National Library of Energy BETA

Sample records for modis airborne simulator

  1. MODIS Airborne simulator (MAS) Final Report for CLASIC

    SciTech Connect (OSTI)

    Thomas Arnold; Steven Platnick

    2010-11-24

    The MAS was flown aboard the NASA ER-2 for the CLASIC field experiment, and for all data collected, provided calibrated and geolocated (Level-1B) radiance data for itís 50 spectral bands (ranging in wavelength for 0.47 to 14.3 Ķm). From the Level-1B data, as directed in the Statement of Work, higher order (Level-2) data products were derived. The Level-2 products include: a) cloud optical thickness, b) cloud effective radius, c) cloud top height (temperature), d) cloud fraction, e) cloud phase products. Preliminary Level-1B and Level-2 products were provided during the field experiment (typically within one or two days of data collection). Final version data products were made available in December 2008 following considerable calibration analysis. Data collection, data processing (to Level-2), and discussion of the calibration work are summarized below.

  2. Optimized Field Sampling and Monitoring of Airborne Hazardous Transport Plumes; A Geostatistical Simulation Approach

    SciTech Connect (OSTI)

    Chen, DI-WEN

    2001-11-21

    Airborne hazardous plumes inadvertently released during nuclear/chemical/biological incidents are mostly of unknown composition and concentration until measurements are taken of post-accident ground concentrations from plume-ground deposition of constituents. Unfortunately, measurements often are days post-incident and rely on hazardous manned air-vehicle measurements. Before this happens, computational plume migration models are the only source of information on the plume characteristics, constituents, concentrations, directions of travel, ground deposition, etc. A mobile ''lighter than air'' (LTA) system is being developed at Oak Ridge National Laboratory that will be part of the first response in emergency conditions. These interactive and remote unmanned air vehicles will carry light-weight detectors and weather instrumentation to measure the conditions during and after plume release. This requires a cooperative computationally organized, GPS-controlled set of LTA's that self-coordinate around the objectives in an emergency situation in restricted time frames. A critical step before an optimum and cost-effective field sampling and monitoring program proceeds is the collection of data that provides statistically significant information, collected in a reliable and expeditious manner. Efficient aerial arrangements of the detectors taking the data (for active airborne release conditions) are necessary for plume identification, computational 3-dimensional reconstruction, and source distribution functions. This report describes the application of stochastic or geostatistical simulations to delineate the plume for guiding subsequent sampling and monitoring designs. A case study is presented of building digital plume images, based on existing ''hard'' experimental data and ''soft'' preliminary transport modeling results of Prairie Grass Trials Site. Markov Bayes Simulation, a coupled Bayesian/geostatistical methodology, quantitatively combines soft information

  3. Analyzing source apportioned methane in northern California during Discover-AQ-CA using airborne measurements and model simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Matthew S.; Yates, Emma L.; Iraci, Laura T.; Loewenstein, Max; Tadińá, Jovan M.; Wecht, Kevin J.; Jeong, Seongeun; Fischer, Marc L.

    2014-12-01

    This study analyzes source apportioned methane (CH4) emissions and atmospheric mixing ratios in northern California during the Discover-AQ-CA field campaign using airborne measurement data and model simulations. Source apportioned CH4 emissions from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.2 were applied in the 3-D chemical transport model GEOS-Chem and analyzed using airborne measurements taken as part of the Alpha Jet Atmospheric eXperiment over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV). During the time period of the Discover-AQ-CA field campaign EDGAR inventory CH4 emissions were ~5.30 Gg day ‚Äď1 (Gg = 1.0 √ómore¬†¬Ľ 109 g) (equating to ~1.90 √ó 103 Gg yr‚Äď1) for all of California. According to EDGAR, the SFBA and northern SJV region contributes ~30% of total CH4 emissions from California. Source apportionment analysis during this study shows that CH4 mixing ratios over this area of northern California are largely influenced by global emissions from wetlands and local/global emissions from gas and oil production and distribution, waste treatment processes, and livestock management. Model simulations, using EDGAR emissions, suggest that the model under-estimates CH4 mixing ratios in northern California (average normalized mean bias (NMB) = ‚Äď5.2% and linear regression slope = 0.20). The largest negative biases in the model were calculated on days when large amounts of CH4 were measured over local emission sources and atmospheric CH4 mixing ratios reached values >2.5 parts per million. Sensitivity emission studies conducted during this research suggest that local emissions of CH4 from livestock management processes are likely the primary source of the negative model bias. These results indicate that a variety, and larger quantity, of measurement data needs to be obtained and additional research is necessary to better quantify source apportioned CH4 emissions in California.¬ę¬†less

  4. Analyzing source apportioned methane in northern California during Discover-AQ-CA using airborne measurements and model simulations

    SciTech Connect (OSTI)

    Johnson, Matthew S.; Yates, Emma L.; Iraci, Laura T.; Loewenstein, Max; Tadińá, Jovan M.; Wecht, Kevin J.; Jeong, Seongeun; Fischer, Marc L.

    2014-12-01

    This study analyzes source apportioned methane (CH4) emissions and atmospheric mixing ratios in northern California during the Discover-AQ-CA field campaign using airborne measurement data and model simulations. Source apportioned CH4 emissions from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.2 were applied in the 3-D chemical transport model GEOS-Chem and analyzed using airborne measurements taken as part of the Alpha Jet Atmospheric eXperiment over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV). During the time period of the Discover-AQ-CA field campaign EDGAR inventory CH4 emissions were ~5.30 Gg day ‚Äď1 (Gg = 1.0 √ó 109 g) (equating to ~1.90 √ó 103 Gg yr‚Äď1) for all of California. According to EDGAR, the SFBA and northern SJV region contributes ~30% of total CH4 emissions from California. Source apportionment analysis during this study shows that CH4 mixing ratios over this area of northern California are largely influenced by global emissions from wetlands and local/global emissions from gas and oil production and distribution, waste treatment processes, and livestock management. Model simulations, using EDGAR emissions, suggest that the model under-estimates CH4 mixing ratios in northern California (average normalized mean bias (NMB) = ‚Äď5.2% and linear regression slope = 0.20). The largest negative biases in the model were calculated on days when large amounts of CH4 were measured over local emission sources and atmospheric CH4 mixing ratios reached values >2.5 parts per million. Sensitivity emission studies conducted during this research suggest that local emissions of CH4 from livestock management processes are likely the primary source of the negative model bias. These results indicate that a variety, and larger quantity, of measurement data needs to be

  5. ARM - Campaign Instrument - mas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NASA MODIS Airborne Simulator (MAS) Instrument Categories Airborne Observations, Radiometric Campaigns Cloud LAnd...

  6. Airborne wireless communication systems, airborne communication methods, and communication methods

    SciTech Connect (OSTI)

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  7. Airborne radioactive contamination monitoring

    SciTech Connect (OSTI)

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  8. ccpi1-airborne | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Demonstration of the Airborne Process pdf-580kb (withdrawn) Mustang Clean ... Louis, Missouri Project Fact Sheet Commercial Demonstration of the Airborne Process ...

  9. Airborne Wind Turbine

    SciTech Connect (OSTI)

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  10. Airborne agent concentration analysis

    DOE Patents [OSTI]

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  11. A SOAP Web Service for accessing MODIS land product subsets

    SciTech Connect (OSTI)

    SanthanaVannan, Suresh K; Cook, Robert B; Pan, Jerry Yun; Wilson, Bruce E

    2011-01-01

    Remote sensing data from satellites have provided valuable information on the state of the earth for several decades. Since March 2000, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board NASA s Terra and Aqua satellites have been providing estimates of several land parameters useful in understanding earth system processes at global, continental, and regional scales. However, the HDF-EOS file format, specialized software needed to process the HDF-EOS files, data volume, and the high spatial and temporal resolution of MODIS data make it difficult for users wanting to extract small but valuable amounts of information from the MODIS record. To overcome this usability issue, the NASA-funded Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics at Oak Ridge National Laboratory (ORNL) developed a Web service that provides subsets of MODIS land products using Simple Object Access Protocol (SOAP). The ORNL DAAC MODIS subsetting Web service is a unique way of serving satellite data that exploits a fairly established and popular Internet protocol to allow users access to massive amounts of remote sensing data. The Web service provides MODIS land product subsets up to 201 x 201 km in a non-proprietary comma delimited text file format. Users can programmatically query the Web service to extract MODIS land parameters for real time data integration into models, decision support tools or connect to workflow software. Information regarding the MODIS SOAP subsetting Web service is available on the World Wide Web (WWW) at http://daac.ornl.gov/modiswebservice.

  12. ccpi1-airborne | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Demonstration of the Airborne Process [pdf-580kb] (withdrawn) Mustang Clean Energy, LLC, A Subsidiary of the Peabody Energy, St. Louis, Missouri Project Fact Sheet Commercial Demonstration of the Airborne Process (Withdrawn) [PDF-675KB] (Oct

  13. ARM - CLASIC Workshop, March 26-27

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  14. ARM - AAF CLASIC Field Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  15. ARM - Fact Sheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  16. ARM - CLASIC News & Press

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  17. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  18. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2005-04-15

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  19. Category:Airborne Gravity Survey | Open Energy Information

    Open Energy Info (EERE)

    Category Edit History Category:Airborne Gravity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Airborne Gravity Survey...

  20. ccpi-airborne_r2 | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 AIRBORNE PROCESS(tm) COMMERCIAL SCALE DEMONSTRATION PROGRAM MUSTANG CLEAN ENERGY, LLC, a subsidiary of PEABODY ENERGY ST. LOUIS, MISSOURI PROJECT FACT SHEET Airborne Process(tm)...

  1. Geophex Airborne Unmanned Survey System

    SciTech Connect (OSTI)

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  2. Geophex Airborne Unmanned Survey System

    SciTech Connect (OSTI)

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  3. Surface Albedo/BRDF Parameters (Terra/Aqua MODIS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Trishchenko, Alexander

    2008-01-15

    Spatially and temporally complete surface spectral albedo/BRDF products over the ARM SGP area were generated using data from two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on Terra and Aqua satellites. A landcover-based fitting (LBF) algorithm is developed to derive the BRDF model parameters and albedo product (Luo et al., 2004a). The approach employs a landcover map and multi-day clearsky composites of directional surface reflectance. The landcover map is derived from the Landsat TM 30-meter data set (Trishchenko et al., 2004a), and the surface reflectances are from MODIS 500m-resolution 8-day composite products (MOD09/MYD09). The MOD09/MYD09 data are re-arranged into 10-day intervals for compatibility with other satellite products, such as those from the NOVA/AVHRR and SPOT/VGT sensors. The LBF method increases the success rate of the BRDF fitting process and enables more accurate monitoring of surface temporal changes during periods of rapid spring vegetation green-up and autumn leaf-fall, as well as changes due to agricultural practices and snowcover variations (Luo et al., 2004b, Trishchenko et al., 2004b). Albedo/BRDF products for MODIS on Terra and MODIS on Aqua, as well as for Terra/Aqua combined dataset, are generated at 500m spatial resolution and every 10-day since March 2000 (Terra) and July 2002 (Aqua and combined), respectively. The purpose for the latter product is to obtain a more comprehensive dataset that takes advantages of multi-sensor observations (Trishchenko et al., 2002). To fill data gaps due to cloud presence, various interpolation procedures are applied based on a multi-year observation database and referring to results from other locations with similar landcover property. Special seasonal smoothing procedure is also applied to further remove outliers and artifacts in data series.

  4. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect (OSTI)

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  5. Active airborne contamination control using electrophoresis

    SciTech Connect (OSTI)

    Veatch, B.D.

    1994-06-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ``cold,`` or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications.

  6. ARM - Field Campaign - ARM Airborne Carbon Measurements (ARM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsARM Airborne Carbon Measurements (ARM-ACME) ARM Data Discovery Browse Data Related Campaigns ARM Airborne Carbon Measurements (ARM-ACME VI) 2015.10.01, Biraud, AAF ARM...

  7. ccpi-airborne_r2 | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 AIRBORNE PROCESS(tm) COMMERCIAL SCALE DEMONSTRATION PROGRAM MUSTANG CLEAN ENERGY, LLC, a subsidiary of PEABODY ENERGY ST. LOUIS, MISSOURI PROJECT FACT SHEET Airborne Process(tm) Commercial Scale Demonstration Program (Withdrawn) [PDF-675KB] (Oct 2008

  8. Estimation of Net Ecosystem Carbon Exchange for the Conterminous UnitedStates by Combining MODIS and AmeriFlux Data

    SciTech Connect (OSTI)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Law, Beverly E.; Richardson, Andrew D.; Chen, Jiquan; Oren, Ram; Starr, Gregory; Noormets, Asko; Ma, Siyan; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.; Bolstad, Paul V.; Burns, Sean P.; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Scott, Russell L.; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.

    2009-03-06

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board NASA's Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a regression tree approach. The predictive model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably well at the site level. We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day period in 2005 using spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas.

  9. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    SciTech Connect (OSTI)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Bolstad, Paul V.; Burns, Sean P.; Chen, Jiquan; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Law, Beverly E.; Litvak, Marcy; Ma, Siyan; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Oren, Ram; Richardson, Andrew D.; Schmid, Hans Peter; Scott, Russell L.; Starr, Gregory; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.; Paw, Kyaw; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration's (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  10. Sandia Multispectral Airborne Lidar for UAV Deployment

    SciTech Connect (OSTI)

    Daniels, J.W.; Hargis,Jr. P.J.; Henson, T.D.; Jordan, J.D.; Lang, A.R.; Schmitt, R.L.

    1998-10-23

    Sandia National Laboratories has initiated the development of an airborne system for W laser remote sensing measurements. System applications include the detection of effluents associated with the proliferation of weapons of mass destruction and the detection of biological weapon aerosols. This paper discusses the status of the conceptual design development and plans for both the airborne payload (pointing and tracking, laser transmitter, and telescope receiver) and the Altus unmanned aerospace vehicle platform. Hardware design constraints necessary to maintain system weight, power, and volume limitations of the flight platform are identified.

  11. ARM - PI Product - Surface Albedo/BRDF Parameters (Terra/Aqua MODIS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsSurface Albedo/BRDF Parameters (Terra/Aqua MODIS) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Surface Albedo/BRDF Parameters (Terra/Aqua MODIS) Spatially and temporally complete surface spectral albedo/BRDF products over the ARM SGP area were generated using data from two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on Terra and Aqua satellites. A landcover-based fitting

  12. Analyzing Options for Airborne Emergency Wireless Communications

    SciTech Connect (OSTI)

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  13. Airborne Tactical Free-Electron Laser

    SciTech Connect (OSTI)

    Whitney, Roy; Neil, George

    2007-02-01

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  14. Sandia National Laboratories: Pathfinder Airborne ISR and Synthetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aperture Radar (SAR) Systems Pathfinder Airborne ISR Systems What is SAR? Areas of Expertise Images VideoSAR Publications Facebook Twitter YouTube Flickr RSS Pathfinder Airborne ISR Systems Pathfinder Airborne ISR and Synthetic Aperture Radar (SAR) Systems Tactical Eyes for the Warfighter Tactical Eyes for the Warfighter Actionable Intelligence for the Decision Maker Actionable Intelligence for the Decision Maker All Weather, Persistent, Optical Like All Weather, Persistent, Optical Like

  15. New Airborne Technology Measures Ocean Surface Currents for Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emergency Rescue Missions New Airborne Technology Measures Ocean Surface Currents for Offshore Energy Production and Emergency Rescue Missions April 11, 2016 - 10:40am ...

  16. Airborne Electromagnetic Survey At Raft River Geothermal Area...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Airborne Electromagnetic Survey At Raft River Geothermal Area...

  17. ARM Airborne Carbon Measurement on the North Slope

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Airborne Carbon Measurement on the North Slope During the summer of 2015, a research campaign gave scientists insight into trends and variability of trace gases in the atmosphere ...

  18. Airborne Electromagnetic Survey At Chena Geothermal Area (Kolker...

    Open Energy Info (EERE)

    Phase I) Notes Fugro, Inc. performed an airborne geophysical survey using the DIGHEM (Digital Helicopter ElectroMagnetics) aircraft over a 937 km2 survey grid. An coplanar...

  19. Asthmatic responses to airborne acid aerosols

    SciTech Connect (OSTI)

    Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. )

    1991-06-01

    Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

  20. CALIOPE and TAISIR airborne experiment platform

    SciTech Connect (OSTI)

    Chocol, C.J.

    1994-07-01

    Between 1950 and 1970, scientific ballooning achieved many new objectives and made a substantial contribution to understanding near-earth and space environments. In 1986, the Lawrence Livermore National Laboratory (LLNL) began development of ballooning technology capable of addressing issues associated with precision tracking of ballistic missiles. In 1993, the Radar Ocean Imaging Project identified the need for a low altitude (1 km) airborne platform for its Radar system. These two technologies and experience base have been merged with the acquisition of government surplus Aerostats by Lawrence Livermore National Laboratory. The CALIOPE and TAISIR Programs can benefit directly from this technology by using the Aerostat as an experiment platform for measurements of the spill facility at NTS.

