow of sensitive information through systems via timing channels. With TIFC, objects such as files, messages, and processes carry not just content labels describing the ownership of the object's "bits," but also timing labels describing information contained in timing events affecting the object, such as process creation/termination or message reception. With two system design tools-deterministic execution and pacing queues-TIFC enables the construction of "timing-hardened" cloud infrastructure that permits statistical multiplexing, while aggregating and rate-limiting timing information leakage between hosted computations.

  2. Oscillating side-branch enhancements of thermoacoustic heat exchangers

    DOE Patents [OSTI]

    Swift, Gregory W.

    2003-05-13T23:59:59.000Z

    A regenerator-based engine or refrigerator has a regenerator with two ends at two different temperatures, through which a gas oscillates at a first oscillating volumetric flow rate in the direction between the two ends and in which the pressure of the gas oscillates, and first and second heat exchangers, each of which is at one of the two different temperatures. A dead-end side branch into which the gas oscillates has compliance and is connected adjacent to one of the ends of the regenerator to form a second oscillating gas flow rate additive with the first oscillating volumetric flow rate, the compliance having a volume effective to provide a selected total oscillating gas volumetric flow rate through the first heat exchanger. This configuration enables the first heat exchanger to be configured and located to better enhance the performance of the heat exchanger rather than being confined to the location and configuration of the regenerator.

  3. Modelling the optically dark side of high--redshift galaxies

    E-Print Network [OSTI]

    B. Guiderdoni

    1998-09-14T23:59:59.000Z

    The recent detection of the Cosmic Infrared Background in FIRAS and DIRBE residuals, and the observations of IR/submm sources by the ISOPHOT and SCUBA instruments have shed new light on the optically dark side of galaxy formation. It turns out that our view on the deep universe has been so far biassed towards optically bright galaxies. We now know that a significant fraction of galaxy/star formation in the universe is hidden by dust shrouds. In this paper, we introduce a new modelling of galaxy formation and evolution that provides us with specific predictions in the IR/submm wavebands. These predictions are compared with the current status of the observations. Finally, the future all-sky and deep surveys with the PLANCK and FIRST missions are briefly described.

  4. Opportunities and prospects for demand-side efficiency improvements

    SciTech Connect (OSTI)

    Kuliasha, M.A.

    1993-12-31T23:59:59.000Z

    Substantial progress has been made over the last 20 years in improving energy efficiency in all sectors of the US economy. Although there remains a large potential for further efficiency gains, progress in improving energy efficiency has slowed recently. A combination of low energy prices, environmental challenges, and life-style changes have caused energy consumption to resume rising. Both new policies and technologies will be necessary to achieve cost-effective levels of energy efficiency. This paper describes some of the promising new demand-side technologies that are currently being implemented, nearing commercialization, or in advanced stages of development. The topics discussed include finding replacements for chlorofluorocarbons (CFCs), new building equipment and envelope technologies, lessons learned about conservation program implementation, and the role of utilities in promoting the efficient use of energy.

  5. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    SciTech Connect (OSTI)

    Sloan Roberts, F.; Anderson, Scott L. [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)] [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)

    2013-12-15T23:59:59.000Z

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  6. Potential Application of Electrical Signature Analysis Methods for Monitoring Small Modular Reactor Components

    SciTech Connect (OSTI)

    Damiano, Brian [ORNL] [ORNL; Tucker Jr, Raymond W [ORNL] [ORNL; Haynes, Howard D [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    This paper will describe the technical basis behind ESA and why we consider it a viable SMR condition monitoring technology. Concepts are presented of how ESA could be applied to monitor two candidate small modular reactor components: the main coolant pumps and the control rod drives. We believe the general health of these two components can be monitored and trended over time, using ESA methods. Our optimism is based on over two decades of ESA development and testing on a wide variety of components and systems, many of which have similar operational features to the main coolant pumps and control rod drives.

  7. MHTGR (modular high-temperature gas-cooled reactor) control: A non-safety related system

    SciTech Connect (OSTI)

    Rodriguez, C.; Swart, F.

    1988-06-01T23:59:59.000Z

    The modular high-temperature gas-cooled reactor (MHTGR) design meets stringent top-level safety regulatory criteria and user requirements that call for high plant availability and no disruption of the public's day to day activities during normal and off-normal operation of the plant. These requirements lead to a plant design that relies mainly on physical properties and passive design features to ensure plant safety regardless of operator actions, plus simplicity and automation to ensure high plant availability and lower cost of operations. The plant does not require safety-related operator actions, and it does not require the control room to be safety related.

  8. Centralized and Modular Architectures for Photovoltaic Panels with Improved Efficiency: Preprint

    SciTech Connect (OSTI)

    Dhakal, B.; Mancilla-David, F.; Muljadi, E.

    2012-07-01T23:59:59.000Z

    The most common type of photovoltaic installation in residential applications is the centralized architecture, but the performance of a centralized architecture is adversely affected when it is subject to partial shading effects due to clouds or surrounding obstacles, such as trees. An alternative modular approach can be implemented using several power converters with partial throughput power processing capability. This paper presents a detailed study of these two architectures for the same throughput power level and compares the overall efficiencies using a set of rapidly changing real solar irradiance data collected by the Solar Radiation Research Laboratory at the National Renewable Energy Laboratory.

