National Library of Energy BETA

Sample records for models assessing surface

  1. Assessing the nonlinear response of fine particles to precursor emissions: Development and application of an extended response surface modeling technique v1.0

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, B.; Wang, S. X.; Xing, J.; Fu, K.; Fu, J. S.; Jang, C.; Zhu, Y.; Dong, X. Y.; Gao, Y.; Wu, W. J.; et al

    2015-01-30

    An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widelymore » used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.« less

  2. Assessing the nonlinear response of fine particles to precursor emissions: Development and application of an extended response surface modeling technique v1.0

    SciTech Connect (OSTI)

    Zhao, B.; Wang, S. X.; Xing, J.; Fu, K.; Fu, J. S.; Jang, C.; Zhu, Y.; Dong, X. Y.; Gao, Y.; Wu, W. J.; Wang, J. D.; Hao, J. M.

    2015-01-30

    An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widely used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.

  3. ORISE: Dose modeling and assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dose modeling and assessments The Oak Ridge Institute for Science and Education (ORISE) offers dose modeling and assessment services to demonstrate that federal and/or state regulatory compliance requirements are being met during the decontamination and decommissioning of nuclear facilities. Dose modeling is an important step in the assessment of safety and regulatory compliance, as well as the development of standards and regulatory rulemaking. The ultimate goal of dose modeling and assessments

  4. Biosafety Risk Assessment Model

    Energy Science and Technology Software Center (OSTI)

    2011-05-27

    Software tool based on a structured methodology for conducting laboratory biosafety risk assessments by biosafety experts. Software is based upon an MCDA scheme and uses peer reviewed criteria and weights. The software was developed upon Microsoft’s .net framework. The methodology defines likelihood and consequence of a laboratory exposure for thirteen unique scenarios and provides numerical relative risks for each of the relevant thirteen. The software produces 2-d graphs reflecting the relative risk and a sensitivitymore » analysis which highlights the overall importance of each factor. The software works as a set of questions with absolute scales and uses a weighted additive model to calculate the likelihood and consequence.« less

  5. ORISE: Dose modeling and assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Oak Ridge Institute for Science and Education (ORISE) offers dose modeling and assessment services to demonstrate that federal andor state regulatory compliance requirements...

  6. TEPP Model Needs Assessment Document

    Broader source: Energy.gov [DOE]

    The purpose of this Model Needs Assessment is to assist state, tribal, or local of?cials in determining emergency responder readiness for response to a transportation accident involving...

  7. Decision Impact Assessment Model

    Energy Science and Technology Software Center (OSTI)

    1991-08-01

    DIAMOND represents the decision-making environment that utility planners and executives face. Users interact with the model after every year or two of simulation, which provides an opportunity to modify past decisions as well as to make new decisions. For example, construction of a power plant can be started one year, and if circumstances change, the plant can be accelerated, mothballed, cancelled, or continued as originally planned. Similarly, the marketing and financial incentives for demand-side managementmore » programs can be changed from year to year. This frequent user interaction with the model, an operational game, should build greater understanding and insights among utility planners about the risks associated with different types of resources.« less

  8. Mathematical models for risk assessment

    SciTech Connect (OSTI)

    Zaikin, S.A.

    1995-12-01

    The use of mathematical models in risk assessment results in the proper understanding of many aspects of chemical exposure and allows to make more actual decisions. Our project ISCRA (Integrated Systems of Complex Risk Assessment) has the aim to create integrated systems of algorythms for prediction of pollutants` exposure on human and environmental health and to apply them for environmental monitoring, and decision-making. Mathematical model {open_quotes}MASTER{close_quotes} (Mathematical Algorythm of SimulaTion of Environmental Risk) represents the complex of algorythmical blocks and is intended for the prediction of danger of pollutants` exposure for human and environmental risk. Model LIMES (LIMits EStimation) is developed for prognosis of safety concentrations of pollutants in the environment both in the case of isolated exposure and in the case of complex exposure for concrete location. Model QUANT (QUANtity of Toxicant) represents the multicompartmental physiological pharmacokinetic model describing absorption, distribution, fate, metabolism, and elimination of pollutants in the body of different groups of human population, as a result of the different kind of exposure. Decision support system CLEVER (Complex LEVE1 of Risk) predicts the probability and the degree of development of unfavourable effects as result of exposure of pollutant on human health. System is based on the data of epidemiological and experimental researches and includes several mathematical models for analysis of {open_quotes}dose-time-response{close_quotes} relations and information about clinical symptoms of diseases. Model CEP (Combination Effect Prognosis) contains probabilistic algorythms for forecasting the effect of simultaneous impact of several factors polluting the environment. The result of the program work is the prediction of an independent exposure of two or more factors, and intensification or weakening of exposure in depending on factors` interactions.

  9. An Improved MUSIC Model for Gibbsite Surfaces

    SciTech Connect (OSTI)

    Mitchell, Scott C.; Bickmore, Barry R.; Tadanier, Christopher J.; Rosso, Kevin M.

    2004-06-01

    Here we use gibbsite as a model system with which to test a recently published, bond-valence method for predicting intrinsic pKa values for surface functional groups on oxides. At issue is whether the method is adequate when valence parameters for the functional groups are derived from ab initio structure optimization of surfaces terminated by vacuum. If not, ab initio molecular dynamics (AIMD) simulations of solvated surfaces (which are much more computationally expensive) will have to be used. To do this, we had to evaluate extant gibbsite potentiometric titration data that where some estimate of edge and basal surface area was available. Applying BET and recently developed atomic force microscopy methods, we found that most of these data sets were flawed, in that their surface area estimates were probably wrong. Similarly, there may have been problems with many of the titration procedures. However, one data set was adequate on both counts, and we applied our method of surface pKa int prediction to fitting a MUSIC model to this data with considerable successseveral features of the titration data were predicted well. However, the model fit was certainly not perfect, and we experienced some difficulties optimizing highly charged, vacuum-terminated surfaces. Therefore, we conclude that we probably need to do AIMD simulations of solvated surfaces to adequately predict intrinsic pKa values for surface functional groups.

  10. Utility of Social Modeling for Proliferation Assessment - Preliminary Assessment

    SciTech Connect (OSTI)

    Coles, Garill A.; Gastelum, Zoe N.; Brothers, Alan J.; Thompson, Sandra E.

    2009-06-01

    This Preliminary Assessment draft report will present the results of a literature search and preliminary assessment of the body of research, analysis methods, models and data deemed to be relevant to the Utility of Social Modeling for Proliferation Assessment research. This report will provide: 1) a description of the problem space and the kinds of information pertinent to the problem space, 2) a discussion of key relevant or representative literature, 3) a discussion of models and modeling approaches judged to be potentially useful to the research, and 4) the next steps of this research that will be pursued based on this preliminary assessment. This draft report represents a technical deliverable for the NA-22 Simulations, Algorithms, and Modeling (SAM) program. Specifically this draft report is the Task 1 deliverable for project PL09-UtilSocial-PD06, Utility of Social Modeling for Proliferation Assessment. This project investigates non-traditional use of social and cultural information to improve nuclear proliferation assessment, including nonproliferation assessment, proliferation resistance assessments, safeguards assessments and other related studies. These assessments often use and create technical information about the States posture towards proliferation, the vulnerability of a nuclear energy system to an undesired event, and the effectiveness of safeguards. This project will find and fuse social and technical information by explicitly considering the role of cultural, social and behavioral factors relevant to proliferation. The aim of this research is to describe and demonstrate if and how social science modeling has utility in proliferation assessment.

  11. TEPP Planning Products Model Needs Assessment Self Assessment Document

    Office of Environmental Management (EM)

    Planning Products Model Needs Assessment Self Assessment Document Prepared for the Department of Energy Office of Transportation and Emergency Management 02B00215-13.p65 1 Model Needs Assessment R E V 8 - 0 7 / 2 0 1 2 T r a n s p o r t a t i o n E m e r g e n c y P r e p a r e d n e s s P r o g r a m PURPOSE The purpose of this Model Needs Assessment is to assist state, tribal, or local officials in determining emergency responder readiness for response to a transportation accident involving

  12. Model Fire Protection Assessment Guide

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Assessment guide covers the implementation of the DOE's responsibility of assuring that DOE and the DOE Contractors have established Fire Protection Programs that are at the level required for the area being assessed.

  13. Assessment of Molecular Modeling & Simulation

    SciTech Connect (OSTI)

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  14. Minority Utility Rate Design Assessment Model

    Energy Science and Technology Software Center (OSTI)

    2003-01-20

    Econometric model simulates consumer demand response to various user-supplied, two-part tariff electricity rate designs and assesses their economic welfare impact on black, hispanic, poor and majority households.

  15. COMPETENCY MODEL ASSESSMENT DESIGN, ADMINISTRATION, AND ANALYSIS |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Learning and Workforce Development » Workforce Development » COMPETENCY MODEL ASSESSMENT DESIGN, ADMINISTRATION, AND ANALYSIS COMPETENCY MODEL ASSESSMENT DESIGN, ADMINISTRATION, AND ANALYSIS DOE faces a talent challenge derived from a number of factors including a dynamic operating environment, an anticipated wave of retirements from the workforce, and a projected shortage of workers with needed skills. The Office of the Chief Human Capital Officer (CHCO) is charged

  16. Modeling Tritium on Metal Surfaces | Department of Energy

    Office of Environmental Management (EM)

    Tritium on Metal Surfaces Modeling Tritium on Metal Surfaces Presentation from the 36th Tritium Focus Group Meeting held in Los Alamos, New Mexico, November 3-5, 2015. PDF icon Modeling Tritium on Metal Surfaces More Documents & Publications Tritium on Metal Surfaces DOE-HDBK-1079-94 Overview of tritium activity in Japan

  17. Financial and Cost Assessment Model (FICAM) | Open Energy Information

    Open Energy Info (EERE)

    and Cost Assessment Model (FICAM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financial and Cost Assessment Model (FICAM) AgencyCompany Organization: UNEP-Risoe...

  18. MODARIA: Modelling and Data for Radiological Impact Assessment...

    Office of Environmental Management (EM)

    MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview Presentation...

  19. Cumulative hydrologic impact assessments on surface-water in northeastern Wyoming using HEC-1; a pilot study

    SciTech Connect (OSTI)

    Anderson, A.J.; Eastwood, D.C.; Anderson, M.E.

    1997-12-31

    The Surface Mining Control and Reclamation Act of 1977 requires that areas in which multiple mines will affect one watershed be analyzed and the cumulative impacts of all mining on the watershed be assessed. The purpose of the subject study was to conduct a cumulative hydrologic impact assessment (CHIA) for surface-water on a watershed in northeastern Wyoming that is currently being impacted by three mines. An assessment of the mining impact`s affect on the total discharge of the watershed is required to determine whether or not material damage to downstream water rights is likely to occur as a result of surface mining and reclamation. The surface-water model HEC-1 was used to model four separate rainfall-runoff events that occurred in the study basin over three years (1978-1980). Although these storms were used to represent pre-mining conditions, they occurred during the early stages of mining and the models were adjusted accordingly. The events were selected for completeness of record and antecedent moisture conditions (AMC). Models were calibrated to the study events and model inputs were altered to reflect post-mining conditions. The same events were then analyzed with the new model inputs. The results were compared with the pre-mining calibration. Peak flow, total discharge and timing of flows were compared for pre-mining and post-mining models. Data were turned over to the State of Wyoming for assessment of whether material damage to downstream water rights is likely to occur.

  20. Hydrogen Risk Assessment Model (HyRAM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Risk Assessment Model (HyRAM) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  1. Surface Deformation from Satellite Data and Geothermal Assessment...

    Open Energy Info (EERE)

    Deformation from Satellite Data and Geothermal Assessment, Exploration and Mitigation in Imperial Valley Jump to: navigation, search OpenEI Reference LibraryAdd to library Web...

  2. Model for assessing bronchial mucus transport

    SciTech Connect (OSTI)

    Agnew, J.E.; Bateman, J.R.M.; Pavia, D.; Clarke, S.W.

    1984-02-01

    The authors propose a scheme for the assessment of regional mucus transport using inhaled Tc-99m aerosol particles and quantitative analysis of serial gamma-camera images. The model treats input to inner and intermediate lung regions as the total of initial deposition there plus subsequent transport into these regions from more peripheral airways. It allows for interregional differences in the proportion of particles deposited on the mucus-bearing conducting airways, and does not require a gamma image 24 hr after particle inhalation. Instead, distribution of particles reaching the respiratory bronchioles or alveoli is determined from a Kr-81m ventilation image, while the total amount of such deposition is obtained from 24-hr Tc-99m retention measured with a sensitive counter system. The model is applicable to transport by mucociliary action or by cough, and has been tested in ten normal and ten asthmatic subjects.

  3. Risk assessment compatible fire models (RACFMs)

    SciTech Connect (OSTI)

    Lopez, A.R.; Gritzo, L.A.; Sherman, M.P.

    1998-07-01

    A suite of Probabilistic Risk Assessment Compatible Fire Models (RACFMs) has been developed to represent the hazard posed by a pool fire to weapon systems transported on the B52-H aircraft. These models represent both stand-off (i.e., the weapon system is outside of the flame zone but exposed to the radiant heat load from fire) and fully-engulfing scenarios (i.e., the object is fully covered by flames). The approach taken in developing the RACFMs for both scenarios was to consolidate, reconcile, and apply data and knowledge from all available resources including: data and correlations from the literature, data from an extensive full-scale fire test program at the Naval Air Warfare Center (NAWC) at China Lake, and results from a fire field model (VULCAN). In the past, a single, effective temperature, T{sub f}, was used to represent the fire. The heat flux to an object exposed to a fire was estimated using the relationship for black body radiation, {sigma}T{sub f}{sup 4}. Significant improvements have been made by employing the present approach which accounts for the presence of temperature distributions in fully-engulfing fires, and uses best available correlations to estimate heat fluxes in stand-off scenarios.

  4. Towards Addressing Surface Effects in Ordinary Isotropic Peridynamic Models

    Office of Scientific and Technical Information (OSTI)

    Position Aware Linear Solid (PALS). (Conference) | SciTech Connect Towards Addressing Surface Effects in Ordinary Isotropic Peridynamic Models Position Aware Linear Solid (PALS). Citation Details In-Document Search Title: Towards Addressing Surface Effects in Ordinary Isotropic Peridynamic Models Position Aware Linear Solid (PALS). Abstract not provided. Authors: Mitchell, John Anthony ; Silling, Stewart Andrew Publication Date: 2013-12-01 OSTI Identifier: 1121945 Report Number(s):

  5. MODARIA: Modelling and Data for Radiological Impact Assessment Context and

    Office of Environmental Management (EM)

    Overview | Department of Energy MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview Presentation from the 2015 Annual Performance and Risk Assessment (P&RA) Community of Practice (CoP) Technical Exchange Meeting held in Richland, Washington on December 15-16, 2015. PDF icon MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview More Documents

  6. Performance model assessment for multi-junction concentrating photovoltaic systems.

    SciTech Connect (OSTI)

    Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

    2010-03-01

    Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement.

  7. Physical Stability of Long-Term Surface Barriers-Assessment of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a -" m HI BHI-00145 Rev. 00 Physical Stability of Long-Term Surface Barriers - Assessment of Potentially Disruptive Natural Events Authors N. R. Wing IT Hanford, Inc. F. M....

  8. Modeling surface backgrounds from radon progeny plate-out

    SciTech Connect (OSTI)

    Perumpilly, G.; Guiseppe, V. E.; Snyder, N. [University of South Dakota, Vermillion, South Dakota 57069 (United States)] [University of South Dakota, Vermillion, South Dakota 57069 (United States)

    2013-08-08

    The next generation low-background detectors operating deep underground aim for unprecedented low levels of radioactive backgrounds. The surface deposition and subsequent implantation of radon progeny in detector materials will be a source of energetic background events. We investigate Monte Carlo and model-based simulations to understand the surface implantation profile of radon progeny. Depending on the material and region of interest of a rare event search, these partial energy depositions can be problematic. Motivated by the use of Ge crystals for the detection of neutrinoless double-beta decay, we wish to understand the detector response of surface backgrounds from radon progeny. We look at the simulation of surface decays using a validated implantation distribution based on nuclear recoils and a realistic surface texture. Results of the simulations and measured ? spectra are presented.

  9. Modeling of gun barrel surface erosion: Historic perspective

    SciTech Connect (OSTI)

    Buckingham, A.C.

    1996-08-01

    Results and interpretations of numerical simulations of some dominant processes influencing gun barrel propellant combustion and flow-induced erosion are presented. Results include modeled influences of erosion reduction techniques such as solid additives, vapor phase chemical modifications, and alteration of surface solid composition through use of thin coatings. Precedents and historical perspective are provided with predictions from traditional interior ballistics compared to computer simulations. Accelerating reactive combustion flow, multiphase and multicomponent transport, flow-to-surface thermal/momentum/phase change/gas-surface chemical exchanges, surface and micro-depth subsurface heating/stress/composition evolution and their roles in inducing surface cracking, spall, ablation, melting, and vaporization are considered. Recognition is given to cyclic effects of previous firing history on material preconditioning. Current perspective and outlook for future are based on results of a US Army-LLNL erosion research program covering 7 y in late 1970s. This is supplemented by more recent research on hypervelocity electromagnetic projectile launchers.

  10. Surface photovoltage measurements and finite element modeling of SAW devices.

    SciTech Connect (OSTI)

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  11. Modeling electron emission and surface effects from diamond cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.

    2015-02-05

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transversemore » electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.« less

  12. Modeling electron emission and surface effects from diamond cathodes

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Modeling electron emission and surface effects from diamond cathodes Citation Details In-Document Search Title: Modeling electron emission and surface effects from diamond cathodes Authors: Dimitrov D. ; Ben-Zvi I. ; Cary, J. R. ; Smithe, D. ; Zhou, C. ; Rao, T. ; Smedley, J. ; Wang, E. Publication Date: 2015-05-03 OSTI Identifier: 1228864 Report Number(s): BNL--108604-2015-CP R&D Project: KBCH139; KB0202011 DOE Contract Number: SC00112704

  13. Wetting and free surface flow modeling for potting and encapsulation.

    SciTech Connect (OSTI)

    Brooks, Carlton, F.; Brooks, Michael J.; Graham, Alan Lyman; Noble, David F. ); Notz, Patrick K.; Hopkins, Matthew Morgan; Castaneda, Jaime N.; Mahoney, Leo James; Baer, Thomas A.; Berchtold, Kathryn; Adolf, Douglas Brian; Wilkes, Edward Dean; Rao, Rekha Ranjana; Givler, Richard C.; Sun, Amy Cha-Tien; Cote, Raymond O.; Mondy, Lisa Ann; Grillet, Anne Mary; Kraynik, Andrew Michael

    2007-06-01

    As part of an effort to reduce costs and improve quality control in encapsulation and potting processes the Technology Initiative Project ''Defect Free Manufacturing and Assembly'' has completed a computational modeling study of flows representative of those seen in these processes. Flow solutions are obtained using a coupled, finite-element-based, numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. In addition, two commercially available codes, ProCAST and MOLDFLOW, are also used on geometries representing encapsulation processes at the Kansas City Plant. Visual observations of the flow in several geometries are recorded in the laboratory and compared to the models. Wetting properties for the materials in these experiments are measured using a unique flowthrough goniometer.

  14. Quality Assurance for Performance Assessment Modeling

    Broader source: Energy.gov [DOE]

    Presentation from the 2015 Annual Performance and Risk Assessment (P&RA) Community of Practice (CoP) Technical Exchange Meeting held in Richland, Washington on December 15-16, 2015.

  15. Hydrogen Risk Assessment Model (HyRAM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... unignited releases from a user-defined hydrogen installation Questions Addressed Given a ... Will this enhance system safety? (If used with an economic model: is the increase in ...

  16. Assessment of PWR waterside corrosion models and data. Final report

    SciTech Connect (OSTI)

    Cox, B.

    1985-10-01

    The published data on waterside corrosion of PWR fuel cladding and unfuelled components have been reviewed, and the models used to assess the data have been studied. All corrosion models use too simplified a view of the corrosion process to obtain other than a general trend for the actual oxidation data. The in-reactor post-transition oxidation of the Zircaloys appears to be heavily dependent on water chemistry variations both between reactors, and along the length of an individual fuel rod. Crud deposition may be one primary cause of this, perhaps by allowing the independent development of the water chemistry within the crud layer, as much as by its effect on cladding surface temperatures. However, the effect of the thickening of the oxide film, which permits the development of an independent water chemistry inside the oxide, leading to an accelerating oxidation rate at large oxide thicknesses, seems to be the most important factor. It is concluded that a spectrum of results ranging from essentially no in-reactor enhancement of the oxidation rate to a sizeable enhancement (>10) may be seen depending upon the thickness of the oxide films, the water chemistry of the reactor, and crud deposition. A post-irradiation test that may help to distinguish between the factors involved has been suggested. 105 refs., 38 figs.

  17. Performance model assessment for multi-junction concentrating photovoltaic systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

    2010-03-01

    Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement. Large photovoltaic systems are typically developed as projects which supply electricity to a utility and are owned by independent power producers. Obtaining financing at favorable rates and attracting investors requires confidence in the projected energy yield from the plant. In this paper, various performance models for projecting annual energy yield from Concentrating Photovoltaic (CPV) systems are assessed by comparing measured system output to model predictions based on measured weather and irradiance data. The results are statistically analyzed to identify systematic error sources.

  18. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    SciTech Connect (OSTI)

    Pasyanos, M E

    2008-05-15

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  19. Assessing the impacts of the Surface Mining Control and Reclamation Act

    SciTech Connect (OSTI)

    Desai, U.

    1989-01-01

    Even a dozen years since the passage of the Surface Mining Control and Reclamation Act (SMCRA) there is little agreement on how well it has worked. The paper attempts to assess the impacts of SMCRA in six major surface coal producing states. Although it is not possible to make an unqualified overall national assessment, the evidence presented in the paper indicates that in many (but by no means all) cases, surface coal mining is now carried out in environmentally less destructive ways then before the Act. However, the accomplishments have fallen far short of expectations. The situation in some states has gotten worse than before the Act. Overall, the impact of the Act on the ground has been mixed and has depended on the rigor with which the Act has been implemented in individual coal states.

  20. Model assessment of protective barrier designs

    SciTech Connect (OSTI)

    Fayer, M.J.; Conbere, W.; Heller, P.R.; Gee, G.W.

    1985-11-01

    A protective barrier is being considered for use at the Hanford site to enhance the isolation of previously disposed radioactive wastes from infiltrating water, and plant and animal intrusion. This study is part of a research and development effort to design barriers and evaluate their performance in preventing drainage. A fine-textured soil (the Composite) was located on the Hanford site in sufficient quantity for use as the top layer of the protective barrier. A number of simulations were performed by Pacific Northwest Laboratory to analyze different designs of the barrier using the Composite soil as well as the finer-textured Ritzville silt loam and a slightly coarser soil (Coarse). Design variations included two rainfall rates (16.0 and 30.1 cm/y), the presence of plants, gravel mixed into the surface of the topsoil, an impermeable boundary under the topsoil, and moving the waste form from 10 to 20 m from the barrier edge. The final decision to use barriers for enhanced isolation of previously disposed wastes will be subject to decisions resulting from the completion of the Hanford Defense Waste Environmental Impact Statement, which addresses disposal of Hanford defense high-level and transuranic wastes. The one-dimensional simulation results indicate that each of the three soils, when used as the top layer of the protective barrier, can prevent drainage provided plants are present. Gravel amendments to the upper 30 cm of soil (without plants) reduced evaporation and allowed more water to drain.

  1. Utility of Social Modeling for Proliferation Assessment - Preliminary Findings

    SciTech Connect (OSTI)

    Coles, Garill A.; Gastelum, Zoe N.; Brothers, Alan J.; Thompson, Sandra E.

    2009-07-16

    Often the methodologies for assessing proliferation risk are focused around the inherent vulnerability of nuclear energy systems and associated safeguards. For example an accepted approach involves ways to measure the intrinsic and extrinsic barriers to potential proliferation. This paper describes preliminary investigation into non-traditional use of social and cultural information to improve proliferation assessment and advance the approach to assessing nuclear material diversion. Proliferation resistance assessment, safeguard assessments and related studies typically create technical information about the vulnerability of a nuclear energy system to diversion of nuclear material. The purpose of this research project is to find ways to integrate social information with technical information by explicitly considering the role of culture, groups and/or individuals to factors that impact the possibility of proliferation. When final, this work is expected to describe and demonstrate the utility of social science modeling in proliferation and proliferation risk assessments.

  2. Subjective surfaces: a geometric model for boundary completion

    SciTech Connect (OSTI)

    Sarti, Alessandro; Malladi, Ravi; Sethian, J.A.

    2000-06-01

    We present a geometric model and a computational method for segmentation of images with missing boundaries. In many situations, the human visual system fills in missing gaps in edges and boundaries, building and completing information that is not present. Boundary completion presents a considerable challenge in computer vision, since most algorithms attempt to exploit existing data. A large body of work concerns completion models, which postulate how to construct missing data; these models are often trained and specific to particular images. In this paper, we take the following, alternative perspective: we consider a reference point within an image as given, and then develop an algorithm which tries to build missing information on the basis of the given point of view and the available information as boundary data to the algorithm. Starting from this point of view, a surface is constructed. It is then evolved with the mean curvature flow in the metric induced by the image until a piecewise constant solution is reached. We test the computational model on modal completion, amodal completion, texture, photo and medical images. We extend the geometric model and the algorithm to 3D in order to extract shapes from low signal/noise ratio medical volumes. Results in 3D echocardiography and 3D fetal echography are presented.

  3. A Population Health Model for Integrated Assessment Models

    SciTech Connect (OSTI)

    Pitcher, Hugh M.; Ebi, Kristie L.; Brenkert, Antoinette L.

    2008-05-01

    This paper presents the initial results of a project to develop a population health model so we can extend the scenarios included in the IPCC's Special Report on Emissions Scenarios to include population health status.

  4. Assessment of Combustion and Turbulence Models for the Simulation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Processes in a DI Diesel Engine | Department of Energy Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine Assessment of Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine Various applied combustion and turbulence models were investigated along with chemical kinetic mechanisms simulating a biodiesel-fueled engine PDF icon deer09_ren.pdf More Documents & Publications Low Temperature

  5. Economic assessment model architecture for AGC/AVLIS selection

    SciTech Connect (OSTI)

    Hoglund, R.L.

    1984-05-24

    The economic assessment model architecture described provides the flexibility and completeness in economic analysis that the selection between AGC and AVLIS demands. Process models which are technology-specific will provide the first-order responses of process performance and cost to variations in process parameters. The economics models can be used to test the impacts of alternative deployment scenarios for a technology. Enterprise models provide global figures of merit for evaluating the DOE perspective on the uranium enrichment enterprise, and business analysis models compute the financial parameters from the private investor's viewpoint.

  6. Model and Analytic Processes for Export License Assessments

    SciTech Connect (OSTI)

    Thompson, Sandra E.; Whitney, Paul D.; Weimar, Mark R.; Wood, Thomas W.; Daly, Don S.; Brothers, Alan J.; Sanfilippo, Antonio P.; Cook, Diane; Holder, Larry

    2011-09-29

    This paper represents the Department of Energy Office of Nonproliferation Research and Development (NA-22) Simulations, Algorithms and Modeling (SAM) Program's first effort to identify and frame analytical methods and tools to aid export control professionals in effectively predicting proliferation intent; a complex, multi-step and multi-agency process. The report focuses on analytical modeling methodologies that alone, or combined, may improve the proliferation export control license approval process. It is a follow-up to an earlier paper describing information sources and environments related to international nuclear technology transfer. This report describes the decision criteria used to evaluate modeling techniques and tools to determine which approaches will be investigated during the final 2 years of the project. The report also details the motivation for why new modeling techniques and tools are needed. The analytical modeling methodologies will enable analysts to evaluate the information environment for relevance to detecting proliferation intent, with specific focus on assessing risks associated with transferring dual-use technologies. Dual-use technologies can be used in both weapons and commercial enterprises. A decision-framework was developed to evaluate which of the different analytical modeling methodologies would be most appropriate conditional on the uniqueness of the approach, data availability, laboratory capabilities, relevance to NA-22 and Office of Arms Control and Nonproliferation (NA-24) research needs and the impact if successful. Modeling methodologies were divided into whether they could help micro-level assessments (e.g., help improve individual license assessments) or macro-level assessment. Macro-level assessment focuses on suppliers, technology, consumers, economies, and proliferation context. Macro-level assessment technologies scored higher in the area of uniqueness because less work has been done at the macro level. An approach to developing testable hypotheses for the macro-level assessment methodologies is provided. The outcome of this works suggests that we should develop a Bayes Net for micro-level analysis and continue to focus on Bayes Net, System Dynamics and Economic Input/Output models for assessing macro-level problems. Simultaneously, we need to develop metrics for assessing intent in export control, including the risks and consequences associated with all aspects of export control.

  7. A Physically Based Runoff Routing Model for Land Surface and Earth System Models

    SciTech Connect (OSTI)

    Li, Hongyi; Wigmosta, Mark S.; Wu, Huan; Huang, Maoyi; Ke, Yinghai; Coleman, Andre M.; Leung, Lai-Yung R.

    2013-06-13

    A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed across hillslopes and then discharged along with subsurface runoff into a tributary subnetwork before entering the main channel. The spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way across different spatial resolutions. All model parameters are physically based, and only a small subset requires calibration.MOSART has been applied to the Columbia River basin at 1/ 168, 1/ 88, 1/ 48, and 1/ 28 spatial resolutions and was evaluated using naturalized or observed streamflow at a number of gauge stations. MOSART is compared to two other routing models widely used with land surface models, the River Transport Model (RTM) in the Community Land Model (CLM) and the Lohmann routing model, included as a postprocessor in the Variable Infiltration Capacity (VIC) model package, yielding consistent performance at multiple resolutions. MOSART is further evaluated using the channel velocities derived from field measurements or a hydraulic model at various locations and is shown to be capable of producing the seasonal variation and magnitude of channel velocities reasonably well at different resolutions. Moreover, the impacts of spatial resolution on model simulations are systematically examined at local and regional scales. Finally, the limitations ofMOSART and future directions for improvements are discussed.

  8. Replication of surface features from a master model to an amorphous metallic article

    DOE Patents [OSTI]

    Johnson, William L. (Pasadena, CA); Bakke, Eric (Murrieta, CA); Peker, Atakan (Aliso Viejo, CA)

    1999-01-01

    The surface features of an article are replicated by preparing a master model having a preselected surface feature thereon which is to be replicated, and replicating the preselected surface feature of the master model. The replication is accomplished by providing a piece of a bulk-solidifying amorphous metallic alloy, contacting the piece of the bulk-solidifying amorphous metallic alloy to the surface of the master model at an elevated replication temperature to transfer a negative copy of the preselected surface feature of the master model to the piece, and separating the piece having the negative copy of the preselected surface feature from the master model.

  9. Diagnostic indicators for integrated assessment models of climate policy

    SciTech Connect (OSTI)

    Kriegler, Elmar; Petermann, Nils; Krey, Volker; Schwanitz, Jana; Luderer, Gunnar; Ashina, Shuichi; Bosetti, Valentina; Eom, Jiyong; Kitous, Alban; Mejean, Aurelie; Paroussos, Leonidas; Sano, Fuminori; Turton, Hal; Wilson, Charlie; Van Vuuren, Detlef

    2015-01-01

    Integrated assessments of how climate policy interacts with energy-economic systems can be performed by a variety of models with different functional structures. This article proposes a diagnostic scheme that can be applied to a wide range of integrated assessment models to classify differences among models based on their carbon price responses. Model diagnostics can uncover patterns and provide insights into why, under a given scenario, certain types of models behave in observed ways. Such insights are informative since model behavior can have a significant impact on projections of climate change mitigation costs and other policy-relevant information. The authors propose diagnostic indicators to characterize model responses to carbon price signals and test these in a diagnostic study with 11 global models. Indicators describe the magnitude of emission abatement and the associated costs relative to a harmonized baseline, the relative changes in carbon intensity and energy intensity and the extent of transformation in the energy system. This study shows a correlation among indicators suggesting that models can be classified into groups based on common patterns of behavior in response to carbon pricing. Such a classification can help to more easily explain variations among policy-relevant model results.

  10. Interactive Rapid Dose Assessment Model (IRDAM): reactor-accident assessment methods. Vol. 2

    SciTech Connect (OSTI)

    Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.

    1983-05-01

    As part of the continuing emphasis on emergency preparedness, the US Nuclear Regulatory Commission (NRC) sponsored the development of a rapid dose assessment system by Pacific Northwest Laboratory (PNL). This system, the Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program for rapidly assessing the radiological impact of accidents at nuclear power plants. This document describes the technical bases for IRDAM including methods, models and assumptions used in calculations. IRDAM calculates whole body (5-cm depth) and infant thyroid doses at six fixed downwind distances between 500 and 20,000 meters. Radionuclides considered primarily consist of noble gases and radioiodines. In order to provide a rapid assessment capability consistent with the capacity of the Osborne-1 computer, certain simplifying approximations and assumptions are made. These are described, along with default values (assumptions used in the absence of specific input) in the text of this document. Two companion volumes to this one provide additional information on IRDAM. The user's Guide (NUREG/CR-3012, Volume 1) describes the setup and operation of equipment necessary to run IRDAM. Scenarios for Comparing Dose Assessment Models (NUREG/CR-3012, Volume 3) provides the results of calculations made by IRDAM and other models for specific accident scenarios.

  11. Molecular Modeling of Diffusion on a Crystalline PETN Surface

    SciTech Connect (OSTI)

    Lin, P; Khare, R; Gee, R H; Weeks, B L

    2007-07-13

    Surface diffusion on a PETN crystal was investigated by treating the surface diffusion as an activated process in the formalism of transition state theory. In particular, surface diffusion on the (110) and (101) facets, as well as diffusion between these facets, were considered. We successfully obtained the potential energy barriers required for PETN surface diffusion. Our results show that the (110) surface is more thermally active than the (101) surface and PETN molecules mainly diffuses from the (110) to (101) facet. These results are in good agreement with experimental observations and previous simulations.

  12. Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models

    SciTech Connect (OSTI)

    Droppo, James G.

    2006-07-01

    The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and. 4) development of dry deposition formulations applicable to urban areas. Also to improve dry deposition modeling capabilities, atmospheric dispersion models in which the dry deposition formulations are imbedded need better source-term plume initialization and improved in-plume treatment of particle growth processes. Dry deposition formulations used in current models are largely inapplicable to the complex urban environment. An improved capability is urgently needed to provide surface-specific information to assess local exposure hazard levels in both urban and non-urban areas on roads, buildings, crops, rivers, etc. A model improvement plan is developed with a near-term and far-term component. Despite some conceptual limitations, the current formulations for particle deposition based on a resistance approach have proven to provide reasonable dry deposition simulations. For many models with inadequate dry deposition formulations, adding or improving a resistance approach will be the desirable near-term update. Resistance models however are inapplicable aerodynamically very rough surfaces such as urban areas. In the longer term an improved parameterization of dry deposition needs to be developed that will be applicable to all surfaces, and in particular urban surfaces.

  13. Utilizing CLASIC observations and multiscale models to study the impact of improved Land surface representation on modeling cloud- convection

    SciTech Connect (OSTI)

    Niyogi, Devdutta S.

    2013-06-07

    The CLASIC experiment was conducted over the US southern great plains (SGP) in June 2007 with an objective to lead an enhanced understanding of the cumulus convection particularly as it relates to land surface conditions. This project was design to help assist with understanding the overall improvement of land atmosphere convection initiation representation of which is important for global and regional models. The study helped address one of the critical documented deficiency in the models central to the ARM objectives for cumulus convection initiation and particularly under summer time conditions. This project was guided by the scientific question building on the CLASIC theme questions: What is the effect of improved land surface representation on the ability of coupled models to simulate cumulus and convection initiation? The focus was on the US Southern Great Plains region. Since the CLASIC period was anomalously wet the strategy has been to use other periods and domains to develop the comparative assessment for the CLASIC data period, and to understand the mechanisms of the anomalous wet conditions on the tropical systems and convection over land. The data periods include the IHOP 2002 field experiment that was over roughly same domain as the CLASIC in the SGP, and some of the DOE funded Ameriflux datasets.

  14. Atomistic surface erosion and thin film growth modelled over...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 36 MATERIALS SCIENCE; 37 ... MAGNETRONS; MATERIALS; MOLECULAR DYNAMICS ... FAULTS; SURFACES; THIN FILMS; VACANCIES Word Cloud More ...

  15. Nonlinear Time Domain Modeling and Simulation of Surface and Embedded NPPS

    Office of Environmental Management (EM)

    | Department of Energy Nonlinear Time Domain Modeling and Simulation of Surface and Embedded NPPS Nonlinear Time Domain Modeling and Simulation of Surface and Embedded NPPS Nonlinear Time Domain Modeling and Simulation of Surface and Embedded NPPS Boris Jeremic with contributions from Federico Pisanò, Jose Abell, Kohei Watanabe, Chao Luo University of California, Davis Lawrence Berkeley National Laboratory, Berkeley DOE NPH, October 2014 PDF icon Nonlinear Time Domain Modeling and

  16. Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    SciTech Connect (OSTI)

    Ling, Hao; Hamilton, Mark F.; Bhalla, Rajan; Brown, Walter E.; Hay, Todd A.; Whitelonis, Nicholas J.; Yang, Shang-Te; Naqvi, Aale R.

    2013-09-30

    Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

  17. PORFLOW Modeling Supporting The H-Tank Farm Performance Assessment

    SciTech Connect (OSTI)

    Jordan, J. M.; Flach, G. P.; Westbrook, M. L.

    2012-08-31

    Numerical simulations of groundwater flow and contaminant transport in the vadose and saturated zones have been conducted using the PORFLOW code in support of an overall Performance Assessment (PA) of the H-Tank Farm. This report provides technical detail on selected aspects of PORFLOW model development and describes the structure of the associated electronic files. The PORFLOW models for the H-Tank Farm PA, Rev. 1 were updated with grout, solubility, and inventory changes. The aquifer model was refined. In addition, a set of flow sensitivity runs were performed to allow flow to be varied in the related probabilistic GoldSim models. The final PORFLOW concentration values are used as input into a GoldSim dose calculator.

  18. Annual report, October 1980-September 1981 Multimedia radionuclide exposure assessment modeling.

    SciTech Connect (OSTI)

    Whelan, G.; Onishi, Y.; Simmons, C.S.; Horst, T.W.; Gupta, S.K.; Orgill, M.M.; Newbill, C.A.

    1982-12-01

    Pacific Northwest Laboratory (PNL) and Los Alamos National Laboratory (LANL) are jointly developing a methodology for assessing exposures of the air, water, and plants to radionuclides as part of an overall development effort of a radionuclide disposal site evaluation methodology. Work in FY-1981 continued the development of the Multimedia Contaminant Environmental Exposure Assessment (MCEA) methodology and initiated an assessment of radionuclide migration in Los Alamos and Pueblo Canyons, New Mexico, using the methodology. The AIRTRAN model was completed, briefly tested, and documented. In addition, a literature search for existing validation data for AIRTRAN was performed. The feasibility and advisability of including the UNSAT moisture flow model as a submodel of the terrestrial code BIOTRAN was assessed. A preliminary application of the proposed MCEA methodology, as it related to the Mortandad-South Mortandad Canyon site in New Mexico is discussed. This preliminary application represented a scaled-down version of the methodology in which only the terrestrial, overland, and surface water components were used. An update describing the progress in the assessment of radionuclide migration in Los Alamos and Pueblo Canyons is presented. 38 references, 47 figures, 11 tables.

  19. Literature Review and Assessment of Plant and Animal Transfer Factors Used in Performance Assessment Modeling

    SciTech Connect (OSTI)

    Robertson, David E.; Cataldo, Dominic A.; Napier, Bruce A.; Krupka, Kenneth M.; Sasser, Lyle B.

    2003-07-20

    A literature review and assessment was conducted by Pacific Northwest National Laboratory (PNNL) to update information on plant and animal radionuclide transfer factors used in performance-assessment modeling. A group of 15 radionuclides was included in this review and assessment. The review is composed of four main sections, not including the Introduction. Section 2.0 provides a review of the critically important issue of physicochemical speciation and geochemistry of the radionuclides in natural soil-water systems as it relates to the bioavailability of the radionuclides. Section 3.0 provides an updated review of the parameters of importance in the uptake of radionuclides by plants, including root uptake via the soil-groundwater system and foliar uptake due to overhead irrigation. Section 3.0 also provides a compilation of concentration ratios (CRs) for soil-to-plant uptake for the 15 selected radionuclides. Section 4.0 provides an updated review on radionuclide uptake data for animal products related to absorption, homeostatic control, approach to equilibration, chemical and physical form, diet, and age. Compiled transfer coefficients are provided for cows milk, sheeps milk, goats milk, beef, goat meat, pork, poultry, and eggs. Section 5.0 discusses the use of transfer coefficients in soil, plant, and animal modeling using regulatory models for evaluating radioactive waste disposal or decommissioned sites. Each section makes specific suggestions for future research in its area.

  20. Modeling of ESD events from polymeric surfaces (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: Modeling of ESD events from polymeric surfaces Citation Details In-Document Search Title: Modeling of ESD events from polymeric surfaces Transient electrostatic discharge (ESD) events are studied to assemble a predictive model of discharge from polymer surfaces. An analog circuit simulation is produced and its response is compared to various literature sources to explore its capabilities and limitations. Results suggest that polymer ESD events can be predicted to

  1. Atomistic surface erosion and thin film growth modelled over realistic time

    Office of Scientific and Technical Information (OSTI)

    scales (Journal Article) | SciTech Connect Atomistic surface erosion and thin film growth modelled over realistic time scales Citation Details In-Document Search Title: Atomistic surface erosion and thin film growth modelled over realistic time scales We present results of atomistic modelling of surface growth and sputtering using a multi-time scale molecular dynamics-on-the-fly kinetic Monte Carlo scheme which allows simulations to be carried out over realistic experimental times. The

  2. Centrifuge modeling of radioactive waste migration through backfill in a near surface disposal facility

    SciTech Connect (OSTI)

    Gurumoorthy, C.; Kusakabe, O.

    2007-07-01

    Investigations on the performance of backfill barrier in Near Surface Disposal Facility (NSDF) for radioactive wastes are important to ensure the long term safety of such disposal option. Favorable condition to delay migration of radionuclides from disposed waste to far fields is diffusion process. However, advective dispersion/diffusion mechanism plays an important role due to changes in backfill over a period of time. In order to understand these mechanisms, detailed laboratory experiments are usually conducted for developing mathematical models to assess the behaviour of backfill. However, these experiments are time consuming and suffer with the limitations due to material complexity. Also, there are constraints associated with validation of theoretical predictions due to intricacy of boundary conditions as well as the time scale is quite different as compared to the time required for completion of the processes in the field. Keeping in view these aspects, centrifuge modeling technique has been adopted by various researchers to model and understand various geo-environment problems in order to provide a link between the real life situation termed as the 'Prototype' and its model, which is exposed to a higher gravitational field. An attempt has been made in this paper to investigate the feasibility of this technique to model advective dispersion/diffusion mechanism of radionuclides through saturated Bentonite-Sand (B:S) backfill. Various stages of centrifuge modeling are highlighted. Column tests were conducted in the centrifuge to evaluate the hydraulic conductivity of B:S mixture under prototype NSDF stress conditions. Results showed that steady state hydraulic conductivity under saturated conditions was 2.86 10{sup -11} m/sec. Studies indicate the feasibility of centrifuge modeling technique and usefulness to model advective diffusion of radionuclides through B:S backfill. (authors)

  3. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    SciTech Connect (OSTI)

    Cowan-Ellsberry, Christina E.; McLachlan, Michael S.; Arnot, Jon A.; MacLeod, Matthew; McKone, Thomas E.; Wania, Frank

    2008-11-01

    Fate and exposure modeling has not thus far been explicitly used in the risk profile documents prepared to evaluate significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of POP and PBT chemicals in the environment. The goal of this paper is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include: (1) Benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk. (2) Directly estimating the exposure of the environment, biota and humans to provide information to complement measurements, or where measurements are not available or are limited. (3) To identify the key processes and chemical and/or environmental parameters that determine the exposure; thereby allowing the effective prioritization of research or measurements to improve the risk profile. (4) Predicting future time trends including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and whether the assumptions and input data are relevant in the context of the application. It is possible to have confidence in the predictions of many of the existing models because of their fundamental physical and chemical mechanistic underpinnings and the extensive work already done to compare model predictions and empirical observations. The working group recommends that modeling tools be applied for benchmarking PBT/POPs according to exposure-to-emissions relationships, and that modeling tools be used to interpret emissions and monitoring data. The further development of models that couple fate, long-range transport, and bioaccumulation should be fostered, especially models that will allow time trends to be scientifically addressed in the risk profile.

  4. Triangle geometry processing for surface modeling and cartesian grid generation

    DOE Patents [OSTI]

    Aftosmis, Michael J. [San Mateo, CA; Melton, John E. [Hollister, CA; Berger, Marsha J. [New York, NY

    2002-09-03

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  5. An international land-biosphere model benchmarking activity for the IPCC Fifth Assessment Report (AR5)

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL; Randerson, James T [ORNL; Thornton, Peter E [ORNL; Bonan, Gordon [National Center for Atmospheric Research (NCAR); Erickson III, David J [ORNL; Fung, Inez [University of California, Berkeley

    2009-12-01

    The need to capture important climate feedbacks in general circulation models (GCMs) has resulted in efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, called Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results (Friedlingstein et al., 2006). This work suggests that a more rigorous set of global offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are needed. The Carbon-Land Model Intercomparison Project (C-LAMP) was designed to meet this need by providing a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). Recently, a similar effort in Europe, called the International Land Model Benchmark (ILAMB) Project, was begun to assess the performance of European land surface models. These two projects will now serve as prototypes for a proposed international land-biosphere model benchmarking activity for those models participating in the IPCC Fifth Assessment Report (AR5). Initially used for model validation for terrestrial biogeochemistry models in the NCAR Community Land Model (CLM), C-LAMP incorporates a simulation protocol for both offline and partially coupled simulations using a prescribed historical trajectory of atmospheric CO2 concentrations. Models are confronted with data through comparisons against AmeriFlux site measurements, MODIS satellite observations, NOAA Globalview flask records, TRANSCOM inversions, and Free Air CO2 Enrichment (FACE) site measurements. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the CLM version 3 in the Community Climate System Model version 3 (CCSM3): the CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons of the CLM3 offline results against observational datasets have been performed and are described in Randerson et al. (2009). CLM version 4 has been evaluated using C-LAMP, showing improvement in many of the metrics. Efforts are now underway to initiate a Nitrogen-Land Model Intercomparison Project (N-LAMP) to better constrain the effects of the nitrogen cycle in biosphere models. Presented will be new results from C-LAMP for CLM4, initial N-LAMP developments, and the proposed land-biosphere model benchmarking activity.

  6. A Hydro-Economic Approach to Representing Water Resources Impacts in Integrated Assessment Models

    SciTech Connect (OSTI)

    Kirshen, Paul H.; Strzepek, Kenneth, M.