  1. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Science and Implementation Plan

    SciTech Connect (OSTI)

    Biraud, S

    2015-05-01

    Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO‚āā and/or CH‚āĄ) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols, and cloud properties at the North Slope of Alaska are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections.

  2. ARM - Field Campaign - ARM Airborne Carbon Measurements (ARM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 submitted) in the past four years. We will continue our airborne study of atmospheric composition and carbon cycling in the SGP. The goals of this measurement program are to...

  3. ARM Airborne Continuous carbon dioxide measurements

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Biraud, Sebastien

    2013-03-26

    The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.

  4. ARM Airborne Continuous carbon dioxide measurements

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Biraud, Sebastien

    The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.

  5. Airborne measured analytic signal for UXO detection

    SciTech Connect (OSTI)

    Gamey, T.J.; Holladay, J.S. [Aerodat Inc., Mississauga, Ontario (Canada); Mahler, R. [Industrieanlagen Betriebsgesellschaft, Deutschland (Australia)

    1997-10-01

    The Altmark Tank Training Range north of Haldensleben, Germany has been in operation since WWI. Weapons training and testing has included cavalry, cannon, small arms, rail guns, and tank battalions. Current plans are to convert the area to a fully digital combat training facility. Instead of using blank or dummy ordnance, hits will be registered with lasers and computers. Before this can happen, the 25,000 ha must be cleared of old debris. In support of this cleanup operation, Aerodat Inc., in conjunction with IABG of Germany, demonstrated a new high resolution magnetic survey technique involving the measurement of 3-component magnetic gradient data. The survey was conducted in May 1996, and covered 500 ha in two blocks. The nominal line spacing was 10 m, and the average sensor altitude was 7 m. The geologic column consisted of sands over a sedimentary basin. Topographic relief was generally flat with approximately 3 m rolling dunes and occasional man-made features such as fox holes, bunkers, tank traps and reviewing stands. Trees were sparse and short (2-3 metres) due to frequent burn off and tank activity. As such, this site was nearly ideal for low altitude airborne surveying.

  6. Mutant HNF-1{alpha} and mutant HNF-1{beta} identified in MODY3 and MODY5 downregulate DPP-IV gene expression in Caco-2 cells

    SciTech Connect (OSTI)

    Gu Ning [Laboratory of Metabolism, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Laboratory of Neurochemistry, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Adachi, Tetsuya [Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto (Japan); Matsunaga, Tetsuro [Laboratory of Metabolism, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Takeda, Jun [Department of Endocrinology Diabetes and Rheumatology, Graduate School of Medicine, Gifu University School of Medicine, Gifu (Japan); Tsujimoto, Gozoh [Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto (Japan); Ishihara, Akihiko [Laboratory of Neurochemistry, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Yasuda, Koichiro [Laboratory of Metabolism, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Diabetic Center, Tsunashimakai-Kosei Hospital, Himeji (Japan); Tsuda, Kinsuke [Laboratory of Metabolism, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan)]. E-mail: jinkan@tom.life.h.kyoto-u.ac.jp

    2006-08-04

    Dipeptidylpeptidase IV (DPP-IV) is a well-documented drug target for the treatment of type 2 diabetes. Hepatocyte nuclear factors (HNF)-1{alpha} and HNF-1{beta}, known as the causal genes of MODY3 and MODY5, respectively, have been reported to be involved in regulation of DPP-IV gene expression. But, it is not completely clear (i) that they play roles in regulation of DPP-IV gene expression, and (ii) whether DPP-IV gene activity is changed by mutant HNF-1{alpha} and mutant HNF-1{beta} in MODY3 and MODY5. To explore these questions, we investigated transactivation effects of wild HNF-1{alpha} and 13 mutant HNF-1{alpha}, as well as wild HNF-1{beta} and 2 mutant HNF-1{beta}, on DPP-IV promoter luciferase gene in Caco-2 cells by means of a transient experiment. Both wild HNF-1{alpha} and wild HNF-1{beta} significantly transactivated DPP-IV promoter, but mutant HNF-1{alpha} and mutant HNF-1{beta} exhibited low transactivation activity. Moreover, to study whether mutant HNF-1{alpha} and mutant HNF-1{beta} change endogenous DPP-IV enzyme activity, we produced four stable cell lines from Caco-2 cells, in which wild HNF-1{alpha} or wild HNF-1{beta}, or else respective dominant-negative mutant HNF-1{alpha}T539fsdelC or dominant-negative mutant HNF-1{beta}R177X, was stably expressed. We found that DPP-IV gene expression and enzyme activity were significantly increased in wild HNF-1{alpha} cells and wild HNF-1{beta} cells, whereas they decreased in HNF-1{alpha}T539fsdelC cells and HNF-1{beta}R177X cells, compared with DPP-IV gene expression and enzyme activity in Caco-2 cells. These results suggest that both wild HNF-1{alpha} and wild HNF-1{beta} have a stimulatory effect on DPP-IV gene expression, but that mutant HNF-1{alpha} and mutant HNF-1{beta} attenuate the stimulatory effect.

  7. Flight Testing of an Advanced Airborne Natural Gas Leak Detection System

    SciTech Connect (OSTI)

    Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

    2005-10-01

    ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

  8. Real-Time Airborne Gamma-Ray Background Estimation Using NASVD with MLE and Radiation Transport for Calibration

    SciTech Connect (OSTI)

    Kulisek, Jonathan A.; Schweppe, John E.; Stave, Sean C.; Bernacki, Bruce E.; Jordan, David V.; Stewart, Trevor N.; Seifert, Carolyn E.; Kernan, Warnick J.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this, we have developed a new technique for real-time estimation of background gamma radiation from aerial measurements. This method is built upon on the noise-adjusted singular value decomposition (NASVD) technique that was previously developed for estimating the potassium (K), uranium (U), and thorium (T) concentrations in soil post-flight. The method can be calibrated using K, U, and T spectra determined from radiation transport simulations along with basis functions, which may be determined empirically by applying maximum likelihood estimation (MLE) to previously measured airborne gamma-ray spectra. The method was applied to both measured and simulated airborne gamma-ray spectra, with and without man-made radiological source injections. Compared to schemes based on simple averaging, this technique was less sensitive to background contamination from the injected man-made sources and may be particularly useful when the gamma-ray background frequently changes during the course of the flight.

  9. New Approaches to Differential Mobility Analysis for Airborne Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approaches to Differential Mobility Analysis for Airborne Measurements Rick Flagan Chemical Engineering and Environmental Science and Engineering California Institute of Technology Pasadena, CA 91125 Support: NSF, ONR, Davidow Foundation Differential Mobility Analysis Air Sample Aerosol Charger/Neutralizer (Atmospheric Pressure Chemical Ionization) Sheath Air Q sh ~ 10 Q a Volumetric flow rate Q s Exhaust Q ex =Q sh Differential Mobility Analyzer DMA (Aerodynamic Analog of Sector Mass

  10. Real-Time Airborne Particle Analyzer - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Real-Time Airborne Particle Analyzer Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary Particle analysis is useful for determining chemical compositions in a wide range of disciplines, from ascertaining the source of a petroleum sample to duplicating a fragrance. The technique is appealing to a broad cross section of analytical sciences, but its applications are limited because, for existing equipment, sample size

  11. Sandia National Laboratories: Pathfinder Airborne ISR Systems: Areas of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expertise Pathfinder Airborne ISR Systems Areas of Expertise Capabilities Capabilities Sandia's Intelligence, Surveillance and Reconnaissance (ISR) breadth of capabilities include everything from mission planning to system design and integration to data collection and analysis. Hardware Hardware Sandia has over 30 years of experience in the development of Synthetic Aperture Radar (SAR) and other Intelligence, Surveillance and Reconnaissance (ISR) hardware components. Modes and Frequencies

  12. Sandia National Laboratories: Pathfinder Airborne ISR Systems: Areas of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expertise: Capabilities Capabilities Capabilities Sandia continues to advance the next generation of Synthetic Aperture Radar (SAR) and Intelligence, Surveillance and Reconnaissance (ISR) systems with highly integrated, miniaturized, and fully mission-capable radar systems to impact tactical Surveillance and Reconnaissance (S&R) capabilities Sandia has a broad range of engineering, testing and analysis capabilities for Airborne Intelligence, Surveillance and Reconnaissance (ISR) systems.

  13. Introductory Remarks: ARM AVP Workshop on Advances in Airborne Instrumentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introductory Remarks: ARM AVP Workshop on Advances in Airborne Instrumentation Warren Wiscombe ARM Chief Scientist Brookhaven National Lab ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Genesis of this workshop * ARM UAV mutated into ARM Aerial Vehicles Program (AVP) in 2006 * Several key people believed strongly that AVP should have an instrument development component * Greg McFarquhar wrote the AVP whitepaper with three goals: - routine flights over ARM sites -

  14. Micro-Electron Spin Resonance for Airborne Soot Measurement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Micro-Electron Spin Resonance for Airborne Soot Measurement Micro-Electron Spin Resonance for Airborne Soot Measurement A real-time method for airborne soot concentration measurement using a miniaturized electron spin resonance sensor is presented. deer08_white.pdf (1.09 MB) More Documents & Publications Certification Package Status Table_12_11_08.xls Vehicle Technologies Office Merit Review 2014: Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for

  15. DOE/SC-ARM-15-032 ARM-ACME V: ARM Airborne Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Airborne Carbon Measurements Project BC black carbon CARVE NASA Carbon in Arctic ... observations to regional scales, but focused on Alaska as a whole (Figure 2 and Figure 3). ...

  16. DOE-HDBK-3010-94; DOE Handbook Airborne Release Fractions/Rates...

    Broader source: Energy.gov (indexed) [DOE]

    10-94 December 1994 CHANGE NOTICE NO. 1 March 2000 DOE HANDBOOK AIRBORNE RELEASE FRACTIONSRATES AND RESPIRABLE FRACTIONS FOR NONREACTOR NUCLEAR FACILITIES Volume I - Analysis of ...

  17. DOE-HDBK-3010-94; Airborne Release Fractions/Rates and Respirable...

    Office of Environmental Management (EM)

    3010-94 December 1994 DOE HANDBOOK AIRBORNE RELEASE FRACTIONSRATES AND RESPIRABLE ... Nozzle arrangement in the system is in accordance with NFPA standards and will blanket a ...

  18. Airborne Instrumentation Needs for Climate and Atmospheric Research

    SciTech Connect (OSTI)

    McFarquhar, Greg; Schmid, Beat; Korolev, Alexei; Ogren, John A.; Russell, P. B.; Tomlinson, Jason M.; Turner, David D.; Wiscombe, Warren J.

    2011-10-06

    Observational data are of fundamental importance for advances in climate and atmospheric research. Advances in atmospheric science are being made not only through the use of ground-based and space-based observations, but also through the use of in-situ and remote sensing observations acquired on instrumented aircraft. In order for us to enhance our knowledge of atmospheric processes, it is imperative that efforts be made to improve our understanding of the operating characteristics of current instrumentation and of the caveats and uncertainties in data acquired by current probes, as well as to develop improved observing methodologies for acquisition of airborne data.

  19. Prospecting by sampling and analysis of airborne particulates and gases

    DOE Patents [OSTI]

    Sehmel, G.A.

    1984-05-01

    A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

  20. Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)

    SciTech Connect (OSTI)

    Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H.; Barhen, J.

    1997-04-01

    A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

  1. Multi-center airborne coherent atmospheric wind sensor (MACAWS)

    SciTech Connect (OSTI)

    Rothermel, J.; Menzies, R.T.; Tratt, D.M.

    1996-11-01

    The Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) is an airborne scanning coherent Doppler lidar designed to acquire remote multi-dimensional measurements of winds and absolute aerosol backscatter in the troposphere and lower stratosphere. These measurements enable study of atmospheric dynamic processes and features at scales of motion that may be undersampled by, or may be beyond the capability of, existing or planned sensors. MACAWS capabilities enable more realistic assessments of concepts in global tropospheric wind measurement with satellite Doppler lidar, as well as a unique capability to validate the NASA Scatterometer currently scheduled for launch in late 1996. MACAWS consists of a Joule-class CO{sub 2} coherent Doppler lidar on a ruggedized optical table, a programmable scanner to direct the lidar beam in the desired direction, and a dedicated inertial navigation system to account for variable aircraft attitude and speed. MACAWS was flown for the first time in September 1995, over the eastern Pacific Ocean and western US. 33 refs., 2 figs.

  2. Quality assurance program plan for radionuclide airborne emissions monitoring

    SciTech Connect (OSTI)

    Boom, R.J.

    1995-03-01

    This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of airborne emissions. The Hanford Site radioactive airborne emissions requirements are defined in National Emissions Standards for Hazardous Air Pollutants (NESHAP), Code of Federal Regulations, Title 40, Part 61, Subpart H (EPA 1991a). Reporting of the emissions to the US Department of Energy is performed in compliance with requirements of US Department of Energy, Richland Operations Office Order 5400.1, General Environmental Protection Program (DOE-RL 1988). This Quality Assurance Program Plan is prepared in accordance with and to the requirements of QAMS-004/80, Guidelines and Specifications for Preparing Quality Assurance Program Plans (EPA 1983). Title 40 CFR Part 61, Appendix B, Method 114, Quality Assurance Methods (EPA 1991b) specifies the quality assurance requirements and that a program plan should be prepared to meet the requirements of this regulation. This Quality Assurance Program Plan identifies NESHAP responsibilities and how the Westinghouse Hanford Company Environmental, Safety, Health, and Quality Assurance Division will verify that the methods are properly implemented.

  3. Mutagenicity of airborne particles from a nonindustrial town in Italy

    SciTech Connect (OSTI)

    Barale, R.; Zucconi, D.; Giorgelli, F.; Carducci, A.L.; Tonelli, M.; Loprieno, N.

    1989-01-01

    The mutagenic activity of airborne particulate matter collected in Pisa, a small nonindustrial town located in Italy, has been monitored over 1 year using the Ames Salmonella Test. Airborne particulate was collected on fiberglass filters using a Hi-Vol sampler and extracted by sonication and Soxhlet acetone extraction in sequence. TA 98 and TA 100 salmonella strains gave positive results with the great majority of samples. The mutagenicity trend fits with a harmonic regression with a peak during December/January and inversely correlates with the temperature. No correlations were observed with other meteorological conditions such as wind, cloud, rainfall, atmospheric pressure, and humidity. The ratio between mutagenicity/microgram of particulate matter with S9 and that without S9 remains more or less constant regardless of seasonal fluctuations, suggesting that during cold months quantitative increases of mutagens onto particulate matter have probably occurred. The comparison of air mutagenicity in different sites suggests that motor vehicle exhaust fumes are the major source of air pollution. Finally, because of high-traffic volume, air mutagenicity at street level is comparable to that observed in several metropolitan areas all over the world.

  4. Airborne soil organic particles generated by precipitation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.; Piens, Dominique S.; China, Swarup; Kovarik, Libor; Keiluweit, Marco; Arey, Bruce W.; Gilles, Mary K.; Laskin, Alexander

    2016-05-02

    Airborne organic particles play a critical role in Earth‚Äôs climate1, public health2, air quality3, and hydrological and carbon cycles4. However, sources and formation mechanisms for semi-solid and solid organic particles5 are poorly understood and typically neglected in atmospheric models6. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets7. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rain events, sub-micrometre solid particles, with a chemicalmore¬†¬Ľ composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. Lastly, we suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events8.¬ę¬†less

  5. Cloud Microphysical and Radiative Properties Derived from MODIS, VIRS, AVHRR, and GMS Data Over the Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microphysical and Radiative Properties Derived from MODIS, VIRS, AVHRR, and GMS Data Over the Tropical Western Pacific G. D. Nowicki, M. L. Nordeen, P. W. Heck, D. R. Doelling, and M. M. Khaiyer Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Atmospheric Sciences Division Langley Research Center Hampton, Virginia S. Sun-Mack Science Applications International Corporation Hampton, Virginia Introduction Utilization of the

  6. Initial assessment of an airborne Ku-band polarimetric SAR.

    SciTech Connect (OSTI)

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940's. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analyst's understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  7. Method for measuring the size distribution of airborne rhinovirus

    SciTech Connect (OSTI)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  8. ARM - Field Campaign - ARM Airborne Carbon Measurements IV (ARM-ACME IV)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsARM Airborne Carbon Measurements IV (ARM-ACME IV) Campaign Links Final Campaign Report ARM Data Discovery Browse Data Related Campaigns ARM Airborne Carbon Measurements (ARM-ACME) 2008.10.01, Biraud, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Airborne Carbon Measurements IV (ARM-ACME IV) 2013.10.01 - 2015.09.30 Lead Scientist : Sebastien Biraud For data sets, see below. Abstract ARM ACME observations and

  9. ARM - Field Campaign - Co-ordinated Airborne Studies in the Tropics - CAST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsCo-ordinated Airborne Studies in the Tropics - CAST Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Co-ordinated Airborne Studies in the Tropics - CAST 2014.01.01 - 2014.02.28 Lead Scientist : Geraint Vaughan For data sets, see below. Abstract CAST (Co-ordinated Airborne Studies in the Tropics) was a research project funded by the UK's Natural Environment

  10. ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign

    Office of Scientific and Technical Information (OSTI)

    Reports (Technical Report) | SciTech Connect ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports Citation Details In-Document Search Title: ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports We report on a 5-year multi-institution and multi-agency airborne study of atmospheric composition and carbon cycling at the Atmospheric Radiation Measurement (ARM) Climate Research Facility's Southern Great Plains (SGP) site, with

  11. Airborne release fractions/rates and respirable fractions for nonreactor nuclear facilities. Volume 2, Appendices

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This document contains compiled data from the DOE Handbook on Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear facilities. Source data and example facilities utilized, such as the Plutonium Recovery Facility, are included.