  9. ANALYSIS OF SEPCTRUM CHOICES FOR SMALL MODULAR REACTORS-PERFORMANCE AND DEVELOPMENT

    E-Print Network [OSTI]

    Kafle, Nischal

    2011-04-26T23:59:59.000Z

    the world; CAREM in Argentina, HTR-PM in China, FUJI in Japan, BREST, KLT series, SVBR-100, and VK-300 in Russia, PBMR (Pebble Bed Modular Reactor) in South Africa, SMART in South Korea, mPower, NuScale, GT- MHR in United States of America, and many... Association, 2011). 3 CAREM CAREM is a pressurized water reactor being studied in Argentina by INVAP (World Nuclear Association, 2010). This reactor uses 3.4% enriched uranium, and can produce 27 MWe which can be extendable to more than 300MWe...

  10. Honeywell Modular Automation System Computer Software Documentation for the Magnesium Hydroxide Precipitation Process

    SciTech Connect (OSTI)

    STUBBS, A.M.

    2001-06-25T23:59:59.000Z

    The purpose of this Computer Software Document (CSWD) is to provide configuration control of the Honeywell Modular Automation System (MAS) in use at the Plutonium Finishing Plant (PFP) for the Magnesium Hydroxide Precipitation Process in Rm 230C/234-5Z. The magnesium hydroxide process control software Rev 0 is being updated to include control programming for a second hot plate. The process control programming was performed by the system administrator. Software testing for the additional hot plate was performed per PFP Job Control Work Package 2Z-00-1703. The software testing was verified by Quality Control to comply with OSD-Z-184-00044, Magnesium Hydroxide Precipitation Process.

  11. Brominated Sorbents for Small Cold-Side ESPs, Hot-Side ESPs and Fly Ash Use in Concrete

    SciTech Connect (OSTI)

    Ronald Landreth

    2008-06-30T23:59:59.000Z

    This report summarizes the work conducted from September 16, 2005 through December 31, 2008 on the project entitled âÂ?Â?Brominated Sorbents for Small Cold-Side ESPs, Hot-Side ESPs and Fly Ash Use in ConcreteâÂ?. The project covers testing at three host sites: Progress Energy H.F. Lee Station and the Midwest Generation Crawford and Will County Stations. At Progress Energy Lee 1, parametric tests were performed both with and without SO{sub 3} injection in order to determine the impact on the mercury sorbent performance. In addition, tests were performed on the hot-side of the air preheater, before the SO{sub 3} is injected, with H-PACâÂ?¢ sorbents designed for use at elevated temperatures. The BPACâÂ?¢ injection provided the expected mercury removal when the SO{sub 3} injection was off. A mercury removal rate due to sorbent of more than 80% was achieved at an injection rate of 8 lb/MMacf. The operation with SO{sub 3} injection greatly reduced the mercury sorbent performance. An important learning came from the injection of H-PACâÂ?¢ on the hot-side of the air preheater before the SO{sub 3} injection location. The H-PACâÂ?¢ injected in this manner appeared to be independent of the SO{sub 3} injection and provided better mercury removal than with injecting on the cold-side with SO{sub 3} injection. Consequently, one solution for plants like Lee, with SO{sub 3} injection, or plants with SO{sub 3} generated by the SCR catalyst, is to inject H-PACâÂ?¢ on the hot-side before the SO{sub 3} is in the flue gas. Even better performance is possible by injecting on the cold-side without the SO{sub 3}, however. During the parametric testing, it was discovered that the injection of B-PACâÂ?¢ (or H-PACâÂ?¢) was having a positive impact upon ESP performance. It was decided to perform a 3-day continuous injection run with B-PACâÂ?¢ in order to determine whether Lee 1 could operate without SO{sub 3} injection. If the test proved positive, the continuous injection would continue as part of the long-term test. The injection of B-PACâÂ?¢ did allow for the operation of Lee 1 without SO{sub 3} injection and the long-term test was conducted from March 8 through April 7, 2006. The total mercury removal for the 30-day long-term test, excluding the first day when SO{sub 3} was injected and the last day when a plain PAC was used, averaged 85%. The achievement of 85% Hg removal over the 30 days longterm test is another milestone in the history of achievement of the Albemarle Environmental f/k/a Sorbent Technologies Corporation B-PACâÂ?¢ sorbent. A clear indication of the impact of B-PACâÂ?¢ on opacity came at the end of the long-term test. It was hoped that Lee 1 could be operated for several days after the end of the long-term test. It took less than a day before the opacity began to increase. The discovery that B-PACâÂ?¢ can improve ESP performance while capturing a large amount of mercury is another milestone for the B-PACâÂ?¢ mercury sorbent. The parametric testing at the Midwest Generation Crawford Station was divided into two phases; the first using C-PACâÂ?¢, the concrete friendly sorbent, and the other using nonconcrete friendly materials. The first phase of the parametric tests was conducted before the long-term test. The second phase of the parametric testing was performed after the long-term test in order to avoid contaminating the fly ash containing the concrete friendly sorbents. The parametric test began with an injection rate of 1 lb/MMacf and, after a period to allow the mercury concentration to stabilize, the rate was increased to 3 lb/MMacf. The Hg removal for this test was about 60% due to sorbent and 69% total at the injection rate of 1 lb/MMacf and 80% due to sorbent and 84% total for the 3 lb/MMacf injection rate. The average total vapor phase mercury removal for the first 21 days of the long-term test was 82% at an injection rate o

  12. Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Boyd, Brian K.