    2004-01-14

    Grant Number DE-FG02-98ER62665 Office of Energy Research of the U.S. Department of Energy Abstract Many Integrated Assessment Models (IAM) divide the world into a small number of highly aggregated regions. Non-OECD countries are aggregated geographically into continental and multiple-continental regions or economically by development level. Current research suggests that these large scale aggregations cannot accurately represent potential water resources-related climate change impacts. In addition, IAMs do not explicitly model the flow regulation impacts of reservoir and ground water systems, the economics of water supply, or the demand for water in economic activities. Using the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) model of the International Food Policy Research Institute (IFPRI) as a case study, this research implemented a set of methodologies to provide accurate representation of water resource climate change impacts in Integrated Assessment Models. There were also detailed examinations of key issues related to aggregated modeling including: modeling water consumption versus water withdrawals; ground and surface water interactions; development of reservoir cost curves; modeling of surface areas of aggregated reservoirs for estimating evaporation losses; and evaluating the importance of spatial scale in river basin modeling. The major findings include: - Continental or national or even large scale river basin aggregation of water supplies and demands do not accurately capture the impacts of climate change in the water and agricultural sector in IAMs. - Fortunately, there now exist gridden approaches (0.5 X 0.5 degrees) to model streamflows in a global analysis. The gridded approach to hydrologic modeling allows flexibility in aligning basin boundaries with national boundaries. This combined with GIS tools, high speed computers, and the growing availability of socio-economic gridded data bases allows assignment of demands to river basins to create hydro-economic zones that respect as much as possible both political and hydrologic integrity in different models. - To minimize pre-processing of data and add increased flexibility to modeling water resources and uses, it is recommended that water withdrawal demands be modeled, not consumptive requirements even though this makes the IAM more complex. - IAMs must consider changes in water availability for irrigation under climate change; ignoring them is more inaccurate than ignoring yield changes in crops under climate change. - Determining water availability and cost in river basins must include modeling streamflows, reservoirs and their operations, and ground water and its interaction with surface water. - Scale issues are important. The results from condensing demands and supplies in a large complex river basin to one node can be misleading for all uses under low flow conditions and instream flow uses under all conditions. Monthly is generally the most accurate scale for modeling river flows and demands. Challenges remain in integrating hydrologic units with political boundaries but the gridded approach to hydrologic modeling allows flexibility in aligning basin boundaries with political boundaries. - Using minimal reservoir cost data, it is possible to use basin topography to estimate reservoir storage costs. - Reservoir evaporation must be considered when assessing the usable water in a watershed. Several methods are available to estimate the relationship between aggregated storage surface area and storage volume. - For existing or future IAMs that can not use the appropriate aggregation for water, a water preprocessor may be required due the finer scale of hydrologic impacts.

  7. Methods for Developing Emissions Scenarios for Integrated Assessment Models

    SciTech Connect (OSTI)

    Prinn, Ronald; Webster, Mort

    2007-08-20

    The overall objective of this research was to contribute data and methods to support the future development of new emissions scenarios for integrated assessment of climate change. Specifically, this research had two main objectives: 1. Use historical data on economic growth and energy efficiency changes, and develop probability density functions (PDFs) for the appropriate parameters for two or three commonly used integrated assessment models. 2. Using the parameter distributions developed through the first task and previous work, we will develop methods of designing multi-gas emission scenarios that usefully span the joint uncertainty space in a small number of scenarios. Results on the autonomous energy efficiency improvement (AEEI) parameter are summarized, an uncertainty analysis of elasticities of substitution is described, and the probabilistic emissions scenario approach is presented.

  8. Surface water drainage system. Environmental assessment and finding of no significant impact

    SciTech Connect (OSTI)

    1996-05-01

    This Environmental Assessment (EA) is written pursuant to the National Environmental Policy Act (NEPA). The document identifies and evaluates the action proposed to correct deficiencies in, and then to maintain, the surface water drainage system serving the Department of Energy`s Rocky Flats Environmental Technology Site (Site), located north of Golden, Colorado. Many of the activities proposed would not normally be subject to this level of NEPA documentation. However, in many cases, maintenance of the system has been deferred to the point that wetlands vegetation has become established in some ditches and culverts, creating wetlands. The proposed activities would damage or remove some of these wetlands in order to return the drainage system to the point that it would be able to fully serve its intended function - stormwater control. The Department of Energy (DOE) regulations require that activities affecting environmentally sensitive areas like wetlands be the subject of an EA. Most portions of the surface water drainage system are presently inadequate to convey the runoff from a 100-year storm event. As a result, such an event would cause flooding across much of the Site and possibly threaten the integrity of the dams at the terminal ponds. Severe flooding would not only cause damage to facilities and equipment, but could also facilitate the transport of contaminants from individual hazardous substance sites (IHSSs). Uncontrolled flow through the A- and B-series ponds could cause contaminated sediments to become suspended and carried downstream. Additionally, high velocity flood flows significantly increase erosion losses.

  9. Assessment of damage to the desert surfaces of Kuwait due to the Gulf War

    SciTech Connect (OSTI)

    El-Baz, F. . Center for Remote Sensing); Al-Ajmi, D. . Environmental and Earth Sciences Div.)

    1993-01-01

    This is a preliminary report on a joint research project by Boston University and the Kuwait Institute for Scientific Research that commenced in April 1992. The project aim is to establish the extent and nature of environmental damage to the desert surface and coastal zone of Kuwait due to the Gulf War and its aftermath. Change detection image enhancement techniques were employed to enhance environmental change by comparison of Landsat Thematic Mapper images obtained before the wars and after the cessation of the oil and well fires. Higher resolution SPOT images were also utilized to evaluate the nature of the environmental damage to specific areas. The most prominent changes were due to: (1) the deposition of oil and course-grained soot on the desert surface as a result of oil rain'' from the plume that emanated from the oil well fires; (2) the formation of hundreds of oil lakes, from oil seepage at the damaged oil well heads; (3) the mobilization of sand and dust and (4) the pollution of segments of the coastal zone by the deposition of oil from several oil spills. Interpretation of satellite image data are checked in the field to confirm the observations, and to assess the nature of the damage. Final results will be utilized in establishing the needs for remedial action to counteract the harmful effects of the various types of damage to the environment of Kuwait.

  10. Test Plan to Assess Fire Effects on the Function of an Engineered Surface Barrier

    SciTech Connect (OSTI)

    Ward, Anderson L.; Berlin, Gregory T.; Cammann, Jerry W.; Leary, Kevin D.; Link, Steven O.

    2008-09-29

    Wildfire is a frequent perturbation in shrub steppe ecosystems, altering the flora, fauna, atmosphere, and soil of these systems. Research on the fire effects has focused mostly on natural ecosystems with essentially no attention on engineered systems like surface barriers. The scope of the project is to use a simulated wildfire to induce changes in an engineered surface barrier and document the effects on barrier performance. The main objective is to quantify the effects of burning and the resulting post-fire conditions on alterations in soil physical properties; hydrologic response, particularly the water balance; geochemical properties; and biological properties. A secondary objective is to use the lessons learned to maximize fire protection in the design of long-term monitoring systems based on electronic sensors. A simulated wildfire will be initiated, controlled and monitored at the 200-BP-1 barrier in collaboration with the Hanford Fire Department during the fall of 2008. The north half of the barrier will be divided into nine 12 x 12 m plots, each of which will be randomly assigned a fuel load of 2 kg m-2 or 4 kg m-2. Each plot will be ignited around the perimeter and flames allowed to carry to the centre. Any remaining unburned vegetation will be manually burned off using a drip torch. Progress of the fire and its effects will be monitored using point measurements of thermal, hydrologic, and biotic variables. Three measures of fire intensity will be used to characterize fire behavior: (1) flame height, (2) the maximum temperature at three vertical profile levels, and (3) total duration of elevated temperature at these levels. Pre-burn plant information, including species diversity, plant height, and canopy diameter will be measured on shrubs from the plots to be burned and from control plots at the McGee ranch. General assessments of shrub survival, recovery, and recruitment will be made after the fire. Near-surface soil samples will be collected pre- and post-burn to determine changes in the gravel content of the surface layer so as to quantify inflationary or deflationary responses to fire and to reveal the ability of the surface to resist post-fire erosive stresses. Measures of bulk density, water repellency, water retention, and hydraulic conductivity will be used to characterize changes in infiltration rates and water storage capacity following the fire. Samples will also be analyzed to quantify geochemical changes including changes in soil pH, cation exchange capacity, specific surface area, and the concentration of macro nutrients (e.g. N, P, K) and other elements such as Na, Mg, Ca, that are critical to the post-fire recovery revegetation. Soil CO2 emissions will be measured monthly for one year following the burn to document post-fire stimulation of carbon turnover and soil biogenic emissions. Surface and subsurface temperature measurements at and near monitoring installations will be used to document fire effects on electronic equipment. The results of this study will be used to bridge the gaps in knowledge on the effects of fire on engineered ecosystems (e.g. surface barriers), particularly the hydrologic and biotic characteristics that govern the water and energy balance. These results will also support the development of practical fire management techniques for barriers that are compatible with wildfire suppression strategies. Furthermore, lessons learned will be use to develop installation strategies needed to protect electronic monitoring equipment from the intense heat of fire and the potential damaging effects of smoke and fire extinguishing agents. Such information is needed to better understand long-term barrier performance under extreme conditions, especially if site maintenance and operational funding is lost for activities such as barrier revegetation.

  11. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    SciTech Connect (OSTI)

    Buckingham, A.C.; Siekhaus, W.J.

    1982-09-27

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives.

  12. A preliminary study to Assess Model Uncertainties in Fluid Flows

    SciTech Connect (OSTI)

    Marc Oliver Delchini; Jean C. Ragusa

    2009-09-01

    The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcys approximation. The ultimate goal is to compute the fluid flow models uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.

  13. Geochemical Modeling of the Near-Surface Hydrothermal System...

    Open Energy Info (EERE)

    with non-thermal groundwater. Our conceptual model is based on hypotheses in the literature and published geochemical and petrologic data. Mixing of thermal and non-thermal...

  14. Modeling Of Surface Deformation From Satellite Radar Interferometry...

    Open Energy Info (EERE)

    Salton Sea geothermal field is modeled using results from satellite radar interferometry, data from leveling surveys, and observations from the regional GPS network. The field is...

  15. An Inspector's Assessment of the New Model Safeguards Approach for Enrichment Plants

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2007-07-31

    This conference paper assesses the changes that are being made to the Model Safeguards Approach for Gas Centrifuge Enrichment Plants.

  16. Langasite Surface Acoustic Wave Gas Sensors: Modeling and Verification

    SciTech Connect (OSTI)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.

    2013-01-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  17. Ab-initio modeling of electromechanical coupling at Si surfaces

    SciTech Connect (OSTI)

    Hoppe, Sandra; Mller, Stefan; Michl, Anja; Weissmller, Jrg

    2014-08-21

    The electromechanical coupling at the silicon (100) and (111) surfaces was studied via density functional theory by calculating the response of the ionization potential and the electron affinity to different types of strain. We find a branched strain response of those two quantities with different coupling coefficients for negative and positive strain values. This can be attributed to the reduced crystal symmetry due to anisotropic strain, which partially lifts the degeneracy of the valence and conduction bands. Only the Si(111) electron affinity exhibits a monotonously linear strain response, as the conduction band valleys remain degenerate under strain. The strain response of the surface dipole is linear and seems to be dominated by volume changes. Our results may help to understand the mechanisms behind electromechanical coupling at an atomic level in greater detail and for different electronic and atomic structures.

  18. Digital processing of SEM images for the assessment of evaluation indexes of cleaning interventions on Pentelic marble surfaces

    SciTech Connect (OSTI)

    Moropoulou, A. Delegou, E.T.; Vlahakis, V.; Karaviti, E.

    2007-11-15

    In this work, digital processing of scanning-electron-microscopy images utilized to assess cleaning interventions applied on the Pentelic marble surfaces of the National Archaeological Museum and National Library in Athens, Greece. Beside mineralogical and chemical characterization that took place by scanning-electron-microscopy with Energy Dispersive X-ray Spectroscopy, the image-analysis program EDGE was applied for estimating three evaluation indexes of the marble micro-structure. The EDGE program was developed by the U.S. Geological Survey for the evaluation of cleaning interventions applied on Philadelphia City Hall. This computer program analyzes scanning-electron-microscopy images of stone specimens cut in cross-section for measuring the fractal dimension of the exposed surfaces, the stone near-surface fracture density, the shape factor (a surface roughness factor) and the friability index which represents the physico-chemical and physico-mechanical stability of the stone surface. The results indicated that the evaluation of the marble surface micro-structure before and after cleaning is achieved by the suggested indexes, while the performance of cleaning interventions on the marble surfaces can be assessed.

  19. Boundary layer modeling of reactive flow over a porous surface with angled injection

    SciTech Connect (OSTI)

    Liu, Shiling; Fotache, Catalin G.; Hautman, Donald J.; Ochs, Stuart S. [United Technologies Research Center, MS 129-29, 411 Silver Lane, East Hartford, CT 06108 (United States); Chao, Beei-Huan [Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2008-08-15

    An analytical model was developed to investigate the dynamics of nonpremixed flames in a shear layer established between a mainstream flow of fuel-rich combustion products and a porous surface with an angled injection of air. In the model, a one-step overall chemical reaction was employed, together with boundary layer conservation equations solved using similarity solutions. Parametric studies were performed to understand the effects of equivalence ratio, temperature, and mass flow rate of the fuel and air streams on the flame standoff distance, surface temperature, and heat flux at the surface. The analytical model predictions were compared with computational fluid dynamics results obtained using the FLUENT commercial code for both the laminar and the turbulent flow models. Qualitative agreement in surface temperature was observed. Finally, the flame stability limits predicted by the model were compared with available experimental data and found to agree qualitatively, as well. (author)

  20. Free surface modeling in OWC chamber with parabolic side walls using 3D BEM

    SciTech Connect (OSTI)

    Hasanabad, Madjid Ghodsi

    2015-03-10

    In this paper, BEM was used for free surface modeling in OWC chamber and out of it. Linear kinematic and dynamic boundary conditions were used for free surface out of OWC chamber and nonlinear forms were used for free surface in the chamber. These boundary conditions were discretized by finite differences method. Also, some thermodynamics relations were applied for trapped air behavior modeling in OWC chamber. Wave specifications in Chabahar region were used in modeling because these waves have an acceptable power for electricity generation. The results show a good agreement with results of other researches.

  1. A Subbasin-based framework to represent land surface processes in an Earth System Model

    SciTech Connect (OSTI)

    Tesfa, Teklu K.; Li, Hongyi; Leung, Lai-Yung R.; Huang, Maoyi; Ke, Yinghai; Sun, Yu; Liu, Ying

    2014-05-20

    Realistically representing spatial heterogeneity and lateral land surface processes within and between modeling units in earth system models is important because of their implications to surface energy and water exchange. The traditional approach of using regular grids as computational units in land surface models and earth system models may lead to inadequate representation of lateral movements of water, energy and carbon fluxes, especially when the grid resolution increases. Here a new subbasin-based framework is introduced in the Community Land Model (CLM), which is the land component of the Community Earth System Model (CESM). Local processes are represented assuming each subbasin as a grid cell on a pseudo grid matrix with no significant modifications to the existing CLM modeling structure. Lateral routing of water within and between subbasins is simulated with the subbasin version of a recently-developed physically based routing model, Model for Scale Adaptive River Routing (MOSART). As an illustration, this new framework is implemented in the topographically diverse region of the U.S. Pacific Northwest. The modeling units (subbasins) are delineated from high-resolution Digital Elevation Model while atmospheric forcing and surface parameters are remapped from the corresponding high resolution datasets. The impacts of this representation on simulating hydrologic processes are explored by comparing it with the default (grid-based) CLM representation. In addition, the effects of DEM resolution on parameterizing topography and the subsequent effects on runoff processes are investigated. Limited model evaluation and comparison showed that small difference between the averaged forcing can lead to more significant difference in the simulated runoff and streamflow because of nonlinear horizontal processes. Topographic indices derived from high resolution DEM may not improve the overall water balance, but affect the partitioning between surface and subsurface runoff. More systematic analyses are needed to determine the relative merits of the subbasin representation compared to the commonly used grid-based representation, especially when land surface models are approaching higher resolutions.

  2. Utility of Social Modeling for Proliferation Assessment - Enhancing a Facility-Level Model for Proliferation Resistance Assessment of a Nuclear Enegry System

    SciTech Connect (OSTI)

    Coles, Garill A.; Brothers, Alan J.; Gastelum, Zoe N.; Olson, Jarrod; Thompson, Sandra E.

    2009-10-26

    The Utility of Social Modeling for Proliferation Assessment project (PL09-UtilSocial) investigates the use of social and cultural information to improve nuclear proliferation assessments, including nonproliferation assessments, Proliferation Resistance (PR) assessments, safeguards assessments, and other related studies. These assessments often use and create technical information about a host State and its posture towards proliferation, the vulnerability of a nuclear energy system (NES) to an undesired event, and the effectiveness of safeguards. This objective of this project is to find and integrate social and technical information by explicitly considering the role of cultural, social, and behavioral factors relevant to proliferation; and to describe and demonstrate if and how social science modeling has utility in proliferation assessment. This report describes a modeling approach and how it might be used to support a location-specific assessment of the PR assessment of a particular NES. The report demonstrates the use of social modeling to enhance an existing assessment process that relies on primarily technical factors. This effort builds on a literature review and preliminary assessment performed as the first stage of the project and compiled in PNNL-18438. [ T his report describes an effort to answer questions about whether it is possible to incorporate social modeling into a PR assessment in such a way that we can determine the effects of social factors on a primarily technical assessment. This report provides: 1. background information about relevant social factors literature; 2. background information about a particular PR assessment approach relevant to this particular demonstration; 3. a discussion of social modeling undertaken to find and characterize social factors that are relevant to the PR assessment of a nuclear facility in a specific location; 4. description of an enhancement concept that integrates social factors into an existing, technically based nuclear facility assessment; 5. a discussion of a way to engage with the owners of the PR assessment methodology to assess and improve the enhancement concept; 6. a discussion of implementation of the proposed approach, including a discussion of functionality and potential users; and 7. conclusions from the research. This report represents technical deliverables for the NA-22 Simulations, Algorithms, and Modeling program. Specifically this report is the Task 2 and 3 deliverables for project PL09-UtilSocial.

  3. Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides

    SciTech Connect (OSTI)

    Hiemstra, T.; Riemsdijk, W.H. van

    1999-02-01

    An important challenge in surface complexation models (SCM) is to connect the molecular microscopic reality to macroscopic adsorption phenomena. This study elucidates the primary factor controlling the adsorption process by analyzing the adsorption and competition of PO{sub 4}, AsO{sub 4}, and SeO{sub 3}. The authors show that the structure of the surface-complex acting in the dominant electrostatic field can be ascertained as the primary controlling adsorption factor. The surface species of arsenate are identical with those of phosphate and the adsorption behavior is very similar. On the basis of the selenite adsorption, The authors show that the commonly used 1pK models are incapable to incorporate in the adsorption modeling the correct bidentate binding mechanism found by spectroscopy. The use of the bidentate mechanism leads to a proton-oxyanion ratio and corresponding pH dependence that are too large. The inappropriate intrinsic charge attribution to the primary surface groups and the condensation of the inner sphere surface complex to a point charge are responsible for this behavior of commonly used 2pK models. Both key factors are differently defined in the charge distributed multi-site complexation (CD-MUSIC) model and are based in this model on a surface structural approach. The CD-MUSIC model can successfully describe the macroscopic adsorption phenomena using the surface speciation and binding mechanisms as found by spectroscopy. The model is also able to predict the anion competition well. The charge distribution in the interface is in agreement with the observed structure of surface complexes.

  4. THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL

    SciTech Connect (OSTI)

    G.J. Saulnier Jr; W. Statham

    2006-03-10

    The Nopal I uranium mine in the Sierra Pena Blanca, Chihuahua, Mexico serves as a natural analogue to the Yucca Mountain repository. The Pena Blanca Natural Analogue Performance Assessment Model simulates the mobilization and transport of radionuclides that are released from the mine and transported to the saturated zone. the Pena Blanca Natural Analogue Model uses probabilistic simulations of hydrogeologic processes that are analogous to the processes that occur at the Yucca Mountain site. The Nopal I uranium deposit lies in fractured, welded, and altered rhyolitic ash flow tuffs that overlie carbonate rocks, a setting analogous to the geologic formations at the Yucca Mountain site. The Nopal I mine site has the following characteristics as compared to the Yucca Mountain repository site. (1) Analogous source: UO{sub 2} uranium ore deposit = spent nuclear fuel in the repository; (2) Analogous geologic setting: fractured, welded, and altered rhyolitic ash flow tuffs overlying carbonate rocks; (3) Analogous climate: Semiarid to arid; (4) Analogous geochemistry: Oxidizing conditions; and (5) Analogous hydrogeology: The ore deposit lies in the unsaturated zone above the water table. The Nopal I deposit is approximately 8 {+-} 0.5 million years old and has been exposed to oxidizing conditions during the last 3.2 to 3.4 million years. The Pena Blanca Natural Analogue Model considers that the uranium oxide and uranium silicates in the ore deposit were originally analogous to uranium-oxide spent nuclear fuel. The Pena Blanca site has been characterized using field and laboratory investigations of its fault and fracture distribution, mineralogy, fracture fillings, seepage into the mine adits, regional hydrology, and mineralization that shows the extent of radionuclide migration. Three boreholes were drilled at the Nopal I mine site in 2003 and these boreholes have provided samples for lithologic characterization, water-level measurements, and water samples for laboratory analysis of the saturated zone water chemistry. The results of the field investigations and laboratory analyses of rock and water samples collected at Nopal I are used to calibrate the Pena Blanca Natural Analogue Model.

  5. Integrated Assessment Modeling of Carbon Sequestration and Land Use Emissions Using Detailed Model Results and Observations

    SciTech Connect (OSTI)

    Dr. Atul Jain

    2005-04-17

    This report outlines the progress on the development and application of Integrated Assessment Modeling of Carbon Sequestrations and Land Use Emissions supported by the DOE Office of Biological and Environmental Research (OBER), U.S. Department of Energy, Grant No. DOE-DE-FG02-01ER63069. The overall objective of this collaborative project between the University of Illinois at Urbana-Champaign (UIUC), Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL) was to unite the latest advances in carbon cycle research with scientifically based models and policy-related integrated assessment tools that incorporate computationally efficient representations of the latest knowledge concerning science and emission trajectories, and their policy implications. As part of this research we accomplished the following tasks that we originally proposed: (1) In coordination with LLNL and ORNL, we enhanced the Integrated Science Assessment Model's (ISAM) parametric representation of the ocean and terrestrial carbon cycles that better represent spatial and seasonal variations, which are important to study the mechanisms that influence carbon sequestration in the ocean and terrestrial ecosystems; (2) Using the MiniCAM modeling capability, we revised the SRES (IPCC Special Report on Emission Scenarios; IPCC, 2000) land use emission scenarios; and (3) On the application front, the enhanced version of ISAM modeling capability is applied to understand how short- and long-term natural carbon fluxes, carbon sequestration, and human emissions contribute to the net global emissions (concentrations) trajectories required to reach various concentration (emission) targets. Under this grant, 21 research publications were produced. In addition, this grant supported a number of graduate and undergraduate students whose fundamental research was to learn a disciplinary field in climate change (e.g., ecological dynamics and ocean circulations) and then complete research on how this field could be linked to the other factors we need to consider in its dynamics (e.g., land use, ocean and terrestrial carbon sequestration and climate change).

  6. Realistic multisite lattice-gas modeling and KMC simulation of catalytic surface reactions: Kinetics and multiscale spatial behavior for CO-oxidation on metal (100) surfaces

    SciTech Connect (OSTI)

    Liu, Dajiang [Ames Laboratory; Evans, James W. [Ames Laboratory

    2013-12-01

    A realistic molecular-level description of catalytic reactions on single-crystal metal surfaces can be provided by stochastic multisite lattice-gas (msLG) models. This approach has general applicability, although in this report, we will focus on the example of CO-oxidation on the unreconstructed fcc metal (100) or M(100) surfaces of common catalyst metals M = Pd, Rh, Pt and Ir (i.e., avoiding regimes where Pt and Ir reconstruct). These models can capture the thermodynamics and kinetics of adsorbed layers for the individual reactants species, such as CO/M(100) and O/M(100), as well as the interaction and reaction between different reactant species in mixed adlayers, such as (CO + O)/M(100). The msLG models allow population of any of hollow, bridge, and top sites. This enables a more flexible and realistic description of adsorption and adlayer ordering, as well as of reaction configurations and configuration-dependent barriers. Adspecies adsorption and interaction energies, as well as barriers for various processes, constitute key model input. The choice of these energies is guided by experimental observations, as well as by extensive Density Functional Theory analysis. Model behavior is assessed via Kinetic Monte Carlo (KMC) simulation. We also address the simulation challenges and theoretical ramifications associated with very rapid diffusion and local equilibration of reactant adspecies such as CO. These msLG models are applied to describe adsorption, ordering, and temperature programmed desorption (TPD) for individual CO/M(100) and O/M(100) reactant adlayers. In addition, they are also applied to predict mixed (CO + O)/M(100) adlayer structure on the nanoscale, the complete bifurcation diagram for reactive steady-states under continuous flow conditions, temperature programmed reaction (TPR) spectra, and titration reactions for the CO-oxidation reaction. Extensive and reasonably successful comparison of model predictions is made with experimental data. Furthermore, we discuss the possible transition from traditional mean-field-type bistability and reaction kinetics for lower-pressure to multistability and enhanced fluctuation effects for moderate- or higher-pressure. Behavior in the latter regime reflects a stronger influence of adspecies interactions and also lower diffusivity in the higher-coverage mixed adlayer. We also analyze mesoscale spatiotemporal behavior including the propagation of reaction diffusion fronts between bistable reactive and inactive states, and associated nucleation-mediated transitions between these states. This behavior is controlled by complex surface mass transport processes, specifically chemical diffusion in mixed reactant adlayers for which we provide a precise theoretical formulation. The msLG models together with an appropriate treatment of chemical diffusivity enable equation-free heterogeneous coupled lattice-gas (HCLG) simulations of spatiotemporal behavior. In addition, msLG + HCLG modeling can describe coverage variations across polycrystalline catalysts surfaces, pressure variations across catalyst surfaces in microreactors, and could be incorporated into a multiphysics framework to describe mass and heat transfer limitations for high-pressure catalysis. (C) 2013 Elsevier Ltd. All rights reserved.

  7. Safety Assessment for a Surface Repository in the Chernobyl Exclusion Zone - Methodology for Assessing Disposal under Intervention Conditions - 13476

    SciTech Connect (OSTI)

    Haverkamp, B.; Krone, J.; Shybetskyi, I.

    2013-07-01

    The Radioactive Waste Disposal Facility (RWDF) Buryakovka was constructed in 1986 as part of the intervention measures after the accident at Chernobyl NPP (ChNPP). Today, RWDF Buryakovka is still being operated but its maximum capacity is nearly reached. Plans for enlargement of the facility exist since more than 10 years but have not been implemented yet. In the framework of an European Commission Project DBE Technology GmbH prepared a safety analysis report of the facility in its current state (SAR) and a preliminary safety analysis report (PSAR) based on the planned enlargement. Due to its history RWDF Buryakovka does not fully comply with today's best international practices and the latest Ukrainian regulations in this area. The most critical aspects are its inventory of long-lived radionuclides, and the non-existent multi-barrier waste confinement system. A significant part of the project was dedicated, therefore, to the development of a methodology for the safety assessment taking into consideration the facility's special situation and to reach an agreement with all stakeholders involved in the later review and approval procedure of the safety analysis reports. Main aspect of the agreed methodology was to analyze the safety, not strictly based on regulatory requirements but on the assessment of the actual situation of the facility including its location within the Exclusion Zone. For both safety analysis reports, SAR and PSAR, the assessment of the long-term safety led to results that were either within regulatory limits or within the limits allowing for a specific situational evaluation by the regulator. (authors)

  8. A surface structural approach to ion adsorption: The charge distribution (CD) model

    SciTech Connect (OSTI)

    Hiemstra, T.; Van Riemsdijk, W.H.

    1996-05-10

    Cation and anion adsorption at the solid/solution interface of metal hydroxides plays an important role in several fields of chemistry, including colloid and interface chemistry, soil chemistry and geochemistry, aquatic chemistry, environmental chemistry, catalysis, and chemical engineering. An ion adsorption model for metal hydroxides has been developed which deals with the observation that in the case of inner sphere complex formation only part of the surface complex is incorporated into the surface by a ligand exchange reaction while the other part is located in the Stern layer. The charge distribution (CD) concept of Pauling, used previously in the multi site complexation (MUSIC) model approach, is extended to account for adsorbed surface complexes. In the new model, surface complexes are not treated as point charges, but are considered as having a spatial distribution of charge in the interfacial region. The new CD model can describe within a single conceptual framework all important experimental adsorption phenomena, taking into account the chemical composition of the crystal surface. The CD model has been applied to one of the most difficult and challenging ion adsorption phenomena, i.e., PO{sub 4} adsorption on goethite, and successfully describes simultaneously the basic charging behavior of goethite, the concentration, pH, and salt dependency of adsorption, the shifts in the zeta potentials and isoelectric point (IEP), and the OH/P exchange ratio. This is all achieved within the constraint that the experimental surface speciation found from in situ IR spectroscopy is also described satisfactorily.

  9. Surface speciation of yttrium and neodymium sorbed on rutile: Interpretations using the change distribution model.

    SciTech Connect (OSTI)

    Ridley, Mora K.; Hiemstra, T; Machesky, Michael L.; Wesolowski, David J; Van Riemsdijk, Willem H.

    2012-01-01

    The adsorption of Y3+ and Nd3+ onto rutile has been evaluated over a wide range of pH (3 11) and surface loading conditions, as well as at two ionic strengths (0.03 and 0.3 m), and temperatures (25 and 50 C). The experimental results reveal the same adsorption behavior for the two trivalent ions onto the rutile surface, with Nd3+ first adsorbing at slightly lower pH values. The adsorption of both Y3+ and Nd3+ commences at pH values below the pHznpc of rutile. The experimental results were evaluated using a charge distribution (CD) and multisite complexation (MUSIC) model, and Basic Stern layer description of the electric double layer (EDL). The coordination geometry of possible surface complexes were constrained by molecular-level information obtained from X-ray standing wave measurements and molecular dynamic (MD) simulation studies. X-ray standing wave measurements showed an inner-sphere tetradentate complex for Y3+ adsorption onto the (110) rutile surface (Zhang et al., 2004b). TheMDsimulation studies suggest additional bidentate complexes may form. The CD values for all surface species were calculated based on a bond valence interpretation of the surface complexes identified by X-ray and MD. The calculated CD values were corrected for the effect of dipole orientation of interfacial water. At low pH, the tetradentate complex provided excellent fits to the Y3+ and Nd3+ experimental data. The experimental and surface complexation modeling results show a strong pH dependence, and suggest that the tetradentate surface species hydrolyze with increasing pH. Furthermore, with increased surface loading of Y3+ on rutile the tetradentate binding mode was augmented by a hydrolyzed-bidentate Y3+ surface complex. Collectively, the experimental and surface complexation modeling results demonstrate that solution chemistry and surface loading impacts Y3+ surface speciation. The approach taken of incorporating molecular-scale information into surface complexation models (SCMs) should aid in elucidating a fundamental understating of ion-adsorption reactions.

  10. Computation Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers

    SciTech Connect (OSTI)

    J. Shingledecker; D. Gandy; N. Cheruvu; R. Wei; K. Chan

    2011-06-21

    Forced outages and boiler unavailability of coal-fired fossil plants is most often caused by fire-side corrosion of boiler waterwalls and tubing. Reliable coatings are required for Ultrasupercritical (USC) application to mitigate corrosion since these boilers will operate at a much higher temperatures and pressures than in supercritical (565 C {at} 24 MPa) boilers. Computational modeling efforts have been undertaken to design and assess potential Fe-Cr-Ni-Al systems to produce stable nanocrystalline coatings that form a protective, continuous scale of either Al{sub 2}O{sub 3} or Cr{sub 2}O{sub 3}. The computational modeling results identified a new series of Fe-25Cr-40Ni with or without 10 wt.% Al nanocrystalline coatings that maintain long-term stability by forming a diffusion barrier layer at the coating/substrate interface. The computational modeling predictions of microstructure, formation of continuous Al{sub 2}O{sub 3} scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. Advanced coatings, such as MCrAl (where M is Fe, Ni, or Co) nanocrystalline coatings, have been processed using different magnetron sputtering deposition techniques. Several coating trials were performed and among the processing methods evaluated, the DC pulsed magnetron sputtering technique produced the best quality coating with a minimum number of shallow defects and the results of multiple deposition trials showed that the process is repeatable. scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. The cyclic oxidation test results revealed that the nanocrystalline coatings offer better oxidation resistance, in terms of weight loss, localized oxidation, and formation of mixed oxides in the Al{sub 2}O{sub 3} scale, than widely used MCrAlY coatings. However, the ultra-fine grain structure in these coatings, consistent with the computational model predictions, resulted in accelerated Al diffusion from the coating into the substrate. An effective diffusion barrier interlayer coating was developed to prevent inward Al diffusion. The fire-side corrosion test results showed that the nanocrystalline coatings with a minimum number of defects have a great potential in providing corrosion protection. The coating tested in the most aggressive environment showed no evidence of coating spallation and/or corrosion attack after 1050 hours exposure. In contrast, evidence of coating spallation in isolated areas and corrosion attack of the base metal in the spalled areas were observed after 500 hours. These contrasting results after 500 and 1050 hours exposure suggest that the premature coating spallation in isolated areas may be related to the variation of defects in the coating between the samples. It is suspected that the cauliflower-type defects in the coating were presumably responsible for coating spallation in isolated areas. Thus, a defect free good quality coating is the key for the long-term durability of nanocrystalline coatings in corrosive environments. Thus, additional process optimization work is required to produce defect-free coatings prior to development of a coating application method for production parts.

  11. Assessing Models of Public Understanding In ELSI Outreach Materials

    SciTech Connect (OSTI)

    Bruce V. Lewenstein, Ph.D.; Dominique Brossard, Ph.D.

    2006-03-01

    Advances in the science of genetics have implications for individuals and society, and have to be taken into account at the policy level. Studies of ethical, legal and social issues related to genomic research have therefore been integrated in the Human Genome Project (HGP) since the earliest days of the project. Since 1990, three to five percent of the HGP annual budget has been devoted to such studies, under the umbrella of the Ethical, Legal, and Social Implications (ELSI) Programs of the National Human Genome Research Institute of the National Institute of Health, and of the Office of Biological and Environmental Research of the U.S. Department of Energy (DOE). The DOE-ELSI budget has been used to fund a variety of projects that have aimed at ?promoting education and help guide the conduct of genetic research and the development of related medical and public policies? (HGP, 2003). As part of the educational component, a significant portion of DOE-ELSI funds have been dedicated to public outreach projects, with the underlying goal of promoting public awareness and ultimately public discussion of ethical, legal, and social issues surrounding availability of genetic information (Drell, 2002). The essential assumption behind these projects is that greater access to information will lead to more knowledge about ethical, legal and social issues, which in turn will lead to enhanced ability on the part of individuals and communities to deal with these issues when they encounter them. Over the same period of time, new concepts of ?public understanding of science? have emerged in the theoretical realm, moving from a ?deficit? or linear dissemination of popularization, to models stressing lay-knowledge, public engagement and public participation in science policy-making (Lewenstein, 2003). The present project uses the base of DOE-funded ELSI educational project to explore the ways that information about a new and emerging area of science that is intertwined with public issues has been used in educational public settings to affect public understanding of science. After a theoretical background discussion, our approach is three-fold. First, we will provide an overview, a ?map? of DOE-funded of outreach programs within the overall ELSI context to identify the importance of the educational component, and to present the criteria we used to select relevant and representative case studies. Second, we will document the history of the case studies. Finally, we will explore an intertwined set of research questions: (1) To identify what we can expect such projects to accomplish -in other words to determine the goals that can reasonably be achieved by different types of outreach, (2) To point out how the case study approach could be useful for DOE-ELSI outreach as a whole, and (3) To use the case study approach as a basis to test theoretical models of science outreach in order to assess to what extent those models accord with real world outreach activities. For this last goal, we aim at identifying what practices among ELSI outreach activities contribute most to dissemination, or to participation, in other words in which cases outreach materials spark action in terms of public participation in decisions about scientific issues.

  12. Assessment of Fluctuating Reservoir Elevations Using Hydraulic Models and Impacts to Larval Pacific Lamprey Rearing Habitat in the Bonneville Pool

    SciTech Connect (OSTI)

    Mueller, Robert P.; Rakowski, Cynthia L.; Perkins, William A.; Richmond, Marshall C.

    2015-02-24

    This report presents the results of a modeling assessment of likely lamprey larval habitat that may be impacted by dewatering of the major tributary delta regions in the Bonneville Pool of the Columbia River. This assessment was conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers Portland District (CENWP). The goal of the study was to provide baseline data about how the regions of interest would potentially be impacted at three river flows (10, 50, and 90 percent exceedance flow) for four different forebay elevations at Bonneville Dam. Impacts of unsteady flows at The Dalles Dam and changing forebay elevation at Bonneville Dam for a 2-week period were also assessed. The area of dewatered regions was calculated by importing modeled data outputs into a GIS and then calculating the change in inundated area near tributary deltas for the four Bonneville forebay surface elevations. From the modeled output we determined that the overall change in area is less sensitive to elevations changes during higher river discharges. Changing the forebay elevation at Bonneville and the resulting impact to total dewatered regions was greater at the lowest modeled river flow (97 kcfs) and showed the greatest variation at the White Salmon/Hood River delta regions followed by the Wind, Klickitat and the Little White Salmon rivers. To understand how inundation might change on a daily and hourly basis. Unsteady flow models were run for a 2-week period in 2002 and compared to 2014. The water surface elevation in the upstream pool closely follows that of the Bonneville Dam forebay with rapid changes of 1 to 2-ft possible. The data shows that 2.5-ft variation in water surface elevation occurred during this period in 2002 and a 3.7-ft change occurred in 2014. The duration of these changes were highly variable and generally did not stay constant for more than a 5-hr period.

  13. Simplified predictive models for CO2 sequestration performance assessment

    SciTech Connect (OSTI)

    Mishra, Srikanta; Ganesh, Priya; Schuetter, Jared; He, Jincong; Jin, Zhaoyang; Durlofsky, Louis J.

    2015-09-30

    CO2 sequestration in deep saline formations is increasingly being considered as a viable strategy for the mitigation of greenhouse gas emissions from anthropogenic sources. In this context, detailed numerical simulation based models are routinely used to understand key processes and parameters affecting pressure propagation and buoyant plume migration following CO2 injection into the subsurface. As these models are data and computation intensive, the development of computationally-efficient alternatives to conventional numerical simulators has become an active area of research. Such simplified models can be valuable assets during preliminary CO2 injection project screening, serve as a key element of probabilistic system assessment modeling tools, and assist regulators in quickly evaluating geological storage projects. We present three strategies for the development and validation of simplified modeling approaches for CO2 sequestration in deep saline formations: (1) simplified physics-based modeling, (2) statisticallearning based modeling, and (3) reduced-order method based modeling. In the first category, a set of full-physics compositional simulations is used to develop correlations for dimensionless injectivity as a function of the slope of the CO2 fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Furthermore, the dimensionless average pressure buildup after the onset of boundary effects can be correlated to dimensionless time, CO2 plume footprint, and storativity contrast between the reservoir and caprock. In the second category, statistical “proxy models” are developed using the simulation domain described previously with two approaches: (a) classical Box-Behnken experimental design with a quadratic response surface, and (b) maximin Latin Hypercube sampling (LHS) based design with a multidimensional kriging metamodel fit. For roughly the same number of simulations, the LHS-based metamodel yields a more robust predictive model, as verified by a k-fold cross-validation approach (with data split into training and test sets) as well by validation with an independent dataset. In the third category, a reduced-order modeling procedure is utilized that combines proper orthogonal decomposition (POD) for reducing problem dimensionality with trajectory-piecewise linearization (TPWL) in order to represent system response at new control settings from a limited number of training runs. Significant savings in computational time are observed with reasonable accuracy from the PODTPWL reduced-order model for both vertical and horizontal well problems – which could be important in the context of history matching, uncertainty quantification and optimization problems. The simplified physics and statistical learning based models are also validated using an uncertainty analysis framework. Reference cumulative distribution functions of key model outcomes (i.e., plume radius and reservoir pressure buildup) generated using a 97-run full-physics simulation are successfully validated against the CDF from 10,000 sample probabilistic simulations using the simplified models. The main contribution of this research project is the development and validation of a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formations.

  14. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    SciTech Connect (OSTI)

    Gorai, Prashun; Seebauer, Edmund G.

    2014-07-14

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO{sub 2} (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  15. Models used to assess the performance of photovoltaic systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Klise, Geoffrey T.

    2009-12-01

    This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.

  16. Simulation of ultrasonic surface waves with multi-Gaussian and point source beam models

    SciTech Connect (OSTI)

    Zhao, Xinyu; Schmerr, Lester W. Jr.; Li, Xiongbing; Sedov, Alexander

    2014-02-18

    In the past decade, multi-Gaussian beam models have been developed to solve many complicated bulk wave propagation problems. However, to date those models have not been extended to simulate the generation of Rayleigh waves. Here we will combine Gaussian beams with an explicit high frequency expression for the Rayleigh wave Green function to produce a three-dimensional multi-Gaussian beam model for the fields radiated from an angle beam transducer mounted on a solid wedge. Simulation results obtained with this model are compared to those of a point source model. It is shown that the multi-Gaussian surface wave beam model agrees well with the point source model while being computationally much more efficient.

  17. A new analytic-adaptive model for EGS assessment, development...

    Open Energy Info (EERE)

    ability to quantitative test hypotheses for new EGS designs and technologies, as well as reservoir sustainability modeling. Funding Source American Recovery and Reinvestment Act...

  18. Assessment of Combustion and Turbulence Models for the Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Various applied combustion and turbulence models were investigated along with chemical kinetic mechanisms simulating a biodiesel-fueled engine PDF icon deer09ren.pdf More ...

  19. Models Used to Assess the Performance of Photovoltaic Systems

    Broader source: Energy.gov [DOE]

    This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization.

  20. Co-benefits Risk Assessment (COBRA) Screening Model | Open Energy...

    Open Energy Info (EERE)

    Ease of Use: Simple Website: www.epa.govstatelocalclimateresourcescobra.html Cost: Free Related Tools Applied Dynamic Analysis of the Global Economy (ADAGE) Model Simple...

  1. MA3T Model Application at ORNL Assesses the Future of Fuel Cell Markets |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy MA3T Model Application at ORNL Assesses the Future of Fuel Cell Markets MA3T Model Application at ORNL Assesses the Future of Fuel Cell Markets July 26, 2013 - 12:00am Addthis Leveraging funding from the Fuel Cell Technologies Office, Oak Ridge National Lab (ORNL) has developed a model for simulating the market potential of fuel cell electric vehicles (FCEV) and challenges to achieving success over time, including competition with incumbent and advanced vehicle

  2. Final Report DE-EE0005380 Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UNIVERSITY OF TEXAS AT AUSTIN Final Report DE-EE0005380 Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Prepared for: U.S. Department of Energy Prepared by: Hao Ling (UT) Mark F. Hamilton (ARL:UT) Rajan Bhalla (SAIC) Walter E. Brown (ARL:UT) Todd A. Hay (ARL:UT) Nicholas J. Whitelonis (UT) Shang-Te Yang (UT) Aale R. Naqvi (UT) 9/30/2013 DE-EE0005380 The University of Texas at Austin ii Notice and Disclaimer This report is being disseminated by

  3. Conceptual design of an integrated technology model for carbon policy assessment.

    SciTech Connect (OSTI)

    Backus, George A.; Dimotakes, Paul E.

    2011-01-01

    This report describes the conceptual design of a technology choice model for understanding strategies to reduce carbon intensity in the electricity sector. The report considers the major modeling issues affecting technology policy assessment and defines an implementable model construct. Further, the report delineates the basis causal structure of such a model and attempts to establish the technical/algorithmic viability of pursuing model development along with the associated analyses.

  4. Sub-discretized surface model with application to contact mechanics in multi-body simulation

    SciTech Connect (OSTI)

    Johnson, S; Williams, J

    2008-02-28

    The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions, such as twisting with bending and sliding, as well as surface roughness add an asymmetry to the contact force which invalidates assumptions for popular models of contact, such as the Hertzian and its derivatives, for the non-adhesive case, and the JKR and DMT models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres.

  5. Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

    SciTech Connect (OSTI)

    Jehlik, Forrest; LaClair, Tim J

    2014-01-01

    Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

  6. Measurements and modeling of surface waves in drilled shafts in rock

    SciTech Connect (OSTI)

    Kalinski, M.E.; Stokoe, K.H. II; Roesset, J.M.; Cheng, D.S.

    1999-07-01

    Seismic testing was conducted in the WIPP facility in November 1994 by personnel from the Geotechnical Engineering Center at the University of Texas at Austin. Surface wave measurements were made in horizontal drilled shafts in rock salt to characterize the stiffness of the rock around the shafts. The Spectral-Analysis-of-Surface-Waves (SASW) method was used to determine dispersion curves of surface wave velocity versus wavelength. Dispersion curves were measured for surface waves propagating axially and circumferentially in the shafts. Surface wave velocities determined from axial testing increased slightly with increasing wavelength due to the cylindrical geometry of the shafts. On the other hand, surface wave velocities determined from circumferential testing exhibited a completely different type of geometry-induced dispersion. In both instances, finite-element forward modeling of the experimental dispersion curves revealed the presence of a thin, slightly softer disturbed rock zone (DRZ) around the shafts. This phenomenon has been previously confirmed by crosshole and other seismic measurements and is generally associated with relaxation of the individual salt crystals after confirming stress is relieved by excavation.

  7. An assessment of possible climate change in the Australian region based on intercomparison of general circulation modeling results

    SciTech Connect (OSTI)

    Whetton, P.H.; Pittock, A.B.; Haylock, M.R. ); Rayner, P.J. )

    1994-03-01

    To assist in estimating likely future climate change in the Australian region, the authors examine the results of four different general circulation modeling experiments run to assess the equilibrium impact of doubling greenhouse gases. The results examined were the most recent available at the time of study from various research centers in North America and Europe, as well as those of the Commonwealth Scientific and Industrial Research Organisation (CSIRO). The approach used is, first, to assess the quality of the control (1 x CO[sub 2]) simulations from each of the models of mean sea level (MSL) pressure and precipitation in the Australian region by comparing these with the corresponding observed patterns; and, second, to then analyze the 2 x CO[sub 2] results of only those model experiments with the best control simulations. Of the models examined two are chosen on the basis of their simulation of current climate in the region: the CSIRO four-level model (CSIRO4) and the United Kingdom Meteorological Office (UKMO) model. For conditions of equivalent doubling of CO[sub 2], both models show substantial increases in surface air temperature of around 4[degrees]-6[degrees] inland and 2[degrees]-4[degrees]C in coastal regions. Both models show decreased MSL pressure over the Australian continent and increases in rainfall over northern, central, and eastern Australia, particularly in the summer half of the year. The CSIRO4 model, but not the UKMO model, also shows increased pressure to the south of the continent and decreased winter rainfall in southwest and southern Australia. Generally, field significance tests show the pattern and magnitude of the changes to be significant of CSIRO4 (for which the necessary monthly simulated data were available). 42 refs., 20 figs., 5 tabs.

  8. Modified two-fluid model of conductivity for superconducting surface resistance calculation. Master's thesis

    SciTech Connect (OSTI)

    Linden, D.S.

