Powered by Deep Web Technologies
Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Performance of Gasoline Fuels and Surrogates in Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion Almost 2 dozen gasoline...

2

Gasoline Jet Fuels  

E-Print Network [OSTI]

C4n= Diesel Gasoline Jet Fuels C O C5: Xylose C6 Fermentation of sugars Biofuel "Nanobowls" are inorganic catalysts that could provide the selectivity for converting sugars to fuels IACT Proposes Synthetic, Inorganic Catalysts to Produce Biofuels Current Process

Kemner, Ken

3

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology For Gasoline and Diesel Fuel Pump Components Methodology For Gasoline and Diesel Fuel Pump Components The components for the gasoline and diesel fuel pumps are calculated in the following manner in cents per gallon and then converted into a percentage: Crude Oil - the monthly average of the composite refiner acquisition cost, which is the average price of crude oil purchased by refiners. Refining Costs & Profits - the difference between the monthly average of the spot price of gasoline or diesel fuel (used as a proxy for the value of gasoline or diesel fuel as it exits the refinery) and the average price of crude oil purchased by refiners (the crude oil component). Distribution & Marketing Costs & Profits - the difference between the average retail price of gasoline or diesel fuel as computed from EIA's

4

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

5

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Learn more... Learn more... Price trends and regional differences What causes fluctuations in motor gasoline prices? Retail gasoline prices are mainly affected by crude oil prices and the level of gasoline supply relative to demand. Strong and increasing demand for gasoline and other petroleum products in the United States and the rest of the world at times places intense pressure on available supplies. Even when crude oil prices are stable... read more in Gasoline Explained What causes fluctuations in diesel fuel oil prices? The retail price of a gallon of diesel fuel reflects the underlying costs and profits (or losses) of producing and delivering the product to customers. The price of diesel at the pump reflects the costs and profits of the entire production and distribution chain, including... read more in

6

Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Gasoline Gallon Gasoline Gallon Equivalent (GGE) Definition to someone by E-mail Share Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Facebook Tweet about Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Twitter Bookmark Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Google Bookmark Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Delicious Rank Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Digg Find More places to share Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Gasoline Gallon Equivalent (GGE) Definition

7

Advantages of Oxygenates Fuels over Gasoline in Direct Injection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines...

8

The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion  

Broader source: Energy.gov [DOE]

Almost 2 dozen gasoline fuels, blending components, and surrogates were evaluated in a single-cylinder HCCI gasoline engine for combustion, emissions, and efficiency performance.

9

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy  

E-Print Network [OSTI]

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy Ashley Langer University evidence that automobile manufacturers set vehicle prices as if consumers respond to gasoline prices. We consumer preferences for fuel efficiency. Keywords: automobile prices, gasoline prices, environmental

Sadoulet, Elisabeth

10

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Sampling Methodology Gasoline Sampling Methodology The sample for the Motor Gasoline Price Survey was drawn from a frame of approximately 115,000 retail gasoline outlets. The gasoline outlet frame was constructed by combining information purchased from a private commercial source with information contained on existing EIA petroleum product frames and surveys. Outlet names, and zip codes were obtained from the private commercial data source. Additional information was obtained directly from companies selling retail gasoline to supplement information on the frame. The individual frame outlets were mapped to counties using their zip codes. The outlets were then assigned to the published geographic areas as defined by the EPA program area, or for conventional gasoline areas, as defined by the Census Bureau's Standard Metropolitan

11

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Price Data Collection Procedures Gasoline Price Data Collection Procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline outlets. The prices are published around 5:00 p.m. ET Monday, except on government holidays, when the data are released on Tuesday (but still represent Monday's price). The reported price includes all taxes and is the pump price paid by a consumer as of 8:00 A.M. Monday. This price represents the self-serve price except in areas having only full-serve. The price data are used to calculate weighted average price estimates at the city, state, regional and national levels using sales and delivery volume data from other EIA surveys and population estimates from the Bureau of Census.

12

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Procedures, Methodology, and Coefficients of Variation Procedures, Methodology, and Coefficients of Variation Gasoline Price Data Collection Procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline outlets. The prices are published around 5:00 p.m. ET Monday, except on government holidays, when the data are released on Tuesday (but still represent Monday's price). The reported price includes all taxes and is the pump price paid by a consumer as of 8:00 A.M. Monday. This price represents the self-serve price except in areas having only full-serve. The price data are used to calculate weighted average price estimates at the city, state, regional and national levels using sales and delivery volume data from other EIA surveys and population estimates from the Bureau of Census.

13

Gasoline and Diesel Fuel Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diesel Fuel Pump Components History WHAT WE PAY FOR IN A GALLON OF DIESEL FUEL Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage)...

14

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Pump Components History Gasoline Pump Components History WHAT WE PAY FOR IN A GALLON OF REGULAR GASOLINE Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage) Jan-00 1.289 7.8 13.0 32.1 47.1 Feb-00 1.377 17.9 7.5 30.1 44.6 Mar-00 1.517 15.4 12.8 27.3 44.6 Apr-00 1.465 10.1 20.2 28.3 41.4 May-00 1.485 20.2 9.2 27.9 42.7 Jun-00 1.633 22.2 8.8 25.8 43.1 Jul-00 1.551 13.2 15.8 27.2 43.8 Aug-00 1.465 15.8 7.5 28.8 47.8 Sep-00 1.550 15.4 9.0 27.2 48.3 Oct-00 1.532 13.7 10.1 27.5 48.6 Nov-00 1.517 10.4 11.8 27.8 50.0 Dec-00 1.443 8.0 17.9 29.2 44.8 Jan-01 1.447 17.8 10.4 29.2 42.7 Feb-01 1.450 17.3 11.0 29.1 42.6 Mar-01 1.409 18.8 9.7 30.0 41.5

15

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

16

Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Michigan Fleet Reduces Michigan Fleet Reduces Gasoline and Diesel Use to someone by E-mail Share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Facebook Tweet about Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Twitter Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Google Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Delicious Rank Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Digg Find More places to share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on AddThis.com... Feb. 11, 2010 Michigan Fleet Reduces Gasoline and Diesel Use D iscover how the City of Ann Arbor reduced municipal fleet gas and diesel

17

Gasoline-Like Fuel Effects on Advanced Combustion Regimes | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Regimes Gasoline-Like Fuel Effects on Advanced Combustion Regimes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

18

Gasoline-like fuel effects on advanced combustion regimes | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

regimes Gasoline-like fuel effects on advanced combustion regimes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

19

Pollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel  

E-Print Network [OSTI]

Pollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel Structural Functionalities H O fractions of gasoline fuels, the Utah Surrogate Mechanisms is extended to include submecha- nisms of gasoline surrogate compounds using a set of mechanism generation techniques. The mechanism yields very good

Utah, University of

20

Engines - Fuel Injection and Spray Research - Gasoline Sprays  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasoline Sprays Gasoline Sprays Animated image of fuel emerging from a gasoline injector Animated image of fuel emerging from a gasoline injector (simulated environment). Some newer automobiles in the U.S. use gasoline direct injection (GDI) engines. These advanced gasoline engines inject the fuel directly into the engine cylinder rather than into the intake port. These engines can achieve higher fuel efficiency, but they depend on a precise fuel/air mixture at the spark plug to initiate ignition. This leads to more stringent requirements on spray quality and reproducibility. GDI also enables new combustion strategies for gasoline engines such as lean burn engines that use less fuel and air. Lean burn engines may achieve efficiencies near those of diesels while producing low emissions. This

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Procedures, Methodology, and Coefficients of Variation Procedures, Methodology, and Coefficients of Variation Diesel Fuel Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices are collected via telephone, fax, email, or the internet from participating outlets. All collected prices are subjected to automated edit checks during data collection and data processing. Data flagged by the edits are verified with the respondents. Imputation is used for companies

22

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Price Data Collection Procedures Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices are collected via telephone, fax, email, or the internet from participating outlets. All collected prices are subjected to automated edit checks during data collection and data processing. Data flagged by the edits are verified with the respondents. Imputation is used for companies that cannot be contacted and for reported prices that are extreme outliers.

23

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Price Data Collection Procedures Price Data Collection Procedures Every Monday, retail on-highway diesel prices are collected by telephone and fax from a sample of approximately 350 retail diesel outlets, including truck stops and service stations. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The Environmental Protection Agency (EPA) requires that all on-highway diesel sold be ULSD by December 1, 2010 (September 1, 2006 in California). In January 2007, the weekly on-highway diesel price survey began collecting diesel prices for low sulfur diesel (LSD) which contains between 15 and 500 parts-per-million sulfur and ULSD separately. Prior to January 2007, EIA collected the price of on-highway fuel without distinguishing the sulfur

24

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Sampling Methodology Sampling Methodology The respondents reporting to the weekly diesel price survey represent a stratified probability proportional to size (PPS) sample selected from a frame list of retail outlets. The outlet sampling frame was constructed using commercially available lists from several sources in order to provide comprehensive coverage of truck stops and service stations that sell on-highway diesel fuel in the United States. The frame includes about 62,000 service stations and 4,000 truck stops. Due to statistical and operational considerations, outlets in the States of Alaska and Hawaii are excluded from the target population. The primary publication cells of the survey include Petroleum Administration for Defense Districts (PADDs) 2-4, three sub-PADDs within

25

Gasoline Ultra Fuel Efficient Vehicle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace064confer2011o.pdf More Documents & Publications Gasoline...

26

Lean Gasoline System Development for Fuel Efficient Small Car...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063smith2012o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

27

Lean Gasoline System Development for Fuel Efficient Small Car...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

28

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End...

29

Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines*  

E-Print Network [OSTI]

Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up to 85% ethanol for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we

Stefanopoulou, Anna

30

New EPA Fuel Economy and Environment Label - Gasoline Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasoline Vehicles Gasoline Vehicles Gasoline Vehicles Fuel Economy In addition to the MPG estimates displayed on previous labels, combined city/highway fuel use is also given in terms of gallons per 100 miles. New! Fuel Economy & Greenhouse Gas Rating Use this scale to compare vehicles based on tailpipe greenhouse gas emissions, which contribute to climate change. New! Smog Rating You can now compare vehicles based on tailpipe emissions of smog-forming air pollutants. New! Five-Year Fuel Savings This compares the five-year fuel cost of the vehicle to that of an average gasoline vehicle. The assumptions used to calculate these costs are listed at the bottom of the label. Annual Fuel Cost This cost is based on the combined city/highway MPG estimate and assumptions about driving and fuel prices listed at the bottom of the

31

Lean Gasoline System Development for Fuel Efficient Small Car...  

Broader source: Energy.gov (indexed) [DOE]

Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

32

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels  

E-Print Network [OSTI]

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels are created and produced. The company has a proprietary technology for converting solar thermal en- ergy (the sun's heat) to fuel (e.g., gasoline, diesel, hydrogen

Jawitz, James W.

33

Production of synthetic gasoline and diesel fuel from nonpetroleum resources  

SciTech Connect (OSTI)

In late 1985, the New Zealand Gas-to-Gasoline Complex was successfully streamed producing high octane gasoline from natural gas. The heart of this complex is the Mobil fixed-bed Methanol-to-Gasoline (MTG) section which represents one of several newly developed technologies for production of synthetic gasoline and diesel fuels. All of these technologies are based on production of methanol by conventional technology, followed by conversion of the methanol to transportation fuel. The fixed-bed (MTG) process has been developed and commercialized. The fluid-bed version of the MTG process, which is now also available for commercial license, has a higher thermal efficiency and possesses substantial yield and octane number advantages over the fixed-bed. Successful scale-up was completed in 1984 in a 100 BPD semi-works plant in Wesseling, Federal Republic of Germany. The project was funded jointly by the U.S. and German governments and by the industrial participants: Mobil, Union Rheinsche Braunkohlen Kraftstoff, AG; and Uhde, GmbH. This fluid-bed MTG project was extended recently to demonstrate a related fluid-bed process for selective conversion of methanol to olefins (MTO). The MTO process can be combined with Mobil's commercially available olefins conversion process (Mobil-Olefins-to-Gasoline-and-Distillate, MOGD) for coproduction of high quality gasoline and distillate via methanol. This MTO process was also successfully demonstrated at the Wesseling semiworks with this project being completed in late 1985.

Tabak, S.A.; Avidan, A.A.; Krambeck, F.J.

1986-04-01T23:59:59.000Z

34

Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel, LP-gas and  

E-Print Network [OSTI]

112 Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel and by keeping fuel storage facilities in top condition. Flammable Liquids and Gases Gasoline, diesel fuel, LP flammability and safety precautions. Do not keep gasoline inside the home or transport it in the trunks

35

Assessment of California reformulated gasoline impact on vehicle fuel economy  

SciTech Connect (OSTI)

Fuel economy data contained in the 1996 California Air Resources Board (CAROB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4 %, with a 95% upper confidence bound of 6 %. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CAROB with respect to the impact of CaRFG on fuel economy.

Aceves, S.; Glaser, R.; Richardson, J.

1997-01-01T23:59:59.000Z

36

Assessment of California reformulated gasoline impact on vehicle fuel economy  

SciTech Connect (OSTI)

Fuel economy data contained in the 1996 California Air Resources Board (CARB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4%, with a 95% upper confidence bound of 6%. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CARB with respect to the impact of CaRFG on fuel economy.

Aceves, S., LLNL

1997-01-01T23:59:59.000Z

37

Fuel excise taxes and consumer gasoline demand: comparing average retail price effects and gasoline tax effects .  

E-Print Network [OSTI]

??Interest in using gasoline taxes as a gasoline consumption reduction policy has increased. This study asks three questions to help determine how consumer gasoline consumption… (more)

Sauer, William

2007-01-01T23:59:59.000Z

38

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank  

Broader source: Energy.gov [DOE]

Case study covering Compact Membrane Systems, Inc. and its membrane vapor processor that recovers fuel vapors from gasoline refueling.

39

Protozoa in Subsurface Sediments from Sites Contaminated with Aviation Gasoline or Jet Fuel  

Science Journals Connector (OSTI)

...with Aviation Gasoline or Jet Fuel James L. Sinclair 1 * Don H...of aviation gasoline and jet fuel spill areas at a Coast Guard...aerobic bacteria, protozoa, algae, and fungae in deep subsurface...aviation gasoline and JP-4 jet fuel in subsurface core samples...

James L. Sinclair; Don H. Kampbell; Mike L. Cook; John T. Wilson

1993-02-01T23:59:59.000Z

40

Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tier 2 Vehicle and Tier 2 Vehicle and Gasoline Sulfur Program to someone by E-mail Share Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Facebook Tweet about Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Twitter Bookmark Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Google Bookmark Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Delicious Rank Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Digg Find More places to share Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Tier 2 Vehicle and Gasoline Sulfur Program

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The producer surplus associated with gasoline fuel use in the United States1  

E-Print Network [OSTI]

The producer surplus associated with gasoline fuel use in the United States1 Yongling Sun, Mark A. This paper estimates the producer surplus associated with changes in gasoline fuel use in the United States that affect oil use and oil imports to the US, and (2) comparing the actual average cost of gasoline

Lin, C.-Y. Cynthia

42

Modeling of Air-Fuel Ratio Dynamics of Gasoline Combustion Engine with ARX Network  

E-Print Network [OSTI]

DS-06-1351 Modeling of Air-Fuel Ratio Dynamics of Gasoline Combustion Engine with ARX Network Tomás dynamics of gasoline engines during transient operation. With a collection of input-output data measured;Modeling of Air-Fuel Ratio Dynamics of Gasoline Combustion Engine with ARX Network I. INTRODUCTION

Johansen, Tor Arne

43

Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries  

Science Journals Connector (OSTI)

Countries differ considerably in terms of the price drivers pay for gasoline. This paper uses data for 132 countries for the period 1995–2008 to investigate the implications of these differences for the consumption of gasoline for road transport. To address the potential for simultaneity bias, we use both a country's oil reserves and the international crude oil price as instruments for a country's average gasoline pump price. We obtain estimates of the long-run price elasticity of gasoline demand of between ? 0.2 and ? 0.5. Using newly available data for a sub-sample of 43 countries, we also find that higher gasoline prices induce consumers to substitute to vehicles that are more fuel-efficient, with an estimated elasticity of + 0.2. Despite the small size of our elasticity estimates, there is considerable scope for low-price countries to achieve gasoline savings and vehicle fuel economy improvements via reducing gasoline subsidies and/or increasing gasoline taxes.

Paul J. Burke; Shuhei Nishitateno

2013-01-01T23:59:59.000Z

44

Gasoline and Diesel Fuel Update - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

all petroleum reports all petroleum reports Gasoline and Diesel Fuel Update Gasoline Release Date: December 16, 2013 | Next Release Date: December 23, 2013 Diesel Fuel Release Date: December 16, 2013 | Next Release Date: December 23, 2013 U.S. Regular Gasoline Prices* (dollars per gallon)full history Change from 12/02/13 12/09/13 12/16/13 week ago year ago U.S. 3.272 3.269 3.239 values are down -0.030 values are down -0.015 East Coast (PADD1) 3.389 3.382 3.373 values are down -0.009 values are up 0.023 New England (PADD1A) 3.475 3.494 3.508 values are up 0.014 values are up 0.015 Central Atlantic (PADD1B) 3.441 3.447 3.457 values are up 0.010 values are down -0.029 Lower Atlantic (PADD1C) 3.325 3.300 3.270 values are down -0.030 values are up 0.063

45

A new blending agent and its effects on methanol-gasoline fuels  

SciTech Connect (OSTI)

The major difficulty encountered with the use of methanol-gasoline blends as SI engine fuel is their tendency to phase separation due to the hydrophilic properties of methanol. Phase separation can lead to some utilization problems. Using a blending agent for the methanol-gasoline system is the common approach taken towards solving the phase separation problem. In this study introduces fraction of molasses fuel oil as an effective new blending agent for methanol-gasoline fuel.

Karaosmanoglu, F.; Isigiguer-Erguedenler, A.; Aksoy, H.A.

2000-04-01T23:59:59.000Z

46

Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in  

E-Print Network [OSTI]

1 Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung-ho Ahn, Anna G. Stefanopoulou, and Mrdjan Jankovic Abstract--Ethanol is being increasingly flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up

Stefanopoulou, Anna

47

Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending  

SciTech Connect (OSTI)

Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

48

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank  

Broader source: Energy.gov (indexed) [DOE]

CMS to develop a membrane CMS to develop a membrane vapor processor that recovers fuel vapors from gasoline refueling with 99 percent efficiency. This membrane system enables gasoline stations to surpass environmental regulations while reducing fuel losses. Compact Membrane Systems, Inc. (CMS) was founded in 1993 in Wilmington, DE, with the acquisition of rights to certain DuPont polymer membrane patents. CMS focuses

49

Optimisation of gasoline engine performance and fuel consumption through combination of technologies  

Science Journals Connector (OSTI)

The gasoline engine has undergone intensive development in recent history ... introduction of technologies such as turbocharging and direct fuel injection. In addition to the reduction of part load fuel consumption

Dr.-Ing. Peter Wieske; Bernhardt Lüddecke; Sebastian Ewert…

2009-11-01T23:59:59.000Z

50

NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4.5 for heating to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

Hall, Julian

51

NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4. Distilled naphtha can be used only to produce gasoline or jet fuel. Distilled oil can be used to produce

Hall, Julian

52

Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve Timing  

E-Print Network [OSTI]

Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve engine efficiency. Fuel-flexible engines permit the increased use of ethanol-gasoline blends. Ethanol points across the engine operating range for four blends of gasoline and ethanol. I. INTRODUCTION Fuel

53

What's an Alternative Fuel? Energy Department Proposes Additional Substitute for Gasolin  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

NEWS MEDIA CONTACTS: NEWS MEDIA CONTACTS: FOR IMMEDIATE RELEASE Jayne Brady, 202/586-5806 July 28, 1998 WHAT'S AN ALTERNATIVE FUEL? Energy Department Proposes Additional Substitute for Gasoline The Department of Energy today published a proposed rule to add another new substitute for gasoline, called the "P-series fuels," to the regulatory definition of "alternative fuel." P-series fuels are designed to operate in flexible-fuel vehicles that can run on E85 (85 percent ethanol mixed with 15 percent gasoline), or gasoline, or any blend of the two. Chrysler and Ford have begun to mass-produce flexible-fuel engines as standard equipment for certain vehicle models. Chrysler's most popular minivan equipped with a flexible-fuel engine is on the market today and the Ford Ranger pick-up truck will have such an engine in the 1999 model year. These

54

Fuel consumption reduction through friction optimisation of a four-cylinder gasoline engine  

Science Journals Connector (OSTI)

Working in co-operation, BMW and PSA have created a completely new fourcylinder gasoline engine family which is presented in detail in ... objective throughout the development phase was to minimise fuel consumption

Wolfgang Meldt; Werner Tripolt; Gerald Gaberscik; Johann Schopp…

2007-07-01T23:59:59.000Z

55

Vehicle Technologies Office Merit Review 2014: Gasoline-Like Fuel Effects on Advanced Combustion Regimes  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about gasoline-like...

56

Finished Motor Gasoline Net Production  

Gasoline and Diesel Fuel Update (EIA)

Data Series: Finished Motor Gasoline Finished Motor Gasoline (less Adj.) Reformulated Gasoline Reformulated Gasoline Blenede w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Other Conventional Gasoline Finished Motor Gasoline Adjustment Kerosene-Type Jet Fuel Kerosene-Type Jet, Commercial Kerosene-Type Jet, Military Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil > 15 ppm to 500 ppm Sulfur Distillate Fuel Oil > 500 ppm Sulfur Residual Fuel Oil Propane/Propylene Period: Weekly 4-Week Average

57

Gasoline Prices, Fuel Economy, and the Energy Paradox  

E-Print Network [OSTI]

It is often asserted that consumers purchasing automobiles or other goods and services underweight the costs of gasoline or other "add-ons." We test this hypothesis in the US automobile market by examining the effects of ...

Wozny, Nathan

58

Comparison of PM emissions from a gasoline direct injected (GDI) vehicle and a port fuel injected (PFI) vehicle measured by electrical low pressure impactor (ELPI) with two fuels: Gasoline and M15 methanol gasoline  

Science Journals Connector (OSTI)

Two Euro 4 gasoline passenger vehicles (one gasoline direct injected vehicle and one port fuel injected vehicle) were tested over the cold start New European Driving Cycle (NEDC). Each vehicle was respectively fueled with gasoline and M15 methanol gasoline. Particle number concentrations were measured by the electrical low pressure impactor (ELPI). Particle masses were measured by gravimetric method and estimated from the number distributions using two density distributions (one is constant with the particle size and one is power law related with the size). The first 7 stages of ELPI were used for estimation. The results show that for each vehicle, PM masses measured by gravimetric method, the total PM numbers measured by ELPI and estimated PM masses for M15 are lower than those for gasoline. For each kind of fuel, PM masses by two methods and total PM numbers from the GDI vehicle are higher than those from the PFI one. PM number distribution curves of the four vehicle/fuel combinations are similar. All decline gradually and the maximum number of each curve occurs in the first stage. More than 99.9% numbers locate in the first 8 stages of which diameters are less than 1 ?m. PM number emissions correlate well with the acceleration of the two vehicles. The estimated particle masses were much lower than the gravimetric measurements.

Bin Liang; Yunshan Ge; Jianwei Tan; Xiukun Han; Liping Gao; Lijun Hao; Wentao Ye; Peipei Dai

2013-01-01T23:59:59.000Z

59

U.S. average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012  

U.S. Energy Information Administration (EIA) Indexed Site

average gasoline and diesel fuel prices expected to be average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012 Despite the recent run-up in gasoline prices, the U.S. Energy Information Administration expects falling crude oil prices will lead to a small decline in average motor fuel costs this year compared with last year. The price for regular gasoline is expected to average $3.55 a gallon in 2013 and $3.39 next year, according to EIA's new Short-Term Energy Outlook. That's down from $3.63 a gallon in 2012. For the short-term, however, pump prices are expected to peak at $3.73 per gallon in May because of higher seasonal fuel demand and refiners switching their production to make cleaner burning gasoline for the summer. Diesel fuel will continue to cost more than gasoline because of strong global demand for diesel.

60

Genetic programming approach to predict torque and brake specific fuel consumption of a gasoline engine  

Science Journals Connector (OSTI)

This study presents genetic programming (GP) based model to predict the torque and brake specific fuel consumption a gasoline engine in terms of spark advance, throttle position and engine speed. The objective of this study is to develop an alternative robust formulations based on experimental data and to verify the use of GP for generating the formulations for gasoline engine torque and brake specific fuel consumption. Experimental studies were completed to obtain training and testing data. Of all 81 data sets, the training and testing sets consisted of randomly selected 63 and 18 sets, respectively. Considerable good performance was achieved in predicting gasoline engine torque and brake specific fuel consumption by using GP. The performance of accuracies of proposed GP models are quite satisfactory (R2 = 0.9878 for gasoline engine torque and R2 = 0.9744 for gasoline engine brake specific fuel consumption). The prediction of proposed GP models were compared to those of the neural network modeling, and strictly good agreement was observed between the two predictions. The proposed GP formulation is quite accurate, fast and practical.

Necla Togun; Sedat Baysec

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Performance of a spark ignition engine fueled with methanol or methanol-gasoline blends  

SciTech Connect (OSTI)

Engine torque and specific energy consumption of an automotive engine were studied under steady state condition using gasoline, methanol gasoline blends and straight methanol as fuel. At first the engine was run without any modification. Next the diameters of metering orifices in carburetor were modified to give the same excess air factor regardless of fuel type under each fixed engine operating condition. Finally the engine was run with 15% mixture methanol in gasoline by volume using the carburetor modified to have approximately 10% larger fuel flow area than the production carburetor. From the results of this study the effects of using methanol on engine torque and specific energy consumption can be explained on the basis of change in stoichiometry caused by the use of methanol.

You, B.C.

1983-11-01T23:59:59.000Z

62

Hybrid combustion-premixed gasoline homogeneous charge ignited by injected diesel fuel-4-stroke cycle engines  

SciTech Connect (OSTI)

This paper describes the formation and testing of two hybrid combustion engines, wherein a premixed gasoline homogeneous charge was ignited by a small amount of injected diesel fuel under high compression ratio, by modifying open chamber and prechamber 4-stroke cycle diesel engines. It was found that the premixed gasoline was effective not only for decreasing the fuel consumption but also for reducing the smoke density both in the heavy and over-load regions. The effect of introducing a small amount N/sub 2/ gas for suppressing the diesel knock in the heavy load region also was examined.

Yonetani, H.; Okanishi, N.; Fukutani, I.; Watanabe, E.

1989-01-01T23:59:59.000Z

63

Volatility of Gasoline and Diesel Fuel Blends for Supercritical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions. p-02anitescu.pdf More Documents & Publications...

64

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol  

SciTech Connect (OSTI)

This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

Gardiner, D. P.; Bardon, M. F.; Clark, W.

2011-07-01T23:59:59.000Z

65

Lean Gasoline System Development for Fuel Efficient Small Car  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

66

Lean Gasoline System Development for Fuel Efficient Small Car  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

67

Gasoline-Like Fuel Effects on Advanced Combustion Regimes  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

68

Gasoline Ultra Fuel Efficient Vehicle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace064confer2012o.pdf More Documents & Publications...

69

Lean Gasoline System Development for Fuel Efficient Small Car  

Broader source: Energy.gov (indexed) [DOE]

NOx after-treatment systems have functional implementation limitations (i.e. performance, cost, packaging, etc.) * Significant fuel economy improvement requires integration of...

70

Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks  

Science Journals Connector (OSTI)

This study presents an artificial neural network (ANN) model to predict the torque and brake specific fuel consumption of a gasoline engine. An explicit ANN based formulation is developed to predict torque and brake specific fuel consumption of a gasoline engine in terms of spark advance, throttle position and engine speed. The proposed ANN model is based on experimental results. Experimental studies were completed to obtain training and testing data. Of all 81 data sets, the training and testing sets consisted of randomly selected 63 and 18 sets, respectively. An ANN model based on a back-propagation learning algorithm for the engine was developed. The performance and an accuracy of the proposed ANN model are found satisfactory. This study demonstrates that ANN is very efficient for predicting the engine torque and brake specific fuel consumption. Moreover, the proposed ANN model is presented in explicit form as a mathematical function.