    2014-08-01T23:59:59.000Z

    This technology evaluation was performed by Pacific Northwest National Laboratory and Oak Ridge National Laboratory on behalf of the Federal Energy Management Program. The objective was to quantify the benefits side stream filtration provides to a cooling tower system. The evaluation assessed the performance of an existing side stream filtration system at a cooling tower system at Oak Ridge National Laboratory’s Spallation Neutron Source research facility. This location was selected because it offered the opportunity for a side-by-side comparison of a system featuring side stream filtration and an unfiltered system.

  13. Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 11, p. 11691181 (November 2002) Conceptual Design of a Modular Island Core Fast Breeder Reactor "RAPID-M"

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 11, p. 1169­1181 (November 2002) Conceptual Design of a Modular Island Core Fast Breeder Reactor "RAPID-M" Mitsuru KAMBE Central Research Institute and accepted September 10, 2002) A metal fueled modular island core sodium cooled fast breeder reactor concept

  14. Modular Inverter for Advanced Control Applications In the fall of 2003, a team of graduate students was assembled to design and construct a

    E-Print Network [OSTI]

    Kimball, Jonathan W.

    Modular Inverter for Advanced Control Applications May 2006 In the fall of 2003, a team of graduate necessary functionality. #12;Modular Inverter System Specification Specification Document Issue 002 SD00004 students was assembled to design and construct a research-grade inverter. The goal was to have available

  15. Method of controlling the side wall thickness of a turbine nozzle segment for improved cooling

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY)

    2002-01-01T23:59:59.000Z

    A gas turbine nozzle segment has outer and inner bands and a vane extending therebetween. Each band has a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band has an inturned flange defining with the nozzle wall an undercut region. The outer surface of the side wall is provided with a step prior to welding the cover to the side wall. A thermal barrier coating is applied in the step and, after the cover is welded to the side wall, the side wall is finally machined to a controlled thickness removing all, some or none of the coating.

  16. Orientations of side chains and adsorbed liquid crystal molecules on a rubbed polyimide surface studied by optical second harmonic generation

    E-Print Network [OSTI]

    Zhuang, Xiaowei

    Orientations of side chains and adsorbed liquid crystal molecules on a rubbed polyimide surface on a rubbed side-chain polyimide surface. Both the side chains and the LC molecules appear to be well aligned

  17. Numerical Study on Crossflow Printed Circuit Heat Exchanger for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Yoon, Su-Jong [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Kim, Eung-Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2014-03-01T23:59:59.000Z

    Various fluids such as water, gases (helium), molten salts (FLiNaK, FLiBe) and liquid metal (sodium) are used as a coolant of advanced small modular reactors (SMRs). The printed circuit heat exchanger (PCHE) has been adopted as the intermediate and/or secondary heat exchanger of SMR systems because this heat exchanger is compact and effective. The size and cost of PCHE can be changed by the coolant type of each SMR. In this study, the crossflow PCHE analysis code for advanced small modular reactor has been developed for the thermal design and cost estimation of the heat exchanger. The analytical solution of single pass, both unmixed fluids crossflow heat exchanger model was employed to calculate a two dimensional temperature profile of a crossflow PCHE. The analytical solution of crossflow heat exchanger was simply implemented by using built in function of the MATLAB program. The effect of fluid property uncertainty on the calculation results was evaluated. In addition, the effect of heat transfer correlations on the calculated temperature profile was analyzed by taking into account possible combinations of primary and secondary coolants in the SMR systems. Size and cost of heat exchanger were evaluated for the given temperature requirement of each SMR.

  18. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    SciTech Connect (OSTI)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01T23:59:59.000Z

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  19. UPDATE ON SMALL MODULAR REACTORS DYNAMIC SYSTEM MODELING TOOL Molten Salt Cooled Architecture

    SciTech Connect (OSTI)

    Hale, Richard Edward [ORNL; Cetiner, Sacit M [ORNL; Fugate, David L [ORNL; Qualls, A L [ORNL; Borum, Robert C [ORNL; Chaleff, Ethan S [ORNL; Rogerson, Doug W [ORNL; Batteh, John J [Modelon Corporation; Tiller, Michael M. [Xogeny Corporation

    2014-08-01T23:59:59.000Z

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  20. Modular Hybrid Plasma Reactor for Low Cost Bulk Production of Nanomaterials

    SciTech Connect (OSTI)