  12. Overview of the first Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment: Conversion of a ground-based lidar for airborne applications

    SciTech Connect (OSTI)

    Howell, J.N.; Hardesty, R.M.; Rothermel, J.; Menzies, R.T.

    1996-12-31

    The first Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) field experiment demonstrated an airborne high energy TEA CO{sub 2} Doppler lidar system for measurement of atmospheric wind fields and aerosol structure. The system was deployed on the NASA DC-8 during September 1995 in a series of checkout flights to observe several important atmospheric phenomena, including upper level winds in a Pacific hurricane, marine boundary layer winds, cirrus cloud properties, and land-sea breeze structure. The instrument, with its capability to measure three-dimensional winds and backscatter fields, promises to be a valuable tool for climate and global change, severe weather, and air quality research. In this paper, the authors describe the airborne instrument, assess its performance, discuss future improvements, and show some preliminary results from September experiments.

  13. The Effect of Airborne Contaminants on Fuel Cell Performance & Durability |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Effect of Airborne Contaminants on Fuel Cell Performance & Durability The Effect of Airborne Contaminants on Fuel Cell Performance & Durability Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 rocheleau_uhawaii_kickoff.pdf (340.84 KB) More Documents & Publications Supporting a Hawaii Hydrogen Economy Effects of Impurities of Fuel Cell Performance and Durability Effect of System and Air Contaminants on

  14. Simulators IV

    SciTech Connect (OSTI)

    Fairchild, B.T.

    1987-01-01

    These proceedings contain papers on simulators with artificial intelligence, and the human decision making process; visuals for simulators: human factors, training, and psycho-physical impacts; the role of institutional structure on simulation projects; maintenance trainers for economic value and safety; biomedical simulators for understanding nature, for medical benefits, and the physiological effects of simulators; the mathematical models and numerical techniques that drive today's simulators; and the demography of simulators, with census papers identifying the population of real-time simulator training devices; nuclear reactors.

  15. Airborne spread of foot-and-mouth disease - model intercomparison

    SciTech Connect (OSTI)

    Gloster, J; Jones, A; Redington, A; Burgin, L; Sorensen, J H; Turner, R; Dillon, M; Hullinger, P; Simpson, M; Astrup, P; Garner, G; Stewart, P; D'Amours, R; Sellers, R; Paton, D

    2008-09-04

    Foot-and-mouth disease is a highly infectious vesicular disease of cloven-hoofed animals caused by foot-and-mouth disease virus. It spreads by direct contact between animals, by animal products (milk, meat and semen), by mechanical transfer on people or fomites and by the airborne route - with the relative importance of each mechanism depending on the particular outbreak characteristics. Over the years a number of workers have developed or adapted atmospheric dispersion models to assess the risk of foot-and-mouth disease virus spread through the air. Six of these models were compared at a workshop hosted by the Institute for Animal Health/Met Office during 2008. A number of key issues emerged from the workshop and subsequent modelling work: (1) in general all of the models predicted similar directions for 'at risk' livestock with much of the remaining differences strongly related to differences in the meteorological data used; (2) determination of an accurate sequence of events is highly important, especially if the meteorological conditions vary substantially during the virus emission period; and (3) differences in assumptions made about virus release, environmental fate, and subsequent infection can substantially modify the size and location of the downwind risk area. Close relationships have now been established between participants, which in the event of an outbreak of disease could be readily activated to supply advice or modelling support.

  16. Inversion of Airborne Contaminants in a Regional Model

    SciTech Connect (OSTI)

    Akcelik, V.; Biros, G.; Draganescu, A.; Ghattas, O.; Hill, J.; van Bloemen Waanders, B.; /SLAC /Pennsylvania U. /Texas U. /Sandia

    2007-01-10

    We are interested in a DDDAS problem of localization of airborne contaminant releases in regional atmospheric transport models from sparse observations. Given measurements of the contaminant over an observation window at a small number of points in space, and a velocity field as predicted for example by a mesoscopic weather model, we seek an estimate of the state of the contaminant at the beginning of the observation interval that minimizes the least squares misfit between measured and predicted contaminant field, subject to the convection-diffusion equation for the contaminant. Once the ''initial'' conditions are estimated by solution of the inverse problem, we issue predictions of the evolution of the contaminant, the observation window is advanced in time, and the process repeated to issue a new prediction, in the style of 4D-Var. We design an appropriate numerical strategy that exploits the spectral structure of the inverse operator, and leads to efficient and accurate resolution of the inverse problem. Numerical experiments verify that high resolution inversion can be carried out rapidly for a well-resolved terrain model of the greater Los Angeles area.

  17. ARM Airborne Carbon Measurements VI (ACME VI) Science Plan

    SciTech Connect (OSTI)

    Biraud, S

    2015-12-01

    From October 1 through September 30, 2016, the Atmospheric Radiation Measurement (ARM) Aerial Facility will deploy the Cessna 206 aircraft over the Southern Great Plains (SGP) site, collecting observations of trace-gas mixing ratios over the ARM’s SGP facility. The aircraft payload includes two Atmospheric Observing Systems, Inc., analyzers for continuous measurements of CO2 and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, 14CO2, carbonyl sulfide, and trace hydrocarbon species, including ethane). The aircraft payload also includes instrumentation for solar/infrared radiation measurements. This research is supported by the U.S. Department of Energy’s ARM Climate Research Facility and Terrestrial Ecosystem Science Program and builds upon previous ARM Airborne Carbon Measurements (ARM-ACME) missions. The goal of these measurements is to improve understanding of 1) the carbon exchange at the SGP site, 2) how CO2 and associated water and energy fluxes influence radiative forcing, convective processes and CO2 concentrations over the SGP site, and 3) how greenhouse gases are transported on continental scales.

  18. 3D model generation using an airborne swarm

    SciTech Connect (OSTI)

    Clark, R. A.; Punzo, G.; Macdonald, M.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Bolton, G.

    2015-03-31

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithmís computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  19. ARM - Field Campaign - ARM Airborne Carbon Measurements (ARM-ACME V)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    V) Campaign Links Science Plan Images Field Campaign Report ARM Data Discovery Browse Data Related Campaigns ARM Airborne Carbon Measurements (ARM-ACME) 2008.10.01, Biraud, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Airborne Carbon Measurements (ARM-ACME V) 2015.06.01 - 2015.09.15 Lead Scientist : Sebastien Biraud For data sets, see below. Abstract The ARM Aerial Facility Gulfstream-159 will alternate between four flights

  20. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Airborne HSRL and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RSP Measurements govCampaignsTwo-Column Aerosol Project (TCAP): Airborne HSRL and RSP Measurements ARM Data Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Two-Column Aerosol Project (TCAP): Airborne HSRL and RSP Measurements 2012.07.01 - 2012.07.31 Lead Scientist : Chris Hostetler For data sets, see below. Abstract The deployment of the

  1. Effluent monitoring Quality Assurance Project Plan for radioactive airborne emissions data. Revision 2

    SciTech Connect (OSTI)

    Frazier, T.P.

    1995-12-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for compiling Hanford Site radioactive airborne emissions data. These data will be reported to the U.S. Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Effluent Monitoring performs compliance assessments on radioactive airborne sampling and monitoring systems. This Quality Assurance Project Plan is prepared in compliance with interim guidelines and specifications. Topics include: project description; project organization and management; quality assurance objectives; sampling procedures; sample custody; calibration procedures; analytical procedures; monitoring and reporting criteria; data reduction, verification, and reporting; internal quality control; performance and system audits; corrective actions; and quality assurance reports.

  2. Wind Simulation

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  3. Ground-based retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel Dave Turner Space Science and Engineering Center University of Wisconsin - Madison Aerosol Working Group Breakout Session 10 March 2008 ARM STM, Norfolk, VA Background and Objectives * Many airborne minerals have absorption features in the thermal infrared (8-13 ¬Ķm) * These absorption features can be used to determine the "radiatively relevant" mineral composition of atmospheric

  4. Apparatus for real-time airborne particulate radionuclide collection and analysis

    DOE Patents [OSTI]

    Smart, John E.; Perkins, Richard W.

    2001-01-01

    An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.

  5. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOE Patents [OSTI]

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  6. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOE Patents [OSTI]

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  7. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--March 1995

    SciTech Connect (OSTI)

    1995-03-01

    The objectives of the project are to construct a geophysical sensor system based on a remotely operated model helicopter (ROH) and to evaluate the efficacy of the system for characterization of hazardous environmental sites. Geophex Airborne Unmanned Survey System (GAUSS) is a geophysical survey system that uses a ROH as the survey vehicle. We have selected the ROH because of its advantages over fixed wing and ground based vehicles. Lower air speed and superior maneuverability of the ROH make it better suited for geophysical surveys than a fixed wing model aircraft. The ROH can fly close to the ground, allowing detection of weak or subtle anomalies. Unlike ground based vehicles, the ROH can traverse difficult terrain while providing a stable sensor platform. ROH does not touch the ground during the course of a survey and is capable of functioning over water and surf zones. The ROH has been successfully used in the motion picture industry and by geology companies for payload bearing applications. The only constraint to use of the airborne system is that the ROH must remain visible to the pilot. Obstructed areas within a site can be characterized by relocating the base station to alternate positions. GAUSS consists of a ROH with radio controller, a data acquisition and processing (DAP) system, and lightweight digital sensor systems. The objective of our Phase I research was to develop a DAP and sensors suitable for ROH operation. We have constructed these subsystems and integrated them to produce an automated, hand-held geophysical surveying system, referred to as the ``pre-prototype``. We have performed test surveys with the pre-prototype to determine the functionality of the and DAP and sensor subsystems and their suitability for airborne application. The objective of the Phase II effort will be to modify the existing subsystems and integrate them into an airborne prototype. Efficacy of the prototype for geophysical survey of hazardous sites will then be determined.

  8. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOE Patents [OSTI]

    McIsaac, Charles V. (Idaho Falls, ID); Killian, E. Wayne (Idaho Falls, ID); Grafwallner, Ervin G. (Arco, ID); Kynaston, Ronnie L. (Blackfoot, ID); Johnson, Larry O. (Pocatello, ID); Randolph, Peter D. (Idaho Falls, ID)

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  9. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPLINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2004-05-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The third six-month technical report contains a summary of the progress made towards finalizing the design and assembling the airborne, remote methane and ethane sensor. The vendor has been chosen and is on contract to develop the light source with the appropriate linewidth and spectral shape to best utilize the Ophir gas correlation software. Ophir has expanded upon the target reflectance testing begun in the previous performance period by replacing the experimental receiving optics with the proposed airborne large aperture telescope, which is theoretically capable of capturing many times more signal return. The data gathered from these tests has shown the importance of optimizing the fiber optic receiving fiber to the receiving optic and has helped Ophir to optimize the design of the gas cells and narrowband optical filters. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  10. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2003-11-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  11. Airborne reconnaissance VIII; Proceedings of the meeting, San Diego, CA, August 21, 22, 1984

    SciTech Connect (OSTI)

    Henkel, P.; Lagesse, F.R.

    1984-01-01

    Various papers on sensors and ancillary equipment, technological advances, development and testing, and intelligence extraction and exploitation in airborne reconnaissance are presented. The topics discussed include: the CA-810 modern trilens camera, PC-183B standoff imaging system, ruggedized MMW radiometer sensor for surveillance applications, application of biocular viewers to airborne reconnaissance, KA-102 film/EO standoff system, KS-146A camera development and flight test results, electrooptical imaging for film cameras, and new generation advanced IR linescan sensor system. Also addressed are: evolution of real time airborne reconnaissance, computer-controlled operation of reconnaissance cameras, miniature focus sensor, microprocessor-controller autofocus system, camera flight tests and image evaluation, LM-230A cost-effective test system, information management for tactical reconnaissance, performance modeling of infrared linescanners and FLIRs, USAF tactical reconnaissance - Grenada, sensor control and film annotation for long-range standoff reconnaissance, laser beam recording on film, meteorological effects on image quality, and optimization of photographic information transfer by CRT.

  12. Airborne megawatt class free-electron laser for defense and security

    SciTech Connect (OSTI)

    Roy Whitney; David Douglas; George Neil

    2005-03-01

    An airborne megawatt (MW) average power Free-Electron Laser (FEL) is now a possibility. In the process of shrinking the FEL parameters to fit on ship, a surprisingly lightweight and compact design has been achieved. There are multiple motivations for using a FEL for a high-power airborne system for Defense and Security: Diverse mission requirements can be met by a single system. The MW of light can be made available with any time structure for time periods from microseconds to hours, i.e. there is a nearly unlimited magazine. The wavelength of the light can be chosen to be from the far infrared (IR) to the near ultraviolet (UV) thereby best meeting mission requirements. The FEL light can be modulated for detecting the same pattern in the small fraction of light reflected from the target resulting in greatly enhanced targeting control. The entire MW class FEL including all of its subsystems can be carried by large commercial size airplanes or on an airship. Adequate electrical power can be generated on the plane or airship to run the FEL as long as the plane or airship has fuel to fly. The light from the FEL will work well with relay mirror systems. The required R&D to achieve the MW level is well understood. The coupling of the capabilities of an airborne FEL to diverse mission requirements provides unique opportunities.

  13. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  14. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2003-05-13

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

  15. INTERPRETATION OF AIRBORNE ELECTROMAGNETIC AND MAGNETIC DATA IN THE 600 AREA

    SciTech Connect (OSTI)

    CUMMINS GD

    2010-11-11

    As part of the 200-PO-1 Phase I geophysical surveys, Fugro Airborne Surveys was contracted to collect airborne electromagnetic (EM) and magnetic surveys of the Hanford Site 600 Area. Two helicopter survey systems were used with the HeliGEOTEM{reg_sign} time domain portion flown between June 19th and June 20th, 2008, and the RESOLVE{reg_sign} frequency domain portion was flown from June 29th to July 1st, 2008. Magnetic data were acquired contemporaneously with the electromagnetic surveys using a total-field cesium vapor magnetometer. Approximately 925 line kilometers (km) were flown using the HeliGEOTEM{reg_sign} II system and 412 line kilometers were flown using the RESOLVE{reg_sign} system. The HeliGEOTEM system has an effective penetration of roughly 250 meters into the ground and the RESOLVE system has an effective penetration of roughly 60 meters. Acquisition parameters and preliminary results are provided in SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site. Airborne data are interpreted in this report in an attempt to identify areas of likely preferential groundwater flow within the aquifer system based on the presence of paleochannels or fault zones. The premise for the interpretation is that coarser-grained intervals have filled in scour channels created by episodic catastrophic flood events during the late Pleistocene. The interpretation strategy used the magnetic field anomaly data and existing bedrock maps to identify likely fault or lineament zones. Combined analysis of the magnetic, 60-Hz noise monitor, and flight-altitude (radar) data were used to identify zones where EM response is more likely due to cultural interference and or bedrock structures. Cross-sectional and map view presentations of the EM data were used to identify more electrically resistive zones that likely correlate with coarser-grained intervals. The resulting interpretation identifies one major northwest-southeast trending

  16. Sampling airborne microorganisms. Summary report, 1 October 1985-30 September 1986

    SciTech Connect (OSTI)

    Chatigny, M.A.

    1986-09-01

    In response to a rapidly increasing awarness of problems in air pollution and air hygiene, considerable emphasis has been placed on sampling of gaseous and particulate contaminants. Although included in the latter category, airborne microbes have not been considered major air pollutants as have chemical aerosols. They have been of some concern in extramural environments (plant diseases) and of considerable interest in intramural (hospital surgical theaters) environments. The intrinsic characteristics of microbes make them difficult to collect and assay quantitatively. The collection instrumentation available tends to be less sophisticated, though no less diverse, than that for other particulates and to require more processing after collection.