Necla Kara Togun; Sedat Baysec

2010-01-01T23:59:59.000Z

71

HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model  

SciTech Connect (OSTI)

Experiments in a homogeneous charge compression ignition (HCCI) engine have been conducted with four gasoline surrogate fuel blends. The pure components in the surrogate fuels consisted of n-heptane, isooctane, toluene, ethanol and diisobutylene and fuel sensitivities (RON-MON) in the fuel blends ranged from two to nine. The operating conditions for the engine were p{sub in}=0.1 and 0.2 MPa, T{sub in}=80 and 250 C, {phi}=0.25 in air and engine speed 1200 rpm. A semidetailed chemical kinetic model (142 species and 672 reactions) for gasoline surrogate fuels, validated against ignition data from experiments conducted in shock tubes for gasoline surrogate fuel blends at 1.0{<=} p{<=}5.0MPa, 700{<=} T{<=}1200 K and {phi}=1.0, was successfully used to qualitatively predict the HCCI experiments using a single zone modeling approach. The fuel blends that had higher fuel sensitivity were more resistant to autoignition for low intake temperature and high intake pressure and less resistant to autoignition for high intake temperature and low intake pressure. A sensitivity analysis shows that at high intake temperature the chemistry of the fuels ethanol, toluene and diisobutylene helps to advance ignition. This is consistent with the trend that fuels with the least Negative Temperature Coefficient (NTC) behavior show the highest octane sensitivity, and become less resistant to autoignition at high intake temperatures. For high intake pressure the sensitivity analysis shows that fuels in the fuel blend with no NTC behavior consume OH radicals and acts as a radical scavenger for the fuels with NTC behavior. This is consistent with the observed trend of an increase in RON and fuel sensitivity. With data from shock tube experiments in the literature and HCCI modeling in this work, a correlation between the reciprocal pressure exponent on the ignition delay to the fuel sensitivity and volume percentage of single-stage ignition fuel in the fuel blend was found. Higher fuel sensitivity and single-stage fuel content generally gives a lower value of the pressure exponent. This helps to explain the results obtained while boosting the intake pressure in the HCCI engine. (author)

Andrae, J.C.G. [Dept. of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Head, R.A. [Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom)

2009-04-15T23:59:59.000Z

72

Improving gasoline direct injection (GDI) engine efficiency and emissions with hydrogen from exhaust gas fuel reforming  

Science Journals Connector (OSTI)

Abstract Exhaust gas fuel reforming has been identified as a thermochemical energy recovery technology with potential to improve gasoline engine efficiency, and thereby reduce CO2 in addition to other gaseous and particulate matter (PM) emissions. The principle relies on achieving energy recovery from the hot exhaust stream by endothermic catalytic reforming of gasoline and a fraction of the engine exhaust gas. The hydrogen-rich reformate has higher enthalpy than the gasoline fed to the reformer and is recirculated to the intake manifold, i.e. reformed exhaust gas recirculation (REGR). The REGR system was simulated by supplying hydrogen and carbon monoxide (CO) into a conventional EGR system. The hydrogen and CO concentrations in the REGR stream were selected to be achievable in practice at typical gasoline exhaust temperatures. Emphasis was placed on comparing REGR to the baseline gasoline engine, and also to conventional EGR. The results demonstrate the potential of REGR to simultaneously increase thermal efficiency, reduce gaseous emissions and decrease PM formation.

Daniel Fennell; Jose Herreros; Athanasios Tsolakis

2014-01-01T23:59:59.000Z

73

From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass Stories of Discovery & Innovation From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass Enlarge Photo Image by Eric Steen, JBEI Once E. coli have secreted oil, they sequester themselves from the droplets as shown by this optical image, thereby facilitating oil recovery. Currently, biochemical processing of cellulosic biomass requires costly enzymes for sugar liberation. By giving the E. coli the capacity to ferment both cellulose and hemicellulose without the 03.28.11 From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass A microbe that can produce an advanced biofuel directly from biomass was developed by researchers with the U.S. Department of Energy's Joint BioEnergy

74

Reduction of fuel consumption in gasoline engines by introducing HHO gas into intake manifold  

Science Journals Connector (OSTI)

Brown’s gas (HHO) has recently been introduced to the auto industry as a new source of energy. The present work proposes the design of a new device attached to the engine to integrate an HHO production system with the gasoline engine. The proposed HHO generating device is compact and can be installed in the engine compartment. This auxiliary device was designed, constructed, integrated and tested on a gasoline engine. Test experiments were conducted on a 197cc (Honda G 200) single-cylinder engine. The outcome shows that the optimal surface area of an electrolyte needed to generate sufficient amount of HHO is twenty times that of the piston surface area. Also, the volume of water needed in the cell is about one and half times that of the engine capacity. Eventually, the goals of the integration are: a 20–30% reduction in fuel consumption, lower exhaust temperature, and consequently a reduction in pollution.

Ammar A. Al-Rousan

2010-01-01T23:59:59.000Z

75

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends  

SciTech Connect (OSTI)

Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

2010-04-01T23:59:59.000Z

76

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

Includes gasoline, diesel, and electric. The following fourIncludes gasoline, diesel, and electric. In this study, weemissions from diesel-truck delivery and electric generation

Wang, Guihua

2008-01-01T23:59:59.000Z

77

Mixed Mode Fuel Injector And Injection System  

DOE Patents [OSTI]

A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.

Stewart, Chris Lee (Normal, IL); Tian, Ye (Bloomington, IL); Wang, Lifeng (Normal, IL); Shafer, Scott F. (Morton, IL)

2005-12-27T23:59:59.000Z

78

Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection  

Broader source: Energy.gov [DOE]

Supercritical dieseline could be used in diesel engines having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions.

79

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network [OSTI]

1994). D. E. Gushee, Alternative Fuels for Automobiles: AreElectric/Hybrid and Alternative Fuel Challenge, Florence,Replacing Gasoline: Alternative Fuels for Light-Duty

Delucchi, Mark

1996-01-01T23:59:59.000Z

80

Cost of Adding E85 Fuel Capability to Existing Gasoline Stations: NREL Survey and Literature Search (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Cost of Adding E85 Fueling Capability to Existing Gasoline Stations: Cost of Adding E85 Fueling Capability to Existing Gasoline Stations: NREL Survey and Literature Search The cost of purchasing and installing E85 fueling equip- ment varies widely, yet station owners need to have an idea of what to expect when budgeting or reviewing bids for this upgrade. The purpose of this document is to provide a framework for station owners to assess what a reason- able cost would be. This framework was developed by the National Renewable Energy Laboratory (NREL) by surveying actual costs for stations, conducting a literature search, not- ing the major cost-affecting variables, addressing anomalies in the survey, and projecting changes in future costs. The findings of NREL's survey and literature search are shown in the table below. This table divides the study's

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Gasoline-like Fuel Effects on High-load, Boosted HCCI Combustion Employing Negative Valve Overlap Strategy  

SciTech Connect (OSTI)

In recent years a number of studies have demonstrated that boosted operation combined with external EGR is a path forward for expanding the high load limit of homogeneous charge compression ignition (HCCI) operation with the negative valve overlap (NVO) valve strategy. However, the effects of fuel composition with this strategy have not been fully explored. In this study boosted HCCI combustion is investigated in a single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), laboratory pressurized intake air, and a fully-variable hydraulic valve actuation (HVA) valve train. Three fuels with significant compositional differences are investigated: regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Results include engine loads from 350 to 800 kPa IMEPg for all fuels at three engine speeds 1600, 2000, and 2500 rpm. All operating conditions achieved thermal efficiency (gross indicated efficiency) between 38 and 47%, low NOX emissions ( 0.1 g/kWh), and high combustion efficiency ( 96.5%). Detailed sweeps of intake manifold pressure (atmospheric to 250 kPaa), EGR (0 25% EGR), and injection timing are conducted to identify fuel-specific effects. The major finding of this study is that while significant fuel compositional differences exist, in boosted HCCI operation only minor changes in operational conditions are required to achieve comparable operation for all fuels. In boosted HCCI operation all fuels were able to achieve matched load-speed operation, whereas in conventional SI operation the fuel-specific knock differences resulted in significant differences in the operable load-speed space. Although all fuels were operable in boosted HCCI, the respective air handling requirements are also discussed, including an analysis of the demanded turbocharger efficiency.

Kalaskar, Vickey B [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Splitter, Derek A [ORNL] [ORNL

2014-01-01T23:59:59.000Z

82

Part-load performance and emissions of a spark ignition engine fueled with RON95 and RON97 gasoline: Technical viewpoint on Malaysia’s fuel price debate  

Science Journals Connector (OSTI)

Abstract Due to world crude oil price hike in the recent years, many countries have experienced increase in gasoline price. In Malaysia, where gasoline are sold in two grades; RON95 and RON97, and fuel price are regulated by the government, gasoline price have been gradually increased since 2009. Price rise for RON97 is more significant. By 2014, its per liter price is 38% more than that of RON95. This has resulted in escalated dissatisfaction among the mass. People argued they were denied from using a better fuel (RON97). In order to evaluate the claim, there is a need to investigate engine response to these two gasoline grades. The effect of gasoline RON95 and RON97 on performance and exhaust emissions in spark ignition engine was investigated on a representative engine: 1.6L, 4-cylinder Mitsubishi 4G92 engine with CR 11:1. The engine was run at constant speed between 1500 and 3500 rpm with 500 rpm increment at various part-load conditions. The original engine ECU, a hydraulic dynamometer and control, a combustion analyzer and an exhaust gas analyzer were used to determine engine performance, cylinder pressure and emissions. Results showed that RON95 produced higher engine performance for all part-load conditions within the speed range. RON95 produced on average 4.4% higher brake torque, brake power, brake mean effective pressure as compared to RON97. The difference in engine performance was more significant at higher engine speed and loads. Cylinder pressure and ROHR were evaluated and correlated with engine output. With RON95, the engine produces 2.3% higher fuel conversion efficiency on average but RON97 was advantageous with 2.3% lower brake specific fuel consumption throughout all load condition. In terms of exhaust emissions, RON95 produced 7.7% lower \\{NOx\\} emission but higher CO2, CO and HC emissions by 7.9%, 36.9% and 20.3% respectively. Higher octane rating of gasoline may not necessarily beneficial on engine power, fuel economy and emissions of polluting gases. Even though there is some advantage using RON97 in terms of emission reduction of CO2, CO and HC, the 38% higher price and higher \\{NOx\\} emission is more expensive in the long run. Therefore using RON95 is economically better and environmentally friendlier. The findings provide some techno-economic evaluation on the fuel price debate that surround the Malaysia’s population in the recent years. The increased of fuel price may have limited their ability to use higher octane gasoline but it did not negatively affecting the users as they perceive.

Taib Iskandar Mohamad; Heoy Geok How

2014-01-01T23:59:59.000Z

83

Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel  

Science Journals Connector (OSTI)

Abstract The effect of two-stage injection on combustion and emission characteristics under high EGR (46%) condition were experimentally investigated. Four different fuels including pure diesel and blended fuels of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol were tested. Results show that blending gasoline or/and n-butanol in diesel improves smoke emissions while induces increase in maximum pressure rise rate (MPRR). Adopting pilot injection close to main injection can effectively reduce the peak of premixed heat release rate and MPRR. However, for fuels blends with high percentage of low cetane number fuel, the effect of pilot fuel on ignition can be neglected and the improvement of MPRR is not that obvious. Pilot-main interval presents more obvious effect on smoke than pilot injection rate does, and the smoke emissions decrease with increasing pilot-main interval. A longer main-post interval results in a lower post heat release rate and prolonged combustion duration. While post injection rate has little effect on the start of ignition for post injection. The variation in fuel properties caused by blending gasoline or/and n-butanol into diesel does not impose obvious influence on post combustion. The smoke emission increases first and then declines with retard of post injection timing. Compared to diesel, the smoke emissions of blended fuels are more sensitive to the variation of post injection strategy.

Zunqing Zheng; Lang Yue; Haifeng Liu; Yuxuan Zhu; Xiaofan Zhong; Mingfa Yao

2015-01-01T23:59:59.000Z

84

Fact #645: October 18, 2010 Price of Diesel Fuel versus Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

gasoline and diesel prices (dollars per gallon) in the European countries: France, Germany, Italy, Spain, and United Kingdom. For more detailed information, see supporting...

85

Optimization to reduce fuel consumption in charge depleting mode  

DOE Patents [OSTI]

A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

Roos, Bryan Nathaniel; Martini, Ryan D.

2014-08-26T23:59:59.000Z

86

Fact #699: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009  

Broader source: Energy.gov [DOE]

Highway vehicles are responsible for most of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in med/heavy trucks...

87

gasoline | OpenEI  

Open Energy Info (EERE)

gasoline gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline plastics polymers Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon plastics_dma_results_san.xlsx (xlsx, 4.9 MiB)

88

Price of Motor Gasoline Through Retail Outlets  

Gasoline and Diesel Fuel Update (EIA)

Prices, Sales Volumes & Stocks by State Prices, Sales Volumes & Stocks by State (Dollars per Gallon Excluding Taxes) Data Series: Retail Price - Motor Gasoline Retail Price - Regular Gasoline Retail Price - Midgrade Gasoline Retail Price - Premium Gasoline Retail Price - Aviation Gasoline Retail Price - Kerosene-Type Jet Fuel Retail Price - Propane Retail Price - Kerosene Retail Price - No. 1 Distillate Retail Price - No. 2 Distillate Retail Price - No. 2 Fuel Oil Retail Price - No. 2 Diesel Fuel Retail Price - No. 4 Fuel Oil Prime Supplier Sales - Motor Gasoline Prime Supplier Sales - Regular Gasoline Prime Supplier Sales - Midgrade Gasoline Prime Supplier Sales - Premium Gasoline Prime Supplier Sales - Aviation Gasoline Prime Supplier Sales - Kerosene-Type Jet Fuel Prime Supplier Sales - Propane (Consumer Grade) Prime Supplier Sales - Kerosene Prime Supplier Sales - No. 1 Distillate Prime Supplier Sales - No. 2 Distillate Prime Supplier Sales - No. 2 Fuel Oil Prime Supplier Sales - No. 2 Diesel Fuel Prime Supplier Sales - No. 4 Fuel Oil Prime Supplier Sales - Residual Fuel Oil Stocks - Finished Motor Gasoline Stocks - Reformulated Gasoline Stocks - Conventional Gasoline Stocks - Motor Gasoline Blending Components Stocks - Kerosene Stocks - Distillate Fuel Oil Stocks - Distillate F.O., 15 ppm and under Sulfur Stocks - Distillate F.O., Greater than 15 to 500 ppm Sulfur Stocks - Distillate F.O., Greater 500 ppm Sulfur Stocks - Residual Fuel Oil Stocks - Propane/Propylene Period: Monthly Annual

89

Reformulated Gasoline Complex Model  

Gasoline and Diesel Fuel Update (EIA)

Refiners Switch to Reformulated Refiners Switch to Reformulated Gasoline Complex Model Contents * Summary * Introduction o Table 1. Comparison of Simple Model and Complex Model RFG Per Gallon Requirements * Statutory, Individual Refinery, and Compliance Baselines o Table 2. Statutory Baseline Fuel Compositions * Simple Model * Complex Model o Table 3. Complex Model Variables * Endnotes Related EIA Short-Term Forecast Analysis Products * RFG Simple and Complex Model Spreadsheets * Areas Particpating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Reformulated Gasoline Foreign Refinery Rules * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 , (Adobe

90

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network [OSTI]

An Analysis of Hybrid Tax Credits and the Gasoline TaxAn Analysis of Hybrid Tax Credits and the Gasoline Tax byAn Analysis of Hybrid Tax Credits and the Gasoline Tax by

Martin, Elliot William

2009-01-01T23:59:59.000Z

91

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network [OSTI]

An Analysis of Hybrid Tax Credits and the Gasoline TaxAn Analysis of Hybrid Tax Credits and the Gasoline Tax byAn Analysis of Hybrid Tax Credits and the Gasoline Tax by

Martin, Elliott William

2009-01-01T23:59:59.000Z

92

The chemical origin of octane sensitivity in gasoline fuels containing nitroalkanes  

SciTech Connect (OSTI)

Experimental octane measurements are presented for a standard gasoline to which has been added various quantities of nitromethane, nitroethane and 1-nitropropane. The addition of nitroalkanes was found to suppress the Motor Octane Number to a much greater extent than the Research Octane Number. In other words addition of nitroalkanes increases the octane sensitivity of gasoline. Density Functional Theory was used to model the equilibrium thermodynamics and the barrier heights for reactions leading to the break-up of nitroethane. These results were used to develop a chemical kinetic scheme for nitroalkanes combined with a surrogate gasoline (for which a mechanism has been developed previously). Finally the chemical kinetic simulations were combined with a quasi-dimensional engine model in order to predict autoignition in octane rating tests. Our results suggest that the chemical origin of octane sensitivity in gasoline/nitroalkane blends cannot be fully explained on the conventional basis of the extent to which NTC behaviour is absent. Instead we have shown that the contribution of the two pathways leading to autoignition in gasoline containing nitroalkanes becomes much more significant under the more severe conditions of the Motor Octane method than the Research Octane method. (author)

Cracknell, R.F.; McAllister, L.J.; Norton, M.; Walmsley, H.L. [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom); Andrae, J.C.G. [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom); Dept. of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden)

2009-05-15T23:59:59.000Z

93

Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine  

SciTech Connect (OSTI)

An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

2011-01-01T23:59:59.000Z

94

Flex Fuel Optimized SI and HCCI Engine  

Broader source: Energy.gov (indexed) [DOE]

mode engine for a blend of gasoline and E85 for the best fuel economy - Development of a cost effective and reliable dual combustion mode engine - Development of a model-based SI...

95

Are unleaded gasoline and diesel price adjustments symmetric? A comparison of the four largest EU retail fuel markets  

Science Journals Connector (OSTI)

Abstract The purpose of this paper is to examine the nature of price adjustments in the gasoline markets of Germany, France, Italy and Spain. We examine whether crude oil prices are transmitted to the retail gasoline prices in the short and long run and we test the symmetry of price adjustments hypothesis. An Error Correction Model, which accounts for possible asymmetric adjustment behavior, is applied for the estimation of the international crude oil price pass-through and testing of the symmetric/asymmetric nature of the retail fuel price adjustments in these economies. Our results show that rigidities in the transmission process exist but the retail fuel speed of upward/downward price adjustment to equilibrium is considered as symmetric in all four economies analyzed. Thus, our findings on the whole do not provide firm evidence to support the “rockets and feathers” hypothesis that crude oil price increases are passed along to the retail customer more fully than the crude oil price decreases.

Stelios Karagiannis; Yannis Panagopoulos; Prodromos Vlamis

2014-01-01T23:59:59.000Z

96

Emissions Control for Lean Gasoline Engines  

Broader source: Energy.gov (indexed) [DOE]

to achieve cost-effective compliance * minimize precious metal content while maximizing fuel economy * Relevance: - U.S. passenger car fleet is dominated by gasoline-fueled...

97

Motor gasolines, summer 1979  

SciTech Connect (OSTI)

Analytical data for 2401 samples of motor gasoline, from service stations throughout the country, were collected and analyzed under agreement between the Bartlesville Energy Technology Center and the American Petroleum Institute. The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing areas and districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The antiknock (octane) index ((R + M)/2) averages of gasoline sold in this country were 88.6, 89.3, and 93.7 unleaded, regular, and premium grades of gasolines, respectively.

Shelton, E.M.

1980-02-01T23:59:59.000Z

98

Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National Laboratory, Fuel, Engines, and Emissions Research Center

99

Gasolin n  

Science Journals Connector (OSTI)

Gasolin n, Gasbenzin n ? natural gasoline, condensate, distillate [Liquid hydrocarbons, generally clear or pale straw-colo(u)red and of high API gravity (above 60°), that are produced wit...

2013-01-01T23:59:59.000Z

100

natural gasoline  

Science Journals Connector (OSTI)

natural gasoline, condensate, distillate [Liquid hydrocarbons, generally clear or pale straw-coloured and of high API gravity (above 6o°), that are produced with wet gas] ? Gasbenzin n, Gasolin n ...

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline  

SciTech Connect (OSTI)

In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

Kass, Michael D [ORNL; Pawel, Steven J [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL

2012-07-01T23:59:59.000Z

102

Improving Efficiency and Load Range of Boosted HCCI using Partial Fuel Stratification with Conventional Gasoline  

Broader source: Energy.gov [DOE]

Explores the potential of partial fuel stratification to improve the efficiency of internal combustion engines utilizing the homogeneous charge compression-ignition cycle.

103

Minimising cold start fuel consumption and emissions from a gasoline fuelled engine.  

E-Print Network [OSTI]

??Several constrained optimisation problems are considered, in which different tailpipe emissions regulations are the constraints under which the fuel consumption is minimised. The solutions of… (more)

Andrianov, Denis

2011-01-01T23:59:59.000Z

104

Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel  

DOE Patents [OSTI]

Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

Bose, Ranendra K. (14346 Jacob La., Centreville, VA 20120-3305)

2002-06-04T23:59:59.000Z

105

Zhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA-444, Proceedings, 100th  

E-Print Network [OSTI]

the Alternative Fuel Data Center (AFDC) of the U.S. Department of Energy.4 Carbon dioxide (CO2), CO, and nitricZhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonçalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA

Frey, H. Christopher

106

A complex chemical kinetic mechanism for the oxidation of gasoline surrogate fuels: n heptane, iso octane and toluene - Mechanism development and validation  

E-Print Network [OSTI]

The development and validation against experimental results of a new gasoline surrogate complex kinetic mechanism is presented in this paper. The surrogate fuel is a ternary mixture of n heptane, iso octane and toluene. The full three components mechanism is based on existing n heptane/iso octane (gasoline PRF) and toluene mechanisms which were modified and coupled for the purpose of this work. Mechanism results are compared against available experimental data from the literature. Simulations with the PRF plus toluene mechanism show that its behavior is in agreement with experimental results for most of the tested settings. These include a wide variety of thermodynamic conditions and fuel proportions in experimental configurations such as HCCI engine experiments, rapid compression machines, a shock tube and a jet stirred reactor.

Da Cruz, A Pires; Anderlohr, Jörg; Bounaceur, Roda; Battin-Leclerc, Frédérique

2009-01-01T23:59:59.000Z

107

Thermodynamic and optical characterizations of a high performance GDI engine operating in homogeneous and stratified charge mixture conditions fueled with gasoline and bio-ethanol  

Science Journals Connector (OSTI)

UltraViolet–visible imaging measurements were carried out in a gasoline direct injection (GDI) engine in order to investigate the spray and combustion evolution of gasoline and pure bio-ethanol fuel. Two different starts of injection, early injection (homogeneous charge) and late injection (stratified charge), were tested in two different engine conditions, 1000 rpm idle and 1500 rpm medium load as representative point of urban new European driving cycle (NEDC). Measurements were performed in the optically accessible combustion chamber made by modifying a real 4-stroke, 4-cylinder, high performance GDI engine. The cylinder head was instrumented by using an endoscopic system coupled to high spatial and temporal resolution cameras in order to allow the visualization of the fuel injection and the combustion process. All the optical data were correlated to the in-cylinder pressure-based indicated analysis and to the gaseous and solid emissions. Wide statistics were performed for all measurements in order to take into account the cycle-to-cycle variability that characterized, in particular, the idle engine condition. Optical imaging showed that gasoline spray was more sensible to air motion and in-cylinder pressure than ethanol’s, for all the investigated conditions. The stratified flame front for both fuels was about 40% faster compared to homogeneous in the first phase, due to the A/F ratio local distribution. It leads to better performance in terms of stability and maximum pressure, even if the late injections produce more soot and UHC emissions due to fuel impingement. Ethanol combustion shows less diffusive flames than gasoline. A lower amount of soot was evaluated by two color pyrometry method in the combustion chamber and measured at the exhaust.

Paolo Sementa; Bianca Maria Vaglieco; Francesco Catapano

2012-01-01T23:59:59.000Z

108

Protozoa in Subsurface Sediments from Sites Contaminated with Aviation Gasoline or Jet Fuel  

Science Journals Connector (OSTI)

...9) reported large numbers of protozoa...description, borehole designation, and date of drilling for boreholes...At the time of drilling, soil gas measurements...fuel plume. Large protozoan populations...greater depths than borehole 50CA in the jet...

James L. Sinclair; Don H. Kampbell; Mike L. Cook; John T. Wilson

1993-02-01T23:59:59.000Z

109

Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline  

Broader source: Energy.gov [DOE]

Sulfur naturally occurs in gasoline and diesel fuel, contributing to pollution when the fuel is burned. Beginning in 2004, standards were set on the amount of sulfur in gasoline (Tier 2 standards)....

110

Renewable Oxygenate Blending Effects on Gasoline Properties  

Science Journals Connector (OSTI)

Renewable Oxygenate Blending Effects on Gasoline Properties ... National Renewable Energy Laboratory, Golden, Colorado 80401, United States ... Energy Fuels, 2011, 25 (10), ...

Earl Christensen; Janet Yanowitz; Matthew Ratcliff; Robert L. McCormick

2011-08-16T23:59:59.000Z

111

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...  

Broader source: Energy.gov (indexed) [DOE]

in Gasoline Turbocharged Direct Injection (GTDI) engine technology in the near term as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost...

112

Emissions Control for Lean Gasoline Engines  

Broader source: Energy.gov (indexed) [DOE]

SCR Urea TankInjector Cost Customer Acceptance Not in Project Scope Specific Key Issues: Cost, Durability, Fuel Penalty, Operating Temp.,+... Lean Gasoline SI Direct Injection...

113

Electric car Gasoline car  

E-Print Network [OSTI]

ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preference survey with choice situation contexts involving gasoline cars (Renault and competitors

114

Blender Net Production of Finished Motor Gasoline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Special Naphthas Lubricants Asphalt and Road Oil Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

115

Regional Retail Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Retail gasoline prices, like those for distillate fuels, have hit record prices nationally and in several regions this year. The national average regular gasoline price peaked at $1.68 per gallon in mid-June, but quickly declined, and now stands at $1.45, 17 cents higher than a year ago. Two regions, in particular, experienced sharp gasoline price runups this year. California, which often has some of the highest prices in the nation, saw prices peak near $1.85 in mid-September, while the Midwest had average prices over $1.87 in mid-June. Local prices at some stations in both areas hit levels well over $2.00 per gallon. The reasons for the regional price runups differed significantly. In the Midwest, the introduction of Phase 2 RFG was hampered by low stocks,

116

Motor gasolines, summer 1980  

SciTech Connect (OSTI)

Analytical data for 2062 samples of motor gasoline were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The anitknock (octane) index ((R + M)/2) averages of gasolines sold in this country were 87.8 for the unleaded below 90.0, 91.6 for the unleaded 90.0 and above, 88.9 for the regular, and 92.8 for the premium grades of gasoline.

Shelton, E.M.

1981-02-01T23:59:59.000Z

117

Motor gasolines, Summer 1982  

SciTech Connect (OSTI)

The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 796 samples of motor gasoline, were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 22 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M)/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

Shelton, E.M.

1983-03-01T23:59:59.000Z

118

Microsoft Word - Gasoline_2008 Supplement.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 1 April 2008 Short-Term Energy Outlook Supplement: Motor Gasoline Consumption 2008 A Historical Perspective and Short-Term Projections 1 Highlights * Income growth rates have less of an impact on recent trends in gasoline consumption than in the past, but short-run effects are still significant. * High gasoline prices are once again motivating drivers to conserve by driving less and purchasing more fuel-efficient transportation. * The increasing share of lower-Btu-content ethanol has contributed to a growing divergence between volume-based and energy-content-based measures of trends in gasoline consumption. * Consumer sensitivity to gasoline price changes increases during periods when

119

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network [OSTI]

fuel, or about 46,200 BTUs of diesel fuel per mile. 4.1.8BTU/bbl 3575 g/gal Diesel fuel 106 BTU/gal 106 BTU/bbl 3192gasoline or diesel vehicles (g/106-BTU) E NMOG = emissions

Delucchi, Mark

1996-01-01T23:59:59.000Z

120

Improving Accuracy in the Determination of Aromatics in Gasoline by Gas Chromatography—Mass Spectrometry  

Science Journals Connector (OSTI)

......was composed of five gasoline blendstocks: light straight run (LSR) naphtha...consisted of the 21 gasoline fuels used in various...naphtha; LSR, light straight run naphtha; reformate...Because these common gasoline blendstocks contain......