    Peter C. Kong

    2011-12-01T23:59:59.000Z

    INL developed a bench scale modular hybrid plasma system for gas phase nanomaterials synthesis. The system was being optimized for WO3 nanoparticles production and scale model projection to a 300 kW pilot system. During the course of technology development many modifications had been done to the system to resolve technical issues that had surfaced and also to improve the performance. All project tasks had been completed except 2 optimization subtasks. These 2 subtasks, a 4-hour and an 8-hour continuous powder production runs at 1 lb/hr powder feeding rate, were unable to complete due to technical issues developed with the reactor system. The 4-hour run had been attempted twice and both times the run was terminated prematurely. The modular electrode for the plasma system was significantly redesigned to address the technical issues. Fabrication of the redesigned modular electrodes and additional components had been completed at the end of the project life. However, not enough resource was available to perform tests to evaluate the performance of the new modifications. More development work would be needed to resolve these problems prior to scaling. The technology demonstrated a surprising capability of synthesizing a single phase of meta-stable delta-Al2O3 from pure alpha-phase large Al2O3 powder. The formation of delta-Al2O3 was surprising because this phase is meta-stable and only formed between 973-1073 K, and delta-Al2O3 is very difficult to synthesize as a single phase. Besides the specific temperature window to form this phase, this meta-stable phase may have been stabilized by nanoparticle size formed in a high temperature plasma process. This technology may possess the capability to produce unusual meta-stable nanophase materials that would be otherwise difficult to produce by conventional methods. A 300 kW INL modular hybrid plasma pilot scale model reactor had been projected using the experimental data from PPG Industries 300 kW hot wall plasma reactor. The projected size of the INL 300 kW pilot model reactor would be about 15% that of the PPG 300 kW hot wall plasma reactor. Including the safety net factor the projected INL pilot reactor size would be 25-30% of the PPG 300 kW hot wall plasma pilot reactor. Due to the modularity of the INL plasma reactor and the energy cascading effect from the upstream plasma to the downstream plasma the energy utilization is more efficient in material processing. It is envisioning that the material through put range for the INL pilot reactor would be comparable to the PPG 300 kW pilot reactor but the energy consumption would be lower. The INL hybrid plasma technology is rather close to being optimized for scaling to a pilot system. More near term development work is still needed to complete the process optimization before pilot scaling.

  1. Tunable, diode side-pumped Er: YAG laser

    DOE Patents [OSTI]

    Hamilton, Charles E. (Bellevue, WA); Furu, Laurence H. (Modesto, CA)

    1997-01-01T23:59:59.000Z

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 .mu.m, and is tunable over a 6 nm range near about 2.936 .mu.m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 .mu.m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 .mu.m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems.

  2. Bounded decision making and analytical biases in demand side management

    SciTech Connect (OSTI)

    Janda, K.B.

    1994-08-01T23:59:59.000Z

    Demand side management (DSM) programs across the United States commonly approach barriers to energy efficiency through technical/economic means and evaluate their impact through technical/economic analysis. To the extent that non-technical barriers exist and influence decision making, they complicate the expected capture of savings. Two utility DSM projects -- Pacific Gas and Electric`s Advanced Customer Technology Test for Maximum Energy Efficiency (ACT{sup 2}) and Bonneville Power Administration`s Energy Edge -- serve as case studies to illustrate how non-technical barriers to specific energy-efficiency measures (EEMs) can limit technical conservation potential. An analysis of rejected EEMs suggest that lessons about non-technical barriers to specific energy-efficiency measures (EEMs) can limit technical conservation potential. An analysis of rejected EEMs suggests that lessons about non-technical barriers may be lost or obscured because of the predominant focus on technical/economic criteria over social, institutional, or cultural constraints. These findings support the need for different evaluation methodologies and further social science research devoted to understanding the non-technical barriers confronted by DSM project participants.

  3. Tunable, diode side-pumped Er:YAG laser

    DOE Patents [OSTI]

    Hamilton, C.E.; Furu, L.H.

    1997-04-22T23:59:59.000Z

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.

  4. Abstract--System modeling and digital control in a modular masterless multiphase architecture are presented in this paper.

    E-Print Network [OSTI]

    Abstract-- System modeling and digital control in a modular masterless multiphase architecture of large load transients. Interleaved multi-phase converters are frequently used in such systems due response and small output capacitance. In general, multi-phase converters require control approaches

  5. Re-design and Evaluation of a Modular fNIRS-Probe for Employment in Neuroimaging Applications

    E-Print Network [OSTI]

    Daraio, Chiara

    Re-design and Evaluation of a Modular fNIRS-Probe for Employment in Neuroimaging Applications Zürich, January 2013 Project Type MSc/BSc-Thesis Goal We recently built miniaturized sensor modules featuring silicon photo-multipliers (SiPM) for very low light detection in functional near-infrared

  6. Effects of Levels of Automation for Advanced Small Modular Reactors: Impacts on Performance, Workload, and Situation Awareness

    SciTech Connect (OSTI)

    Johanna Oxstrand; Katya Le Blanc

    2014-07-01T23:59:59.000Z

    The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy (DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of capital costs as well as plant operations and maintenance costs (O&M), and factory production costs benefits.

  7. Apparatus for impingement cooling a side wall adjacent an undercut region of a turbine nozzle segment

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY)

    2002-01-01T23:59:59.000Z

    A gas turbine nozzle segment has outer and inner bands and vanes therebetween. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. Slots are formed through the inturned flange along the nozzle side wall. A plate having through-apertures extending between opposite edges thereof is disposed in each slot, the slots and plates being angled such that the cooling medium exiting the apertures in the second cavity lie close to the side wall for focusing and targeting cooling medium onto the side wall.