    1993-05-01

    The traditional two-fluid model of superconducting conductivity was modified to make it accurate, while remaining fast, for designing and simulating microwave devices. The modification reflects the BCS coherence effects in the conductivity of a superconductor, and is incorporated through the ratio of normal to superconducting electrons. This modified ratio is a simple analytical expression which depends on frequency, temperature and material parameters. This modified two-fluid model allows accurate and rapid calculation of the microwave surface impedance of a superconductor in the clean and dirty limits and in the weak- and strong-coupled regimes. The model compares well with surface resistance data for Nb and provides insight into Nb3Sn and Y1Ba2Cu3O(7-delta). Numerical calculations with the modified two-fluid model are an order of magnitude faster than the quasi-classical program by Zimmermann (1), and two to five orders of magnitude faster than Halbritter's BCS program (2) for surface resistance.

  9. SU-E-J-171: Surface Imaging Based Intrafraction Motion Assessments for Whole Brain Radiotherapy

    SciTech Connect (OSTI)

    Wiant, D; Vanderstraeten, C; Maurer, J; Pursley, J; Terrell, J; Sintay, B

    2014-06-01

    Purpose: To quantify and characterize intrafraction motion for whole brain radiotherapy treatments in open face masks using 3D surface imaging. Methods: Fifteen whole brain patients were monitored with 3D surface imaging over a total of 202 monitoring sessions. Mean translations and rotations were calculated over each minute, each session, and over all sessions combined. The percentage of each session that the root mean square (RMS) of the linear translations were outside of 2 mm, 3 mm, 4 mm, and 5 mm were determined for each patient. Correlations between mean translations per minute and time and between standard deviation per minute and time were evaluated using Pearson's r value. Results: The mean RMS translation averaged over all patients was 1.45 mm +/− 1.52 mm. The patients spent an average of 18%, 10%, 6%, and 3% of the monitoring time outside of 2 mm, 3 mm, 4 mm, and 5 mm RMS tolerances, respectively. The RMS values averaged over all patients were 1.31 mm +/− 0.98 mm, 1.52 +/- 1.04, and 1.30 mm +/− 0.71 mm over the 1th, 5th, and 10th minutes of monitoring, respectively. Neither, the RMS values (p = 0.15) or the standard deviations of the RMS values (p = 0.16) showed significant correlations with time. Conclusion: The patients were positioned within 2 mm of isocenter, which was the initial set-up tolerance, for the majority of their treatments. The average position changed by < 0.3 mm over 10 minutes of monitoring. Short term movements, reflected by the standard deviations, where on the order of 1 mm. This immobilization system provides adequate immobilization over a course of treatment for whole brain radiotherapy. This system may also be suitable for head and neck or stereotactic radiosurgery treatments as well.

  10. Modeling tropical Pacific sea surface temperature with satellite-derived solar radiative forcing

    SciTech Connect (OSTI)

    Seager, R.; Blumenthal, M.B.

    1994-12-01

    Two independent datasets for the solar radiation at the surface derived from satellites are compared. The data derived from the Earth Radiation Budget Experiment (ERBE) is for the net solar radiation at the surface whereas the International Satellite Cloud Climatology Project (ISCCP) data is for the downward flux only and was corrected with a space- and time-varying albedo. The ISCCP net flux is at all times higher than the ERBE flux. The difference can be divided into an offset that decreases with latitude and another component that correlates with high tropical cloud cover. With this latter exception the two datasets provide spatial patterns of solar flux that are very similar. A tropical Pacific Ocean model is forced with these two datasets and observed climatological winds. The upward heat flux is parameterized taking into account separately the longwave radiative, latent, and sensible heat fluxes. Best fit values for the uncertain parameters are found using an optimization procedure that seeks to minimize the difference between model and observed SST by varying the parameters within a reasonable range of uncertainty. The SST field the model produces with the best fit parameters is the best the model can do. If the differences between the model and data are larger than can be accounted for by remaining uncertainties in the heat flux parameterization and forcing data then the ocean model must be held to be at fault. Using this method of analysis, a fundamental model fault is identified. Inadequate treatment of mixed layer/entrainment processes in upwelling regions of the eastern tropical Pacific leads to a large and seasonally varying error in the model SST. Elsewhere the model SST is insufficiently different from observed to be able to identify model errors.

  11. Utility of Social Modeling in Assessment of a States Propensity for Nuclear Proliferation

    SciTech Connect (OSTI)

    Coles, Garill A.; Brothers, Alan J.; Whitney, Paul D.; Dalton, Angela C.; Olson, Jarrod; White, Amanda M.; Cooley, Scott K.; Youchak, Paul M.; Stafford, Samuel V.

    2011-06-01

    This report is the third and final report out of a set of three reports documenting research for the U.S. Department of Energy (DOE) National Security Administration (NASA) Office of Nonproliferation Research and Development NA-22 Simulations, Algorithms, and Modeling program that investigates how social modeling can be used to improve proliferation assessment for informing nuclear security, policy, safeguards, design of nuclear systems and research decisions. Social modeling has not to have been used to any significant extent in a proliferation studies. This report focuses on the utility of social modeling as applied to the assessment of a State's propensity to develop a nuclear weapons program.

  12. Atomic imaging and modeling of H{sub 2}O{sub 2}(g) surface passivation, functionalization, and atomic layer deposition nucleation on the Ge(100) surface

    SciTech Connect (OSTI)

    Kaufman-Osborn, Tobin; Chagarov, Evgueni A.; Kummel, Andrew C.

    2014-05-28

    Passivation, functionalization, and atomic layer deposition nucleation via H{sub 2}O{sub 2}(g) and trimethylaluminum (TMA) dosing was studied on the clean Ge(100) surface at the atomic level using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Chemical analysis of the surface was performed using x-ray photoelectron spectroscopy, while the bonding of the precursors to the substrate was modeled with density functional theory (DFT). At room temperature, a saturation dose of H{sub 2}O{sub 2}(g) produces a monolayer of a mixture of OH or O species bonded to the surface. STS confirms that H{sub 2}O{sub 2}(g) dosing eliminates half-filled dangling bonds on the clean Ge(100) surface. Saturation of the H{sub 2}O{sub 2}(g) dosed Ge(100) surface with TMA followed by a 200?C anneal produces an ordered monolayer of thermally stable GeOAl bonds. DFT models and STM simulations provide a consistent model of the bonding configuration of the H{sub 2}O{sub 2}(g) and TMA dosed surfaces. STS verifies the TMA/H{sub 2}O{sub 2}/Ge surface has an unpinned Fermi level with no states in the bandgap demonstrating the ability of a GeOAl monolayer to serve as an ideal template for further high-k deposition.

  13. A variational model of disjoining pressure: Liquid film on a nonplanar surface

    SciTech Connect (OSTI)

    Silin, D.; Virnovsky, G.

    2009-06-01

    Variational methods have been successfully used in modelling thin liquid films in numerous theoretical studies of wettability. In this paper, the variational model of the disjoining pressure is extended to the general case of a two-dimensional solid surface. The Helmgoltz free energy functional depends both on the disjoining pressure isotherm and the shape of the solid surface. The augmented Young-Laplace equation (AYLE) is a nonlinear second-order partial differential equation. A number of solutions describing wetting films on spherical grains have been obtained. In the case of cylindrical films, the phase portrait technique describes the entire variety of mathematically feasible solutions. It turns out that a periodic solution, which would describe wave-like wetting films, does not satisfy the Jacobi's condition of the classical calculus of variations. Therefore, such a solution is nonphysical. The roughness of the solid surface significantly affects liquid film stability. AYLE solutions suggest that film rupture is more likely at a location where the pore-wall surface is most exposed into the pore space and the curvature is positive.

  14. Climate Change Modeling and Downscaling Issues and Methodological Perspectives for the U.S. National Climate Assessment

    SciTech Connect (OSTI)

    Janetos, Anthony C.; Collins, William D.; Wuebbles, D.J.; Diffenbaugh, Noah; Hayhoe, Katharine; Hibbard, Kathleen A.; Hurtt, George

    2012-03-31

    This is the full workshop report for the modeling workshop we did for the National Climate Assessment, with DOE support.

  15. Modeling and Analysis of The Pressure Die Casting Using Response Surface Methodology

    SciTech Connect (OSTI)

    Kittur, Jayant K.; Herwadkar, T. V. [KLS Gogte Institute of Technology, Belgaum -590 008, Karnataka (India); Parappagoudar, M. B. [Chhatrapati Shivaji Institute of Technology, Durg (C.G)-491001 (India)

    2010-10-26

    Pressure die casting is successfully used in the manufacture of Aluminum alloys components for automobile and many other industries. Die casting is a process involving many process parameters having complex relationship with the quality of the cast product. Though various process parameters have influence on the quality of die cast component, major influence is seen by the die casting machine parameters and their proper settings. In the present work, non-linear regression models have been developed for making predictions and analyzing the effect of die casting machine parameters on the performance characteristics of die casting process. Design of Experiments (DOE) with Response Surface Methodology (RSM) has been used to analyze the effect of effect of input parameters and their interaction on the response and further used to develop nonlinear input-output relationships. Die casting machine parameters, namely, fast shot velocity, slow shot to fast shot change over point, intensification pressure and holding time have been considered as the input variables. The quality characteristics of the cast product were determined by porosity, hardness and surface rough roughness (output/responses). Design of experiments has been used to plan the experiments and analyze the impact of variables on the quality of casting. On the other-hand Response Surface Methodology (Central Composite Design) is utilized to develop non-linear input-output relationships (regression models). The developed regression models have been tested for their statistical adequacy through ANOVA test. The practical usefulness of these models has been tested with some test cases. These models can be used to make the predictions about different quality characteristics, for the known set of die casting machine parameters, without conducting the experiments.

  16. Development of a Composite Non-Electrostatic Surface Complexation Model Describing Plutonium Sorption to Aluminosilicates

    SciTech Connect (OSTI)

    Powell, B A; Kersting, A; Zavarin, M; Zhao, P

    2008-10-28

    Due to their ubiquity in nature and chemical reactivity, aluminosilicate minerals play an important role in retarding actinide subsurface migration. However, very few studies have examined Pu interaction with clay minerals in sufficient detail to produce a credible mechanistic model of its behavior. In this work, Pu(IV) and Pu(V) interactions with silica, gibbsite (Aloxide), and Na-montmorillonite (smectite clay) were examined as a function of time and pH. Sorption of Pu(IV) and Pu(V) to gibbsite and silica increased with pH (4 to 10). The Pu(V) sorption edge shifted to lower pH values over time and approached that of Pu(IV). This behavior is apparently due to surface mediated reduction of Pu(V) to Pu(IV). Surface complexation constants describing Pu(IV)/Pu(V) sorption to aluminol and silanol groups were developed from the silica and gibbsite sorption experiments and applied to the montmorillonite dataset. The model provided an acceptable fit to the montmorillonite sorption data for Pu(V). In order to accurately predict Pu(IV) sorption to montmorillonite, the model required inclusion of ion exchange. The objective of this work is to measure the sorption of Pu(IV) and Pu(V) to silica, gibbsite, and smectite (montmorillonite). Aluminosilicate minerals are ubiquitous at the Nevada National Security Site and improving our understanding of Pu sorption to aluminosilicates (smectite clays in particular) is essential to the accurate prediction of Pu transport rates. These data will improve the mechanistic approach for modeling the hydrologic source term (HST) and provide sorption Kd parameters for use in CAU models. In both alluvium and tuff, aluminosilicates have been found to play a dominant role in the radionuclide retardation because their abundance is typically more than an order of magnitude greater than other potential sorbing minerals such as iron and manganese oxides (e.g. Vaniman et al., 1996). The sorption database used in recent HST models (Carle et al., 2006) and upscaled for use in CAU models (Stoller-Navarro, 2008) includes surface complexation constants for U, Am, Eu, Np and Pu (Zavarin and Bruton, 2004). Generally, between 15 to 30 datasets were used to develop the constants for each radionuclide. However, the constants that describe Pu sorption to aluminosilicates were developed using only 10 datasets, most of which did not specify the oxidation state of Pu in the experiment. Without knowledge or control of the Pu oxidation state, a high degree of uncertainty is introduced into the model. The existing Pu surface complexation model (e.g. Zavarin and Bruton, 2004) drastically underestimates Pu sorption and, thus, will overestimate Pu migration rates (Turner, 1995). Recent HST simulations at Cambric (Carle et al., 2006) suggest that the existing surface complexation model may underpredict Pu K{sub d}s by as much as 3 orders of magnitude. In order to improve HST and CAU-scale transport models (and, as a result, reduce the conservative nature Pu migration estimates), sorption experiments were performed over a range of solution conditions that brackets the groundwater chemistry of the Nevada National Security Site. The aluminosilicates examined were gibbsite, silica, and montmorillonite.

  17. Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

    SciTech Connect (OSTI)

    David W. Gandy; John P. Shingledecker

    2011-04-11

    Forced outages and boiler unavailability in conventional coal-fired fossil power plants is most often caused by fireside corrosion of boiler waterwalls. Industry-wide, the rate of wall thickness corrosion wastage of fireside waterwalls in fossil-fired boilers has been of concern for many years. It is significant that the introduction of nitrogen oxide (NOx) emission controls with staged burners systems has increased reported waterwall wastage rates to as much as 120 mils (3 mm) per year. Moreover, the reducing environment produced by the low-NOx combustion process is the primary cause of accelerated corrosion rates of waterwall tubes made of carbon and low alloy steels. Improved coatings, such as the MCrAl nanocoatings evaluated here (where M is Fe, Ni, and Co), are needed to reduce/eliminate waterwall damage in subcritical, supercritical, and ultra-supercritical (USC) boilers. The first two tasks of this six-task project-jointly sponsored by EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)-have focused on computational modeling of an advanced MCrAl nanocoating system and evaluation of two nanocrystalline (iron and nickel base) coatings, which will significantly improve the corrosion and erosion performance of tubing used in USC boilers. The computational model results showed that about 40 wt.% is required in Fe based nanocrystalline coatings for long-term durability, leading to a coating composition of Fe-25Cr-40Ni-10 wt.% Al. In addition, the long term thermal exposure test results further showed accelerated inward diffusion of Al from the nanocrystalline coatings into the substrate. In order to enhance the durability of these coatings, it is necessary to develop a diffusion barrier interlayer coating such TiN and/or AlN. The third task 'Process Advanced MCrAl Nanocoating Systems' of the six-task project jointly sponsored by the Electric Power Research Institute, EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)- has focused on processing of advanced nanocrystalline coating systems and development of diffusion barrier interlayer coatings. Among the diffusion interlayer coatings evaluated, the TiN interlayer coating was found to be the optimum one. This report describes the research conducted under the Task 3 workscope.

  18. EERE Success Story-MA3T Model Application at ORNL Assesses the Future of

    Office of Environmental Management (EM)

    Fuel Cell Markets | Department of Energy MA3T Model Application at ORNL Assesses the Future of Fuel Cell Markets EERE Success Story-MA3T Model Application at ORNL Assesses the Future of Fuel Cell Markets July 26, 2013 - 12:00am Addthis Leveraging funding from the Fuel Cell Technologies Office, Oak Ridge National Lab (ORNL) has developed a model for simulating the market potential of fuel cell electric vehicles (FCEV) and challenges to achieving success over time, including competition with

  19. Geomechanical modeling of reservoir compaction, surface subsidence, and casing damage at the Belridge diatomite field

    SciTech Connect (OSTI)

    FREDRICH,JOANNE T.; DEITRICK,G.L.; ARGUELLO JR.,JOSE G.; DEROUFFIGNAC,E.P.

    2000-05-01

    Geologic, and historical well failure, production, and injection data were analyzed to guide development of three-dimensional geomechanical models of the Belridge diatomite field, California. The central premise of the numerical simulations is that spatial gradients in pore pressure induced by production and injection in a low permeability reservoir may perturb the local stresses and cause subsurface deformation sufficient to result in well failure. Time-dependent reservoir pressure fields that were calculated from three-dimensional black oil reservoir simulations were coupled uni-directionally to three-dimensional non-linear finite element geomechanical simulations. The reservoir models included nearly 100,000 gridblocks (100--200 wells), and covered nearly 20 years of production and injection. The geomechanical models were meshed from structure maps and contained more than 300,000 nodal points. Shear strain localization along weak bedding planes that causes casing dog-legs in the field was accommodated in the model by contact surfaces located immediately above the reservoir and at two locations in the overburden. The geomechanical simulations are validated by comparison of the predicted surface subsidence with field measurements, and by comparison of predicted deformation with observed casing damage. Additionally, simulations performed for two independently developed areas at South Belridge, Sections 33 and 29, corroborate their different well failure histories. The simulations suggest the three types of casing damage observed, and show that although water injection has mitigated surface subsidence, it can, under some circumstances, increase the lateral gradients in effective stress, that in turn can accelerate subsurface horizontal motions. Geomechanical simulation is an important reservoir management tool that can be used to identify optimal operating policies to mitigate casing damage for existing field developments, and applied to incorporate the effect of well failure potential in economic analyses of alternative infilling and development options.

  20. Common-Cause Failure Treatment in Event Assessment: Basis for a Proposed New Model

    SciTech Connect (OSTI)

    Dana Kelly; Song-Hua Shen; Gary DeMoss; Kevin Coyne; Don Marksberry

    2010-06-01

    Event assessment is an application of probabilistic risk assessment in which observed equipment failures and outages are mapped into the risk model to obtain a numerical estimate of the events risk significance. In this paper, we focus on retrospective assessments to estimate the risk significance of degraded conditions such as equipment failure accompanied by a deficiency in a process such as maintenance practices. In modeling such events, the basic events in the risk model that are associated with observed failures and other off-normal situations are typically configured to be failed, while those associated with observed successes and unchallenged components are assumed capable of failing, typically with their baseline probabilities. This is referred to as the failure memory approach to event assessment. The conditioning of common-cause failure probabilities for the common cause component group associated with the observed component failure is particularly important, as it is insufficient to simply leave these probabilities at their baseline values, and doing so may result in a significant underestimate of risk significance for the event. Past work in this area has focused on the mathematics of the adjustment. In this paper, we review the Basic Parameter Model for common-cause failure, which underlies most current risk modelling, discuss the limitations of this model with respect to event assessment, and introduce a proposed new framework for common-cause failure, which uses a Bayesian network to model underlying causes of failure, and which has the potential to overcome the limitations of the Basic Parameter Model with respect to event assessment.

  1. Interaction between surface wind and ocean circulation in the Carolina Capes in a coupled low-order model

    SciTech Connect (OSTI)

    Xie, L.; Pietrafesa, L.J.; Raman, S.

    1997-03-18

    Interactions between surface winds and ocean currents over an east-coast continental shelf are studied using a simple mathematical model. The model physics include cross-shelf advection of sea surface temperature (SST) by Ekman drift, upwelling due to Ekman transport divergence, differential heating of the low-level atmosphere by a cross-shelf SST gradient, and the Coriolis effect. Additionally, the effects of diabatic cooling of surface waters due to air-sea heat exchange and of the vertical density stratification on the thickness of the upper ocean Ekman layer are considered. The model results are qualitatively consistent with observed wind-driven coastal ocean circulation and surface wind signatures induced by SST. This simple model also demonstrates that two-way air-sea interaction plays a significant role in the subtidal frequency variability of coastal ocean circulation and mesoscale variability of surface wind fields over coastal waters.

  2. Water balance in the Amazon basin from a land surface model ensemble

    SciTech Connect (OSTI)

    Getirana, Augusto; Dutra, Emanuel; Guimberteau, Matthieu; Kam, Jonghun; Li, Hongyi; Decharme, Bertrand; Zhang, Zhengqiu J.; Ducharne, Agnes; Boone, Aaron; Balsamo, Gianpaolo; Rodell, Matthew; Mounirou Toure, Ally; Xue, Yongkang; Peters-Lidard, Christa D.; Kumar, Sujay V.; Arsenault, Kristi Rae; Drapeau, Guillaume; Leung, Lai-Yung R.; Ronchail, Josyane; Sheffield, Justin

    2014-12-06

    Despite recent advances in modeling and remote sensing of land surfaces, estimates of the global water budget are still fairly uncertain. The objective of this study is to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables [total water storage (TWS), evapotranspiration (ET), surface runoff (R) and baseflow (B)] are evaluated at the basin scale using both remote sensing and in situ data. Fourteen LSMs were run using meteorological forcings at a 3-hourly time step and 1-degree spatial resolution. Three experiments are performed using precipitation which has been rescaled to match monthly global GPCP and GPCC datasets and the daily HYBAM dataset for the Amazon basin. R and B are used to force the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration, and GRACE TWS estimates in different catchments. At the basin scale, simulated ET ranges from 2.39mm.d-1 to 3.26mm.d-1 and a low spatial correlation between ET and P indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget variables vary significantly as a function of both the LSM and precipitation used, but simulated TWS generally agree at the basin scale. The best water budget simulations resulted from experiments using the HYBAM dataset, mostly explained by a denser rainfall gauge network the daily rescaling.

  3. Systematic Assessment of Neutron and Gamma Backgrounds Relevant to Operational Modeling and Detection Technology Implementation

    SciTech Connect (OSTI)

    Archer, Daniel E.; Hornback, Donald Eric; Johnson, Jeffrey O.; Nicholson, Andrew D.; Patton, Bruce W.; Peplow, Douglas E.; Miller, Thomas Martin; Ayaz-Maierhafer, Birsen

    2015-01-01

    This report summarizes the findings of a two year effort to systematically assess neutron and gamma backgrounds relevant to operational modeling and detection technology implementation. The first year effort focused on reviewing the origins of background sources and their impact on measured rates in operational scenarios of interest. The second year has focused on the assessment of detector and algorithm performance as they pertain to operational requirements against the various background sources and background levels.

  4. SOCIAL MODELING IN ASSESSEMENT OF A STATES PROPENSITY FOR NUCLEAR PROLIFERATION

    SciTech Connect (OSTI)

    Dalton, Angela C.; Whitney, Paul D.; Coles, Garill A.; Brothers, Alan J.

    2011-07-17

    This paper presents approach for assessing a States propensity for nuclear weapons proliferation using social modeling. We supported this modeling by first reviewing primarily literature by social scientists on factors related to the propensity of a State to proliferation and by leveraging existing relevant data compiled by social scientists. We performed a number of validation tests on our model including one that incorporates use of benchmark data defining the proliferation status of countries in the years between 1945 and 2000. We exercise the BN model against a number of country cases representing different perceived levels of proliferation risk. We also describe how the BN model could be further refined to be a proliferation assessment tool for decision making.

  5. Verification and validation of the decision analysis model for assessment of tank waste remediation system waste treatment strategies

    SciTech Connect (OSTI)

    Awadalla, N.G.; Eaton, S.C.F.

    1996-09-04

    This document is the verification and validation final report for the Decision Analysis Model for Assessment of Tank Waste Remediation System Waste Treatment Strategies. This model is also known as the INSIGHT Model.

  6. Assessment of Drag Models for Geldart A Particles in Bubbling Fluidized Beds

    SciTech Connect (OSTI)

    Estejab, Bahareh; Battaglia, Francine

    2015-10-08

    In order to accurately predict the hydrodynamic behavior of gas and solid phases using an Eulerian–Eulerian approach, it is crucial to use appropriate drag models to capture the correct physics. In this study, the performance of seven drag models for fluidization of Geldart A particles of coal, poplar wood, and their mixtures was assessed. In spite of the previous findings that bode badly for using predominately Geldart B drag models for fine particles, the results of our study revealed that if static regions of mass in the fluidized beds are considered, these drag models work well with Geldart A particles. It was found that drag models derived from empirical relationships adopt better with Geldart A particles compared to drag models that were numerically developed. Overall, the Huilin–Gidaspow drag model showed the best performance for both single solid phases and binary mixtures, however, for binary mixtures, Wen–Yu model predictions were also accurate.

  7. One-way coupling of an integrated assessment model and a water resources model: evaluation and implications of future changes over the US Midwest

    SciTech Connect (OSTI)

    Voisin, Nathalie; Liu, Lu; Hejazi, Mohamad I.; Tesfa, Teklu K.; Li, Hongyi; Huang, Maoyi; Liu, Ying; Leung, Lai-Yung R.

    2013-11-18

    An integrated model is being developed to advance our understanding of the interactions between human activities, terrestrial system and water cycle, and how system interactions will be affected by a changing climate at the regional scale. As a first step towards that goal, a global integrated assessment model including a waterdemand model is coupled offline with a land surface hydrology routing water resources management model. A spatial and temporal disaggregation approach is developed to project the annual regional water demand simulations into a daily time step and subbasin representation. The model demonstrated reasonable ability to represent the historical flow regulation and water supply over the Midwest (Missouri, Upper Mississippi and Ohio). Implications for the future flow regulation, water supply and supply deficit are investigated using a climate change projection with the B1 emission scenario which affects both natural flow and water demand. Over the Midwest, changes in flow regulation are mostly driven by the change in natural flow due to the limited storage capacity over the Ohio and Upper Mississippi river basins. The changes in flow and demand have a combined effect on the Missouri Summer regulated flow. The supply deficit tends to be driven by the change in flow over the region. Spatial analysis demonstrates the relationship between the supply deficit and the change in demand over urban areas not along a main river or with limited storage, and over areas upstream of groundwater dependent fields with therefore overestimated demand.

  8. Modeling carbon nanotube growth on the catalyst-substrate surface subjected to reactive plasma [

    SciTech Connect (OSTI)

    Tewari, Aarti; Sharma, Suresh C.

    2014-06-15

    The paper presents a theoretical model to study the growth of the carbon nanotube (CNT) on the catalyst substrate surface subjected to reactive plasma. The charging rate of the CNT, kinetics of electron, ions and neutral atoms, the growth rate of the CNT because of diffusion and accretion of ions on the catalyst nanoparticle inclusion of the issue of the plasma sheath is undertaken in the present model. Numerical calculations on the effect of ion density and temperature and the substrate bias on the growth of the CNT have been carried out for typical glow discharge plasma parameters. It is found that the height of CNT increases with the ion density of carbon ions and radius of CNT decreases with hydrogen ion density. The substrate bias also affects the growth rate of the CNT. The field emission characteristics from the CNTs can be analyzed from the results obtained.

  9. Trends in Formic Acid Decomposition on Model Transition Metal Surfaces: A Density Functional Theory Study

    SciTech Connect (OSTI)

    Herron, Jeffrey A.; Scaranto, Jessica; Ferrin, Peter A.; Li, Sha; Mavrikakis, Manos

    2014-12-05

    We present a first-principles, self-consistent periodic density functional theory (PW91-GGA) study of formic acid (HCOOH) decomposition on model (111) and (100) facets of eight fcc metals (Au, Ag, Cu, Pt, Pd, Ni, Ir, and Rh) and (0001) facets of four hcp (Co, Os, Ru, and Re) metals. The calculated binding energies of key formic acid decomposition intermediates including formate (HCOO), carboxyl (COOH), carbon monoxide (CO), water (H2O), carbon dioxide (CO2), hydroxyl (OH), carbon (C), oxygen (O), and hydrogen (H; H2) are presented. Using these energetics, we develop thermochemical potential energy diagrams for both the carboxyl-mediated and the formate-mediated dehydrogenation mechanisms on each surface. We evaluate the relative stability of COOH, HCOO, and other isomeric intermediates (i.e., CO + OH, CO2 + H, CO + O + H) on these surfaces. These results provide insights into formic acid decomposition selectivity (dehydrogenation versus dehydration), and in conjunction with calculated vibrational frequency modes, the results can assist with the experimental search for the elusive carboxyl (COOH) surface intermediate. Results are compared against experimental reports in the literature.

  10. THE STABILITY OF LOW SURFACE BRIGHTNESS DISKS BASED ON MULTI-WAVELENGTH MODELING

    SciTech Connect (OSTI)

    MacLachlan, J. M.; Wood, K.; Matthews, L. D.; Gallagher, J. S.

    2011-11-01

    To investigate the structure and composition of the dusty interstellar medium (ISM) of low surface brightness (LSB) disk galaxies, we have used multi-wavelength photometry to construct spectral energy distributions for three low-mass, edge-on LSB galaxies (V{sub rot} = 88-105 km s{sup -1}). We use Monte Carlo radiation transfer codes that include the effects of transiently heated small grains and polycyclic aromatic hydrocarbon molecules to model and interpret the data. We find that, unlike the high surface brightness galaxies previously modeled, the dust disks appear to have scale heights equal to or exceeding their stellar scale heights. This result supports the findings of previous studies that low-mass disk galaxies have dust scale heights comparable to their stellar scale heights and suggests that the cold ISM of low-mass, LSB disk galaxies may be stable against fragmentation and gravitational collapse. This may help to explain the lack of observed dust lanes in edge-on LSB galaxies and their low current star formation rates. Dust masses are found in the range (1.16-2.38) x 10{sup 6} M{sub sun}, corresponding to face-on (edge-on), V-band, optical depths 0.034 {approx}< {tau}{sub face} {approx}< 0.106 (0.69 {approx}< {tau}{sub eq} {approx}< 1.99).

  11. SUMO, System performance assessment for a high-level nuclear waste repository: Mathematical models

    SciTech Connect (OSTI)

    Eslinger, P.W.; Miley, T.B.; Engel, D.W.; Chamberlain, P.J. II

    1992-09-01

    Following completion of the preliminary risk assessment of the potential Yucca Mountain Site by Pacific Northwest Laboratory (PNL) in 1988, the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE) requested the Performance Assessment Scientific Support (PASS) Program at PNL to develop an integrated system model and computer code that provides performance and risk assessment analysis capabilities for a potential high-level nuclear waste repository. The system model that has been developed addresses the cumulative radionuclide release criteria established by the US Environmental Protection Agency (EPA) and estimates population risks in terms of dose to humans. The system model embodied in the SUMO (System Unsaturated Model) code will also allow benchmarking of other models being developed for the Yucca Mountain Project. The system model has three natural divisions: (1) source term, (2) far-field transport, and (3) dose to humans. This document gives a detailed description of the mathematics of each of these three divisions. Each of the governing equations employed is based on modeling assumptions that are widely accepted within the scientific community.

  12. Hydrophobic force field as molecular alternative to surface-area models

    SciTech Connect (OSTI)

    Hummer, G.

    1999-07-07

    An effective force field for hydrophobic interactions is developed based on a modified potential-of-mean-force (PMF) expansion of the effective many-body interactions between nonpolar molecules in water. For the simplest nonpolar solutes in water, hard particles, the modified PMF expansion is exact in both limiting cases of infinite separation and perfect overlap. The hydrophobic interactions are parametrized by using the information-theory model of hydrophobic hydration. The interactions between nonpolar solutes are short-ranged and can be evaluated efficiently on a computer. The force field is compared with simulation data for alkane conformational equilibria in water as well as a model for the formation of a hydrophobic core of a protein. The modified PMF expansion can be extended to solutes with attractive interactions. The observed accuracy, computational efficiency, and atomic detail of the model suggest that this simple hydrophobic force field can lead to a molecular alternative for phenomenological surface-area models with applications in ligand-binding and protein-folding studies.

  13. Assessing Impacts of Climate Change on Forests: The State of Biological Modeling

    DOE R&D Accomplishments [OSTI]

    Dale, V. H.; Rauscher, H. M.

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  14. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate

    SciTech Connect (OSTI)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; Leung, Lai-Yung R.

    2015-08-25

    Abstract In this study, the effects of irrigation on global surface water (SW) and groundwater (GW) resources are investigated by performing simulations using Community Land Model 4.0 (CLM4) at 0.5-degree resolution driven by downscaled/bias-corrected historical simulations and future projections from five General Circulation Models (GCMs) for 1950-2099. For each climate scenario, three sets of numerical experiments were configured: (1) a control experiment (CTRL) in which all crops are assumed to be rainfed; (2) an irrigation experiment (IRRIG) in which the irrigation module using only SW for irrigation is activated; and (3) a groundwater pumping experiment (PUMP) in which a groundwater pumping scheme coupled with the irrigation module is activated for conjunctive use of SW and GW for irrigation. The parameters associated with irrigation and groundwater pumping are calibrated based on a global inventory of census-based SW and GW use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major opposing effects: SW depletion/GW accumulation in regions with irrigation primarily fed by SW, and SW accumulation/GW depletion in regions with irrigation fed primarily by GW. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions, suggesting the potential to increase vulnerability to drought. By the end of the 21st century (2070-2099), climate change significantly increases (relative to 1971-2000) irrigation water demand across the world. Combined with the increased temporal-spatial variability of water supply, this may lead to severe issues of local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate/alleviate climate-induced changes of SW/GW although such effects are negligible when averaged globally. Our results emphasize the importance of accounting for irrigation effects and irrigation sources in regional climate change impact assessment.

  15. Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe; Kumar, Navanit; Zhang, Yingqi; Jordan, Preston; Pan, Lehua; Granvold, Patrick; Chow, Fotini K.

    2009-06-01

    We have developed a framework for assessing the leakage risk of geologic carbon sequestration sites. This framework, known as the Certification Framework (CF), emphasizes wells and faults as the primary potential leakage conduits. Vulnerable resources are grouped into compartments, and impacts due to leakage are quantified by the leakage flux or concentrations that could potentially occur in compartments under various scenarios. The CF utilizes several model components to simulate leakage scenarios. One model component is a catalog of results of reservoir simulations that can be queried to estimate plume travel distances and times, rather than requiring CF users to run new reservoir simulations for each case. Other model components developed for the CF and described here include fault characterization using fault-population statistics; fault connection probability using fuzzy rules; well-flow modeling with a drift-flux model implemented in TOUGH2; and atmospheric dense-gas dispersion using a mesoscale weather prediction code.

  16. Analysis report for WIPP colloid model constraints and performance assessment parameters

    SciTech Connect (OSTI)

    Mariner, Paul E.; Sassani, David Carl

    2014-03-01

    An analysis of the Waste Isolation Pilot Plant (WIPP) colloid model constraints and parameter values was performed. The focus of this work was primarily on intrinsic colloids, mineral fragment colloids, and humic substance colloids, with a lesser focus on microbial colloids. Comments by the US Environmental Protection Agency (EPA) concerning intrinsic Th(IV) colloids and Mg-Cl-OH mineral fragment colloids were addressed in detail, assumptions and data used to constrain colloid model calculations were evaluated, and inconsistencies between data and model parameter values were identified. This work resulted in a list of specific conclusions regarding model integrity, model conservatism, and opportunities for improvement related to each of the four colloid types included in the WIPP performance assessment.

  17. A multi-model assessment of pollution transport to the Arctic

    SciTech Connect (OSTI)

    Shindell, D T; Chin, M; Dentener, F; Doherty, R M; Faluvegi, G; Fiore, A M; Hess, P; Koch, D M; MacKenzie, I A; Sanderson, M G; Schultz, M G; Schulz, M; Stevenson, D S; Teich, H; Textor, C; Wild, O; Bergmann, D J; Bey, I; Bian, H; Cuvelier, C; Duncan, B N; Folberth, G; Horowitz, L W; Jonson, J; Kaminski, J W; Marmer, E; Park, R; Pringle, K J; Schroeder, S; Szopa, S; Takemura, T; Zeng, G; Keating, T J; Zuber, A

    2008-03-13

    We examine the response of Arctic gas and aerosol concentrations to perturbations in pollutant emissions from Europe, East and South Asia, and North America using results from a coordinated model intercomparison. These sensitivities to regional emissions (mixing ratio change per unit emission) vary widely across models and species. Intermodel differences are systematic, however, so that the relative importance of different regions is robust. North America contributes the most to Arctic ozone pollution. For aerosols and CO, European emissions dominate at the Arctic surface but East Asian emissions become progressively more important with altitude, and are dominant in the upper troposphere. Sensitivities show strong seasonality: surface sensitivities typically maximize during boreal winter for European and during spring for East Asian and North American emissions. Mid-tropospheric sensitivities, however, nearly always maximize during spring or summer for all regions. Deposition of black carbon (BC) onto Greenland is most sensitive to North American emissions. North America and Europe each contribute {approx}40% of total BC deposition to Greenland, with {approx}20% from East Asia. Elsewhere in the Arctic, both sensitivity and total BC deposition are dominated by European emissions. Model diversity for aerosols is especially large, resulting primarily from differences in aerosol physical and chemical processing (including removal). Comparison of modeled aerosol concentrations with observations indicates problems in the models, and perhaps, interpretation of the measurements. For gas phase pollutants such as CO and O{sub 3}, which are relatively well-simulated, the processes contributing most to uncertainties depend on the source region and altitude examined. Uncertainties in the Arctic surface CO response to emissions perturbations are dominated by emissions for East Asian sources, while uncertainties in transport, emissions, and oxidation are comparable for European and North American sources. At higher levels, model-to-model variations in transport and oxidation are most important. Differences in photochemistry appear to play the largest role in the intermodel variations in Arctic ozone sensitivity, though transport also contributes substantially in the mid-troposphere.

  18. Development of Probabilistic Risk Assessment Model for BWR Shutdown Modes 4 and 5 Integrated in SPAR Model

    SciTech Connect (OSTI)

    S. T. Khericha; S. Sancakter; J. Mitman; J. Wood

    2010-06-01

    Nuclear plant operating experience and several studies show that the risk from shutdown operation during modes 4, 5, and 6 can be significant This paper describes development of the standard template risk evaluation models for shutdown modes 4, and 5 for commercial boiling water nuclear power plants (BWR). The shutdown probabilistic risk assessment model uses full power Nuclear Regulatory Commissions (NRCs) Standardized Plant Analysis Risk (SPAR) model as the starting point for development. The shutdown PRA models are integrated with their respective internal events at-power SPAR model. This is accomplished by combining the modified system fault trees from SPAR full power model with shutdown event tree logic. For human reliability analysis (HRA), the SPAR HRA (SPAR-H) method is used which requires the analysts to complete relatively straight forward worksheet, including the performance shaping factors (PSFs). The results are then used to estimate HEP of interest. The preliminary results indicate the risk is dominated by the operators ability to diagnose the events and provide long term cooling.

  19. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    SciTech Connect (OSTI)

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-10-14

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides.

  20. Modeling threat assessments of water supply systems using markov latent effects methodology.

    SciTech Connect (OSTI)

    Silva, Consuelo Juanita

    2006-12-01

    Recent amendments to the Safe Drinking Water Act emphasize efforts toward safeguarding our nation's water supplies against attack and contamination. Specifically, the Public Health Security and Bioterrorism Preparedness and Response Act of 2002 established requirements for each community water system serving more than 3300 people to conduct an assessment of the vulnerability of its system to a terrorist attack or other intentional acts. Integral to evaluating system vulnerability is the threat assessment, which is the process by which the credibility of a threat is quantified. Unfortunately, full probabilistic assessment is generally not feasible, as there is insufficient experience and/or data to quantify the associated probabilities. For this reason, an alternative approach is proposed based on Markov Latent Effects (MLE) modeling, which provides a framework for quantifying imprecise subjective metrics through possibilistic or fuzzy mathematics. Here, an MLE model for water systems is developed and demonstrated to determine threat assessments for different scenarios identified by the assailant, asset, and means. Scenario assailants include terrorists, insiders, and vandals. Assets include a water treatment plant, water storage tank, node, pipeline, well, and a pump station. Means used in attacks include contamination (onsite chemicals, biological and chemical), explosives and vandalism. Results demonstrated highest threats are vandalism events and least likely events are those performed by a terrorist.

  1. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Advanced Sensors, Controls, Platforms and Modeling for Manufacturing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between

  2. Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts.

    SciTech Connect (OSTI)

    Sevougian, S. David; Freeze, Geoffrey A.; Gardner, William Payton; Hammond, Glenn Edward; Mariner, Paul

    2014-09-01

    directly, rather than through simplified abstractions. It also a llows for complex representations of the source term, e.g., the explicit representation of many individual waste packages (i.e., meter - scale detail of an entire waste emplacement drift). This report fulfills the Generic Disposal System Analysis Work Packa ge Level 3 Milestone - Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts (M 3 FT - 1 4 SN08080 3 2 ).

  3. Post-2020 climate agreements in the major economies assessed in the light of global models

    SciTech Connect (OSTI)

    Tavoni, Massimo; Kriegler, Elmar; Riahi, Keywan; Van Vuuren, Detlef; Aboumahboub, Tino; Bowen, Alex; Calvin, Katherine V.; Campiglio, Emanuele; Kober, Tom; Jewell, Jessica; Luderer, Gunnar; Marangoni, Giacomo; McCollum, David; van Sluisveld, Mariesse; Zimmer, Anne; van der Zwaan, Bob

    2014-12-15

    Integrated assessment models can help in quantifying the implications of international climate agreements and regional climate action. This paper reviews scenario results from model intercomparison projects to explore different possible outcomes of post-2020 climate negotiations, recently announced pledges and their relation to the 2C target. We provide key information for all the major economies, such as the year of emission peaking, regional carbon budgets and emissions allowances. We highlight the distributional consequences of climate policies, and discuss the role of carbon markets for financing clean energy investments, and achieving efficiency and equity.

  4. Development of Simplified Probabilistic Risk Assessment Model for Seismic Initiating Event

    SciTech Connect (OSTI)

    S. Khericha; R. Buell; S. Sancaktar; M. Gonzalez; F. Ferrante

    2012-06-01

    ABSTRACT This paper discusses a simplified method to evaluate seismic risk using a methodology built on dividing the seismic intensity spectrum into multiple discrete bins. The seismic probabilistic risk assessment model uses Nuclear Regulatory Commissions (NRCs) full power Standardized Plant Analysis Risk (SPAR) model as the starting point for development. The seismic PRA models are integrated with their respective internal events at-power SPAR model. This is accomplished by combining the modified system fault trees from the full power SPAR model with seismic event tree logic. The peak ground acceleration is divided into five bins. The g-value for each bin is estimated using the geometric mean of lower and upper values of that particular bin and the associated frequency for each bin is estimated by taking the difference between upper and lower values of that bin. The components fragilities are calculated for each bin using the plant data, if available, or generic values of median peak ground acceleration and uncertainty values for the components. For human reliability analysis (HRA), the SPAR HRA (SPAR-H) method is used which requires the analysts to complete relatively straight forward worksheets that include the performance shaping factors (PSFs). The results are then used to estimate human error probabilities (HEPs) of interest. This work is expected to improve the NRCs ability to include seismic hazards in risk assessments for operational events in support of the reactor oversight program (e.g., significance determination process).

  5. Protonation of Different Goethite Surfaces - Unified Models for NaNO3 and NaCl Media.

    SciTech Connect (OSTI)

    Lutzenkirchen, Johannes; Boily, Jean F.; Gunneriusson, Lars; Lovgren, L.; Sjojberg, S.

    2008-01-01

    Acid-base titration data for two goethites samples in sodium nitrate and sodium chloride media are discussed. The data are modelled based on various surface complexation models in the framework of the MUlti SIte Complexation (MUSIC) model. Various assumptions with respect to the goethite morphology are considered in determining the site density of the surface functional groups. The results from the various model applications are not statistically significant in terms of goodness of fit. More importantly, various published assumptions with respect to the goethite morphology (i.e. the contributions of different crystal planes and their repercussions on the overall site densities of the various surface functional groups) do not significantly affect the final model parameters. The simultaneous fit of the chloride and nitrate data results in electrolyte binding constants, which are applicable over a wide range of electrolyte concentrations including mixtures of chloride and nitrate. Model parameters for the high surface area goethite sample are in excellent agreement with parameters that were independently obtained by another group on different goethite titration data sets.

  6. Economic assessment of the impact on coal production due to enforcement of the Surface Mining Control and Reclamation Act of 1977. Cost report. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-11-12

    The report summarizes the efforts made in the cost analysis portion of the 'Economic Assessment of the Impact on Coal Production Due to Enforcement of the Surface Mining Control and Reclamation Act (SMCRA) of 1977. The objective of the cost analysis portion of the study was to supplement the study's examination of the benefits of SMCRA with an analysis of the costs of SMCRA as based on industry experience and data. The analysis involved the development and field test of a methodology for constructing estimates of the costs of complying with regulations at individual surface coal mines.

  7. Uncertainty and Sensitivity of Alternative Rn-222 Flux Density Models Used in Performance Assessment

    SciTech Connect (OSTI)

    Greg J. Shott, Vefa Yucel, Lloyd Desotell; Non-Nstec Authors: G. Pyles and Jon Carilli

    2007-06-01

    Performance assessments for the Area 5 Radioactive Waste Management Site on the Nevada Test Site have used three different mathematical models to estimate Rn-222 flux density. This study describes the performance, uncertainty, and sensitivity of the three models which include the U.S. Nuclear Regulatory Commission Regulatory Guide 3.64 analytical method and two numerical methods. The uncertainty of each model was determined by Monte Carlo simulation using Latin hypercube sampling. The global sensitivity was investigated using Morris one-at-time screening method, sample-based correlation and regression methods, the variance-based extended Fourier amplitude sensitivity test, and Sobol's sensitivity indices. The models were found to produce similar estimates of the mean and median flux density, but to have different uncertainties and sensitivities. When the Rn-222 effective diffusion coefficient was estimated using five different published predictive models, the radon flux density models were found to be most sensitive to the effective diffusion coefficient model selected, the emanation coefficient, and the radionuclide inventory. Using a site-specific measured effective diffusion coefficient significantly reduced the output uncertainty. When a site-specific effective-diffusion coefficient was used, the models were most sensitive to the emanation coefficient and the radionuclide inventory.

  8. Assessment of Drag Models for Geldart A Particles in Bubbling Fluidized Beds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Estejab, Bahareh; Battaglia, Francine

    2015-10-08

    In order to accurately predict the hydrodynamic behavior of gas and solid phases using an Eulerian–Eulerian approach, it is crucial to use appropriate drag models to capture the correct physics. In this study, the performance of seven drag models for fluidization of Geldart A particles of coal, poplar wood, and their mixtures was assessed. In spite of the previous findings that bode badly for using predominately Geldart B drag models for fine particles, the results of our study revealed that if static regions of mass in the fluidized beds are considered, these drag models work well with Geldart A particles.more » It was found that drag models derived from empirical relationships adopt better with Geldart A particles compared to drag models that were numerically developed. Overall, the Huilin–Gidaspow drag model showed the best performance for both single solid phases and binary mixtures, however, for binary mixtures, Wen–Yu model predictions were also accurate.« less

  9. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-Lived Surface Caps

    SciTech Connect (OSTI)

    Piet, Steven James; Breckenridge, Robert Paul; Burns, Douglas Edward

    2003-02-01

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someones back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: a) improve the knowledge of degradation mechanisms in times shorter than service life; b) improve modeling of barrier degradation dynamics; c) develop sensor systems to identify early degradation; and d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing at the intermediate meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The emphasis on meso-scale (coupled) tests, accelerated effects testing, and dynamic modeling differentiates the project from other efforts, while simultaneously building on that body of knowledge. The performance of evapotranspiration, capillary, and grout-based barriers is being examined. To date, the project can report new approaches to the problem, building new experimental and modeling capabilities, and a few preliminary results.

  10. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-lived Surface Caps

    SciTech Connect (OSTI)

    Piet, S. J.; Breckenridge, R. P.; Burns, D. E.

    2003-02-25

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone's back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: (a) improve the knowledge of degradation mechanisms in times shorter than service life; (b) improve modeling of barrier degradation dynamics; (c) develop sensor systems to identify early degradation; and (d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing at the intermediate meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The emphasis on meso-scale (coupled) tests, accelerated effects testing, and dynamic modeling differentiates the project from other efforts, while simultaneously building on that body of knowledge. The performance of evapotranspiration, capillary, and grout-based barriers is being examined. To date, the project can report new approaches to the problem, building new experimental and modeling capabilities, and a few preliminary results.