Michael D. Mathiesen; Axel J. Lubeck

1998-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL  

E-Print Network [OSTI]

1 LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 (2014) 162-169" DOI : 10.1016/j.fuel.2013.07.015 #12;2 LAMINAR BURNING VELOCITY OF GASOLINES, Sweden Abstract The adiabatic laminar burning velocities of a commercial gasoline and of a model fuel (n

Boyer, Edmond

122

The performance of PEM fuel cells fed with oxygen through the free-convection mode  

E-Print Network [OSTI]

The performance of PEM fuel cells fed with oxygen through the free-convection mode Pei-Wen Li; accepted 27 September 2002 Abstract The feasibility and restrictions of feeding oxygen to a PEM fuel cell in the fuel cell. Experimental tests were conducted for one PEM fuel cell stack and two single PEM fuel cell

123

Net Taxable Gasoline Gallons (Including Aviation Gasoline)  

E-Print Network [OSTI]

Net Taxable Gasoline Gallons (Including Aviation Gasoline) Period 2000 2001 (2) 2002 2003 2004 "gross" to "net" , was deemed impractical. (5) This report replaces the Gross Taxable Gasoline Gallons (Including Aviation Gasoline) report which will not be produced after December 2002. (6) The November 2007

124

Motor gasolines, summer 1981  

SciTech Connect (OSTI)

The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 715 samples of motor gasoline were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 33 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing included in this report shows marketing districts into which the country is divided. A map included in this report shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.3 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

Shelton, E.M.

1982-04-01T23:59:59.000Z

125

Gasoline vapor recovery  

SciTech Connect (OSTI)

In a gasoline distribution network wherein gasoline is drawn from a gasoline storage tank and pumped into individual vehicles and wherein the gasoline storage tank is refilled periodically from a gasoline tanker truck, a method of recovering liquid gasoline from gasoline vapor that collects in the headspace of the gasoline storage tank as the liquid gasoline is drawn therefrom, said method comprising the steps of: (a) providing a source of inert gas; (b) introducing inert gas into the gasoline storage tank as liquid gasoline is drawn therefrom so that liquid gasoline drawn from the tank is displaced by inert gas and gasoline vapor mixes with the inert gas in the headspace of the tank; (c) collecting the inert gas/gasoline vapor mixture from the headspace of the gasoline storage tank as the tank is refilled from a gasoline tanker truck; (d) cooling the inert gas/gasoline vapor mixture to a temperature sufficient to condense the gasoline vapor in the mixture to liquid gasoline but not sufficient to liquify the inert gas in the mixture; (e) separating the condensed liquid gasoline from the inert gas; and delivering the condensed liquid gasoline to a remote location for subsequent use.

Lievens, G.; Tiberi, T.P.

1993-06-22T23:59:59.000Z

126

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

biogas, LPG, ethanol, bio-diesel, DME, CH2/LH2 Gasoline,Gasoline, bio-fuel, H2, electricity Gasoline, diesel, CNG,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

127

A Comparison of HCCI Engine Performance Data and Kinetic Modeling Results over a Wide Rangeof Gasoline Range Surrogate Fuel Blends  

Broader source: Energy.gov [DOE]

Kinetic models of fuels are needed to allow the simulation of engine performance for research, design, or verification purposes.

128

Gasoline marketing: Octane mislabeling in New York City  

SciTech Connect (OSTI)

The problem of octane mislabeling at gasoline stations in New York City has grown - from 46 or fewer citations in 1981 to 171 citations in 1986. No single source of octane mislabeling exists but the city has found both gasoline station operators and fuel distributors to blame. The problem does not seem to be unique to any one type of gasoline station but 57 percent of the 171 citations issued involved gasoline sold under the name of a major refiner; the rest involved unbranded gasoline. Octane cheating can be lucrative in New York City. A station intentionally mislabeling its gasoline could realize amounts many times the city's maximum $500 fine for cheating.

Not Available

1987-01-01T23:59:59.000Z

129

Microsoft Word - Summer 2006 Motor Gasoline Prices.doc  

Gasoline and Diesel Fuel Update (EIA)

Coast Chicago New York Harbor Sources: Ethanol spot prices through July 7, 2006 - Jim Jordan & Associates, Fuels Blendstock Report (www.jordan-associates.com); Gasoline prices -...

130

With Mathematica Gasoline Inventory  

E-Print Network [OSTI]

Preprint 1 With Mathematica and J: Gasoline Inventory Simulation Cliff Reiter Computational for the number of gallons of gasoline sold by a station for a thousand weeks. The pattern involves demands with the delivery and storage of the gasoline and we desire not to run out of gasoline or exceed the station

Reiter, Clifford A.

131

Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low  

E-Print Network [OSTI]

Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low, Director Product Development & Federal Programs #12;Project Background f Reversible Solid Oxide Fuel Cells:Water The VPS Storage f Wind Fuel Cell / f Solar Electrolyzer Continuous SOFC Intermittent Power Power

132

Nonlinear adaptive sliding mode control of a powertrain supplying Fuel Cell Hybrid Vehicle  

E-Print Network [OSTI]

Nonlinear adaptive sliding mode control of a powertrain supplying Fuel Cell Hybrid Vehicle M. D switching scheme for controlling DC-DC hybrid powertrain for propulsion of a Fuel Cell / Supercapacitor/dc Boost converter associated to Fuel Cell stack and another Bidirectionnel dc/dc converter associated

Paris-Sud XI, Université de

133

Multiple Injection and Boosting Benefits for Improved Fuel Consumption on a Spray Guided Direct Injection Gasoline Engine  

Science Journals Connector (OSTI)

The combination of turbocharging and direct injection offers a significant potential for SI engines to improve fuel consumption, specific power output, raw emissions and ... shows the latest results of the T-SGDI...

Jason King; Oliver Böcker

2013-01-01T23:59:59.000Z

134

Gasoline Prices Vary Among Locations  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The public is probably more knowledgeable about what they pay for gasoline than about anything else they use regularly. Most Americans are bombarded several times a day with the price of gasoline. Many people who phone our office don't only want to know why prices have risen, but why their prices are different than prices in some other area - the gasoline station two blocks away, the average price quoted on the news, the price their uncle is paying in a different region of the country. This chart shows some of the different state averages for a specific month. Besides taxes, these differences are due to factors such as distance from refining sources, and mix of reformulated versus conventional fuels. What this snapshot does not show,is that all of these prices can

135

Simultaneous Efficiency, NOx, and Smoke Improvements through Diesel/Gasoline Dual-Fuel Operation in a Diesel Engine  

E-Print Network [OSTI]

or liquefied petroleum gas, natural gas, biogas, hydrogen, and alcohols such as methanol, ethanol, iso-propanol, and n-butanol), and fuel additives (MTBE or methyl tertiary-butyl ether, H2O2 or hydrogen peroxide, 2-EHN or ethylhexyl nitrate and DTBP or di...

Sun, Jiafeng

2014-08-05T23:59:59.000Z

136

The impact of fuel price volatility on transportation mode choice  

E-Print Network [OSTI]

In recent years, the price of oil has driven large fluctuations in the price of diesel fuel, which is an important cost component in freight logistics. This thesis explores the impact of fuel price volatility on supply ...

Kim, Eun Hie

2009-01-01T23:59:59.000Z

137

Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap  

Broader source: Energy.gov [DOE]

Lean-burn improves PFI fuel economy by ~3% relative to best stoichiometric VCT/EGR conditions, when used in combination with VCT & EGR.

138

Transportation Sector Energy Use by Fuel Type Within a Mode from EIA AEO  

Open Energy Info (EERE)

Sector Energy Use by Fuel Type Within a Mode from EIA AEO Sector Energy Use by Fuel Type Within a Mode from EIA AEO 2011 Early Release Dataset Summary Description Supplemental Table 46 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (3 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration Fuel mode TEF transportation Transportation Energy Futures Data text/csv icon Transportation_Sector_Energy_Use_by_Fuel_Type_Within_a_Mode.csv (csv, 144.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

139

The potential for low petroleum gasoline  

SciTech Connect (OSTI)

The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

Hadder, G.R.; Webb, G.M.; Clauson, M.

1996-06-01T23:59:59.000Z

140

The impact of fuel price volatility on transportation mode choice.  

E-Print Network [OSTI]

??In recent years, the price of oil has driven large fluctuations in the price of diesel fuel, which is an important cost component in freight… (more)

Nsiah-Gyimah, Michael

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. gasoline price expected to drop further below $3 per gallon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Declining fuel prices to push U.S. gasoline demand to an 8-year high In its new forecast, the U.S. Energy Information Administration said domestic gasoline consumption this year...

142

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

Electricity H2 Gasoline, bio-fuel, H2, electricity Gasoline,bio-diesel, DME, CH2/LH2 Gasoline, electricity, H2 Powertrains ICE, hybrid, plug-in hybrid, battery, fuel

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

143

Combustion behavior of gasoline and gasoline/ethanol blends in a modern direct-injection 4-cylinder engine.  

SciTech Connect (OSTI)

Early in 2007 President Bush announced in his State of the Union Address a plan to off-set 20% of gasoline with alternative fuels in the next ten years. Ethanol, due to its excellent fuel properties for example, high octane number, renewable character, etc., appears to be a favorable alternative fuel from an engine perspective. Replacing gasoline with ethanol without any additional measures results in unacceptable disadvantages mainly in terms of vehicle range.

Wallner, T.; Miers, S. A. (Energy Systems)

2008-04-01T23:59:59.000Z

144

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Sampling Methodology Sampling Methodology The sample design for the weekly diesel price survey was a two-phase design. The first phase constituted construction of a frame of 2,207 company-State units (CSUs) from the combination of two sample cycles of the EIA-782A and EIA-782B surveys that collected monthly petroleum products' sales at the State level. For sampling purposes, any combination of State and company where diesel was sold through retail outlets as reported on the EIA-782 surveys defined a CSU, the sampling unit. For the second phase, a sub-sample of the 2,207 CSUs from phase 1 was selected using probability proportional to size (PPS). The measure of size for each of the two sample cycles separately was normalized using the annual State sales' volumes from the monthly survey divided by the unit's

145

Gasoline and Diesel Fuel Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

County, NY Essex County, NJ Fairfield County, CT Hudson County, NJ Hunterdon County, NJ Kings County, NY Litchfield County (partial), CT Middlesex County, NJ Monmouth County, NJ...

146

Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection  

Broader source: Energy.gov [DOE]

Gasoline direct fuel injection (GDI) allows fuel to be injected directly into the cylinder so the timing and shape of the fuel mist can be controlled more precisely. The improved combustion and...

147

Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000  

Gasoline and Diesel Fuel Update (EIA)

Demand and Price Outlook for Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 Tancred Lidderdale and Aileen Bohn (1) Contents * Summary * Introduction * Reformulated Gasoline Demand * Oxygenate Demand * Logistics o Interstate Movements and Storage o Local Distribution o Phase 2 RFG Logistics o Possible Opt-Ins to the RFG Program o State Low Sulfur, Low RVP Gasoline Initiatives o NAAQS o Tier 2 Gasoline * RFG Production Options o Toxic Air Pollutants (TAP) Reduction o Nitrogen Oxides (NOx) Reduction o Volatile Organic Compounds (VOC) Reduction o Summary of RFG Production Options * Costs of Reformulated Gasoline o Phase 1 RFG Price Premium o California Clean Gasoline Price Premium o Phase 2 RFG Price Premium o Reduced Fuel Economy

148

Stranded Vehicles: How Gasoline Taxes Change the Value of Households' Vehicle Assets  

E-Print Network [OSTI]

Stranded Vehicles: How Gasoline Taxes Change the Value of Households' Vehicle Assets Meghan Busse pollution caused by the burning of fossil fuels. Argu- ments against energy taxes, and gasoline taxes more incidence of the tax. We study the effect of a gasoline tax using changes in vehicle values. We construct

Rothman, Daniel

149

ESTIMATION OF EXHAUST MANIFOLD PRESSURE IN TURBOCHARGED GASOLINE ENGINES WITH VARIABLE VALVE TIMING  

E-Print Network [OSTI]

ESTIMATION OF EXHAUST MANIFOLD PRESSURE IN TURBOCHARGED GASOLINE ENGINES WITH VARIABLE VALVE TIMING in turbocharged gasoline engines with variable valve timing requires knowledge of exhaust mani- fold pressure, Pe control systems for gasoline engines rely heavily on feedforward air-fuel ratio (A/F) control to meet

Grizzle, Jessy W.

150

Examining the Short-Run Price Elasticity of Gasoline Demand in the United States.  

E-Print Network [OSTI]

??Estimating the consumer demand response to changes in the price of gasoline has important implications regarding fuel tax policies and environmental concerns. There are reasons… (more)

Brannan, Michael

2012-01-01T23:59:59.000Z

151

Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development  

Broader source: Energy.gov [DOE]

Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

152

Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline...

153

Developing an accelerated aging system for gasoline particulate filters and an evaluation test for effects on engine performance  

E-Print Network [OSTI]

Stringent regulations worldwide will limit the level of particulate matter (PM) emitted from gasoline engines equipped with direct fuel injection. Gasoline particulate filters (GPFs) present one strategy for meeting PM ...

Jorgensen, James E. (James Eastman)

2014-01-01T23:59:59.000Z

154

Fact #699: October 31, 2011 Transportation Energy Use by Mode...  

Energy Savers [EERE]

energy use (gasoline, diesel fuel, liquefied petroleum gas, jet fuel, residual fuel oil, natural gas, and electricity) by various transporation sectors including light...

155

State Gasoline Taxes  

E-Print Network [OSTI]

BULLETIN OF THE UNIVERSITY OF KANSAS HUMANISTIC STUDIES Vol. III March 15, 192S No. 4 State Gasoline Taxes BY KDMUNI) IV LKAENKI), A. B., A, M. Instructor in Economics and Commerce The Unlvmity of Kansas PUBLISHED BY THE UNIVERSITY l... vast sums of money, Oregon was the first state to adopt a tax on gasoline to provide revenue for building and maintaining roads. Since this adoption in 1919, many states have passed laws provid ing for gasoline taxes until now forty-four states...

Learned, Edmund Philip

1925-03-15T23:59:59.000Z

156

23 Reformulated Fuels and Related Issues REFORMULATED FUELS AND  

E-Print Network [OSTI]

INTRODUCTION Reformulated gasoline (RFG) is a cleaner burning fuel than conventional gasoline that will significantly improve air quality by reducing emissions from all gasoline-burning motor vehicles and engines. The chapter also includes a description of CARB's Phase 2 Reformulated Gasoline Advisory Committee and its

157

Retail Motor Gasoline Prices*  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Gasoline pump prices have backed down from the high prices experienced last summer and fall. The retail price for regular motor gasoline fell 11 cents per gallon from September to December. However, with crude oil prices rebounding somewhat from their December lows combined with lower than normal stock levels, we project that prices at the pump will rise modestly as the 2001 driving season begins this spring. For the summer of 2001, we expect only a little difference from the average price of $1.50 per gallon seen during the previous driving season, as motor gasoline stocks going into the driving season are projected to be slightly less than they were last year. The situation of relatively low inventories for gasoline could set the stage for some regional imbalances in supply that could once again

158

Motor gasolines, winter 1981-1982  

SciTech Connect (OSTI)

Analytical data for 905 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 30 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.9 for leaded below 93.0. Only one sample was reported as 93.0 for leaded gasolines with an antiknock index (R+M)/2 93.0 and above.

Shelton, E M

1982-07-01T23:59:59.000Z

159

Motor gasolines, winter 1982-83  

SciTech Connect (OSTI)

Analytical data for 1330 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 28 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.5 for unleaded 90.0 and above, and 89.1 for leaded below 93.0, and no data was reported in this report for leaded gasolines with an antiknock index (R + M)/2 93.0 and above. 21 figures, 5 tables.

Shelton, E.M.

1983-07-01T23:59:59.000Z

160

Experimental analysis of a diesel engine operating in Diesel–Ethanol Dual-Fuel mode  

Science Journals Connector (OSTI)

Abstract The use of engines is necessary to keep the world moving. Such engines are fed mainly by fossil fuels, among these, the diesel. The operation and the behavior of engines in different thermodynamic cycles, with common fossil fuels, it is still challenging but, in general, it has well known and documented data. On the other hand, for alternative fuels, there is still demand of experimental data, particularly considering that it is desirable, most of the times, the use of a system with dual mode (reversible). Such systems are called Dual-Fuel, it brings a greater degree of freedom, but imply in technological challenges. In this paper we used an engine operating with single cylinder direct injection diesel and port ethanol injection system in Dual-Fuel mode with a 100% electronically controlled calibration. The methodology applied was, once the engine calibration was given to achieve the best specific fuel consumption or the MBT (Maximum Brake Torque) in each load condition, to gradually substitute the diesel oil by ethanol in compliance with the requirements established. Comparisons were made among working conditions considering the rate of diesel substitution and the energy indicated efficiency. Initially, the flow structure in the combustion chamber was tested in both ‘quiescent’ and high “swirl” modes. Compression ratios were adjusted at 3 different levels: 14:1, 16:1 and 17:1. It was tested two injectors, the first one of 35 g/s and another of 45 g/s. Regarding pressure diesel injection, 4 levels were investigated namely 800, 1000, 1200 and 1400 bar.

Roberto Freitas Britto Jr.; Cristiane Aparecida Martins

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Detailed Kinetic Modeling of Gasoline Surrogate Mixtures  

SciTech Connect (OSTI)

Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

2009-03-09T23:59:59.000Z

162

Motor gasolines, winter 1979-1980  

SciTech Connect (OSTI)

Analytical data for 1857 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report shows marketing areas districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas, 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The antiknock (octane) index ((R+M)/2) averages of gasoline sold in this country were 87.9, 92.1, 89.0, and 93.3 unleaded below 90.0, unleaded 90.0 and above, regular, and premium grades of gasolines, respectively.

Shelton, E.M.

1980-07-01T23:59:59.000Z

163

Motor gasolines, Winter 1980-81  

SciTech Connect (OSTI)

Analytical data for 546 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 23 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.6 unleaded below 90.0, 91.4 unleaded 90.0 and above, 89.1 leaded below 93.0, and 93.3 leaded 93.0 and above grades of gasoline.

Shelton, E.M.

1981-07-01T23:59:59.000Z

164

Experimental investigation of DI diesel engine operating with eucalyptus biodiesel/natural gas under dual fuel mode  

Science Journals Connector (OSTI)

Abstract With the gradual depletion of petroleum and environmental degradation, intensive research activity has been addressed to the utilization of alternative fuels in internal combustion engines. In the present work, an experimental investigation is carried out to study the effect of eucalyptus biodiesel and natural gas under dual fuel combustion mode on the performance and the exhaust emissions of a single cylinder DI diesel engine. The natural gas (NG) is inducted with the intake air through the inlet manifold. The liquid pilot fuel (eucalyptus biodiesel or diesel fuel) is injected into the combustion chamber to cover approximately 10% of the maximum power output. Then, keeping constant the pilot fuel flow rate, the power output is further increased using only natural gas. The combustion characteristics (cylinder pressure, ignition delay and heat release rate), performance and exhaust emissions of the dual fuel mode (NG–diesel fuel and NG–biodiesel) are compared with those of conventional diesel engine mode at various load conditions. The combustion analysis has shown that biodiesel as pilot fuel exhibits similar pressure–time history, with highest peak, as diesel fuel in conventional and dual fuel modes. The performance and pollutant emission results show that, compared to diesel fuel in dual fuel mode, the use of eucalyptus biodiesel as pilot fuel reduces the high emission levels of unburned hydrocarbon (HC), carbon monoxide (CO) and carbon dioxide (CO2) particularly at high engine loads. However this is accompanied by an increase in the brake specific fuel consumption (BSFC) and the nitrogen oxide (NOx) emissions, which can be explained by the lower calorific value and the oxygen presence in the molecule of the eucalyptus biodiesel, respectively.

L. Tarabet; K. Loubar; M.S. Lounici; K. Khiari; T. Belmrabet; M. Tazerout

2014-01-01T23:59:59.000Z

165

LIFE CYCLE ASSESSMENTS (LCAs) OF PYROLYSIS-BASED GASOLINE AND DIESEL FROM DIFFERENT REGIONAL FEEDSTOCKS: CORN STOVER, SWITCHGRASS, SUGAR CANE BAGASSE, WASTE WOOD, GUINEA GRASS, ALGAE, AND ALBIZIA.  

E-Print Network [OSTI]

?? Renewable hydrocarbon biofuels are being investigated as possible alternatives to conventional liquid transportation fossil fuels like gasoline, kerosene (aviation fuel), and diesel. A diverse… (more)

Mihalek, Matthew J.

2014-01-01T23:59:59.000Z

166

Chemistry Impacts in Gasoline HCCI  

SciTech Connect (OSTI)

The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its shortcomings, and its relevance to HCCI. Section 3 discusses the effects of fuel volatility on fuel and air mixing and the consequences it has on HCCI. The effects of alcohol fuels on HCCI performance, and specifically the effects that they have on the operable speed/load range, are reviewed in Section 4. Finally, conclusions are drawn in Section 5.

Szybist, James P [ORNL; Bunting, Bruce G [ORNL

2006-09-01T23:59:59.000Z

167

Study Reveals Fuel Injection Timing Impact on Particle Number Emissions (Fact Sheet)  

SciTech Connect (OSTI)

Start of injection can improve environmental performance of fuel-efficient gasoline direct injection engines.

Not Available

2012-12-01T23:59:59.000Z

168

Diesel vs Gasoline Production | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vs Gasoline Production Diesel vs Gasoline Production A look at refinery decisions that decide "swing" between diesel and gasoline production deer08leister.pdf More Documents &...

169

DOE Gasoline Price Watch Website and Hotline | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gasoline Price Watch Website and Hotline Gasoline Price Watch Website and Hotline DOE Gasoline Price Watch Website and Hotline April 20, 2006 - 12:26pm Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today is reminding consumers about the Department of Energy's (DOE) gasoline price reporting system. Consumers can report activity at local gasoline filling stations that they believe may constitute "gouging" or "price fixing" by visiting gaswatch.energy.gov/. "There are many legitimate factors influencing the price consumers are paying at the pump, including growing demand, the high price of crude oil, the lingering effects of last summer's hurricanes on our refining sector and the regular transition of fuel blends as we head into the summer," said Secretary Bodman. "And while the majority of local merchants are fair and

171

Reformulated Gasoline Foreign Refinery Rules  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated Gasoline Complex Model * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 Introduction On August 27, 1997, the EPA promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an

172

Fact #860 February 16, 2015 Relationship of Vehicle Miles of Travel and the Price of Gasoline  

Broader source: Energy.gov [DOE]

The prices of gasoline and diesel fuel affect the transportation sector in many ways. For example, fuel prices can impact the number of miles driven and affect the choices consumers make when...

173

El Paso Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Good morning. IÂ’m glad to be here in El Paso to share some of my agencyÂ’s insights on crude oil and gasoline prices. I represent the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. My division has the responsibility to monitor petroleum supplies and prices in the United States. As part of that work, we operate a number of surveys on a weekly, monthly, and annual basis. One of these is a weekly survey of retail gasoline prices at about 800 stations nationwide. This survey in particular allows us to observe the differences between local gasoline markets in the United States. While we track relatively few stations in the El Paso area, we have compared our price data with that collected by the El Paso City-County Health and Environmental District and

174

Is the gasoline tax regressive?  

E-Print Network [OSTI]

Claims of the regressivity of gasoline taxes typically rely on annual surveys of consumer income and expenditures which show that gasoline expenditures are a larger fraction of income for very low income households than ...

Poterba, James M.

1990-01-01T23:59:59.000Z

175

Fuel ion rotation measurement and its implications on H-mode theories  

SciTech Connect (OSTI)

Poloidal and toroidal rotation of the fuel ions (He{sup 2+}) and the impurity ions (C{sup 6+} and B{sup 5+}) in H-mode helium plasmas have been investigated in the DIII-D tokamak by means of charge exchange recombination spectroscopy, resulting in the discovery that the fuel ion poloidal rotation is in the ion diamagnetic drift direction while the impurity ion rotation is in the electron diamagnetic drift direction. The radial electric field obtained from radial force balance analysis of the measured pressure gradients and rotation velocities is shown to be the same regardless of which ion species is used and therefore is a more fundamental parameter than the rotation flows in studying H-mode phenomena. It is shown that the three contributions to the radial electric field (diamagnetic, poloidal rotation, and toroidal rotation terms) are comparable and consequently the poloidal flow does not solely represent the E {times} B flow. In the high-shear edge region, the density scale length is comparable to the ion poloidal gyroradius, and thus neoclassical theory is not valid there. In view of this new discovery that the fuel and impurity ions rotate in opposite sense, L-H transition theories based on the poloidal rotation may require improvement.

Kim, J.; Burrell, K.H.; Gohil, P.; Groebner, R.J.; Hinton, F.L.; Kim, Y.B.; Seraydarian, R. [General Atomics, San Diego, CA (United States); Mandl, W. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany). Oberflaechenphysik; Wade, M.R. [Oak Ridge National Lab., TN (United States)

1993-10-01T23:59:59.000Z

176

Proton NMR characterization of gasoline–ethanol blends  

Science Journals Connector (OSTI)

Abstract Nuclear magnetic resonance (NMR) can be conveniently used for accurate measurement of water and ethanol concentrations in gasoline–ethanol fuel blends. The spectra also contain information on proton exchange rates. In addition, NMR pulsed-field-gradient diffusion measurement allows estimation of ethanol–water clusters and viscosity of the fuel blends.

A. Turanov; A.K. Khitrin

2014-01-01T23:59:59.000Z

177

Investigation of Fatalities Due to Acute Gasoline Poisoning  

Science Journals Connector (OSTI)

......may be absent in some northern winter markets (4). In accor- dance with European...The GC-FID patterns of gasoline, diesel-fuel, kerosene, 645 turpentine, etc...and 6, 1-methylnaphtalene (A). Diesel fuel (425 mg/L) peak identification......

María A. Martínez; Salomé Ballesteros

2005-10-01T23:59:59.000Z

178

High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine  

Broader source: Energy.gov [DOE]

A novel fuel injector has been developed and tested that addresses the technical challenges of LTC, HCCI, gasoline PPC, and RCCI by reducing complexity and cost.

179

European Lean Gasoline Direct Injection Vehicle Benchmark  

SciTech Connect (OSTI)

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

Chambon, Paul H [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Edwards, Kevin Dean [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2011-01-01T23:59:59.000Z

180

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Illinois Department of Education will reimburse any qualifying school district for the cost of converting gasoline buses to more fuel-efficient engines or to engines using...

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

per gallon on a gasoline gallon equivalent basis with the exception of liquefied petroleum gas (propane), which is taxed on a diesel gallon equivalent basis. Special fuels...

182

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

include clean diesel and reformulated gasoline, so long as the Colorado Air Quality Control Commission determines that these other fuels result in comparable reductions in...

183

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

biodiesel or renewable diesel, renewable gasoline, renewable naphtha, biocrude, biogas, and other renewable, biodegradable, mono alkyl ester combustible fuel derived from...

184

Flex Fuel Vehicle Systems  

Broader source: Energy.gov (indexed) [DOE]

& Variable Advanced Management Injection Injection Sensors Control Units Fuel Supply & Plastic Parts Control Transmission Engineering Gasoline Systems GSENS, GSENS-NA System...

185

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and must include space for the following fuel types: gasoline, diesel, propane, electricity, natural gas, methanolM85, ethanolE85, biodiesel, and other. For more...

186

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions Inspection Exemption Vehicles that are powered exclusively by electricity, including low-speed vehicles; hydrogen; or fuels other than gasoline that are exempt from motor...

187

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

gas (propane), natural gas, reformulated gasoline, or other power source (including electricity) used in a clean fuel vehicle that complies with standards and requirements...

188

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

or conversion cost of two or more AFVs. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85), propane, and other...

189

Htfiffi m'* Effects of Alternative Fuels on Vehicle Emissions  

E-Print Network [OSTI]

in the atmosphere. For many r.ears, the primary vehicie fuels used have been gasoline and diesel fuels. These iuels: gasoline, gasoline-ethanol l'rlends, diesel, biodiesel blends, LPG lquefied petroleurn gas) ancl CNG for gasoline, and at lorv concentrzrtiofls c?]11 be used r.vithout r-eilcle rnodiilcadons. Ethiurol can

190

Rapid Separation of Petroleum Fuels by Hydrocarbon Type  

Science Journals Connector (OSTI)

......various fuels such as gasoline and jet fuel into...cleaning solvent and straight-run distillate have...various fuels such as gasoline and jet fuel into...cleaning solvent and straight-run distillate have...aromatic content of gasoline usually in- creases......