  17. Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vapor Radiometer Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water Vapor Radiometer Pazmany, Andrew ProSensing Inc. Category: Instruments ProSensing Inc. has developed a G-band (183 GHz, 1.5 mm wavelength) water vapor radiometer (GVR) for the measurement of low concentrations of atmospheric water vapor and liquid water. The instrument's precipitable water vapor measurement precision is approximately 0.01 mm in dry (<2 mm vapor column) conditions. The ground-based

  18. "Airborne Wind Energy - Harnessing a Vast, Untapped Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Source" | Princeton Plasma Physics Lab November 14, 2012, 4:15pm Colloquia MBG Auditorium "Airborne Wind Energy - Harnessing a Vast, Untapped Renewable Energy Source" Dr. Kenneth Jensen Makani Power Inc. At just 500 m above the ground, the average power density of the wind is double that at 100 m where wind turbines typically reside. This makes high-altitude wind one of the most concentrated forms of renewable energy after hydro-power. Building conventional wind turbines at

  19. Computerized Mathematical Models of Spray Washout of Airborne Contaminants (Radioactivity) in Containment Vessels.

    Energy Science and Technology Software Center (OSTI)

    2003-05-23

    Version 01 Distribution is restricted to the United States Only. SPIRT predicts the washout of airborne contaminants in containment vessels under postulated loss-of-coolant accident (LOCA) conditions. SPIRT calculates iodine removal constants (lambdas) for post-LOCA containment spray systems. It evaluates the effect of the spectrum of drop sizes emitted by the spray nozzles, the effect of drop coalescence, and the precise solution of the time-dependent diffusion equation. STEAM-67 routines are included for calculating the properties ofmore¬†¬Ľ steam and water according to the 1967 ASME Steam Tables.¬ę¬†less

  20. Hybrid Simulator

    Energy Science and Technology Software Center (OSTI)

    2005-10-15

    HybSim (short for Hybrid Simulator) is a flexible, easy to use screening tool that allows the user to quanti the technical and economic benefits of installing a village hybrid generating system and simulates systems with any combination of ¬óDiesel generator sets ¬óPhotovoltaic arrays -Wind Turbines and -Battery energy storage systems Most village systems (or small population sites such as villages, remote military bases, small communities, independent or isolated buildings or centers) depend on diesel generationmore¬†¬Ľ systems for their source of energy. HybSim allows the user to determine other "sources" of energy that can greatly reduce the dollar to kilo-watt hour ratio. Supported by the DOE, Energy Storage Program, HybSim was initially developed to help analyze the benefits of energy storage systems in Alaskan villages. Soon after its development, other sources of energy were added providing the user with a greater range of analysis opportunities and providing the village with potentially added savings. In addition to village systems, HybSim has generated interest for use from military institutions in energy provisions and USAID for international village analysis.¬ę¬†less

  1. Airborne release fractions/rates and respirable fractions for nonreactor nuclear facilities. Volume 1, Analysis of experimental data

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This handbook contains (1) a systematic compilation of airborne release and respirable fraction experimental data for nonreactor nuclear facilities, (2) assessments of the data, and (3) values derived from assessing the data that may be used in safety analyses when the data are applicable. To assist in consistent and effective use of this information, the handbook provides: identification of a consequence determination methodology in which the information can be used; discussion of the applicability of the information and its general technical limits; identification of specific accident phenomena of interest for which the information is applicable; and examples of use of the consequence determination methodology and airborne release and respirable fraction information.

  2. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    SciTech Connect (OSTI)

    Buggiano, Valeria; Petrillo, Ezequiel; All√≥, Mariano; Lafaille, Celina; Redal, Mar√≠a Ana; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Shamy, Magdy; Mu√Īoz, Manuel J.; and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5‚Ä≤ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: ‚ÄĘ Airborne particulate matter (PM10) affects alternative splicing in colon cells. ‚ÄĘ PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. ‚ÄĘ This variant has a longer 5‚Ä≤ unstranslated region and introduces an upstream AUG. ‚ÄĘ By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. ‚ÄĘ BMP-4 downregulation was previously reported to be associated to colon cancer.

  3. Mutagenic activity and chemical analysis of airborne particulates collected in Pisa (Italy)

    SciTech Connect (OSTI)

    Vellosi, R.; Fiorio, R.; Rosellini, D.; Bronzetti, G. ); Vannucchi, C.; Ciacchini, G.; Giaconi, V. ); Bianchi, F. )

    1994-03-01

    In the last few years there has been much concern about the problem connected to the exposure to mutagens present in the environment of industrialized countries. Particularly, the mutagenic activity of airborne particulate matter has been studied by many investigators and correlated with elevated lung cancer mortality rates. In most cases the Salmonella typhimurium/microsome test has been used for these studies. This short-term test, which is the most validated among the short-term genotoxicity tests, provides an important indication on the carcinogenic potential of environmental pollutants. That are complex mixtures containing a wide variety of compounds potentially capable of causing additive, antagonistic or synergistic genotoxic response in living organisms. Several studies have suggested that diverse factors, such as traffic and meteorological conditions, could affect the levels of pollutants in the air. In our work, we have investigated three different areas in Pisa, where the intensity and the kind of the road traffic were different. Airborne particles have been collected during a year and the genotoxic activity has been studied using TA98 and TA100 strains of Salmonella typhimurium. 20 refs., 1 fig., 3 tabs.

  4. Emergency Response Equipment and Related Training: Airborne Radiological Computer System (Model II)

    SciTech Connect (OSTI)

    David P. Colton

    2007-02-28

    The materials included in the Airborne Radiological Computer System, Model-II (ARCS-II) were assembled with several considerations in mind. First, the system was designed to measure and record the airborne gamma radiation levels and the corresponding latitude and longitude coordinates, and to provide a first overview look of the extent and severity of an accident's impact. Second, the portable system had to be light enough and durable enough that it could be mounted in an aircraft, ground vehicle, or watercraft. Third, the system must control the collection and storage of the data, as well as provide a real-time display of the data collection results to the operator. The notebook computer and color graphics printer components of the system would only be used for analyzing and plotting the data. In essence, the provided equipment is composed of an acquisition system and an analysis system. The data can be transferred from the acquisition system to the analysis system at the end of the data collection or at some other agreeable time.

  5. ARM - Mission Summary Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mission Summary Journal Related Links CLASIC Home AAF Home ARM Data Discovery Browse Data Post-Campaign CLASIC/CHAPS Special Session at AGU Annual Meeting, December 15-19 CLASIC Workshop, March 26-27 Data Sets Deployment Resources Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract Science Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land

  6. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Questions Related Links CLASIC Home AAF Home ARM Data Discovery Browse Data Post-Campaign CLASIC/CHAPS Special Session at AGU Annual Meeting, December 15-19 CLASIC Workshop, March 26-27 Data Sets Deployment Resources Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract Science Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land

  7. ARM - Sponsors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sponsors Related Links CLASIC Home AAF Home ARM Data Discovery Browse Data Post-Campaign CLASIC/CHAPS Special Session at AGU Annual Meeting, December 15-19 CLASIC Workshop, March 26-27 Data Sets Deployment Resources Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract Science Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land Experiment Plan

  8. Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets

    SciTech Connect (OSTI)

    Igathinathane, C; Pordesimo, L.O.

    2009-08-01

    Dust management strategies in industrial environment, especially of airborne dust, require quantification and measurement of size and size distribution of the particles. Advanced specialized instruments that measure airborne particle size and size distribution apply indirect methods that involve light scattering, acoustic spectroscopy, and laser diffraction. In this research, we propose a simple and direct method of airborne dust particle dimensional measurement and size distribution analysis using machine vision. The method involves development of a user-coded ImageJ plugin that measures particle length and width and analyzes size distribution of particles based on particle length from high-resolution scan images. Test materials were airborne dust from soft pine wood sawdust pellets and ground pine tree bark pellets. Subsamples prepared by dividing the actual dust using 230 mesh (63 m) sieve were analyzed as well. A flatbed document scanner acquired the digital images of the dust particles. Proper sampling, layout of dust particles in singulated arrangement, good contrast smooth background, high resolution images, and accurate algorithm are essential for reliable analysis. A halo effect around grey-scale images ensured correct threshold limits. The measurement algorithm used Feret s diameter for particle length and pixel-march technique for particle width. Particle size distribution was analyzed in a sieveless manner after grouping particles according to their distinct lengths, and several significant dimensions and parameters of particle size distribution were evaluated. Results of the measurement and analysis were presented in textual and graphical formats. The developed plugin was evaluated to have a dimension measurement accuracy in excess of 98.9% and a computer speed of analysis of <8 s/image. Arithmetic mean length of actual wood and bark pellets airborne dust particles were 0.1138 0.0123 and 0.1181 0.0149 mm, respectively. The airborne dust particles of

  9. A Continuous Measure of Gross Primary Production for the Conterminous U.S. Derived from MODIS and AmeriFlux Data

    SciTech Connect (OSTI)

    Xia, Jingfeng; Zhuang, Qianlai; Law, Beverly E.; Chen, Jiquan; Baldocchi, Dennis D.; Cook, David R.; Oren, Ram; Richardson, Andrew D.; Wharton, Sonia; Ma, Siyan; Martin, Timothy A.; Verma, Shashi B.; Suyker, Andrew E.; Scott, Russell L.; Monson, Russell K.; Litvak, Marcy; Hollinger, David Y.; Sun, Ge; Davis, Kenneth J.; Bolstad, Paul V.; Burns, Sean P.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Katul, Gabriel G.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Starr, Gregory; Torn, Margaret S.; Wofsy, Steven C.

    2009-01-28

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000-2004, and was validated using observed GPP over the period 2005-2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km x 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr{sup -1} for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated

  10. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    SciTech Connect (OSTI)

    Han, Xiao; Zhang, Meigen; Han, Zhiewi; Xin, Jin-Yuan; Liu, Xiaohong

    2011-11-14

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W m-2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W m-2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan

  11. Quality Assurance Project Plan for radioactive airborne emissions data compilation and reporting

    SciTech Connect (OSTI)

    Burris, S.A.; Thomas, S.P.

    1994-02-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for compiling data from radioactie aiborne emissions. These data will be reported to the US Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Hanford Site radioactive airborne emissions are reported to the US Environmental Protection Agency in compliance with Title 40, Protection of the Environment, Code of Federal Regulations, Part 61, ``National Emissions Standards for Hazardous Air Pollutants , ``Subpart H, ``National Emissions Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities`` (EPA 1989a). Reporting to US Department of Energy is performed in compliance with requirements of US Department of Energy Order 5400.1, General Environmental Protection Program (DOE 1988a).

  12. Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations

    SciTech Connect (OSTI)

    Wolfe, Glenn; Hanisco, T. F.; Atkinson, H. L.; Bui, Thaopaul; Crounse, J. D.; Dean-Day, J.; Goldstein, Allen H.; Guenther, Alex B.; Hall, S. R.; Huey, L. G.; Jacob, D.; Karl, T.; Kim, P. S.; Liu, X.; Marvin, M. R.; Mikoviny, Tomas; Misztal, Pawel K.; Nguyen, Tran B.; Peischl, Jeff; Pollack, Ilana; Ryerson, T. B.; St Clair, J. M.; Teng, A. P.; Travis, Katherine; Ullmann, K.; Wennberg, P. O.; Wisthaler, Armin

    2015-10-16

    Atmospheric composition is governed by the interplay of emissions, chemistry, deposition, and transport. Substantial questions surround each of these processes, especially in forested environments with strong biogenic emissions. Utilizing aircraft observations acquired over a forest in the southeast U.S., we calculate eddy covariance fluxes for a suite of reactive gases and apply the synergistic information derived from this analysis to quantify emission and deposition fluxes, oxidant concentrations, aerosol uptake coefficients, and other key parameters. Evaluation of results against state-of-the-science models and parameterizations provides insight into our current understanding of this system and frames future observational priorities. As a near-direct measurement of fundamental process rates, airborne fluxes offer a new tool to improve biogenic and anthropogenic emissions inventories, photochemical mechanisms, and deposition parameterizations.

  13. Airborne Multisensor Pod System, Arms control and nonproliferation technologies: Second quarter 1995

    SciTech Connect (OSTI)

    Alonzo, G M; Sanford, N M

    1995-01-01

    This issue focuses on the Airborne Multisensor Pod System (AMPS) which is a collaboration of many of the DOE national laboratories to provide a scientific environment to research multiple sensors and the new information that can be derived from them. The bulk of the research has been directed at nonproliferation applications, but it has also proven useful in environmental monitoring and assessment, and land/water management. The contents of this issue are: using AMPS technology to detect proliferation and monitor resources; combining multisensor data to monitor facilities and natural resources; planning a AMPS mission; SAR pod produces images day or night, rain or shine; MSI pod combines data from multiple sensors; ESI pod will analyze emissions and effluents; and accessing AMPS information on the Internet.

  14. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--September 1996

    SciTech Connect (OSTI)

    1998-12-31

    This document is a Final Technical Report that describes the results of the Geophex Airborne Unmanned Survey System (GAUSS) research project. The objectives were to construct a geophysical data acquisition system that uses a remotely operated unmanned aerial vehicle (UAV) and to evaluate its effectiveness for characterization of hazardous environmental sites. The GAUSS is a data acquisition system that mitigates the potential risk to personnel during geophysical characterization of hazardous or radioactive sites. The fundamental basis of the GAUSS is as follows: (1) an unmanned survey vehicle carries geophysical sensors into a hazardous location, (2) the pilot remains outside the hazardous site and operates the vehicle using radio control, (3) geophysical measurements and their spatial locations are processed by an automated data-acquisition system which displays data on an off-site monitor in real-time, and (4) the pilot uses the display to direct the survey vehicle for complete site coverage. The objective of our Phase I research was to develop a data acquisition and processing (DAP) subsystem and geophysical sensors suitable for UAV deployment. We integrated these two subsystems to produce an automated, hand-held geophysical surveying system. The objective of the Phase II effort was to modify the subsystems and integrate them into an airborne prototype. The completed GAUSS DAP system consists of a UAV platform, a laser tracking and ranging subsystem, a telemetry subsystem, light-weight geophysical sensors, a base-station computer (BC), and custom-written survey control software (SCS). We have utilized off-the-shelf commercial products, where possible, to reduce cost and design time.

  15. THE 2011 JUNE 23 STELLAR OCCULTATION BY PLUTO: AIRBORNE AND GROUND OBSERVATIONS

    SciTech Connect (OSTI)

    Person, M. J.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Sallum, S.; Dunham, E. W.; Collins, P.; Bida, T.; Bright, L.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D.; Tholen, D. J.; Taylor, B.; Wolf, J.; Pfueller, E.; Meyer, A.; and others

    2013-10-01

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 {+-} 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should

  16. Building a Particle Simulator

    SciTech Connect (OSTI)

    Weaver, Brian Phillip; Williams, Brian J.

    2015-10-06

    The purpose of this manuscript is to illustrate how to use the simulator we have developed to generate counts from simulated spectra.

  17. Reframing Accelerator Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulations Mori-1.png Key Challenges: Use advanced simulation tools to study the feasibility of plasma-based linear colliders and to optimize conceptual designs. Much of the...

  18. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 1999

    SciTech Connect (OSTI)

    DL Edwards; KD Shields; MJ Sula; MY Ballinger

    1999-09-28

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP--US Code of Federal Regulations, Title 40 Part 61, Subpart H). In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the US Department of Energy and operated by Pacific Northwest National Laboratory (Pacific Northwest) on the Hanford Site. Two of the facilities evaluated, 325 Building Radiochemical Processing Laboratory, and 331 Building Life Sciences Laboratory met state and federal criteria for continuous sampling of airborne radionuclide emissions. One other building, the 3720 Environmental Sciences Laboratory, was recognized as being in transition with the potential for meeting the continuous sampling criteria.

  19. Sandia Lightning Simulation Facility Building 888. Hazards assessment document

    SciTech Connect (OSTI)

    Banda, Z.; Barnett, B.

    1994-10-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Sandia Lightning Simulation Facility, Building 888. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 65 meters.

  20. Simulation Technology Laboratory Building 970 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  1. ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26 ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports SC Biraud MS Torn January 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  2. Airborne Dust Cloud Measurements at the INL National Security Test Range

    SciTech Connect (OSTI)

    Michael L. Abbott; Norm Stanley; Larry Radke; Charles Smeltzer

    2007-09-01

    On July 11, 2007, a surface, high-explosive test (<20,000 lb TNT-equivalent) was carried out at the National Security Test Range (NSTR) on the Idaho National Laboratory (INL) Site. Aircraft-mounted rapid response (1-sec) particulate monitors were used to measure airborne PM-10 concentrations directly in the dust cloud and to develop a PM-10 emission factor that could be used for subsequent tests at the NSTR. The blast produced a mushroom-like dust cloud that rose approximately 2,500‚Äď3,000 ft above ground level, which quickly dissipated (within 5 miles of the source). In general, the cloud was smaller and less persistence than expected, or that might occur in other areas, likely due to the coarse sand and subsurface conditions that characterize the immediate NSTR area. Maximum short time-averaged (1-sec) PM-10 concentrations at the center of the cloud immediately after the event reached 421 ¬Ķg m-3 but were rapidly reduced (by atmospheric dispersion and fallout) to near background levels (~10 ¬Ķg m-3) after about 15 minutes. This occurred well within the INL Site boundary, about 8 km (5 miles) from the NSTR source. These findings demonstrate that maximum concentrations in ambient air beyond the INL Site boundary (closest is 11.2 km from NSTR) from these types of tests would be well within the 150 ¬Ķg m-3 24-hour National Ambient Air Quality Standards for PM-10. Aircraft measurements and geostatistical techniques were used to successfully quantify the initial volume (1.64E+9 m3 or 1.64 km3) and mass (250 kg) of the PM-10 dust cloud, and a PM-10 emission factor (20 kg m-3 crater soil volume) was developed for this specific type of event at NSTR. The 250 kg of PM-10 mass estimated from this experiment is almost seven-times higher than the 36 kg estimated for the environmental assessment (DOE-ID 2007) using available Environmental Protection Agency (EPA 1995) emission factors. This experiment demonstrated that advanced aircraft-mounted instruments operated by

  3. Heavy Vehicle Simulator

    SciTech Connect (OSTI)

    2015-03-09

    Idaho National Laboratory Heavy Vehicle Simulator located at the Center for Advanced Energy Studies.