  11. Soil-to-Plant Concentration Ratios for Assessing Food Chain Pathways in Biosphere Models

    SciTech Connect (OSTI)

    Napier, Bruce A.; Fellows, Robert J.; Krupka, Kenneth M.

    2007-10-01

    This report describes work performed for the U.S. Nuclear Regulatory Commissions project Assessment of Food Chain Pathway Parameters in Biosphere Models, which was established to assess and evaluate a number of key parameters used in the food-chain models used in performance assessments of radioactive waste disposal facilities. Section 2 of this report summarizes characteristics of samples of soils and groundwater from three geographical regions of the United States, the Southeast, Northwest, and Southwest, and analyses performed to characterize their physical and chemical properties. Because the uptake and behavior of radionuclides in plant roots, plant leaves, and animal products depends on the chemistry of the water and soil coming in contact with plants and animals, water and soil samples collected from these regions of the United States were used in experiments at Pacific Northwest National Laboratory to determine radionuclide soil-to-plant concentration ratios. Crops and forage used in the experiments were grown in the soils, and long-lived radionuclides introduced into the groundwater provide the contaminated water used to water the grown plants. The radionuclides evaluated include 99Tc, 238Pu, and 241Am. Plant varieties include alfalfa, corn, onion, and potato. The radionuclide uptake results from this research study show how regional variations in water quality and soil chemistry affect radionuclide uptake. Section 3 summarizes the procedures and results of the uptake experiments, and relates the soil-to-plant uptake factors derived. In Section 4, the results found in this study are compared with similar values found in the biosphere modeling literature; the studys results are generally in line with current literature, but soil- and plant-specific differences are noticeable. This food-chain pathway data may be used by the NRC staff to assess dose to persons in the reference biosphere (e.g., persons who live and work in an area potentially affected by radionuclide releases) of waste disposal facilities and decommissioning sites.

  12. Use of North American and European air quality networks to evaluate global chemistry-climate modeling of surface ozone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schnell, J. L.; Prather, M. J.; Josse, B.; Naik, V.; Horowitz, L. W.; Cameron-Smith, P.; Bergmann, D.; Zeng, G.; Plummer, D. A.; Sudo, K.; et al

    2015-04-16

    We test the current generation of global chemistry-climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1° × 1° grid cells, allowing commensurate model-measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (~ 15:00) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is less successfully matched. The observedmore » summertime diurnal range (~ 25 ppb) is underestimated in all regions by about 7 ppb, and the observed seasonal range (~ 21 ppb) is underestimated by about 5 ppb except in the most polluted regions where it is overestimated by about 5 ppb. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80% of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The observed linear relationship showing increases in ozone by up to 6 ppb for larger-sized episodes is also matched.« less

  13. Dissociative chemisorption of methane on metal surfaces: Tests of dynamical assumptions using quantum models and ab initio molecular dynamics

    SciTech Connect (OSTI)

    Jackson, Bret; Nattino, Francesco; Kroes, Geert-Jan

    2014-08-07

    The dissociative chemisorption of methane on metal surfaces is of great practical and fundamental importance. Not only is it the rate-limiting step in the steam reforming of natural gas, the reaction exhibits interesting mode-selective behavior and a strong dependence on the temperature of the metal. We present a quantum model for this reaction on Ni(100) and Ni(111) surfaces based on the reaction path Hamiltonian. The dissociative sticking probabilities computed using this model agree well with available experimental data with regard to variation with incident energy, substrate temperature, and the vibrational state of the incident molecule. We significantly expand the vibrational basis set relative to earlier studies, which allows reaction probabilities to be calculated for doubly excited initial vibrational states, though it does not lead to appreciable changes in the reaction probabilities for singly excited initial states. Sudden models used to treat the center of mass motion parallel to the surface are compared with results from ab initio molecular dynamics and found to be reasonable. Similar comparisons for molecular rotation suggest that our rotationally adiabatic model is incorrect, and that sudden behavior is closer to reality. Such a model is proposed and tested. A model for predicting mode-selective behavior is tested, with mixed results, though we find it is consistent with experimental studies of normal vs. total (kinetic) energy scaling. Models for energy transfer into lattice vibrations are also examined.

  14. Hydrogeologic analyses in support of the conceptual model for the LANL Area G LLRW performance assessment

    SciTech Connect (OSTI)

    Vold, E.L.; Birdsell, K.; Rogers, D.; Springer, E.; Krier, D.; Turin, H.J.

    1996-04-01

    The Los Alamos National Laboratory low level radioactive waste disposal facility at Area G is currently completing a draft of the site Performance Assessment. Results from previous field studies have estimated a range in recharge rate up to 1 cm/yr. Recent estimates of unsaturated hydraulic conductivity for each stratigraphic layer under a unit gradient assumption show a wide range in recharge rate of 10{sup {minus}4} to 1 cm/yr depending upon location. Numerical computations show that a single net infiltration rate at the mesa surface does not match the moisture profile in each stratigraphic layer simultaneously, suggesting local source or sink terms possibly due to surface connected porous regions. The best fit to field data at deeper stratigraphic layers occurs for a net infiltration of about 0.1 cm/yr. A recent detailed analysis evaluated liquid phase vertical moisture flux, based on moisture profiles in several boreholes and van Genuchten fits to the hydraulic properties for each of the stratigraphic units. Results show a near surface infiltration region averages 8m deep, below which is a dry, low moisture content, and low flux region, where liquid phase recharge averages to zero. Analysis shows this low flux region is dominated by vapor movement. Field data from tritium diffusion studies, from pressure fluctuation attenuation studies, and from comparisons of in-situ and core sample permeabilities indicate that the vapor diffusion is enhanced above that expected in the matrix and is presumably due to enhanced flow through the fractures. Below this dry region within the mesa is a moisture spike which analyses show corresponds to a moisture source. The likely physical explanation is seasonal transient infiltration through surface-connected fractures. This anomalous region is being investigated in current field studies, because it is critical in understanding the moisture flux which continues to deeper regions through the unsaturated zone.

  15. SIMPLIFIED PREDICTIVE MODELS FOR CO₂ SEQUESTRATION PERFORMANCE ASSESSMENT RESEARCH TOPICAL REPORT ON TASK #3 STATISTICAL LEARNING BASED MODELS

    SciTech Connect (OSTI)

    Mishra, Srikanta; Schuetter, Jared

    2014-11-01

    We compare two approaches for building a statistical proxy model (metamodel) for CO₂ geologic sequestration from the results of full-physics compositional simulations. The first approach involves a classical Box-Behnken or Augmented Pairs experimental design with a quadratic polynomial response surface. The second approach used a space-filling maxmin Latin Hypercube sampling or maximum entropy design with the choice of five different meta-modeling techniques: quadratic polynomial, kriging with constant and quadratic trend terms, multivariate adaptive regression spline (MARS) and additivity and variance stabilization (AVAS). Simulations results for CO₂ injection into a reservoir-caprock system with 9 design variables (and 97 samples) were used to generate the data for developing the proxy models. The fitted models were validated with using an independent data set and a cross-validation approach for three different performance metrics: total storage efficiency, CO₂ plume radius and average reservoir pressure. The Box-Behnken–quadratic polynomial metamodel performed the best, followed closely by the maximin LHS–kriging metamodel.

  16. HyRAM (Hydrogen Risk Assessment Models) v. 1.0 (alpha)

    Energy Science and Technology Software Center (OSTI)

    2014-12-19

    HyRAM is a software toolkit that integrates data and methods relevant to assessing the safety of hydrogen fueling and storage infrastructure. The HyRAM toolkit integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing the impact of hydrogen hazards (thermal effects from jet fires, thermal pressure effects from deflagrations) on people and structures. HyRAM incorporates generic probabilities for equipment failures for nine types of components, and probabilistic models for the impactmore » of heat flux on humans and structures, with computationally and experimentally validated models of hydrogen release and flame physics. Version 1.0.0.280 can be used to quantify the likelihood and thermal consequences associated with gaseous hydrogen releases from user-defined hydrogen installations.« less

  17. STOIC: An Assessment of Coupled Model Climatology and Variability in Tropical Ocean Regions

    SciTech Connect (OSTI)

    Davey, M.K.; Sperber, K.R.; Huddleston, M

    2000-08-30

    The tropics are regions of strong ocean-atmosphere interaction on seasonal and interannual timescales, so a good representation of observed tropical behavior is a desirable objective for coupled ocean-atmosphere general circulation models (CGCMs). To broaden and update previous assessments (Mechoso et al. 1995, Neelin et al. 1992), two complementary projects were initiated by the CLIVAR Working Group on Seasonal to Interannual Prediction (WGSIP): the El Nino Simulation Intercomparison Project (ENSIP, by Mojib Latif) and STOIC (Study of Tropical Oceans In Coupled models). The aim was to compare models against observations to identify common weaknesses and strengths. Results from ENSIP concentrating on the equatorial Pacific have been described by Latif et al. (2000), hereafter ENSIP2000. A detailed report on STOIC is available via anonymous ftp at email.meto.gov.uk/pub/cr/ ''stoic'' and is summarized in Davey et al. (2000). The STOIC analyses extend beyond the equatorial Pacific, to examine behavior in all three tropical ocean regions.

  18. Assessment of Food Chain Pathway Parameters in Biosphere Models: Annual Progress Report for Fiscal Year 2004

    SciTech Connect (OSTI)

    Napier, Bruce A.; Krupka, Kenneth M.; Fellows, Robert J.; Cataldo, Dominic A.; Valenta, Michelle M.; Gilmore, Tyler J.

    2004-12-02

    This Annual Progress Report describes the work performed and summarizes some of the key observations to date on the U.S. Nuclear Regulatory Commissions project Assessment of Food Chain Pathway Parameters in Biosphere Models, which was established to assess and evaluate a number of key parameters used in the food-chain models used in performance assessments of radioactive waste disposal facilities. Section 2 of this report describes activities undertaken to collect samples of soils from three regions of the United States, the Southeast, Northwest, and Southwest, and perform analyses to characterize their physical and chemical properties. Section 3 summarizes information gathered regarding agricultural practices and common and unusual crops grown in each of these three areas. Section 4 describes progress in studying radionuclide uptake in several representative crops from the three soil types in controlled laboratory conditions. Section 5 describes a range of international coordination activities undertaken by Project staff in order to support the underlying data needs of the Project. Section 6 provides a very brief summary of the status of the GENII Version 2 computer program, which is a client of the types of data being generated by the Project, and for which the Project will be providing training to the US NRC staff in the coming Fiscal Year. Several appendices provide additional supporting information.

  19. Use of North American and European air quality networks to evaluate global chemistry–climate modeling of surface ozone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schnell, J. L.; Prather, M. J.; Josse, B.; Naik, V.; Horowitz, L. W.; Cameron-Smith, P.; Bergmann, D.; Zeng, G.; Plummer, D. A.; Sudo, K.; et al

    2015-09-25

    We test the current generation of global chemistry–climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1° × 1° grid cells, allowing commensurate model–measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (~ 15:00 local time (LT)) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is less successfullymore » matched. The observed summertime diurnal range (~ 25 ppb) is underestimated in all regions by about 7 ppb, and the observed seasonal range (~ 21 ppb) is underestimated by about 5 ppb except in the most polluted regions, where it is overestimated by about 5 ppb. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80 % of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The models also match the observed linear relationship between episode size and a measure of episode intensity, which shows increases in ozone abundance by up to 6 ppb for larger-sized episodes. We conclude that the skill of the models evaluated here provides confidence in their projections of future surface ozone.« less

  20. Economic analysis and assessment of syngas production using a modeling approach

    SciTech Connect (OSTI)

    Kim, Hakkwan; Parajuli, Prem B.; Yu, Fei; Columbus, Eugene P.

    2011-08-10

    Economic analysis and modeling are essential and important issues for the development of current feedstock and process technology for bio-gasification. The objective of this study was to develop an economic model and apply to predict the unit cost of syngas production from a micro-scale bio-gasification facility. An economic model was programmed in C++ computer programming language and developed using a parametric cost approach, which included processes to calculate the total capital costs and the total operating costs. The model used measured economic data from the bio-gasification facility at Mississippi State University. The modeling results showed that the unit cost of syngas production was $1.217 for a 60 Nm-3 h-1 capacity bio-gasifier. The operating cost was the major part of the total production cost. The equipment purchase cost and the labor cost were the largest part of the total capital cost and the total operating cost, respectively. Sensitivity analysis indicated that labor costs rank the top as followed by equipment cost, loan life, feedstock cost, interest rate, utility cost, and waste treatment cost. The unit cost of syngas production increased with the increase of all parameters with exception of loan life. The annual cost regarding equipment, labor, feedstock, waste treatment, and utility cost showed a linear relationship with percent changes, while loan life and annual interest rate showed a non-linear relationship. This study provides the useful information for economic analysis and assessment of the syngas production using a modeling approach.

  1. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  2. Improving Surface Radiation in a Satellite-Based Physical Model (Poster)

    SciTech Connect (OSTI)

    Sengupta, M.; Habte, A.; Gotseff, P.

    2013-10-01

    This poster provides an overview of the solar resource assessment work needed to achieve high penetrations of concentrating solar power or photovoltaics on the grid.

  3. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  4. Applying GIS characterizing and modeling contaminant transport in surface water at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Becker, N.M.; Van Eeckhout, E.; David, N.A.; Irvine, J.M.

    1995-10-01

    During World War II, Los Alamos, New Mexico was chosen as the site for the secret development of the first atomic bomb. The remote location in the southwestern United States was ideal for such a project. After the war, research activities continued at the Los Alamos installation, focusing on new nuclear weapons models as well as greater effectiveness and reliability of existing weapons. Due to the emphasis on nuclear and non-nuclear weapons development as well as associated nuclear research, a large inventory of radionuclides and heavy metals have been tested, expended, and disposed of in the local environment, a high plateau of tuffaceous volcanic rocks incised by deep canyons in a semi-arid climate. In recent years an intensive evaluation of the environmental, impact of weapons testing at Los Alamos and elsewhere has been undertaken. GIS system utilization and image processing of past and current data has been an important part of this evaluation. Important problems can be more easily displayed and understood using this methodology. The main objective in this paper is to illustrate how transport of depleted uranium and associated heavy metals (copper in this case) used in dynamic testing of weapons components at open air firing sites can be evaluated and visualized. In our studies, surface water has been found to be the predominant transport mechanism. We have sampled soils, sediments, fallout, runoff water and snowmelt over a number of years in order to understand contaminant transport on- and offsite. Statistical analyses of these data have assisted in our characterization of issues such as contaminant variability, spatially and temporally, as well as in development of transport rates.

  5. Modeling and Quantification of Team Performance in Human Reliability Analysis for Probabilistic Risk Assessment

    SciTech Connect (OSTI)

    Jeffrey C. JOe; Ronald L. Boring

    2014-06-01

    Probabilistic Risk Assessment (PRA) and Human Reliability Assessment (HRA) are important technical contributors to the United States (U.S.) Nuclear Regulatory Commissions (NRC) risk-informed and performance based approach to regulating U.S. commercial nuclear activities. Furthermore, all currently operating commercial NPPs in the U.S. are required by federal regulation to be staffed with crews of operators. Yet, aspects of team performance are underspecified in most HRA methods that are widely used in the nuclear industry. There are a variety of "emergent" team cognition and teamwork errors (e.g., communication errors) that are 1) distinct from individual human errors, and 2) important to understand from a PRA perspective. The lack of robust models or quantification of team performance is an issue that affects the accuracy and validity of HRA methods and models, leading to significant uncertainty in estimating HEPs. This paper describes research that has the objective to model and quantify team dynamics and teamwork within NPP control room crews for risk informed applications, thereby improving the technical basis of HRA, which improves the risk-informed approach the NRC uses to regulate the U.S. commercial nuclear industry.

  6. Modeling the Effects of Irrigation on Land Surface Fluxes and States over the Conterminous United States: Sensitivity to Input Data and Model Parameters

    SciTech Connect (OSTI)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; Sacks, William J.; Lei, Huimin; Leung, Lai-Yung R.

    2013-09-16

    Previous studies on irrigation impacts on land surface fluxes/states were mainly conducted as sensitivity experiments, with limited analysis of uncertainties from the input data and model irrigation schemes used. In this study, we calibrated and evaluated the performance of irrigation water use simulated by the Community Land Model version 4 (CLM4) against observations from agriculture census. We investigated the impacts of irrigation on land surface fluxes and states over the conterminous United States (CONUS) and explored possible directions of improvement. Specifically, we found large uncertainty in the irrigation area data from two widely used sources and CLM4 tended to produce unrealistically large temporal variations of irrigation demand for applications at the water resources region scale over CONUS. At seasonal to interannual time scales, the effects of irrigation on surface energy partitioning appeared to be large and persistent, and more pronounced in dry than wet years. Even with model calibration to yield overall good agreement with the irrigation amounts from the National Agricultural Statistics Service (NASS), differences between the two irrigation area datasets still dominate the differences in the interannual variability of land surface response to irrigation. Our results suggest that irrigation amount simulated by CLM4 can be improved by (1) calibrating model parameter values to account for regional differences in irrigation demand and (2) accurate representation of the spatial distribution and intensity of irrigated areas.

  7. Considerations for modeling small-particulate impacts from surface coal-mining operations based on wind-tunnel simulations

    SciTech Connect (OSTI)

    Perry, S.G.; Petersen, W.B.; Thompson, R.S.

    1994-12-31

    The Clean Air Act Amendments of 1990 provide for a reexamination of the current Environmental Protection Agency`s (USEPA) methods for modeling fugitive particulate (PM10) from open-pit, surface coal mines. The Industrial Source Complex Model (ISCST2) is specifically named as the method that needs further study. Title II, Part B, Section 234 of the Amendments states that {open_quotes}...the Administrator shall analyze the accuracy of such model and emission factors and make revisions as may be necessary to eliminate any significant over-predictions of air quality effect of fugitive particulate emissions from such sources.{close_quotes}

  8. AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions

    SciTech Connect (OSTI)

    Meeks, E.; Grcar, J.F.; Kee, R.J.; Moffat, H.K.

    1996-02-01

    The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

  9. Surface Protonation at the Rutile (110) Interface: Explicit Incorporation of Solvation Structure within the Refined MUSIC Model Framework

    SciTech Connect (OSTI)

    Machesky, Michael L.; Predota, M.; Wesolowski, David J

    2008-11-01

    The detailed solvation structure at the (110) surface of rutile ({alpha}-TiO{sub 2}) in contact with bulk liquid water has been obtained primarily from experimentally verified classical molecular dynamics (CMD) simulations of the ab initio-optimized surface in contact with SPC/E water. The results are used to explicitly quantify H-bonding interactions, which are then used within the refined MUSIC model framework to predict surface oxygen protonation constants. Quantum mechanical molecular dynamics (QMD) simulations in the presence of freely dissociable water molecules produced H-bond distributions around deprotonated surface oxygens very similar to those obtained by CMD with nondissociable SPC/E water, thereby confirming that the less computationally intensive CMD simulations provide accurate H-bond information. Utilizing this H-bond information within the refined MUSIC model, along with manually adjusted Ti-O surface bond lengths that are nonetheless within 0.05 {angstrom} of those obtained from static density functional theory (DFT) calculations and measured in X-ray reflectivity experiments (as well as bulk crystal values), give surface protonation constants that result in a calculated zero net proton charge pH value (pHznpc) at 25 C that agrees quantitatively with the experimentally determined value (5.4 {+-} 0.2) for a specific rutile powder dominated by the (110) crystal face. Moreover, the predicted pH{sub znpc} values agree to within 0.1 pH unit with those measured at all temperatures between 10 and 250 C. A slightly smaller manual adjustment of the DFT-derived Ti-O surface bond lengths was sufficient to bring the predicted pH{sub znpc} value of the rutile (110) surface at 25 C into quantitative agreement with the experimental value (4.8 {+-} 0.3) obtained from a polished and annealed rutile (110) single crystal surface in contact with dilute sodium nitrate solutions using second harmonic generation (SHG) intensity measurements as a function of ionic strength. Additionally, the H-bond interactions between protolyzable surface oxygen groups and water were found to be stronger than those between bulk water molecules at all temperatures investigated in our CMD simulations (25, 150 and 250 C). Comparison with the protonation scheme previously determined for the (110) surface of isostructural cassiterite ({alpha}-SnO{sub 2}) reveals that the greater extent of H-bonding on the latter surface, and in particular between water and the terminal hydroxyl group (Sn-OH) results in the predicted protonation constant for that group being lower than for the bridged oxygen (Sn-O-Sn), while the reverse is true for the rutile (110) surface. These results demonstrate the importance of H-bond structure in dictating surface protonation behavior, and that explicit use of this solvation structure within the refined MUSIC model framework results in predicted surface protonation constants that are also consistent with a variety of other experimental and computational data.

  10. Prototype integration of the joint munitions assessment and planning model with the OSD threat methodology

    SciTech Connect (OSTI)

    Lynn, R.Y.S.; Bolmarcich, J.J.

    1994-06-01

    The purpose of this Memorandum is to propose a prototype procedure which the Office of Munitions might employ to exercise, in a supportive joint fashion, two of its High Level Conventional Munitions Models, namely, the OSD Threat Methodology and the Joint Munitions Assessment and Planning (JMAP) model. The joint application of JMAP and the OSD Threat Methodology provides a tool to optimize munitions stockpiles. The remainder of this Memorandum comprises five parts. The first is a description of the structure and use of the OSD Threat Methodology. The second is a description of JMAP and its use. The third discusses the concept of the joint application of JMAP and OSD Threat Methodology. The fourth displays sample output of the joint application. The fifth is a summary and epilogue. Finally, three appendices contain details of the formulation, data, and computer code.

  11. Performance of corrosion inhibiting admixtures for structural concrete -- assessment methods and predictive modeling

    SciTech Connect (OSTI)

    Yunovich, M.; Thompson, N.G.

    1998-12-31

    During the past fifteen years corrosion inhibiting admixtures (CIAs) have become increasingly popular for protection of reinforced components of highway bridges and other structures from damage induced by chlorides. However, there remains considerable debate about the benefits of CIAs in concrete. A variety of testing methods to assess the performance of CIA have been reported in the literature, ranging from tests in simulated pore solutions to long-term exposures of concrete slabs. The paper reviews the published techniques and recommends the methods which would make up a comprehensive CIA effectiveness testing program. The results of this set of tests would provide the data which can be used to rank the presently commercially available CIA and future candidate formulations utilizing a proposed predictive model. The model is based on relatively short-term laboratory testing and considers several phases of a service life of a structure (corrosion initiation, corrosion propagation without damage, and damage to the structure).

  12. Modeling and Risk Assessment of CO2 Sequestration at the Geologic-basin Scale

    SciTech Connect (OSTI)

    Juanes, Ruben

    2013-11-30

    The overall objective of this proposal was to develop tools for better understanding, modeling and risk assessment of CO2 permanence in geologic formations at the geologic basin scale.

  13. Assessing the toxic effects of ethylene glycol ethers using Quantitative Structure Toxicity Relationship models

    SciTech Connect (OSTI)

    Ruiz, Patricia; Mumtaz, Moiz; Gombar, Vijay

    2011-07-15

    Experimental determination of toxicity profiles consumes a great deal of time, money, and other resources. Consequently, businesses, societies, and regulators strive for reliable alternatives such as Quantitative Structure Toxicity Relationship (QSTR) models to fill gaps in toxicity profiles of compounds of concern to human health. The use of glycol ethers and their health effects have recently attracted the attention of international organizations such as the World Health Organization (WHO). The board members of Concise International Chemical Assessment Documents (CICAD) recently identified inadequate testing as well as gaps in toxicity profiles of ethylene glycol mono-n-alkyl ethers (EGEs). The CICAD board requested the ATSDR Computational Toxicology and Methods Development Laboratory to conduct QSTR assessments of certain specific toxicity endpoints for these chemicals. In order to evaluate the potential health effects of EGEs, CICAD proposed a critical QSTR analysis of the mutagenicity, carcinogenicity, and developmental effects of EGEs and other selected chemicals. We report here results of the application of QSTRs to assess rodent carcinogenicity, mutagenicity, and developmental toxicity of four EGEs: 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol and their metabolites. Neither mutagenicity nor carcinogenicity is indicated for the parent compounds, but these compounds are predicted to be developmental toxicants. The predicted toxicity effects were subjected to reverse QSTR (rQSTR) analysis to identify structural attributes that may be the main drivers of the developmental toxicity potential of these compounds.

  14. A joint discussion model for assessing safety, health, and environmental risks

    SciTech Connect (OSTI)

    Abbott, R.E.

    1995-12-01

    Industries competing in the global marketplace constantly evaluate potential opportunities for joint ventures and partnerships all over the world. In the petroleum industry, these prospects to explore for and produce oil and gas range geographically from densely populated areas, to offshore, to the remote reaches of a tropical rainforest. There are numerous risks associated with these prospects which must be assessed so that the best investments are selected. The risk categories include: commercial, technical geological, political and safety, health and environmental (SHE). SHE risks are sometimes the most difficult to assess within businesses because they do not allow an easy evaluation of economic impact or other quantification. Additionally, these issues are often not familiar to business development personnel and consequently are not evaluated on an equal basis with other risk criteria. This paper presents a joint discussion model that facilitates the communication between SHE personnel and other members of the multi-disciplinary teams responsible for evaluating and selecting the most attractive prospects. This tool uses a simple approach in contrast to the many quantitative decision-making software products currently available. It provides a set of questions related to relevant SHE issues, establishes a way to approximate the level of uncertainty in the answers, and sums the results so that a comparison among prospects is possible. In the end, a more rigorous, consistent SHE assessment of all prospects is made, and the rationale for each decision is archived so that improvement in the process over time is made easier.

  15. Sensitivity of Surface Flux Simulations to Hydrologic Parameters Based on an Uncertainty Quantification Framework Applied to the Community Land Model

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Huang, Maoyi; Leung, Lai-Yung R.; Lin, Guang; Ricciuto, Daniel M.

    2012-08-10

    Uncertainties in hydrologic parameters could have significant impacts on the simulated water and energy fluxes and land surface states, which will in turn affect atmospheric processes and the carbon cycle. Quantifying such uncertainties is an important step toward better understanding and quantification of uncertainty of integrated earth system models. In this paper, we introduce an uncertainty quantification (UQ) framework to analyze sensitivity of simulated surface fluxes to selected hydrologic parameters in the Community Land Model (CLM4) through forward modeling. Thirteen flux tower footprints spanning a wide range of climate and site conditions were selected to perform sensitivity analyses by perturbing the parameters identified. In the UQ framework, prior information about the parameters was used to quantify the input uncertainty using the Minimum-Relative-Entropy approach. The quasi-Monte Carlo approach was applied to generate samples of parameters on the basis of the prior pdfs. Simulations corresponding to sampled parameter sets were used to generate response curves and response surfaces and statistical tests were used to rank the significance of the parameters for output responses including latent (LH) and sensible heat (SH) fluxes. Overall, the CLM4 simulated LH and SH show the largest sensitivity to subsurface runoff generation parameters. However, study sites with deep root vegetation are also affected by surface runoff parameters, while sites with shallow root zones are also sensitive to the vadose zone soil water parameters. Generally, sites with finer soil texture and shallower rooting systems tend to have larger sensitivity of outputs to the parameters. Our results suggest the necessity of and possible ways for parameter inversion/calibration using available measurements of latent/sensible heat fluxes to obtain the optimal parameter set for CLM4. This study also provided guidance on reduction of parameter set dimensionality and parameter calibration framework design for CLM4 and other land surface models under different hydrologic and climatic regimes.

  16. Numerical Modeling of the Lake Mary Road Bridge for Foundation Reuse Assessment

    SciTech Connect (OSTI)

    Sitek, M. A.; Bojanowski, C.; Lottes, S. A.

    2015-04-01

    This project uses numerical techniques to assess the structural integrity and capacity of the bridge foundations and, as a result, reduces the risk associated with reusing the same foundation for a new superstructure. Nondestructive test methods of different types were used in combination with the numerical modeling and analysis. The onsite tests included visual inspection, tomography, ground penetrating radar, drilling boreholes and coreholes, and the laboratory tests on recovered samples. The results were utilized to identify the current geometry of the structure with foundation, including the hidden geometry of the abutments and piers, and soil and foundation material properties. This data was used to build the numerical models and run computational analyses on a high performance computer cluster to assess the structural integrity of the bridge and foundations including the suitability of the foundation for reuse with a new superstructure and traffic that will increase the load on the foundations. Computational analysis is more cost-effective and gives an advantage of getting more detailed knowledge about the structural response. It also enables to go beyond non-destructive testing and find the failure conditions without destroying the structure under consideration.

  17. CONTAIN code analyses of direct containment heating (DCH) experiments: Model assessment and phenomenological interpretation

    SciTech Connect (OSTI)

    Williams, D.C.; Griffith, R.O.; Tadios, E.L.; Washington, K.E.

    1995-05-12

    Models for direct containment heating (DCH) in the CONTAIN code for severe accident analysis have been reviewed and a standard input prescription for their use has been defined. The code has been exercised against a large subset of the available DCH data base. Generally good agreement with the experimental results for containment pressurization ({Delta}P) and hydrogen generation has been obtained. Extensive sensitivity studies have been performed which permit assessment of many of the strengths and weaknesses of specific model features. These include models for debris transport and trapping, DCH heat transfer and chemistry, atmosphere-structure heat transfer, interactions between nonairborne debris and blowdown steam, potential effects of debris-water interactions, and hydrogen combustion under DCH conditions. Containment compartmentalization is an important DCH mitigator in the calculations, in agreement with experimental results. The CONTAIN model includes partially parametric treatments for some processes that are not well understood. The importance of the associated uncertainties depends upon the details of the DCH scenario being analyzed. Recommended sensitivity studies are summarized that allow the user to obtain a reasonable estimate of the uncertainties in the calculated results.

  18. Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rawlins, M. A.; McGuire, A. D.; Kimball, J. S.; Dass, P.; Lawrence, D.; Burke, E.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; et al

    2015-07-28

    A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 1960–2009 at 0.5° resolution, which is a scale common among many global carbon and climate modelmore » simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data. The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m⁻² yr⁻², equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (1960–1969 vs. 2000–2009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength. The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model elements controlling vegetation productivity and soil respiration as being needed for reducing uncertainty in land-atmosphere CO2 exchange. These advances will require collection of new field data on vegetation and soil dynamics, the development of benchmarking data sets from measurements and remote-sensing observations, and investments in future model development and intercomparison studies.« less

  19. Economic assessment of the impact on coal production due to enforcement of the Surface Mining Control and Reclamation Act of 1977. Benefits report. Volume 1. Final report

    SciTech Connect (OSTI)

    Kyle, T.N.; McOmber, R.M.; Roberts, J.M.

    1980-10-31

    The study assesses the major economic benefits and costs that are associated with the enforcement of the Surface Mining Control and Reclamation ACt (SMCRA). The report addresses the benefits of surface coal mining and land reclamation that follow from the Act. As originally conceived, the study was to evaluate, preferably in monetary terms, the specific benefits and socio-economic impacts of SMCRA. However, it was apparent, in the course of the initial analysis, that historical evaluation of specific benefits and socio-economic/environmental impacts is complicated by the short time that SMCRA has been in operation. It was also apparent that development of substantive, and defensible, quantified estimates of benefits and impacts is hindered by the absence of a great deal of needed numerical data, and by incomplete understanding of the reclamation processes that the Act is intended to enhance. Rather than attempt to evaluate specific benefits and socio-economic/environmental impacts, the study evaluated existing research studies on the impacts of surface mining, land reclamation, and SMCRA, and evaluated existing data sources relevant to surface mining, land reclamation, and SMCRA.

  20. Use of ARM Products in Reanalysis Applications and IPCC Model Assessment

    SciTech Connect (OSTI)

    Walsh, John E; Chapman, William L

    2011-09-30

    Year-3 of the project was spent developing an observed cloud climatology for Barrow, AK and relating the observed cloud fractions to the surface circulation patterns and locally observed winds. Armed with this information, we identified errors and sources of errors of cloud fraction simulations by numerical models in the Arctic. Specifically, we compared the cloud simulations output by the North American Regional Reanalysis (NARR) to corresponding observed cloud fractions obtained by the Department of Energy’s Atmospheric Radiation Measurement (ARM) program for four mid-season months: (January, April, July, and October). Reanalyses are obtained from numerical weather prediction models that are not run in real-time. Instead, a reanalysis model ingests a wide variety of historical observations for the purpose of producing a gridded dataset of many model-derived quantities that are as temporally homogeneous as possible. Therefore, reanalysis output can be used as a proxy for observations, although some biases and other errors are inevitable because of model parameterizations and observational gaps. In the observational analysis we documented the seasonality of cloudiness at the north slope including cloud base height and dependence on synoptic regime. We followed this with an evaluation of the associations of wind-speed and direction and cloud amounts in both the observational record and the reanalysis model. The Barrow cloud fraction data show that clear conditions are most often associated with anomalous high pressure to the north of Barrow, especially in spring and early summer. Overcast skies are most commonly associated with anomalous low pressure to the south. The observational analysis shows that low, boundary layer clouds are the most common type of cloud observed North Slope ARM observing site. However, these near-surface clouds are a major source of errors in the NARR simulations. When compared to observations, the NARR over-simulates the fraction of low clouds during the winter months, and under-simulates the fraction of low clouds during the summer months. The NARR wind speeds at the North Slope are correlated to the observed ARM wind speeds at Barrow. The following correlations were obtained using the 3-hourly data: Jan (0.84); Apr (0.83); Jul (0.69); Oct (0.79). A negative bias (undersimulation) exists in the reanalysis wind speeds for January through July, but is typically 3ms-1 or less in magnitude. Overall, the magnitude of the wind vector is undersimulated approximately 74% of the time in the cold season months and 85% of the time July, but only about half of the time in October. Wind direction biases in the model are generally small (10-20 degrees), but they are generally in the leftward-turning direction in all months. We also synthesized NARR atmospheric output into a composite analysis of the synoptic conditions that are present when the reanalysis model fails in its simulations of Arctic cloud fractions, and similarly, those conditions present when the model simulates accurate cloud fractions. Cold season errors were highest when high pressure was located north of Barrow favoring anomalous winds and longer fetches from the northeast. In addition, larger cloud fraction biases were found on days with relatively calm winds (2-5 m/s). The most pronounced oversimulation biases associated with poorly simulated clouds occur during conditions with very low cloud-base heights (< 50 m). In contrast, the model appears more adept at capturing cloudless conditions in the spring than the winter with oversimulations occurring just 5% of the time in spring compared to 20% in the winter months. During the warm season, low level clouds are present in 32% of the time with onshore flow and less than half this frequent in offshore wind conditions. Composite sea level pressure fields indicate that clear sky conditions typically result when high pressure is centered at or near Barrow, AK. Overcast days are associated with generally lower sea level pressures near the North Slope and onshore flow from the NW in most months. Warm season errors were highest when high pressure was persistent to the north of Barrow, AK. This synoptic situation results in onshore flow for the North Slope with persistent winds from the east and northeast. In these situations, the predominant climatological synoptic situation, the NARR model under-simulates summer clouds on the North Slope. In general, the NARR often fails to capture clouds in the lowest 200 meters of the atmosphere. We conclude that the cloud model parameterization fails to cature boundary layer clouds like Arctic stratus and fog, which are observed in 65% of the undersimulations. These NARR undersimulations occur most often during onshore flow environments, such as when high pressure is located north of Barrow and the prevailing winds are from the northeast. In these cases, the airflow is along a fetch of scattered sea ice and open ocean (ice concentrations between 0 and 100%). NARR treats sea ice as a binary function. Grid cells are either considered a slap of ice cover, or totally open ocean. We note that implementing provisions for partial sea ice concentrations in the reanalysis model may help in more accurately depicting surface moisture fluxes and associated model-derived low cloud amounts.

  1. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2015-03-05

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate, and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3?, and POx (representing the sum of PO43?, HPO42?, and H2PO4?)) and five potential competitors (plantmoreroots, decomposing microbes, nitrifiers, denitrifiers, and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus, and free NH4+ at a tropical forest site (Tapajos). The overall model posterior uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results imply that the competitiveness (from most to least competitive) followed this order: (1) for NH4+, nitrifiers ~ decomposing microbes > plant roots, (2) for NO3?, denitrifiers ~ decomposing microbes > plant roots, (3) for POx, mineral surfaces > decomposing microbes ~ plant roots. Although smaller, plant relative competitiveness is of the same order of magnitude as microbes. We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among different nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.less

  2. SOFTWARE QUALITY ASSURANCE FOR EMERGENCY RESPONSE CONSEQUENCE ASSESSMENT MODELS AT DOE'S SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Hunter, C

    2007-12-17

    The Savannah River National Laboratory's (SRNL) Atmospheric Technologies Group develops, maintains, and operates computer-based software applications for use in emergency response consequence assessment at DOE's Savannah River Site. These applications range from straightforward, stand-alone Gaussian dispersion models run with simple meteorological input to complex computational software systems with supporting scripts that simulate highly dynamic atmospheric processes. A software quality assurance program has been developed to ensure appropriate lifecycle management of these software applications. This program was designed to meet fully the overall structure and intent of SRNL's institutional software QA programs, yet remain sufficiently practical to achieve the necessary level of control in a cost-effective manner. A general overview of this program is described.

  3. A Non-Electrostatic Surface Complexation Approach to Modeling Radionuclide Migration at the Nevada Test Site: II. Aluminosilicates

    SciTech Connect (OSTI)

    Zavarin, M; Bruton, C J

    2004-12-16

    Reliable quantitative prediction of contaminant transport in subsurface environments is critical to evaluating the risks associated with radionuclide migration. As part of the Underground Test Area (UGTA) program, radionuclide transport away from selected underground nuclear tests conducted in the saturated zone at the Nevada Test Site (NTS) is being examined. In the near-field environment, reactive transport simulations must account for changes in water chemistry and mineralogy as a function of time and their effect on radionuclide migration. Unlike the Kd approach, surface complexation reactions, in conjunction with ion exchange and precipitation, can be used to describe radionuclide reactive transport as a function of changing environmental conditions. They provide a more robust basis for describing radionuclide retardation in geochemically dynamic environments. In a companion report (Zavarin and Bruton, 2004), a database of radionuclide surface complexation reactions for calcite and iron oxide minerals was developed. In this report, a second set of reactions is developed: surface complexation (SC) and ion exchange (IE) to aluminosilicate minerals. The most simplified surface complexation model, the one-site non-electrostatic model (NEM), and the Vanselow IE model were used to fit a large number of published sorption data and a reaction constant database was developed. Surface complexation of Am(III), Eu(III), Np(V), Pu(IV), Pu(V), and U(VI) to aluminum oxide, silica, and aluminosilicate minerals was modeled using a generalized approach in which surface complexation to aluminosilicate >SiOH or >AlOH reactive sites was considered equivalent to the reactivity of aluminum oxide and silica reactive sites. Ion exchange was allowed to be mineral-dependent. The generalized NEM approach, in conjunction with Vanselow IE, was able to fit most published sorption data well. Fitting results indicate that surface complexation will dominate over ion exchange at pH >7 for the rare earth and actinide ions examined here. Ion exchange is effectively suppressed due to aqueous speciation at high pH which tends to result in neutral or negatively charged aqueous species that are less likely to undergo ion exchange. The resulting set of average NEM and Vanselow IE constants provides a consistent set of constants for use in reactive transport simulations. The average NEM and Vanselow IE constants were used to predict single-mineral K{sub d}s under conditions similar to K{sub d} measurements reported by the Yucca Mountain site characterization program. In most cases, predicted Kds were consistent with measured K{sub d}s. In some cases, differences could be explained by surface area, mineralogy, or redox state. The NEM and Vanselow IE constants described here are an attempt to arrive at a consistent simplified database of reaction constants to be used in reactive transport simulations in chemically and mineralogically heterogeneous environments. The accuracy of these reaction constants is limited by the quality and quantity of available sorption data and the limitations of the NEM and Vanselow IE approach used. The reactivity and accessibility of natural minerals is complicated and cannot be assumed to behave ideally. Thus, the validity of the NEM and Vanselow IE constants must always be examined for the sediment of interest. For example, Triay et al. (1997) suggested that the weak sorption of Np(V) on tuff containing small amounts of hematite may indicate that the iron oxide mineral is passivated. Thus, the reactive surface area of hematite in these samples may be lower than expected. On the other hand, a limited comparison of NEM and Vanselow IE constants determined here and K{sub d}s reported by Wolfsberg (1978) for alluvium from Frenchman Flat, NTS, suggests that the reaction constants and reactive surface areas developed here would provide a conservative estimate of radionuclide retardation in Frenchman Flat alluvium.

  4. Extended defense systems :I. adversary-defender modeling grammar for vulnerability analysis and threat assessment.

    SciTech Connect (OSTI)

    Merkle, Peter Benedict

    2006-03-01

    Vulnerability analysis and threat assessment require systematic treatments of adversary and defender characteristics. This work addresses the need for a formal grammar for the modeling and analysis of adversary and defender engagements of interest to the National Nuclear Security Administration (NNSA). Analytical methods treating both linguistic and numerical information should ensure that neither aspect has disproportionate influence on assessment outcomes. The adversary-defender modeling (ADM) grammar employs classical set theory and notation. It is designed to incorporate contributions from subject matter experts in all relevant disciplines, without bias. The Attack Scenario Space U{sub S} is the set universe of all scenarios possible under physical laws. An attack scenario is a postulated event consisting of the active engagement of at least one adversary with at least one defended target. Target Information Space I{sub S} is the universe of information about targets and defenders. Adversary and defender groups are described by their respective Character super-sets, (A){sub P} and (D){sub F}. Each super-set contains six elements: Objectives, Knowledge, Veracity, Plans, Resources, and Skills. The Objectives are the desired end-state outcomes. Knowledge is comprised of empirical and theoretical a priori knowledge and emergent knowledge (learned during an attack), while Veracity is the correspondence of Knowledge with fact or outcome. Plans are ordered activity-task sequences (tuples) with logical contingencies. Resources are the a priori and opportunistic physical assets and intangible attributes applied to the execution of associated Plans elements. Skills for both adversary and defender include the assumed general and task competencies for the associated plan set, the realized value of competence in execution or exercise, and the opponent's planning assumption of the task competence.

  5. EXPERIMENTAL DESIGN APPLICATIONS FOR MODELING AND ASSESSING CARBON DIOXIDE SEQUESTRATION IN SALINE AQUIFERS

    SciTech Connect (OSTI)

    Rogers, John

    2014-08-31

    This project was a computer modeling effort to couple reservoir simulation and ED/RSM using Sensitivity Analysis, Uncertainty Analysis, and Optimization Methods, to assess geologic, geochemical, geomechanical, and rock-fluid effects and factors on CO2 injectivity, capacity, and plume migration. The project objective was to develop proxy models to simplify the highly complex coupled geochemical and geomechanical models in the utilization and storage of CO2 in the subsurface. The goals were to investigate and prove the feasibility of the ED/RSM processes and engineering development, and bridge the gaps regarding the uncertainty and unknowns of the many geochemical and geomechanical interacting parameters in the development and operation of anthropogenic CO2 sequestration and storage sites. The bottleneck in this workflow is the high computational effort of reactive transport simulation models and large number of input variables to optimize with ED/RSM techniques. The project was not to develop the reactive transport, geomechanical, or ED/RSM software, but was to use what was commercially and/or publically available as a proof of concept to generate proxy or surrogate models. A detailed geologic and petrographic mineral assemblage and geologic structure of the doubly plunging anticline was defined using the USDOE RMOTC formations of interest data (e.g., Lower Sundance, Crow Mountain, Alcova Limestone, and Red Peak). The assemblage of 23 minerals was primarily developed from literature data and petrophysical (well log) analysis. The assemblage and structure was input into a commercial reactive transport simulator to predict the effects of CO2 injection and complex reactions with the reservoir rock. Significant impediments were encountered during the execution phase of the project. The only known commercial reactive transport simulator was incapable of simulating complex geochemistry modeled in this project. Significant effort and project funding was expended to determine the limitations of both the commercial simulator and the Lawrence Berkeley National Laboratory (LBNL) R&D simulator, TOUGHREACT available to the project. A simplified layer cake model approximating the volume of the RMOTC targeted reservoirs was defined with 1-3 minerals eventually modeled with limited success. Modeling reactive transport in porous media requires significant computational power. In this project, up to 24 processors were used to model a limited mineral set of 1-3 minerals. In addition, geomechanical aspects of injecting CO2 into closed, semi-open, and open systems in various well completion methods was simulated. Enhanced Oil Recovery (EOR) as a storage method was not modeled. A robust and stable simulation dataset or base case was developed and used to create a master dataset with embedded instructions for input to the ED/RSM software. Little success was achieved toward the objective of the project using the commercial simulator or the LBNL simulator versions available during the time of this project. Several hundred realizations were run with the commercial simulator and ED/RSM software, most having convergence problems and terminating prematurely. A proxy model for full field CO2 injection sequestration utilization and storage was not capable of being developed with software available for this project. Though the chemistry is reasonably known and understood, based on the amount of effort and huge computational time required, predicting CO2 sequestration storage capacity in geologic formations to within the program goals of 30% proved unsuccessful.

  6. Recommended Method To Account For Daughter Ingrowth For The Portsmouth On-Site Waste Disposal Facility Performance Assessment Modeling

    SciTech Connect (OSTI)

    Phifer, Mark A.; Smith, Frank G. III

    2013-06-21

    A 3-D STOMP model has been developed for the Portsmouth On-Site Waste Disposal Facility (OSWDF) at Site D as outlined in Appendix K of FBP 2013. This model projects the flow and transport of the following radionuclides to various points of assessments: Tc-99, U-234, U-235, U-236, U-238, Am-241, Np-237, Pu-238, Pu-239, Pu-240, Th-228, and Th-230. The model includes the radioactive decay of these parents, but does not include the associated daughter ingrowth because the STOMP model does not have the capability to model daughter ingrowth. The Savannah River National Laboratory (SRNL) provides herein a recommended method to account for daughter ingrowth in association with the Portsmouth OSWDF Performance Assessment (PA) modeling.

  7. Further RAGE modeling of asteroid mitigation: surface and subsurface explosions in porous objects

    SciTech Connect (OSTI)

    Weaver, Robert P; Plesko, Catherine S; Dearholt, William R

    2011-01-03

    Disruption or mitigation of a potentially hazardous object (PHO) by a high-energy subsurface burst is considered. This is just one possible method of impact-hazard mitigation. We present RAGE hydrocode models of the shock-generated disruption of PHOs by subsurface nuclear bursts using scenario-specific models from realistic RADAR shape models. We will show 2D and 3D models for the disruption by a large energy source at the center of such PHO models ({approx}100 kt-10 Mt) specifically for the shape of the asteroid 25143 Itokawa. We study the effects of non-uniform composition (rubble pile), shallow buried bursts for the optimal depth of burial and porosity.

  8. Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model

    SciTech Connect (OSTI)

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

    2014-05-13

    Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

  9. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    SciTech Connect (OSTI)

    Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.

    2009-08-15

    Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution within cover types. Biases in predicted weekly average regional latent heat fluxes were smaller than for NEE, but larger than for either ecosystem respiration or assimilation alone. However, spatial and diurnal variations of hundreds of W m{sup -2} in latent heat fluxes were common. We conclude that, in this heterogeneous system, characterizing vegetation cover type and LAI at the scale of spatial variation are necessary for accurate estimates of bottom-up, regional NEE and surface energy fluxes.