  8. The 22nd International Photovoltaic Science and Engineering Conference, November 05-09, 2012, Hangzhou, China Front side degradation of silicon solar cells by rear side laser

    E-Print Network [OSTI]

    wafers without bow for further processing and module integration. [1,2] In this contribution we recombination rate beneath the contacts. A thermal oxide with a thickness of 150 nm serves as a rear side

  9. E-Print Network 3.0 - acid side-chain nmr Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rutgers University Collection: Chemistry ; Biotechnology 4 The mechanism(s) of protein folding What is meant by mechanism Summary: marker, both for the backbone and the side...

  10. A Ceramic membrane to Recycle Caustic

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations | Department ofCouncil OfficialsA Banner Year forA Ceramic

  11. U.S. Department of Energy Categorical Exclusion ...

    Broader source: Energy.gov (indexed) [DOE]

    Caustic Side Solvent Extraction Unit (MCU) Life Extension Support Testing Savannah River Site AikenAikenSouth Carolina SRNL, and Engineering Developmental Laboratory (EDL) in...

  12. Subcontract Report: Modular Combined Heat & Power System for Utica College: Design Specification

    SciTech Connect (OSTI)

    Rouse, Greg [Gas Technology Institute

    2007-09-01T23:59:59.000Z

    Utica College, located in Utica New York, intends to install an on-site power/cogeneration facility. The energy facility is to be factory pre-assembled, or pre- assembled in modules, to the fullest extent possible, and ready to install and interconnect at the College with minimal time and engineering needs. External connections will be limited to fuel supply, electrical output, potable makeup water as required and cooling and heat recovery systems. The proposed facility will consist of 4 self-contained, modular Cummins 330kW engine generators with heat recovery systems and the only external connections will be fuel supply, electrical outputs and cooling and heat recovery systems. This project was eventually cancelled due to changing DOE budget priorities, but the project engineers produced this system design specification in hopes that it may be useful in future endeavors.

  13. Modular bioreactor for the remediation of liquid streams and methods for using the same

    DOE Patents [OSTI]

    Noah, Karl S. (Idaho Falls, ID); Sayer, Raymond L. (Idaho Falls, ID); Thompson, David N. (Idaho Falls, ID)

    1998-01-01T23:59:59.000Z

    The present invention is directed to a bioreactor system for the remediation of contaminated liquid streams. The bioreactor system is composed of at least one and often a series of sub-units referred to as bioreactor modules. The modular nature of the system allows bioreactor systems be subdivided into smaller units and transported to waste sites where they are combined to form bioreactor systems of any size. The bioreactor modules further comprises reactor fill materials in the bioreactor module that remove the contaminants from the contaminated stream. To ensure that the stream thoroughly contacts the reactor fill materials, each bioreactor module comprises means for directing the flow of the stream in a vertical direction and means for directing the flow of the stream in a horizontal direction. In a preferred embodiment, the reactor fill comprises a sulfate reducing bacteria which is particularly useful for precipitating metals from acid mine streams.

  14. Random Walks, Markov Processes and the Multiscale Modular Organization of Complex Networks

    E-Print Network [OSTI]

    Lambiotte, Renaud; Barahona, Mauricio

    2015-01-01T23:59:59.000Z

    Most methods proposed to uncover communities in complex networks rely on combinatorial graph properties. Usually an edge-counting quality function, such as modularity, is optimized over all partitions of the graph compared against a null random graph model. Here we introduce a systematic dynamical framework to design and analyze a wide variety of quality functions for community detection. The quality of a partition is measured by its Markov Stability, a time-parametrized function defined in terms of the statistical properties of a Markov process taking place on the graph. The Markov process provides a dynamical sweeping across all scales in the graph, and the time scale is an intrinsic parameter that uncovers communities at different resolutions. This dynamic-based community detection leads to a compound optimization, which favours communities of comparable centrality (as defined by the stationary distribution), and provides a unifying framework for spectral algorithms, as well as different heuristics for com...

  15. Modular bioreactor for the remediation of liquid streams and methods for using the same

    DOE Patents [OSTI]

    Noah, K.S.; Sayer, R.L.; Thompson, D.N.

    1998-06-30T23:59:59.000Z

    The present invention is directed to a bioreactor system for the remediation of contaminated liquid streams. The bioreactor system is composed of at least one and often a series of sub-units referred to as bioreactor modules. The modular nature of the system allows bioreactor systems be subdivided into smaller units and transported to waste sites where they are combined to form bioreactor systems of any size. The bioreactor modules further comprises reactor fill materials in the bioreactor module that remove the contaminants from the contaminated stream. To ensure that the stream thoroughly contacts the reactor fill materials, each bioreactor module comprises means for directing the flow of the stream in a vertical direction and means for directing the flow of the stream in a horizontal direction. In a preferred embodiment, the reactor fill comprises a sulfate reducing bacteria which is particularly useful for precipitating metals from acid mine streams. 6 figs.