  4. Airborne gamma-ray spectrometer and magnetometer survey: Peoria, Decater, Belleville Quadrangles, (IL). Final report

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Peoria, Decatur, and Belleville, 1:250,000 National Topographic Map Series (NTMS), quadrangle maps. The survey was part of DOE's National Uranium Resource Evaluation (NURE) program. Data were collected by a helicopter equipped with a gamma-ray spectrometer with a large crystal volume, and with a high sensitivity proton procession magnetometer. The radiometric system was calibrated at the Walker Field Calibration pads and the Lake Mead Dynamic Test Range. Data quality was ensured during the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. The anomalies were interpreted and an interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data collection procedures, the data processing procedures, the data presentation, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results.

  5. Apparatus and methods for monitoring the concentrations of hazardous airborne substances, especially lead

    DOE Patents [OSTI]

    Zaromb, Solomon

    2004-07-13

    Air is sampled at a rate in excess of 100 L/min, preferably at 200-300 L/min, so as to collect therefrom a substantial fraction, i.e., at least 20%, preferably 60-100%, of airborne particulates. A substance of interest (analyte), such as lead, is rapidly solubilized from the the collected particulates into a sample of liquid extractant, and the concentration of the analyte in the extractant sample is determined. The high-rate air sampling and particulate collection may be effected with a high-throughput filter cartridge or with a recently developed portable high-throughput liquid-absorption air sampler. Rapid solubilization of lead is achieved by a liquid extractant comprising 0.1-1 M of acetic acid or acetate, preferably at a pH of 5 or less and preferably with inclusion of 1-10% of hydrogen peroxide. Rapid determination of the lead content in the liquid extractant may be effected with a colorimetric or an electroanalytical analyzer.

  6. Quality assurance project plan for the radionuclide airborne emissions for the Plutonium Finishing Plant

    SciTech Connect (OSTI)

    Kristofzski, J.G.; Alison, D.

    1992-04-01

    The information provided in this document meets the quality assurance (QA) requirements for the National Emission Standards for Hazardous Air Pollutants'' (NESHAP) (EPA 1989a) radionuclide airborne emissions control program in accordance with the regulation's referenced stack monitoring method (i.e. Method 114) for the Plutonium Finishing Plant (PFP). At the Hanford Site, the operations personnel have primary responsibility for implementing the continuous radionuclide emission measurements in conformance with NESHAP. Continuous measurement is used to describe continuous sampling of the effluent stream withdrawn and subjected to radiochemical analysis, and monitoring of radionuclide particulate emissions for administrative control. This Quality Assurance Project Plan (QAPjP) fully describes these PFP- implemented activities and the associated QA program as required by the NESHAP. The information is provided in the format specified in QAMS/005, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (EPA 1983a). This QAPjP describes the QA program for only those activities that are the responsibility of the PFP: operation, calibration, and maintenance of the sampling systems. The QA requirements for laboratory services, data compilation, and data reporting are beyond the scope of this QAPjP.

  7. Quality assurance project plan for the radionuclide airborne emissions for the Plutonium Finishing Plant

    SciTech Connect (OSTI)

    Kristofzski, J.G.; Alison, D.

    1992-04-01

    The information provided in this document meets the quality assurance (QA) requirements for the ``National Emission Standards for Hazardous Air Pollutants`` (NESHAP) (EPA 1989a) radionuclide airborne emissions control program in accordance with the regulation`s referenced stack monitoring method (i.e. Method 114) for the Plutonium Finishing Plant (PFP). At the Hanford Site, the operations personnel have primary responsibility for implementing the continuous radionuclide emission measurements in conformance with NESHAP. Continuous measurement is used to describe continuous sampling of the effluent stream withdrawn and subjected to radiochemical analysis, and monitoring of radionuclide particulate emissions for administrative control. This Quality Assurance Project Plan (QAPjP) fully describes these PFP- implemented activities and the associated QA program as required by the NESHAP. The information is provided in the format specified in QAMS/005, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (EPA 1983a). This QAPjP describes the QA program for only those activities that are the responsibility of the PFP: operation, calibration, and maintenance of the sampling systems. The QA requirements for laboratory services, data compilation, and data reporting are beyond the scope of this QAPjP.

  8. Weld arc simulator

    DOE Patents [OSTI]

    Burr, Melvin J.

    1990-01-30

    An arc voltage simulator for an arc welder permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.

  9. Electrical Circuit Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  10. Calculation of aerosol backscatter from airborne continuous wave focused CO sub 2 Doppler lidar measurements. 1. Algorithm description

    SciTech Connect (OSTI)

    Rothermel, J. ); Bowdle, D.A. ); Vaughan, J.M.; Brown, D.W. ); Woodfield, A.A. )

    1991-03-20

    Since 1981 the Royal Signals and Radar Establishment and the Royal Aircraft Establishment, United Kingdom, have made vertical and horizontal sounding measurements of aerosol backscatter coefficients at 10.6 {mu}m using an airborne continuous wave focused CO{sub 2} Doppler lidar, the Laser True Airspeed System (LATAS). The heterodyne signal from the LATAS detector is spectrally analyzed. Then, in conjunction with aircraft flight parameters, the data are processed in a six-stage computer algorithm: Set search window, search for peak signal, test peak signal, measure total signal, calculate signal-to-noise ratio (SNR), and calculate backscatter coefficient.

  11. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2001

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Shields, Keith D.; Edwards, Daniel R.

    2001-09-28

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40 Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods, and provides the results, for the assessment performed in 2001.

  12. Final Report DE-EE0005380 Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UNIVERSITY OF TEXAS AT AUSTIN Final Report DE-EE0005380 Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Prepared for: U.S. Department of Energy Prepared by: Hao Ling (UT) Mark F. Hamilton (ARL:UT) Rajan Bhalla (SAIC) Walter E. Brown (ARL:UT) Todd A. Hay (ARL:UT) Nicholas J. Whitelonis (UT) Shang-Te Yang (UT) Aale R. Naqvi (UT) 9/30/2013 DE-EE0005380 The University of Texas at Austin ii Notice and Disclaimer This report is being disseminated by

  13. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2010

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Gervais, Todd L.; Barnett, J. Matthew

    2011-05-13

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants ([NESHAP]; U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code 246-247: Radiation Protection - Air Emissions. In these NESHAP assessments, potential unabated off-site doses were evaluated for emission locations at buildings that are part of the consolidated laboratory campus of the Pacific Northwest National Laboratory. This report describes the inventory-based methods and provides the results for the NESHAP assessment performed in 2010.

  14. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2007

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Barfuss, Brad C.; Gervais, Todd L.

    2008-01-01

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP ‚Äď U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection ‚Äď Air Emissions. In these NESHAP assessments, potential unabated offsite doses were evaluated for emission locations at buildings that are part of the consolidated laboratory campus of the Pacific Northwest National Laboratory. This report describes the inventory-based methods and provides the results for the NESHAP assessment performed in 2007.

  15. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2003

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Edwards, Daniel L.

    2003-12-05

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods and provides the results for the assessment performed in 2003.

  16. Air Shower Simulations

    SciTech Connect (OSTI)

    Alania, Marco; Gomez, Adolfo V. Chamorro; Araya, Ignacio J.; Huerta, Humberto Martinez; Flores, Alejandra Parra; Knapp, Johannes

    2009-04-30

    Air shower simulations are a vital part of the design of air shower experiments and the analysis of their data. We describe the basic features of air showers and explain why numerical simulations are the appropriate approach to model the shower simulation. The CORSIKA program, the standard simulation program in this field, is introduced and its features, performance and limitations are discussed. The basic principles of hadronic interaction models and some gerneral simulation techniques are explained. Also a brief introduction to the installation and use of CORSIKA is given.

  17. Full-wave Simulations of ICRF Heating in Toroidal Plasma with Non-Maxwellian Distribution Functions in the FLR Limit

    SciTech Connect (OSTI)

    E.J. Valeo, C.K. Phillips, H. Okuda, J.C. Wright, P.T. Bonoli, L.A. Berry, and the RF SciDAC Team

    2007-07-18

    At the power levels required for signicant heating and current drive in magnetically-con ned toroidal plasma, modi cation of the particle distribution function from a Maxwellian shape is likely [T.H. Stix, Nucl. Fusion, 15:737 1975], with consequent changes in wave propagation and in the location and amount of absorption. In order to study these e ects computationally, the nite-Larmor-radius, full-wave, hot-plasma toroidal simulation code, TORIC [M. Brambilla. Plasma Phys. Controlled Fusion, 41:1, 1999], has been extended to allow the prescription of arbitrary velocity distributions of the form É (?||, ??, ?, ?). For H minority heating of a D-H plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies signi cantly with changes in parallel temperature but is essentially independent of perpendicular temperature.

  18. Epidemilogical Simulation System, Version 2.4

    Energy Science and Technology Software Center (OSTI)

    2004-01-30

    at the individual level, EpiSims is uniquely suited to evaluate their macroscopic consequences. For example, the debate over the logistics of targeted vaccination for smallpox, and thus the magnitude of the threat it poses, can best be resolved through an individual- based approach. EpiSims is the only available analytical tool using the individual-based approach that can scale to populations of a million or more without introducing ad-hoc assumptions about the nature of the social network. Impact: The first study commissioned for the EpiSims project was to analyze the effectiveness of targeted vaccination and isolation strategies in the aftermath of a covert release of smallpox at a crowded urban location. In particular we compared casualties and resources required for targeted strategies with those in the case of large-scale quarantine and/or mass vaccination campaigns. We produced this analysis in a sixty-day effort, while prototype software was still under development and delivered it to the Office of Homeland Security in June 2002. More recently, EpiSims provided casualty estimates and cost/benefit analyses for various proposed responses to an attack with pneumonic plague during the TOPOFF-2 exercise. Capabilities: EpiSims is designed to simulate human-human transmissible disease, but it is part of a suite of tools that naturally allow it to estimate individual exposures to air-borne or water-borne spread. Combined with data on animal density and mobility, EpiSims could simulate diseases spread by non-human vectors. EpiSims incorporates reactions of individuals, and is particularly powerful if those reactions are correlated with demographics. It provides a standard for modeling scenarios that cuts across agencies.¬ę¬†less

  19. Reactor refueling machine simulator

    SciTech Connect (OSTI)

    Rohosky, T.L.; Swidwa, K.J.

    1987-10-13

    This patent describes in combination: a nuclear reactor; a refueling machine having a bridge, trolley and hoist each driven by a separate motor having feedback means for generating a feedback signal indicative of movement thereof. The motors are operable to position the refueling machine over the nuclear reactor for refueling the same. The refueling machine also has a removable control console including means for selectively generating separate motor signals for operating the bridge, trolley and hoist motors and for processing the feedback signals to generate an indication of the positions thereof, separate output leads connecting each of the motor signals to the respective refueling machine motor, and separate input leads for connecting each of the feedback means to the console; and a portable simulator unit comprising: a single simulator motor; a single simulator feedback signal generator connected to the simulator motor for generating a simulator feedback signal in response to operation of the simulator motor; means for selectively connecting the output leads of the console to the simulator unit in place of the refueling machine motors, and for connecting the console input leads to the simulator unit in place of the refueling machine motor feedback means; and means for driving the single simulator motor in response to any of the bridge, trolley or hoist motor signals generated by the console and means for applying the simulator feedback signal to the console input lead associated with the motor signal being generated by the control console.

  20. A comparison between satellite and airborne multispectral data for the assessment of Mangrove areas in the eastern Caribbean

    SciTech Connect (OSTI)

    Green, E.P.; Edwards, A.J.; Mumby, P.J.

    1997-06-01

    Satellite (SPOT XS and Landsat TM) and airborne multispectral (CASI) imagery was acquired from the Turks and Caicos Islands, British West Indies. The descriptive resolution and accuracy of each image type is compared for two applications: mangrove habitat mapping and the measurement of mangrove canopy characteristics (leaf area index and canopy closure). Mangroves could be separated from non-mangrove vegetation to an accuracy of only 57% with SPOT XS data but better discrimination could be achieved with either Landsat TM or CASI (in both cases accuracy was >90%). CASI data permitted a more accurate classification of different mangrove habitats than was possible using Landsat TM. Nine mangrove habitats could be mapped to an accuracy of 85% with the high-resolution airborne data compared to 31% obtained with TM. A maximum of three mangrove habitats were separable with Landsat TM: the accuracy of this classification was 83%. Measurement of mangrove canopy characteristics is achieved more accurately with CASI than with either satellite sensor, but high costs probably make it a less cost-effective option. The cost-effectiveness of each sensor is discussed for each application.

  1. Fast Analysis and Simulation Team | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACFast Analysis and Simulation Team

  2. Parallel Atomistic Simulations

    SciTech Connect (OSTI)

    HEFFELFINGER,GRANT S.

    2000-01-18

    Algorithms developed to enable the use of atomistic molecular simulation methods with parallel computers are reviewed. Methods appropriate for bonded as well as non-bonded (and charged) interactions are included. While strategies for obtaining parallel molecular simulations have been developed for the full variety of atomistic simulation methods, molecular dynamics and Monte Carlo have received the most attention. Three main types of parallel molecular dynamics simulations have been developed, the replicated data decomposition, the spatial decomposition, and the force decomposition. For Monte Carlo simulations, parallel algorithms have been developed which can be divided into two categories, those which require a modified Markov chain and those which do not. Parallel algorithms developed for other simulation methods such as Gibbs ensemble Monte Carlo, grand canonical molecular dynamics, and Monte Carlo methods for protein structure determination are also reviewed and issues such as how to measure parallel efficiency, especially in the case of parallel Monte Carlo algorithms with modified Markov chains are discussed.

  3. Device Simulation Tool - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAZ0036_v2.jpg Device Simulation Tool Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation

  4. Modeling & Simulation publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling and Simulation in the Chemical Sciences ¬Ľ Modeling & Simulation Publications Modeling & Simulation publications Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise David Harradine Physical Chemistry and Applied Spectroscopy Email Josh Smith Chemistry Email The inherent knowledge of transformation has beguiled sorcerers and scientists alike. D.A. Horner, F. Lambert, J.D. Kress,

  5. Large Eddy Simulations: Where

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eddy Simulations: Where observations and modeling collides July 18, 2015 Cascade of Models ‚ĆÖ General Circulation Models ‚ĆÖ Regional Models ‚ĆÖ Large-Eddy Simulations ‚ĆÖ Direct Numerical Simulations LES GCM vs LES History Theory What if? Using LES together with Observations Testbed LES 2 / 37 Cascade of Models General Circulation Models ‚ĆÖ Domain size: Entire Earth ‚ĆÖ Horizontal Boundary conditions: None ‚ĆÖ Horizontal grid spacing: 50km ‚ĆÖ Total number of points: about 400 ‚á• 400 ‚á• 100

  6. Whole Building Energy Simulation

    Broader source: Energy.gov [DOE]

    Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

  7. The probability of laser caused ocular injury to the aircrew of undetected aircraft violating the exclusion zone about the airborne aura LIDAR.

    SciTech Connect (OSTI)

    Augustoni, Arnold L.

    2006-12-01

    The probability of a laser caused ocular injury, to the aircrew of an undetected aircraft entering the exclusion zone about the AURA LIDAR airborne platform with the possible violation of the Laser Hazard Zone boundary, was investigated and quantified for risk analysis and management.

  8. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect (OSTI)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    401. This difference may be the result of using filter media at Station 400 with a smaller pore size than the media used at the other two stations. Average annual gamma exposure at Station 401 is slightly greater than at Station 400 and 402. Average annual gamma exposure at all three TTR stations are in the upper range to slightly higher than values reported for the CEMP stations surrounding the TTR. At higher wind speeds, the saltation counts are greater at Station 401 than at Station 402 while the suspended particulate concentrations are greater at Station 402 than at Statin 401. Although these observations seem counterintuitive, they are likely the result of differences in the soil material present at the two sites. Station 401 is located on an interfluve elevated above two adjacent drainage channels where the soil surface is likely to be composed of coarser material. Station 402 is located in finer sediments at the playa edge and is also subject to dust from a dirt road only 500 m to the north. During prolonged high wind events, suspended dust concentrations at Station 401 peaked with the initial winds then decreased whereas dust concentrations at Station 402 peaked with each peak in the wind speed. This likely reflects a limited PM10 source that is quickly expended at Station 401 relative to an abundant PM10 source at Station 402. In CY2013, to facilitate comparisons between radiological analyses of collected dust, the filter media at all three stations will be standardized. In addition, a sequence of samples will be collected at Station 400 using both types of filter media to enable development of a mathematical relationship between the results derived from the two filter types. Additionally, having acquired approximately four years of observations at Stations 400 and 401 and a year of observations at Station 402, a period-of-record analysis of the radiological and airborne dust conditions will be undertaken.