  10. MODELING THE ANOMALY OF SURFACE NUMBER DENSITIES OF GALAXIES ON THE GALACTIC EXTINCTION MAP DUE TO THEIR FIR EMISSION CONTAMINATION

    SciTech Connect (OSTI)

    Kashiwagi, Toshiya; Suto, Yasushi; Taruya, Atsushi; Yahata, Kazuhiro; Kayo, Issha; Nishimichi, Takahiro

    2015-02-01

    The most widely used Galactic extinction map is constructed assuming that the observed far-infrared (FIR) fluxes come entirely from Galactic dust. According to the earlier suggestion by Yahata et al., we consider how FIR emission of galaxies affects the SFD map. We first compute the surface number density of Sloan Digital Sky Survey (SDSS) DR7 galaxies as a function of the r-band extinction, A {sub r,} {sub SFD}. We confirm that the surface densities of those galaxies positively correlate with A {sub r,} {sub SFD} for A {sub r,} {sub SFD} < 0.1, as first discovered by Yahata et al. for SDSS DR4 galaxies. Next we construct an analytical model to compute the surface density of galaxies, taking into account the contamination of their FIR emission. We adopt a log-normal probability distribution for the ratio of 100 ?m and r-band luminosities of each galaxy, y ? (?L){sub 100} {sub ?m}/(?L) {sub r}. Then we search for the mean and rms values of y that fit the observed anomaly, using the analytical model. The required values to reproduce the anomaly are roughly consistent with those measured from the stacking analysis of SDSS galaxies. Due to the limitation of our statistical modeling, we are not yet able to remove the FIR contamination of galaxies from the extinction map. Nevertheless, the agreement with the model prediction suggests that the FIR emission of galaxies is mainly responsible for the observed anomaly. Whereas the corresponding systematic error in the Galactic extinction map is 0.1-1mmag, it is directly correlated with galaxy clustering and thus needs to be carefully examined in precision cosmology.

  11. Hawaii demand-side management resource assessment. Final report, Reference Volume 4: The DBEDT DSM assessment model user`s manual

    SciTech Connect (OSTI)

    1995-04-01

    The DBEDT DSM Assessment Model (DSAM) is a spreadsheet model developed in Quattro Pro for Windows that is based on the integration of the DBEDT energy forecasting model, ENERGY 2020, with the output from the building energy use simulation model, DOE-2. DOE-2 provides DSM impact estimates for both energy and peak demand. The ``User`s Guide`` is designed to assist DBEDT staff in the operation of DSAM. Supporting information on model structure and data inputs are provided in Volumes 2 and 3 of the Final Report. DSAM is designed to provide DBEDT estimates of the potential DSM resource for each county in Hawaii by measure, program, sector, year, and levelized cost category. The results are provided for gas and electric and for both energy and peak demand. There are two main portions of DSAM, the residential sector and the commercial sector. The basic underlying logic for both sectors are the same. However, there are some modeling differences between the two sectors. The differences are primarily the result of (1) the more complex nature of the commercial sector, (2) memory limitations within Quattro Pro, and (3) the fact that the commercial sector portion of the model was written four months after the residential sector portion. The structure for both sectors essentially consists of a series of input spreadsheets, the portion of the model where the calculations are performed, and a series of output spreadsheets. The output spreadsheets contain both detailed and summary tables and graphs.

  12. Environmental impact of APC residues from municipal solid waste incineration: Reuse assessment based on soil and surface water protection criteria

    SciTech Connect (OSTI)

    Quina, Margarida J.; Bordado, Joao C.M.; Quinta-Ferreira, Rosa M.

    2011-09-15

    Highlights: > The Dutch Building Material Decree (BMD) was used to APC residues from MSWI. > BMD is a straightforward tool to calculate expectable loads to the environment of common pollutants. > Chloride load to the environment lead to classification of building material not allowed. > At least a pre-treatment (e.g. washing) is required in order to remove soluble salts. > The stabilization with phosphates or silicates eliminate the problem of heavy metals. - Abstract: Waste management and environmental protection are mandatory requirements of modern society. In our study, air pollution control (APC) residues from municipal solid waste incinerators (MSWI) were considered as a mixture of fly ash and fine particulate solids collected in scrubbers and fabric filters. These are hazardous wastes and require treatment before landfill. Although there are a number of treatment options, it is highly recommended to find practical applications rather than just dump them in landfill sites. In general, for using a construction material, beyond technical specifications also soil and surface water criteria may be used to ensure environmental protection. The Dutch Building Materials Decree (BMD) is a valuable tool in this respect and it was used to investigate which properties do not meet the threshold criteria so that APC residues can be further used as secondary building material. To this end, some scenarios were evaluated by considering release of inorganic species from unmoulded and moulded applications. The main conclusion is that the high amount of soluble salts makes the APC residues a building material prohibited in any of the conditions tested. In case of moulding materials, the limits of heavy metals are complied, and their use in Category 1 would be allowed. However, also in this case, the soluble salts lead to the classification of 'building material not allowed'. The treatments with phosphates or silicates are able to solve the problem of heavy metals, but difficulties with the soluble salts are still observed. This analysis suggests that for APC residues to comply with soil and surface water protection criteria to be further used as building material at least a pre-treating for removing soluble salts is absolutely required.

  13. High-Resolution Modeling to Assess Tropical Cyclone Activity in Future Climate Regimes

    SciTech Connect (OSTI)

    Lackmann, Gary

    2013-06-10

    Applied research is proposed with the following objectives: (i) to determine the most likely level of tropical cyclone intensity and frequency in future climate regimes, (ii) to provide a quantitative measure of uncertainty in these predictions, and (iii) to improve understanding of the linkage between tropical cyclones and the planetary-scale circulation. Current mesoscale weather forecasting models, such as the Weather Research and Forecasting (WRF) model, are capable of simulating the full intensity of tropical cyclones (TC) with realistic structures. However, in order to accurately represent both the primary and secondary circulations in these systems, model simulations must be configured with sufficient resolution to explicitly represent convection (omitting the convective parameterization scheme). Most previous numerical studies of TC activity at seasonal and longer time scales have not utilized such explicit convection (EC) model runs. Here, we propose to employ the moving nest capability of WRF to optimally represent TC activity on a seasonal scale using a downscaling approach. The statistical results of a suite of these high-resolution TC simulations will yield a realistic representation of TC intensity on a seasonal basis, while at the same time allowing analysis of the feedback that TCs exert on the larger-scale climate system. Experiments will be driven with analyzed lateral boundary conditions for several recent Atlantic seasons, spanning a range of activity levels and TC track patterns. Results of the ensemble of WRF simulations will then be compared to analyzed TC data in order to determine the extent to which this modeling setup can reproduce recent levels of TC activity. Next, the boundary conditions (sea-surface temperature, tropopause height, and thermal/moisture profiles) from the recent seasons will be altered in a manner consistent with various future GCM/RCM scenarios, but that preserves the large-scale shear and incipient disturbance activity. This will allow (i) a direct comparison of future TC activity that could be expected for an active or inactive season in an altered climate regime, and (ii) a measure of the level of uncertainty and variability in TC activity resulting from different carbon emission scenarios.

  14. Hepatocyte-based in vitro model for assessment of drug-induced cholestasis

    SciTech Connect (OSTI)

    Chatterjee, Sagnik; Richert, Lysiane; Augustijns, Patrick; Annaert, Pieter

    2014-01-01

    Early detection of drug-induced cholestasis remains a challenge during drug development. We have developed and validated a biorelevant sandwich-cultured hepatocytes- (SCH) based model that can identify compounds causing cholestasis by altering bile acid disposition. Human and rat SCH were exposed (2448 h) to known cholestatic and/or hepatotoxic compounds, in the presence or in the absence of a concentrated mixture of bile acids (BAs). Urea assay was used to assess (compromised) hepatocyte functionality at the end of the incubations. The cholestatic potential of the compounds was expressed by calculating a drug-induced cholestasis index (DICI), reflecting the relative residual urea formation by hepatocytes co-incubated with BAs and test compound as compared to hepatocytes treated with test compound alone. Compounds with clinical reports of cholestasis, including cyclosporin A, troglitazone, chlorpromazine, bosentan, ticlopidine, ritonavir, and midecamycin showed enhanced toxicity in the presence of BAs (DICI ? 0.8) for at least one of the tested concentrations. In contrast, the in vitro toxicity of compounds causing hepatotoxicity by other mechanisms (including diclofenac, valproic acid, amiodarone and acetaminophen), remained unchanged in the presence of BAs. A safety margin (SM) for drug-induced cholestasis was calculated as the ratio of lowest in vitro concentration for which was DICI ? 0.8, to the reported mean peak therapeutic plasma concentration. SM values obtained in human SCH correlated well with reported % incidence of clinical drug-induced cholestasis, while no correlation was observed in rat SCH. This in vitro model enables early identification of drug candidates causing cholestasis by disturbed BA handling. - Highlights: Novel in vitro assay to detect drug-induced cholestasis Rat and human sandwich-cultured hepatocytes (SCH) as in vitro models Cholestatic compounds sensitize SCH to toxic effects of accumulating bile acids Drug-induced cholestasis index (DICI) as measure of a drug's cholestatic signature In vitro findings correlate well with clinical reports on cholestasis.

  15. Modeling and experimental studies of oxide covered metal surfaces: TiO{sub 2}/Ti a model system. Progress report

    SciTech Connect (OSTI)

    Smyrl, W.H.

    1991-12-31

    Prior work in our laboratories at the Corrosion Research Center has shown that thin, anodic TiO{sub 2} films formed by the Slow Growth Mode (SGM) on polycrystalline titanium and microcrystalline with a texture that varies from one metal grain to another. Furthermore, the underlying metal grains are mapped by the photoelectrochemical response of the oxide. The same characteristics have also been demonstrated in our laboratory for ZnO grown on Zn. The TiO{sub 2}/Ti system has been chosen for study both because of its importance in energy systems, and because it can serve as a model system for other metal-metal oxide couples. The investigations of anodic TiO{sub 2} films on Ti have shown that the properties of thin films are consistent with the rutile form of the oxide. Both experimental data and theoretical calculations show the close resemblance to results on single crystal TiO{sub 2}. Furthermore, the modeling studies reveal that the optical transitions near the bandedge arise from the bulk band structure. The photoelectrochemical properties of anodic TiO{sub 2} films have now been shown to obey the simple Gaertner-Butler model for the semiconductor-electrolyte interface, with a few modifications. The most important deviation has now been shown to be a result of multiple internal reflections in the oxide film.

  16. Modeling and experimental studies of oxide covered metal surfaces: TiO sub 2 /Ti a model system

    SciTech Connect (OSTI)

    Smyrl, W.H.

    1991-01-01

    Prior work in our laboratories at the Corrosion Research Center has shown that thin, anodic TiO{sub 2} films formed by the Slow Growth Mode (SGM) on polycrystalline titanium and microcrystalline with a texture that varies from one metal grain to another. Furthermore, the underlying metal grains are mapped by the photoelectrochemical response of the oxide. The same characteristics have also been demonstrated in our laboratory for ZnO grown on Zn. The TiO{sub 2}/Ti system has been chosen for study both because of its importance in energy systems, and because it can serve as a model system for other metal-metal oxide couples. The investigations of anodic TiO{sub 2} films on Ti have shown that the properties of thin films are consistent with the rutile form of the oxide. Both experimental data and theoretical calculations show the close resemblance to results on single crystal TiO{sub 2}. Furthermore, the modeling studies reveal that the optical transitions near the bandedge arise from the bulk band structure. The photoelectrochemical properties of anodic TiO{sub 2} films have now been shown to obey the simple Gaertner-Butler model for the semiconductor-electrolyte interface, with a few modifications. The most important deviation has now been shown to be a result of multiple internal reflections in the oxide film.

  17. Dynamic modeling of injection-induced fault reactivation and ground motion and impact on surface structures and human perception

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; Godano, Maxime

    2014-12-31

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about Mw = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic Mw = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO2 leakage, but would certainly be felt by the local population.

  18. Dynamic modeling of injection-induced fault reactivation and ground motion and impact on surface structures and human perception

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; Godano, Maxime

    2014-12-31

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about Mw = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzed themore » ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic Mw = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO2 leakage, but would certainly be felt by the local population.« less

  19. Assessment of CCFL model of RELAP5/MOD3 against simple vertical tubes and rod bundle tests. International Agreement Report

    SciTech Connect (OSTI)

    Cho, S.; Arne, N.; Chung, B.D.; Kim, H.J.

    1993-06-01

    The CCFL model used in RELAP5/MOD3 version 5m5 has been assessed against simple vertical tubes and bundle tests performed at a facility of Korea Atomic Energy Research Institute. The effect of changes in tube diameter and nodalization of tube section were investigated. The roles of interfacial drags on the flooding characteristics are discussed. Differences between the calculation and the experiment are also discussed. A comparison between model assessment results and the test data showed that the calculated value lay well on the experimental flooding curve specified by user, but the pressure jump before onset of flooding was not calculated.

  20. Modeling and comparative assessment of municipal solid waste gasification for energy production

    SciTech Connect (OSTI)

    Arafat, Hassan A. Jijakli, Kenan

    2013-08-15

    Highlights: Study developed a methodology for the evaluation of gasification for MSW treatment. Study was conducted comparatively for USA, UAE, and Thailand. Study applies a thermodynamic model (Gibbs free energy minimization) using the Gasify software. The energy efficiency of the process and the compatibility with different waste streams was studied. - Abstract: Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H{sub 2}) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.

  1. Assessment of the Value, Impact, and Validity of the Jobs and Economic Development Impacts (JEDI) Suite of Models

    SciTech Connect (OSTI)

    Billman, L.; Keyser, D.

    2013-08-01

    The Jobs and Economic Development Impacts (JEDI) models, developed by the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), use input-output methodology to estimate gross (not net) jobs and economic impacts of building and operating selected types of renewable electricity generation and fuel plants. This analysis provides the DOE with an assessment of the value, impact, and validity of the JEDI suite of models. While the models produce estimates of jobs, earnings, and economic output, this analysis focuses only on jobs estimates. This validation report includes an introduction to JEDI models, an analysis of the value and impact of the JEDI models, and an analysis of the validity of job estimates generated by JEDI model through comparison to other modeled estimates and comparison to empirical, observed jobs data as reported or estimated for a commercial project, a state, or a region.

  2. Risk and Vulnerability Assessment Using Cybernomic Computational Models: Tailored for Industrial Control Systems

    SciTech Connect (OSTI)

    Abercrombie, Robert K; Sheldon, Federick T.; Schlicher, Bob G

    2015-01-01

    There are many influencing economic factors to weigh from the defender-practitioner stakeholder point-of-view that involve cost combined with development/deployment models. Some examples include the cost of countermeasures themselves, the cost of training and the cost of maintenance. Meanwhile, we must better anticipate the total cost from a compromise. The return on investment in countermeasures is essentially impact costs (i.e., the costs from violating availability, integrity and confidentiality / privacy requirements). The natural question arises about choosing the main risks that must be mitigated/controlled and monitored in deciding where to focus security investments. To answer this question, we have investigated the cost/benefits to the attacker/defender to better estimate risk exposure. In doing so, it s important to develop a sound basis for estimating the factors that derive risk exposure, such as likelihood that a threat will emerge and whether it will be thwarted. This impact assessment framework can provide key information for ranking cybersecurity threats and managing risk.

  3. Modelling On Photogeneration Of Hydroxyl Radical In Surface Waters And Its Reactivity Towards Pharmaceutical Wastes

    SciTech Connect (OSTI)

    Das, Radha; Vione, Davide; Rubertelli, Francesca; Maurino, Valter; Minero, Claudio; Barbati, Stephane; Chiron, Serge

    2010-10-26

    This paper reports a simple model to describe the formation and reactivity of hydroxyl radicals in the whole column of freshwater lakes. It is based on empirical irradiation data and is a function of the water chemical composition (the photochemically significant parameters NPOC, nitrate, nitrite, carbonate and bicarbonate), the lake conformation best expressed as the average depth, and the water absorption spectrum in a simplified Lambert-Beer approach. The purpose is to derive the lifetime of dissolved molecules, due to reaction with OH, on the basis of their second-order rate constants with the hydroxyl radical. The model was applied to two compounds of pharmaceutical wastes ibuprofen and carbamazepine, for which the second-order rate constants for reaction with the hydroxyl radical were measured by means of the competition kinetics with 2-propanol. The measured values of the rate constants are 1.0x10{sup 10} and 1.6x10{sup 10} M{sup -1} s{sup -1} for ibuprofen and carbamazepine, respectively. The model suggests that the lifetime of a given compound can be very variable in different lakes, even more than the lifetime of different compounds in the same lake. It can be concluded that as far as the reaction with OH, is concerned the concepts of photolability and photostability, traditionally attached to definite compounds, are ecosystem-dependent at least as much as they depend on the molecule under consideration.

  4. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Combustion/Modeling - Modelingadmin2015-10-28T01:54:52+00:00 Modelers at the CRF are developing high-fidelity simulation tools for engine combustion and detailed micro-kinetic, surface chemistry modeling tools for catalyst-based exhaust aftertreatment systems. The engine combustion modeling is focused on developing Large Eddy Simulation (LES). LES is being used with closely coupled key target experiments to reveal new understanding of the fundamental processes involved in engine

  5. A "Make-a-Difference" Experiment to Assess the Value of ARM Data in Carbon Cycle Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Make a Difference" Experiment to Assess the Value of ARM Data in Carbon Cycle Models W. W. Hargrove, C. C. Brandt, H. I. Jager, and R. A. McCord Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee Introduction Atmospheric Radiation Measurement (ARM) Program data include many of the measurements needed by carbon modelers to predict carbon dynamics in terrestrial ecosystems. How much difference, if any, would using ARM measurements rather than any of

  6. Preliminary Review of Models, Assumptions, and Key Data used in Performance Assessments and Composite Analysis at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Arthur S. Rood; Swen O. Magnuson

    2009-07-01

    This document is in response to a request by Ming Zhu, DOE-EM to provide a preliminary review of existing models and data used in completed or soon to be completed Performance Assessments and Composite Analyses (PA/CA) documents, to identify codes, methodologies, main assumptions, and key data sets used.

  7. Webinar: Overview of HyRAM (Hydrogen Risk Assessment Models) Software for Science-Based Safety, Codes, and Standards

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Overview of HyRAM (Hydrogen Risk Assessment Models) Software for Science-Based Safety, Codes, and Standards" on Tuesday, April 26, from 12:00 to 1:00 p.m. Eastern Daylight Time (EDT).

  8. Performance Assessment Transport Modeling of Uranium at the Area 5 Radioactive Waste Management Site at the Nevada National Security Site

    SciTech Connect (OSTI)

    NSTec Radioactive Waste

    2010-10-12

    Following is a brief summary of the assumptions that are pertinent to the radioactive isotope transport in the GoldSim Performance Assessment model of the Area 5 Radioactive Waste Management Site, with special emphasis on the water-phase reactive transport of uranium, which includes depleted uranium products.

  9. Real-time Global Flood Estimation using Satellite-based Precipitation and a Coupled Land Surface and Routing Model

    SciTech Connect (OSTI)

    Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George; Li, Hongyi; Wang, Jianjian

    2014-04-09

    A community land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model system, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood-monitoring parameters for the latitude-band 50{degree sign}N-50{degree sign}S at relatively high spatial (~12km) and temporal (3-hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Statistical results are slightly better for the research-quality input and significantly better for longer duration events (three-day events vs. one-day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is ~0.9 and the false alarm ratio is ~0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1,121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30ºS-30ºN) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. There were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.

  10. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect (OSTI)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  11. Assessment of Uncertainties in the Response of the African Monsoon Precipitation to Land Use change simulated by a regional model

    SciTech Connect (OSTI)

    Hagos, Samson M.; Leung, Lai-Yung R.; Xue, Yongkang; Boone, Aaron; de Sales, Fernando; Neupane, Naresh; Huang, Maoyi; Yoon, Jin-Ho

    2014-02-22

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Although the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubs and an increase in surface air temperature.

  12. Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land-surface model (WRF3-CLM3.5)

    SciTech Connect (OSTI)

    Subin, Z.M.; Riley, W.J.; Kueppers, L.M.; Jin, J.; Christianson, D.S.; Torn, M.S.

    2010-11-01

    A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California's climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California's climate was assessed by comparing simulations by WRF3-CLM3.5 and WRF3-Noah to observations from 1982 to 1991. Using WRF3-CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of -0.7 to +1 C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2-1.2 C reductions in summer daily-mean 2-m air temperature and 2.0-3.7 C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those projected under climate change this century, projections of climate and vegetation change in this region need to consider these climate-vegetation interactions.

  13. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    SciTech Connect (OSTI)

    Liu, M. L.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J. H.; Nergui, T.; Guenther, Alex B.; Miller, C.; Reyes, J.; Tague, C. L.; Choate, J. S.; Salathe, E.; Stockle, Claudio O.; Adam, J. C.

    2014-05-16

    Regional climate change impact (CCI) studies have widely involved downscaling and bias-correcting (BC) Global Climate Model (GCM)-projected climate for driving land surface models. However, BC may cause uncertainties in projecting hydrologic and biogeochemical responses to future climate due to the impaired spatiotemporal covariance of climate variables and a breakdown of physical conservation principles. Here we quantify the impact of BC on simulated climate-driven changes in water variables(evapotranspiration, ET; runoff; snow water equivalent, SWE; and water demand for irrigation), crop yield, biogenic volatile organic compounds (BVOC), nitric oxide (NO) emissions, and dissolved inorganic nitrogen (DIN) export over the Pacific Northwest (PNW) Region. We also quantify the impacts on net primary production (NPP) over a small watershed in the region (HJ Andrews). Simulation results from the coupled ECHAM5/MPI-OM model with A1B emission scenario were firstly dynamically downscaled to 12 km resolutions with WRF model. Then a quantile mapping based statistical downscaling model was used to downscale them into 1/16th degree resolution daily climate data over historical and future periods. Two series climate data were generated according to the option of bias-correction (i.e. with bias-correction (BC) and without bias-correction, NBC). Impact models were then applied to estimate hydrologic and biogeochemical responses to both BC and NBC meteorological datasets. These im20 pact models include a macro-scale hydrologic model (VIC), a coupled cropping system model (VIC-CropSyst), an ecohydrologic model (RHESSys), a biogenic emissions model (MEGAN), and a nutrient export model (Global-NEWS). Results demonstrate that the BC and NBC climate data provide consistent estimates of the climate-driven changes in water fluxes (ET, runoff, and water demand), VOCs (isoprene and monoterpenes) and NO emissions, mean crop yield, and river DIN export over the PNW domain. However, significant differences rise from projected SWE, crop yield from dry lands, and HJ Andrewss ET between BC and NBC data. Even though BC post-processing has no significant impacts on most of the studied variables when taking PNW as a whole, their effects have large spatial variations and some local areas are substantially influenced. In addition, there are months during which BC and NBC post-processing produces significant differences in projected changes, such as summer runoff. Factor-controlled simulations indicate that BC post-processing of precipitation and temperature both substantially contribute to these differences at region scales. We conclude that there are trade-offs between using BC climate data for offline CCI studies vs. direct modeled climate data. These trade-offs should be considered when designing integrated modeling frameworks for specific applications; e.g., BC may be more important when considering impacts on reservoir operations in mountainous watersheds than when investigating impacts on biogenic emissions and air quality (where VOCs are a primary indicator).

  14. Multi-dimensional modelling of electrostatic force distance curve over dielectric surface: Influence of tip geometry and correlation with experiment

    SciTech Connect (OSTI)

    Boularas, A. Baudoin, F.; Villeneuve-Faure, C.; Clain, S.; Teyssedre, G.

    2014-08-28

    Electric Force-Distance Curves (EFDC) is one of the ways whereby electrical charges trapped at the surface of dielectric materials can be probed. To reach a quantitative analysis of stored charge quantities, measurements using an Atomic Force Microscope (AFM) must go with an appropriate simulation of electrostatic forces at play in the method. This is the objective of this work, where simulation results for the electrostatic force between an AFM sensor and the dielectric surface are presented for different bias voltages on the tip. The aim is to analyse force-distance curves modification induced by electrostatic charges. The sensor is composed by a cantilever supporting a pyramidal tip terminated by a spherical apex. The contribution to force from cantilever is neglected here. A model of force curve has been developed using the Finite Volume Method. The scheme is based on the Polynomial Reconstruction OperatorPRO-scheme. First results of the computation of electrostatic force for different tipsample distances (from 0 to 600?nm) and for different DC voltages applied to the tip (6 to 20?V) are shown and compared with experimental data in order to validate our approach.

  15. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance

    SciTech Connect (OSTI)

    Li, Ke; Tang, Jie; Chen, Guang-Hong

    2014-04-15

    Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo{sup }, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a redder NPS with a lower mean frequency value. (3) The noise standard deviation (?) of MBIR and dose were found to be related through a power law of ????(dose){sup ??} with the component ? ? 0.25, which violated the classical ????(dose){sup ?0.5} power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial uniformity when compared with FBP. (6) A composite image generated from two MBIR images acquired at two different dose levels (D1 and D2) demonstrated lower noise than that of an image acquired at a dose level of D1+D2. Conclusions: The noise characteristics of the MBIR method are significantly different from those of the FBP method. The well known tradeoff relationship between CT image noise and radiation dose has been modified by MBIR to establish a more gradual dependence of noise on dose. Additionally, some other CT noise properties that had been well understood based on the linear system theory have also been altered by MBIR. Clinical CT scan protocols that had been optimized based on the classical CT noise properties need to be carefully re-evaluated for systems equipped with MBIR in order to maximize the method's potential clinical benefits in dose reduction and/or in CT image quality improvement.

  16. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect (OSTI)

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  17. Revisions to US EPA Superfund Risk and Dose Assessment Models and Guidance - 13403

    SciTech Connect (OSTI)

    Walker, Stuart A.

    2013-07-01

    The U.S. Environmental Protection Agency (EPA) Superfund program's six Preliminary Remediation Goal (PRG) and Dose Compliance Concentration (DCC) internet based calculators for risk and dose assessment at Superfund sites are being revised to reflect better science, revisions to existing exposure scenarios and new scenarios, and changes to match up more closely with the EPA chemical regional screening level calculator. A revised version of the 1999 guidance document that provides an overview for the Superfund risk assessment process at radioactively contaminated sites, 'Radiation Risk Assessment At CERCLA Sites: Q and A', is being completed that will reflect Superfund recommended guidance and other technical documents issued over the past 13 years. EPA is also issuing a series of fact sheets in the document 'Superfund Radiation Risk Assessment: A Community Tool-kit'. This presentation would go over those changes that are expected to be finished by this spring. (authors)

  18. Modifying the Soil and Water Assessment Tool to Simulate Cropland Carbon Flux: Model Development and Initial Evaluation

    SciTech Connect (OSTI)

    Zhang, Xuesong; Izaurralde, Roberto C.; Arnold, Jeffrey; Williams, Jimmy R.; Srinivasan, Raghavan

    2013-10-01

    Climate change is one of the most compelling modern issues and has important implications for almost every aspect of natural and human systems. The Soil and Water Assessment Tool (SWAT) model has been applied worldwide to support sustainable land and water management in a changing climate. However, the inadequacies of the existing carbon algorithm in SWAT limit its application in assessing impacts of human activities on CO2 emission, one important source of greenhouse gases (GHGs) that traps heat in the earth system and results in global warming. In this research, we incorporate a revised version of the CENTURY carbon model into SWAT to describe dynamics of soil organic matter (SOM)- residue and simulate land-atmosphere carbon exchange.

  19. Development of a Future Representative Concentration Pathway for Use in the IPCC 5th Assessment Earth System Model Simulations

    SciTech Connect (OSTI)

    None

    2010-12-29

    The representative concentration pathway to be delivered is a scenario of atmospheric concentrations of greenhouse gases and other radiatively important atmospheric species, along with land-use changes, derived from the Global Change Assessment Model (GCAM). The particular representative concentration pathway (RCP) that the Joint Global Change Research Institute (JGCRI) has been responsible for is a not-to-exceed pathway that stabilizes at a radiative forcing of 4.5Wm-2 in the year 2100.

  20. The potential use of Chernobyl fallout data to test and evaluate the predictions of environmental radiological assessment models

    SciTech Connect (OSTI)

    Richmond, C.R.; Hoffman, F.O.; Blaylock, B.G.; Eckerman, K.F.; Lesslie, P.A.; Miller, C.W.; Ng, Y.C.; Till, J.E.

    1988-06-01

    The objectives of the Model Validation Committee were to collaborate with US and foreign scientists to collect, manage, and evaluate data for identifying critical research issues and data needs to support an integrated assessment of the Chernobyl nuclear accident; test environmental transport, human dosimetric, and health effects models against measured data to determine their efficacy in guiding decisions on protective actions and in estimating exposures to populations and individuals following a nuclear accident; and apply Chernobyl data to quantifications of key processes governing the environmental transport, fate and effects of radionuclides and other trace substances. 55 refs.

  1. Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model

    SciTech Connect (OSTI)

    Bevelhimer, Mark S; Coutant, Charles C

    2006-07-01

    Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used to assess whether a prescribed mitigation is likely to meet intended objectives from both a water quality and a biological resource perspective. These techniques can be used to assess the tradeoffs between hydropower operations, power generation, and environmental quality.

  2. LONG-TERM GLOBAL WATER USE PROJECTIONS USING SIX SOCIOECONOMIC SCENARIOS IN AN INTEGRATED ASSESSMENT MODELING FRAMEWORK

    SciTech Connect (OSTI)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.; Moss, Richard H.; Kim, Son H.

    2014-01-19

    In this paper, we assess future water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors, by incorporating water demands into a technologically-detailed global integrated assessment model of energy, agriculture, and climate change the Global Change Assessment Model (GCAM). Base-year water demandsboth gross withdrawals and net consumptive useare assigned to specific modeled activities in a way that maximizes consistency between bottom-up estimates of water demand intensities of specific technologies and practices, and top-down regional and sectoral estimates of water use. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. We assess future water demands representing six socioeconomic scenarios, with no constraints imposed by future water supplies. The scenarios observe increases in global water withdrawals from 3,578 km3 year-1 in 2005 to 5,987 8,374 km3 year-1 in 2050, and to 4,719 12,290 km3 year-1 in 2095. Comparing the projected total regional water withdrawals to the historical supply of renewable freshwater, the Middle East exhibits the highest levels of water scarcity throughout the century, followed by India; water scarcity increases over time in both of these regions. In contrast, water scarcity improves in some regions with large base-year electric sector withdrawals, such as the USA and Canada, due to capital stock turnover and the almost complete phase-out of once-through flow cooling systems. The scenarios indicate that: 1) water is likely a limiting factor in climate change mitigation policies, 2) many regions can be expected to increase reliance on non-renewable groundwater, water reuse, and desalinated water, but they also highlight an important role for development and deployment of water conservation technologies and practices.

  3. Surface Complexation of Neodymium at the Rutile-Water Interface: A Potentiometric and Modeling Study in NaCl Media to 250C

    SciTech Connect (OSTI)

    Ridley, Mora K.; Machesky, Michael L.; Wesolowski, David J; Palmer, Donald

    2005-01-01

    The adsorption of Nd{sup 3+} onto rutile surfaces was examined by potentiometric titration from 25 to 250 C, in 0.03 and 0.30m NaCl background electrolyte. Experimental results show that Nd{sup 3+} sorbs strongly, even at low temperature, with adsorption commencing below the pHznpc of rutile. In addition, there is a systematic increase in Nd{sup 3+} adsorption with increasing temperature. The experimental results were rationalized and described using surface oxygen proton affinities computed from the MUlti SIte Complexation or MUSIC model, coupled with a Stern-based three-layer description of the oxide/water interface. Moreover, molecular-scale information was incorporated successfully into the surface complexation model, providing a unique geometry for the adsorption of Nd{sup 3+} on rutile. The primary mode of Nd{sup 3+} adsorption was assumed to be the tetradentate configuration found for Y{sup 3+} adsorption on the rutile (110) surface from previously described in situ X-ray standing wave experiments, wherein the sorbing cations bond directly with two adjacent ''terminal'' and two adjacent ''bridging'' surface oxygen atoms. Similarly, the adsorption of Na{sup +} counterions was also assumed to be tetradentate, as supported by MD simulations of Na{sup +} interactions with the rutile (110) surface, and by analogous X-ray standing wave results for Rb{sup +} adsorption on rutile. Fitting parameters for Nd{sup 3+} adsorption included binding constants for the tetradentate adsorption complex and capacitance values for the inner-sphere binding plane. In addition, hydrolysis of the tetradentate adsorption complex was permitted and resulted in significantly improved model fits at higher temperature and pH values. The modeling results indicate that the Stern-based MUSIC surface-complexation model adequately accommodates molecular-scale information to uniquely rationalize and describe multivalent ion adsorption systematically into the hydrothermal regime.

  4. A multi-objective programming model for assessment the GHG emissions in MSW management

    SciTech Connect (OSTI)

    Mavrotas, George; Skoulaxinou, Sotiria; Gakis, Nikos; Katsouros, Vassilis; Georgopoulou, Elena

    2013-09-15

    Highlights: The multi-objective multi-period optimization model. The solution approach for the generation of the Pareto front with mathematical programming. The very detailed description of the model (decision variables, parameters, equations). The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application of the model in a Greek region.

  5. inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    SciTech Connect (OSTI)

    Ridley, Mora K.; Hiemstra, T; Van Riemsdijk, Willem H.; Machesky, Michael L.

    2009-01-01

    Acid base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multicomponent mineral aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488 508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca2+ and Sr2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 110 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pr edota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Be ne zeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile water interface: linking molecular and macroscopic properties. Langmuir 20, 4954 4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl which was common to all solutions, but also for Rb+ and K+. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na+ ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb+, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy.

  6. An Update of the Analytical Groundwater Modeling to Assess Water Resource Impacts at the Afton Solar Energy Zone

    SciTech Connect (OSTI)

    Quinn, John J.; Greer, Christopher B.; Carr, Adrianne E.

    2014-10-01

    The purpose of this study is to update a one-dimensional analytical groundwater flow model to examine the influence of potential groundwater withdrawal in support of utility-scale solar energy development at the Afton Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program. This report describes the modeling for assessing the drawdown associated with SEZ groundwater pumping rates for a 20-year duration considering three categories of water demand (high, medium, and low) based on technology-specific considerations. The 2012 modeling effort published in the Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar PEIS; BLM and DOE 2012) has been refined based on additional information described below in an expanded hydrogeologic discussion.

  7. Description and assessment of structural and temperature models in the FRAP-T6 code. [PWR; BWR

    SciTech Connect (OSTI)

    Siefken, L.J.

    1983-01-01

    The FRAP-T6 code was developed at the Idaho National Engineering Laboratory (INEL) for the purpose of calculating the transient performance of light water reactor fuel rods during reactor transients ranging from mild operational transients to severe hypothetical loss-of-coolant accidents. An important application of the FRAP-T6 code is to calculate the structural performance of fuel rod cladding. The capabilities of the FRAP-T6 code are assessed by comparisons of code calculations with the measurements of several hundred in-pile experiments on fuel rods. The results of the assessments show that the code accurately and efficiently models the structural and thermal response of fuel rods.

  8. Analysis of Wind Turbine Simulation Models: Assessment of Simplified versus Complete Methodologies: Preprint

    SciTech Connect (OSTI)

    Honrubia-Escribano, A.; Jimenez-Buendia, F.; Molina-Garcia, A.; Fuentes-Moreno, J. A.; Muljadi, Eduard; Gomez-Lazaro, E.

    2015-09-14

    This paper presents the current status of simplified wind turbine models used for power system stability analysis. This work is based on the ongoing work being developed in IEC 61400-27. This international standard, for which a technical committee was convened in October 2009, is focused on defining generic (also known as simplified) simulation models for both wind turbines and wind power plants. The results of the paper provide an improved understanding of the usability of generic models to conduct power system simulations.

  9. A new analytic-adaptive model for EGS assessment, development and management support

    Broader source: Energy.gov [DOE]

    This project will develop an in depth model of EGS systems that will allow engineers, practitioners, and researchers to more accurately predict how new fluid technologies would work in a reservoir.

  10. A Prototype Performance Assessment Model for Generic Deep Borehole Repository for High-Level Nuclear Waste - 12132

    SciTech Connect (OSTI)

    Lee, Joon H.; Arnold, Bill W.; Swift, Peter N.; Hadgu, Teklu; Freeze, Geoff; Wang, Yifeng

    2012-07-01

    A deep borehole repository is one of the four geologic disposal system options currently under study by the U.S. DOE to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic deep borehole repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a deep borehole. A prototype performance assessment model for a generic deep borehole repository has been developed using the approach for a mined geological repository. The preliminary results from the simplified deep borehole generic repository performance assessment indicate that soluble, non-sorbing (or weakly sorbing) fission product radionuclides, such as I-129, Se-79 and Cl-36, are the likely major dose contributors, and that the annual radiation doses to hypothetical future humans associated with those releases may be extremely small. While much work needs to be done to validate the model assumptions and parameters, these preliminary results highlight the importance of a robust seal design in assuring long-term isolation, and suggest that deep boreholes may be a viable alternative to mined repositories for disposal of both HLW and UNF. (authors)

  11. A New Analytic-Adaptive Model for EGS Assessment, Development and Management Support

    SciTech Connect (OSTI)

    Danko, George L

    2014-05-29

    To increase understanding of the energy extraction capacity of Enhanced Geothermal System(s) (EGS), a numerical model development and application project is completed. The general objective of the project is to develop and apply a new, data-coupled Thermal-Hydrological-Mechanical-Chemical (T-H-M-C) model in which the four internal components can be freely selected from existing simulation software without merging and cross-combining a diverse set of computational codes. Eight tasks are completed during the project period. The results are reported in five publications, an MS thesis, twelve quarterly, and two annual reports to DOE. Two US patents have also been issued during the project period, with one patent application originated prior to the start of the project. The Multiphase Physical Transport Modeling Method and Modeling System (U.S. Patent 8,396,693 B2, 2013), a key element in the GHE sub-model solution, is successfully used for EGS studies. The Geothermal Energy Extraction System and Method" invention (U.S. Patent 8,430,166 B2, 2013) originates from the time of project performance, describing a new fluid flow control solution. The new, coupled T-H-M-C numerical model will help analyzing and designing new, efficient EGS systems.

  12. Assessing FPAR Source and Parameter Optimization Scheme in Application of a Diagnostic Carbon Flux Model

    SciTech Connect (OSTI)

    Turner, D P; Ritts, W D; Wharton, S; Thomas, C; Monson, R; Black, T A

    2009-02-26

    The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors. FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.

  13. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

    2011-01-04

    In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

  14. Assessment of a mechanistic model in U-Pu-Zr metallic alloy fuel fission-gas behavior simulations

    SciTech Connect (OSTI)

    Yun, D.; Rest, J.; Yacout, A. M.

    2012-07-01

    A mechanistic kinetic rate theory model originally developed for the prediction of fission gas behavior in oxide nuclear fuels under steady-state and transient conditions has been assessed to look at its applicability to model fission gas behavior in U-Pu-Zr metallic alloy fuel. In order to capture and validate the underlying physics for irradiated U-Pu-Zr fuels, the mechanistic model was applied to the simulation of fission gas release, fission gas and fission product induced swelling, and the evolution of the gas bubble size distribution in three different fuel zones: the outer {alpha}-U, the intermediate, and the inner {gamma}-U zones. Due to its special microstructural features, the {alpha}-U zone in U-Pu-Zr fuels is believed to contribute the largest fraction of fission gas release among the different fuel zones. It is shown that with the use of small effective grain sizes, the mechanistic model can predict fission gas release that is consistent with (though slightly lower than) experimentally measured data. These simulation results are comparable to the experimentally measured fission gas release since the mechanism of fission gas transport through the densely distributed laminar porosity in the {alpha}-U zone is analogous to the mechanism of fission gas transport through the interconnected gas bubble porosity utilized in the mechanistic model. Detailed gas bubble size distributions predicted with the mechanistic model in both the intermediate zone and the high temperature {gamma}-U zone of U-Pu-Zr fuel are also compared to experimental measurements from available SEM micrographs. These comparisons show good agreements between the simulation results and experimental measurements, and therefore provide crucial guidelines for the selection of key physical parameters required for modeling these two zones. In addition, the results of parametric studies for several key parameters are presented for both the intermediate zone and the {gamma}-U zone simulations. (authors)

  15. A novel QSAR model of Salmonella mutagenicity and its application in the safety assessment of drug impurities

    SciTech Connect (OSTI)

    Valencia, Antoni; Prous, Josep; Mora, Oscar; Sadrieh, Nakissa; Valerio, Luis G.

    2013-12-15

    As indicated in ICH M7 draft guidance, in silico predictive tools including statistically-based QSARs and expert analysis may be used as a computational assessment for bacterial mutagenicity for the qualification of impurities in pharmaceuticals. To address this need, we developed and validated a QSAR model to predict Salmonella t. mutagenicity (Ames assay outcome) of pharmaceutical impurities using Prous Institute's Symmetry?, a new in silico solution for drug discovery and toxicity screening, and the Mold2 molecular descriptor package (FDA/NCTR). Data was sourced from public benchmark databases with known Ames assay mutagenicity outcomes for 7300 chemicals (57% mutagens). Of these data, 90% was used to train the model and the remaining 10% was set aside as a holdout set for validation. The model's applicability to drug impurities was tested using a FDA/CDER database of 951 structures, of which 94% were found within the model's applicability domain. The predictive performance of the model is acceptable for supporting regulatory decision-making with 84 1% sensitivity, 81 1% specificity, 83 1% concordance and 79 1% negative predictivity based on internal cross-validation, while the holdout dataset yielded 83% sensitivity, 77% specificity, 80% concordance and 78% negative predictivity. Given the importance of having confidence in negative predictions, an additional external validation of the model was also carried out, using marketed drugs known to be Ames-negative, and obtained 98% coverage and 81% specificity. Additionally, Ames mutagenicity data from FDA/CFSAN was used to create another data set of 1535 chemicals for external validation of the model, yielding 98% coverage, 73% sensitivity, 86% specificity, 81% concordance and 84% negative predictivity. - Highlights: A new in silico QSAR model to predict Ames mutagenicity is described. The model is extensively validated with chemicals from the FDA and the public domain. Validation tests show desirable high sensitivity and high negative predictivity. The model predicted 14 reportedly difficult to predict drug impurities with accuracy. The model is suitable to support risk evaluation of potentially mutagenic compounds.

  16. Management of the Area 5 Radioactive Waste Management Site using Decision-based, Probabilistic Performance Assessment Modeling

    SciTech Connect (OSTI)

    Carilli, J.; Crowe, B.; Black, P.; Tauxe, J.; Stockton, T.; Catlett, K.; Yucel, V.

    2003-02-27

    Low-level radioactive waste from cleanup activities at the Nevada Test Site and from multiple sites across the U.S. Department of Energy (DOE) complex is disposed at two active Radioactive Waste Management Sites (RWMS) on the Nevada Test Site. These facilities, which are managed by the DOE National Nuclear Security Administration Nevada Site Office, were recently designated as one of two regional disposal centers and yearly volumes of disposed waste now exceed 50,000 m3 (> 2 million ft3). To safely and cost-effectively manage the disposal facilities, the Waste Management Division of Environmental Management has implemented decision-based management practices using flexible and problem-oriented probabilistic performance assessment modeling. Deterministic performance assessments and composite analyses were completed originally for the Area 5 and Area 3 RWMSs located in, respectively, Frenchman Flat and Yucca Flat on the Nevada Test Site. These documents provide the technical bases for issuance of disposal authorization statements for continuing operation of the disposal facilities. Both facilities are now in a maintenance phase that requires testing of conceptual models, reduction of uncertainty, and site monitoring all leading to eventual closure of the facilities and transition to long-term stewardship.

  17. Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia

    SciTech Connect (OSTI)

    Rawlins, M. A.; McGuire, A. D.; Kimball, J. S.; Dass, P.; Lawrence, D.; Burke, E.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; Peng, S.; Rinke, A.; Saito, K.; Zhang, W.; Alkama, R.; Bohn, T. J.; Ciais, P.; Decharme, B.; Gouttevin, I.; Hajima, T.; Ji, D.; Krinner, G.; Lettenmaier, D. P.; Miller, P.; Moore, J. C.; Smith, B.; Sueyoshi, T.

    2015-07-28

    A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 19602009 at 0.5 resolution, which is a scale common among many global carbon and climate model simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data. The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m? yr?, equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (19601969 vs. 20002009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength. The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model elements controlling vegetation productivity and soil respiration as being needed for reducing uncertainty in land-atmosphere CO2 exchange. These advances will require collection of new field data on vegetation and soil dynamics, the development of benchmarking data sets from measurements and remote-sensing observations, and investments in future model development and intercomparison studies.

  18. Assessing the Vulnerability of Large Critical Infrastructure Using Fully-Coupled Blast Effects Modeling

    SciTech Connect (OSTI)

    McMichael, L D; Noble, C R; Margraf, J D; Glascoe, L G

    2009-03-26

    Structural failures, such as the MacArthur Maze I-880 overpass in Oakland, California and the I-35 bridge in Minneapolis, Minnesota, are recent examples of our national infrastructure's fragility and serve as an important reminder of such infrastructure in our everyday lives. These two failures, as well as the World Trade Center's collapse and the levee failures in New Orleans, highlight the national importance of protecting our infrastructure as much as possible against acts of terrorism and natural hazards. This paper describes a process for evaluating the vulnerability of critical infrastructure to large blast loads using a fully-coupled finite element approach. A description of the finite element software and modeling technique is discussed along with the experimental validation of the numerical tools. We discuss how such an approach can be used for specific problems such as modeling the progressive collapse of a building.

  19. A methodology for assessing the market benefits of alternative motor fuels: The Alternative Fuels Trade Model

    SciTech Connect (OSTI)

    Leiby, P.N.

    1993-09-01

    This report describes a modeling methodology for examining the prospective economic benefits of displacing motor gasoline use by alternative fuels. The approach is based on the Alternative Fuels Trade Model (AFTM). AFTM development was undertaken by the US Department of Energy (DOE) as part of a longer term study of alternative fuels issues. The AFTM is intended to assist with evaluating how alternative fuels may be promoted effectively, and what the consequences of substantial alternative fuels use might be. Such an evaluation of policies and consequences of an alternative fuels program is being undertaken by DOE as required by Section 502(b) of the Energy Policy Act of 1992. Interest in alternative fuels is based on the prospective economic, environmental and energy security benefits from the substitution of these fuels for conventional transportation fuels. The transportation sector is heavily dependent on oil. Increased oil use implies increased petroleum imports, with much of the increase coming from OPEC countries. Conversely, displacement of gasoline has the potential to reduce US petroleum imports, thereby reducing reliance on OPEC oil and possibly weakening OPEC`s ability to extract monopoly profits. The magnitude of US petroleum import reduction, the attendant fuel price changes, and the resulting US benefits, depend upon the nature of oil-gas substitution and the supply and demand behavior of other world regions. The methodology applies an integrated model of fuel market interactions to characterize these effects.

  20. Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases. Final report

    SciTech Connect (OSTI)

    Prather, Michael J.; Hsu, Juno; Nicolau, Alex; Veidenbaum, Alex; Smith, Philip Cameron; Bergmann, Dan

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  1. MELCOR 1.8.5 modeling aspects of fission product release, transport and deposition an assessment with recommendations.