Robert Stevenson

1971-05-01T23:59:59.000Z

191

MTBE, Oxygenates, and Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

MTBE, Oxygenates, and MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an

192

Gasoline Prices: What is Happening?  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Prices: What is Happening? Gasoline Prices: What is Happening? 5/10/01 Click here to start Table of Contents Gasoline Prices: What is Happening? Retail Motor Gasoline Price* Forecast Doesn't Reflect Potential Volatility Midwest Looking Like Last Year RFG Responding More Strongly Gasoline Prices Vary Among Locations.Retail Regular Gasoline Price, Cents per Gallon May 8, 2001 Crude Oil Affects Gasoline Prices WTI Crude Oil Prices Are Expected To Remain Relatively High Through At Least 2001 Low Total OECD Oil Stocks* Keep Market Balance Tight Low U.S. Stocks Indicate Tight U.S. Market Regional Inventories Tight Product Balance Pushes Up Product Spread (Spot Product - Crude Price) "New Factor" Contributing to Volatility: Excess Capacity is Gone Regional Refinery Utilization Shows Gulf Coast Pressure

193

Chapter 3 - Fuels for Fuel Cells  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with various types of liquid fuels and the relevant chemical and physical properties of these fuels as a means of comparison to the fuels of the future. It gives an overview of the manufacture and properties of the common fuels as well as a description of various biofuels. A fuel mixture usually contains a wide range of organic compounds (usually hydrocarbons). The specific mixture of hydrocarbons gives a fuel its characteristic properties, such as boiling point, melting point, density, viscosity, and a host of other properties. Depending on the application (stationary, central power, remote, auxiliary, transportation, military, etc.), there are a wide range of conventional fuels, such as natural gas, liquefied petroleum gas, light distillates, methanol, ethanol, dimethyl ether, naphtha, gasoline, kerosene, jet fuels, diesel, and biodiesel, that could be used in reforming processes to produce hydrogen (or hydrogen-rich synthesis gas) to power fuel cells. Fossils fuels include gaseous fuels, gasoline, kerosene, diesel fuel, and jet fuels. Gaseous fuels include natural gas and liquefied petroleum gas. Types of gasoline include automotive gasoline, aviation gasoline, and gasohol. Some additives added into gasoline are antioxidants, corrosion inhibitors, demulsifiers, anti-icing, dyes and markers, drag reducers, and oxygenates.

James G. Speight

2011-01-01T23:59:59.000Z

194

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

195

Investigation of MEA degradation in a passive direct methanol fuel cell under different modes of operation  

Science Journals Connector (OSTI)

Abstract Direct methanol fuel cell (DMFC) durability tests were conducted in three different operational modes: continuous operation with constant load (LT1), on–off operation with constant load (LT2) and on–off operation with variable load (LT3). Porous carbon nanofiber (CNF) anode layers were employed in three sets of single passive DMFCs; each membrane electrode assembly (MEA) was run continuously in durability testing for 3000 h. The objective of this study is to investigate the degradation mechanisms in an MEA with a porous CNF anode layer under different modes of operation. The polarization curves of single passive \\{DMFCs\\} before and after durability tests were compared. The degradation of DMFC performance under the cyclic LT1 mode was much more severe than that of LT2 and LT3 operation. The loss of maximum power density after degradation tests was 49.5%, 28.4% and 43.7% for LT1, LT2 and LT3, respectively. TEM, SEM and EDS mapping were used to investigate the causes of degradation. The lower power loss for LT2 was mainly attributed to the reversible degradation caused by poor water discharge, which thus reduced the air supply. Catalyst agglomeration was especially observed in LT1 and LT3 and is related to carbon corrosion due to possible fuel starvation. The loss of active catalyst area was a major cause of performance degradation in LT1 and LT3. In addition to this, the dissolution and migration of Ru catalyst from the anode to cathode was identified and correlated with degraded cell performance. In the DMFC, the carbon nanofiber anode catalyst support exhibited higher performance stability with less catalyst agglomeration than the cathode catalyst support, carbon black. This study helps understand and elucidate the failure mechanism of MEAs, which could thus help to increase the lifetime of DMFCs.

A.M. Zainoodin; S.K. Kamarudin; M.S. Masdar; W.R.W. Daud; A.B. Mohamad; J. Sahari

2014-01-01T23:59:59.000Z

196

EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

197

An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles  

E-Print Network [OSTI]

US DOE, 2005. Alternative Fuel Price Report Energy Ef?ciencyGSL vehicle efficiency Fuel price difference Gasoline priceprice of $3/gallon, 15% fuel price difference, vehicle fuel

Yeh, Sonia

2007-01-01T23:59:59.000Z

198

Emissions Characterization from Advanced Combustion & Alternative Fuels -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emissions Characterization from Advanced Combustion & Emissions Characterization from Advanced Combustion & Alternative Fuels Exhaust emissions from engines operating in advanced combustion modes such as PCCI (Premixed Charge Compression Ignition) and HCCI (Homogeneous Charge Compression Ignition) are analyzed with an array of analytical tools. Furthermore, emissions from a variety of alternative fuels and mixtures thereof with conventional gasoline and diesel fuels are also measured. In addition to measuring the criteria pollutants nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HCs) are also measured and categorized based on chemistry. These chemical details of the emissions provide important information for optimizing combustion processes to maximize fuel efficiency while minimizing emissions

199

Gasoline Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Price Pass-through Gasoline Price Pass-through January 2003 by Michael Burdette and John Zyren* The single most visible energy statistic to American consumers is the retail price of gasoline. While the average consumer probably has a general notion that gasoline prices are related to those for crude oil, he or she likely has little idea that gasoline, like most other goods, is priced at many different levels in the marketing chain, and that changes ripple through the system as prices rise and fall. When substantial price changes occur, especially upward, there are often allegations of impropriety, even price gouging, on the part of petroleum refiners and/or marketers. In order to understand the movement of gasoline prices over time, it is necessary to examine the relationship between prices at retail and various wholesale levels.

200

Alternative Fuels Used in Transportation (5 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Gasoline is the most commonly used fuel for transportation; however, there are multiple alternative fuels that are making their way to the market. These alternative fuels include propane, natural gas, electric hybrids, hydrogen fuel cells, and bio-diesel. Students will probably have heard of some of these alternative fuels, but they may not understand how and why they are better then ordinary gasoline.

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Vehicle Technologies Office: Fact #394: October 17, 2005 Fuel to Replace  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4: October 17, 4: October 17, 2005 Fuel to Replace Gasoline and Diesel Fuel to someone by E-mail Share Vehicle Technologies Office: Fact #394: October 17, 2005 Fuel to Replace Gasoline and Diesel Fuel on Facebook Tweet about Vehicle Technologies Office: Fact #394: October 17, 2005 Fuel to Replace Gasoline and Diesel Fuel on Twitter Bookmark Vehicle Technologies Office: Fact #394: October 17, 2005 Fuel to Replace Gasoline and Diesel Fuel on Google Bookmark Vehicle Technologies Office: Fact #394: October 17, 2005 Fuel to Replace Gasoline and Diesel Fuel on Delicious Rank Vehicle Technologies Office: Fact #394: October 17, 2005 Fuel to Replace Gasoline and Diesel Fuel on Digg Find More places to share Vehicle Technologies Office: Fact #394: October 17, 2005 Fuel to Replace Gasoline and Diesel Fuel on AddThis.com...

202

Fact #834: August 18, 2014 About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles  

Broader source: Energy.gov [DOE]

Highway vehicles are responsible for the majority of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in medium and...

203

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Fuel Tax Compressed natural gas (CNG) used as a vehicle fuel is taxed on a gasoline gallon equivalent (GGE) basis as follows: 0.05 GGE from January 1, 2016, until...

204

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

205

Determination of Hydrocarbons Types and Oxygenates in Motor Gasoline: A Comparative Study by Different Analytical Techniques  

Science Journals Connector (OSTI)

Various standard and published methods based on chromatographic and spectroscopic techniques are routinely used for hydrocarbon types (aromatics, olefins, oxygenates, etc.) in gasoline range fuel products for the assessment of product quality monitoring (...

V. Bansal; G. J. Krishna; A. P. Singh; A. K. Gupta; A. S. Sarpal

2007-12-04T23:59:59.000Z

206

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions  

Science Journals Connector (OSTI)

...the SOA potential of diesel emissions, especially...improve heavy-duty diesel engine performance with postcombustion...attention to gasoline and diesel fuel composition and emissions...carbon. Although total consumption of oil is minor relative...

Drew R. Gentner; Gabriel Isaacman; David R. Worton; Arthur W. H. Chan; Timothy R. Dallmann; Laura Davis; Shang Liu; Douglas A. Day; Lynn M. Russell; Kevin R. Wilson; Robin Weber; Abhinav Guha; Robert A. Harley; Allen H. Goldstein

2012-01-01T23:59:59.000Z

207

Two-Stage Variable Compression Ratio (VCR) System to Increase Efficiency in Gasoline Powertrains  

Broader source: Energy.gov [DOE]

Presents two-stage variable compression ratio mechanism realized by varying the connecting rod length, description of the system layout, working principle and expected fuel savings benefits when used in current and future gasoline engine concepts

208

Hydrogen-free domestic technologies for conversion of low-octane gasoline distillates on zeolite catalysts  

Science Journals Connector (OSTI)

This review is devoted to the problem of the Russian domestic manufacture of high-quality motor fuels using hydrogen-free catalytic conversion of straight-run gasoline on zeolites with a high content of...

L. M. Velichkina

2009-08-01T23:59:59.000Z

209

E-Print Network 3.0 - amazon state fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 2005 Fuel Tank Capacity and Gas Pump Accuracy By Juana Williams Often when fuel prices rise... to the accuracy of gasoline pumps (retail motor-fuel dispensers)....

210

Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications  

E-Print Network [OSTI]

radiative forcing from bio- fuel and gasoline GHG emissions,directly to additional bio- fuel feedstocks. The averagelife cycle GHGs from bio- fuels highlights the limitations

Plevin, Richard Jay

2010-01-01T23:59:59.000Z

211

Coal to methanol to gasoline by the hydrocarb process  

SciTech Connect (OSTI)

The HYDROCARB Process converts coal or any other carbonaceous material to a clean carbon fuel and co-product gas or liquid fuel. By directing the co-product to liquid methanol, it becomes possible to produce methanol at costs as low as $0.13 to $0.14/gal as shown in Table 1 for a Western Lignite and Table 2 for an Eastern Bituminous coal. In the case of Western lignite, it is assumed that the carbon black fuel product can be sold at $3.00/MMBtu ($18/Bbl FOE) and for the Eastern coal at $2.50/MMBtu ($15/Bbl FOE). A methanol market is expected to develop due to the need for an automotive fuel with reduced pollutant emissions. However, should the methanol market not materialize as expected, then methanol can be readily converted to conventional gasoline by the addition of an MTG, methanol to gasoline process step. 1 fig., 3 tabs.

Steinberg, M.

1989-08-01T23:59:59.000Z

212

California Gasoline Price Study  

Gasoline and Diesel Fuel Update (EIA)

DIRECTOR, PETROLEUM DIVISION DIRECTOR, PETROLEUM DIVISION ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY BEFORE THE SUBCOMMITTEE ON ENERGY AND RESOURCES COMMITTEE ON GOVERNMENT REFORM U.S. HOUSE OF REPRESENTATIVES MAY 9, 2005 Mr. Chairman, I appreciate this opportunity to testify today on the Energy Information Administration's (EIA) insights into factors affecting recent gasoline prices. EIA is the statutorily chartered statistical and analytical agency within the U.S. Department of Energy. We are charged with providing objective, timely, and relevant data, analysis, and projections for the use of the Department of Energy, other Government agencies, the U.S. Congress, and the public. We produce data and analysis reports that are meant to assist policy makers in determining energy policy. Because we have an element of

213

Connecticut Fuel Cell Activities: Markets, Programs, & Models  

E-Print Network [OSTI]

) Passenger Car Light Truck Transit Bus Hydrogen Fuel Cell Gasoline Powered Car Hydrogen Fuel Cell Gasoline, 2009 Joel M. Rinebold #12;2 2 · Connecticut Hydrogen Roadmap (Fuel Cell Economic Development Plan) · A National "Green Energy" Economic Stimulus Plan based on Investment in the Hydrogen and Fuel Cell Industry

214

Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low Degradation  

Broader source: Energy.gov [DOE]

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

215

Gasoline Prices Also Influenced by Regional Gasoline Product Markets  

Gasoline and Diesel Fuel Update (EIA)

1 1 Notes: Next we examine the wholesale market's added contribution to gasoline price variation and analyze the factors that impact the gasoline balance. There are two points to take away from this chart: The U.S. market moves with the world market, as can be seen with the high inventories in 1998, being drawn down to low levels during 1999. Crude and product markets are not independent. Crude oil and product markets move together fairly closely, with some lead/lag effects during transitions. The relationship between international crude oil markets and domestic product markets raises another issue. A subtle, but very important point, lost in recent discussions of gasoline price increases: The statement has been made that crude markets are not a factor in this past spring's high gasoline prices, since crude prices were

216

NREL: Transportation Research - Fuel Combustion and Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Combustion and Engine Performance Photo of a gasoline direct injection piston with injector. NREL studies the effects of new fuel properties on performance and emissions in...

217

Gasoline Prices at Historical Lows  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Before looking at El Paso gasoline prices, letÂ’s take a minute to look at the U.S. average price for context. Gasoline prices this year, adjusted for inflation, are the lowest ever. Back in March, before prices began to rise ahead of the traditional high-demand season, the U.S. average retail price fell to $1.00 per gallon. Prices rose an average of 7.5 cents, less than the typical seasonal runup, to peak in early June. Since then, prices have fallen back to $1.013. Given recent declines in crude oil and wholesale gasoline prices, we expect retail prices to continue to ease over at least the next few weeks. Since their sharp runup during the energy crises of the 1970Â’s, gasoline prices have actually been non-inflationary. Adjusting the historical prices by the Consumer Price Index, we can see that todayÂ’s

218

Gasoline Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

differences, whereas stationary series can be estimated in level form. The unit root test could not reject the hypothesis that the retail and spot gasoline price series have a...

219

Short-Term Energy Outlook April 1999-Summer Gasoline Outlook  

Gasoline and Diesel Fuel Update (EIA)

Summer Motor Gasoline Outlook Summer Motor Gasoline Outlook This year's base case outlook for summer (April-September) motor gasoline markets may be summarized as follows: * Pump Prices: (average regular) projected to average about $1.13 per gallon this summer, up 9-10 cents from last year. The increase, while substantial, still leaves average prices low compared to pre-1998 history, especially in inflation-adjusted terms. * Supplies: expected to be adequate, overall. Beginning-of-season inventories were even with the 1998 level, which was at the high end of the normal range. However, some refinery problems on the West Coast have tightened things up, at least temporarily. * Demand: up 2.0 percent from last summer due to solid economic growth and low (albeit rising) fuel prices; highway travel may reach 1.4 trillion miles for the

220

Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends  

SciTech Connect (OSTI)

Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Eibl, Mary A [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Kaul, Brian C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Chemical kinetic modeling of component mixtures relevant to gasoline  

SciTech Connect (OSTI)

Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

2009-02-13T23:59:59.000Z

222

Fuel Cell Program 2003 Hydrogen and Fuel Cells Merit Review Meeting  

E-Print Network [OSTI]

Fuel Cell Program 2003 Hydrogen and Fuel Cells Merit Review Meeting Rod Borup, Michael Inbody, Jose: $1200k (Program Manager Nancy Garland) divided between: Fuels (Gasoline Component) Testing - (FY2002 $300k) Gasoline Reformate and H2 PEM Durability Diesel Reforming (SECA program) Testing of Fuels

223

Use of ethers as high-octane components of gasolines  

SciTech Connect (OSTI)

This article reports on a study of the possible utilization of methyl tert-amyl ether (MTAE) as an automotive gasoline component, both by itself and in combination with methyl tert-butyl ether (MTBE). The naphtha used in these studies consisted of 80% reformer naphtha produced under severe conditions and 20% straight-run IBP-62/sup 0/C cut. The physicochemical properties of the MTAE, the MTBE, and the naphtha base stock are given. It is determined that MTAE, which has a slightly poorer knock resistance than MTBE, is fully equal to MTBE in all other respects and can be used as an automotive gasoline component; that a gasoline blend prepared from 89% naphtha base stock, 5.5% MTAE, and 5.5% MTBE meets all of the requirements of the standard GOST 2084-77 for Grade AI-93 gasoline; and that the use of MTAE offers a means for expanding the resources of high-octane components, lowering the toxicity of the gasolines and the exhaust gas (in comparison with organometallic antiknock agents), and bringing non-petroleum raw materials into the fuel production picture.

Gureev, A.A.; Baranova, G.N.; Korotkov, I.V.; Levinson, G.I.

1984-01-01T23:59:59.000Z

224

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stations Stations Public-use hydrogen fueling stations are very much like gasoline ones. In fact, sometimes, hydrogen and gasoline cars can be fueled at the same station. These stations offer self-service pumps, convenience stores, and other services in high-traffic locations. Photo of a Shell fueling station showing the site convenience store and hydrogen and gasoline fuel pumps. This fueling station in Washington, D.C., provides drivers with both hydrogen and gasoline fuels Many future hydrogen fueling stations will be expansions of existing fueling stations. These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be "standalone" operations. These stations will be designed and constructed to

225

Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels  

Broader source: Energy.gov [DOE]

Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly different in morphology and nanostructures

226

Refiner Prices of Gasoline, All Grades - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/ Sales Type: Gasoline, All Grades - Sales to End Users (U.S. only) Gasoline, All Grades - Through Retail Outlets Gasoline, All Grades - Other End Users Gasoline, All Grades - Sales for Resale Gasoline, All Grades - DTW (U.S. only) Gasoline, All Grades - Rack (U.S. only) Gasoline, All Grades - Bulk (U.S. only) Regular Gasoline - Sales to End Users (U.S. only) Regular Gasoline - Through Retail Outlets Regular Gasoline - Other End Users Regular Gasoline - Sales for Resale Regular Gasoline - DTW (U.S. only) Regular Gasoline - Rack (U.S. only) Regular Gasoline - Bulk (U.S. only) Midgrade Gasoline - Sales to End Users (U.S. only) Midgrade Gasoline - Through Retail Outlets Midgrade Gasoline - Other End Users Midgrade Gasoline - Sales for Resale Midgrade Gasoline - DTW (U.S. only) Midgrade Gasoline - Rack (U.S. only) Midgrade Gasoline - Bulk (U.S. only) Premium - Sales to End Users (U.S. only) Premium Gasoline - Through Retail Outlets Premium Gasoline - Other End Users Premium Gasoline - Sales for Resale Premium Gasoline - DTW (U.S. only) Premium Gasoline - Rack (U.S. only) Premium Gasoline - Bulk (U.S. only) Period: Monthly Annual

227

Comparing air quality impacts of hydrogen and gasoline  

E-Print Network [OSTI]

from among existing gasoline station locations in Sacra-VOC emitted at gasoline service stations, because these arethe gasoline terminal storage and refueling stations, it is

Sperling, Dan; Wang, Guihua; Ogden, Joan M.

2008-01-01T23:59:59.000Z

228

Path to High Efficiency Gasoline Engine | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine deer10johansson.pdf More Documents & Publications Partially...

229

Gasoline Ultra Fuel Efficient Vehicle Program Update  

Broader source: Energy.gov (indexed) [DOE]

heat recovery and friction reduction controls HATCI low friction technologies HATCI heat recovery system Slide 8 October 16, 2012 Phase 1, Vehicle 1 (Reduced Parasitic Loss)...

230

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An FFV, as its name implies, has the flex- ibility of running on more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like...

231

General Assembly Meeting: October 6th, 2013 Keywords: Labor/USLAC and Sun Services, divestment from fossil fuels, grading mode changes,  

E-Print Network [OSTI]

fossil fuels, grading mode changes, winter session ("JTerm"). Agenda: Opening of the Meeting: Meeting. Claire Marshall: there are health codes that prevent students from cleaning up toilets and other areas

Royer, Dana

232

Alternative transportation fuels and air quality  

Science Journals Connector (OSTI)

Alternative transportation fuels and air quality ... Potential Air Quality Effects of Using Ethanol?Gasoline Fuel Blends: A Field Study in Albuquerque, New Mexico ... Potential Air Quality Effects of Using Ethanol?Gasoline Fuel Blends: A Field Study in Albuquerque, New Mexico ...

Tai Y. Chang; Robert H. Hammerle; Steven M. Japar; Irving T. Salmeen

1991-07-01T23:59:59.000Z

233

Fact #817: February 17, 2014 Conventional and Alternative Fuel...  

Energy Savers [EERE]

The prices are displayed in gasoline-gallon equivalents (GGE) which equate the energy content of any motor fuel to that of a gallon of gasoline. The prices are collected...

234

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

235

Motor Gasoline Outlook and State MTBE Bans  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Outlook Motor Gasoline Outlook and State MTBE Bans Tancred Lidderdale Contents 1. Summary 2. MTBE Supply and Demand 3. Ethanol Supply 4. Gasoline Supply 5. Gasoline Prices A. Long-Term Equilibrium Price Analysis B. Short-Term Price Volatility 6. Conclusion 7. Appendix A. Estimating MTBE Consumption by State 8. Appendix B. MTBE Imports and Exports 9. Appendix C. Glossary of Terms 10. End Notes 11. References 1. Summary The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending State bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year. Three impending State bans on MTBE blending could significantly affect gasoline

236

STEO January 2013 - average gasoline prices  

U.S. Energy Information Administration (EIA) Indexed Site

gasoline prices are expected to decline over the next two years. The average pump price for regular unleaded gasoline was 3.63 a gallon during 2012. That is expected to fall...

237

Household gasoline demand in the United States  

E-Print Network [OSTI]

Continuing rapid growth in U.S. gasoline consumption threatens to exacerbate environmental and congestion problems. We use flexible semiparametric and nonparametric methods to guide analysis of household gasoline consumption, ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

238

Vehicle Technologies Office Merit Review 2014: Advanced Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI)...

239

Trends of petroleum fuels  

SciTech Connect (OSTI)

Trends in properties of motor gasolines for the years 1942 through 1984; diesel fuels for the years 1950 through 1983; aviation fuels for the years 1947 through 1983; and heating oils for the years 1955 through 1984, have been evaluated based upon data contained in surveys prepared and published by the National Institute for Petroleum and Energy Research (NIPER) formerly the Bartlesville Energy Technology Center (BETC). The surveys for motor gasolines were conducted under a cooperative agreement with the Coordinating Research Council (CRC) and the Bureau of Mines from 1935 through 1948 and in cooperation with the American Petroleum Institute (API) since 1948 for all surveys. The motor gasoline surveys have been published twice annually since 1935 describing the properties of motor gasolines throughout the country. Other surveys prepared in cooperation with API and the Bureau of Mines, the Energy Research and Development Administration, the Department of Energy, and currently NIPER were aviation gasolines beginning in 1947, diesel fuels in 1950, aviation turbine fuels in 1951, and heating oils, formerly burner fuel oils, in 1955. Various companies throughout the country obtain samples of motor gasolines from retail outlets and refinery samples for the other surveys, and analyze the samples using American Society for Testing and Materials (ASTM) procedures. The analytical data are sent to the Bartlesville Center for survey preparation and distribution. A summary report has been assembled from data in 83 semiannual surveys for motor gasolines that shows trends throughout the entire era from winter 19

Shelton, E.M.; Woodward, P.W.

1985-02-01T23:59:59.000Z

240

What Drives U.S. Gasoline Prices?  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

weekly gasoline spot price 2011-14 ... 15 Table 3. Dickey-Fuller test and autocorrelogram results ......

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Speciated Engine-Out Organic Gas Emissions from a PFI-SI Engine Operating on Ethanol/Gasoline Mixtures  

E-Print Network [OSTI]

Engine-out HC emissions from a PFI spark ignition engine were measured using a gas chromatograph and a flame ionization detector (FID). Two port fuel injectors were used respectively for ethanol and gasoline so that the ...

Kar, Kenneth

242

Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles  

SciTech Connect (OSTI)

Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; West, Brian H [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

243

GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY  

SciTech Connect (OSTI)

The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple relationship between number and mass emissions was not observed. Data were collected on-road to compare weekday with weekend air quality around the Twin Cities area. This portion of the study resulted in the development of a method to apportion the Diesel and SI contribution to on-road aerosol.

Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

2003-08-24T23:59:59.000Z

244

Fuel Requirements and Energy Savings Tips for Field Operations  

E-Print Network [OSTI]

of gasoline than diesel fuel to perform the same field operation because diesel engines are more fuel efficient than gasoline engines. FUEL CONSERVATION METHODS Farmers can consider numerous measures to reduce Matching implement size to tractor size can result in fuel savings. In general, if implements are matched

Goodman, Robert M.

245

Alternative Fuels Data Center: Alternative Fuel Tax Rates  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Tax Alternative Fuel Tax Rates to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax Rates on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax Rates on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Rates on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Rates on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax Rates on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax Rates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Rates Blended fuels that contain at least 10% gasoline or diesel are taxed at the full tax rates of gasoline ($0.30 per gallon) or diesel ($0.312 per

246

Motor Gasoline Outlook and State MTBE Bans  

Reports and Publications (EIA)

The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

2003-01-01T23:59:59.000Z

247

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

248

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

249

Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process  

SciTech Connect (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

Jones, Susanne B.; Zhu, Yunhua

2009-05-01T23:59:59.000Z

250

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tax For taxation purposes, liquefied petroleum gas (propane) used as a motor vehicle fuel must be converted to gasoline gallon equivalents (GGE) using the conversion factor of 4.24...

251

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Reduced Propane Fuel Tax The tax imposed on liquefied petroleum gas, or propane, used to operate a motor vehicle is equal to half the tax paid on the sale or use of gasoline, or...

252

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Liquefied Natural Gas (LNG) Tax LNG is taxed at a rate of 0.14 per gallon when used as a motor fuel. For taxation purposes, LNG is converted to its gasoline gallon equivalent...

253

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Liquefied Natural Gas (LNG) Measurement LNG is taxed based on the gasoline gallon equivalent, or 6.6 pounds of LNG for one gallon of motor fuel, unless a diesel gallon equivalent...

254

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tax and Fee Compressed natural gas (CNG) used in motor vehicles is subject to a state motor fuel tax of 0.05 per gasoline gallon equivalent (GGE) until January 1, 2020. Beginning...

255

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Compressed Natural Gas (CNG) Tax CNG used in motor vehicles is subject to a state motor fuel tax rate of 0.26 per gasoline gallon equivalent (GGE). For taxation purposes, one GGE...