  9. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  10. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  11. Radio Channel Simulator (RCSM)

    Energy Science and Technology Software Center (OSTI)

    2007-01-31

    This is a simulation package for making site specific predictions of radio signal strength. The software computes received power at discrete grid points as a function of the transmitter location and propagation environment. It is intended for use with wireless network simulation packages and to support wireless network deployments.

  12. Damselfly Network Simulator

    Energy Science and Technology Software Center (OSTI)

    2014-04-01

    Damselfly is a model-based parallel network simulator. It can simulate communication patterns of High Performance Computing applications on different network topologies. It outputs steady-state network traffic for a communication pattern, which can help in studying network congestion and its impact on performance.

  13. Converting DYNAMO simulations to Powersim Studio simulations

    SciTech Connect (OSTI)

    Walker, La Tonya Nicole; Malczynski, Leonard A.

    2014-02-01

    DYNAMO is a computer program for building and running 'continuous' simulation models. It was developed by the Industrial Dynamics Group at the Massachusetts Institute of Technology for simulating dynamic feedback models of business, economic, and social systems. The history of the system dynamics method since 1957 includes many classic models built in DYANMO. It was not until the late 1980s that software was built to take advantage of the rise of personal computers and graphical user interfaces that DYNAMO was supplanted. There is much learning and insight to be gained from examining the DYANMO models and their accompanying research papers. We believe that it is a worthwhile exercise to convert DYNAMO models to more recent software packages. We have made an attempt to make it easier to turn these models into a more current system dynamics software language, Powersim © Studio produced by Powersim AS2 of Bergen, Norway. This guide shows how to convert DYNAMO syntax into Studio syntax.

  14. ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports

    SciTech Connect (OSTI)

    Biraud, S. C.; Tom, M. S.; Sweeney, C.

    2016-01-01

    We report on a 5-year multi-institution and multi-agency airborne study of atmospheric composition and carbon cycling at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, with scientific objectives that are central to the carbon-cycle and radiative-forcing goals of the U.S. Global Change Research Program and the North American Carbon Program (NACP). The goal of these measurements is to improve understanding of 1) the carbon exchange of the Atmospheric Radiation Measurement (ARM) SGP region; 2) how CO2 and associated water and energy fluxes influence radiative-forcing, convective processes, and CO2 concentrations over the ARM SGP region, and 3) how greenhouse gases are transported on continental scales.

  15. Unmanned airborne vehicle (UAV): Flight testing and evaluation of two-channel E-field very low frequency (VLF) instrument

    SciTech Connect (OSTI)

    1998-12-01

    Using VLF frequencies, transmitted by the Navy`s network, for airborne remote sensing of the earth`s electrical, magnetic characteristics was first considered by the United States Geological Survey (USGS) around the mid 1970s. The first VLF system was designed and developed by the USGS for installation and operation on a single engine, fixed wing aircraft used by the Branch of Geophysics for geophysical surveying. The system consisted of five channels. Two E-field channels with sensors consisting of a fixed vertical loaded dipole antenna with pre-amp mounted on top of the fuselage and a gyro stabilized horizontal loaded dipole antenna with pre-amp mounted on a tail boom. The three channel magnetic sensor consisted of three orthogonal coils mounted on the same gyro stabilized platform as the horizontal E-field antenna. The main features of the VLF receiver were: narrow band-width frequency selection using crystal filters, phase shifters for zeroing out system phase variances, phase-lock loops for generating real and quadrature gates, and synchronous detectors for generating real and quadrature outputs. In the mid 1990s the Branch of Geophysics designed and developed a two-channel E-field ground portable VLF system. The system was built using state-of-the-art circuit components and new concepts in circuit architecture. Small size, light weight, low power, durability, and reliability were key considerations in the design of the instrument. The primary purpose of the instrument was for collecting VLF data during ground surveys over small grid areas. Later the system was modified for installation on a Unmanned Airborne Vehicle (UAV). A series of three field trips were made to Easton, Maryland for testing and evaluating the system performance.

  16. Global Feedback Simulator

    SciTech Connect (OSTI)

    Carlos Serrano, Lawrence Doolittle

    2015-10-29

    GFS is a simulation engine that is used for the characterization of Accelerator performance parameters based on the machine layout, configuration and noise sources. It combines extensively tested Feedback models with a longitudinal phase space tracking simulator along with the interaction between the two via beam-based feedback using a computationally efficient simulation engine. The models include beam instrumentation, considerations on loop delays for in both the R and beam-based feedback loops, as well as the ability to inject noise (both correlated and uncorrelated) at different points of the machine including a full characterization of the electron gun performance parameters.

  17. Global Feedback Simulator

    Energy Science and Technology Software Center (OSTI)

    2015-10-29

    GFS is a simulation engine that is used for the characterization of Accelerator performance parameters based on the machine layout, configuration and noise sources. It combines extensively tested Feedback models with a longitudinal phase space tracking simulator along with the interaction between the two via beam-based feedback using a computationally efficient simulation engine. The models include beam instrumentation, considerations on loop delays for in both the R and beam-based feedback loops, as well as themore¬†¬Ľ ability to inject noise (both correlated and uncorrelated) at different points of the machine including a full characterization of the electron gun performance parameters.¬ę¬†less

  18. Fundamentals of plasma simulation

    SciTech Connect (OSTI)

    Forslund, D.W.

    1985-01-01

    With the increasing size and speed of modern computers, the incredibly complex nonlinear properties of plasmas in the laboratory and in space are being successfully explored in increasing depth. Of particular importance have been numerical simulation techniques involving finite size particles on a discrete mesh. After discussing the importance of this means of understanding a variety of nonlinear plasma phenomena, we describe the basic elements of particle-in-cell simulation and their limitations and advantages. The differencing techniques, stability and accuracy issues, data management and optimization issues are discussed by means of a simple example of a particle-in-cell code. Recent advances in simulation methods allowing large space and time scales to be treated with minimal sacrifice in physics are reviewed. Various examples of nonlinear processes successfully studied by plasma simulation will be given.

  19. Compressible Astrophysics Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  20. Dynamic Power Grid Simulation

    Energy Science and Technology Software Center (OSTI)

    2015-09-14

    GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.

  1. Xyce parallel electronic simulator.

    SciTech Connect (OSTI)

    Keiter, Eric Richard; Mei, Ting; Russo, Thomas V.; Rankin, Eric Lamont; Schiek, Richard Louis; Thornquist, Heidi K.; Fixel, Deborah A.; Coffey, Todd Stirling; Pawlowski, Roger Patrick; Santarelli, Keith R.

    2010-05-01

    This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.

  2. Modeling & Simulation | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACModeling & Simulation content top Overview Posted by Admin on Feb 13, 2012 in | Comments 0 comments NISAC experts analyze-using modeling and simulation capabilities-critical infrastructure, along with their interdependencies, vulnerabilities, and complexities. Their analyses are used to aid decisionmakers with policy assessment, mitigation planning, education, and training and provide near-real-time assistance to crisis-response organizations. Infrastructure systems are large, complex,

  3. Advanced Simulation and Computing

    National Nuclear Security Administration (NNSA)

    NA-ASC-117R-09-Vol.1-Rev.0 Advanced Simulation and Computing PROGRAM PLAN FY09 October 2008 ASC Focal Point Robert Meisner, Director DOE/NNSA NA-121.2 202-586-0908 Program Plan Focal Point for NA-121.2 Njema Frazier DOE/NNSA NA-121.2 202-586-5789 A Publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs i Contents Executive Summary ----------------------------------------------------------------------------------------------- 1 I. Introduction

  4. Theory Modeling and Simulation

    SciTech Connect (OSTI)

    Shlachter, Jack

    2012-08-23

    Los Alamos has a long history in theory, modeling and simulation. We focus on multidisciplinary teams that tackle complex problems. Theory, modeling and simulation are tools to solve problems just like an NMR spectrometer, a gas chromatograph or an electron microscope. Problems should be used to define the theoretical tools needed and not the other way around. Best results occur when theory and experiments are working together in a team.

  5. Computer simulation | Open Energy Information

    Open Energy Info (EERE)

    Computer simulation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Computer simulation Author wikipedia Published wikipedia, 2013 DOI Not Provided...

  6. Ion Beam Simulator

    Energy Science and Technology Software Center (OSTI)

    2005-11-08

    IBSimu(Ion Beam Simulator) is a computer program for making two and three dimensional ion optical simulations. The program can solve electrostatic field in a rectangular mesh using Poisson equation using Finite Difference method (FDM). The mesh can consist of a coarse and a fine part so that the calculation accuracy can be increased in critical areas of the geometry, while most of the calculation is done quickly using the coarse mesh. IBSimu can launch ionmore¬†¬Ľ beam trajectories into the simulation from an injection surface or fomo plasma. Ion beam space charge of time independent simulations can be taken in account using Viasov iteration. Plasma is calculated by compensating space charge with electrons having Boltzmann energy distribution. The simulation software can also be used to calculate time dependent cases if the space charge is not calculated. Software includes diagnostic tools for plotting the geometry, electric field, space charge map, ion beam trajectories, emittance data and beam profiles.¬ę¬†less

  7. SMC curing simulation

    SciTech Connect (OSTI)

    Akiyama, Koichi; Kuroki, Hiroyuki; Matsuda, Terukazu

    1996-11-01

    SMC curing properties are being measured with many kinds of procedures all over the world, and they are the most important factors for molding. But, it is very difficult to predict SMC curing properties because SMC consists of many kinds of ingredients. Measuring temperature in the middle of SMC plies with a thermocouple is so convenient that it is widely adopted to curing properties evaluation. Time-temperature curve involves many factors, for example, thermal conductivity, radical generation and polymerization. SMC curing is affected by combination of these factors. The authors have built a simulation model for SMC curing consisting of seven physicochemical parameters. All parameters in this model can be calculated from time-temperature curves measured at two different molding temperatures. This model can simulate curing properties for any SMC formulations at any different molding temperatures. It can be used to simulate curing properties of molded parts even if parts have any thickness and shapes like ribs and bosses. This means molding can be simulated only using a few data. SMC curing properties can be easily predicted using this simulation program without real measurement. It greatly helps to optimize SMC curing properties and molding condition.

  8. Simple Electric Vehicle Simulation

    Energy Science and Technology Software Center (OSTI)

    1993-07-29

    SIMPLEV2.0 is an electric vehicle simulation code which can be used with any IBM compatible personal computer. This general purpose simulation program is useful for performing parametric studies of electric and series hybrid electric vehicle performance on user input driving cycles.. The program is run interactively and guides the user through all of the necessary inputs. Driveline components and the traction battery are described and defined by ASCII files which may be customized by themore¬†¬Ľ user. Scaling of these components is also possible. Detailed simulation results are plotted on the PC monitor and may also be printed on a printer attached to the PC.¬ę¬†less

  9. Terascale Optimal PDE Simulations

    SciTech Connect (OSTI)

    David Keyes

    2009-07-28

    The Terascale Optimal PDE Solvers (TOPS) Integrated Software Infrastructure Center (ISIC) was created to develop and implement algorithms and support scientific investigations performed by DOE-sponsored researchers. These simulations often involve the solution of partial differential equations (PDEs) on terascale computers. The TOPS Center researched, developed and deployed an integrated toolkit of open-source, optimal complexity solvers for the nonlinear partial differential equations that arise in many DOE application areas, including fusion, accelerator design, global climate change and reactive chemistry. The algorithms created as part of this project were also designed to reduce current computational bottlenecks by orders of magnitude on terascale computers, enabling scientific simulation on a scale heretofore impossible.

  10. Evaluation of airborne geophysical surveys for large-scale mapping of contaminated mine pools: draft final report

    SciTech Connect (OSTI)

    Hammack, R. W.

    2006-12-28

    subtle mine pool anomalies. However, post-survey modeling suggested that thicker, more conductive mine pools might be detected at a more suitable location. The current study sought to identify the best time domain electromagnetic sensor for detecting mine pools and to test it in an area where the mine pools are thicker and more conductive that those in southwestern Virginia. After a careful comparison of all airborne time domain electromagnetic sensors (including both helicopter and fixed-wing systems), the SkyTEM system from Denmark was determined to be the best technology for this application. Whereas most airborne time domain electromagnetic systems were developed to find large, deep, highly conductive mineral deposits, the SkyTEM system is designed for groundwater exploration studies, an application similar to mine pool detection.

  11. Simulating neural systems with Xyce.

    SciTech Connect (OSTI)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M.

    2012-12-01

    Sandia's parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  12. Battery Particle Simulation

    SciTech Connect (OSTI)

    2014-09-15

    Two simulations show the differences between a battery being drained at a slower rate, over a full hour, versus a faster rate, only six minutes (a tenth of an hour). In both cases battery particles go from being fully charged (green) to fully drained (red), but there are significant differences in the patterns of discharge based on the rate.

  13. Parallel Dislocation Simulator

    Energy Science and Technology Software Center (OSTI)

    2006-10-30

    ParaDiS is software capable of simulating the motion, evolution, and interaction of dislocation networks in single crystals using massively parallel computer architectures. The software is capable of outputting the stress-strain response of a single crystal whose plastic deformation is controlled by the dislocation processes.

  14. Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    SciTech Connect (OSTI)

    Ling, Hao; Hamilton, Mark F.; Bhalla, Rajan; Brown, Walter E.; Hay, Todd A.; Whitelonis, Nicholas J.; Yang, Shang-Te; Naqvi, Aale R.

    2013-09-30

    Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

  15. The development and application of the chemical mixture methodology in analysis of potential health impacts from airborne release in emergencies

    SciTech Connect (OSTI)

    Yu, Xiao-Ying; Petrocchi, Achille J.; Craig, Douglas K.; Glantz, Clifford S.; Trott, Donna M.; Ciolek, John T.; Lu, Po-Yung; Bond, Jayne-Anne; Tuccinardi, Thomas E.; Bouslaugh, Philip R.

    2010-07-15

    The Chemical Mixture Methodology (CMM) is used for emergency response and safety planning by the U.S. Department of Energy, its contractors, and other private and public sector organizations. The CMM estimates potential health impacts on individuals and their ability to take protective actions as a result of exposure to airborne chemical mixtures. They are based on the concentration of each chemical in the mixture at a designated receptor location, the protective action criteria (PAC) providing chemical-specific exposure limit values, and the health code numbers (HCNs) that identify the target organ groupings that may be impacted by exposure to each chemical in a mixture. The CMM has been significantly improved since its introduction more than 10 years ago. Major enhancements involve the expansion of the number of HCNs from 44 to 60 and inclusion of updated PAC values based on an improved development methodology and updates in the data used to derive the PAC values. Comparisons between the 1999 and 2009 versions of the CMM show potentially substantial changes in the assessment results for selected sets of chemical mixtures. In particular, the toxic mode hazard indices (HIs) and target organ HIs are based on more refined acute HCNs, thereby improving the quality of chemical consequence assessment, emergency planning, and emergency response decision making. Seven hypothetical chemical storage and processing scenarios are used to demonstrate how the CMM is applied in emergency planning and hazard assessment.

  16. PEBBLES Mechanics Simulation Speedup

    SciTech Connect (OSTI)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2010-05-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. These simulations involve hundreds of thousands of pebbles and involve determining the entire core motion as pebbles are recirculated. Single processor algorithms for this are insufficient since they would take decades to centuries of wall-clock time. This paper describes the process of parallelizing and speeding up the PEBBLES pebble mechanics simulation code. Both shared memory programming with the Open Multi-Processing API and distributed memory programming with the Message Passing Interface API are used in simultaneously in this process. A new shared memory lock-less linear time collision detection algorithm is described. This method allows faster detection of pebbles in contact than generic methods. These combine to make full recirculations on AVR sized reactors possible in months of wall clock time.

  17. Direct Numerical Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Numerical Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  18. Advanced Wellbore Thermal Simulator

    Energy Science and Technology Software Center (OSTI)

    1992-03-04

    GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with severalmore¬†¬Ľ different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.¬ę¬†less

  19. Predictive Simulation of Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  20. High Order Seismic Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Order Seismic Simulations on the Intel Xeon Phi Processor (Knights Landing) Alexander Heinecke 1 , Alexander Breuer 2 , Michael Bader 3 , and Pradeep Dubey 1 1 Intel Corporation, 2200 Mission College Blvd., Santa Clara 95054, CA, USA 2 University of California, San Diego, 9500 Gilman Dr., La Jolla 92093, CA, USA 3 Technische Universit¨ at M¨ unchen, Boltzmannstr. 3, D-85748 Garching, Germany Abstract. We present a holistic optimization of the ADER-DG finite element software SeisSol targeting

  1. Fast Analysis and Simulation Team | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsFast Analysis and Simulation Team content top Fast Analysis and Simulation Team

  2. Structural Simulation Toolkit. Lunch & Learn

    SciTech Connect (OSTI)

    Moore, Branden J.; Voskuilen, Gwendolyn Renae; Rodrigues, Arun F.; Hammond, Simon David; Hemmert, Karl Scott

    2015-09-01

    This is a presentation outlining a lunch and learn lecture for the Structural Simulation Toolkit, supported by Sandia National Laboratories.