  16. A Framework to Expand and Advance Probabilistic Risk Assessment to Support Small Modular Reactors

    SciTech Connect (OSTI)

    Curtis Smith; David Schwieder; Robert Nourgaliev; Cherie Phelan; Diego Mandelli; Kellie Kvarfordt; Robert Youngblood

    2012-09-01T23:59:59.000Z

    During the early development of nuclear power plants, researchers and engineers focused on many aspects of plant operation, two of which were getting the newly-found technology to work and minimizing the likelihood of perceived accidents through redundancy and diversity. As time, and our experience, has progressed, the realization of plant operational risk/reliability has entered into the design, operation, and regulation of these plants. But, to date, we have only dabbled at the surface of risk and reliability technologies. For the next generation of small modular reactors (SMRs), it is imperative that these technologies evolve into an accepted, encompassing, validated, and integral part of the plant in order to reduce costs and to demonstrate safe operation. Further, while it is presumed that safety margins are substantial for proposed SMR designs, the depiction and demonstration of these margins needs to be better understood in order to optimize the licensing process.

  17. Characterization of a new modular decay total absorption gamma-ray spectrometer (DTAS) for FAIR

    SciTech Connect (OSTI)

    Montaner Piza, A.; Tain, J. L.; Agramunt, J.; Algora, A.; Guadilla, V.; Marin, E.; Rice, S.; Rubio, B. [Instituto de Fisica Corpuscular, CSIC-Univ. de Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain)

    2013-06-10T23:59:59.000Z

    Beta-decay studies are one of the main goals of the DEcay SPECtroscopy experiment (DESPEC) to be installed at the future Facility for Antiproton and Ion Research (FAIR). DESPEC aims at the study of nuclear structure of exotic nuclei. A new modular Decay Total Absorption gamma-ray Spectrometer (DTAS) is being built at IFIC and is specially adapted to studies at fragmentation facilities such as the Super Fragment Separator (Super-FRS) at FAIR. The designed spectrometer is composed of 16 identical NaI(Tl) scintillation crystals. This work focuses on the characterization of these independent modules, as an initial step for the characterization of the full spectrometer. Monte Carlo simulations have been performed in order to understand the detector response.

  18. Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting

    SciTech Connect (OSTI)

    Curtis Smith

    2013-09-01T23:59:59.000Z

    During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modeling and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.

  19. Honeywell Modular Automation System Computer Software Documentation for the Magnesium Hydroxide Precipitation Process

    SciTech Connect (OSTI)

    STUBBS, A.M.

    2001-02-01T23:59:59.000Z

    The purpose of this Computer Software Document (CSWD) is to provide configuration control of the Honeywell Modular Automation System (MAS) in use at the Plutonium Finishing Plant (PFP) for the Magnesium Hydroxide Precipitation Process in Rm 23OC/234-52. This CSWD describes hardware and PFP/FFS developed software for control of Magnesium Hydroxide Precipitation process located in room 230, 234-52. The Honeywell and Plant Scape software generate limited configuration reports for the developed control software. These reports are described in the following section and are attached as addendum's. This plan applies to PFP Engineering Manager, Thermal Stabilization Cognizant Engineers, Solutions Stabilization Engineers, and the Shift Technical Advisors responsible for the Honeywell MAS software/hardware and administration of the Honeywell System.

  20. 588 IEEE SYSTEMS JOURNAL, VOL. 8, NO. 2, JUNE 2014 GTES: An Optimized Game-Theoretic Demand-Side

    E-Print Network [OSTI]

    Stojmenovic, Ivan

    , Nei Kato, Fellow, IEEE, and Ivan Stojmenovic, Fellow, IEEE Abstract--Demand-side management in smart]­[4]. For the successful deployment of the smart grid, demand-side management or demand response [5]­[7] is crucial. Demand-side in the shape of loads of the utility company. While demand-side management aims at producing a change

  1. Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing

    E-Print Network [OSTI]

    Boutaba, Raouf

    Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing Jin Xiao, Jae--In this paper, we present demand-side energy manage- ment under real-time demand-response pricing as a task, demand-response, energy management I. INTRODUCTION The growing awareness of global climate change has

  2. A New Empirical Model for Predicting Single-Sided, Wind-Driven Natural Ventilation in Buildings

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    A New Empirical Model for Predicting Single-Sided, Wind-Driven Natural Ventilation in Buildings-sided natural ventilation is difficult due to the bi-directional flow at the opening and the complex flow around buildings. A new empirical model was developed that can predict the mean ventilation rate and fluctuating

  3. Design analysis of single-sided natural ventilation Camille Allocca1

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Design analysis of single-sided natural ventilation Camille Allocca1 , Qingyan Chen2,* , and Leon Purdue Mall, West Lafayette, IN 47907-2040, USA Abstract Natural ventilation is an effective measure-sided natural ventilation by using a computational fluid dynamics (CFD) model, together with analytical

  4. Double Side Control of Wound Rotor Induction Machine for Wind Energy Application Employing Half Controlled

    E-Print Network [OSTI]

    Lipo, Thomas

    the cost of a wind generator system, a new configuration using half controlled converters for both the required KVA rating of both machine side and line side converters, improves the efficiency of the wind generator, helps operating over a wide speed range and supports near unity power factor interface