256

Hydrogen and Gaseous Fuel Safety and Toxicity  

SciTech Connect (OSTI)

Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

Lee C. Cadwallader; J. Sephen Herring

2007-06-01T23:59:59.000Z

257

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

258

DOE Hydrogen Analysis Repository: Life Cycle Assessment of Hydrogen Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles Project Summary Full Title: Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles Project ID: 143 Principal Investigator: Ibrahim Dincer Brief Description: Examines the social, environmental and economic impacts of hydrogen fuel cell and gasoline vehicles. Purpose This project aims to investigate fuel cell vehicles through environmental impact, life cycle assessment, sustainability, and thermodynamic analyses. The project will assist in the development of highly qualified personnel in such areas as system analysis, modeling, methodology development, and applications. Performer Principal Investigator: Ibrahim Dincer Organization: University of Ontario Institute of Technology

259

Vehicle Technologies Office: Fact #68: September 23, 1998 What Fuel Will  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: September 23, 8: September 23, 1998 What Fuel Will Replace Gasoline? to someone by E-mail Share Vehicle Technologies Office: Fact #68: September 23, 1998 What Fuel Will Replace Gasoline? on Facebook Tweet about Vehicle Technologies Office: Fact #68: September 23, 1998 What Fuel Will Replace Gasoline? on Twitter Bookmark Vehicle Technologies Office: Fact #68: September 23, 1998 What Fuel Will Replace Gasoline? on Google Bookmark Vehicle Technologies Office: Fact #68: September 23, 1998 What Fuel Will Replace Gasoline? on Delicious Rank Vehicle Technologies Office: Fact #68: September 23, 1998 What Fuel Will Replace Gasoline? on Digg Find More places to share Vehicle Technologies Office: Fact #68: September 23, 1998 What Fuel Will Replace Gasoline? on AddThis.com... Fact #68: September 23, 1998

260

Vehicle Technologies Office: Fact #340: October 4, 2004 Hydrogen Fuel as a  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

40: October 4, 40: October 4, 2004 Hydrogen Fuel as a Replacement for Gasoline to someone by E-mail Share Vehicle Technologies Office: Fact #340: October 4, 2004 Hydrogen Fuel as a Replacement for Gasoline on Facebook Tweet about Vehicle Technologies Office: Fact #340: October 4, 2004 Hydrogen Fuel as a Replacement for Gasoline on Twitter Bookmark Vehicle Technologies Office: Fact #340: October 4, 2004 Hydrogen Fuel as a Replacement for Gasoline on Google Bookmark Vehicle Technologies Office: Fact #340: October 4, 2004 Hydrogen Fuel as a Replacement for Gasoline on Delicious Rank Vehicle Technologies Office: Fact #340: October 4, 2004 Hydrogen Fuel as a Replacement for Gasoline on Digg Find More places to share Vehicle Technologies Office: Fact #340: October 4, 2004 Hydrogen Fuel as a Replacement for Gasoline on

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fuel Economy Web Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FuelEconomy.gov Web Services FuelEconomy.gov Web Services Data Description atvtype - alternative fuel or advanced technology vehicle Bifuel (CNG) - Bi-fuel gasoline and compressed natural gas vehicle Bifuel (LPG) - Bi-fuel gasoline and propane vehicle CNG - Compressed natural gas vehicle Diesel - Diesel vehicle EV - Electric vehicle FFV - Flexible fueled vehicle (gasoline or E85) Hybrid - Hybrid vehicle Plug-in Hybrid - Plug-in hybrid vehicle drive - drive axle type 2-Wheel Drive 4-Wheel Drive* 4-Wheel or All-Wheel Drive* All-Wheel Drive* Front-Wheel Drive Part-time 4-Wheel Drive* Rear-Wheel Drive *Prior to Model Year 2010 EPA did not differentiate between All Wheel Drive and Four Wheel Drive salesArea - EPA sales area code. The area of the country where the vehicle can legally be sold. New federally certified vehicles can be sold in all states except California

262

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network [OSTI]

AND FUEL CONSUMPTION FOR DIESEL - POWERED NONROAD FORKLIFT ENGINES ,AND FUEL CONSUMPTION FOR DIESEL - POWERED NONROAD FORKLIFT ENGINES ,

Delucchi, Mark

2003-01-01T23:59:59.000Z

263

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

264

Technoeconomic Comparison of Biofuels: Ethanol, Methanol, and Gasoline from Gasification of Woody Residues (Presentation)  

SciTech Connect (OSTI)

This presentation provides a technoeconomic comparison of three biofuels - ethanol, methanol, and gasoline - produced by gasification of woody biomass residues. The presentation includes a brief discussion of the three fuels evaluated; discussion of equivalent feedstock and front end processes; discussion of back end processes for each fuel; process comparisons of efficiencies, yields, and water usage; and economic assumptions and results, including a plant gate price (PGP) for each fuel.

Tarud, J.; Phillips, S.

2011-08-01T23:59:59.000Z

265

Chemical kinetic modeling of component mixtures relevant to gasoline  

SciTech Connect (OSTI)

Detailed kinetic models of pyrolysis and combustion of hydrocarbon fuels are nowadays widely used in the design of internal combustion engines and these models are effectively applied to help meet the increasingly stringent environmental and energetic standards. In previous studies by the combustion community, such models not only contributed to the understanding of pure component combustion, but also provided a deeper insight into the combustion behavior of complex mixtures. One of the major challenges in this field is now the definition and the development of appropriate surrogate models able to mimic the actual features of real fuels. Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. Their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. Aside the most commonly used surrogates containing iso-octane and n-heptane only, the so called Primary Reference Fuels (PRF), new mixtures have recently been suggested to extend the reference components in surrogate mixtures to also include alkenes and aromatics. It is generally agreed that, including representative species for all the main classes of hydrocarbons which can be found in real fuels, it is possible to reproduce very effectively in a wide range of operating conditions not just the auto-ignition propensity of gasoline or Diesel fuels, but also their physical properties and their combustion residuals [1]. In this work, the combustion behavior of several components relevant to gasoline surrogate formulation is computationally examined. The attention is focused on the autoignition of iso-octane, hexene and their mixtures. Some important issues relevant to the experimental and modeling investigation of such fuels are discussed with the help of rapid compression machine data and calculations. Following the model validation, the behavior of mixtures is discussed on the basis of computational results.

Mehl, M; Curran, H J; Pitz, W J; Dooley, S; Westbrook, C K

2008-05-29T23:59:59.000Z

266

Fuel Guide Economy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES Listed below are the vehicles with the highest fuel economy for the most popular classes, including both automatic and manual transmissions and gasoline and diesel vehicles. Please be aware that many of these vehicles come in a range of engine sizes and trim lines, resulting in different fuel economy values. Check the fuel economy guide or the fuel economy sticker on new vehicles to find the values for a particular version of a vehicle. CONTENTS MODEL YEAR 2000 FUEL ECONOMY LEADERS ................. 1 HOW TO USE THIS GUIDE ..................................................... 2 FUEL ECONOMY AND YOUR ANNUAL FUEL COSTS .......... 3 WHY FUEL ECONOMY IS IMPORTANT .................................

267

Engineering metabolic systems for production of advanced fuels  

E-Print Network [OSTI]

keto acid pathways for bio- fuel production. The productionmaking bio- gasoline, bio-jet fuel, and biodiesel, as welldevelopment of bio-ethanol as an alternative fuel have led

Yan, Yajun; Liao, James C.

2009-01-01T23:59:59.000Z

268

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect (OSTI)

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

269

Areas Participating in the Reformulated Gasoline Program  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Program Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA Short-Term Forecast Analysis Products * Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 * Environmental Regulations and Changes in Petroleum Refining Operations * Areas Participating in Oxygenated Gasoline Program

270

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

271

Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Prohibition of the Prohibition of the Sale of Ethanol-Blended Gasoline to someone by E-mail Share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Facebook Tweet about Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Twitter Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Google Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Delicious Rank Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Digg Find More places to share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

272

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct-Injection Flex-Fuel Engines  

E-Print Network [OSTI]

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct the fuel vaporization pro- cess for ethanol-gasoline fuel blends and the associated charge cooling effect experimental cylinder pressure for different gasoline-ethanol blends and various speeds and loads on a 2.0 L

Stefanopoulou, Anna

273

Interaction blending equations enhance reformulated gasoline profitability  

SciTech Connect (OSTI)

The interaction approach to gasoline blending gives refiners an accurate, simple means of re-evaluating blending equations and increasing profitability. With reformulated gasoline specifications drawing near, a detailed description of this approach, in the context of reformulated gasoline is in order. Simple mathematics compute blending values from interaction equations and interaction coefficients between mixtures. A timely example of such interactions is: blending a mixture of catalytically cracked gasoline plus light straight run (LSR) from one tank with alkylate plus reformate from another. This paper discusses blending equations, using interactions, mixture interactions, other blending problems, and obtaining equations.

Snee, R.D. (Joiner Associates, Madison, WI (United States)); Morris, W.E.; Smith, W.E.

1994-01-17T23:59:59.000Z

274

Dispensing Equipment Testing with Mid-Level Ethanol/Gasoline Test Fluid: Summary Report  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory's (NREL) Nonpetroleum-Based Fuel Task addresses the hurdles to commercialization of biomass-derived fuels and fuel blends. One such hurdle is the unknown compatibility of new fuels with current infrastructure, such as the equipment used at service stations to dispense fuel into automobiles. The U.S. Department of Energy's (DOE) Vehicle Technology Program and the Biomass Program have engaged in a joint project to evaluate the potential for blending ethanol into gasoline at levels higher than nominal 10 volume percent. This project was established to help DOE and NREL better understand any potentially adverse impacts caused by a lack of knowledge about the compatibility of the dispensing equipment with ethanol blends higher than what the equipment was designed to dispense. This report provides data about the impact of introducing a gasoline with a higher volumetric ethanol content into service station dispensing equipment from a safety and a performance perspective.

Boyce, K.; Chapin, J. T.

2010-11-01T23:59:59.000Z

275

EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE)

Auto manufacturers demonstrate that switching from a gasoline to a hydrogen fuel cell engine could reduce emissions by more than 90%.

276

Spray structures and vaporizing characteristics of a GDI fuel spray  

Science Journals Connector (OSTI)

The spray structures and distribution characteristics of liquid and vapor phases in non-evaporating and evaporating Gasoline Direct Injection (GDI) fuel sprays were investigated using Laser Induced...

Dong-Seok Choi; Gyung-Min Choi; Duck-Jool Kim

2002-07-01T23:59:59.000Z

277

Turbocharged Spark Ignited Direct Injection - A Fuel Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- A Fuel Economy Solution for The US Turbocharged SIDI is the most promising advanced gasoline technology; combines existing & proven technologies in a synergistic manner, offers...

278

The effect of oxygen-to-fuel stoichiometry on coal ash fine-fragmentation mode formation mechanisms.  

SciTech Connect (OSTI)

Ash particles smaller than 2.5 {micro}m in diameter generated during pulverized coal combustion are difficult to capture and may pose greater harm to the environment and human health than the discharge of larger particles. Recent research efforts on coal ash formation have revealed a middle fine-fragment mode centered around 2 {micro}m. Formation of this middle or fine-fragment mode (FFM) is less well understood compared to larger coarse and smaller ultrafine ash. This study is part of an overall effort aimed at determining the key factors that impact the formation of FFM. This work examined the effects of oxygen-to-fuel stoichiometry (OFS). Pulverized Illinois No.6 bituminous coal was combusted and the ash generated was size segregated in a Dekati low pressure inertial impactor. The mass of each fraction was measured and the ash was analyzed using scanning electron microscopy (SEM) and X-ray microanalysis. The FFM ash types were classified based on the SEM images to evaluate the significant fine-fragment ash formation mechanisms and determine any possible link between stoichiometry and formation mechanism. From the particle size distributions (PSDs), the coarse mode appears unaffected by the change in OFS, however, the OFS 1.05 lowered the fraction of ultrafine ash in relation to the higher OFS settings, and appears to increase the portion of the FFM. An intermediate minimum was found in the FFM at 1.3 {micro}m for the 1.20 and 1.35 OFS tests but was not observed in the 1.05 OFS. SEM analysis also suggests that OFS may contribute to changing formation mechanisms.

Fix, G.; Seames, W. S.; Mann, M. D.; Benson, S. A.; Miller, D. J. (Materials Science Division); (Univ. of North Dakota)

2011-04-01T23:59:59.000Z

279

Insights into Spring 2008 Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices EIA released a new analytical report entitled Motor Gasoline Market Spring 2007 and Implications for Spring 2008. It includes a discussion of scheduled refinery outages in 2008 prepared in accordance with Section 804 of the Energy Independence and Security Act (EISA) of 2007, which requires EIA to review and analyze information on such outages from commercial reporting services and assess to their expected effects on the price and supply of gasoline. Changes in wholesale gasoline prices relative to crude oil are determined by the tightness between gasoline supply (production and net imports) and demand. Expectations for U.S. gasoline supply relative to demand are for a more favorable situation in January through May 2008 than was the case in the comparable 2007 period. Demand growth, which varies seasonally and depends on economic factors, is expected to slow. New gasoline supply is affected by refinery outages, refinery run decisions, and import variations. Planned refinery outages for January through May 2008 are lower than for the same period in 2007. Given lower planned outages and assuming the return of unplanned outages to more typical levels, including the return of BP's Texas City refinery to full operation, gasoline production could increase between 100 and 200 thousand barrels per day over last year's level, depending on the market incentives. In addition, ethanol use, which adds to gasoline supply, is expected to continue to increase. Considering the uncertainty in all the gasoline supply components, there is little likelihood of events combining in 2008 to lead to the kind of tight supply downstream from crude oil markets seen in spring 2007. In summary, refinery outage and import impacts should contribute less to gasoline price increases in 2008 than in 2007. If all of the low-range estimates for supply occurred, total gasoline supply would increase about 200 thousand barrels per day (Figure S1). However, record crude oil prices are nonetheless pushing current and expected gasoline prices to record levels.

280

EIA-878 Motor Gasoline Price Survey ? Reference Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Motor Gasoline Price Survey - Reference Guide For the purposes of the Motor Gasoline Price Survey (EIA-878), we collect prices for the following gasoline grades as defined by...

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Designing Alternatives to State Motor Fuel Taxes  

E-Print Network [OSTI]

Designing Alternatives to State Motor Fuel Taxes All states rely on gasoline taxes as one source efficiency and alternative fuel vehicles reduce both the equity of the revenue source and its growth over, leading to higher fuel efficiency, wide variations in fuel efficiency, and alternative- fuel vehicles

Bertini, Robert L.

282

From Gasoline Alleys to Electric Avenues  

Science Journals Connector (OSTI)

...From Gasoline Alleys to Electric Avenues 10.1126...for next-generation electric cars could help make...next-generation hybrid vehicle. Like today's hybrids...have dual gasoline and electric engines. But whereas...authorizing $1 million for rebates for future plug-in hybrid...

Eli Kintisch

2008-02-08T23:59:59.000Z

283

Ethers have good gasoline-blending attributes  

SciTech Connect (OSTI)

Because of their compatibility with hydrocarbon gasoline-blending components, their high octane blending values, and their low volatility blending values, ethers will grow in use as gasoline blending components. This article discusses the properties of ethers as blending components, and environmental questions.

Unzelman, G.H.

1989-04-10T23:59:59.000Z

284

What Drives U.S. Gasoline Prices?  

Reports and Publications (EIA)

This analysis provides context for considering the impact of rising domestic light crude oil production on the price that U.S. consumers pay for gasoline, and provides a framework to consider how changes to existing U.S. crude oil export restrictions might affect gasoline prices.

2014-01-01T23:59:59.000Z

285

Mapping surrogate gasoline compositions into RON/MON space  

SciTech Connect (OSTI)

In this paper, new experimentally determined octane numbers (RON and MON) of blends of a tri-component surrogate consisting of toluene, n-heptane, i-octane (called toluene reference fuel TRF) arranged in an augmented simplex design are used to derive a simple response surface model for the octane number of any arbitrary TRF mixture. The model is second-order in its complexity and is shown to be more accurate to the standard ''linear-by-volume'' (LbV) model which is often used when no other information is available. Such observations are due to the existence of both synergistic and antagonistic blending of the octane numbers between the three components. In particular, antagonistic blending of toluene and iso-octane leads to a maximum in sensitivity that lies on the toluene/iso-octane line. The model equations are inverted so as to map from RON/MON space back into composition space. Enabling one to use two simple formulae to determine, for a given fuel with known RON and MON, the volume fractions of toluene, n-heptane and iso-octane to be blended in order to emulate that fuel. HCCI engine simulations using gasoline with a RON of 98.5 and a MON of 88 were simulated using a TRF fuel, blended according to the derived equations to match the RON and MON. The simulations matched the experimentally obtained pressure profiles well, especially when compared to simulations using only PRF fuels which matched the RON or MON. This suggested that the mapping is accurate and that to emulate a refinery gasoline, it is necessary to match not only the RON but also the MON of the fuel. (author)

Morgan, Neal; Kraft, Markus [Department of Chemical Engineering, University of Cambridge, Cambridge CB2 3RA (United Kingdom); Smallbone, Andrew; Bhave, Amit [Reaction Engineering Solutions Ltd., 61 Canterbury Street, Cambridge CB4 3QG (United Kingdom); Cracknell, Roger; Kalghatgi, Gautam [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom)

2010-06-15T23:59:59.000Z

286

Batteries, Fuel Cells, and Flywheels  

Science Journals Connector (OSTI)

Cars and trucks are responsible for using almost 30 percent of the fossil fuel energy consumed in the United States. Almost all of this energy comes from petroleum products. When gasoline and diesel oil is bur...

Sidney Borowitz

1999-01-01T23:59:59.000Z

287

Design Case Summary: Production of Gasoline and Diesel from Biomass...  

Energy Savers [EERE]

Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking Design Case Summary: Production of Gasoline and Diesel from...

288

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

289

Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...  

Energy Savers [EERE]

Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy...

290

Reductant Chemistry during LNT Regeneration for a Lean Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster presented at the 16th...

291

DOE's Gasoline/Diesel PM Split Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GasolineDiesel PM Split Study DOE's GasolineDiesel PM Split Study 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerfujita.pdf More...

292

Load Expansion with Diesel/Gasoline RCCI for Improved Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

293

Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of...

294

In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate...

295

High Efficiency Clean Combustion Engine Designs for Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen...

296

In Oklahoma and other parts of the Midwest, gasoline prices have been  

E-Print Network [OSTI]

's biomass for biofuels can improve profitability for farmers, enhance local economies, attract capital for the production of drop-in biofuels including propanol, butanol and hexanol. These higher alcohols can be converted with chemical catalysts to produce renewable gasoline, diesel and jet fuels. "We are advancing

Balasundaram, Balabhaskar "Baski"

297

Deterioration of fuel stored in the tropics. Final report, November 1982-October 1984  

SciTech Connect (OSTI)

Automotive gasoline (Mogas), Aviation turbine fuel (JP-4), and Diesel fuel oil (DF-2) were exposed for two years in 55-gallon steel drums at the USATTC Fort Clayton POL Tank Farm. The number of Mogas samples found failing the distillation, unwashed gum content, and color tests increased with increased exposure. Results were basically similar for samples exposed in both shaded and unshaded exposure modes. JP-4 samples exhibited low Reid Vapor Pressure at the end of the test. DF-2 samples did not exhibit any deterioration throughout the test.

Chen

1984-10-01T23:59:59.000Z

298

Effect of use of low oxygenate gasoline blends upon emissions from California vehicles. Final report  

SciTech Connect (OSTI)

The objective of this project was to investigate the emissions effects of low-oxygenate gasoline blends on exhaust and evaporative emissions from a test fleet of California certified light-duty autos. Thirteen vehicles were procured and tested using four gasoline-oxygenate blends over three test cycles. The four gasoline blends were: Methyl Tertiary Butyl Ether (MTBE), Ethyl Tertiary Butyl Ether (ETBE), and 'match' and 'splash' blends of ethanol (in the 'match' blend the fuel Reid Vapor Pressure (RVP) is held constant, while in the 'splash' blend the fuel RVP is allowed to increase). Hydrocarbon and carbon monoxide exhaust emissions were generally reduced for the oxygenated blends, the exception being the 'splash-blended' ethanol gasoline which showed mixed results. Older technology vehicles (e.g., non-catalyst and oxidation catalyst) showed the greatest emissions reductions regardless of gasoline blend, while later technology vehicles showed the smallest reductions. Evaporative emissions and toxics were generally reduced for ETBE, while results for the other blends were mixed.

Born, G.L.; Lucas, S.V.; Scott, R.D.; DeFries, T.H.; Kishan, S.

1994-02-01T23:59:59.000Z

299

Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing  

SciTech Connect (OSTI)

In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

Hsu, D. D.

2011-03-01T23:59:59.000Z

300

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart comparing fuel properties and characteristics for multiple fuels. Select the fuel and properties of interest. Select Fuels Clear all All Fuels Gasoline Diesel (No. 2) Biodiesel Compressed Natural Gas (CNG) Electricity Ethanol Hydrogen Liquefied Natural Gas (LNG) Propane (LPG)

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions  

SciTech Connect (OSTI)

Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, an improved version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multicomponent gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines (3-50 atm, 650-1200K, stoichiometric fuel/air mixtures). Simulation results are discussed focusing attention on the mixing effects of the fuel components.

Mehl, M; Pitz, W J; Westbrook, C K; Curran, H J

2010-01-11T23:59:59.000Z

302

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

Science Journals Connector (OSTI)

In the present study we describe measurements of gas- and particle-phase carbonyl emissions from light-duty gasoline (LDV) and heavy-duty diesel (HDDV) motor vehicles operated on a chassis dynamometer under realistic driving cycles. ... Vehicles were tested under a five-mode driving cycle (HHDDT, heavy heavy-duty diesel truck) consisting of 30-min idle, 17-min creep, and 11-min transient stages and two cruise stages of 34 and 31 min, with a top speed of 65 miles h?1 for the second cruise (30). ... In general, as the volatility of the carbonyl decreased, so did the PUF/total particulate carbonyl ratio. ...

Chris A. Jakober; Michael A. Robert; Sarah G. Riddle; Hugo Destaillats; M. Judith Charles; Peter G. Green; Michael J. Kleeman

2008-05-24T23:59:59.000Z

303

Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability  

Broader source: Energy.gov [DOE]

Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

304

Gasoline Price Differences Caused by:  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: While my agency cannot be expert in every local gasoline market in the United States, we are familiar with a number of factors that can account for significant differences in prices between markets: Proximity of supply - distance from the refineries supplying the local market. Additionally, the proximity of those refineries to crude oil supplies can be a factor, as well as shipping logistics, including pipeline or waterborne, from refinery to market. Cost of supply - including crude oil, refinery operating, and transportation costs. Supply/demand balance - some regions are typically in excess or short supply, while others may vary seasonally, or when supply interruptions (such as refinery shutdowns) occur. Competitive environment - including the number of suppliers, and the

305

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network [OSTI]

natural gas and diesel fuel used in buildings is used in residential furnaces or similar combustors.

Delucchi, Mark

1996-01-01T23:59:59.000Z

306

An Octane-Fueled Solid Oxide Fuel Cell  

Science Journals Connector (OSTI)

...for the adoption of fuel cells for applications...not only reduces fuel consumption but also reduces...emission. Although fuel cells can achieve efficiencies...internal combustion engine, and H 2 is more...is, gasoline and diesel, has not been successful...

Zhongliang Zhan; Scott A. Barnett

2005-05-06T23:59:59.000Z

307

Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline Test Fluid  

Broader source: Energy.gov [DOE]

The National Renewable Energy Laboratory’s (NREL) Nonpetroleum-Based Fuel Task addresses the hurdles to commercialization of biomass-derived fuels and fuel blends. One such hurdle is the unknown compatibility of new fuels with current infrastructure, such as the equipment used at service stations to dispense fuel into automobiles. The U.S. Department of Energy’s (DOE) Vehicle Technology Program and the Biomass Program have engaged in a joint project to evaluate the potential for blending ethanol into gasoline at levels higher than nominal 10 volume percent. The U.S. Environmental Protection Agency (EPA) is considering a waiver application for 15% by volume ethanol blended into gasoline (E15). Should the waiver be granted, service stations may be able to use their current equipment to dispense the new fuel. This project was established to help DOE and NREL better understand any potentially adverse impacts caused by a lack of knowledge about the compatibility of the dispensing equipment with ethanol blends higher than what the equipment was designed to dispense. This report provides data about the impact of introducing a gasoline with a higher volumetric ethanol content into service station dispensing equipment from a safety and a performance perspective.

308

Fuel-Induced System Responses The Role Unconventional Fuels May Play in Altering Exhaust Conditions from Conventional and Low Temperature Modes of Combustion  

Broader source: Energy.gov [DOE]

Fuel properties and low temperature combustion e alters conditions thereby affecting exhaust-based thermoelectric device performance

309

Gasoline direct injection: Actual trends and future strategies for injection and combustion systems  

SciTech Connect (OSTI)

Recent developments have raised increased interest on the concept of gasoline direct injection as the most promising future strategy for fuel economy improvement of SI engines. The general requirements for mixture preparation and combustion systems in a GDI engine are presented in view of known and actual systems regarding fuel economy and emission potential. The characteristics of the actually favored injection systems are discussed and guidelines for the development of appropriate combustion systems are derived. The differences between such mixture preparation strategies as air distributed fuel and fuel wall impingement are discussed, leading to the alternative approach to the problem of mixture preparation with the fully air distributing concept of direct mixture injection.

Fraidl, G.K.; Piock, W.F.; Wirth, M.

1996-09-01T23:59:59.000Z

310

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

311

FCC Tail Gas olefins conversion to gasoline via catalytic distillation with aromatics  

SciTech Connect (OSTI)

The goal of every refiner is to continually improve profitability by such means as increasing gasoline production, increasing gasoline octane pool and in cases where fuel balance becomes a problem, decreasing refinery fuel gas production. A new refinery process is currently being developed which accomplish these goals. Chemical Research and Licensing Company (CR and L) developed Catalytic Distillation technology in 1978 to produce MTBE. They have since used the Catalytic Distillation technique to produce cumene. CR and L has further developed this technology to convert olefin gases currently consumed as refinery fuel, to high octane gasoline components. The process, known as CATSTILL, alkylates olefin gases such as ethylene, propylene and butylene, present in FCC Tail Gas with light aromatics such as benzene, toluene and xylene, present in reformate, to produce additional quantities of high octane gasoline components. A portable CATSTILL demonstration plant has been constructed by Brown and Root U.S.A., under an agreement with CR and L, for placement in a refinery to further develop data necessary to design commercial plants. This paper presents current data relative to the CATSTILL development.

Partin, E.E. (Brown and Root U.S.A., Inc., Houston, TX (US))

1988-01-01T23:59:59.000Z

312

Process for producing gasoline of high octane number, in particular lead-free gasoline  

SciTech Connect (OSTI)

A process is described for producing gasoline of high octane number from C/sub 3/ and C/sub 4/ olefinic cuts, such as those obtained by fractional distillation of a C/sub 3/ / C/sub 4/ catalytic cracking cut. It includes the steps of: (A) oligomerizing propylene of the C/sub 3/ cut to obtain a first gasoline fraction, (B) reacting the isobutene of the C/sub 4/ cut with methanol to produce methyl tert.-butyl ether which is separated from the unreacted C/sub 4/ hydrocarbons to form a second gasoline fraction, (C) alkylating said unreacted C/sub 4/ hydrocarbons with isobutane in the presence of an alkylation catalyst such as hydrofluoric acid, to form a third gasoline fraction, and (D) admixing, at least partially, said first, second and third gasoline fractions, so as to obtain gasoline of high octane number.

Chauvin, Y.; Gaillard, J.; Hellin, M.; Torck, B.; Vu, Q.D.

1981-06-02T23:59:59.000Z

313

Alternative Fuels Data Center: Alternative Fuels Tax or Fee  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuels Tax Alternative Fuels Tax or Fee to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax or Fee on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax or Fee on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax or Fee on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax or Fee on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax or Fee on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax or Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax or Fee A state excise tax applies to special fuels at a rate of $0.25 per gallon on a gasoline gallon equivalent basis. Special fuels include compressed

314

Summer 2002 Motor Gasoline Outlook2.doc  

Gasoline and Diesel Fuel Update (EIA)

Summer 2002 Motor Gasoline Outlook Summary For the upcoming summer season (April to September 2002), rising average crude oil costs are expected to yield above -average seasonal gasoline price increases at the pump. However, year-over-year comparisons for pump prices are still likely to be lower this summer. Inventories are at higher levels than last year in April, so some cushion against early-season price spikes is in place and price levels are expected to range below last year's averages, assuming no unanticipated disruptions. Still, OPEC production restraint and tightening world oil markets now probably mark the end of the brief respite (since last fall) from two years of relatively high gasoline prices. * Retail gasoline prices (regular grade) are expected to average $1.46 per gallon, 5

315

Why are gasoline prices falling so rapidly?  

Gasoline and Diesel Fuel Update (EIA)

Why are gasoline prices falling so rapidly? Why are gasoline prices falling so rapidly? As of October 29, 2001, the national average retail price of regular gasoline was $1.235 per gallon, its lowest level since November 8, 1999 (Figure 1). The average price has fallen 29 cents in 6 weeks since September 17, with further declines perhaps to come. The sharpest decline has been in the Midwest (Petroleum Administration for Defense District 2), where the average has dropped 57 cents in 8 weeks since Labor Day (September 3). Additionally, this decline comes on the heels of a 33-cent drop in the national average in 10 weeks from Memorial Day through August 6, interrupted only by a brief 17-cent rise in August. In total, the national average retail gasoline price has fallen nearly 48 cents from its peak on May 14. This is already the widest one-year range in retail prices

316

Eliminating MTBE in Gasoline in 2006  

Gasoline and Diesel Fuel Update (EIA)

02/22/2006 02/22/2006 Eliminating MTBE in Gasoline in 2006 Summary In 2005, a number of petroleum companies announced their intent to remove methyl tertiary-butyl ether (MTBE) from their gasoline in 2006. Companies' decisions to eliminate MTBE have been driven by State bans due to water contamination concerns, continuing liability exposure from adding MTBE to gasoline, and perceived potential for increased liability exposure due to the elimination of the oxygen content requirement for reformulated gasoline (RFG) included in the Energy Policy Act of 2005. EIA's informal discussions with a number of suppliers indicate that most of the industry is trying to move away from MTBE before the 2006 summer driving season. Currently, the largest use of MTBE is in RFG consumed on the East Coast outside of

317

U.S. gasoline prices increase slightly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

average retail price for regular gasoline rose slightly to 3.55 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based on the weekly price survey by the U.S....