  3. Look-ahead Dynamic Simulation

    Energy Science and Technology Software Center (OSTI)

    2015-10-20

    Look-ahead dynamic simulation software system incorporates the high performance parallel computing technologies, significantly reduces the solution time for each transient simulation case, and brings the dynamic simulation analysis into on-line applications to enable more transparency for better reliability and asset utilization. It takes the snapshot of the current power grid status, functions in parallel computing the system dynamic simulation, and outputs the transient response of the power system in real time.

  4. Airborne and ground-based measurements of the trace gases and particles emitted from prescribed fires in the United States

    SciTech Connect (OSTI)

    Burling, Ian; Yokelson, Robert J.; Akagi, Sheryl; Urbanski, Shawn; Wold, Cyle E.; Griffith, David WT; Johnson, Timothy J.; Reardon, James; Weise, David

    2011-12-07

    We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous suggestions that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured the emissions in the convective smoke plume from our airborne platform at the same time the unlofted residual smoldering combustion emissions were measured with our ground-based platform after the flame front passed through. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including significant 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts of smoke that disperses at ground level, and we show that the normally-ignored unlofted emissions can also significantly impact estimates of total emissions. Preliminary evidence of large emissions of monoterpenes was seen in the residual smoldering spectra, but we have not yet quantified these emissions. These data should lead to an improved capacity to model the impacts of biomass burning in similar

  5. Allergy arising from exposure to airborne contaminants in an insect rearing facility: Health effects and exposure control

    SciTech Connect (OSTI)

    Wolff, D.

    1994-06-01

    In agricultural crop improvement, yield under various stress conditions and limiting factors is assessed experimentally. Of the stresses on plants which affect yield are those due to insects. Ostrinia nubilalis, the European corn borer (corn borer) is a major pest in sweet and field corn in the U.S. There are many ways to fight crop pests such as the corn borer, including (1) application of chemical insecticides, (2) application of natural predators and, (3) improving crop resistance through plant genetics programs. Randomized field trials are used to determine the effectiveness of pest management programs. These trials frequently consist of randomly selected crop plots to which well-defined input regimes are instituted. For example, corn borers might be released onto crop plots in several densities at various stages of crop development, then sprayed with different levels of pesticide. These experiments are duplicated across regions and, in some cases across the country, to determine, in this instance for example, the best pesticide application rate for a given pest density and crop development stage. In order to release these pests onto crop plots, one must have an adequate supply of the insect pest. In winter months studies are carried out in the laboratory to examine chemical and natural pesticide effectiveness, as well as such things as the role of pheromones in moth behavior. The advantage in field trials is that yield data can be garnered directly. In this country, insects are raised for crop research primarily through the US Department of Agriculture, in cooperation with public Land Grant Universities and, by the private sector agricultural concerns - seed companies and others. This study quantifies the airborne allergen exposure of persons working in a Land Grant University entomology lab were allergy to European corn borer was suspected.

  6. Plasma Simulation Program

    SciTech Connect (OSTI)

    Greenwald, Martin

    2011-10-04

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical

  7. simulations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    simulations NASA features LLNL star-formation simulations These high performance computing (HPC) simulations of star formation account for a broad range of physical processes, including: gravity, supersonic turbulence, hydrodynamics, outflows, magnetic fields, chemistry and ionizing and non-ionizing radiation. Image courtesy of Pak Shing Li/ University

  8. Bio-threat microparticle simulants

    DOE Patents [OSTI]

    Farquar, George Roy; Leif, Roald N

    2012-10-23

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  9. Bio-threat microparticle simulants

    DOE Patents [OSTI]

    Farquar, George Roy; Leif, Roald

    2014-09-16

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  10. Plasma theory and simulation research

    SciTech Connect (OSTI)

    Birdsall, C.K.

    1989-01-01

    Our research group uses both theory and simulation as tools in order to increase the understanding of instabilities, heating, diffusion, transport and other phenomena in plasmas. We also work on the improvement of simulation, both theoretically and practically. Our focus has been more and more on the plasma edge (the sheath''), interactions with boundaries, leading to simulations of whole devices (someday a numerical tokamak).

  11. Fusion Simulation Program

    SciTech Connect (OSTI)

    Project Staff

    2012-02-29

    Under this project, General Atomics (GA) was tasked to develop the experimental validation plans for two high priority ISAs, Boundary and Pedestal and Whole Device Modeling in collaboration with the theory, simulation and experimental communities. The following sections have been incorporated into the final FSP Program Plan (www.pppl.gov/fsp), which was delivered to the US Department of Energy (DOE). Additional deliverables by GA include guidance for validation, development of metrics to evaluate success and procedures for collaboration with experiments. These are also part of the final report.

  12. Gyrokinetic large eddy simulations

    SciTech Connect (OSTI)

    Morel, P.; Navarro, A. Banon; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.

    2011-07-15

    The large eddy simulation approach is adapted to the study of plasma microturbulence in a fully three-dimensional gyrokinetic system. Ion temperature gradient driven turbulence is studied with the GENE code for both a standard resolution and a reduced resolution with a model for the sub-grid scale turbulence. A simple dissipative model for representing the effect of the sub-grid scales on the resolved scales is proposed and tested. Once calibrated, the model appears to be able to reproduce most of the features of the free energy spectra for various values of the ion temperature gradient.

  13. Distributed Sensors Simulator

    Energy Science and Technology Software Center (OSTI)

    2003-08-30

    The Distributed Sensors Simulator (DSS) is an infrastructure that allows the user to debug and test software for distributed sensor networks without the commitment inherent in using hardware. The flexibility of DSS allows developers and researchers to investigate topological, phenomenological, networking, robustness, and scaling issues; explore arbitrary algorithms for DSNs; and is particularly useful as a proof-of-concept tool. The user provides data on node location and specifications, defines event phenomena, and plugs in the application(s)more¬†¬Ľ to run. DSS in turn provides the virtual environmental embedding ¬ó but exposed to the user like no true embedding could ever be.¬ę¬†less

  14. Energy Simulation Games Lesson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Secretary Talks About SRNL Energy Secretary Talks About SRNL Addthis Description Energy Secretary Talks About SRNL

    Ken Walz Unit Title: Energy Efficiency and Renewable Energy (EERE) Subject: Physical, Env, and Social Sciences Lesson Title: Energy Simulation Games Grade Level(s): 6-12 Lesson Length: 1 hours (+ optional time outside class) Date(s): 7/14/2014 * Learning Goal(s) By the end of this lesson, students will have a deeper understanding of Energy Management, Policy, and Decision

  15. Confidence in Numerical Simulations

    SciTech Connect (OSTI)

    Hemez, Francois M.

    2015-02-23

    This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to ‚Äúforecast,‚ÄĚ that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists ‚Äúthink.‚ÄĚ This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. ‚ÄúConfidence‚ÄĚ derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.

  16. Energy Simulator Residential Buildings

    Energy Science and Technology Software Center (OSTI)

    1992-02-24

    SERI-RES performs thermal energy analysis of residential or small commercial buildings and has the capability of modeling passive solar equipment such as rock beds, trombe walls, and phase change material. The analysis is accomplished by simulation. A thermal model of the building is created by the user and translated into mathematical form by the program. The mathematical equations are solved repeatedly at time intervals of one hour or less for the period of simulation. Themore¬†¬Ľ mathematical representation of the building is a thermal network with nonlinear, temperature-dependent controls. A combination of forward finite differences, Jacobian iteration, and constrained optimization techniques is used to obtain a solution. An auxiliary interactive editing program, EDITOR, is included for creating building descriptions. EDITOR checks the validity of the input data and also provides facilities for storing and referencing several types of building description files. Some of the data files used by SERI-RES need to be implemented as direct-access files. Programs are included to convert sequential files to direct-access files and vice versa.¬ę¬†less

  17. Laparoscopic simulation interface

    DOE Patents [OSTI]

    Rosenberg, Louis B.

    2006-04-04

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  18. NII Simulator 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-12-02

    The software listed here is a simulator for SAIC P7500 VACIS non intrusive inspection system. The simulator provides messages similar to those provided by this piece of equipment.To facilitate testing of the Second Line of Defense systems and similar software products from commercial software vendors, this software simulation application has been developed to simulate the P7500 that the Second Line of Defense communications software system must interface with. The primary use of this simulator ismore¬†¬Ľ for testing of both Sandia developed and DOE contractor developed software.¬ę¬†less

  19. NII Simulator 1.0

    SciTech Connect (OSTI)

    Jorgensen, Craig; Salazar, Anthony; Humphrey, Walter; & Johnson, ALfred

    2009-12-02

    The software listed here is a simulator for SAIC P7500 VACIS non intrusive inspection system. The simulator provides messages similar to those provided by this piece of equipment.To facilitate testing of the Second Line of Defense systems and similar software products from commercial software vendors, this software simulation application has been developed to simulate the P7500 that the Second Line of Defense communications software system must interface with. The primary use of this simulator is for testing of both Sandia developed and DOE contractor developed software.

  20. Transportation Anslysis Simulation System

    Energy Science and Technology Software Center (OSTI)

    2004-08-23

    TRANSIMS version 3.1 is an integrated set of analytical and simulation models and supporting databases. The system is designed to create a virtual metropolitan region with representation of each of the region¬ís individuals, their activities and the transportation infrastructure they use. TRANSIMS puts into practice a new, disaggregate approach to travel demand modeling using agent-based micro-simulation technology. TRANSIMS methodology creates a virtual metropolitan region with representation of the transportation infrastructure and the population, at themore¬†¬Ľ level of households and individual travelers. Trips a planned to satisfy the population¬ís activity pattems at the individual traveler level. TRANSIMS then simulates the movement of travelers and vehicles across the transportation network using multiple modes, including car, transit, bike and walk, on a second-by-second basis. Metropolitan planners must plan growth of their cities according to the stringent transportation system planning requirements of the Interniodal Surface Transportation Efficiency Act of 1991, the Clean Air Act Amendments of 1990 and other similar laws and regulations. These require each state and its metropotitan regions to work together to develop short and long term transportation improvement plans. The plans must (1) estimate the future transportation needs for travelers and goods movements, (2) evaluate ways to manage and reduce congestion, (3) examine the effectiveness of building new roads and transit systems, and (4) limit the environmental impact of the various strategies. The needed consistent and accurate transportation improvement plans require an analytical capability that properly accounts for travel demand, human behavior, traffic and transit operations, major investments, and environmental effects. Other existing planning tools use aggregated information and representative behavior to predict average response and average use of transportation facilities. They do not

  1. Final Technical Report for Interagency Agreement No. DE-SC0005453 ‚ÄúCharacterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)‚ÄĚ

    SciTech Connect (OSTI)

    Hostetler, Chris; Ferrare, Richard

    2015-01-13

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL

  2. Virtual Flow Simulator

    Energy Science and Technology Software Center (OSTI)

    2015-10-05

    Virtual Flow Simulator (VFS) is a state-of-the-art computational fluid mechanics (CFD) package that is capable of simulating multi-physics/multi-phase flows with the most advanced turbulence models (RANS, LES) over complex terrains. The flow solver is based on the Curvilinear Immersed Boundary (CURVIB) method to handle geometrically complex and moving domains. Different modules of the VFS package can provide different simulation capabilities for specific applications ranging from the fluid-structure interaction (FSI) of solid and deformable bodies, themore¬†¬Ľ two-phase free surface flow solver based on the level set method for ocean waves, sediment transport models in rivers and the large-scale models of wind farms based on actuator lines and surfaces. All numerical features of VFS package have been validated with known analytical and experimental data as reported in the related journal articles. VFS package is suitable for a broad range of engineering applications within different industries. VFS has been used in different projects with applications in wind and hydrokinetic energy, offshore and near-shore ocean studies, cardiovascular and biological flows, and natural streams and river morphodynamics. Over the last decade, the development of VFS has been supported and assisted with the help of various United States companies and federal agencies that are listed in the sponsor lists. In this version, VFS-Wind contains all the necessary modeling tools for wind energy applications, including land-based and offshore wind farms. VFS is highly scalable to run on either desktop computers or high performance clusters (up to 16,000 CPUs). This released version comes with a detailed user‚Äôs manual and a set of case studies designed to facilitate the learning of the various aspects of the code in a comprehensive manner. The included documentation and support material has been elaborated in a collaboration effort with Sandia National Labs under the contract DE-EE0005482

  3. VHDL Control Routing Simulator

    Energy Science and Technology Software Center (OSTI)

    1995-07-10

    The control router simulates a backplane consisting of up to 16 slot. Slot 0, reserved for a control module (cr-ctrl), generates the system clocks and provides the serial interface to the Gating Logic. The remaining 15 slots (1-15) contain routing modules (cr mod), each having up to 64 serial inputs and outputs with FIFOs. Messages to be transmitted to the Control Router are taken from text files. There are currently 17 such source files. Inmore¬†¬Ľ the model, the serial output of each source is connected to multiple receivers, so that there are 8 identical messages transmitted to the router for each message file entry.¬ę¬†less

  4. PV Hourly Simulation Tool

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple general building characteristics and usage information to calculate the energy and cost benefits of solar PV. This tool conducts and complex hourly simulation of solar PV based primarily on the area available on the rooftop. It uses a simplified efficiency calculation method and real panel characteristics. It includes a detailed rate structure to account for time-of-use rates, on-peak and off-peak pricing, and multiple rate seasons. This tool includes themore¬†¬Ľ option for advanced system design inputs if they are known. This tool calculates energy savings, demand reduction, cost savings, incentives and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.¬ę¬†less

  5. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    SciTech Connect (OSTI)

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-15

    Radioactive fission product {sup 131}I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, {sup 134}Cs and {sup 137}Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq√óm{sup -3} in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of {sup 134}Cs and {sup 137}Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng√óm{sup -3}) variation of stable cesium ({sup 133}Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  6. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  7. The promise of quantum simulation

    SciTech Connect (OSTI)

    Muller, Richard P.; Blume-Kohout, Robin

    2015-07-21

    In this study, quantum simulations promise to be one of the primary applications of quantum computers, should one be constructed. This article briefly summarizes the history of quantum simulation in light of the recent result of Wang and co-workers, demonstrating calculation of the ground and excited states for a HeH+ molecule, and concludes with a discussion of why this and other recent progress in the field suggest that quantum simulations of quantum chemistry have a bright future.

  8. Lubricant characterization by molecular simulation

    SciTech Connect (OSTI)

    Moore, J.D.; Cui, S.T.; Cummings, P.T.; Cochran, H.D.

    1997-12-01

    The authors have reported the calculation of the kinematic viscosity index of squalane from nonequilibrium molecular dynamics simulations. This represents the first accurate quantitative prediction of this measure of lubricant performance by molecular simulation. Using the same general alkane potential model, this computational approach offers the possibility of predicting the performance of potential lubricants prior to synthesis. Consequently, molecular simulation is poised to become an important tool for future lubricant development.

  9. The promise of quantum simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Muller, Richard P.; Blume-Kohout, Robin

    2015-07-21

    In this study, quantum simulations promise to be one of the primary applications of quantum computers, should one be constructed. This article briefly summarizes the history of quantum simulation in light of the recent result of Wang and co-workers, demonstrating calculation of the ground and excited states for a HeH+ molecule, and concludes with a discussion of why this and other recent progress in the field suggest that quantum simulations of quantum chemistry have a bright future.

  10. Welcome - Modeling and Simulation Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCS Directorate ORNL Modeling and Simulation Group Computational Sciences & Engineering Division Home Organization Chart Staff Research Areas Major Projects Fact Sheets Publications M&S News Awards Contacts Intership Programs ORNL has lots of opportunities for students to conduct research in scientific fields. Check out our Fellowship and Intership programs Fellowships Interships RAMS Program Modeling and Simulation Group The ORNL Modeling and Simulation Group (MSG) develops

  11. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, Randall L.; Pruneda, Cesar O.

    1994-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  12. BERNAS ION SOURCE DISCHARGE SIMULATION

    SciTech Connect (OSTI)

    RUDSKOY,I.; KULEVOY, T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion source for ion implantation industry. The new simulation code was developed for the Bemas ion source discharge simulation. We present first results of the simulation for several materials interested in semiconductors. As well the comparison of results obtained with experimental data obtained at the ITEP ion source test-bench is presented.

  13. Parallel Power Grid Simulation Toolkit

    Energy Science and Technology Software Center (OSTI)

    2015-09-14

    ParGrid is a 'wrapper' that integrates a coupled Power Grid Simulation toolkit consisting of a library to manage the synchronization and communication of independent simulations. The included library code in ParGid, named FSKIT, is intended to support the coupling multiple continuous and discrete even parallel simulations. The code is designed using modern object oriented C++ methods utilizing C++11 and current Boost libraries to ensure compatibility with multiple operating systems and environments.