    SciTech Connect (OSTI)

    Gauntt, Randall O.

    2010-04-01

    The Phebus and VERCORS data have played an important role in contemporary understanding and modeling of fission product release and transport from damaged light water reactor fuel. The data from these test programs have allowed improvement of MELCOR modeling of release and transport processes for both low enrichment uranium fuel as well as high burnup and mixed oxide (MOX) fuels. This paper discusses the synthesis of these findings in the MELCOR severe accident code. Based on recent assessments of MELCOR 1.8.5 fission product release modeling against the Phebus FPT-1 test and on observations from the ISP-46 exercise, modifications to the default MELCOR 1.8.5 release models are recommended. The assessments identified an alternative set of Booth diffusion parameters recommended by ORNL (ORNL-Booth), which produced significantly improved release predictions for cesium and other fission product groups. Some adjustments to the scaling factors in the ORNL-Booth model were made for selected fission product groups, including UO{sub 2}, Mo and Ru in order to obtain better comparisons with the FPT-1 data. The adjusted model, referred to as 'Modified ORNL-Booth,' was subsequently compared to original ORNL VI fission product release experiments and to more recently performed French VERCORS tests, and the comparisons was as favorable or better than the original CORSOR-M MELCOR default release model. These modified ORNL-Booth parameters, input to MELCOR 1.8.5 as 'sensitivity coefficients' (i.e. user input that over-rides the code defaults) are recommended for the interim period until improved release models can be implemented into MELCOR. For the case of ruthenium release in air-oxidizing conditions, some additional modifications to the Ru class vapor pressure are recommended based on estimates of the RuO{sub 2} vapor pressure over mildly hyperstoichiometric UO{sub 2}. The increased vapor pressure for this class significantly increases the net transport of Ru from the fuel to the gas stream. A formal model is needed. Deposition patterns in the Phebus FPT-1 circuit were also significantly improved by using the modified ORNL-Booth parameters, where retention of lower volatile Cs{sub 2}MoO{sub 4} is now predicted in the heated exit regions of the FPT-1 test, bringing down depositions in the FPT-1 steam generator tube to be in closer alignment with the experimental data. This improvement in 'RCS' deposition behavior preserves the overall correct release of cesium to the containment that was observed even with the default CORSOR-M model. Not correctly treated however is the release and transport of Ag to the FPT-1 containment. A model for Ag release from control rods is presently not available in MELCOR. Lack of this model is thought to be responsible for the underprediction by a factor of two of the total aerosol mass to the FPT-1 containment. It is suggested that this underprediction of airborne mass led to an underprediction of the aerosol agglomeration rate. Underprediction of the agglomeration rate leads to low predictions of the aerosol particle size in comparison to experimentally measured ones. Small particle size leads low predictions of the gravitational settling rate relative to the experimental data. This error, however, is a conservative one in that too-low settling rate would result in a larger source term to the environment. Implementation of an interim Ag release model is currently under study. In the course of this assessment, a review of MELCOR release models was performed and led to the identification of several areas for future improvements to MELCOR. These include upgrading the Booth release model to account for changes in local oxidizing/reducing conditions and including a fuel oxidation model to accommodate effects of fuel stoichiometry. Models such as implemented in the French ELSA code and described by Lewis are considered appropriate for MELCOR. A model for ruthenium release under air oxidizing conditions is also needed and should be included as part of a fuel oxidation model since fuel stoichiometry is a fundamen

  2. A model experiment to assess the effects of inclusions on wave propagation in soil media

    SciTech Connect (OSTI)

    Houston, Thomas W; Ray, Richard P

    2009-01-01

    A data acquisition system has been assembled using Micro-Electro-Mechanical Systems (MEMS) technology which provides a flexible data gathering capability to support recording accelerations at various locations within a sand filled 5 meter square test pit that has a depth extending into underlying gravelly soils. Dual-axis accelerometers weighing less than 1 gram each, made possible by advances in MEMS technology, are connected to up to 5 data acquisition (PXI modules) boards, each capable of controlling and recording data from 16 separate dual axis accelerometers. This data acquisition system is used to measure and record acceleration data from wave propagations that are generated by the impact of a hammer on a striker plate and are modified by an inclusion or occlusion buried in the soil media. Thirty-four two-axis accelerometers were placed at surface and embedded locations on either side of various inclusions buried in the test pit. This large number of accelerometers permits experimentally obtaining high quality spatial and temporal data that can describe the character of the generated wave-forms and the modification of those wave-forms caused by the inclusion. A number of differing materials and geometric forms are used to create inclusions in order to provide sufficient data to permit ascertaining the ability of the measurements to describe the character of the inclusion. Continuous Wavelet Transforms are used to remove background noise and to aid interpretation of the character of the generated wave-form.

  3. A Qualitative Readiness-Requirements Assessment Model for Enterprise Big-Data Infrastructure Investment

    SciTech Connect (OSTI)

    Olama, Mohammed M; McNair, Wade; Sukumar, Sreenivas R; Nutaro, James J

    2014-01-01

    In the last three decades, there has been an exponential growth in the area of information technology providing the information processing needs of data-driven businesses in government, science, and private industry in the form of capturing, staging, integrating, conveying, analyzing, and transferring data that will help knowledge workers and decision makers make sound business decisions. Data integration across enterprise warehouses is one of the most challenging steps in the big data analytics strategy. Several levels of data integration have been identified across enterprise warehouses: data accessibility, common data platform, and consolidated data model. Each level of integration has its own set of complexities that requires a certain amount of time, budget, and resources to implement. Such levels of integration are designed to address the technical challenges inherent in consolidating the disparate data sources. In this paper, we present a methodology based on industry best practices to measure the readiness of an organization and its data sets against the different levels of data integration. We introduce a new Integration Level Model (ILM) tool, which is used for quantifying an organization and data system s readiness to share data at a certain level of data integration. It is based largely on the established and accepted framework provided in the Data Management Association (DAMA-DMBOK). It comprises several key data management functions and supporting activities, together with several environmental elements that describe and apply to each function. The proposed model scores the maturity of a system s data governance processes and provides a pragmatic methodology for evaluating integration risks. The higher the computed scores, the better managed the source data system and the greater the likelihood that the data system can be brought in at a higher level of integration.

  4. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in warm dense matter experiments with diffuse interface methods in the ALE-AMR code Wangyi Liu ∗ , John Barnard, Alex Friedman, Nathan Masters, Aaron Fisher, Velemir Mlaker, Alice Koniges, David Eder † August 4, 2011 Abstract In this paper we describe an implementation of a single-fluid inter- face model in the ALE-AMR code to simulate surface tension effects. The model does not require explicit information on the physical state of the two phases. The only change to the existing fluid

  5. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    SciTech Connect (OSTI)

    Dai, Qiang; Kelly, Jarod C.; Burnham, Andrew; Elgowainy, Amgad

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratorys Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  6. THE EFFECT OF LIMITED SPATIAL RESOLUTION OF STELLAR SURFACE MAGNETIC FIELD MAPS ON MAGNETOHYDRODYNAMIC WIND AND CORONAL X-RAY EMISSION MODELS

    SciTech Connect (OSTI)

    Garraffo, C.; Cohen, O.; Drake, J. J.; Downs, C.

    2013-02-10

    We study the influence of the spatial resolution on scales of 5 Degree-Sign and smaller of solar surface magnetic field maps on global magnetohydrodynamic solar wind models, and on a model of coronal heating and X-ray emission. We compare the solutions driven by a low-resolution Wilcox Solar Observatory magnetic map, the same map with spatial resolution artificially increased by a refinement algorithm, and a high-resolution Solar and Heliospheric Observatory Michelson Doppler Imager map. We find that both the wind structure and the X-ray morphology are affected by the fine-scale surface magnetic structure. Moreover, the X-ray morphology is dominated by the closed loop structure between mixed polarities on smaller scales and shows significant changes between high- and low-resolution maps. We conclude that three-dimensional modeling of coronal X-ray emission has greater surface magnetic field spatial resolution requirements than wind modeling, and can be unreliable unless the dominant mixed polarity magnetic flux is properly resolved.

  7. Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint

    SciTech Connect (OSTI)

    Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

    2012-02-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

  8. ARM - Measurement - Surface condition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Forecasts Model Data LANDCOVER-SAT : Landcover Derived From Satellite Data RSP : Research Scanning Polarimeter MET : Surface Meteorological Instrumentation VEGWATER-SAT :...

  9. An Analysis of the Temperature and Field Dependence of the RF Surface Resistance of Nitrogen-Doped Niobium SRF Cavities with Respect to Existing Theoretical Models

    SciTech Connect (OSTI)

    Reece, Charles E.; Palczewski, Ari D.; Xiao, Binping

    2015-09-01

    Recent progress with the reduction of rf surface resistance (Rs) of niobium SRF cavities via the use of high temperature surface doping by nitrogen has opened a new regime for energy efficient accelerator applications. For particular doping conditions one observes dramatic decreases in Rs with increasing surface magnetic fields. The observed variations as a function of temperature may be analyzed in the context of recent theoretical treatments in hopes of gaining insight into the underlying beneficial mechanism of the nitrogen treatment. Systematic data sets of Q0 vs. Eacc vs. temperature acquired during the high Q0 R&D work of the past year will be compared with theoretical model predictions.1, 2 1. B. P. Xiao, C. E. Reece and M. J. Kelley, Physica C: Superconductivity 490 (0), 26-31 (2013). 2. A. Gurevich, PRL 113 (8), 087001 (2014).

  10. Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Na+ on Peptide Adsorption

    SciTech Connect (OSTI)

    Wu, Chunya; Skelton, Adam; Chen, Mingjun; Vlcek, Lukas; Cummings, Peter T

    2011-01-01

    The dynamics of a single tripeptide Arg-Gly-Asp (RGD) adsorbing onto negatively charged hydroxylated rutile (110) surface in aqueous solution was studied using molecular dynamics (MD) simulations. The results indicate that the adsorbed Na{sup +} ions play an important role in determining the binding geometry of RGD. With an initial 'horseshoe' configuration, the charged side groups (COO{sup -} and NH{sub 2}) of the peptide are able to interact with the surface through direct hydrogen bonds (H bonds) in the very early stage of adsorption. The Na{sup +} ions approach the positively charged Arg side chain, competing with the Arg side chain for adsorption to the negatively charged hydroxyl oxygen. In coordination with the structural adjustment of the peptide, the Arg residue is driven to detach from the rutile surface. In contrast, the Na+ ions in close proximity to the negatively charged Asp side chain contribute to the binding of the COO{sup -} group on the surface, helping the carboxyl oxygen not involved in COO{sup -}-surface H bonds to orientate toward the hydroxyl hydrogens. Once both carboxyl oxygens form enough H bonds with the hydroxyl hydrogens, the redundant ions move toward a more favorable adsorption site.

  11. Calculating Impacts of Energy Standards on Energy Demand in U.S. Buildings with Uncertainty in an Integrated Assessment Model

    SciTech Connect (OSTI)

    Scott, Michael J.; Daly, Don S.; Hathaway, John E.; Lansing, Carina S.; Liu, Ying; McJeon, Haewon C.; Moss, Richard H.; Patel, Pralit L.; Peterson, Marty J.; Rice, Jennie S.; Zhou, Yuyu

    2015-10-01

    In this paper, an integrated assessment model (IAM) uses a newly-developed Monte Carlo analysis capability to analyze the impacts of more aggressive U.S. residential and commercial building-energy codes and equipment standards on energy consumption and energy service costs at the state level, explicitly recognizing uncertainty in technology effectiveness and cost, socioeconomics, presence or absence of carbon prices, and climate impacts on energy demand. The paper finds that aggressive building-energy codes and equipment standards are an effective, cost-saving way to reduce energy consumption in buildings and greenhouse gas emissions in U.S. states. This conclusion is robust to significant uncertainties in population, economic activity, climate, carbon prices, and technology performance and costs.

  12. DRSPALL: Impact of the Modification of the Numerical Spallings Model on Waste Isolation Pilot Plant Performance Assessment.

    SciTech Connect (OSTI)

    Kicker, Dwayne Curtis; Herrick, Courtney G.; Zeitler, Todd; Malama, Bwalya; Rudeen, David Keith; Gilkey, Amy P.

    2016-01-01

    The numerical code DRSPALL (from direct release spallings) is written to calculate the volume of Waste Isolation Pilot Plant (WIPP) solid waste subject to material failure and transport to the surface as a result of a hypothetical future inadvertent drilling intrusion. An error in the implementation of the DRSPALL finite difference equations was discovered as documented in Software Problem Report (SPR) 13-001. The modifications to DRSPALL to correct the finite difference equations are detailed, and verification and validation testing has been completed for the modified DRSPALL code. The complementary cumulative distribution function (CCDF) of spallings releases obtained using the modified DRSPALL is higher compared to that found in previous WIPP performance assessment (PA) calculations. Compared to previous PAs, there was an increase in the number of vectors that result in a nonzero spallings volume, which generally translates to an increase in spallings releases. The overall mean CCDFs for total releases using the modified DRSPALL are virtually unchanged, thus the modification to DRSPALL did not impact WIPP PA calculation results.

  13. A Multi-Methods Approach to HRA and Human Performance Modeling: A Field Assessment

    SciTech Connect (OSTI)

    Jacques Hugo; David I Gertman

    2012-06-01

    The Advanced Test Reactor (ATR) is a research reactor at the Idaho National Laboratory is primarily designed and used to test materials to be used in other, larger-scale and prototype reactors. The reactor offers various specialized systems and allows certain experiments to be run at their own temperature and pressure. The ATR Canal temporarily stores completed experiments and used fuel. It also has facilities to conduct underwater operations such as experiment examination or removal. In reviewing the ATR safety basis, a number of concerns were identified involving the ATR canal. A brief study identified ergonomic issues involving the manual handling of fuel elements in the canal that may increase the probability of human error and possible unwanted acute physical outcomes to the operator. In response to this concern, that refined the previous HRA scoping analysis by determining the probability of the inadvertent exposure of a fuel element to the air during fuel movement and inspection was conducted. The HRA analysis employed the SPAR-H method and was supplemented by information gained from a detailed analysis of the fuel inspection and transfer tasks. This latter analysis included ergonomics, work cycles, task duration, and workload imposed by tool and workplace characteristics, personal protective clothing, and operational practices that have the potential to increase physical and mental workload. Part of this analysis consisted of NASA-TLX analyses, combined with operational sequence analysis, computational human performance analysis (CHPA), and 3D graphical modeling to determine task failures and precursors to such failures that have safety implications. Experience in applying multiple analysis techniques in support of HRA methods is discussed.

  14. Mathematical modeling of positron emission tomography (PET) data to assess radiofluoride transport in living plants following petiolar administration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Converse, Alexander K.; Ahlers, Elizabeth O.; Bryan, Tom W.; Hetue, Jackson D.; Lake, Katherine A.; Ellison, Paul A.; Engle, Jonathan W.; Barnhart, Todd E.; Nickles, Robert J.; Williams, Paul H.; et al

    2015-03-15

    Background: Ion transport is a fundamental physiological process that can be studied non-invasively in living plants with radiotracer imaging methods. Fluoride is a known phytotoxic pollutant and understanding its transport in plants after leaf absorption is of interest to those in agricultural areas near industrial sources of airborne fluoride. Here we report the novel use of a commercial, high-resolution, animal positron emission tomography (PET) scanner to trace a bolus of [¹⁸F]fluoride administered via bisected petioles of Brassica oleracea, an established model species, to simulate whole plant uptake of atmospheric fluoride. This methodology allows for the first time mathematical compartmental modelingmore » of fluoride transport in the living plant. Radiotracer kinetics in the stem were described with a single-parameter free- and trapped-compartment model and mean arrival times at different stem positions were calculated from the free-compartment time-activity curves. Results: After initiation of administration at the bisected leaf stalk, [¹⁸F] radioactivity climbed for approximately 10 minutes followed by rapid washout from the stem and equilibration within leaves. Kinetic modeling of transport in the stem yielded a trapping rate of 1.5 +/- 0.3%/min (mean +/- s.d., n = 3), velocity of 2.2 +/- 1.1 cm/min, and trapping fraction of 0.8 +/- 0.5%/cm. Conclusion: Quantitative assessment of physiologically meaningful transport parameters of fluoride in living plants is possible using standard positron emission tomography in combination with petiolar radiotracer administration. Movement of free fluoride was observed to be consistent with bulk flow in xylem, namely a rapid and linear change in position with respect to time. Trapping, likely in the apoplast, was observed. Future applications of the methods described here include studies of transport of other ions and molecules of interest in plant physiology.« less

  15. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    SciTech Connect (OSTI)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 04000 cm{sup ?1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  16. Energy conservation potential of surface modification technologies

    SciTech Connect (OSTI)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  17. Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts

    SciTech Connect (OSTI)

    Mayr, Lukas; Kltzer, Bernhard; Penner, Simon; Rameshan, Raffael; Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin ; Rameshan, Christoph; Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/BC/01, 1060 Vienna

    2014-05-15

    An ultra-high vacuum (UHV) setup for real and inverse model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7, magic angle) and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown.

  18. A Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US

    SciTech Connect (OSTI)

    Oubeidillah, Abdoul A; Kao, Shih-Chieh; Ashfaq, Moetasim; Naz, Bibi S; Tootle, Glenn

    2014-01-01

    To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VIC simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.

  19. The role of subsurface flows in solar surface convection: modeling the spectrum of supergranular and larger scale flows

    SciTech Connect (OSTI)

    Lord, J. W.; Rast, M. P.; Cameron, R. H.; Rempel, M.; Roudier, T.

    2014-09-20

    We model the solar horizontal velocity power spectrum at scales larger than granulation using a two-component approximation to the mass continuity equation. The model takes four times the density scale height as the integral (driving) scale of the vertical motions at each depth. Scales larger than this decay with height from the deeper layers. Those smaller are assumed to follow a Kolmogorov turbulent cascade, with the total power in the vertical convective motions matching that required to transport the solar luminosity in a mixing length formulation. These model components are validated using large-scale radiative hydrodynamic simulations. We reach two primary conclusions. (1) The model predicts significantly more power at low wavenumbers than is observed in the solar photospheric horizontal velocity spectrum. (2) Ionization plays a minor role in shaping the observed solar velocity spectrum by reducing convective amplitudes in the regions of partial helium ionization. The excess low wavenumber power is also seen in the fully nonlinear three-dimensional radiative hydrodynamic simulations employing a realistic equation of state. This adds to other recent evidence suggesting that the amplitudes of large-scale convective motions in the Sun are significantly lower than expected. Employing the same feature tracking algorithm used with observational data on the simulation output, we show that the observed low wavenumber power can be reproduced in hydrodynamic models if the amplitudes of large-scale modes in the deep layers are artificially reduced. Since the large-scale modes have reduced amplitudes, modes on the scale of supergranulation and smaller remain important to convective heat flux even in the deep layers, suggesting that small-scale convective correlations are maintained through the bulk of the solar convection zone.

  20. The northern wintertime divergence extrema at 200 hPa and surface cyclones as simulated in the AMIP integration of the ECMWF general circulation model

    SciTech Connect (OSTI)

    Boyle, J.S.

    1994-11-01

    Divergence and convergence centers at 200 hPa and mean sea level pressure (MSLP) cyclones were located every 6 hr for a 10-yr general circulation model (GCM) simulation with the ECMWF (Cycle 36) for the boreal winters from 1980 to 1988. The simulation used the observed monthly mean sea surface temperature (SST) for the decade. Analysis of the frequency, location, and strength of these centers and cyclones gives insight into the dynamical response of the model to the varying SST. The results indicate that (1) the model produces reasonable climatologies of upper-level divergence and MSLP cyclones; (2) the model distribution of anomalies of divergence and convergence centers and MSLP cyclones is consistent with observations for the 1982-83 and 1986-87 El Nifio events; (3) the tropical Indian Ocean is the region of greatest divergence activity and interannual variability in the model; (4) the variability of the divergence centers is greater than that of the convergence centers; (5) strong divergence centers occur chiefly over the ocean in the midlatitudes but are more land-based in the tropics, except in the Indian Ocean; and (6) locations of divergence and convergence centers can be a useful tool for the intercomparison of global atmospheric simulations.

  1. Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation

    SciTech Connect (OSTI)

    2010-03-01

    Thermoelectric power plants use large volumes of water for condenser cooling and other plant operations. Traditionally, this water has been withdrawn from the cleanest water available in streams and rivers. However, as demand for electrical power increases it places increasing demands on freshwater resources resulting in conflicts with other off stream water users. In July 2002, NETL and the Governor of Pennsylvania called for the use of water from abandoned mines to replace our reliance on the diminishing and sometimes over allocated surface water resource. In previous studies the National Mine Land Reclamation Center (NMLRC) at West Virginia University has demonstrated that mine water has the potential to reduce the capital cost of acquiring cooling water while at the same time improving the efficiency of the cooling process due to the constant water temperatures associated with deep mine discharges. The objectives of this project were to develop and demonstrate a user-friendly computer based design aid for assessing the costs, technical and regulatory aspects and potential environmental benefits for using mine water for thermoelectric generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering and environmental factors to be considered in using mine water as an alternative to traditional freshwater supply. A field investigation and case study was conducted for the proposed 300 MW Beech Hollow Power Plant located in Champion, Pennsylvania. The field study based on previous research conducted by NMLRC identified mine water sources sufficient to reliably supply the 2-3,000gpm water supply requirement of Beech Hollow. A water collection, transportation and treatment system was designed around this facility. Using this case study a computer based design aid applicable to large industrial water users was developed utilizing water collection and handling principals derived in the field investigation and during previous studies of mine water and power plant cooling. Visual basic software was used to create general information/evaluation modules for a range of power plant water needs that were tested/verified against the Beech Hollow project. The program allows for consideration of blending mine water as needed as well as considering potential thermal and environmental benefits that can be derived from using constant temperature mine water. Users input mine water flow, quality, distance to source, elevations to determine collection, transport and treatment system design criteria. The program also evaluates low flow volumes and sustainable yields for various sources. All modules have been integrated into a seamless user friendly computer design aid and user's manual for evaluating the capital and operating costs of mine water use. The framework will facilitate the use of mine water for thermoelectric generation, reduce demand on freshwater resources and result in environmental benefits from reduced emissions and abated mine discharges.

  2. Surface chemical reactivity of ultrathin Pd(111) films on Ru(0001): Importance of orbital symmetry in the application of the d-band model

    SciTech Connect (OSTI)

    Yin, Xiangshi; Cooper, Valentino R.; Weitering, Hanno H.; Snijders, Paul C.

    2015-09-22

    The chemical bonding of adsorbate molecules on transition-metal surfaces is strongly influenced by the hybridization between the molecular orbitals and the metal d-band. The strength of this interaction is often correlated with the location of the metal d-band center relative to the Fermi level. Here, we exploit finite size effects in the electronic structure of ultrathin Pd(111) films grown on Ru(0001) to tune their reactivity by changing the film thickness one atom layer at a time, while keeping all other variables unchanged. Interestingly, while bulk Pd(111) is reactive toward oxygen, Pd(111) films below five monolayers are surprisingly inert. This observation is fully in line with the d-band model prediction when applied to the orbitals involved in the bonding. The shift of the d-band center with film thickness is primarily attributed to shifts in the partial density of states associated with the 4dxz and 4dyz orbitals. This study provides an in-depth look into the orbital specific contributions to the surface chemical reactivity, providing new insights that could be useful in surface catalysis.

  3. Surface chemical reactivity of ultrathin Pd(111) films on Ru(0001): Importance of orbital symmetry in the application of the d-band model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yin, Xiangshi; Cooper, Valentino R.; Weitering, Hanno H.; Snijders, Paul C.

    2015-09-22

    The chemical bonding of adsorbate molecules on transition-metal surfaces is strongly influenced by the hybridization between the molecular orbitals and the metal d-band. The strength of this interaction is often correlated with the location of the metal d-band center relative to the Fermi level. Here, we exploit finite size effects in the electronic structure of ultrathin Pd(111) films grown on Ru(0001) to tune their reactivity by changing the film thickness one atom layer at a time, while keeping all other variables unchanged. Interestingly, while bulk Pd(111) is reactive toward oxygen, Pd(111) films below five monolayers are surprisingly inert. This observationmore » is fully in line with the d-band model prediction when applied to the orbitals involved in the bonding. The shift of the d-band center with film thickness is primarily attributed to shifts in the partial density of states associated with the 4dxz and 4dyz orbitals. This study provides an in-depth look into the orbital specific contributions to the surface chemical reactivity, providing new insights that could be useful in surface catalysis.« less

  4. A reduced order modeling approach to represent subgrid-scale hydrological dynamics for regional- and climate-scale land-surface simulations: application in a polygonal tundra landscape

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-04-04

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO2, CH4) exchanges with the atmosphere range from molecular scale (pore-scale O2 consumption) to tens of kilometer scale (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a particular reduced-order modeling (ROM) technique known as "Proper Orthogonal Decomposition mapping method" that reconstructs temporally-resolvedmore »fine-resolution solutions based on coarse-resolution solutions. We applied this technique to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface-subsurface isothermal simulations were performed for summer months (June–September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998–2000) to build ROMs of the 4-D soil moisture field for the four study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 103) with very small relative approximation error (« less

  5. Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential

    SciTech Connect (OSTI)

    1995-04-01

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

  6. Application of a watershed computer model to assess reclaimed landform stability in support of reclamation liability release

    SciTech Connect (OSTI)

    Peterson, M.R.; Zevenbergen, L.W.; Cochran, J.

    1995-09-01

    The Surface Mining Control and Reclamation Act of 1977 (SMCRA) instituted specific requirements for surface coal mine reclamation that included reclamation bonding and tied release of liability to achieving acceptable reclamation standards. Generally, such reclamation standards include successfully revegetating the site, achieving the approved postmine land use and minimizing disturbances to the prevailing hydrologic balance. For western surface coal mines the period of liability continues for a minimum of 10 years commencing with the last year of augmented seeding, fertilizing, irrigation or other work. This paper describes the methods and procedures conducted to evaluate the runoff and sediment yield response from approximately 2,700 acres of reclaimed lands at Peabody Western Coal Company`s (PWCC) Black Mesa Mine located near Kayenta, Arizona. These analyses were conducted in support of an application for liability release submitted to the Office of Surface Mining (OSM) for reclaimed interim land parcels within the 2,700 acres evaluated.

  7. Vehicle Technologies Office Merit Review 2015: Assessing the Outlook of US Oil Dependence Using Oil Security Metrics Model (OSMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about assessing the...

  8. Surface tension of spherical drops from surface of tension

    SciTech Connect (OSTI)

    Homman, A.-A.; Bourasseau, E.; Malfreyt, P.; Strafella, L.; Ghoufi, A.

    2014-01-21

    The determination of surface tension of curved interfaces is a topic that raised many controversies during the last century. Explicit liquid-vapor interface modelling (ELVI) was unable up to now to reproduce interfacial behaviors in drops due to ambiguities in the mechanical definition of the surface tension. In this work, we propose a thermodynamic approach based on the location of surface of tension and its use in the Laplace equation to extract the surface tension of spherical interfaces from ELVI modelling.

  9. From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations

    SciTech Connect (OSTI)

    Di Vittorio, Alan; Chini, Louise M.; Bond-Lamberty, Benjamin; Mao, Jiafu; Shi, Xiaoying; Truesdale, John E.; Craig, Anthony P.; Calvin, Katherine V.; Jones, Andrew D.; Collins, William D.; Edmonds, James A.; Hurtt, George; Thornton, Peter E.; Thomson, Allison M.

    2014-11-27

    Climate projections depend on scenarios of fossil fuel emissions and land use change, and the IPCC AR5 parallel process assumes consistent climate scenarios across Integrated Assessment and Earth System Models (IAMs and ESMs). To facilitate consistency, CMIP5 used a novel land use harmonization to provide ESMs with seamless, 1500-2100 land use trajectories generated by historical data and four IAMs. However, we have identified and partially addressed a major gap in the CMIP5 land coupling design. The CMIP5 Community ESM (CESM) global afforestation is only 22% of RCP4.5 afforestation from 2005 to 2100. Likewise, only 17% of the Global Change Assessment Models (GCAMs) 2040 RCP4.5 afforestation signal, and none of the pasture loss, were transmitted to CESM within a newly integrated model. This is a critical problem because afforestation is necessary for achieving the RCP4.5 climate stabilization. We attempted to rectify this problem by modifying only the ESM component of the integrated model, enabling CESM to simulate 66% of GCAMs afforestation in 2040, and 94% of GCAMs pasture loss as grassland and shrubland losses. This additional afforestation increases vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, implying different climate scenarios between CMIP5 GCAM and CESM. Similar inconsistencies likely exist in other CMIP5 model results, primarily because land cover information is not shared between models, with possible contributions from afforestation exceeding model-specific, potentially viable forest area. Further work to harmonize land cover among models will be required to adequately rectify this problem.

  10. Summary of Conceptual Models and Data Needs to Support the INL Remote-Handled Low-Level Waste Disposal Facility Performance Assessment and Composite Analysis

    SciTech Connect (OSTI)

    A. Jeff Sondrup; Annette L. Schafter; Arthur S. Rood

    2010-09-01

    An overview of the technical approach and data required to support development of the performance assessment, and composite analysis are presented for the remote handled low-level waste disposal facility on-site alternative being considered at Idaho National Laboratory. Previous analyses and available data that meet requirements are identified and discussed. Outstanding data and analysis needs are also identified and summarized. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of facility performance and of the composite performance are required to meet the Department of Energys Low-Level Waste requirements (DOE Order 435.1, 2001) which stipulate that operation and closure of the disposal facility will be managed in a manner that is protective of worker and public health and safety, and the environment. The corresponding established procedures to ensure these protections are contained in DOE Manual 435.1-1, Radioactive Waste Management Manual (DOE M 435.1-1 2001). Requirements include assessment of (1) all-exposure pathways, (2) air pathway, (3) radon, and (4) groundwater pathway doses. Doses are computed from radionuclide concentrations in the environment. The performance assessment and composite analysis are being prepared to assess compliance with performance objectives and to establish limits on concentrations and inventories of radionuclides at the facility and to support specification of design, construction, operation and closure requirements. Technical objectives of the PA and CA are primarily accomplished through the development of an establish inventory, and through the use of predictive environmental transport models implementing an overarching conceptual framework. This document reviews the conceptual model, inherent assumptions, and data required to implement the conceptual model in a numerical framework. Available site-specific data and data sources are then addressed. Differences in required analyses and data are captured as outstanding data needs.

  11. Model-based feasibility assessment and evaluation of prostate hyperthermia with a commercial MR-guided endorectal HIFU ablation array

    SciTech Connect (OSTI)

    Salgaonkar, Vasant A. Hsu, I-C.; Diederich, Chris J.; Prakash, Punit; Rieke, Viola; Ozhinsky, Eugene; Kurhanewicz, John; Plata, Juan

    2014-03-15

    Purpose: Feasibility of targeted and volumetric hyperthermia (40–45 °C) delivery to the prostate with a commercial MR-guided endorectal ultrasound phased array system, designed specifically for thermal ablation and approved for ablation trials (ExAblate 2100, Insightec Ltd.), was assessed through computer simulations and tissue-equivalent phantom experiments with the intention of fast clinical translation for targeted hyperthermia in conjunction with radiotherapy and chemotherapy. Methods: The simulations included a 3D finite element method based biothermal model, and acoustic field calculations for the ExAblate ERUS phased array (2.3 MHz, 2.3 × 4.0 cm{sup 2}, ∼1000 channels) using the rectangular radiator method. Array beamforming strategies were investigated to deliver protracted, continuous-wave hyperthermia to focal prostate cancer targets identified from representative patient cases. Constraints on power densities, sonication durations and switching speeds imposed by ExAblate hardware and software were incorporated in the models. Preliminary experiments included beamformed sonications in tissue mimicking phantoms under MR temperature monitoring at 3 T (GE Discovery MR750W). Results: Acoustic intensities considered during simulation were limited to ensure mild hyperthermia (T{sub max} < 45 °C) and fail-safe operation of the ExAblate array (spatial and time averaged acoustic intensity I{sub SATA} < 3.4 W/cm{sup 2}). Tissue volumes with therapeutic temperature levels (T > 41 °C) were estimated. Numerical simulations indicated that T > 41 °C was calculated in 13–23 cm{sup 3} volumes for sonications with planar or diverging beam patterns at 0.9–1.2 W/cm{sup 2}, in 4.5–5.8 cm{sup 3} volumes for simultaneous multipoint focus beam patterns at ∼0.7 W/cm{sup 2}, and in ∼6.0 cm{sup 3} for curvilinear (cylindrical) beam patterns at 0.75 W/cm{sup 2}. Focused heating patterns may be practical for treating focal disease in a single posterior quadrant of the prostate and diffused heating patterns may be useful for heating quadrants, hemigland volumes or even bilateral targets. Treatable volumes may be limited by pubic bone heating. Therapeutic temperatures were estimated for a range of physiological parameters, sonication duty cycles and rectal cooling. Hyperthermia specific phasing patterns were implemented on the ExAblate prostate array and continuous-wave sonications (∼0.88 W/cm{sup 2}, 15 min) were performed in tissue-mimicking material with real-time MR-based temperature imaging (PRFS imaging at 3.0 T). Shapes of heating patterns observed during experiments were consistent with simulations. Conclusions: The ExAblate 2100, designed specifically for thermal ablation, can be controlled for delivering continuous hyperthermia in prostate while working within operational constraints.

  12. The watershed-scale optimized and rearranged landscape design (WORLD) model and local biomass processing depots for sustainable biofuel production: Integrated life cycle assessments

    SciTech Connect (OSTI)

    Eranki, Pragnya L.; Manowitz, David H.; Bals, Bryan D.; Izaurralde, Roberto C.; Kim, Seungdo; Dale, Bruce E.

    2013-07-23

    An array of feedstock is being evaluated as potential raw material for cellulosic biofuel production. Thorough assessments are required in regional landscape settings before these feedstocks can be cultivated and sustainable management practices can be implemented. On the processing side, a potential solution to the logistical challenges of large biorefi neries is provided by a network of distributed processing facilities called local biomass processing depots. A large-scale cellulosic ethanol industry is likely to emerge soon in the United States. We have the opportunity to influence the sustainability of this emerging industry. The watershed-scale optimized and rearranged landscape design (WORLD) model estimates land allocations for different cellulosic feedstocks at biorefinery scale without displacing current animal nutrition requirements. This model also incorporates a network of the aforementioned depots. An integrated life cycle assessment is then conducted over the unified system of optimized feedstock production, processing, and associated transport operations to evaluate net energy yields (NEYs) and environmental impacts.

  13. Solar Resource Assessment

    SciTech Connect (OSTI)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  14. Ellipsometry characterization of polycrystalline ZnO layers with the modeling of carrier concentration gradient: Effects of grain boundary, humidity, and surface texture

    SciTech Connect (OSTI)

    Sago, Keisuke; Fujiwara, Hiroyuki; Kuramochi, Hideto; Iigusa, Hitoshi; Utsumi, Kentaro

    2014-04-07

    Spectroscopic ellipsometry (SE) has been applied to study the effects of grain boundary, humidity, and surface texture on the carrier transport properties of Al-doped ZnO layers fabricated by dc and rf magnetron sputtering. In the SE analysis, the variation in the free carrier absorption toward the growth direction, induced by the ZnO grain growth on foreign substrates, has been modeled explicitly by adopting a multilayer model in which the optical carrier concentration (N{sub opt}) varies continuously with a constant optical mobility (?{sub opt}). The effect of the grain boundary has been studied by comparing ?{sub opt} with Hall mobility (?{sub Hall}). The change in ?{sub Hall}/?{sub opt} indicates a sharp structural transition of the ZnO polycrystalline layer at a thickness of d???500?nm, which correlates very well with the structure confirmed by transmission electron microscopy. In particular, below the transition thickness, the formation of the high density grain boundary leads to the reduction in the ?{sub Hall}/?{sub opt} ratio as well as N{sub opt}. As a result, we find that the thickness dependence of the carrier transport properties is almost completely governed by the grain boundary formation. On the other hand, when the ZnO layer is exposed to wet air at 85?C, ?{sub Hall} reduces drastically with a minor variation of ?{sub opt} due to the enhanced grain boundary scattering. We have also characterized textured ZnO:Al layers prepared by HCl wet etching by SE. The analysis revealed that the near-surface carrier concentration increases slightly after the etching. We demonstrate that the SE technique can be applied to distinguish various rough textured structures (size???1??m) of the ZnO layers prepared by the HCl etching.

  15. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, August 1993--January 1994

    SciTech Connect (OSTI)

    Hendrickson, S.M.; Hoffman, F.O.

    1994-03-01

    This project, ``Use of International Data Sets to Evaluate and Validate Pathway Assessment Models Applicable to Exposure and Dose Reconstruction at DOE Facilities,`` grew out of several activities being conducted by the Principal Investigator Dr. F Owen Hoffman. One activity was originally part of the Chernobyl Studies Project and began as Task 7.1D, ``Internal Dose From Direct Contamination of Terrestrial Food Sources.`` The objective of Task 7.1D was to (1) establish a collaborative US USSR effort to improve and validate our methods of forecasting doses and dose commitments from the direct contamination of food sources, and (2) perform experiments and validation studies to improve our ability to predict rapidly and accurately the long-term internal dose from the contamination of agricultural soil. The latter was to include the consideration of remedial measures to block contamination of food grown on contaminated soil. The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates the activity of Task 7.1D into a multinational effort to evaluate data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (BIOspheric MOdel Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (VAlidation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains.

  16. Enjebi Island dose assessment

    SciTech Connect (OSTI)

    Robison, W.L.; Conrado, C.L.; Phillips, W.A.

    1987-07-01

    We have updeated the radiological dose assessment for Enjebi Island at Enewetak Atoll using data derived from analysis of food crops grown on Enjebi. This is a much more precise assessment of potential doses to people resettling Enjebi Island than the 1980 assessment in which there were no data available from food crops on Enjebi. Details of the methods and data used to evaluate each exposure pathway are presented. The terrestrial food chain is the most significant potential exposure pathway and /sup 137/Cs is the radionuclide responsible for most of the estimated dose over the next 50 y. The doses are calculated assuming a resettlement date of 1990. The average wholebody maximum annual estimated dose equivalent derived using our diet model is 166 mremy;the effective dose equivalent is 169 mremy. The estimated 30-, 50-, and 70-y integral whole-body dose equivalents are 3.5 rem, 5.1 rem, and 6.2 rem, respectively. Bone-marrow dose equivalents are only slightly higher than the whole-body estimates in each case. The bone-surface cells (endosteal cells) receive the highest dose, but they are a less sensitive cell population and are less sensitive to fatal cancer induction than whole body and bone marrow. The effective dose equivalents for 30, 50, and 70 y are 3.6 rem, 5.3 rem, and 6.6 rem, respectively. 79 refs., 17 figs., 24 tabs

  17. A reduced-order modeling approach to represent subgrid-scale hydrological dynamics for land-surface simulations: application in a polygonal tundra landscape

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-09-17

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO2, CH4) exchanges with the atmosphere range from the molecular scale (pore-scale O2 consumption) to tens of kilometers (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a reduced-order modeling (ROM) technique known as "proper orthogonal decomposition mapping method" that reconstructs temporally resolvedmore » fine-resolution solutions based on coarse-resolution solutions. We developed four different methods and applied them to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface–subsurface isothermal simulations were performed for summer months (June–September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998–2000) to build ROMs of the 4-D soil moisture field for the study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 103) with very small relative approximation error (< 0.1%) for 2 validation years not used in training the ROM. We also demonstrate that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training data set with relatively good accuracy (< 1.7% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. By coupling the ROMs constructed at different scales together hierarchically, this method has the potential to efficiently increase the resolution of land models for coupled climate simulations to spatial scales consistent with mechanistic physical process representation.« less

  18. Distributed road assessment system

    DOE Patents [OSTI]

    Beer, N. Reginald; Paglieroni, David W

    2014-03-25

    A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.

  19. Assessing the CAM5 Physics Suite in the WRF-Chem Model: Implementation, Resolution Sensitivity, and a First Evaluation for a Regional Case Study

    SciTech Connect (OSTI)

    Ma, Po-Lun; Rasch, Philip J.; Fast, Jerome D.; Easter, Richard C.; Gustafson, William I.; Liu, Xiaohong; Ghan, Steven J.; Singh, Balwinder

    2014-05-06

    A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been established in which both global and regional simulations use the same emissions and surface fluxes. The WRF-Chem model with the CAM5 physics suite is run at multiple horizontal resolutions over a domain encompassing the northern Pacific Ocean, northeast Asia, and northwest North America for April 2008 when the ARCTAS, ARCPAC, and ISDAC field campaigns took place. These simulations are evaluated against field campaign measurements, satellite retrievals, and ground-based observations, and are compared with simulations that use a set of common WRF-Chem Parameterizations. This manuscript describes the implementation of the CAM5 physics suite in WRF-Chem provides an overview of the modeling framework and an initial evaluation of the simulated meteorology, clouds, and aerosols, and quantifies the resolution dependence of the cloud and aerosol parameterizations. We demonstrate that some of the CAM5 biases, such as high estimates of cloud susceptibility to aerosols and the underestimation of aerosol concentrations in the Arctic, can be reduced simply by increasing horizontal resolution. We also show that the CAM5 physics suite performs similarly to a set of parameterizations commonly used in WRF-Chem, but produces higher ice and liquid water condensate amounts and near-surface black carbon concentration. Further evaluations that use other mesoscale model parameterizations and perform other case studies are needed to infer whether one parameterization consistently produces results more consistent with observations.

  20. DNA ELECTROPHORESIS AT SURFACES

    SciTech Connect (OSTI)

    RAFAILOVICH, MIRIAM; SOKOLOV, JONATHAN; GERSAPPE, DILIP

    2003-09-01

    During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in the different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.

  1. Approach for assessing coastal vulnerability to oil spills for prevention and readiness using GIS and the Blowout and Spill Occurrence Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, J. R.; Grubesic, T. H.; Sim, L.; Rose, K.; Graham, J.

    2015-08-01

    Increasing interest in offshore hydrocarbon exploration has pushed the operational fronts associated with exploration efforts further offshore into deeper waters and more uncertain subsurface settings. This has become particularly common in the U.S. Gulf of Mexico. In this study we develop a spatial vulnerability approach and example assessment to support future spill prevention and improve future response readiness. This effort, which is part of a larger integrated assessment modeling spill prevention effort, incorporated economic and environmental data, and utilized a novel new oil spill simulation model from the U.S. Department of Energy’s National Energy Technology Laboratory, the Blowout and Spillmore » Occurrence Model (BLOSOM). Specifically, this study demonstrated a novel approach to evaluate potential impacts of hypothetical spill simulations at varying depths and locations in the northern Gulf of Mexico. The simulations are analyzed to assess spatial and temporal trends associated with the oil spill. The approach itself demonstrates how these data, tools and techniques can be used to evaluate potential spatial vulnerability of Gulf communities for various spill scenarios. Results of the hypothetical scenarios evaluated in this study suggest that under conditions like those simulated, a strong westward push by ocean currents and tides may increase the impacts of deep water spills along the Texas coastline, amplifying the vulnerability of communities on the local barrier islands. Ultimately, this approach can be used further to assess a range of conditions and scenarios to better understand potential risks and improve informed decision making for operators, responders, and stakeholders to support spill prevention as well as response readiness.« less

  2. Approach for assessing coastal vulnerability to oil spills for prevention and readiness using GIS and the Blowout and Spill Occurrence Model

    SciTech Connect (OSTI)

    Nelson, J. R.; Grubesic, T. H.; Sim, L.; Rose, K.; Graham, J.

    2015-08-01

    Increasing interest in offshore hydrocarbon exploration has pushed the operational fronts associated with exploration efforts further offshore into deeper waters and more uncertain subsurface settings. This has become particularly common in the U.S. Gulf of Mexico. In this study we develop a spatial vulnerability approach and example assessment to support future spill prevention and improve future response readiness. This effort, which is part of a larger integrated assessment modeling spill prevention effort, incorporated economic and environmental data, and utilized a novel new oil spill simulation model from the U.S. Department of Energy’s National Energy Technology Laboratory, the Blowout and Spill Occurrence Model (BLOSOM). Specifically, this study demonstrated a novel approach to evaluate potential impacts of hypothetical spill simulations at varying depths and locations in the northern Gulf of Mexico. The simulations are analyzed to assess spatial and temporal trends associated with the oil spill. The approach itself demonstrates how these data, tools and techniques can be used to evaluate potential spatial vulnerability of Gulf communities for various spill scenarios. Results of the hypothetical scenarios evaluated in this study suggest that under conditions like those simulated, a strong westward push by ocean currents and tides may increase the impacts of deep water spills along the Texas coastline, amplifying the vulnerability of communities on the local barrier islands. Ultimately, this approach can be used further to assess a range of conditions and scenarios to better understand potential risks and improve informed decision making for operators, responders, and stakeholders to support spill prevention as well as response readiness.

  3. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    SciTech Connect (OSTI)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.

  4. A user's guide to the GoldSim/BLT-MS integrated software package:a low-level radioactive waste disposal performance assessment model.

    SciTech Connect (OSTI)

    Knowlton, Robert G.; Arnold, Bill Walter; Mattie, Patrick D.

    2007-03-01

    Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in the assessment of radioactive waste disposal and at the time of this publication is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. In countries with small radioactive waste programs, international technology transfer program efforts are often hampered by small budgets, schedule constraints, and a lack of experienced personnel. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available software codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission (NRC) and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, revitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a credible and solid computational platform for constructing probabilistic safety assessment models. This document is a reference users guide for the GoldSim/BLT-MS integrated modeling software package developed as part of a cooperative technology transfer project between Sandia National Laboratories and the Institute of Nuclear Energy Research (INER) in Taiwan for the preliminary assessment of several candidate low-level waste repository sites. Breach, Leach, and Transport-Multiple Species (BLT-MS) is a U.S. NRC sponsored code which simulates release and transport of contaminants from a subsurface low-level waste disposal facility. GoldSim is commercially available probabilistic software package that has radionuclide transport capabilities. The following report guides a user through the steps necessary to use the integrated model and presents a successful application of the paradigm of renewing legacy codes for contemporary application.

  5. Biologically induced concrete deterioration in a wastewater treatment plant assessed by combining microstructural analysis with thermodynamic modeling

    SciTech Connect (OSTI)

    Leemann, A.; Lothenbach, B.; Hoffmann, C.

    2010-08-15

    In the nitrification basins of wastewater treatment plants, deterioration of the concrete surface can occur due to acid attack caused by a nitrifying biofilm covering the concrete. To identify the mechanism of deterioration, concrete cubes of different composition were suspended in an aerated nitrification basin of a wastewater treatment plant for two years and analyzed afterwards. The microstructural investigation reveals that not only dissolution of hydrates takes place, but that calcite precipitation close to the surface occurs leading to the formation of a dense layer. The degree of deterioration of the different cubes correlates with the CaO content of the different cements used. Cements which contain a high fraction of CaO form more calcite offering a better protection against the acid attack. The presence of slag, which lowers the amount CaO in the cement, leads to a faster deterioration of the concrete than observed for samples produced with pure OPC.