318

Edgeworth price cycles in retail gasoline markets  

E-Print Network [OSTI]

In this dissertation, I present three essays that are motivated by the interesting and dynamic price-setting behavior of firms in Canadian retail gasoline markets. In the first essay, I examine behavior at the market level ...

Noel, Michael David, 1971-

2002-01-01T23:59:59.000Z

319

Deep desulfurization of hydrocarbon fuels  

DOE Patents [OSTI]

The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

Song, Chunshan (State College, PA); Ma, Xiaoliang (State College, PA); Sprague, Michael J. (Calgary, CA); Subramani, Velu (State College, PA)

2012-04-17T23:59:59.000Z

320

Underground coal gasification (UCG) gas to methanol and MTG-gasoline: an economic and sensitivity study, Task B  

SciTech Connect (OSTI)

This report, identified as Task B, examines the technical and economic aspects of the production of methanol and MTG-Gasoline using gas from an underground coal gasification (UCG) facility. The report is a sequel to a previous study performed in 1981 and identified as Task A. The Task A report, titled Cost Saving Concepts on the Production of Methanol from Underground Gasified Coal, examined the economics of producing fuel grade methanol using UCG gas. In this study we examine the economics of producing MTG-Gasoline as well as a number of other aspects of the economics of upgrading UCG gas. Capital and operating costs for three different capacities of MTG-Gasoline plant are presented. These are 1600 BPD, 4800 BPD, and 9600 BPD. These capacities are equivalent to fuel grade methanol plants having capacities of 4000 BPD, 12,000 BPD, and 24,000 BPD - the methanol capacities considered in the previous studies. The economics of the MTG-Gasoline plant were developed using published information and our best estimate of the processing steps in the MTG-Gasoline process. As part of this study, several sensitivity studies were undertaken to examine the sensitivity of both methanol and MTG-Gasoline product cost to changes in technical and economic parameters. Table 1.1 lists the various sensitivity studies undertaken. All cost figures are in first quarter 1982 dollars.

Not Available

1982-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

New Fuel Economy and Environment Label  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Window Sticker Beyond Tailpipe Emissions About the Label Gasoline Vehicles Plug-in Hybrid Vehicles Electric Vehicles QR Codes | Share Learn About the New Label Greenhouse gas emissions from vehicles are an important contributor to climate change. Visit EPA's climate change page for more details. View a video about the new labels. Click on a tab to view the new labels for various vehicle/fuel types. Move the cursor over parts of the label to learn more. Gasoline Vehicle Plug-In Hybrid Electric Vehicle (PHEV) Electric Vehicle Shows the type of fuel or fuels the vehicle can use. You will most commonly see "Gasoline Vehicle," "Flexible Fuel Vehicle: Gasoline-Ethanol," or "Diesel Vehicle." Learn more Find the MPG fuel economy estimates here. The Combined City/Highway

322

Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Retailer Fuel Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Retailer Tax Credit Retailers that sell fuel blends of gasoline containing up to 15% ethanol by

323

Alternative Fuels Data Center: Flexible Fuel Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Flexible Fuel Vehicle Flexible Fuel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicle Availability Flexible fuel vehicles (FFVs)-which can run on E85 (a gasoline-ethanol

324

Alternative Fuels Data Center: Ethanol Blended Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blended Fuel Ethanol Blended Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blended Fuel Definition Ethanol blended fuel, such as gasohol, is defined as any gasoline blended with 10% or more of anhydrous ethanol. (Reference Idaho Statutes 63-240

325

Fact #682: July 4, 2011 Federal Alternative Fuel Use | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2: July 4, 2011 Federal Alternative Fuel Use Fact 682: July 4, 2011 Federal Alternative Fuel Use The Federal Government used nearly 9 million gasoline-gallon equivalents of...

326

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network [OSTI]

97 BTUs of refinery energy per BTU of dieseland hydrogen) per BTU of diesel produced, depending onof refinery energy per BTU of diesel fuel In the real world

Delucchi, Mark

2003-01-01T23:59:59.000Z

327

Transportation fuels from synthetic gas  

SciTech Connect (OSTI)

Twenty-five experimental Fischer-Tropsch synthesis runs were made with 14 different catalysts or combinations of catalysts using a Berty reactor system. Two catalysts showed increased selectivity to transportation fuels compared to typical Fischer-Tropsch catalysts. With a catalyst consisting of 5 wt % ruthenium impregnated on a Y zeolite (run number 24), 63 to 70 wt % of the hydrocarbon product was in the gasoline boiling range. Using a 0.5 wt % ruthenium on alumina catalyst (run number 22), 64 to 78 wt % of the hydrocarbon product was in the diesel fuel boiling range. Not enough sample was produced to determine the octane number of the gasoline from run number 24, but it is probably somewhat better than typical Fischer-Tropsch gasoline (approx. 50) and less than unleaded gasoline (approx. 88). The diesel fuel produced in run number 22 consisted of mostly straight chained paraffins and should be an excellent transportation fuel without further refining. The yield of transportation fuels from biomass via gasification and the Fischer-Tropsch synthesis with the ruthenium catalysts identified in the previous paragraph is somewhat less, on a Btu basis, than methanol (via gasification) and wood oil (PERC and LBL processes) yields from biomass. However, the products of the F-T synthesis are higher quality transportation fuels. The yield of transportation fuels via the F-T synthesis is similar to the yield of gasoline via methanol synthesis and the Mobil MTG process.

Baker, E.G.; Cuello, R.

1981-08-01T23:59:59.000Z

328

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from High Ethanol Content Fuels  

SciTech Connect (OSTI)

Study determined the flammability of fuel tank headspace vapors as a function of ambient temperature for seven E85 fuel blends, two types of gasoline, and denatured ethanol at a low tank fill level.

Gardiner, D.; Bardon, M.; Pucher, G.

2008-10-01T23:59:59.000Z

329

Effect of Fuel Ethanol on Subsurface Microorganisms and its Influence on Biodegradation of BTEX Compounds.  

E-Print Network [OSTI]

??Ethanol is used as fuel in neat form in some countries (Brazil and India) or blended with gasoline (Europe, Canada and the United States). The… (more)

Araujo, Daniela

2006-01-01T23:59:59.000Z

330

E-Print Network 3.0 - alternative-fueled vehicles near-term Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Medicine 9 Economic Implications of Natural Gas Vehicle Technology in U.S. Private Automobile Transportation Summary: alternative fuels with similar infrastructure to gasoline...

331

Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates  

Broader source: Energy.gov [DOE]

Vehicle systems simulations using experimental data demonstrate improved modeled fuel economy of 15% for passenger vehicles solely from powertrain efficiency relative to a 2009 PFI gasoline baseline.

332

DOE Announces Webinars on Fuel Cells at NASCAR, an Advanced Energy...  

Energy Savers [EERE]

to replace small portable gasoline generators with SOFC units that use commercial propane. These generators demonstrated considerable fuel savings and emission reductions...

333

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network [OSTI]

Livestock Fuel for Water Pumping Motor Efficiency GW EnergyRequired for Water Pumps Using Electric Motors (AdaptedGasoline motors typically used for water pumps are

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

334

Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: August 4, 9: August 4, 2003 Gasoline Stations to someone by E-mail Share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Facebook Tweet about Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Twitter Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Google Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Delicious Rank Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Digg Find More places to share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on AddThis.com... Fact #279: August 4, 2003 Gasoline Stations The number of retail outlets that sell gasoline to the public has declined by 17.7% from 1993 to 2002 - from 207,416 in 1993, to 170,678 in 2002.

335

Low Gasoline Stocks Indicate Increased Odds of Spring Volatility  

Gasoline and Diesel Fuel Update (EIA)

We cannot just focus on distillate. Gasoline will likely be our next We cannot just focus on distillate. Gasoline will likely be our next major concern. Gasoline stock levels have fallen well below the typical band for this time of year, primarily for the same reason distillate stocks fell to low levels -- namely relatively low production due to low margins. At the end of January, total gasoline inventories were almost 13 million barrels (6%) below the low end of the normal band. While gasoline stocks are generally not as important a supply source to the gasoline market this time of year as are distillate stocks to the distillate market, gasoline stocks still are needed. Gasoline stocks are usually used to help meet gasoline demand during February and March as refiners go through maintenance and turnarounds, but we do not have the

336

U.S. Motor Gasoline Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Motor Gasoline Regular Gasoline Midgrade Gasoline Premium Gasoline Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Product: Motor Gasoline Regular Gasoline Midgrade Gasoline Premium Gasoline Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Sales to End Users, Total 28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 Through Retail Outlets 26,507.1 22,632.7 22,641.3 22,038.2 22,474.5 21,660.0 1983-2013 Sales for Resale, Total NA NA NA NA NA NA 1983-2013 DTW 24,954.1 29,704.3 30,138.3 29,222.8 30,011.9 28,880.3 1994-2013 Rack 236,373.7 242,166.6 243,892.5 243,789.7 248,761.4 237,431.5 1994-2013

337

Alternative Fuels Data Center: Alternative Fuel Excise Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Excise Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Excise Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Excise Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Excise Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Excise Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Excise Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Excise Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Excise Tax An excise tax of $0.075 per gallon or gasoline gallon equivalent (GGE) is imposed on all compressed natural gas (CNG), liquefied natural gas (LNG),

338

Alternative Fuels Data Center: Reduced Propane Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Reduced Propane Fuel Reduced Propane Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Reduced Propane Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Reduced Propane Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Reduced Propane Fuel Tax on Google Bookmark Alternative Fuels Data Center: Reduced Propane Fuel Tax on Delicious Rank Alternative Fuels Data Center: Reduced Propane Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Reduced Propane Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Reduced Propane Fuel Tax The tax imposed on liquefied petroleum gas, or propane, used to operate a motor vehicle is equal to half the tax paid on the sale or use of gasoline,

339

Alternative Fuels Data Center: Ethanol Fuel Blend Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Ethanol Fuel Blend Standard to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Standard At least 85% of gasoline supplied to a retailer or sold in Hawaii must contain a minimum of 10% ethanol (E10), unless the Director determines that

340

Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends  

SciTech Connect (OSTI)

Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

Storey, John Morse [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Ethanol Demand in United States Gasoline Production  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

Hadder, G.R.

1998-11-24T23:59:59.000Z

342

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section IV. Fuel Cells  

E-Print Network [OSTI]

W advanced PEM power plant. Approach Figure 1 provides a schematic of the gasoline fuel cell power plantHydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 265 Section IV. Fuel Cells #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 266 #12;Hydrogen

343

DFMA Cost Estimates of Fuel-Cell/Reformer Systems  

E-Print Network [OSTI]

Car Technical Barriers Addressed: Fuel Flexible Processors Technical Barriers N: Cost Component designs of complete automotive FC power systems: · Onboard gasoline fuel processor and PEM fuel cell ·Fuel cell stacks ·Air supply and humidification ·Thermal management ·Water management ·Fuel Supply

344

Summer 2003 Motor Gasoline Outlook.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1 Short-Term Energy Outlook April 2003 Summer 2003 Motor Gasoline Outlook Summary For the upcoming summer season (April to September 2003), high crude oil costs and other factors are expected to yield average retail motor gasoline prices higher than those of last year. Current crude oil prices reflect a substantial uncertainty premium due to concerns about the current conflict in the Persian Gulf, lingering questions about whether Venezuelan oil production will recover to near pre-strike levels in time for the peak driving season, and the impact of recent disruptions in Nigerian oil output. Moreover, unusually low crude oil and gasoline inventory levels at the outset of the driving season are expected to keep prices high throughout much of the

345

1995 Reformulated Gasoline Market Affected Refiners Differently  

Gasoline and Diesel Fuel Update (EIA)

5 Reformulated Gasoline Market Affected 5 Reformulated Gasoline Market Affected Refiners Differently by John Zyren, Charles Dale and Charles Riner Introduction The United States has completed its first summer driving season using reformulated gasoline (RFG). Motorists noticed price increases at the retail level, resulting from the increased cost to produce and deliver the product, as well as from the tight sup- ply/demand balance during the summer. This arti- cle focuses on the costs of producing RFG as experienced by different types of refiners and on how these refiners fared this past summer, given the prices for RFG at the refinery gate. RFG Regulatory Requirements The use of RFG is a result of the Clean Air Act Amendments of 1990 (CAAA). The CAAA cover a wide range of programs aimed at improving air qual-

346

Projecting full build-out environmental impacts and roll-out strategies associated with viable hydrogen fueling  

E-Print Network [OSTI]

2 August 2011 Available online 15 September 2011 Keywords: Hydrogen Infrastructure Fuel cell gasoline internal combustion engine vehicles to hydrogen fuel cell electric vehicles (FCEVs) is likely include hydrogen in fuel cell pow- e

Dabdub, Donald

347

Study on impulsive noise radiation from of gasoline direct injector  

Science Journals Connector (OSTI)

A gasoline direct injection (GDI) engine uses its own injectors for high pressure fuel supply to the combustion chamber. High frequency impact sound during the injection process is one of the main contributors to engine combustion noise. This impact noise is generated during opening and closing by an injector rod operated by a solenoid. For design of an injector with reduced noise generation it is necessary to analyze its sound radiation mechanism and propose consequent evaluation method. Spectral and modal characteristics of the injectors were measured through vibration induced by external hammer excitation. The injector modal characteristics were analyzed using a simple beam after analyzing its boundaries by complex transverse and rotational springs. To evaluate impulsive sounds more effectively Prony analysis of sounds was used for verifying influence of injector modal characteristics.

2014-01-01T23:59:59.000Z

348

Microsoft Word - Summer 2004 Motor Gasoline Outlook.doc  

Gasoline and Diesel Fuel Update (EIA)

April 2004 April 2004 Summer 2004 Motor Gasoline Outlook Summary * Gasoline markets are tight as the 2004 driving season begins and conditions are likely to remain volatile through the summer. High crude oil costs, strong gasoline demand growth, low gasoline inventories, uncertainty about the availability of gasoline imports, high transportation costs, and changes in gasoline specifications have added to current and expected gasoline costs and pump prices. * For the upcoming summer driving season (April to September 2004), retail gasoline prices (regular grade, all formulations) are projected to average $1.76 per gallon, about 20 cents above last summer. A 95-percent confidence range for the summer price average, excluding specific consideration of major

349

Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: February 26, 8: February 26, 2007 Gasoline Price Expectations to someone by E-mail Share Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Facebook Tweet about Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Twitter Bookmark Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Google Bookmark Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Delicious Rank Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Digg Find More places to share Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on AddThis.com... Fact #458: February 26, 2007 Gasoline Price Expectations

350

Factors Impacting Gasoline Prices and Areas for Further Study  

Gasoline and Diesel Fuel Update (EIA)

Factors Impacting Gasoline Prices and Areas for Further Study Factors Impacting Gasoline Prices and Areas for Further Study 8/10/01 Click here to start Table of Contents Factors Impacting Gasoline Prices and Areas for Further Study Different Factors Impact Different Aspects of Gasoline Price Correlation of Price to Inventory Levels Crude Prices Strongly Related to OECD.Crude & Product Inventories Gasoline Prices Also Influenced by Regional Gasoline Product Markets Tight Product Balance Pushes Up Product Spread (Spot Product - Crude Price) Retail Price Changes Lag Spot Prices Cumulative Gasoline Price Pass-through Illustration of How Lag Effect Dampens and Slows Retail Price Changes from Wholesale Recent Weekly Retail Price Changes Have Been as Expected Summary: Most Gasoline Price Movement Can Be Explained As Rational Market Behavior Author: Joanne Shore

351

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fleet that operates more than 30,000 motorized vehicles and has hybrid electric (diesel and gasoline) vehicles currently in service. FedEx Express has deployed 20 gasoline...

352

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

353

U.S. gasoline price falls under $3 (short version)  

U.S. Energy Information Administration (EIA) Indexed Site

3, 2014 U.S. gasoline price falls under 3 (short version) The U.S. average retail price for regular gasoline fell to its lowest level since December 2010 at 2.99 a gallon on...

354

U.S. gasoline price falls under $3 (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

November 3, 2014 U.S. gasoline price falls under 3 (long version) The U.S. average retail price for regular gasoline fell to its lowest level since December 2010 at 2.99 a gallon...

355

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

356

The relationship between crude oil and gasoline prices  

Science Journals Connector (OSTI)

This study investigates the dynamic relationship between crude oil and retail gasoline prices during the last 21 years and determines ... that date, the results show that gasoline prices include higher profit mar...

Ali T. Akarca; Dimitri Andrianacos

1998-08-01T23:59:59.000Z

357

Fact #835: August 25, Average Historical Annual Gasoline Pump...  

Energy Savers [EERE]

5: August 25, Average Historical Annual Gasoline Pump Price, 1929-2013 Fact 835: August 25, Average Historical Annual Gasoline Pump Price, 1929-2013 When adjusted for inflation,...

358

Revisiting the Income Effect: Gasoline Prices and Grocery Purchases  

E-Print Network [OSTI]

Gasoline and Crude Oil Prices, 2000-2006 Figure I:Weekly Gasoline and Crude Oil Prices for 2001- 2006 Crudeargue that increases in oil prices may lead to recessions

Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

2008-01-01T23:59:59.000Z

359

DOE's Gasoline/Diesel PM Split Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Desert Research Institute 2003deerfujita.pdf More Documents & Publications DOE's GasolineDiesel PM Split Study DOE's GasolineDiesel PM Split Study Long-Term Changes in Gas-...

360

Three-stage autoignition of gasoline in an HCCI engine: An experimental and chemical kinetic modeling investigation  

SciTech Connect (OSTI)

The alternative HCCI combustion mode presents a possible means for decreasing the pollution with respect to conventional gasoline or diesel engines, while maintaining the efficiency of a diesel engine or even increasing it. This paper investigates the possibility of using gasoline in an HCCI engine and analyzes the autoignition of gasoline in such an engine. The compression ratio that has been used is 13.5, keeping the inlet temperature at 70 C, varying the equivalence ratio from 0.3 to 0.54, and the EGR (represented by N{sub 2}) ratio from 0 to 37 vol%. For comparison, a PRF95 and a surrogate containing 11 vol% n-heptane, 59 vol% iso-octane, and 30 vol% toluene are used. A previously validated kinetic surrogate mechanism is used to analyze the experiments and to yield possible explanations to kinetic phenomena. From this work, it seems quite possible to use the high octane-rated gasoline for autoignition purposes, even under lean inlet conditions. Furthermore, it appeared that gasoline and its surrogate, unlike PRF95, show a three-stage autoignition. Since the PRF95 does not contain toluene, it is suggested by the kinetic mechanism that the benzyl radical, issued from toluene, causes this so-defined ''obstructed preignition'' and delaying thereby the final ignition for gasoline and its surrogate. The results of the kinetic mechanism supporting this explanation are shown in this paper. (author)

Machrafi, Hatim; Cavadias, Simeon [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D'Alembert (France)

2008-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Microsoft PowerPoint - NEAC on Science Based Fuel Cycle R&D.PPT [Compatibility Mode]  

Broader source: Energy.gov (indexed) [DOE]

Advanced Advanced Fuel Cycle Initiative The Advanced Fuel Cycle Initiative Science Based Fuel Cycle y Research and Development Phillip Finck Idaho National Laboratory June 9, 2009 Former Programmatic Approach Incremental improvement of existing technologies to allow for short-term (~20 years) deployment, driven by better utilization of Yucca Mountain y ) p y , y - Specific choice of technologies and integrated system (dictated by time frame and Yucca Mountain characteristics) - Challenges were well identified - Engineering approaches were chosen to address these challenges - Fundamental challenges had also been identified (2006 workshops), but were marginally acted upon (e.g., modeling and simulation) The industrial approach resulted in very limited investment in the tools needed

362

Why Do Motor Gasoline Prices Vary Regionally? California Case Study  

Reports and Publications (EIA)

Analysis of the difference between the retail gasoline prices in California and the average U.S. retail prices.

1998-01-01T23:59:59.000Z

363

National Survey of E85 and Gasoline Prices  

SciTech Connect (OSTI)

Study compares the prices of E85 and regular gasoline nationally and regionally over time for one year.

Bergeron, P.

2008-10-01T23:59:59.000Z

364

Catalytic isomerization of the overhead fractions of straight run gasoline  

Science Journals Connector (OSTI)

The isomerization of the pentane and hexane fractions of gasoline on a platinum catalyst was studied, as...

N. R. Bursian; G. N. Maslyanskii…

1965-06-01T23:59:59.000Z

365

1999 2000 2001 2002 2003 2004... 2005 2006 gasoline diesel  

E-Print Network [OSTI]

1999 2000 2001 2002 2003 2004... 2005 2006 gasoline diesel price +10% gasolinegasoline gasoline diesel... ... 2007 20081998 2009 ...2010 home work home work diesel diesel ... gasoline diesel price -7, households' decisions are affected by various other factors, from the vehicle market offer to governmental

Bierlaire, Michel

366

Empirical Regularities of Asymmetric Pricing in the Gasoline Industry  

E-Print Network [OSTI]

Empirical Regularities of Asymmetric Pricing in the Gasoline Industry Marc Remer August 2, 2010 pricing in the retail gasoline industry, and also documents empirical regularities in the market. I find of asymmetric price movements in the retail gasoline industry. Yet, there is no general agreement as to whether

Niebur, Ernst

367

Ethanol Production and Gasoline Prices: A Spurious Correlation  

E-Print Network [OSTI]

Ethanol Production and Gasoline Prices: A Spurious Correlation Christopher R. Knittel and Aaron Smith July 12, 2012 Abstract Ethanol made from corn comprises 10% of US gasoline, up from 3% in 2003 proponents of ethanol have argued that ethanol production greatly lowers gasoline prices, with one industry

Rothman, Daniel

368

NIST Technical Note 1666 Modeling the Effects of Outdoor Gasoline  

E-Print Network [OSTI]

NIST Technical Note 1666 Modeling the Effects of Outdoor Gasoline Powered Generator Use on Indoor Technical Note 1666 Modeling the Effects of Outdoor Gasoline Powered Generator Use on Indoor Carbon Monoxide and Technology (NIST) conducted a study for CDC to examine the impact of distance of gasoline-powered portable

369

ISSN 1745-9648 Gasoline Prices Jump Up on Mondays  

E-Print Network [OSTI]

ISSN 1745-9648 Gasoline Prices Jump Up on Mondays: an Outcome of Aggressive Competition? by Ã?ystein Research Council is gratefully acknowledged. #12;Gasoline prices jump up on Mondays: An outcome, 2008 Abstract This paper examines Norwegian gasoline pump prices using daily station

Feigon, Brooke

370

What Do Consumers Believe About Future Gasoline Soren T. Anderson  

E-Print Network [OSTI]

What Do Consumers Believe About Future Gasoline Prices? Soren T. Anderson Michigan State University of consumers about their expectations of future gasoline prices. Overall, we find that consumer beliefs follow a random walk, which we deem a reasonable forecast of gasoline prices, but we find a deviation from

Silver, Whendee

371

Production of high-octane automobile gasolines by the catalytic reforming of straight-run gasoline fractions from mangyshlak crude  

Science Journals Connector (OSTI)

High-octane components for AI-93 and AI-98 automobile gasolines can be obtained in 86 and 82% ... 140, 140–180, and 85–180°C gasoline fractions from Mangyshlak crude.

V. A. Kuprianov; A. A. Timofeev; V. E. Gavrun…

1971-08-01T23:59:59.000Z

372

Alternative Fuels Data Center: E85: An Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

E85: An Alternative E85: An Alternative Fuel to someone by E-mail Share Alternative Fuels Data Center: E85: An Alternative Fuel on Facebook Tweet about Alternative Fuels Data Center: E85: An Alternative Fuel on Twitter Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Google Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Delicious Rank Alternative Fuels Data Center: E85: An Alternative Fuel on Digg Find More places to share Alternative Fuels Data Center: E85: An Alternative Fuel on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives E85 Photo of an E85 pump. E85 is a high-level gasoline-ethanol blend containing 51% to 83% ethanol,

373

Direct production of fractionated and upgraded hydrocarbon fuels from biomass  

SciTech Connect (OSTI)

Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

2014-08-26T23:59:59.000Z

374

Study of methanol-to-gasoline process for production of gasoline from coal  

Science Journals Connector (OSTI)

The methanol-to-gasoline (MTG) process is an efficient way to produce liquid ... The academic basis of the coal-to-liquid process is described and two different synthesis processes are focused on: Fixed MTG process

Tian-cai He; Xiao-han Cheng; Ling Li…

2009-03-01T23:59:59.000Z

375

Reformulated gasoline: Costs and refinery impacts  

SciTech Connect (OSTI)

Studies of reformulated gasoline (RFG) costs and refinery impacts have been performed with the Oak Ridge National Laboratory Refinery Yield Model (ORNL-RYM), a linear program which has been updated to blend gasolines to satisfy emissions constraints defined by preliminary complex emissions models. Policy makers may use the reformulation cost knee (the point at which costs start to rise sharply for incremental emissions control) to set emissions reduction targets, giving due consideration to the differences between model representations and actual refining operations. ORNL-RYM estimates that the reformulation cost knee for the US East Coast (PADD I) is about 15.2 cents per gallon with a 30 percent reduction of volatile organic compounds (VOCs). The estimated cost knee for the US Gulf Coast (PADD III) is about 5.5 cents per gallon with a VOC reduction of 35 percent. Reid vapor pressure (RVP) reduction is the dominant VOC reduction mechanism. Even with anti-dumping constraints, conventional gasoline appears to be an important sink which permits RFG to be blended with lower aromatics and sulfur contents in PADD III. In addition to the potentially large sensitivity of RFG production to different emissions models, RFG production is sensitive to the non-exhaust VOC share assumption for a particular VOC model. ORNL-RYM has also been used to estimate the sensitivity of RFG production to the cost of capital; to the RVP requirements for conventional gasoline; and to the percentage of RFG produced in a refining region.

Hadder, G.R.

1994-02-01T23:59:59.000Z

376

Modeling effects of vehicle specifications on fuel economy based on engine fuel consumption map and vehicle dynamics  

Science Journals Connector (OSTI)

Abstract The present study conducts a vehicle dynamic modeling of gasoline and diesel vehicles by using the AVL commercial program. 10 passenger vehicles were tested for 7 types of driving modes containing city, express and highway driving mode. The various vehicle data (specifications, fuel consumption map, gear shifting curve data, etc.) were collected and implemented as input data. The calculations were conducted with changing driving modes and vehicle types, and prediction accuracy of the calculation results were validated based on chassis dynamometer test data. In order to increase prediction accuracy for a wide vehicle operating range, some modifications regarding gear shifting was also conducted. From these processes, it is confirmed that the prediction accuracy of fuel efficiency and CO2 emissions shows a strong correlations with test results. After ensuring the accuracy of the calculation result, parametric studies were conducted to reveal correlations between vehicle specifications (e.g., vehicle weight and frontal area) on fuel efficiency and CO2 emissions and check which parameters were highly impact on fuel efficiency.

Yunjung Oh; Junhong Park; Jongtae Lee; Myung Do Eom; Sungwook Park

2014-01-01T23:59:59.000Z

377

Apparatus for improving gasoline comsumption, power and reducing emission pollutants of internal combustion engines  

SciTech Connect (OSTI)

This patent describes an apparatus for improving performance and reducing fuel comsumption and emission pollutants from an internal combustion gasoline engine. This apparatus consists of: 1.) an internal combustion gasoline engine having, in part, an intake manifold and an exhaust manifold where the exhaust manifold is modified to include a manifold exhaust port; 2.) a modified internal combustion engine carburetor connected to the intake manifold on the engine; 3.) a positive crankcase ventilation valve (PCV) which has an input port conventionally connected to the internal combustion engine and also has a PCV output port; 4.) an automobile fuel pump having an input connected to a conventional fuel tank and having a fuel pump output port; 5.) a thermic reactor; 6.) a thermic reactor air cleaner pneumatically connected to the clean air input port on the thermic reactor; 7.) a catalytic gas injector; 8.) a fuel regulator/restrictor consisting of a solid block having a fuel pump input port and a carburetor output port.