  5. SSL/TLS Session-Aware User Authentication: A Lightweight Alternative to Client-Side Certificates

    E-Print Network [OSTI]

    Basin, David

    SSL/TLS Session-Aware User Authentication: A Lightweight Alternative to Client-Side Certificates E-Mail: basin@inf.ethz.ch Abstract Many SSL/TLS-based e-commerce applications employ traditional authentication mechanisms on the client side. These mechanisms--if decoupled from SSL/TLS session establishment

  6. Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption Scheduling distributed demand side energy management strategy requires each user to simply apply its best response-average ratio of the total energy demand, the total energy costs, as well as each user's individual daily

  7. ECEEE 2005 SUMMER STUDY WHAT WORKS & WHO DELIVERS? 183 Local energy efficiency and demand-side

    E-Print Network [OSTI]

    Paris-Sud XI, UniversitĂŠ de

    ECEEE 2005 SUMMER STUDY ­ WHAT WORKS & WHO DELIVERS? 183 1,202 Local energy efficiency and demand be the basis for local energy policies and energy efficiency/demand-side management activities1, have been) activities in 1. DSM: Demand-Side Management; EE: energy efficiency (here, does not include renewable

  8. Modeling 3D animals from a side-view sketch Even Entema,b

    E-Print Network [OSTI]

    Barthe, LoĂŻc

    Modeling 3D animals from a side-view sketch Even Entema,b , Loic Barthea , Marie-Paule Canib. This paper tackles the problem of creating 3D models of animals from a single, side-view sketch. We use be an important step for generat- ing more lively virtual worlds. Animals are also among the models

  9. Tackling Co-existence and Fairness Challenges in Autonomous Demand Side Management

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    fulfilling the user's energy needs. The literature on DSM with smart pricing is extensive. One thread Side Management, Energy Consumption Scheduling, Co-existence, Fairness, Game Theory. I. INTRODUCTION the energy consumption at the consumer side of the meter [1]. One approach in DSM is direct load control (DLC

  10. On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic Dispatch

    E-Print Network [OSTI]

    Chen, Yiling

    On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic;On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic Dispatch Abstract Information asymmetry in retail electricity markets is one of the largest sources of inef

  11. Photoalignment of nematic liquid crystal on polyamic-acid-based soluble polyimide with no side fragments

    E-Print Network [OSTI]

    Reznikov, Yuri

    Photoalignment of nematic liquid crystal on polyamic-acid-based soluble polyimide with no side of newly synthesized UV-sensitive polyimide without side fragments is reported. The photoaligning polymer, are not worse than those of rubbed polyimides. At the same time, the new material possesses all the advantages

  12. The Dark Side: from Dark Energy & Dark Matter to Washington and Science Policy

    E-Print Network [OSTI]

    Collar, Juan I.

    The Dark Side: from Dark Energy & Dark Matter to Washington and Science Policy Presenter: Michael: The Map Room (www.maproom.com )1949 N. Hoyne #12;The Dark Side: from Dark Energy and Dark Matter? What is the nature of the dark energy that is causing the expansion of the Universe to speed up

  13. Measurement of B(d) mixing using opposite-side flavor tagging

    E-Print Network [OSTI]

    Baringer, Philip S.; Bean, Alice; Coppage, Don; Hensel, Carsten; Moulik, Tania; Wilson, Graham Wallace

    2006-12-15T23:59:59.000Z

    We report on a measurement of the B(0)(d) mixing frequency and the calibration of an opposite-side flavor tagger in the D0 experiment. Various properties associated with the b quark on the opposite side of the reconstructed B meson are combined...

  14. Side-Channel Resistance Evaluation of a Neural Network Based Lightweight Cryptography Scheme

    E-Print Network [OSTI]

    Side-Channel Resistance Evaluation of a Neural Network Based Lightweight Cryptography Scheme Marc Email: koch@esa.cs.tu-darmstadt.de Abstract-- Side-channel attacks have changed the design of secure such as, e.g., AES, show the need to consider these aspects to build more resistant cryptographic systems

  15. Towards a systematic characterization of the potential of demand side management

    E-Print Network [OSTI]

    Kleinhans, David

    2014-01-01T23:59:59.000Z

    With an increasing share of electric energy produced from non-dispatchable renewable sources both energy storage and demand side management might gain tremendously in importance. While there has been significant progress in general properties and technologies of energy storage, the systematic characterization of features particular to demand side management such as its intermittent, time-dependent potential seems to be lagging behind. As a consequence, the development of efficient and sustainable strategies for demand side management and its integration into large-scale energy system models are impeded. This work introduces a novel framework for a systematic time-resolved characterization of the potential for demand side management. It is based on the specification of individual devices both with respect to their scheduled demand and their potential of load shifting. On larger scales sector-specific profiles can straightforwardly be taken into account. The potential for demand side management is then specifie...

  16. Assessment of passive decay heat removal in the General Atomics Modular Helium Reactor

    E-Print Network [OSTI]

    Cocheme, Francois Guilhem

    2005-02-17T23:59:59.000Z

    incentive is to separate the two plants enough for the hydrogen plant to be considered outside of the nuclear plant influence. The radioactivity level on the chemical side must be sufficiently low to avoid classifying the hydrogen production plant as a...