  6. Superhydrophobic surfaces

    DOE Patents [OSTI]

    Wang, Evelyn N; McCarthy, Matthew; Enright, Ryan; Culver, James N; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2015-03-24

    Surfaces having a hierarchical structure--having features of both microscale and nanoscale dimensions--can exhibit superhydrophobic properties and advantageous condensation and heat transfer properties. The hierarchical surfaces can be fabricated using biological nanostructures, such as viruses as a self-assembled nanoscale template.

  7. Inter-comparison of Computer Codes for TRISO-based Fuel Micro-Modeling and Performance Assessment

    SciTech Connect (OSTI)

    Brian Boer; Chang Keun Jo; Wen Wu; Abderrafi M. Ougouag; Donald McEachren; Francesco Venneri

    2010-10-01

    The Next Generation Nuclear Plant (NGNP), the Deep Burn Pebble Bed Reactor (DB-PBR) and the Deep Burn Prismatic Block Reactor (DB-PMR) are all based on fuels that use TRISO particles as their fundamental constituent. The TRISO particle properties include very high durability in radiation environments, hence the designs reliance on the TRISO to form the principal barrier to radioactive materials release. This durability forms the basis for the selection of this fuel type for applications such as Deep Bun (DB), which require exposures up to four times those expected for light water reactors. It follows that the study and prediction of the durability of TRISO particles must be carried as part of the safety and overall performance characterization of all the designs mentioned above. Such evaluations have been carried out independently by the performers of the DB project using independently developed codes. These codes, PASTA, PISA and COPA, incorporate models for stress analysis on the various layers of the TRISO particle (and of the intervening matrix material for some of them), model for fission products release and migration then accumulation within the SiC layer of the TRISO particle, just next to the layer, models for free oxygen and CO formation and migration to the same location, models for temperature field modeling within the various layers of the TRISO particle and models for the prediction of failure rates. All these models may be either internal to the code or external. This large number of models and the possibility of different constitutive data and model formulations and the possibility of a variety of solution techniques makes it highly unlikely that the model would give identical results in the modeling of identical situations. The purpose of this paper is to present the results of an inter-comparison between the codes and to identify areas of agreement and areas that need reconciliation. The inter-comparison has been carried out by the cooperating institutions using a set of pre-defined TRISO conditions (burnup levels, temperature or power levels, etc.) and the outcome will be tabulated in the full length paper. The areas of agreement will be pointed out and the areas that require further modeling or reconciliation will be shown. In general the agreement between the codes is good within less than one order of magnitude in the prediction of TRISO failure rates.

  8. Application of Probabilistic Performance Assessment Modeling for Optimization of Maintenance Studies for Low-Level Radioactive Waste Disposal Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    Crowe, B.; Yucel, V.; Rawlinson, S.; Black, P.; Carilli, J.; DiSanza, F.

    2002-02-25

    The U.S. Department of Energy (DOE), National Nuclear Security Administration of the Nevada Operations Office (NNSA/NV) operates and maintains two active facilities on the Nevada Test Site (NTS) that dispose defense-generated low-level radioactive waste (LLW), mixed radioactive waste, and ''classified waste'' in shallow trenches and pits. The operation and maintenance of the LLW disposal sites are self-regulated by the DOE under DOE Order 435.1. This Order requires formal review of a performance assessment (PA) and composite analysis (CA; assessment of all interacting radiological sources) for each LLW disposal system followed by an active maintenance program that extends through and beyond the site closure program. The Nevada disposal facilities continue to receive NTS-generated LLW and defense-generated LLW from across the DOE complex. The PA/CAs for the sites have been conditionally approved and the facilities are now under a formal maintenance program that requires testing of conceptual models, quantifying and attempting to reduce uncertainty, and implementing confirmatory and long-term background monitoring, all leading to eventual closure of the disposal sites. To streamline and reduce the cost of the maintenance program, the NNSA/NV is converting the deterministic PA/CAs to probabilistic models using GoldSim, a probabilistic simulation computer code. The output of probabilistic models will provide expanded information supporting long-term decision objectives of the NTS disposal sites.

  9. A spatially distributed model for the assessment of land use impacts on stream temperature in small urban watersheds

    SciTech Connect (OSTI)

    Sun, Ning; Yearsley, John; Voisin, Nathalie; Lettenmaier, D. P.

    2015-05-15

    Stream temperatures in urban watersheds are influenced to a high degree by anthropogenic impacts related to changes in landscape, stream channel morphology, and climate. These impacts can occur at small time and length scales, hence require analytical tools that consider the influence of the hydrologic regime, energy fluxes, topography, channel morphology, and near-stream vegetation distribution. Here we describe a modeling system that integrates the Distributed Hydrologic Soil Vegetation Model, DHSVM, with the semi-Lagrangian stream temperature model RBM, which has the capability to simulate the hydrology and water temperature of urban streams at high time and space resolutions, as well as a representation of the effects of riparian shading on stream energetics. We demonstrate the modeling system through application to the Mercer Creek watershed, a small urban catchment near Bellevue, Washington. The results suggest that the model is able both to produce realistic streamflow predictions at fine temporal and spatial scales, and to provide spatially distributed water temperature predictions that are consistent with observations throughout a complex stream network. We use the modeling construct to characterize impacts of land use change and near-stream vegetation change on stream temperature throughout the Mercer Creek system. We then explore the sensitivity of stream temperature to land use changes and modifications in vegetation along the riparian corridor.

  10. Reactions of Ethyl Groups on a Model Chromia Surface: Ethyl Chloride on Stoichiometric Alpha-Cr2O3(1012)

    SciTech Connect (OSTI)

    Brooks, J.; Ma, Q; Cox, D

    2009-01-01

    The reaction of CH3CH2Cl over the nearly-stoichiometric ?-Cr2O3 (1 0 View the MathML source 2) surface yields gas phase CH2double bond; length as m-dashCH2, CH3CH3, H2 and surface chlorine adatoms. The decomposition reaction is initiated via C-Cl bond cleavage to give a surface ethyl (CH3CH2-) intermediate. A rate-limiting ?-hydride elimination from the surface ethyl species produces gas phase CH2double bond; length as m-dashCH2 and surface hydrogen atoms. Two parallel competing reactions form CH3CH3, via ?-hydride addition to remaining surface ethyl species (reductive elimination), and H2, via the combination of two surface hydrogen atoms. The chlorine freed from the dissociation of CH3CH2Cl binds at the five-coordinate surface Cr3+ sites on the stoichiometric surface and inhibits the surface chemistry via simple site blocking. No surface carbon deposition is observed from the thermal reaction of ethyl chloride, suggesting that ethyl intermediates are not primary coke forming intermediates in the dehydrogenation of ethane over (1 0 View the MathML source 2) facets of ?-Cr2O3.

  11. Implementation and assessment of turbine wake models in the Weather Research and Forecasting model for both mesoscale and large-eddy simulation

    SciTech Connect (OSTI)

    Singer, M; Mirocha, J; Lundquist, J; Cleve, J

    2010-03-03

    Flow dynamics in large wind projects are influenced by the turbines located within. The turbine wakes, regions characterized by lower wind speeds and higher levels of turbulence than the surrounding free stream flow, can extend several rotor diameters downstream, and may meander and widen with increasing distance from the turbine. Turbine wakes can also reduce the power generated by downstream turbines and accelerate fatigue and damage to turbine components. An improved understanding of wake formation and transport within wind parks is essential for maximizing power output and increasing turbine lifespan. Moreover, the influence of wakes from large wind projects on neighboring wind farms, agricultural activities, and local climate are all areas of concern that can likewise be addressed by wake modeling. This work describes the formulation and application of an actuator disk model for studying flow dynamics of both individual turbines and arrays of turbines within wind projects. The actuator disk model is implemented in the Weather Research and Forecasting (WRF) model, which is an open-source atmospheric simulation code applicable to a wide range of scales, from mesoscale to large-eddy simulation. Preliminary results demonstrate the applicability of the actuator disk model within WRF to a moderately high-resolution large-eddy simulation study of a small array of turbines.

  12. Integrated Assessment | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenttimes-integrated-assessment-model-0,h Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance...

  13. Assessing the Importance of Nonlinearities in the Development of a Substructure Model for the Wind Turbine CAE Tool FAST: Preprint

    SciTech Connect (OSTI)

    Damiani, R.; Jonkman, J.; Robertson, A.; Song, H.

    2013-03-01

    Design and analysis of wind turbines are performed using aero-servo-elastic tools that account for the nonlinear coupling between aerodynamics, controls, and structural response. The NREL-developed computer-aided engineering (CAE) tool FAST also resolves the hydrodynamics of fixed-bottom structures and floating platforms for offshore wind applications. This paper outlines the implementation of a structural-dynamics module (SubDyn) for offshore wind turbines with space-frame substructures into the current FAST framework, and focuses on the initial assessment of the importance of structural nonlinearities. Nonlinear effects include: large displacements, axial shortening due to bending, cross-sectional transverse shear effects, etc.

  14. Assessment of Current Process Modeling Approaches to Determine Their Limitations, Applicability and Developments Needed for Long-Fiber Thermoplastic Injection Molded Composites

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Holbery, Jim; Smith, Mark T.; Kunc, Vlastimil; Norris, Robert E.; Phelps, Jay; Tucker III, Charles L.

    2006-11-30

    This report describes the status of the current process modeling approaches to predict the behavior and flow of fiber-filled thermoplastics under injection molding conditions. Previously, models have been developed to simulate the injection molding of short-fiber thermoplastics, and an as-formed composite part or component can then be predicted that contains a microstructure resulting from the constituents material properties and characteristics as well as the processing parameters. Our objective is to assess these models in order to determine their capabilities and limitations, and the developments needed for long-fiber injection-molded thermoplastics (LFTs). First, the concentration regimes are summarized to facilitate the understanding of different types of fiber-fiber interaction that can occur for a given fiber volume fraction. After the formulation of the fiber suspension flow problem and the simplification leading to the Hele-Shaw approach, the interaction mechanisms are discussed. Next, the establishment of the rheological constitutive equation is presented that reflects the coupled flow/orientation nature. The decoupled flow/orientation approach is also discussed which constitutes a good simplification for many applications involving flows in thin cavities. Finally, before outlining the necessary developments for LFTs, some applications of the current orientation model and the so-called modified Folgar-Tucker model are illustrated through the fiber orientation predictions for selected LFT samples.

  15. MELTER: A model of the thermal response of cargos transported in the Safe-Secure Trailer subject to fire environments for risk assessment applications

    SciTech Connect (OSTI)

    Larsen, M.E.

    1994-08-01

    MELTER is an analysis of cargo responses inside a fire-threatened Safe-Secure Trailer (SST) developed for the Defense Program Transportation Risk Assessment (DPTRA). Many simplifying assumptions are required to make the subject problem tractable. MELTER incorporates modeling which balances the competing requirements of execution speed, generality, completeness of essential physics, and robustness. Input parameters affecting the analysis include those defining the fire scenario, those defining the cargo loaded in the SST, and those defining properties of the SST. For a specified fire, SST, and cargo geometry MELTER predicts the critical fire duration that will lead to a failure. The principal features of the analysis include: (a) Geometric considerations to interpret fire-scenario descriptors in terms of a thermal radiation boundary condition, (b) a simple model of the SST`s wall combining the diffusion model for radiation through optically-thick media with an endothermic reaction front to describe the charring of dimensional, rigid foam in the SST wall, (c) a transient radiation enclosure model, (d) a one-dimensional, spherical idealization of the shipped cargos providing modularity so that cargos of interest can be inserted into the model, and (e) associated numerical methods to integrate coupled, differential equations and find roots.

  16. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Soil Surface Soil We compare local soil samples with samples collected from northern New Mexico locations that are beyond the range of potential influence from normal Laboratory operations. April 12, 2012 Farm soil sampling Two LANL environmental field team members take soil samples from a farm. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Measurements are compared to samples from the regional sites and

  17. Occupant Safety Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Occupant Safety Assessment and Crash Biomechanics Background During crashes, vehicle occupants may experience a wide variety of injuries that often correspond to their location within the vehicle, their age and gender, and type of vehicle and crash. Current finite-element models that are used to assess the level of injuries employ only 60,000 to 100,000 elements and require 12 hours of computation to assess vehicle structural components. Occupant models mostly represent the "50% adult

  18. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models

    SciTech Connect (OSTI)

    Benedict, Matthew N.; Mundy, Michael B.; Henry, Christopher S.; Chia, Nicholas; Price, Nathan D.; Maranas, Costas D.

    2014-10-16

    Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genes and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary to obtain a more accurate network. All described workflows are implemented as part of the DOE Systems Biology Knowledgebase (KBase) and are publicly available via API or command-line web interface.

  19. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Benedict, Matthew N.; Mundy, Michael B.; Henry, Christopher S.; Chia, Nicholas; Price, Nathan D.; Maranas, Costas D.

    2014-10-16

    Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genesmore » and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary to obtain a more accurate network. All described workflows are implemented as part of the DOE Systems Biology Knowledgebase (KBase) and are publicly available via API or command-line web interface.« less

  20. A GIS COST MODEL TO ASSESS THE AVAILABILITY OF FRESHWATER, SEAWATER, AND SALINE GROUNDWATER FOR ALGAL BIOFUEL PRODUCTION IN THE UNITED STATES

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Coleman, Andre M.; Wigmosta, Mark S.

    2013-03-15

    A key advantage of using microalgae for biofuel production is the ability of some algal strains to thrive in waters unsuitable for conventional crop irrigation such as saline groundwater or seawater. Nonetheless, the availability of sustainable water supplies will provide significant challenges for scale-up and development of algal biofuels. We conduct a limited techno-economic assessment based on the availability of freshwater, saline groundwater, and seawater for use in open pond algae cultivation systems. We explore water issues through GIS-based models of algae biofuel production, freshwater supply, and cost models for supplying seawater and saline groundwater. We estimate that combined, within the coterminous US these resources can support production on the order of 9.46E+7 m3 yr-1 (25 billion gallons yr-1) of renewable biodiesel. Achievement of larger targets requires the utilization of less water efficient sites and relatively expensive saline waters. Geographically, water availability is most favorable for the coast of the Gulf of Mexico and Florida peninsula, where evaporation relative to precipitation is moderate and various saline waters are economically available. As a whole, barren and scrub lands of the southwestern US have limited freshwater supplies so accurate assessment of alternative waters is critical.

  1. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    SciTech Connect (OSTI)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

  2. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PVLibMatlab Permalink Gallery Sandia Labs Releases New Version of PVLib Toolbox Modeling, News, Photovoltaic, Solar Sandia Labs Releases New Version of PVLib Toolbox Sandia has released version 1.3 of PVLib, its widely used Matlab toolbox for modeling photovoltaic (PV) power systems. The version 1.3 release includes the following added functions: functions to estimate parameters for popular PV module models, including PVsyst and the CEC '5 parameter' model a new model of the effects of solar

  3. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, March--May 1994

    SciTech Connect (OSTI)

    Anspaugh, L.R.; Hendrickson, S.M.; Hoffman, F.O.

    1994-06-01

    The project described in this report was the result of a Memorandum of Cooperation between the US and the former-USSR following the accident at the Chernobyl Nuclear Power Plant Unit 4. A joint program was established to improve the safety of nuclear power plants and to understand the implications of environmental releases. The task of Working Group 7 was ``to develop jointly methods to project rapidly the health effects of any future nuclear reactor accident.`` The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (Biospheric Model Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (Validation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains. In the future, this project will be considered separately from the Chernobyl Studies Project and the essential activities of former Task 7.1D will be folded within the broader umbrella of the BIOMOVS and VAMP projects. The Working Group Leader of Task 7.1D will continue to provide oversight for this project.

  4. Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework

    SciTech Connect (OSTI)

    Zhou, Yuyu; Clarke, Leon E.; Eom, Jiyong; Kyle, G. Page; Patel, Pralit L.; Kim, Son H.; Dirks, James A.; Jensen, Erik A.; Liu, Ying; Rice, Jennie S.; Schmidt, Laurel C.; Seiple, Timothy E.

    2014-01-01

    As long-term socioeconomic transformation and energy service expansion show large spatial heterogeneity, advanced understanding of climate impact on building energy use at the sub-national level will offer useful insights into climate policy and regional energy system planning. In this study, we presented a detailed building energy model with a U.S. state-level representation, nested in the GCAM integrated assessment framework. We projected state-level building energy demand and its spatial pattern over the century, considering the impact of climate change based on the estimates of heating and cooling degree days derived from downscaled USGS CASCaDE temperature data. The result indicates that climate change has a large impact on heating and cooling building energy and fuel use at the state level, exhibiting large spatial heterogeneity across states (ranges from -10% to +10%). The sensitivity analysis reveals that the building energy demand is subject to multiple key factors, such as the magnitude of climate change, the choice of climate models, and the growth of population and GDP, and that their relative contributions vary greatly across the space. The scale impact in building energy use modeling highlights the importance of constructing a building energy model with the spatially-explicit representation of socioeconomics, energy system development, and climate change. These findings will help the climate-based policy decision and energy system, especially utility planning related to building sector at the U.S. state and regional level facing the potential climate change.

  5. A SCOPING STUDY: Development of Probabilistic Risk Assessment Models for Reactivity Insertion Accidents During Shutdown In U.S. Commercial Light Water Reactors

    SciTech Connect (OSTI)

    S. Khericha

    2011-06-01

    This report documents the scoping study of developing generic simplified fuel damage risk models for quantitative analysis from inadvertent reactivity insertion events during shutdown (SD) in light water pressurized and boiling water reactors. In the past, nuclear fuel reactivity accidents have been analyzed both mainly deterministically and probabilistically for at-power and SD operations of nuclear power plants (NPPs). Since then, many NPPs had power up-rates and longer refueling intervals, which resulted in fuel configurations that may potentially respond differently (in an undesirable way) to reactivity accidents. Also, as shown in a recent event, several inadvertent operator actions caused potential nuclear fuel reactivity insertion accident during SD operations. The set inadvertent operator actions are likely to be plant- and operation-state specific and could lead to accident sequences. This study is an outcome of the concern which arose after the inadvertent withdrawal of control rods at Dresden Unit 3 in 2008 due to operator actions in the plant inadvertently three control rods were withdrawn from the reactor without knowledge of the main control room operator. The purpose of this Standardized Plant Analysis Risk (SPAR) Model development project is to develop simplified SPAR Models that can be used by staff analysts to perform risk analyses of operating events and/or conditions occurring during SD operation. These types of accident scenarios are dominated by the operator actions, (e.g., misalignment of valves, failure to follow procedures and errors of commissions). Human error probabilities specific to this model were assessed using the methodology developed for SPAR model human error evaluations. The event trees, fault trees, basic event data and data sources for the model are provided in the report. The end state is defined as the reactor becomes critical. The scoping study includes a brief literature search/review of historical events, developments of a small set of comprehensive event trees and fault trees and recommendation for future work.

  6. SIMPLIFIED PREDICTIVE MODELS FOR CO2 SEQUESTRATION PERFORMANCE ASSESSMENT RESEARCH TOPICAL REPORT ON TASK #4 REDUCED-ORDER METHOD (ROM) BASED MODELS

    SciTech Connect (OSTI)

    Mishra, Srikanta; Jin, Larry; He, Jincong; Durlofsky, Louis

    2015-06-30

    Reduced-order models provide a means for greatly accelerating the detailed simulations that will be required to manage CO2 storage operations. In this work, we investigate the use of one such method, POD-TPWL, which has previously been shown to be effective in oil reservoir simulation problems. This method combines trajectory piecewise linearization (TPWL), in which the solution to a new (test) problem is represented through a linearization around the solution to a previously-simulated (training) problem, with proper orthogonal decomposition (POD), which enables solution states to be expressed in terms of a relatively small number of parameters. We describe the application of POD-TPWL for CO2-water systems simulated using a compositional procedure. Stanford’s Automatic Differentiation-based General Purpose Research Simulator (AD-GPRS) performs the full-order training simulations and provides the output (derivative matrices and system states) required by the POD-TPWL method. A new POD-TPWL capability introduced in this work is the use of horizontal injection wells that operate under rate (rather than bottom-hole pressure) control. Simulation results are presented for CO2 injection into a synthetic aquifer and into a simplified model of the Mount Simon formation. Test cases involve the use of time-varying well controls that differ from those used in training runs. Results of reasonable accuracy are consistently achieved for relevant well quantities. Runtime speedups of around a factor of 370 relative to full- order AD-GPRS simulations are achieved, though the preprocessing needed for POD-TPWL model construction corresponds to the computational requirements for about 2.3 full-order simulation runs. A preliminary treatment for POD-TPWL modeling in which test cases differ from training runs in terms of geological parameters (rather than well controls) is also presented. Results in this case involve only small differences between training and test runs, though they do demonstrate that the approach is able to capture basic solution trends. The impact of some of the detailed numerical treatments within the POD-TPWL formulation is considered in an Appendix. ii

  7. Data Analysis, Pre-Ignition Assessment, and Post-Ignition Modeling of the Large-Scale Annular Cookoff Tests

    SciTech Connect (OSTI)

    G. Terrones; F.J. Souto; R.F. Shea; M.W.Burkett; E.S. Idar

    2005-09-30

    In order to understand the implications that cookoff of plastic-bonded explosive-9501 could have on safety assessments, we analyzed the available data from the large-scale annular cookoff (LSAC) assembly series of experiments. In addition, we examined recent data regarding hypotheses about pre-ignition that may be relevant to post-ignition behavior. Based on the post-ignition data from Shot 6, which had the most complete set of data, we developed an approximate equation of state (EOS) for the gaseous products of deflagration. Implementation of this EOS into the multimaterial hydrodynamics computer program PAGOSA yielded good agreement with the inner-liner collapse sequence for Shot 6 and with other data, such as velocity interferometer system for any reflector and resistance wires. A metric to establish the degree of symmetry based on the concept of time of arrival to pin locations was used to compare numerical simulations with experimental data. Several simulations were performed to elucidate the mode of ignition in the LSAC and to determine the possible compression levels that the metal assembly could have been subjected to during post-ignition.

  8. Empirical, probabilistic, and modelling approaches to assess cross-media impacts to marine sediments at Puget Sound Naval Shipyard

    SciTech Connect (OSTI)

    Rohrer, W.L.; Vita, C.L.; Schrock, W.; Leicht, G.

    1996-12-31

    Dredge spoils, industrial fill, and liquid wastes from the 1940s to 1970s have resulted in inorganic and organic contamination of soils, groundwater, and marine sediments near the U.S.S. Missouri and Charleston Beach parking lots at Puget Sound Naval Shipyard (PSNS), in Bremerton, Washington. Extensive collection of environmental data from several studies including the recently completed Remedial Investigation conducted under CERCLA have confirmed contaminant levels above federal risk screening levels and state regulatory criteria for several heavy metals and organic compounds, including pesticides and PCBs. Although the correlation between contamination in marine sediments and those in on-shore fill appears to be strong, there is little evidence that a viable transport pathway currently exists from soils to groundwater and thence to sediments. Several methods used to estimate chemical mass flux from soil to groundwater to sediments and marine waters of Sinclair Inlet are corroborative in this regard. Nonetheless, this result is vexing because present groundwater concentrations exceed ARARs, yet are below levels of concern in terms of mass flux to marine waters. Despite the marginal risks posed by groundwater, various remedial alternatives, including perimeter containment using a subsurface waste-stabilized containment wall, were evaluated to determine whether chemical flux could be reduced to levels below those observed at the present time. Three-dimensional flow modelling and transport modelling also confirmed that chemical fluxes were limited in magnitude and could be addressed with more conventional remedial approaches.

  9. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion sourceInsights from a three dimensional particle-in-cell Monte Carlo collisions model

    SciTech Connect (OSTI)

    Fubiani, G.; Boeuf, J. P. [Universit de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France) [Universit de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, LAPLACE, F-31062 Toulouse (France)

    2013-11-15

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%)

  10. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reacting Flow/Modeling - Modelingadmin2015-10-28T02:39:13+00:00 Turbulence models typically involve coarse-graining and/or time averaging. Though adequate for modeling mean transport, this approach does not address turbulence-microphysics interactions that are important in combustion processes. Subgrid models are developed to represent these interactions. The CRF has developed a fundamentally different representation of these interactions that does not involve distinct coarse-grained and subgrid

  11. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project Capabilities, Center for Infrastructure Research and Innovation (CIRI), Computational Modeling & Simulation, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure Security, Materials Science, Modeling, Modeling & Analysis, News, News & Events, Partnership, Research & Capabilities, Systems Analysis, Systems Engineering, Transportation Energy Widespread Hydrogen Fueling Infrastructure Is

  12. Development of a Kelp-type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology

    SciTech Connect (OSTI)

    Wang, Taiping; Khangaonkar, Tarang; Long, Wen; Gill, Gary A.

    2014-02-07

    In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a backstop to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts to the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.

  13. Calculating Impacts of Energy Standards on Energy Demand in U.S. Buildings under Uncertainty with an Integrated Assessment Model: Technical Background Data

    SciTech Connect (OSTI)

    Scott, Michael J.; Daly, Don S.; Hathaway, John E.; Lansing, Carina S.; Liu, Ying; McJeon, Haewon C.; Moss, Richard H.; Patel, Pralit L.; Peterson, Marty J.; Rice, Jennie S.; Zhou, Yuyu

    2014-12-06

    This report presents data and assumptions employed in an application of PNNLs Global Change Assessment Model with a newly-developed Monte Carlo analysis capability. The model is used to analyze the impacts of more aggressive U.S. residential and commercial building-energy codes and equipment standards on energy consumption and energy service costs at the state level, explicitly recognizing uncertainty in technology effectiveness and cost, socioeconomics, presence or absence of carbon prices, and climate impacts on energy demand. The report provides a summary of how residential and commercial buildings are modeled, together with assumptions made for the distributions of statelevel population, Gross Domestic Product (GDP) per worker, efficiency and cost of residential and commercial energy equipment by end use, and efficiency and cost of residential and commercial building shells. The cost and performance of equipment and of building shells are reported separately for current building and equipment efficiency standards and for more aggressive standards. The report also details assumptions concerning future improvements brought about by projected trends in technology.

  14. SIMULATION MODEL ANALYSIS OF THE MOST PROMISING GEOLOGIC SEQUESTRATION FORMATION CANDIDATES IN THE ROCKY MOUNTAIN REGION, USA, WITH FOCUS ON UNCERTAINTY ASSESSMENT

    SciTech Connect (OSTI)

    Lee, Si-Yong; Zaluski, Wade; Will, Robert; Eisinger, Chris; Matthews, Vince; McPherson, Brian

    2013-09-01

    The purpose of this report is to report results of reservoir model simulation analyses for forecasting subsurface CO2 storage capacity estimation for the most promising formations in the Rocky Mountain region of the USA. A particular emphasis of this project was to assess uncertainty of the simulation-based forecasts. Results illustrate how local-scale data, including well information, number of wells, and location of wells, affect storage capacity estimates and what degree of well density (number of wells over a fixed area) may be required to estimate capacity within a specified degree of confidence. A major outcome of this work was development of a new workflow of simulation analysis, accommodating the addition of random pseudo wells to represent virtual characterization wells.

  15. Investigations of the Fundamental Surface Reactions Involved in the Sorption and Desorption of Radionuclides

    SciTech Connect (OSTI)

    Czerwinski, Ken; Heske, Clemens; Moser, Duane; Misra, Mnoranjan; McMillion, Glen

    2011-04-20

    Models for describing solution- and surface-phase reactions have been used for 30 years, but only recently applicable to complex surfaces. Duff et al., using micro-XANES, found that Pu was concentrated on Mn-oxide and smectite phases of zeolitic tuff, providing an evaluation of contaminant speciation on surfaces for modeling. Experiments at Los Alamos demonstrated that actinides display varying surface residence time distributions, probably reflective of mineral surface heterogeneity. We propose to investigate the sorption/desorption behavior of radionuclides from mineral surfaces, as effected by microorganisms, employing isolates from Nevada Test Site deep alluvium as a model system. Characterizations will include surface area, particle size distribution, x-ray diffraction (XRD), microprobe analysis, extractions, and microbiology. Surface interactions will be assessed by electron spectroscopy (XPS), x-ray absorption fine structure spectroscopy (XAFS), X-ray emission spectroscopy, transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). Desert Research Institute (DRI), University of Nevada, Reno (UNR), and University of Nevada, Las Vegas (UNLV) researchers will collaborate to enhance scientific infrastructure and the understanding of contaminant behavior on surfaces, with broader implications for the management of DOE sites.

  16. EA-1747: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Final Environmental Assessment EA-1747: Final Environmental Assessment Surface Water Configuration Project at the Rocky Flats Site, Colorado The RFS is owned by the United...

  17. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WVMinputs-outputs Permalink Gallery Sandia Labs releases wavelet variability model (WVM) Modeling, News, Photovoltaic, Solar Sandia Labs releases wavelet variability model (WVM) When a single solar photovoltaic (PV) module is in full sunlight, then is shaded by a cloud, and is back in full sunlight in a matter of seconds, a sharp dip then increase in power output will result. However, over an entire PV plant, clouds will often uncover some modules even as they cover others, [...] By Andrea

  18. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Project Is the ACME of Computer Science to Address Climate Change Analysis, Climate, Global Climate & Energy, Modeling, Modeling & Analysis, News, News & Events, Partnership New Project Is the ACME of Computer Science to Address Climate Change Sandia high-performance computing (HPC) researchers are working with DOE and 14 other national laboratories and institutions to develop and apply the most complete climate and Earth system model, to address the most challenging and

  19. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A rail tank car of the type used to transport crude oil across North America. Recent incidents have raised concerns about the safety of this practice, which the DOE-DOT-sponsored team is investigating. (photo credit: Harvey Henkelmann) Permalink Gallery Expansion of DOE-DOT Tight Oil Research Work Capabilities, Carbon Capture & Storage, Carbon Storage, Energy, Energy Assurance, Energy Assurance, Fuel Options, Infrastructure Assurance, Infrastructure Security, Modeling, Modeling, Modeling

  20. Wind Resource Assessment of Gujarat (India)

    SciTech Connect (OSTI)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  1. Tritium on Metal Surfaces | Department of Energy

    Office of Environmental Management (EM)

    on Metal Surfaces Tritium on Metal Surfaces Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014. PDF icon Tritium on Metal Surfaces More Documents & Publications Modeling Tritium on Metal Surfaces Tritium Plasma Experiment and Its Role in PHENIX Program Light Water Detritiation using the CECE Process

  2. Surface mining

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    This paper reports on a GAO study of attorney and expert witness fees awarded as a result of litigation brought under the Surface Mining Control and Reclamation Act. As of March 24, 1989, a total of about $1.4 million had been awarded in attorney fees and expenses - about $1.3 subject to the provisions of the Employee Retirement Income Security Act, a comparison of its features with provisions of ERISA showed that the plan differed from ERISA provisions in areas such as eligibility, funding, and contribution limits.

  3. Assessment Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... SCADA Assessments Since 1999, Sandia has conducted numerous assessments of operational systems in hydroelectric dams; water treatment systems; electric power transmission, ...

  4. Technical Approach for Determining Key Parameters Needed for Modeling the Performance of Cast Stone for the Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Serne, R. Jeffrey; Rockhold, Mark L.; Wang, Guohui; Westsik, Joseph H.

    2015-03-30

    Washington River Protection Solutions (WRPS) and its contractors at Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) are conducting a development program to develop / refine the cementitious waste form for the wastes treated at the ETF and to provide the data needed to support the IDF PA. This technical approach document is intended to provide guidance to the cementitious waste form development program with respect to the waste form characterization and testing information needed to support the IDF PA. At the time of the preparation of this technical approach document, the IDF PA effort is just getting started and the approach to analyze the performance of the cementitious waste form has not been determined. Therefore, this document looks at a number of different approaches for evaluating the waste form performance and describes the testing needed to provide data for each approach. Though the approach addresses a cementitious secondary aqueous waste form, it is applicable to other waste forms such as Cast Stone for supplemental immobilization of Hanford LAW. The performance of Cast Stone as a physical and chemical barrier to the release of contaminants of concern (COCs) from solidification of Hanford liquid low activity waste (LAW) and secondary wastes processed through the Effluent Treatment Facility (ETF) is of critical importance to the Hanford Integrated Disposal Facility (IDF) total system performance assessment (TSPA). The effectiveness of cementitious waste forms as a barrier to COC release is expected to evolve with time. PA modeling must therefore anticipate and address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Most organizations responsible for disposal facility operation and their regulators support an iterative hierarchical safety/performance assessment approach with a general philosophy that modeling provides the critical link between the short-term understanding from laboratory and field tests, and the prediction of repository performance over repository time frames and scales. One common recommendation is that experiments be designed to permit the appropriate scaling in the models. There is a large contrast in the physical and chemical properties between the Cast Stone waste package and the IDF backfill and surrounding sediments. Cast Stone exhibits low permeability, high tortuosity, low carbonate, high pH, and low Eh whereas the backfill and native sediments have high permeability, low tortuosity, high carbonate, circumneutral pH, and high Eh. These contrasts have important implications for flow, transport, and reactions across the Cast Stone – backfill interface. Over time with transport across the interface and subsequent reactions, the sharp geochemical contrast will blur and there will be a range of spatially-distributed conditions. In general, COC mobility and transport will be sensitive to these geochemical variations, which also include physical changes in porosity and permeability from mineral reactions. Therefore, PA modeling must address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Section 2 of this document reviews past Hanford PAs and SRS Saltstone PAs, which to date have mostly relied on the lumped parameter COC release conceptual models for TSPA predictions, and provides some details on the chosen values for the lumped parameters. Section 3 provides more details on the hierarchical modeling strategy and processes and mechanisms that control COC release. Section 4 summarizes and lists the key parameters for which numerical values are needed to perform PAs. Section 5 provides brief summaries of the methods used to measure the needed parameters and references to get more details.

  5. Document Number Q0029500 Baseline Risk Assessment Update 4.0 Baseline Risk Assessment Update

    Office of Legacy Management (LM)

    Baseline Risk Assessment Update 4.0 Baseline Risk Assessment Update This section updates the human health and the ecological risk assessments that were originally presented in the 1998 RI (DOE 1998a). The impacts on the 1998 risk assessments are summarized in Section 2.9. 4.1 Human Health Risk Assessment Several activities completed since 1998 have contributed to changes in surface water and ground water concentrations. Activities that have impacted, or likely impacted surface water and ground

  6. Embedding climate change risk assessment within a governance context

    SciTech Connect (OSTI)

    Preston, Benjamin L

    2011-01-01

    Climate change adaptation is increasingly being framed in the context of climate risk management. This has contributed to the proliferation of climate change vulnerability and/or risk assessments as means of supporting institutional decision-making regarding adaptation policies and measures. To date, however, little consideration has been given to how such assessment projects and programs interact with governance systems to facilitate or hinder the implementation of adaptive responses. An examination of recent case studies involving Australian local governments reveals two key linkages between risk assessment and the governance of adaptation. First, governance systems influence how risk assessment processes are conducted, by whom they are conducted, and whom they are meant to inform. Australia s governance system emphasizes evidence-based decision-making that reinforces a knowledge deficit model of decision support. Assessments are often carried out by external experts on behalf of local government, with limited participation by relevant stakeholders and/or civil society. Second, governance systems influence the extent to which the outputs from risk assessment activities are translated into adaptive responses and outcomes. Technical information regarding risk is often stranded by institutional barriers to adaptation including poor uptake of information, competition on the policy agenda, and lack of sufficient entitlements. Yet, risk assessments can assist in bringing such barriers to the surface, where they can be debated and resolved. In fact, well-designed risk assessments can contribute to multi-loop learning by institutions, and that reflexive problem orientation may be one of the more valuable benefits of assessment.

  7. A compound power-law model for volcanic eruptions: Implications for risk assessment of volcanism at the proposed nuclear waste repository at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Ho, Chih-Hsiang

    1994-10-17

    Much of the ongoing debate on the use of nuclear power plants in U.S.A. centers on the safe disposal of the radioactive waste. Congress, aware of the importance of the waste issue, passed the Nuclear Waste Policy Act of 1982, requiring the federal government to develop a geologic repository for the permanent disposal of high level radioactive wastes from civilian nuclear power plants. The Department of Energy (DOE) established the Office of Civilian Radioactive Waste Management (OCRWM) in 1983 to identify potential sites. When OCRWM had selected three potential sites to study, Congress enacted the Nuclear Waste Policy Amendments Act of 1987, which directed the DOE to characterize only one of those sites, Yucca Mountain, in southern Nevada. For a site to be acceptable, theses studies must demonstrate that the site could comply with regulations and guidelines established by the federal agencies that will be responsible for licensing, regulating, and managing the waste facility. Advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is readily recognized as an important factor in determining future public and environmental safety because of the possibility of direct disruption of a repository site by volcanism. In particular, basaltic volcanism is regarded as direct and unequivocal evidence of deep-seated geologic instability. In this paper, statistical analysis of volcanic hazard assessment at the Yucca Mountain site is discussed, taking into account some significant geological factors raised by experts. Three types of models are considered in the data analysis. The first model assumes that both past and future volcanic activities follow a homogeneous Poisson process (HPP).

  8. Vehicle Technologies Office Merit Review 2015: First Principles Modeling of SEI Formation on Bare and Surface/Additive Modified Silicon Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Texas A&M at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about first principles modeling of...

  9. modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  10. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA Earth at Night Video EC, Energy, Energy Efficiency, Global, Modeling, News & Events, Solid-State Lighting, Videos NASA Earth at Night Video Have you ever wondered what the Earth looks like at night? NASA provides a clear, cloud-free view of the Earth at night using the Suomi National Polar-orbiting Partnership Satellite. The satellite utilizes an instrument known as the Visible Infrared Radiometer Suite (VIIRS), which allows the satellite to capture images of a "remarkably detailed

  11. Radiological assessment. A textbook on environmental dose analysis

    SciTech Connect (OSTI)

    Till, J.E.; Meyer, H.R.

    1983-09-01

    Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.

  12. Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph; Rodhe, Henning

    2014-12-08

    Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content.more »This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO₂ given in AR5, 1.5–4.5 K/(3.7 W m⁻²) exceeds the range inferred from the assessed likely range of forcing, 1.2–2.9 K/(3.7 W m⁻²), where 3.7 W ⁻² denotes the forcing for doubled CO₂. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.« less

  13. Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments

    SciTech Connect (OSTI)

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph; Rodhe, Henning

    2014-12-08

    Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content. This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO? given in AR5, 1.54.5 K/(3.7 W m?) exceeds the range inferred from the assessed likely range of forcing, 1.22.9 K/(3.7 W m?), where 3.7 W ? denotes the forcing for doubled CO?. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.

  14. Development of Science-Based Permitting Guidance for Geological Sequestration of CO2 in Deep Saline Aquifers Based on Modeling and Risk Assessment

    SciTech Connect (OSTI)

    Jean-Philippe Nicot; Renaud Bouroullec; Hugo Castellanos; Susan Hovorka; Srivatsan Lakshminarasimhan; Jeffrey Paine

    2006-06-30

    Underground carbon storage may become one of the solutions to address global warming. However, to have an impact, carbon storage must be done at a much larger scale than current CO{sub 2} injection operations for enhanced oil recovery. It must also include injection into saline aquifers. An important characteristic of CO{sub 2} is its strong buoyancy--storage must be guaranteed to be sufficiently permanent to satisfy the very reason that CO{sub 2} is injected. This long-term aspect (hundreds to thousands of years) is not currently captured in legislation, even if the U.S. has a relatively well-developed regulatory framework to handle carbon storage, especially in the operational short term. This report proposes a hierarchical approach to permitting in which the State/Federal Government is responsible for developing regional assessments, ranking potential sites (''General Permit'') and lessening the applicant's burden if the general area of the chosen site has been ranked more favorably. The general permit would involve determining in the regional sense structural (closed structures), stratigraphic (heterogeneity), and petrophysical (flow parameters such as residual saturation) controls on the long-term fate of geologically sequestered CO{sub 2}. The state-sponsored regional studies and the subsequent local study performed by the applicant will address the long-term risk of the particular site. It is felt that a performance-based approach rather than a prescriptive approach is the most appropriate framework in which to address public concerns. However, operational issues for each well (equivalent to the current underground injection control-UIC-program) could follow regulations currently in place. Area ranking will include an understanding of trapping modes. Capillary (due to residual saturation) and structural (due to local geological configuration) trappings are two of the four mechanisms (the other two are solubility and mineral trappings), which are the most relevant to the time scale of interest. The most likely pathways for leakage, if any, are wells and faults. We favor a defense-in-depth approach, in which storage permanence does not rely upon a primary seal only but assumes that any leak can be contained by geologic processes before impacting mineral resources, fresh ground water, or ground surface. We examined the Texas Gulf Coast as an example of an attractive target for carbon storage. Stacked sand-shale layers provide large potential storage volumes and defense-in-depth leakage protection. In the Texas Gulf Coast, the best way to achieve this goal is to establish the primary injection level below the total depth of most wells (>2,400 m-8,000 ft). In addition, most faults, particularly growth faults, present at the primary injection level do not reach the surface. A potential methodology, which includes an integrated approach comprising the whole chain of potential events from leakage from the primary site to atmospheric impacts, is also presented. It could be followed by the State/Federal Government, as well as by the operators.

  15. Modeling

    SciTech Connect (OSTI)

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  16. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffuse interface methods in ALE-AMR code with application in modeling NDCX-II experiments Wangyi Liu 1 , John Barnard 2 , Alex Friedman 2 , Nathan Masters 2 , Aaron Fisher 2 , Alice Koniges 2 , David Eder 2 1 LBNL, USA, 2 LLNL, USA This work was part of the Petascale Initiative in Computational Science at NERSC, supported by the Director, Office of Science, Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was performed

  17. Radioactive Waste Management Complex performance assessment: Draft

    SciTech Connect (OSTI)

    Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.; Sussman, M.E.; Voilleque, P.

    1990-06-01

    A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Results of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.

  18. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    SciTech Connect (OSTI)

    Nancy Moller Weare

    2006-07-25

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

  19. A versatile elevated-pressure reactor combined with an ultrahigh vacuum surface setup for efficient testing of model and powder catalysts under clean gas-phase conditions

    SciTech Connect (OSTI)

    Morfin, Franck; Piccolo, Laurent

    2013-09-15

    A small-volume reaction cell for catalytic or photocatalytic testing of solid materials at pressures up to 1000 Torr has been coupled to a surface-science setup used for standard sample preparation and characterization under ultrahigh vacuum (UHV). The reactor and sample holder designs allow easy sample transfer from/to the UHV chamber, and investigation of both planar and small amounts of powder catalysts under the same conditions. The sample is heated with an infrared laser beam and its temperature is measured with a compact pyrometer. Combined in a regulation loop, this system ensures fast and accurate temperature control as well as clean heating. The reaction products are automatically sampled and analyzed by mass spectrometry and/or gas chromatography (GC). Unlike previous systems, our GC apparatus does not use a recirculation loop and allows working in clean conditions at pressures as low as 1 Torr while detecting partial pressures smaller than 10{sup ?4} Torr. The efficiency and versatility of the reactor are demonstrated in the study of two catalytic systems: butadiene hydrogenation on Pd(100) and CO oxidation over an AuRh/TiO{sub 2} powder catalyst.

  20. Analysis of methods and models for assessing the direct and indirect economic impacts of CO/sub 2/-induced environmental changes in the agricultural sector of the US economy

    SciTech Connect (OSTI)

    Callaway, J.M.

    1982-08-01

    Alternative methods for quantifying the economic impacts associated with future increases in the ambient concentration of CO/sub 2/ were examined. A literature search was undertaken, both to gain a better understanding of the ways in which CO/sub 2/ buildup could affect crop growth and to identify the different methods available for assessing the impacts of CO/sub 2/-induced environmental changes on crop yields. The second task involved identifying the scope of both the direct and indirect economic impacts that could occur as a result of CO/sub 2/-induced changes in crop yields. The third task then consisted of a comprehensive literature search to identify what types of economic models could be used effectively to assess the kinds of direct and indirect economic impacts that could conceivably occur as a result of CO/sub 2/ buildup. Specific attention was focused upon national and multi-regional agricultural sector models, multi-country agricultural trade models, and macroeconomic models of the US economy. The fourth and final task of this research involved synthesizing the information gathered in the previous tasks into a systematic framework for assessing the direct and indirect economic impacts of CO/sub 2/-induced environmental changes related to agricultural production.

  1. Assessment of simulation predictions of hydrocarbon pool fire tests.

    SciTech Connect (OSTI)

    Luketa-Hanlin, Anay Josephine

    2010-04-01

    An uncertainty quantification (UQ) analysis is performed on the fuel regression rate model within SIERRA/Fuego by comparing to a series of hydrocarbon tests performed in the Thermal Test Complex. The fuels used for comparison for the fuel regression rate model include methanol, ethanol, JP8, and heptane. The recently implemented flamelet combustion model is also assessed with a limited comparison to data involving measurements of temperature and relative mole fractions within a 2-m diameter methanol pool fire. The comparison of the current fuel regression rate model to data without UQ indicates that the model over predicts the fuel regression rate by 65% for methanol, 63% for ethanol, 95% for JP8, and 15% for heptane. If a UQ analysis is performed incorporating a range of values for transmittance, reflectance, and heat flux at the surface the current model predicts fuel regression rates within 50% of measured values. An alternative model which uses specific heats at inlet and boiling temperatures respectively and does not approximate the sensible heat is also compared to data. The alternative model with UQ significantly improves the comparison to within 25% for all fuels except heptane. Even though the proposed alternative model provides better agreement to data, particularly for JP8 and ethanol (within 15%), there are still outstanding issues regarding significant uncertainties which include heat flux gauge measurement and placement, boiling at the fuel surface, large scale convective motion within the liquid, and semi-transparent behavior.

  2. SummitView 1.0: a code to automatically generate 3D solid models of surface micro-machining based MEMS designs.

    SciTech Connect (OSTI)

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Yarberry, Victor R.; Schmidt, Rodney Cannon; Meyers, Ray J.

    2006-11-01

    This report describes the SummitView 1.0 computer code developed at Sandia National Laboratories. SummitView is designed to generate a 3D solid model, amenable to visualization and meshing, that represents the end state of a microsystem fabrication process such as the SUMMiT (Sandia Ultra-Planar Multilevel MEMS Technology) V process. Functionally, SummitView performs essentially the same computational task as an earlier code called the 3D Geometry modeler [1]. However, because SummitView is based on 2D instead of 3D data structures and operations, it has significant speed and robustness advantages. As input it requires a definition of both the process itself and the collection of individual 2D masks created by the designer and associated with each of the process steps. The definition of the process is contained in a special process definition file [2] and the 2D masks are contained in MEM format files [3]. The code is written in C++ and consists of a set of classes and routines. The classes represent the geometric data and the SUMMiT V process steps. Classes are provided for the following process steps: Planar Deposition, Planar Etch, Conformal Deposition, Dry Etch, Wet Etch and Release Etch. SummitView is built upon the 2D Boolean library GBL-2D [4], and thus contains all of that library's functionality.

  3. ARM - Field Campaign - Surface Albedo IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    02.09 - 2004.02.13 Lead Scientist : Alexander Trishchenko For data sets, see below. Abstract Purpose of this field campaign was to collect surface albedo spectra for representative surface types in the ARM SGP CART site area, to gather information useful for conducting surface type classification from aerial/satellite remote sensing data, to develop the detailed spectral model of surface reflectance over the ARM SGP CART site area for conditions in winter time (February) Campaign Data Sets IOP

  4. ARM - Field Campaign - Surface Albedo IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10.20 - 2004.10.26 Lead Scientist : Alexander Trishchenko For data sets, see below. Abstract Purpose of this field campaign was to collect surface albedo spectra for representative surface types in the ARM SGP CART site area during the autumn conditions, to gather information useful for conducting surface type classification from aerial/satellite remote sensing data, to develop the detailed spectral model of surface reflectance over the ARM SGP CART site area for the autumn conditions.