Piedrafita, R.

1986-02-18T23:59:59.000Z

378

Automated Fuel Dispensing System Form Instructions  

E-Print Network [OSTI]

Automated Fuel Dispensing System Form Instructions If additional forms are necessary to provide(s) are hired and will be obtaining fuel, an Add Driver Form MUST be submitted for entry into the web database and/or diesel fuel to operate. Note: When a new vehicle, golf cart (gasoline), etc., is placed

Fernandez, Eduardo

379

Hybrid Cars Now, Fuel Cell Cars Later  

Science Journals Connector (OSTI)

...Cars Now, Fuel Cell Cars...manufacturer of diesel engines) and an advisor...Power, a fuel cell manufacturer...2). This consumption resulted in...vehicles and fuel cell (FC...combustion engine (ICE) drive...gasoline, or diesel). For each...

Nurettin Demirdöven; John Deutch

2004-08-13T23:59:59.000Z

380

Alcohol-based fuels from syngases  

SciTech Connect (OSTI)

Development of catalysts and reactor systems for producing alcohol-based fuels from coal-derived synthesis gases is outlined. Also, utilization of alcohol-based fuels either as gasoline blending stocks at 10-20% addition rates or as straight-run fuels is discussed. (Refs. 4).

Greene, M.I.

1982-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE  

E-Print Network [OSTI]

IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE SURVEYS By Michael J. Moran, Rick M. Clawges, and John S. Zogorski U.S. Geological Survey 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly added to gasoline

382

Effect of syngas composition on combustion and exhaust emission characteristics in a pilot-ignited dual-fuel engine operated in PREMIER combustion mode  

Science Journals Connector (OSTI)

The objective of this study was to investigate the performance and emissions of a pilot-ignited, supercharged, dual-fuel engine powered by different types of syngas at various equivalence ratios. It was found that if certain operating conditions were maintained, conventional engine combustion could be transformed into combustion with two-stage heat release. This mode of combustion has been investigated in previous studies with natural gas, and has been given the name \\{PREmixed\\} Mixture Ignition in the End-gas Region (PREMIER) combustion. PREMIER combustion begins as premixed flame propagation, and then, because of mixture autoignition in the end-gas region, ahead of the propagating flame front, a transition occurs, with a rapid increase in the heat release rate. It was determined that the mass of fuel burned during the second stage affected the rate of maximum pressure rise. As the fuel mass fraction burned during the second stage increased, the rate of maximum pressure rise also increased, with a gradual decrease in the delay between the first increase in the heat release rate following pilot fuel injection and the point when the transition to the second stage occurred. The H2 and CO2 content of syngas affected the engine performance and emissions. Increased H2 content led to higher combustion temperatures and efficiency, lower CO and HC emissions, but higher \\{NOx\\} emissions. Increased CO2 content influenced performance and emissions only when it reached a certain level. In the most recent studies, the mean combustion temperature, indicated thermal efficiency, and \\{NOx\\} emissions decreased only when the CO2 content of the syngas increased to 34%. PREMIER combustion did not have a major effect on engine cycle-to-cycle variation. The coefficient of variation of the indicated mean effective pressure (COVIMEP) was less than 4% for all types of fuel at various equivalence ratios, indicating that the combustion was within the stability range for engine operation.

Ulugbek Azimov; Eiji Tomita; Nobuyuki Kawahara; Yuji Harada

2011-01-01T23:59:59.000Z

383

Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual-Mode Operation with Low Degradation - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Eric Tang, Tony Wood, Sofiane Benhaddad, Casey Brown, Hongpeng He, Jeff Nelson, Oliver Grande, Ben Nuttall, Mark Richard, Randy Petri (Primary Contact) Versa Power Systems 10720 Bradford Road #110 Littleton, CO 80127 Phone: (303) 226-0762 Email: randy.petri@versa-power.com DOE Managers HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov

384

Missouri Renewable Fuel Standard Brochure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

The Missouri Renewable Fuel Standard The Missouri Renewable Fuel Standard requires ethanol in most gasoline beginning January 1, 2008. ARE YOU READY? TEN THINGS MISSOURI TANK OWNERS AND OPERATORS NEED TO KNOW ABOUT ETHANOL 1. Ethanol is a type of alcohol made usually from corn in Missouri and other states. 2. E10 is a blend of 10% ethanol and 90% unleaded gasoline. E85 is a blend of 75% to 85% fuel ethanol and 25% to 15% unleaded gasoline. Blends between E10 and E85 are not allowed to be sold at retail. 3. Any vehicle or small engine should run fine on E10, but only specially designed vehicles can use E85. 4. You are not required to label your dispensers disclosing the ethanol content if you are selling E10. However, you are required to label your dispensers if you are selling E85.

385

HOW CONSUMERS VALUE FUEL ECONOMY: A LITERATURE REVIEW  

E-Print Network [OSTI]

......................................... xiii 1 Passenger Car and Light Truck Fuel Economy, Fuel Economy Standards and the Price of GasolineHOW CONSUMERS VALUE FUEL ECONOMY: A LITERATURE REVIEW David L. Greene Oak Ridge National ...............................................................................................................1 2. ALTERNATIVE MODELS OF CONSUMERS' EVALUATION OF FUEL ECONOMY

386

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended  

Open Energy Info (EERE)

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline

387

Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden...  

Broader source: Energy.gov (indexed) [DOE]

by lawn and garden equipment. The fuel used in this equipment accounts for only 1.8% of total gasoline use. Fuel Consumption from Lawn and Garden Equipment, 2008 Bar graph...

388

Fact #817: February 17, 2014 Conventional and Alternative Fuel Price Trends from 2000 to 2013  

Broader source: Energy.gov [DOE]

Retail prices for most transportation fuels have been highly volatile over the past 13 years. The figure below shows quarterly price fluctuations for select fuel types from 2000 to 2013. Gasoline,...

389

Fact #818: April 21, 2014 The Effect of Winter Weather on Fuel Economy  

Broader source: Energy.gov [DOE]

Winter driving conditions and cold temperatures can have a significant effect on a vehicle’s fuel economy. For a conventional gasoline-powered vehicle, fuel economy at 20°F is about 12% lower than...

390

Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Outlook for Light-Duty-Vehicle Fuel Demand Outlook for Light-Duty-Vehicle Fuel Demand Gasoline and distillate demand impact of the Energy Independance and Security Act of 2007...

391

NREL: Learning - Alternative Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternative Fuels Alternative Fuels Photo of a man standing next to a large heavy-duty truck cab while the truck is being filled with biodiesel at a refueling station. As part of its work for the Clean Cities program, NREL helps people find and use alternative fuels such as biodiesel. Credit: L.L. Bean To reduce our growing dependence on imported oil, our nation's researchers are working with industry to develop several different kinds of alternative fuels. Some of these fuels can either be blended with petroleum while some are alternatives to petroleum. Using alternative fuels can also help to curb exhaust emissions and contribute to a healthier environment. Most of today's conventional cars, vans, trucks, or buses can already run on some alternative fuels, such as blends of gasoline or diesel fuel that

392

First methanol-to-gasoline plant nears startup in New Zealand  

SciTech Connect (OSTI)

Sometime during the summer 1985, New Zealand Synthetic Fuels Co. was scheduled to begin operating its new plant at Motunui, New Zealand. It marks the first commercial application of the Mobil methanol-to-gasoline (MTG) process. Moreover, as the result of a modular approach directed by Bechtel Corp. personnel, the plant represents a major construction success. It is also the first example of a new technology that may seriously challenge traditional Fischer-Tropsch chemistry as a route to synthetic fuels and organic feedstocks. The MTG plant will produce 14,000 barrels per day of gasoline with an octane number rating of 92 to 94 (according to research results). This amount is about one third of present New Zealand demand. The gasoline will be made by catalytic conversion of methanol coming from two plants, each producing about 220 metric tons per day for the single-train MTG plant. The methanol, in turn, is derived from reforming of natural gas from offshore fields in the Tasman Sea.

Haggin, J.

1985-03-25T23:59:59.000Z

393

Why Are Gasoline Prices Rising so Fast  

Gasoline and Diesel Fuel Update (EIA)

Statement of John Cook Statement of John Cook Before the Committee on Government Reform Subcommittee on Energy Policy, Natural Resources and Regulatory Affairs U.S. House of Representatives June 14, 2001 Thank you Mr. Chairman and members of the Committee for the opportunity to testify today. Gasoline prices have begun declining, as expected, from this spring's apparent peak price of $1.71 on May 14, with the national average for regular gasoline at $1.65 per gallon as of June 11 (Figure 1). Between late March and mid-May, retail prices rose 31 cents per gallon, with some regions experiencing even greater increases. Like last year, Midwest consumers saw some of the largest increases, and along with California, some of the highest prices. Prices in the Midwest increased 43 cents per

394

Maintenance and operation of the US Alternative Fuel Center  

SciTech Connect (OSTI)

The Alternative Fuels Utilization Program (AFUP) of the Office of Energy Efficiency and Renewable Energy has investigated the possibilities and limitations of expanded scope of fuel alternatives and replacement means for transportation fuels from alternative sources. Under the AFUP, the Alternative Fuel Center (AFC) was created to solve problems in the DOE programs that were grappling with the utilization of shale oil and coal liquids for transportation fuels. This report covers the first year at the 3-year contract. The principal objective was to assist the AFUP in accomplishing its general goals with two new fuel initiatives selected for tasks in the project year: (1) Production of low-sulfur, low-olefin catalytically cracked gasoline blendstock; and (2) production of low-reactivity/low-emission gasoline. Supporting goals included maintaining equipment in good working order, performing reformulated gasoline tests, and meeting the needs of other government agencies and industries for fuel research involving custom processing, blending, or analysis of experimental fuels.

Erwin, J.; Ferrill, J.L.; Hetrick, D.L. [Southwest Research Inst., San Antonio, TX (United States)

1994-08-01T23:59:59.000Z

395

This Week In Petroleum Gasoline Section  

Gasoline and Diesel Fuel Update (EIA)

Regular Gasoline Retail Prices (Dollars per Gallon) Regular Gasoline Retail Prices (Dollars per Gallon) Retail Average Regular Gasoline Prices Petroleum Data Tables more data Most Recent Year Ago 11/04/13 11/11/13 11/18/13 11/25/13 12/02/13 12/09/13 12/16/13 12/17/12 U.S. 3.265 3.194 3.219 3.293 3.272 3.269 3.239 3.254 East Coast (PADD 1) 3.289 3.243 3.282 3.386 3.389 3.382 3.373 3.350 Midwest (PADD 2) 3.188 3.074 3.126 3.191 3.121 3.132 3.079 3.144 Gulf Coast (PADD 3) 3.030 2.978 3.004 3.140 3.124 3.104 3.047 3.045 Rocky Mountain (PADD 4) 3.307 3.227 3.183 3.145 3.113 3.077 3.055 3.211 West Coast (PADD 5) 3.564 3.507 3.467 3.457 3.475 3.477 3.472 3.457 Retail Conventional Regular Gasoline Prices Petroleum Data Tables more data Most Recent Year Ago 11/04/13 11/11/13 11/18/13 11/25/13 12/02/13 12/09/13 12/16/13

396

The Extraction of Gasoline from Natural Gas  

E-Print Network [OSTI]

for the quantitative estimation of the condensable gasoline consti- tuents of so-called rtwetn natural gas» Three general lines of experimentation suggested themselves after a preliminary study of the problem. These were the separation of a liqui- fied sample... fractionation of a mixture of natural gases are, however, not available in the ordinary laboratory, so this method altho successful and accurate is hardly practical. Even after the fractionation of the gas has ^lebeau and Damiens in Chen. Abstr. 7, 1356...

Schroeder, J. P.

1914-05-15T23:59:59.000Z

397

Effects of Some Oxygenated Substitutes on Gasoline Properties, Spark Ignition Engine Performance, and Emissions  

Science Journals Connector (OSTI)

It is worthwhile to mention that eucalyptol which can be steam-extracted from eucalyptus leaves has been tested as a co-solvent that prevents alcohol?gasoline blended fuels from phase separation. ... In this table, the compound along with the concentration in the respective base fuel, BRON, and its accuracy as well as relative effectiveness on a molar (RE-M) and a weight (RE-W) basis in comparison with MTBE are shown. ... All the compounds studied exhibited enhanced ignition quality, expressed with their capability to suppress engine knock, performance that can be confirmed from the BRON values of Table 3. From the data in the table, and given the accuracy of the BRON values, which is ±10/x, where x is the w/v % concentration of the compound in the fuel, a decrease of BRON values with the increase of the RON of the base fuel is observed. ...

S. Gouli; E. Lois; S. Stournas

1998-08-12T23:59:59.000Z

398

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

99.6 99.6 92.9 52.3 52.2 67.4 56.6 February ............................. 99.8 93.2 52.2 52.0 62.8 55.2 March .................................. 99.0 93.1 50.5 50.1 59.4 52.8 April .................................... 101.3 96.6 52.8 52.6 56.1 56.0 May ..................................... 105.8 102.2 55.0 54.7 51.7 57.7 June .................................... 106.4 101.6 53.2 53.1 54.9 53.2 July ..................................... 101.8 100.1 51.9 51.3 51.3 52.3 August ................................ 99.2 98.9 53.4 53.1 53.3 54.9 September .......................... 101.3 98.7 55.7 55.2 57.3 58.0 October ............................... 96.8 96.3 54.9 54.1 56.5 57.0 November ........................... 95.4 94.2 57.0 56.3 62.8 60.5 December ........................... 96.0 95.3 59.2 58.6

399

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

01.2 01.2 94.7 61.3 60.3 71.8 65.8 February ............................. 100.6 96.5 56.9 57.3 73.4 65.7 March .................................. 105.0 100.6 59.0 59.6 69.0 68.0 April .................................... 111.4 107.5 66.0 65.3 80.5 75.1 May ..................................... 114.4 110.0 63.3 62.2 68.4 66.1 June .................................... 113.5 107.0 57.7 57.5 58.5 59.8 July ..................................... 113.7 105.3 60.3 59.6 64.6 61.7 August ................................ 114.4 107.1 65.1 64.5 69.5 66.6 September .......................... 114.3 106.8 71.8 71.6 76.4 75.6 October ............................... 115.0 107.1 73.6 73.6 87.1 80.7 November ........................... 115.1 108.4 71.7 72.2 88.7 79.7 December ........................... 115.3

400

EIA - Gasoline and Diesel Fuel report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued after EIA's 1994 survey. Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. This report, Household Vehicles Energy Consumption 1991, is based on data from the 1991 Residential Transportation Energy Consumption Survey (RTECS). Focusing on vehicle miles traveled (VMT) and energy enduse consumption and expenditures by households for personal transportation, the 1991 RTECS is

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

64.9 63.8 79.2 64.7 November ... 116.4 108.1 68.2 66.5 84.8 72.8 December ... 119.6 110.2 73.3 72.1 89.1 76.5 1999 Average...

402

Lean Gasoline System Development for Fuel Efficient Small Car  

Broader source: Energy.gov (indexed) [DOE]

contain any proprietary, confidential, or otherwise restricted information Stuart R. Smith - Principal Investigator GM Powertrain May 17, 2013 2013 DOE Vehicle Technologies...

403

Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: October 15, 1: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries to someone by E-mail Share Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Facebook Tweet about Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Twitter Bookmark Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Google Bookmark Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Delicious Rank Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Digg Find More places to share Vehicle Technologies Office: Fact #491:

404

Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995  

Gasoline and Diesel Fuel Update (EIA)

Demand, Supply, and Price Outlook for Reformulated Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995 by Tancred Lidderdale* Provisions of the Clean Air Act Amendments of 1990 designed to reduce ground-level ozone will increase the demand for reformulated motor gaso- line in a number of U.S. metropolitan areas. Refor- mulated motor gasoline is expected to constitute about one-third of total motor gasoline demand in 1995, and refiners will have to change plant opera- tions and modify equipment in order to meet the higher demand. The costs incurred are expected to create a wholesale price premium for reformu- lated motor gasoline of up to 4.0 cents per gallon over the price of conventional motor gasoline. This article discusses the effects of the new regulations on the motor gasoline market and the refining

405

Alternative Fuels Data Center: Ethanol Blending Regulation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blending Ethanol Blending Regulation to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blending Regulation on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blending Regulation on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Google Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Delicious Rank Alternative Fuels Data Center: Ethanol Blending Regulation on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blending Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blending Regulation Gasoline suppliers who provide fuel to distributors in the state must offer gasoline that is suitable for blending with fuel alcohol. Suppliers may not

406

Ethanol Fuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ethanol Fuel Basics Ethanol Fuel Basics Ethanol Fuel Basics July 30, 2013 - 12:00pm Addthis biomass in beekers Ethanol is a renewable fuel made from various plant materials, which collectively are called "biomass." Ethanol contains the same chemical compound (C2H5OH) found in alcoholic beverages. Studies have estimated that ethanol and other biofuels could replace 30% or more of U.S. gasoline demand by 2030. Nearly half of U.S. gasoline contains ethanol in a low-level blend to oxygenate the fuel and reduce air pollution. Ethanol is also increasingly available in E85, an alternative fuel that can be used in flexible fuel vehicles. Several steps are required to make ethanol available as a vehicle fuel. Biomass feedstocks are grown and transported to ethanol production

407

On the Road with Fuel Saving Tools | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

possibility of giving up gasoline altogether. Whether it's a plug-in electric, natural gas, propane, or flexible fuel vehicle, the number of models that can run on alternative...

408

Question of the Week: Do You Use Alternative Fuels? | Department...  

Broader source: Energy.gov (indexed) [DOE]

February 12, 2009 - 11:45am Addthis Alternative fuels can produce fewer emissions that gasoline and be safer for the environment and for lung health, as we learned from...

409

First Commercially Available Fuel Cell Electric Vehicles Hit the Street  

Office of Energy Efficiency and Renewable Energy (EERE)

Fuel cell electric vehicles are now widely available in the United States. These passenger vehicles have the driving range, ease of refueling, and performance of today’s gasoline-powered cars while emitting nothing but water.

410

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 56 Energy Information Administration Petroleum Marketing Annual 1996 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

411

Energy Department Announces First Regional Gasoline Reserve to...  

Office of Environmental Management (EM)

Ernest Moniz today announced the creation of the first federal regional refined petroleum product reserve containing gasoline. Based on the Energy Department's lessons...

412

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1996 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

413

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1997 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

414

Impacts of Ethanol in Gasoline on Subsurface Contamination.  

E-Print Network [OSTI]

??The increasing use of ethanol as a gasoline additive has raised concerns over the potential impacts ethanol might have on groundwater contamination. In North America,… (more)

Freitas, Juliana Gardenalli de

2009-01-01T23:59:59.000Z

415

Long-term historical trends in gasoline properties are charted  

SciTech Connect (OSTI)

Trends in motor gasolines between 1942 and 1981 have been evaluated based upon data contained in motor gasoline surveys that have been prepared and published by the Bartlesville Energy Technology Center (BETC). These surveys have been published twice annually since 1935 describing the properties of motor gasolines from throughout the country. They have been conducted in cooperation with the American Petroleum Institute since 1949. A typical report covers 2,400 samples from service stations throughout the country representing some 48 companies that manufacture and supply gasoline. The reports include trend charts, octane plots and properties obtained from a dozen different tests.

Shelton, E.M.; Whisman, M.L.; Woodward, P.W.

1982-08-02T23:59:59.000Z

416

TRUCK ROUTING PROBLEM IN DISTRIBUTION OF GASOLINE TO GAS STATIONS.  

E-Print Network [OSTI]

??This thesis aims at finding a daily routing plan for a fleet of vehicles delivering gasoline to gas stations for an oil company, satisfying all… (more)

Janakiraman, Swagath

2010-01-01T23:59:59.000Z

417

Reductant Chemistry during LNT Regeneration for a Lean Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory VW Scholar at the University of Tennessee Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster P-09 2010 DEER Directions...

418

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1998 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per...

419

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information Administration Petroleum Marketing Annual 1995 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

420

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Administration Petroleum Marketing Annual 1995 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

- - - - W W - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

422

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per...

423

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1998 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

424

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Administration Petroleum Marketing Annual 1995 Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

425

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

- - - - W W - - - - - - See footnotes at end of table. 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State 292 Energy Information...

426

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

- - - - - - - - - - - - See footnotes at end of table. 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 116 Energy Information...

427

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Administration Petroleum Marketing Annual 1995 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

428

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 1999 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

429

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Petroleum Marketing Annual 1999 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) - Continued...

430

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Petroleum Marketing Annual 1995 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) - Continued...

431

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1995 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per...

432

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) -...

433

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1998 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

434

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) -...

435

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Petroleum Marketing Annual 1998 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) - Continued...

436

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) -...

437

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

- - - - 64.7 64.7 - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

438

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

an FFV? an FFV? An FFV, as its name implies, has the flex- ibility of running on more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel system, and engine. And they are available in a wide range of models such as sedans, pickups, and minivans. Light-duty FFVs are designed to operate with at least 15% gasoline in the fuel, mainly to ensure they start in cold weather. FFVs are equipped with modified components designed specifically to be compatible with ethanol's chemical properties. In the illustration on the back, the main modifications for FFVs are

439

The Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

December 17, 2001 December 17, 2001 his is the fifth issue of the Clean Cities Alternative Fuel Price Report, a quarterly newsletter keeping you up to date on the price of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue discusses prices that were gathered from Clean Cities coordinators and stakeholders during the weeks of October 15 and October 22, 2001, with comparisons to the prices in the previous Price Report for the week of June 4, 2001. Gasoline and Diesel Prices egular grade gasoline averaged $1.265 per gallon nationwide during the week of October 22, 2001. This represents a decrease of $0.414 per gallon from the previous Price Report (June 2001), as illustrated in the table to the right. Prices for the various regions of the

440

Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .  

SciTech Connect (OSTI)

The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of alcohol type and content is presented. Finally, the correlation derived from data presented in this study is compared with equations and results found in the literature.

Wallner, T. (Energy Systems)

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Print the Fuel Economy Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Print the Fuel Economy Guide Print the Fuel Economy Guide 2014 Fuel Economy Guide 2014 Fuel Economy Guide Adobe Acrobat Icon MPG data updated December 19, 2013 The annual fuel cost estimates in the 2008-2014 electronic fuel economy guides are updated weekly to match EIA's current national average prices for gasoline and diesel fuel. Order a printed copy: Order Note that the published guides may not be as up-to-date at the downloadable version. View vehicles from 1984 to the present: Go to Find-a-Car Unlike the annual guides which cover only one model year, Find-a-Car provides the most up-to-date fuel economy information for vehicles from model year 1984 to the present, along with environmental and safety data. Find a Car Developer Tools 2013 Fuel Economy Guide 2013 Fuel Economy Guide Adobe Acrobat Icon

442

Alternative Fuels Data Center: Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ethanol on Google Bookmark Alternative Fuels Data Center: Ethanol on Delicious Rank Alternative Fuels Data Center: Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ethanol on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Prices Find ethanol fuel prices and trends. Ethanol is a renewable fuel made from corn and other plant materials. The use of ethanol is widespread-almost all gasoline in the U.S. contains

443

Alcohol-based fuels from syngases  

SciTech Connect (OSTI)

This paper summarizes results of a research program which was undertaken to find the most advantageous method of using methanol in gasoline blends. It is demonstrated that a mixture called methanol and C/sub 2/C/sub 6/ saturated alcohols, called Alkanol fuel, has the potential for providing a gasoline-blending stock superior to that of straight-run methanol or ethanol. Extensive property data and test results are tabulated, plotted, and discussed. Economic considerations are included. 4 refs.

Greene, M.I.

1982-08-01T23:59:59.000Z

444

Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year?  

Broader source: Energy.gov [DOE]

According to the Federal Highway Administration, the average fuel economy for all light vehicles on the road today is 21.4 miles per gallon (mpg). A person owning a gasoline vehicle with that fuel...

445

Gasoline demand in developing Asian countries  

SciTech Connect (OSTI)

This paper presents econometric estimates of motor gasoline demand in eleven developing countries of Asia. The price and GDP per capita elasticities are estimated for each country separately, and for several pooled combinations of the countries. The estimated elasticities for the Asian countries are compared with those of the OECD countries. Generally, one finds that the OECD countries have GDP elasticities that are smaller, and price elasticities that are larger (in absolute value). The price elasticities for the low-income Asian countries are more inelastic than for the middle-income Asian countries, and the GDP elasticities are generally more elastic. 13 refs., 6 tabs.

McRae, R. [Univ. of Calgary, Alberta (Canada)

1994-12-31T23:59:59.000Z

446

Alternative Fuels Data Center - Fuel Properties Comparison  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Data Center - Fuel Properties Comparison Fuels Data Center - Fuel Properties Comparison www.afdc.energy.gov 1 2/27/2013 Gasoline Diesel (No. 2) Biodiesel Propane (LPG) Compressed Natural Gas (CNG) Liquefied Natural Gas (LNG) Ethanol Methanol Hydrogen Electricity Chemical Structure C 4 to C 12 C 8 to C 25 Methyl esters of C 12 to C 22 fatty acids C 3 H 8 (majority) and C 4 H 10 (minority) CH 4 (83-99%), C 2 H 6 (1-13%) CH 4 CH 3 CH 2 OH CH 3 OH H 2 N/A Fuel Material (feedstocks) Crude Oil Crude Oil Fats and oils from sources such as soy beans, waste cooking oil, animal fats, and rapeseed A by-product of petroleum refining or natural gas processing Underground reserves Underground reserves Corn, grains, or

447

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...gasoline and 6% of its diesel demand by converting...conversion to liquid fuels using the FT process...total current oil consumption of 13.8 Mbbl/d by...conversion of syngas to diesel is 100% selective...liquid hydrocarbon fuel. In our proposal...the transportation engine. Therefore, for coal...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

448

Fuel Cell Opportunities in Marine Corps Garrison  

E-Print Network [OSTI]

% 315,343, 4% 1,585,200, 19% 5,937,358, 73% E85 CNG B100 Diesel Gasoline #12;1 3 0 5 10 15 20 25 30 FY01 fuel cell vehicle operations & maintenance · Partner with Naval Facilities Engineering Service Center, TARDEC, General Motors (GMT800 pickup) · Temporary fueling capability Current Phase... Demonstrate

449

Conversion of methanol to gasoline commercial plant study. Coal to gasoline via methanol  

SciTech Connect (OSTI)

Under the joint sponsorship of the German Federal Minister of Research and Technology (BMFT) and the US Department of Energy (DOE), a research program was initiated concerning the ''Conversion of Methanol to Gasoline (MTG), Engineering, Construction and Operation of a Demonstration Plant''. The purpose of the 100 BPD demonstration plant was to demonstrate the feasibility of and to obtain data required for scale-up of the fluid-bed MTG process to a commercial size plant. As per requirements of Annex 3 of the Governmental Agreement, this study, in addition to the MTG plant, also includes the facilities for the production of methanol. The feedstock basis for the production of methanol shall be coal. Hence this study deals with the production of gasoline from coal (CTG-Coal to Gasoline). The basic objective of this study is to assess the technical feasibility of the conversion of methanol to gasoline in a fluid-bed system and to evaluate the process economies i.e., to evlauate the price of the product in relation to the price of the feedstock and plant capacity. In connection with technical feasibility, the scale up criteria were developed from the results obtained and experience gathered over an operational period of 8600 hours of the ''100 BPD Demonstration Plant''. The scale up philosophy is detailed in chapter 4. The conditions selected for the design of the MTG unit are detailed in chapter 5. The scope of the study covers the production of gasoline from coal, in which MTG section is dealt with in detail (refer to chapter 5). Information on other plant sections in this study are limited to that sufficient to: generate overall mass balance; generate rate of by-products and effluents; incorporate heat integration; generate consumption figures; and establish plant investment cost.

Thiagarajan, N.; Nitschke, E.