  17. Title: Time to scale-up. Standfirst: The construction of modular and scalable synthetic gene networks is now a goal within

    E-Print Network [OSTI]

    Babu, M. Madan

    Title: Time to scale-up. Standfirst: The construction of modular and scalable synthetic gene demonstrated. Next, they scaled up the system by constructing a circuit with three inputs to execute a pre

  18. Three-Phase Modular Cascaded H-Bridge Multilevel Inverter with Individual MPPT for Grid-Connected Photovoltaic Systems

    SciTech Connect (OSTI)

    Xiao, Bailu [ORNL; Hang, Lijun [ORNL; Riley, Cameron [University of Tennessee, Knoxville (UTK); Tolbert, Leon M [ORNL; Ozpineci, Burak [ORNL

    2013-01-01T23:59:59.000Z

    A three-phase modular cascaded H-bridge multilevel inverter for a grid-connected photovoltaic (PV) system is presented in this paper. To maximize the solar energy extraction of each PV string, an individual maximum power point tracking (MPPT) control scheme is applied, which allows the independent control of each dc-link voltage. PV mismatches may introduce unbalanced power supplied to the three-phase system. To solve this issue, a control scheme with modulation compensation is proposed. The three-phase modular cascaded multilevel inverter prototype has been built. Each H-bridge is connected to a 185 W solar panel. Simulation and experimental results are presented to validate the proposed ideas.

  19. Development of the Mathematics of Learning Curve Models for Evaluating Small Modular Reactor Economics

    SciTech Connect (OSTI)

    Harrison, T. J. [ORNL

    2014-02-01T23:59:59.000Z

    The cost of nuclear power is a straightforward yet complicated topic. It is straightforward in that the cost of nuclear power is a function of the cost to build the nuclear power plant, the cost to operate and maintain it, and the cost to provide fuel for it. It is complicated in that some of those costs are not necessarily known, introducing uncertainty into the analysis. For large light water reactor (LWR)-based nuclear power plants, the uncertainty is mainly contained within the cost of construction. The typical costs of operations and maintenance (O&M), as well as fuel, are well known based on the current fleet of LWRs. However, the last currently operating reactor to come online was Watts Bar 1 in May 1996; thus, the expected construction costs for gigawatt (GW)-class reactors in the United States are based on information nearly two decades old. Extrapolating construction, O&M, and fuel costs from GW-class LWRs to LWR-based small modular reactors (SMRs) introduces even more complication. The per-installed-kilowatt construction costs for SMRs are likely to be higher than those for the GW-class reactors based on the property of the economy of scale. Generally speaking, the economy of scale is the tendency for overall costs to increase slower than the overall production capacity. For power plants, this means that doubling the power production capacity would be expected to cost less than twice as much. Applying this property in the opposite direction, halving the power production capacity would be expected to cost more than half as much. This can potentially make the SMRs less competitive in the electricity market against the GW-class reactors, as well as against other power sources such as natural gas and subsidized renewables. One factor that can potentially aid the SMRs in achieving economic competitiveness is an economy of numbers, as opposed to the economy of scale, associated with learning curves. The basic concept of the learning curve is that the more a new process is repeated, the more efficient the process can be made. Assuming that efficiency directly relates to cost means that the more a new process is repeated successfully and efficiently, the less costly the process can be made. This factor ties directly into the factory fabrication and modularization aspect of the SMR paradigm—manufacturing serial, standardized, identical components for use in nuclear power plants can allow the SMR industry to use the learning curves to predict and optimize deployment costs.

  20. Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-10-01T23:59:59.000Z

    Advanced small modular reactors (aSMRs) can complement the current fleet of large light-water reactors in the USA for baseload and peak demand power production and process heat applications (e.g., water desalination, shale oil extraction, hydrogen production). The day-to-day costs of aSMRs are expected to be dominated by operations and maintenance (O&M); however, the effect of diverse operating missions and unit modularity on O&M is not fully understood. These costs could potentially be reduced by optimized scheduling, with risk-informed scheduling of maintenance, repair, and replacement of equipment. Currently, most nuclear power plants have a “living” probabilistic risk assessment (PRA), which reflects the as-operated, as-modified plant and combine event probabilities with population-based probability of failure (POF) for key components. “Risk monitors” extend the PRA by incorporating the actual and dynamic plant configuration (equipment availability, operating regime, environmental conditions, etc.) into risk assessment. In fact, PRAs are more integrated into plant management in today’s nuclear power plants than at any other time in the history of nuclear power. However, population-based POF curves are still used to populate fault trees; this approach neglects the time-varying condition of equipment that is relied on during standard and non-standard configurations. Equipment condition monitoring techniques can be used to estimate the component POF. Incorporating this unit-specific estimate of POF in the risk monitor can provide a more accurate estimate of risk in different operating and maintenance configurations. This enhanced risk assessment will be especially important for aSMRs that have advanced component designs, which don’t have an available operating history to draw from, and often use passive design features, which present challenges to PRA. This paper presents the requirements and technical gaps for developing a framework to integrate unit-specific estimates of POF into risk monitors, resulting in enhanced risk monitors that support optimized operation and maintenance of aSMRs.