  14. Hybrid Solar GHP Simulator

    Energy Science and Technology Software Center (OSTI)

    2012-12-11

    This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primarymore¬†¬Ľ benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance the ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems

  15. Computer interactive resistance simulator (CIRS)

    DOE Patents [OSTI]

    Mayn, Bobby G.

    1976-01-01

    A system for simulating the insertion of electric resistance values of either positive or negative quantity into an electric circuit and for cancelling drift errors therefrom.

  16. Simulating Turbine-Turbine Interaction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulating Turbine-Turbine Interaction - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  17. Simulator for Wind Farm Applications

    Energy Science and Technology Software Center (OSTI)

    2012-01-06

    A modular tool for simulating wind plant aerodynamics with computational fluid dynamics and turbine structural and control response to the incoming flow.

  18. Power Plant Modeling and Simulation

    ScienceCinema (OSTI)

    None

    2010-01-08

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  19. Power Plant Modeling and Simulation

    SciTech Connect (OSTI)

    2008-07-21

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  20. Consortium for Advanced Battery Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ...

  1. Building Energy Simulation & Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation & Modeling Building Energy Simulation & Modeling Lead Performer: Lawrence ... Development (CBERD) conducts energy efficiency research and development with a focus ...

  2. Multidimensional simulation and chemical kinetics development...

    Office of Environmental Management (EM)

    Multidimensional simulation and chemical kinetics development for high efficiency clean combustion engines Multidimensional simulation and chemical kinetics development for high ...

  3. Distributed Energy Technology Simulator: Microturbine Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulator: Microturbine Demonstration, October 2001 Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001 This 2001 paper discusses the National Rural ...

  4. House Simulation Protocols (Building America Benchmark) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    House Simulation Protocols (Building America Benchmark) - Building America Top Innovation House Simulation Protocols (Building America Benchmark) - Building America Top Innovation ...

  5. MJO Simulation Diagnostics

    SciTech Connect (OSTI)

    Waliser, D; Sperber, K; Hendon, H; Kim, D; Maloney, E; Wheeler, M; Weickmann, K; Zhang, C; Donner, L; Gottschalck, J; Higgins, W; Kang, I; Legler, D; Moncrieff, M; Schubert, S; Stern, W; Vitart, F; Wang, B; Wang, W; Woolnough, S

    2008-06-02

    The Madden-Julian Oscillation (MJO) interacts with, and influences, a wide range of weather and climate phenomena (e.g., monsoons, ENSO, tropical storms, mid-latitude weather), and represents an important, and as yet unexploited, source of predictability at the subseasonal time scale. Despite the important role of the MJO in our climate and weather systems, current global circulation models (GCMs) exhibit considerable shortcomings in representing this phenomenon. These shortcomings have been documented in a number of multi-model comparison studies over the last decade. However, diagnosis of model performance has been challenging, and model progress has been difficult to track, due to the lack of a coherent and standardized set of MJO diagnostics. One of the chief objectives of the US CLIVAR MJO Working Group is the development of observation-based diagnostics for objectively evaluating global model simulations of the MJO in a consistent framework. Motivation for this activity is reviewed, and the intent and justification for a set of diagnostics is provided, along with specification for their calculation, and illustrations of their application. The diagnostics range from relatively simple analyses of variance and correlation, to more sophisticated space-time spectral and empirical orthogonal function analyses. These diagnostic techniques are used to detect MJO signals, to construct composite life-cycles, to identify associations of MJO activity with the mean state, and to describe interannual variability of the MJO.

  6. Cantera Aerosol Dynamics Simulator

    Energy Science and Technology Software Center (OSTI)

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkinmore¬†¬Ľ formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.¬ę¬†less

  7. Coal Preparation Plant Simulation

    Energy Science and Technology Software Center (OSTI)

    1992-02-25

    COALPREP assesses the degree of cleaning obtained with different coal feeds for a given plant configuration and mode of operation. It allows the user to simulate coal preparation plants to determine an optimum plant configuration for a given degree of cleaning. The user can compare the performance of alternative plant configurations as well as determine the impact of various modes of operation for a proposed configuration. The devices that can be modelled include froth flotationmore¬†¬Ľ devices, washers, dewatering equipment, thermal dryers, rotary breakers, roll crushers, classifiers, screens, blenders and splitters, and gravity thickeners. The user must specify the plant configuration and operating conditions and a description of the coal feed. COALPREP then determines the flowrates within the plant and a description of each flow stream (i.e. the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, BTU content, recoveries, and specific gravity of separation). COALPREP also includes a capability for calculating the cleaning cost per ton of coal. The IBM PC version contains two auxiliary programs, DATAPREP and FORLIST. DATAPREP is an interactive preprocessor for creating and editing COALPREP input data. FORLIST converts carriage-control characters in FORTRAN output data to ASCII line-feed (X''0A'') characters.¬ę¬†less

  8. Electricity Portfolio Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2005-09-01

    Stakeholders often have competing interests when selecting or planning new power plants. The purpose of developing this preliminary Electricity Portfolio Simulation Model (EPSim) is to provide a first cut, dynamic methodology and approach to this problem, that can subsequently be refined and validated, that may help energy planners, policy makers, and energy students better understand the tradeoffs associated with competing electricity portfolios. EPSim allows the user to explore competing electricity portfolios annually from 2002 tomore¬†¬Ľ 2025 in terms of five different criteria: cost, environmental impacts, energy dependence, health and safety, and sustainability. Four additional criteria (infrastructure vulnerability, service limitations, policy needs and science and technology needs) may be added in future versions of the model. Using an analytic hierarchy process (AHP) approach, users or groups of users apply weights to each of the criteria. The default energy assumptions of the model mimic Department of Energy¬ís (DOE) electricity portfolio to 2025 (EIA, 2005). At any time, the user can compare alternative portfolios to this reference case portfolio.¬ę¬†less

  9. Coal Preparation Plant Simulation

    Energy Science and Technology Software Center (OSTI)

    1992-02-25

    COALPREP assesses the degree of cleaning obtained with different coal feeds for a given plant configuration and mode of operation. It allows the user to simulate coal preparation plants to determine an optimum plant configuration for a given degree of cleaning. The user can compare the performance of alternative plant configurations as well as determine the impact of various modes of operation for a proposed configuration. The devices that can be modelled include froth flotationmore¬†¬Ľ devices, washers, dewatering equipment, thermal dryers, rotary breakers, roll crushers, classifiers, screens, blenders and splitters, and gravity thickeners. The user must specify the plant configuration and operating conditions and a description of the coal feed. COALPREP then determines the flowrates within the plant and a description of each flow stream (i.e. the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, BTU content, recoveries, and specific gravity of separation). COALPREP also includes a capability for calculating the cleaning cost per ton of coal.¬ę¬†less

  10. S-SEED Simulator

    Energy Science and Technology Software Center (OSTI)

    2008-11-21

    This code simulates the transient response of two self-electrooptic-effect devices (SEEDs) connected in series to form an S-SEED pair as used in all-optical high-speed switching. Both optical beam propagation and carrier motion is assumed to be normal to the epi plane, so the code is inherently 1D in nature. For each SEED, an optical input in W/cm**2 is specified as a function of time (usually a step function input). The signal is absorbed during amore¬†¬Ľ double pass through the intrinsic region, with a spatially-dependent absorption coefficient that is dependent on the transient local electric field. This absorption generates electron-hole pairs that then contribute to the device current, and a transient optical output is predicted. Carriers in the semiconductor layers are generated through thermal excitation or optical absorption, move under the action of diffusion and self-consistent electric fields updated at each time step by a 1D Poisson solver, and recombine at density-dependent rates. The different epi layers are independently specified by position, thickness, doping type and density, and thus space charge effects and junction capacitance are included automatically.¬ę¬†less

  11. Fading channel simulator

    DOE Patents [OSTI]

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  12. AIRBORNE RADIATION DETECTOR

    DOE Patents [OSTI]

    Cartmell, T.R.; Gifford, J.F.

    1959-08-01

    An ionization chamber used for measuring the radioactivity of dust present in atmospheric air is described. More particularly. the patent describes a device comprising two concentric open ended, electrically connected cylinders between which is disposed a wire electrcde. A heating source is disposed inside of the cylinder to circulate air through the space between the two cylinders by convective flow. A high voltage electric field between the wire electrcde of the electrically connected cylinder will cause ionization of the air as it passes therethrough.

  13. Introduction Airborne Tritium Tritides

    Broader source: Energy.gov [DOE]

    Presentation from the 33rd Tritium Focus Group Meeting held in Aiken, South Carolina on April 22-24, 2014.

  14. Airborne particulate discriminator

    DOE Patents [OSTI]

    Creek, Kathryn Louise; Castro, Alonso; Gray, Perry Clayton

    2009-08-11

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  15. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    SciTech Connect (OSTI)

    Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-28

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  16. BEST: Biochemical Engineering Simulation Technology

    SciTech Connect (OSTI)

    Not Available

    1996-01-01

    The idea of developing a process simulator that can describe biochemical engineering (a relatively new technology area) was formulated at the National Renewable Energy Laboratory (NREL) during the late 1980s. The initial plan was to build a consortium of industrial and U.S. Department of Energy (DOE) partners to enhance a commercial simulator with biochemical unit operations. DOE supported this effort; however, before the consortium was established, the process simulator industry changed considerably. Work on the first phase of implementing various fermentation reactors into the chemical process simulator, ASPEN/SP-BEST, is complete. This report will focus on those developments. Simulation Sciences, Inc. (SimSci) no longer supports ASPEN/SP, and Aspen Technology, Inc. (AspenTech) has developed an add-on to its ASPEN PLUS (also called BioProcess Simulator [BPS]). This report will also explain the similarities and differences between BEST and BPS. ASPEN, developed by the Massachusetts Institute of Technology for DOE in the late 1970s, is still the state-of-the-art chemical process simulator. It was selected as the only simulator with the potential to be easily expanded into the biochemical area. ASPEN/SP, commercially sold by SimSci, was selected for the BEST work. SimSci completed work on batch, fed-batch, and continuous fermentation reactors in 1993, just as it announced it would no longer commercially support the complete ASPEN/SP product. BEST was left without a basic support program. Luckily, during this same time frame, AspenTech was developing a biochemical simulator with its version of ASPEN (ASPEN PLUS), which incorporates most BEST concepts. The future of BEST will involve developing physical property data and models appropriate to biochemical systems that are necessary for good biochemical process design.

  17. Terascale Simulation Tolls and Technologies

    Energy Science and Technology Software Center (OSTI)

    2006-11-01

    The Terascale Simulation Tools and Technologies (TSTT) center is a collaboration between several universities and DOE laboratories, and is funded by the DOE Scientific Discovery for Advanced Computing (SciDAC) program. The primary objective of the (TSTT) center is to develop technologies taht enable application scientists to easily use multiple mesh and discretization strageties within a single simulation on terascale computeres. This is accomplished through the development of common functional interfaces to geometry, mesh, and othermore¬†¬Ľ simulation data. This package is Sandia's implementation of these interfaces.¬ę¬†less

  18. The Xygra gun simulation tool.

    SciTech Connect (OSTI)

    Garasi, Christopher Joseph; Lamppa, Derek C.; Aubuchon, Matthew S.; Shirley, David Noyes; Robinson, Allen Conrad; Russo, Thomas V.

    2008-12-01

    Inductive electromagnetic launchers, or coilguns, use discrete solenoidal coils to accelerate a coaxial conductive armature. To date, Sandia has been using an internally developed code, SLINGSHOT, as a point-mass lumped circuit element simulation tool for modeling coilgun behavior for design and verification purposes. This code has shortcomings in terms of accurately modeling gun performance under stressful electromagnetic propulsion environments. To correct for these limitations, it was decided to attempt to closely couple two Sandia simulation codes, Xyce and ALEGRA, to develop a more rigorous simulation capability for demanding launch applications. This report summarizes the modifications made to each respective code and the path forward to completing interfacing between them.

  19. Mathematical model for predicting the probability of acute mortality in a human population exposed to accidentally released airborne radionuclides. Final report for Phase I

    SciTech Connect (OSTI)

    Filipy, R.E.; Borst, F.J.; Cross, F.T.; Park, J.F.; Moss, O.R.; Roswell, R.L.; Stevens, D.L.

    1980-05-01

    A mathematical model was constructed for the purpose of predicting the fraction of human population which would die within 1 year of an accidental exposure to airborne radionuclides. The model is based on data from laboratory experiments with rats, dogs and baboons, and from human epidemiological data. Doses from external, whole-body irradiation and from inhaled, alpha- and beta-emitting radionuclides are calculated for several organs. The probabilities of death from radiation pneumonitis and from bone marrow irradiation are predicted from doses accumulated within 30 days of exposure to the radioactive aerosol. The model is compared with existing similar models under hypothetical exposure conditions. Suggestions for further experiments with inhaled radionuclides are included. 25 refs., 16 figs., 13 tabs.

  20. Simulating Afterburn with LLNL Hydrocodes

    SciTech Connect (OSTI)

    Daily, L D

    2004-06-11

    Presented here is a working methodology for adapting a Lawrence Livermore National Laboratory (LLNL) developed hydrocode, ALE3D, to simulate weapon damage effects when afterburn is a consideration in the blast propagation. Experiments have shown that afterburn is of great consequence in enclosed environments (i.e. bomb in tunnel scenario, penetrating conventional munition in a bunker, or satchel charge placed in a deep underground facility). This empirical energy deposition methodology simulates the anticipated addition of kinetic energy that has been demonstrated by experiment (Kuhl, et. al. 1998), without explicitly solving the chemistry, or resolving the mesh to capture small-scale vorticity. This effort is intended to complement the existing capability of either coupling ALE3D blast simulations with DYNA3D or performing fully coupled ALE3D simulations to predict building or component failure, for applications in National Security offensive strike planning as well as Homeland Defense infrastructure protection.

  1. TREAT Modeling and Simulation Strategy

    SciTech Connect (OSTI)

    DeHart, Mark David

    2015-09-01

    This report summarizes a four-phase process used to describe the strategy in developing modeling and simulation software for the Transient Reactor Test Facility. The four phases of this research and development task are identified as (1) full core transient calculations with feedback, (2) experiment modeling, (3) full core plus experiment simulation and (4) quality assurance. The document describes the four phases, the relationship between these research phases, and anticipated needs within each phase.

  2. Dynamic Simulation Nuclear Power Plants

    Energy Science and Technology Software Center (OSTI)

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore¬†¬Ľ user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.¬ę¬†less

  3. Simulation and Non-Simulation Based Human Reliability Analysis Approaches

    SciTech Connect (OSTI)

    Boring, Ronald Laurids; Shirley, Rachel Elizabeth; Joe, Jeffrey Clark; Mandelli, Diego

    2014-12-01

    Part of the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Characterization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk model. In this report, we review simulation-based and non-simulation-based human reliability assessment (HRA) methods. Chapter 2 surveys non-simulation-based HRA methods. Conventional HRA methods target static Probabilistic Risk Assessments for Level 1 events. These methods would require significant modification for use in dynamic simulation of Level 2 and Level 3 events. Chapter 3 is a review of human performance models. A variety of methods and models simulate dynamic human performance; however, most of these human performance models were developed outside the risk domain and have not been used for HRA. The exception is the ADS-IDAC model, which can be thought of as a virtual operator program. This model is resource-intensive but provides a detailed model of every operator action in a given scenario, along with models of numerous factors that can influence operator performance. Finally, Chapter 4 reviews the treatment of timing of operator actions in HRA methods. This chapter is an example of one of the critical gaps between existing HRA methods and the needs of dynamic HRA. This report summarizes the foundational information needed to develop a feasible approach to modeling human interactions in the RISMC simulations.

  4. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments You are ...

  5. Clot Busting Simulations Test Potential Stroke Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clot Busting Simulations Test Potential Stroke Treatment Clot Busting Simulations Test Potential Stroke Treatment September 24, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov ...

  6. Energy Choice Simulator | Open Energy Information

    Open Energy Info (EERE)

    Choice Simulator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Choice Simulator AgencyCompany Organization: Great Plains Institute Sector: Energy Focus Area:...

  7. Deputy Administrator Creedon participates in "Slip Simulator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deputy Administrator Creedon participates in "Slip Simulator" training at Y-12 Tuesday, ... walk across slippery or icy surfaces using a training tool called the "Slip Simulator." ...

  8. Tool - Transportation System Simulation (POLARIS) | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and includes traffic flow simulation, activity based demand simulation, model building and analysis geographic information system (GIS) tools, and tools for result analysis. ...

  9. Climate Change Simulations with CCSM & CESM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Simulations with CCSM & CESM Climate Change Simulations with CCSM & CESM Key Challenges: Perform fundamental research on the processes that influence the natural...

  10. Zero Power Reactor simulation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zero Power Reactor simulation Share Description Ever wanted to see a nuclear reactor core in action? Here's a detailed simulation of the Zero Power Reactor experiment, run by ...