1986-03-01T23:59:59.000Z

450

Off-Highway Gasoline Consuption Estimation Models Used in the Federal Highway Administration Attribution Process: 2008 Updates  

SciTech Connect (OSTI)

This report is designed to document the analysis process and estimation models currently used by the Federal Highway Administration (FHWA) to estimate the off-highway gasoline consumption and public sector fuel consumption. An overview of the entire FHWA attribution process is provided along with specifics related to the latest update (2008) on the Off-Highway Gasoline Use Model and the Public Use of Gasoline Model. The Off-Highway Gasoline Use Model is made up of five individual modules, one for each of the off-highway categories: agricultural, industrial and commercial, construction, aviation, and marine. This 2008 update of the off-highway models was the second major update (the first model update was conducted during 2002-2003) after they were originally developed in mid-1990. The agricultural model methodology, specifically, underwent a significant revision because of changes in data availability since 2003. Some revision to the model was necessary due to removal of certain data elements used in the original estimation method. The revised agricultural model also made use of some newly available information, published by the data source agency in recent years. The other model methodologies were not drastically changed, though many data elements were updated to improve the accuracy of these models. Note that components in the Public Use of Gasoline Model were not updated in 2008. A major challenge in updating estimation methods applied by the public-use model is that they would have to rely on significant new data collection efforts. In addition, due to resource limitation, several components of the models (both off-highway and public-us models) that utilized regression modeling approaches were not recalibrated under the 2008 study. An investigation of the Environmental Protection Agency's NONROAD2005 model was also carried out under the 2008 model update. Results generated from the NONROAD2005 model were analyzed, examined, and compared, to the extent that is possible on the overall totals, to the current FHWA estimates. Because NONROAD2005 model was designed for emission estimation purposes (i.e., not for measuring fuel consumption), it covers different equipment populations from those the FHWA models were based on. Thus, a direct comparison generally was not possible in most sectors. As a result, NONROAD2005 data were not used in the 2008 update of the FHWA off-highway models. The quality of fuel use estimates directly affect the data quality in many tables published in the Highway Statistics. Although updates have been made to the Off-Highway Gasoline Use Model and the Public Use Gasoline Model, some challenges remain due to aging model equations and discontinuation of data sources.

Hwang, Ho-Ling [ORNL; Davis, Stacy Cagle [ORNL

2009-12-01T23:59:59.000Z

451

Blender Pump Fuel Survey: CRC Project E-95  

SciTech Connect (OSTI)

To increase the number of ethanol blends available in the United States, several states have 'blender pumps' that blend gasoline with flex-fuel vehicle (FFV) fuel. No specification governs the properties of these blended fuels, and little information is available about the fuels sold at blender pumps. No labeling conventions exist, and labeling on the blender pumps surveyed was inconsistent.; The survey samples, collected across the Midwestern United States, included the base gasoline and FFV fuel used in the blends as well as the two lowest blends offered at each station. The samples were tested against the applicable ASTM specifications and for critical operability parameters. Conventional gasoline fuels are limited to 10 vol% ethanol by the U.S. EPA. The ethanol content varied greatly in the samples. Half the gasoline samples contained some ethanol, while the other half contained none. The FFV fuel samples were all within the specification limits. No pattern was observed for the blend content of the higher ethanol content samples at the same station. Other properties tested were specific to higher-ethanol blends. This survey also tested the properties of fuels containing ethanol levels above conventional gasoline but below FFV fuels.

Alleman, T. L.

2011-07-01T23:59:59.000Z

452

Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality  

E-Print Network [OSTI]

15 for retail gasoline stations and May 1 – September 15 forof one if retail gasoline stations in county c are requiredseason for retail gasoline distribution stations is June 1 -

Auffhammer, Maximilian; Kellogg, Ryan

2009-01-01T23:59:59.000Z

453

Do Gasoline Prices Resond Asymmetrically to Cost Shocks? The Confounding Effect of Edgeworth Cycles  

E-Print Network [OSTI]

t as determined by gasoline stations is unlikely to beshows a map of all gasoline stations i n central and easterni n Figure 5: Toronto Gasoline Stations Canadian cents per

Noel, Michael

2007-01-01T23:59:59.000Z

454

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of  

E-Print Network [OSTI]

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed 19, 2012 (received for review July 22, 2012) Emissions from gasoline and diesel vehicles composition, mass distribu- tion, and organic aerosol formation potential of emissions from gasoline

Silver, Whendee

455

Blended Straight-Run Gasolines with Composite Additives Containing Watery Ethanol  

Science Journals Connector (OSTI)

Cranking and antiknock properties of gasoline-alcohol blends based on straight-run gasoline with additives containing watery ethanol and other ... components are studied. The composition of the gasoline-alcohol b...

Yu. O. Beiko; A. P. Pavlovskii; O. A. Beiko

2014-01-01T23:59:59.000Z

456

Autoignition of gasoline surrogates mixtures at intermediate temperatures and high pressures  

SciTech Connect (OSTI)

Ignition times were determined in high-pressure shock-tube experiments for various stoichiometric mixtures of two multicomponent model fuels in air for the validation of ignition delay simulations based on chemical kinetic models. The fuel blends were n-heptane (18%)/isooctane (62%)/ethanol (20%) by liquid volume (14.5%/44.5%/41% by mole fraction) and n-heptane (20%)/toluene (45%)/isooctane (25%)/diisobutylene (10%) by liquid volume (17.5%/55%/19.5%/8.0% by mole fraction). These fuels have octane numbers comparable to a standard European gasoline of 95 RON and 85 MON. The experimental conditions cover temperatures from 690 to 1200 K and pressures at 10, 30, and 50 bar. The obtained ignition time data are scaled with respect to pressure and compared to previous results reported in the literature. (author)

Fikri, M.; Herzler, J.; Starke, R.; Schulz, C.; Roth, P. [IVG, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany); Kalghatgi, G.T. [Shell Global Solutions U.K., P.O. Box 1, Chester CH1 3SH (United Kingdom)

2008-01-15T23:59:59.000Z

457

Experimental study on combustion and emissions performance of a hybrid syngas–gasoline engine  

Science Journals Connector (OSTI)

The effect of syngas addition on the performance of a 1.6 L gasoline engine at lean condition was investigated in the paper. The syngas which produced by the onboard ethanol catalytic decomposition was mainly composed of hydrogen and carbon monoxide. A tube array reforming reactor was mounted on the engine tailpipe to produce syngas. During the test, the engine was run at 1800 rpm and a manifolds absolute pressure of 61.5 kPa. The spark timing for the maximum brake torque was adopted for all tests. The engine spark timing, injection timing and duration of the gasoline were controlled by a hybrid electronic control unit communicated with the engine original electronic control unit. The syngas volume fraction in the total intake gas was gradually increased from 0% to 1.84%. The gasoline flow rate was decreased to ensure that the global excess air ratio of the fuel–air mixture in cylinder at about 1.20. The test results confirmed that the syngas addition helped improve the indicated thermal efficiency and shorten the combustion duration. HC, \\{NOx\\} emissions and particle total number per cubic centimeter were reduced after the syngas addition at lean condition.

Changwei Ji; Xiaoxu Dai; Shuofeng Wang; Chen Liang; Bingjie Ju; Xiaolong Liu

2013-01-01T23:59:59.000Z

458

Alternative Fuels Data Center: Ethanol Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Vehicle Ethanol Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Ethanol Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Vehicle Emissions on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Ethanol Vehicle Emissions When blended with gasoline for use as a vehicle fuel, ethanol can offer some emissions benefits over gasoline, depending on vehicle type, engine

459

Alternative Fuels Data Center: Reduced Biofuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Reduced Biofuels Tax Reduced Biofuels Tax to someone by E-mail Share Alternative Fuels Data Center: Reduced Biofuels Tax on Facebook Tweet about Alternative Fuels Data Center: Reduced Biofuels Tax on Twitter Bookmark Alternative Fuels Data Center: Reduced Biofuels Tax on Google Bookmark Alternative Fuels Data Center: Reduced Biofuels Tax on Delicious Rank Alternative Fuels Data Center: Reduced Biofuels Tax on Digg Find More places to share Alternative Fuels Data Center: Reduced Biofuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Reduced Biofuels Tax A tax of $0.12 per gallon is imposed on gasoline containing at least 70% ethanol (E70) and diesel fuel containing at least 5% biodiesel (B5). This is a $0.07 discount compared to the conventional gasoline tax of $0.19 per

460

Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines  

SciTech Connect (OSTI)

A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at =0.96 for nearly all conditions studied. At the =0.96 condition, HC emissions were relatively minimal, but CO emissions were significant. Operation at AFRs richer than =0.96 did not provide more NH3 yield and led to higher HC and CO emissions. Results of the reductant conversion and consumption processes were used to calculate a representative fuel consumption of the engine operating with an ideal passive SCR system. The results show a 1-7% fuel economy benefit at various steady-state engine speed and load points relative to a stoichiometric engine operation.

Prikhodko, Vitaly Y [ORNL] [ORNL; Parks, II, James E [ORNL; Pihl, Josh A [ORNL] [ORNL; Toops, Todd J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications  

Broader source: Energy.gov [DOE]

Specific designs and material properties have to be developed for gasoline particulate filters based on the different engine and exhaust gas characteristic of gasoline engines compared to diesel engines, e.g., generally lower levels of engine-out particulate emissions or higher GDI exhaust gas temperatures

462

Author's personal copy Gasoline prices and traffic safety in Mississippi  

E-Print Network [OSTI]

Drive SE, Minneapolis, MN 55455, USA a b s t r a c ta r t i c l e i n f o Article history: Received 9-grade unleaded gasoline price data from the Energy Information Administration of the U.S. Department of EnergyAuthor's personal copy Gasoline prices and traffic safety in Mississippi Guangqing Chi a, , Arthur

Levinson, David M.

463

Ethanol Demand in United States Regional Production of Oxygenate-limited Gasoline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Ethanol Demand in United States Regional Production of Oxygenate-limited Gasoline G. R. Hadder Center for Transportation Analysis Oak Ridge National Laboratory Oak Ridge, Tennessee August 2000 Prepared for Office of Fuels Development Office of Transportation Technologies U.S. Department of Energy Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by UT-BATTELLE, LLC for the U. S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 iii TABLE OF CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi ACRONYMS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix EXECUTIVE SUMMARY

464

Report: Efficiency, Alternative Fuels to Impact Market Through 2040  

Broader source: Energy.gov [DOE]

Fuel efficiency improvements and increased use of alternative fuels, will shrink gasoline's share of the fuel market 14% by 2040, according to a new report based on analysis of the U.S. Energy Information Administration in its Annual Energy Outl

465

Development of ultrafast computed tomography of highly transient fuel sprays  

E-Print Network [OSTI]

-generation automotive internal combustion engines.1 Among these is gasoline direct-injection (GDI) technology, which has. In a combustion system employing GDI, the fuel is directly injected into the combustion chamber instead of the air, the fuel efficiency can be greatly improved. Therefore, detailed analyses of the fuel sprays in the GDI

Gruner, Sol M.

466

Life-Cycle Analysis of Transportation Fuels and Vehicle Technologies  

E-Print Network [OSTI]

Camelina Algae Gasoline Diesel Jet Fuel Liquefied Petroleum Gas Naphtha Residual Oil Hydrogen Fischer Coke Nuclear Energy Hydrogen #12;GREET examines more than 80 vehicle/fuel systems Conventional Spark-Tropsch diesel 4 Dimethyl ether 4 Biodiesel Fuel Cell Vehicles 4 On-board hydroge

Bustamante, Fabián E.

467

Fact #858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest Decline since 2008 Fact 858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest...

468

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines Presentation given at the...

469

Alternatives to traditional transportation fuels: An overview  

SciTech Connect (OSTI)

This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

Not Available

1994-06-01T23:59:59.000Z

470

Alternative Fuels in Trucking Volume 5, Number 4  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

N N atural gas costs less to pro- duce than gasoline and diesel fuel. However, it must be delivered to the market area and compressed or liquefied before being put into the vehicle fuel tank, steps that add significant cost. Whether the natural gas at the vehicle fuel tank retains a price advantage over gasoline or diesel fuel depends on many factors. A few of the most important are: * Distance from the wellhead to the market area * The gas volumes over which the costs of compression or liquefac- tion are spread * The numbers of vehicles being fueled at a given refueling site. Vehicles using natural gas also cost more than comparable gasoline and diesel vehicles because the fuel tanks are inherently more expensive, whether the gas is compressed (CNG) or liquefied (LNG). At this

471

The effect of the price of gasoline on the urban economy: From route choice to general equilibrium  

Science Journals Connector (OSTI)

RELU-TRAN2, a spatial computable general equilibrium (CGE) model of the Chicago MSA is used to understand how gasoline use, car-VMT, on-the-road fuel intensity, trips and location patterns, housing, labor and product markets respond to a gas price increase. We find a long-run elasticity of gasoline demand (with congestion endogenous) of ?0.081, keeping constant car prices and the TFI (technological fuel intensity) of car types but allowing consumers to choose from car types. 43% of this long run elasticity is from switching to transit; 15% from trip, car-type and location choice; 38% from price, wage and rent equilibration, and 4% from building stock changes. 79% of the long run elasticity is from changes in car-VMT (the extensive margin) and 21% from savings in gasoline per mile (the intensive margin); with 83% of this intensive margin from changes in congestion and 17% from the substitution in favor of lower TFI. An exogenous trend-line improvement of the TFI of the car-types available for choice raises the long-run response to a percent increase in the gas price from ?0.081 to ?0.251. Thus, only 1/3 of the long-run response to the gas price stems from consumer choices and 2/3 from progress in fuel intensity. From 2000 to 2007, real gas prices rose 53.7%, the average car fuel intensity improved 2.7% and car prices fell 20%. The model predicts that from these changes alone, keeping constant population, income, etc. aggregate gasoline use in this period would have fallen by 5.2%.

Alex Anas; Tomoru Hiramatsu

2012-01-01T23:59:59.000Z

472

Different Factors Impact Different Aspects of Gasoline Price  

Gasoline and Diesel Fuel Update (EIA)

1 1 Notes: In order to illustrate and quantify, to a large extent, the various market forces driving gasoline prices, we begin by decomposing those factors according to their location within the supply chain, i.e., the international crude market, U.S. wholesale gasoline markets, and the retail segment. Historically, variation in gasoline prices usually stems from changes in crude oil prices. As the major feedstock in the production of gasoline, shifts in the balance between supply and demand in crude markets explain a large portion of observed movements at the retail level. But shifts in the wholesale gasoline supply/demand balance also contribute to price pressure or movements at both the wholesale and retail levels beyond that stemming from crude oil markets.

473

Integrated process offers lower gas-to-gasoline investment  

SciTech Connect (OSTI)

Many natural gas fields are in remote locations and of a size which cannot justify construction of a pipeline or liquified natural gas (LNG) plant. In these situations, the natural gas price can be low and the manufacture of gasoline an attractive alternative to producing ammonia or other petro-chemicals. Haldor Topsoe A/S has developed an integrated process scheme to convert natural-gas-derived synthesis gas to gasoline in a single loop. The process, Topsoe integrated gasoline synthesis (Tigas), incorporates Mobil's methanol-to-gasoline (MTG) process. The first step is a synthesis of oxygenates. The second step is the MTG process run at conditions selected to achieve optimum operation of the integrated loop. An industrial pilot plant has been in operation since January 1984. The plant has been running successfully, with long catalyst life, producing high-octane gasoline.

Topp-Jorgensen, J.; Rostrup-Nielsen, J.R.

1986-05-19T23:59:59.000Z

474

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration  

SciTech Connect (OSTI)

Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

Choi, Jae-Soon [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Partridge Jr, William P [ORNL] [ORNL; Parks, II, James E [ORNL; Norman, Kevin M [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Chambon, Paul H [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2010-01-01T23:59:59.000Z

475

Fuel Economy and Environment Labels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

note that these labels are examples and do not represent real automobiles. The sample labels are intended to note that these labels are examples and do not represent real automobiles. The sample labels are intended to illustrate the elements on the label that would be associated with each vehicle technology/fuel type. They are not meant to represent the actual values that any particular vehicle type could achieve. 1 A New Fuel Economy Label for a New Generation of Cars Gasoline Label Please note that these labels are examples and do not represent real automobiles. The sample labels are intended to illustrate the elements on the label that would be associated with each vehicle technology/fuel type. They are not meant to represent the actual values that any particular vehicle type could achieve. 2 Flexible Fuel Vehicle: Gasoline-Ethanol (E85) Without Driving Range

476

Gasoline from natural gas by sulfur processing. Quarterly report No. 5 for the period July 1994--September 1994  

SciTech Connect (OSTI)

Natural gas is an abundant resource in various parts of the world. The major component of natural gas is methane, often comprising over 90% of the hydrocarbon fraction of the gas. The expanded use of natural gas as fuel is often hampered because of difficulties in storing and handling a gaseous fuel. This is especially true for natural gas in remote areas such as the North Slope of Alaska. The successful implementation of a natural gas-to-gasoline process would decrease dependence on imported oil for transportation fuels. These factors make it very desirable to convert natural gas to more valuable liquids. There are commercial processes for converting natural gas to gasoline-range liquids. These processes, such as the Fischer-Tropsch synthesis and Mobil`s MTG (Methanol To Gasoline), start with the steam reforming of methane. Steam reforming of methane requires the removal of sulfur compounds present in natural gas down to less than 0.1 ppm. This additional gas cleanup step, with its additional cost, is necessary because the catalysts are quickly poisoned by sulfur compounds.

Erekson, E.J.; Miao, F.Q.

1994-10-01T23:59:59.000Z

477

Flexible-Fuel Vehicle Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Flexible-Fuel Vehicle Basics Flexible-Fuel Vehicle Basics Flexible-Fuel Vehicle Basics August 20, 2013 - 9:05am Addthis Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85% ethanol, 15% gasoline), or a mixture of both. There are almost 8 million flexible fuel vehicles on U.S. roads today, but many FFV owners don't know their vehicle is one. Unlike natural gas vehicles and propane bi-fuel vehicles, flexible fuel vehicles contain one fueling system, which is made up of ethanol-compatible components and is set to accommodate the higher oxygen content of E85. E85 should only be used in ethanol-capable FFVs. For more information, read Flexible Fuel Vehicles: Powered by a Renewable American Fuel. Download Adobe Reader.

478

Learn More About the Fuel Economy Label for Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicles Electric Vehicles Learn More About the New Label Electric Vehicle Fuel Economy and Environment Label Vehicle Technology & Fuel Fuel Economy Comparing Fuel Economy to Other Vehicles You Save Fuel Consumption Rate Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating Details in Fine Print QR Code Fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that is powered by electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

479

Hydrogen Fuel Cell Automobiles  

Science Journals Connector (OSTI)

With gasoline now more than $2.00 a gallon alternate automobiletechnologies will be discussed with greater interest and developed with more urgency. For our government the hydrogen fuel cell-powered automobile is at the top of the list of future technologies. This paper presents a simple description of the principles behind this technology and a brief discussion of the pros and cons. It is also an extension on my previous paper on the physics of the automobile engine.1

Bernard J. Feldman

2005-01-01T23:59:59.000Z

480

On-Board Fuel Processing for a Fuel Cell?Heat Engine Hybrid System  

Science Journals Connector (OSTI)

(9) Because they have used the same fuel, gasoline having an established infrastructure, to constrain the same well to tank (WTT) efficiency for the compared systems, the TTW efficiency of the hybrid FCHEV is unexpectedly low, because the gasoline processing to hydrogen with subsequent use of the latter in the FC had an efficiency of only 35% in their calculation. ... to increase by up to 15% by hybridizing it with an energy storage system. ...

Osman Sinan Süslü; ?pek Becerik

2009-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "modes gasoline fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The Sasol route to fuels  

SciTech Connect (OSTI)

Details are given of the Sasol operation in South Africa. Flow sheets are provided for Sasol 1 and Sasol 2 and 3. The Sasol 1 plant produces waxes, liquid fuels, pipeline gas and chemicals; the Sasol 2 and 3 plants primarily produce ethylene, gasoline and diesel fuel. The versatility of the process is emphasized. The product selectivities of the fixed bed and Synthol reactors are shown and the properties of the products are compared. The influence of the catalyst on selectivity is examined.

Dry, M.E.

1982-12-01T23:59:59.000Z

482

Alcohol-based fuels from syngases. [Alkanol fuels  

SciTech Connect (OSTI)

Explains how a mixture of methanol and C/sub 2/-C/sub 6/ saturated alcohols (Alkanol fuel) has the potential for providing a gasoline-blending stock superior to that of straight-run methanol or ethanol. Summarizes the technical and economic advantages of producing and utilizing Alkanol fuels. Although methanol is cheaper, Alkanols represent a higher-quality fuel product with lower-oxygen content and higher hydrogen content. Increasing the methanol content of the Alkanol mixture has the potential to reduce the Alkanols cost of production to the equivalent of that of methanol on a constant heating value basis. The optimal composition will depend on production costs as well as on the properties of Alkanol mixtures necessary to generate a premium, synthetic transportation fuel. The Mobil M-Gasoline Process is an alternative route to converting methanol to synthetic transportation fuels. Concludes that development of the Alkanols Process is in its early stages and further work needs to be done in identifying and solving potential technical bottlenecks related to catalyst stability/selectivity and recovery of water-free Alkanol fuel mixtures. Current work is involved in the study of the performance and stability of several catalyst candidates utilizing a slurry reaction system and in the identification of optimal compositions of Alkanols for use as gasoline blending stocks.

Greene, M.I.

1982-08-01T23:59:59.000Z

483

Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phases 4, 5, & 6; July 28, 2008 - July 27, 2013  

SciTech Connect (OSTI)

This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the National Renewable Energy Laboratory (NREL) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires the EPA to produce an updated fuel effects model representing the 2007 light-duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use.

Whitney, K.; Shoffner, B.

2014-06-01T23:59:59.000Z

484

2003 California Gasoline Price Study (preliminary version)  

Gasoline and Diesel Fuel Update (EIA)

1 1 2003 California Gasoline Price Study: Preliminary Findings May 2003 Office of Oil and Gas Energy Information Administration U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts and Acknowledgments This report was prepared by the Office of Oil and Gas of the Energy Information Administration (EIA) under the direction of John Cook, Director, Petroleum Division. Questions concerning the report may be directed to Joanne Shore (202/586-4677),

485

Hydrogen Storage and Supply for Vehicular Fuel Systems  

Energy Innovation Portal (Marketing Summaries) [EERE]

Various alternative-fuel systems have been proposed for passenger vehicles and light-duty trucks to reduce the worldwide reliance on fossils fuels and thus mitigate their polluting effects.  Replacing gasoline and other refined hydrocarbon fuels continues to present research and implementation challenges for the automotive industry. During the last decade, hydrogen fuel technology has emerged as the prime alternative that will finally drive automotive fuel systems into the new millennium....

2012-05-11T23:59:59.000Z

486

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...  

Broader source: Energy.gov (indexed) [DOE]

combustion system includes "micro" stratified charge capability Air Flow & Air Fuel Spatial & Temporal Evolution "Micro" Stratified Charge * Overall Lean Homogeneous * Early...

487

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace065rinkevich2011...

488

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...  

Broader source: Energy.gov (indexed) [DOE]

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace065weaver2012...

489

Method for the operation of internal combustion engines. [gasification reactor for reforming gasoline  

SciTech Connect (OSTI)

This is a method for the operation of internal combustion engines which is designed to decontaminate the exhaust gases. The method includes: feeding a gasification air stream into a gasification reactor; feeding fuel into the same gasification reactor; combining the fuel with the gasification air into a homogeneous fuel-air mixture in the gasification reactor; and converting the fuel-air mixture by partial combustion into a soot -free reformed gas. Then, the reformed gas is fed from the gasification reactor to a mixer where the reformed gas is mixed with combustion air and the reformed gas-air mixture is fed to the internal combustion engine for further combustion with the result that there is intensive decontamination of the exhaust gases which thereby reduces air pollution. The reformed gas temperature is adjusted low for maximum engine output, and is adjusted higher for lower engine temperatures in order to obtain a reformed gas which is richer in hydrogen and thereby produce exhaust gases which are lower in harmful substances. In reference to the exhaust gases in an internal combustion engine, this method achieves the highest possible degree of decontamination, not only of the carbon monoxide and hydrocarbons , but also of the nitrous oxides in the exhaust gases. Using this method, the internal combustion engine can be operated not only with high-test, no-knock gasoline, but also with cheap, lead-free low octane, straight-run gasoline which is low in aromatics and olefins, which normally do not have no-knock properties, and the internal combustion engine can be operated with the lowest possible fuel consumption. The gasification reactor operates through chemical reaction in the presence of a catalyst. Optionally, this method may include a return of part of the reformed gas to the input of the gasification reactor.

Muhlberg, E.

1980-01-29T23:59:59.000Z

490

Emergency fuels utilization guidebook. Alternative Fuels Utilization Program  

SciTech Connect (OSTI)

The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

Not Available

1980-08-01T23:59:59.000Z

491

Soot from the burning of fossil fuels and solid biofuels contributes far more to global  

E-Print Network [OSTI]

Soot from the burning of fossil fuels and solid biofuels contributes far more to global warming Researchers ScienceDaily (July 30, 2010) -- Soot from the burning of fossil fuels and solid biofuels analyzed the impacts of soot from fossil fuels -- diesel, coal, gasoline, jet fuel -- and from solid

492

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

hydrogen production could fuel about 30 million fuel cell cars,H2 fuel cell car uses 0.7 kg H2/day. However, hydrogen cancar, 30-50% more efficient than a gasoline hybrid, quiet and powerful. .Hydrogen and fuel cells

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

493

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

hydrogen production could fuel about 30 million fuel cell cars,H2 fuel cell car uses 0.7 kg H2/day. However, hydrogen cancar, 30-50% more efficient than a gasoline hybrid, quiet and powerful. .Hydrogen and fuel cells

2007-01-01T23:59:59.000Z

494

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Mandate Ethanol Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate All gasoline offered for sale at retail stations within the state must contain 10% ethanol (E10). This requirement is waived only if a distributor is unable to purchase ethanol or ethanol-blended gasoline at the same or

495

Alternative Fuels Data Center: Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Blends Ethanol is blended with gasoline in various amounts for use in vehicles. E10 E10 is a low-level blend composed of 10% ethanol and 90% gasoline. It is

496

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

been if the diesel/gasoline new car market shares had beendiesel and gasoline new car fuel economy in 2005 in two important European markets.diesels is in part responsible for an increase in driving compared to what would have obtained if market

Schipper, Lee

2008-01-01T23:59:59.000Z

497

Essays on the dynamics of alternative fuel vehicle adoption : insights from the market for hybrid-electric vehicles in the United States  

E-Print Network [OSTI]

Despite growing energy security and environmental concerns about dependence on oil as a transportation fuel, gasoline remains the overwhelmingly dominant fuel used by the US automotive fleet. Numerous previous efforts to ...

Keith, David Ross

2012-01-01T23:59:59.000Z

498

Gasoline: An adaptable implementation of TreeSPH  

E-Print Network [OSTI]

The key algorithms and features of the Gasoline code for parallel hydrodynamics with self-gravity are described. Gasoline is an extension of the efficient Pkdgrav parallel N-body code using smoothed particle hydrodynamics. Accuracy measurements, performance analysis and tests of the code are presented. Recent successful Gasoline applications are summarized. These cover a diverse set of areas in astrophysics including galaxy clusters, galaxy formation and gas-giant planets. Future directions for gasdynamical simulations in astrophysics and code development strategies for tackling cutting edge problems are discussed.

Wadsley, J; Quinn, T; Wadsley, James; Stadel, Joachim; Quinn, Thomas

2003-01-01T23:59:59.000Z

499

Gasoline: An adaptable implementation of TreeSPH  

E-Print Network [OSTI]

The key algorithms and features of the Gasoline code for parallel hydrodynamics with self-gravity are described. Gasoline is an extension of the efficient Pkdgrav parallel N-body code using smoothed particle hydrodynamics. Accuracy measurements, performance analysis and tests of the code are presented. Recent successful Gasoline applications are summarized. These cover a diverse set of areas in astrophysics including galaxy clusters, galaxy formation and gas-giant planets. Future directions for gasdynamical simulations in astrophysics and code development strategies for tackling cutting edge problems are discussed.

James Wadsley; Joachim Stadel; Thomas Quinn

2003-03-24T23:59:59.000Z

500

Learn More About the Fuel Economy Label for Plug-in Hybrid Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plug-in Hybrid Electric Vehicles Plug-in Hybrid Electric Vehicles Learn More About the New Label Plug-in Hybrid Fuel Economy Label Vehicle Technology & Fuel Comparing Fuel Economy to Other Vehicles You Save/Spend More over 5 Years Compared to Average Vehicle Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating QR Code fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that can be powered by both gasoline and electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)