  5. Consequence Assessment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume focuses on the process of performing timely initial assessments necessary to support critical first decisions and the continuous process of refining those initial assessments as more information and resources become available. Canceled by DOE G 151.1-4.

  6. Technology Assessment

    Energy Savers [EERE]

    - FOR OFFICIAL USE ONLY - DRAFT 1 Advanced Composites Materials and their Manufacture 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ................................................................................................ 2 4 2. Technology Potential and Assessment .................................................................................................. 4 5 2.1 The Potential for Advanced Composites for Clean Energy Application Areas

  7. Coupling a Reactive Transport Code with a Global Land Surface Model for Mechanistic Biogeochemistry Representation: 1. Addressing the Challenge of Nonnegativity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, Guoping; Yuan, Fengming; Bisht, Gautam; Hammond, Glenn E.; Lichtner, Peter C.; Collier, Nathaniel O; Kumar, Jitendra; Mills, Richard T; Xu, Xiaofeng; Andre, Ben; et al

    2016-01-01

    Reactive transport codes (e.g., PFLOTRAN) are increasingly used to improve the representation of biogeochemical processes in terrestrial ecosystem models (e.g., the Community Land Model, CLM). As CLM and PFLOTRAN use explicit and implicit time stepping, implementation of CLM biogeochemical reactions in PFLOTRAN can result in negative concentration, which is not physical and can cause numerical instability and errors. The objective of this work is to address the nonnegativity challenge to obtain accurate, efficient, and robust solutions. We illustrate the implementation of a reaction network with the CLM-CN decomposition, nitrification, denitrification, and plant nitrogen uptake reactions and test the implementation atmore » arctic, temperate, and tropical sites. We examine use of scaling back the update during each iteration (SU), log transformation (LT), and downregulating the reaction rate to account for reactant availability limitation to enforce nonnegativity. Both SU and LT guarantee nonnegativity but with implications. When a very small scaling factor occurs due to either consumption or numerical overshoot, and the iterations are deemed converged because of too small an update, SU can introduce excessive numerical error. LT involves multiplication of the Jacobian matrix by the concentration vector, which increases the condition number, decreases the time step size, and increases the computational cost. Neither SU nor SE prevents zero concentration. When the concentration is close to machine precision or 0, a small positive update stops all reactions for SU, and LT can fail due to a singular Jacobian matrix. The consumption rate has to be downregulated such that the solution to the mathematical representation is positive. A first-order rate downregulates consumption and is nonnegative, and adding a residual concentration makes it positive. For zero-order rate or when the reaction rate is not a function of a reactant, representing the availability limitation of each reactant with a Monod substrate limiting function provides a smooth transition between a zero-order rate when the reactant is abundant and first-order rate when the reactant becomes limiting. When the half saturation is small, marching through the transition may require small time step sizes to resolve the sharp change within a small range of concentration values. Our results from simple tests and CLM-PFLOTRAN simulations caution against use of SU and indicate that accurate, stable, and relatively efficient solutions can be achieved with LT and downregulation with Monod substrate limiting function and residual concentration.« less

  8. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints

    SciTech Connect (OSTI)

    Forte, A M; Quere, S; Moucha, R; Simmons, N A; Grand, S P; Mitrovica, J X; Rowley, D B

    2008-08-22

    Recent progress in seismic tomography provides the first complete 3-D images of the combined thermal and chemical anomalies that characterise the unique deep mantle structure below the African continent. With these latest tomography results we predict flow patterns under Africa that reveal a large-scale, active hot upwelling, or superplume, below the western margin of Africa under the Cape Verde Islands. The scale and dynamical intensity of this West African superplume (WASP) is comparable to that of the south African superplume (SASP) that has long been assumed to dominate the flow dynamics under Africa. On the basis of this new tomography model, we find the dynamics of the SASP is strongly controlled by chemical contributions to deep mantle buoyancy that significantly compensate its thermal buoyancy. In contrast, the WASP appears to be entirely dominated by thermal buoyancy. New calculations of mantle convection incorporating these two superplumes reveal that the plate-driving forces due to the flow generated by the WASP is as strong as that due to the SASP. We find that the chemical buoyancy of the SASP exerts a strong stabilising control on the pattern and amplitude of shallow mantle flow in the asthenosphere below the southern half of the African plate. The asthenospheric flow predictions provide the first high resolution maps of focussed upwellings that lie below the major centres of Late Cenozoic volcanism, including the Kenya domes and Hoggar massif that lies above a remnant plume head in the upper mantle. Inferences of sublithospheric deformation from seismic anisotropy data are shown to be sensitive to the contributions of chemical buoyancy in the SASP.

  9. Development of safety assessment for radioactive waste disposal

    SciTech Connect (OSTI)

    Shimizu, Tomofumi; Miyauchi, Yoshihiro; Sasaki, Noriyuki

    2007-07-01

    As part of designing the engineered barrier system (EBS) for disposal of reactor core materials, we have modeled the alteration and crack generation of cementitious materials in order to assess their effect on the functioning of low diffusivity barriers. In the assessment, it was assumed that the degradation proceeds from the surface of the material. The results show that it is possible to reduce the resulting dose if the barrier function can be maintained until the relevant radionuclides have decayed, but that the dose could be higher if the EBS degrades at an earlier stage. For the assessment of crack generation, we considered the process whereby the width of the crack gradually increases with time due to the expansion of metals as a result of corrosion. The results show that the nuclide flux in such a case is lower compared to the case where wide cracks are assumed to exist from the beginning. (authors)

  10. Sweet Surface Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sweet Surface Area Sweet Surface Area Create a delicious root beer float and learn sophisticated science concepts at the same time. Sweet Surface Area Science is all around us, so...

  11. Venetie, Alaska energy assessment.

    SciTech Connect (OSTI)

    Jensen, Richard Pearson; Baca, Micheal J.; Schenkman, Benjamin L.; Brainard, James Robert

    2013-07-01

    This report summarizes the Energy Assessment performed for Venetie, Alaska using the principals of an Energy Surety Microgrid (ESM) The report covers a brief overview of the principals of ESM, a site characterization of Venetie, a review of the consequence modeling, some preliminary recommendations, and a basic cost analysis.

  12. Integrated assessment briefs

    SciTech Connect (OSTI)

    1995-04-01

    Integrated assessment can be used to evaluate and clarify resource management policy options and outcomes for decision makers. The defining characteristics of integrated assessment are (1) focus on providing information and analysis that can be understood and used by decision makers rather than for merely advancing understanding and (2) its multidisciplinary approach, using methods, styles of study, and considerations from a broader variety of technical areas than would typically characterize studies produced from a single disciplinary standpoint. Integrated assessment may combine scientific, social, economic, health, and environmental data and models. Integrated assessment requires bridging the gap between science and policy considerations. Because not everything can be valued using a single metric, such as a dollar value, the integrated assessment process also involves evaluating trade-offs among dissimilar attributes. Scientists at Oak Ridge National Laboratory (ORNL) recognized the importance and value of multidisciplinary approaches to solving environmental problems early on and have pioneered the development of tools and methods for integrated assessment over the past three decades. Major examples of ORNL`s experience in the development of its capabilities for integrated assessment are given.

  13. Risk Assessment

    Broader source: Energy.gov [DOE]

    A set of issues that state and local governments should carefully consider, with the goal of helping them assess and anticipate solutions for some worst case or unfortunate case scenarios as they...

  14. A framework for combining social impact assessment and risk assessment

    SciTech Connect (OSTI)

    Mahmoudi, Hossein; Environmental Sciences Research Institute, Shahid Beheshti University, G.C. ; Renn, Ortwin; Vanclay, Frank; Hoffmann, Volker; Karami, Ezatollah

    2013-11-15

    An increasing focus on integrative approaches is one of the current trends in impact assessment. There is potential to combine impact assessment with various other forms of assessment, such as risk assessment, to make impact assessment and the management of social risks more effective. We identify the common features of social impact assessment (SIA) and social risk assessment (SRA), and discuss the merits of a combined approach. A hybrid model combining SIA and SRA to form a new approach called, risk and social impact assessment (RSIA) is introduced. RSIA expands the capacity of SIA to evaluate and manage the social impacts of risky projects such as nuclear energy as well as natural hazards and disasters such as droughts and floods. We outline the three stages of RSIA, namely: impact identification, impact assessment, and impact management. -- Highlights: A hybrid model to combine SIA and SRA namely RSIA is proposed. RSIA can provide the proper mechanism to assess social impacts of natural hazards. RSIA can play the role of ex-post as well as ex-ante assessment. For some complicated and sensitive cases like nuclear energy, conducting a RSIA is necessary.

  15. Task 6 - Subtask 1: PNNL Visit by JAEA Researchers to Evaluate the Feasibility of the FLESCOT Code for the Future JAEA Use for the Fukushima Surface Water Environmental Assessment

    SciTech Connect (OSTI)

    Onishi, Yasuo

    2014-01-01

    Four Japan Atomic Energy Agency (JAEA) researchers visited Pacific Northwest National Laboratory (PNNL) for seven working days and have evaluated the suitability and adaptability of FLESCOT to a JAEA’s supercomputer system to effectively simulate cesium behavior in dam reservoirs, river mouths, and coastal areas in Fukushima contaminated by the Fukushima Daiichi nuclear accident. PNNL showed the following to JAEA visitors during the seven-working day period: • FLESCOT source code • User’s manual • FLESCOT description – Program structure – Algorism – Solver – Boundary condition handling – Data definition – Input and output methods – How to run. During the visit, JAEA had access to FLESCOT to run with an input data set to evaluate the capacity and feasibility of adapting it to a JAEA super computer with massive parallel processors. As a part of this evaluation, PNNL ran FLESCOT for sample cases of the contaminant migration simulation to further describe FLESCOT in action. JAEA and PNNL researchers also evaluated time spent for each subroutine of FLESCOT, and the JAEA researcher implemented some initial parallelization schemes to FLESCOT. Based on this code evaluation, JAEA and PNNL determined that FLESCOT is • applicable to Fukushima lakes/dam reservoirs, river mouth areas, and coastal water • feasible to implement parallelization for the JAEA supercomputer. In addition, PNNL and JAEA researchers discussed molecular modeling approaches on cesium adsorption mechanisms to enhance the JAEA molecular modeling activities. PNNL and JAEA also discussed specific collaboration of molecular and computational modeling activities.

  16. Environmental Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASSESSMENT (EA) FOR THE RECONSTRUCTION OF THE SOUTH ACCESS ROAD (CR 802) IN SUPPORT OF THE DEPARTMENT OF ENERGY, WASTE ISOLATION PILOT PLANT (WIPP) IN EDDY COUNTY, NEW MEXICO NEPA #: DOI-BLM-NM-P020-2010-0011-EA PREPARED IN COOPERATION WITH: DEPARTMENT OF ENERGY CARLSBAD FIELD OFFICE P. O. BOX 2078 CARLSBAD, NM 88221-2078 PREPARED BY: OWEN W. LOFTON SUPERVISORY MULTI RESOURCES SPECIALIST BUREAU OF LAND MANAGEMENT CARLSBAD FIELD OFFICE 620 EAST GREENE CARLSBAD, NM 88220 ENVIRONMENTAL ASSESSMENT

  17. Environmental Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    682 Environmental Assessment Upgrades and Life Extension of the 242-A Evaporator, Hanford Site, Richland, Washington Conducted Under the American Recovery and Reinvestment Act of 2009 U.S. Department of Energy Richland, Washington Environmental Assessment February 20 10 DOE/EA- 1682 This page intentionally left blank. 1 February 20 10 DOE/EA- 1682 TABLE OF CONTENTS 1.0 INTRODUCTION..............................................................................1. 1.1 BACKGROUND

  18. Environmental Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    728D Environmental Assessment Integrated Vegetation Management on the Hanford Site, Richland, Washington U.S. Department of Energy Richland Operations Office Richland, Washington 99352 Approved for Public Release; Further Disseminat ion Uillimited June 2011 DOE/EA-1728D June 2011 1 2 3 4 5 6 This page intentionally left blank. 7 8 U.S. Department of Energy DOE/EA-1728D Draft Environmental Assessment iii June 2011 CONTENTS 1 2 1.0 INTRODUCTION

  19. Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results

    SciTech Connect (OSTI)

    Foley, M.G.; Petrie, G.M.; Baldwin, A.J.; Craig, R.G.

    1982-06-01

    This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach.

  20. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO?) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO? storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  1. The feasibility assessment of a U.S. natural gas production reporting system uniform production reporting model. Final report, July 1993--June 1994

    SciTech Connect (OSTI)

    1994-06-01

    The Uniform Production Reporting Model (UPRM) project was charged with identifying the best practices and procedures of the natural gas producing states related to the gathering, management, and dissemination of production data. It is recommended that the producing states begin the process of upgrading state systems using the concepts embodied in the UPRM model.

  2. Check Heat Transfer Surfaces

    Broader source: Energy.gov [DOE]

    This tip sheet discusses the importance of checking heat transfer surfaces in process heating systems.

  3. State Energy Risk Assessment Initiative | Department of Energy

    Energy Savers [EERE]

    Mission Energy Infrastructure Modeling and Analysis State Energy Risk Assessment Initiative State Energy Risk Assessment Initiative OE is leading a State Energy Risk...

  4. State Energy Risk Assessment Initiative - State Energy Risk Profiles...

    Energy Savers [EERE]

    Mission Energy Infrastructure Modeling and Analysis State Energy Risk Assessment Initiative - State Energy Risk Profiles State Energy Risk Assessment Initiative - State...

  5. State and Regional Energy Risk Assessment Initiative | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mission Energy Infrastructure Modeling and Analysis State and Regional Energy Risk Assessment Initiative State and Regional Energy Risk Assessment Initiative The Office of...

  6. Evaluating sub-national building-energy efficiency policy options under uncertainty: Efficient sensitivity testing of alternative climate, technolgical, and socioeconomic futures in a regional intergrated-assessment model.

    SciTech Connect (OSTI)

    Scott, Michael J.; Daly, Don S.; Zhou, Yuyu; Rice, Jennie S.; Patel, Pralit L.; McJeon, Haewon C.; Kyle, G. Page; Kim, Son H.; Eom, Jiyong; Clarke, Leon E.

    2014-05-01

    Improving the energy efficiency of the building stock, commercial equipment and household appliances can have a major impact on energy use, carbon emissions, and building services. Subnational regions such as U.S. states wish to increase their energy efficiency, reduce carbon emissions or adapt to climate change. Evaluating subnational policies to reduce energy use and emissions is difficult because of the uncertainties in socioeconomic factors, technology performance and cost, and energy and climate policies. Climate change may undercut such policies. Assessing these uncertainties can be a significant modeling and computation burden. As part of this uncertainty assessment, this paper demonstrates how a decision-focused sensitivity analysis strategy using fractional factorial methods can be applied to reveal the important drivers for detailed uncertainty analysis.

  7. Wetting of a Chemically Heterogeneous Surface

    SciTech Connect (OSTI)

    Frink, L.J.D.; Salinger, A.G.

    1998-11-20

    Theories for inhomogeneous fluids have focused in recent years on wetting, capillary conden- sation, and solvation forces for model systems where the surface(s) is(are) smooth homogeneous parallel plates, cylinders, or spherical drops. Unfortunately natural systems are more likely to be hetaogeneous both in surt%ce shape and surface chemistry. In this paper we discuss the conse- quences of chemical heterogeneity on wetting. Specifically, a 2-dimensional implementation of a nonlocal density functional theory is solved for a striped surface model. Both the strength and range of the heterogeneity are varied. Contact angles are calculated, and phase transitions (both the wetting transition and a local layering transition) are located. The wetting properties of the surface ase shown to be strongly dependent on the nature of the surface heterogeneity. In addition highly ordered nanoscopic phases are found, and the operational limits for formation of ordered or crystalline phases of nanoscopic extent are discussed.

  8. Surface and Volume Contamination | Department of Energy

    Energy Savers [EERE]

    Surface and Volume Contamination Surface and Volume Contamination (Questions Posted to ERAD in May 2012) Will there be volume contamination/activation guides as well as updated contamination guides? The only guidance being developed for volumetric contamination is a Technical Standard for accelerator facilities. However, a revised version of ANSI N13.12-1999 is expected in the future and it will be assessed to determine its acceptability for use as a pre-approved authorized limit. It is noted

  9. Geothermal resource conceptual models using surface exploration...

    Open Energy Info (EERE)

    approach is particularly effective when exploring blind prospects because it makes fuller use of more limited data and helps identify strategies to address the lack of...

  10. Geothermal Resource Conceptual Models Using Surface Exploration...

    Open Energy Info (EERE)

    approach is particularly effective when exploring blind prospects because it makes fuller use of more limited data and helps identify strategies to address the lack of...

  11. Technology Assessment

    Energy Savers [EERE]

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  12. Hawaii demand-side management resource assessment. Final report, Reference Volume 5: The DOETRAN user`s manual; The DOE-2/DBEDT DSM forecasting model interface

    SciTech Connect (OSTI)

    1995-04-01

    The DOETRAN model is a DSM database manager, developed to act as an intermediary between the whole building energy simulation model, DOE-2, and the DBEDT DSM Forecasting Model. DOETRAN accepts output data from DOE-2 and TRANslates that into the format required by the forecasting model. DOETRAN operates in the Windows environment and was developed using the relational database management software, Paradox 5.0 for Windows. It is not necessary to have any knowledge of Paradox to use DOETRAN. DOETRAN utilizes the powerful database manager capabilities of Paradox through a series of customized user-friendly windows displaying buttons and menus with simple and clear functions. The DOETRAN model performs three basic functions, with an optional fourth. The first function is to configure the user`s computer for DOETRAN. The second function is to import DOE-2 files with energy and loadshape data for each building type. The third main function is to then process the data into the forecasting model format. As DOETRAN processes the DOE-2 data, graphs of the total electric monthly impacts for each DSM measure appear, providing the user with a visual means of inspecting DOE-2 data, as well as following program execution. DOETRAN provides three tables for each building type for the forecasting model, one for electric measures, gas measures, and basecases. The optional fourth function provided by DOETRAN is to view graphs of total electric annual impacts by measure. This last option allows a comparative view of how one measure rates against another. A section in this manual is devoted to each of the four functions mentioned above, as well as computer requirements and exiting DOETRAN.

  13. Fluorinated silica microchannel surfaces

    DOE Patents [OSTI]

    Kirby, Brian J.; Shepodd, Timothy Jon

    2005-03-15

    A method for surface modification of microchannels and capillaries. The method produces a chemically inert surface having a lowered surface free energy and improved frictional properties by attaching a fluorinated alkane group to the surface. The coating is produced by hydrolysis of a silane agent that is functionalized with either alkoxy or chloro ligands and an uncharged C.sub.3 -C.sub.10 fluorinated alkane chain. It has been found that the extent of surface coverage can be controlled by controlling the contact time from a minimum of about 2 minutes to a maximum of 120 minutes for complete surface coverage.

  14. Dormant storage reliability assessments-data based

    SciTech Connect (OSTI)

    Merren, G.T.

    1981-01-01

    A relatively large amount of data pertaining to the performance of certain electronic parts after long periods of dormant storage has been collected and analyzed by the Reliability Department of Sandia National Laboratories. The failure models used by Sandia are presented and reliability assessments for selected electronic parts derived from these models and the measured performance data are provided. These data based assessments are compared to similar assessments derived from handbook calculations using the general data and models provided in the handbooks.

  15. ASSESSMENT REPORT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford University During Fiscal Years 2012 and 2013 Under Department of Energy Contract No. DE-AC02-76SF00515 OAS-V-15-04 September 2015 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 September 21, 2015 MEMORANDUM FOR THE MANAGER, SLAC SITE OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Assessment Report: "Audit Coverage of Cost Allowability

  16. Endogenous Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Endogenous Assessment of the Capacity Value of Solar PV in Generation Investment Planning Studies Francisco D. Munoz, Member, IEEE, and Andrew D. Mills Abstract-There exist several different reliability- and approximation-based methods to determine the contribution of solar resources towards resource adequacy. However, most of these approaches require knowing in advance the installed capacities of both conventional and solar generators. This is a complication since generator capacities are

  17. ASSESSMENT REPORT

    Energy Savers [EERE]

    & Wilcox Technical Services Pantex LLC During Fiscal Year 2013 Through June 30, 2014, Under Department of Energy Contract No. DE-AC54-00AL66620 OAI-V-16-04 February 2016 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 February 12, 2016 MEMORANDUM FOR THE MANAGER, NNSA PRODUCTION OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Assessment Report on

  18. National Geothermal Resource Assessment and Classification |...

    Broader source: Energy.gov (indexed) [DOE]

    will enable lower riskcost deployment of conventional and EGS geothermal power. USGS is also supporting GTP input to DOE National Energy Modeling by providing resource assessment...

  19. Wind Resource Assessment | Open Energy Information

    Open Energy Info (EERE)

    Databases Global Renewable Energy Database Power Technologies Energy Data Book Solar and Wind Energy Resource Assessment (SWERA) System Advisor Model (SAM) Transparent Cost...

  20. Final Review of Safety Assessment Issues at Savannah River Site, August 2011

    SciTech Connect (OSTI)

    Napier, Bruce A.; Rishel, Jeremy P.; Bixler, Nathan E.

    2011-12-15

    At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Though the meeting was prompted initially by suspected issues related to the treatment of surface roughness inherent in the SRS meteorological dataset and its treatment in the MELCOR Accident Consequence Code System Version 2 (MACCS2), various topical areas were discussed that are relevant to performing safety assessments at SRS; this final report addresses these topical areas.

  1. Benchmarking analysis of three multimedia models: RESRAD, MMSOILS, and MEPAS

    SciTech Connect (OSTI)

    Cheng, J.J.; Faillace, E.R.; Gnanapragasam, E.K.

    1995-11-01

    Multimedia modelers from the United States Environmental Protection Agency (EPA) and the United States Department of Energy (DOE) collaborated to conduct a comprehensive and quantitative benchmarking analysis of three multimedia models. The three models-RESRAD (DOE), MMSOILS (EPA), and MEPAS (DOE)-represent analytically based tools that are used by the respective agencies for performing human exposure and health risk assessments. The study is performed by individuals who participate directly in the ongoing design, development, and application of the models. A list of physical/chemical/biological processes related to multimedia-based exposure and risk assessment is first presented as a basis for comparing the overall capabilities of RESRAD, MMSOILS, and MEPAS. Model design, formulation, and function are then examined by applying the models to a series of hypothetical problems. Major components of the models (e.g., atmospheric, surface water, groundwater) are evaluated separately and then studied as part of an integrated system for the assessment of a multimedia release scenario to determine effects due to linking components of the models. Seven modeling scenarios are used in the conduct of this benchmarking study: (1) direct biosphere exposure, (2) direct release to the air, (3) direct release to the vadose zone, (4) direct release to the saturated zone, (5) direct release to surface water, (6) surface water hydrology, and (7) multimedia release. Study results show that the models differ with respect to (1) environmental processes included (i.e., model features) and (2) the mathematical formulation and assumptions related to the implementation of solutions (i.e., parameterization).

  2. Macromodel for assessing residential concentrations of combustion-generated pollutants: Model development and preliminary predictions for CO, NO/sub 2/, and respirable suspended particles

    SciTech Connect (OSTI)

    Traynor, G.W.; Aceti, J.C.; Apte, M.G.; Smith, B.V.; Green, L.L.; Smith-Reiser, A.; Novak, K.M.; Moses, D.O.

    1989-01-01

    A simulation model (also called a ''macromodel'') has been developed to predict residential air pollutant concentration distributions for specified populations. The model inputs include the market penetration of pollution sources, pollution source characteristics (e.g., emission rates, source usage rates), building characteristics (e.g., house volume, air exchange rates), and meteorological parameters (e.g., outside temperature). Four geographically distinct regions of the US have been modeled using Monte Carlo and deterministic simulation techniques. Single-source simulations were also conducted. The highest predicted CO and NO/sub 2/ residential concentrations were associated with the winter-time use of unvented gas and kerosene space heaters. The highest predicted respirable suspended particulate concentrations were associated with indoor cigarette smoking and the winter-time use of non-airtight wood stoves, radiant kerosene heaters, convective unvented gas space heaters, and oil forced-air furnaces. Future field studies in this area should (1) fill information gaps identified in this report, and (2) collect information on the macromodel input parameters to properly interpret the results. It is almost more important to measure the parameters that affect indoor concentration than it is to measure the concentrations themselves.

  3. Surface cleanliness measurement procedure

    DOE Patents [OSTI]

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.

  4. An Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of Coupling Algorithms for Nuclear Reactor Core Physics Simulations $ Steven Hamilton a,∗ , Mark Berrill a , Kevin Clarno a , Roger Pawlowski b a Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 U.S.A. b Sandia National Laboratories, MS 0316, P.O. Box 5800, Albuquerque, NM 87185 U.S.A. Abstract This paper evaluates the performance of multiphysics coupling algorithms on a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form

  5. ASSESSMENT REPORT

    Energy Savers [EERE]

    Alliance for Sustainable Energy LLC During Fiscal Years 2012 and 2013 Under Department of Energy Contract No. DE-AC36-08GO28308 OAI-V-16-06 March 2016 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 March 11, 2016 MEMORANDUM FOR THE DIRECTOR, GOLDEN FIELD OFFICE FROM: Jack Rouch Deputy Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Assessment Report on "Audit Coverage

  6. ASSESSMENT REPORT

    Energy Savers [EERE]

    Brookhaven Science Associates LLC During Fiscal Years 2012 and 2013 Under Department of Energy Contract No. DE-AC02-98CH10886 OAI-V-16-03 January 2016 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 January 19, 2016 MEMORANDUM FOR THE MANAGER, BROOKHAVEN SITE OFFICE FROM: Jack Rouch, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Assessment Report: "Audit Coverage of Cost

  7. A comparison of geospatially modeled fire behavior and potential application to fire and fuels management for the Savannah River Site.

    SciTech Connect (OSTI)

    Kurth, Laurie; Hollingsworth, LaWen; Shea, Dan

    2011-12-20

    This study evaluates modeled fire behavior for the Savannah River Site in the Atlantic Coastal Plain of the southeastern U.S. using three data sources: FCCS, LANDFIRE, and SWRA. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the U.S. using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern U.S. using satellite imagery.

  8. Rough surface reconstruction for ultrasonic NDE simulation

    SciTech Connect (OSTI)

    Choi, Wonjae; Shi, Fan; Lowe, Michael J. S.; Skelton, Elizabeth A.; Craster, Richard V.

    2014-02-18

    The reflection of ultrasound from rough surfaces is an important topic for the NDE of safety-critical components, such as pressure-containing components in power stations. The specular reflection from a rough surface of a defect is normally lower than it would be from a flat surface, so it is typical to apply a safety factor in order that justification cases for inspection planning are conservative. The study of the statistics of the rough surfaces that might be expected in candidate defects according to materials and loading, and the reflections from them, can be useful to develop arguments for realistic safety factors. This paper presents a study of real rough crack surfaces that are representative of the potential defects in pressure-containing power plant. Two-dimensional (area) values of the height of the roughness have been measured and their statistics analysed. Then a means to reconstruct model cases with similar statistics, so as to enable the creation of multiple realistic realizations of the surfaces, has been investigated, using random field theory. Rough surfaces are reconstructed, based on a real surface, and results for these two-dimensional descriptions of the original surface have been compared with those from the conventional model based on a one-dimensional correlation coefficient function. In addition, ultrasonic reflections from them are simulated using a finite element method.

  9. Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure

    SciTech Connect (OSTI)

    Rosen, Evelyn L.; Gilmore, Keith; Sawvel, April M.; Hammack, Aaron T.; Doris, Sean E.; Aloni, Shaul; Altoe, Virginia; Nordlund, Dennis; Weng, Tsu -Chien; Sokaras, Dimosthenis; Cohen, Bruce E.; Urban, Jeffrey J.; Ogletree, D. Frank; Milliron, Delia J.; Prendergast, David; Helms, Brett A.

    2015-07-28

    Our understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail. This unique ability stems from their elemental specificity and the sensitivity of their d-orbital level alignment to local coordination environment, which can be assessed spectroscopically. Re-surfacing cadmium and lead chalcogenide nanocrystals with iron- or ruthenium-based molecular beacons is readily accomplished with trimethylsilylated cyclopentadienyl metal carbonyls. For PbSe nanocrystals with iron-based beacons, we show how core-level X-ray spectroscopies and DFT calculations enrich our understanding of both charge and atomic reorganization at the surface when beacons are bound.

  10. Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosen, Evelyn L.; Gilmore, Keith; Sawvel, April M.; Hammack, Aaron T.; Doris, Sean E.; Aloni, Shaul; Altoe, Virginia; Nordlund, Dennis; Weng, Tsu -Chien; Sokaras, Dimosthenis; et al

    2015-07-28

    Our understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail. This unique ability stems from their elemental specificity and the sensitivity of their d-orbital level alignment to local coordination environment, which can be assessed spectroscopically. Re-surfacing cadmium and lead chalcogenide nanocrystals with iron- or ruthenium-based molecular beacons ismore » readily accomplished with trimethylsilylated cyclopentadienyl metal carbonyls. For PbSe nanocrystals with iron-based beacons, we show how core-level X-ray spectroscopies and DFT calculations enrich our understanding of both charge and atomic reorganization at the surface when beacons are bound.« less

  11. Chevron: Refinery Identifies $4.4 Million in Annual Savings by Using Process Simulation Models to Perform Energy-Efficiency Assessment

    SciTech Connect (OSTI)

    2004-05-01

    In an energy-efficiency study at its refinery near Salt Lake City, Utah, Chevron focused on light hydrocarbons processing. The company found it could recover hydrocarbons from its fuel gas system and sell them. By using process simulation models of special distillation columns and associated reboilers and condensers, Chevron could predict the performance of potential equipment configuration changes and process modifications. More than 25,000 MMBtu in natural gas could be saved annually if a debutanizer upgrade project and a new saturated gas plant project were completed. Together, these projects would save $4.4 million annually.

  12. Comprehensive Energy Assessment: EE and RE Project Optimization Modeling for United States Pacific Command (USPACOM) American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance

    SciTech Connect (OSTI)

    Brigantic, Robert T.; Papatyi, Anthony F.; Perkins, Casey J.

    2010-09-30

    This report summarizes a study and corresponding model development conducted in support of the United States Pacific Command (USPACOM) as part of the Federal Energy Management Program (FEMP) American Reinvestment and Recovery Act (ARRA). This research was aimed at developing a mathematical programming framework and accompanying optimization methodology in order to simultaneously evaluate energy efficiency (EE) and renewable energy (RE) opportunities. Once developed, this research then demonstrated this methodology at a USPACOM installation - Camp H.M. Smith, Hawaii. We believe this is the first time such an integrated, joint EE and RE optimization methodology has been constructed and demonstrated.

  13. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process: Laboratory scale studies modelling and technical assessment. Final report, [October 1, 1988--June 30, 1993

    SciTech Connect (OSTI)

    Comolli, A.G.; Johanson, E.S.; Lee, L.K.; Popper, G.A.; Smith, T.O.

    1993-06-01

    Reported herein are the details and results of Laboratory-Scale experiments using sub-bituminous and bituminous coal concluded at Hydrocarbon Research, Inc., under DOE Contract No. AC22-88PCB8818 during the period October 1, 1988 to June 30, 1993. The work described in this report is primarily concerned with tests on a Laboratory Scale primarily using microautoclaves. Experiments were conducted evaluating coal, solvents, start-up oils, catalysts, thermal treatments, C0{sub 2} addition and sulfur compound effects. Other microautoclave tests are included in the companion topical reports for this contract, DE-88818-TOP-01 & 02 on Sub-Bituminous and Bituminous Bench-Scale and PDU activities. In addition to the Laboratory Scale Studies, kinetic data and modelling results from Bench-Scale and Microautoclave tests are interpreted and presented along with some economic updates and sensitivity studies.

  14. Coupling of Realistic Rate Estimates with Genomics for Assessing Contaminant Attenuation and Long-Term Plume Containment - Task 4: Modeling - Final Report

    SciTech Connect (OSTI)

    Robert C. Starr

    2005-10-31

    Trichloroethene (TCE), a common groundwater contaminant, can be degraded under certain conditions by microorganisms that occur naturally in the subsurface. TCE can be degraded under anaerobic conditions to less chlorinated compounds and ultimately into the non-chlorinated, non-hazardous end product, ethene, via anaerobic reductive dechlorination (ARD). ARD is widely recognized as a TCE degradation mechanism, and occurs in active groundwater remediation and can occur during monitored natural attenuation (MNA). MNA relies on natural processes, such as dispersion and degradation, to reduce contaminant concentrations to acceptable levels without active human intervention other than monitoring. TCE can also be biodegraded under aerobic conditions via cometabolism, in which microbial enzymes produced for other purposes fortuitously also react with TCE. In cometabolism, TCE is oxidized directly to non-hazardous products. Cometabolism as a TCE-degrading process under aerobic conditions is less well known than ARD. Natural attenuation is often discounted as a TCE remedial alternative in aerobic conditions based on the paradigm that TCE is biodegradable only under anaerobic conditions. In contrast to this paradigm, TCE was shown to degrade relative to conservative co-contaminants at an environmentally significant rate in a large (approximately 3 km long) TCE plume in aerobic groundwater at the Idaho National Laboratory (INL), and the degradation mechanism was shown to be cometabolism. MNA was selected as the remedy for most of this plume, resulting in a considerable cost savings relative to conventional remedial methods. To determine if cometabolism might be a viable remedy at other sites with TCE-contaminated aerobic groundwater, TCE plumes at Department of Energy (DOE) facilities were screened to evaluate whether TCE commonly degrades in aerobic groundwater, and if degradation rates are fast enough that natural attenuation could be a viable remedy. One hundred and twenty seven plumes at 24 DOE facilities were screened, and 14 plumes were selected for detailed examination. In the plumes selected for further study, spatial changes in the concentration of a conservative co-contaminant were used to compensate for the effects of mixing and temporal changes in TCE release from the contaminant source. Decline in TCE concentration along a flow path in excess of the co contaminant concentration decline was attributed to cometabolic degradation. This study indicated that TCE was degraded in 9 of the 14 plumes examined, with first order degradation half-lives ranging from about 1 to 12 years. TCE degradation in about two-thirds of the plumes examined suggests that cometabolism of TCE in aerobic groundwater is a common occurrence, in contrast to the conventional wisdom that TCE is recalcitrant in aerobic groundwater. The degradation half-life values calculated in this study are short enough that natural attenuation may be a viable remedy in many aerobic plumes. Computer modeling of groundwater flow and contaminant transport and degradation is frequently used to predict the evolution of groundwater plumes, and for evaluating natural attenuation and other remedial alternatives. An important aspect of a computer model is the mathematical approach for describing degradation kinetics. A common approach is to assume that degradation occurs as a first-order process. First order kinetics are easily incorporated into transport models and require only a single value (a degradation half-life) to describe reaction kinetics. The use of first order kinetics is justified in many cases because more elaborate kinetic equations often closely approximate first order kinetics under typical field conditions. A previous modeling study successfully simulated the INL TCE plume using first order degradation kinetics. TCE cometabolism is the result of TCE reacting with microbial enzymes that were produced for other purposes, such as oxidizing a growth substrate to obtain energy. Both TCE and the growth substrate compete for enzyme reactive sites, and the presence of

  15. Improving in vitro Sertoli cell/gonocyte co-culture model for assessing male reproductive toxicity: Lessons learned from comparisons of cytotoxicity versus genomic responses to phthalates

    SciTech Connect (OSTI)

    Yu Xiaozhong; Hong, Sung Woo; Moreira, Estefania G.; Faustman, Elaine M.

    2009-09-15

    Gonocytes exist in the neonatal testis and represent a transient population of male germ-line stem cells. It has been shown that stem cell self-renewal and progeny production is probably controlled by the neighboring differentiated cells and extracellular matrix (ECM) in vivo known as niches. Recently, we developed an in vitro three-dimensional (3D) Sertoli cell/gonocyte co-culture (SGC) model with ECM overlay, which creates an in vivo-like niche and supports germ-line stem cell functioning within a 3D environment. In this study, we applied morphological and cytotoxicity evaluations, as well as microarray-based gene expression to examine the effects of different phthalate esters (PE) on this model. Known in vivo male developmentally toxic PEs (DTPE) and developmentally non-toxic PEs (DNTPE) were evaluated. We observed that DTPE induced significantly greater dose-dependent morphological changes, a decrease in cell viability and an increase in cytotoxicity compared to those treated with DNTPE. Moreover, the gene expression was more greatly altered by DTPE than by DNTPE and non-supervised cluster analysis allowed the discrimination of DTPE from the DNTPE. Our systems-based GO-Quant analysis showed significant alterations in the gene pathways involved in cell cycle, phosphate transport and apoptosis regulation with DTPE but not with DNTPE treatment. Disruptions of steroidogenesis related-gene expression such as Star, Cyp19a1, Hsd17b8, and Nr4a3 were observed in the DTPE group, but not in the DNTPE group. In summary, our observation on cell viability, cytotoxicity, and microarray-based gene expression analysis induced by PEs demonstrate that our in vitro 3D-SGC system mimicked in vivo responses for PEs and suggests that the 3D-SGC system might be useful in identifying developmental reproductive toxicants.

  16. Surface modification to waveguides

    DOE Patents [OSTI]

    Timberlake, John R. (Allentown, NJ); Ruzic, David N. (Kendall Park, NJ); Moore, Richard L. (Princeton, NJ); Cohen, Samuel A. (Pennington, NJ); Manos, Dennis M. (Lawrenceville, NJ)

    1983-01-01

    A method of treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1.mu. to 5.mu. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  17. Surface modification to waveguides

    DOE Patents [OSTI]

    Timberlake, J.R.; Ruzic, D.N.; Moore, R.L.; Cohen, S.A.; Manos, D.M.

    1982-06-16

    A method is described for treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1..mu.. to 5..mu.. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  18. Incompressible Flows Free Surfaces

    Energy Science and Technology Software Center (OSTI)

    1992-02-01

    NASA-VOF3D is a three-dimensional, transient, free surface, incompressible fluid dynamics program. It is specifically designed to calculate confined flows in a low gravity environment in which surface physics must be accurately treated. It allows multiple free surfaces with surface tension and wall adhesion and includes a partial cell treatment that allows curved boundaries and internal obstacles. Variable mesh spacing is permitted in all three coordinate directions. Boundary conditions available are rigid free-slip wall, rigid no-slipmore » wall, continuative, periodic, and specified pressure outflow boundary.« less

  19. ARM - Measurement - Surface albedo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    albedo ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface albedo The fraction of incoming solar radiation at a surface (i.e. land, cloud top) that is effectively reflected by that surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of

  20. Appendix PORSURF: Porosity Surface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BRAGFLO constrained to fall on this surface. Various techniques described in Freeze, Larson, and Davies (Freeze, Larson, and Davies 1995) were used to check the validity of this...

  1. ARM - Measurement - Sea surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sea surface temperature The temperature of sea water near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  2. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures

    SciTech Connect (OSTI)

    Rettmann, Maryam E. Holmes, David R.; Camp, Jon J.; Cameron, Bruce M.; Robb, Richard A.; Kwartowitz, David M.; Gunawan, Mia; Johnson, Susan B.; Packer, Douglas L.; Dalegrave, Charles; Kolasa, Mark W.

    2014-02-15

    Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamicin vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved landmark-only registration provided the noise in the surface points is not excessively high. Increased variability on the landmark fiducials resulted in increased registration errors; however, refinement of the initial landmark registration by the surface-based algorithm can compensate for small initial misalignments. The surface-based registration algorithm is quite robust to noise on the surface points and continues to improve landmark registration even at high levels of noise on the surface points. Both the canine and patient studies also demonstrate that combined landmark and surface registration has lower errors than landmark registration alone. Conclusions: In this work, we describe a model for evaluating the impact of noise variability on the input parameters of a registration algorithm in the context of cardiac ablation therapy. The model can be used to predict both registration error as well as assess which inputs have the largest effect on registration accuracy.

  3. Ecological Risk Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ecological Risk Assessments Ecological Risk Assessments Ecological risk assessment is the appraisal of potential adverse effects of exposure to contaminants on plants and animals....

  4. Far-infrared surface emissivity and climate

    SciTech Connect (OSTI)

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-11-03

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 ?m, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.82.0 W m? difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2K, 10 W m?, and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.

  5. Explanation of Significant Differences Between Models used to Assess Groundwater Impacts for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and Greater-Than-Class C-Like Waste Environmental Impact Statement (DOE/EIS-0375-D) and the

    SciTech Connect (OSTI)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-08-01

    Models have been used to assess the groundwater impacts to support the Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE-EIS 2011) for a facility sited at the Idaho National Laboratory and the Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project (INL 2011). Groundwater impacts are primarily a function of (1) location determining the geologic and hydrologic setting, (2) disposal facility configuration, and (3) radionuclide source, including waste form and release from the waste form. In reviewing the assumptions made between the model parameters for the two different groundwater impacts assessments, significant differences were identified. This report presents the two sets of model assumptions and discusses their origins and implications for resulting dose predictions. Given more similar model parameters, predicted doses would be commensurate.

  6. Solar absorption surface panel

    DOE Patents [OSTI]

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  7. How do energetic ions damage metallic surfaces?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Osetskiy, Yury N.; Calder, Andrew F.; Stoller, Roger E.

    2015-02-20

    Surface modification under bombardment by energetic ions observed under different conditions in structural and functional materials and can be either unavoidable effect of the conditions or targeted modification to enhance materials properties. Understanding basic mechanisms is necessary for predicting properties changes. The mechanisms activated during ion irradiation are of atomic scale and atomic scale modeling is the most suitable tool to study these processes. In this paper we present results of an extensive simulation program aimed at developing an understanding of primary surface damage in iron by energetic particles. We simulated 25 keV self-ion bombardment of Fe thin films withmore(100) and (110) surfaces at room temperature. A large number of simulations, ~400, were carried out allow a statistically significant treatment of the results. The particular mechanism of surface damage depends on how the destructive supersonic shock wave generated by the displacement cascade interacts with the free surface. Three basic scenarios were observed, with the limiting cases being damage created far below the surface with little or no impact on the surface itself, and extensive direct surface damage on the timescale of a few picoseconds. In some instances, formation of large vacancy loops beneath the free surface was observed, which may explain some earlier experimental observations.less

  8. Chemistry of SOFC Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior

    SciTech Connect (OSTI)

    Yildiz, Bilge; Heski, Clemens

    2013-08-31

    1) Electron tunneling characteristics on La0.7Sr0.3MnO3 (LSM) thin-film surfaces were studied up to 580oC in 10-3mbar oxygen pressure, using scanning tunneling microscopy/ spectroscopy (STM/STS). A threshold-like drop in the tunneling current was observed at positive bias in STS, which is interpreted as a unique indicator for the activation polarization in cation oxygen bonding on LSM cathodes. Sr-enrichment was found on the surface at high temperature using Auger electron spectroscopy, and was accompanied by a decrease in tunneling conductance in STS. This suggests that Sr-terminated surfaces are less active for electron transfer in oxygen reduction compared to Mn-terminated surfaces on LSM. 2) Effects of strain on the surface cation chemistry and the electronic structure are important to understand and control for attaining fast oxygen reduction kinetics on transition metal oxides. Here, we demonstrate and mechanistically interpret the strain coupling to Sr segregation, oxygen vacancy formation, and electronic structure on the surface of La0.7Sr0.3MnO3 (LSM) thin films as a model system. Our experimental results from x-ray photoelectron spectroscopy and scanning tunneling spectroscopy are discussed in light of our first principles-based calculations. A stronger Sr enrichment tendency and a more facile oxygen vacancy formation prevail for the tensile strained LSM surface. The electronic structure of the tensile strained LSM surface exhibits a larger band gap at room temperature, however, a higher tunneling conductance near the Fermi level than the compressively strained LSM at elevated temperatures in oxygen. Our findings suggest lattice strain as a key parameter to tune the reactivity of perovskite transition metal oxides with oxygen in solid oxide fuel cell cathodes. 3) Cation segregation on perovskite oxide surfaces affects vastly the oxygen reduction activity and stability of solid oxide fuel cell (SOFC) cathodes. A unified theory that explains the physical origins of this phenomenon is therefore needed for designing cathode materials with optimal surface chemistry. We quantitatively assessed the elastic and electrostatic interactions of the dopant with the surrounding lattice as the key driving forces for segregation on model perovskite compounds, LnMnO3 (host cation Ln=La, Sm). Our approach combines surface chemical analysis with X-ray photoelectron and Auger electron spectroscopy on model dense thin films, and computational analysis with density functional theory (DFT) calculations and analytical models. Elastic energy differences were systematically induced in the system by varying the radius of the selected dopants (Ca, Sr, Ba) with respect to the host cations (La, Sm) while retaining the same charge state. Electrostatic energy differences were introduced by varying the distribution of charged oxygen and cation vacancies in our models. Varying the oxygen chemical potential in our experiments induced changes in both the elastic energy and electrostatic interactions. Our results quantitatively demonstrate that the mechanism of dopant segregation on perovskite oxides includes both the elastic and electrostatic energy contributions. A smaller size mismatch between the host and dopant cations and a chemically expanded lattice were found to reduce the segregation level of the dopant and to enable more stable cathode surfaces. Ca-doped LaMnO3 was found to have the most stable surface composition with the least cation segregation among the compositions surveyed. The diffusion kinetics of the larger dopants, Ba and Sr, was found to be slower, and can kinetically trap the segregation at reduced temperatures despite the larger elastic energy driving force. Lastly, scanning probe image-contrast showed that the surface chemical heterogeneities made of dopant oxides upon segregation were electronically insulating. The consistency between the results obtained from experiments, DFT calculations and analytical theory in this work provides a predictive capability to tailor the cathode surface compositions for high-performance SO

  9. Multiscale Thermohydrologic Model

    SciTech Connect (OSTI)

    T. Buscheck

    2004-10-12

    The purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. Thus, the goal is to predict the range of possible thermal-hydrologic conditions across the repository; this is quite different from predicting a single expected thermal-hydrologic response. The MSTHM calculates the following thermal-hydrologic parameters: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes (Table 1-1). These thermal-hydrologic parameters are required to support ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]). The thermal-hydrologic parameters are determined as a function of position along each of the emplacement drifts and as a function of waste package type. These parameters are determined at various reference locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert. The parameters are also determined at various defined locations in the adjoining host rock. The MSTHM uses data obtained from the data tracking numbers (DTNs) listed in Table 4.1-1. The majority of those DTNs were generated from the following analyses and model reports: (1) ''UZ Flow Model and Submodels'' (BSC 2004 [DIRS 169861]); (2) ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004); (3) ''Calibrated Properties Model'' (BSC 2004 [DIRS 169857]); (4) ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]); (5) ''Thermal Conductivity of the Non-Repository Lithostratigraphic Layers'' (BSC 2004 [DIRS 170033]); (6) ''Ventilation Model and Analysis Report'' (BSC 2004 [DIRS 169862]); (7) ''Heat Capacity Analysis Report'' (BSC 2004 [DIRS 170003]).

  10. Far-infrared surface emissivity and climate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-11-03

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate modelmore » projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.« less

  11. Fluoride adsorption on goethite in relation to different types of surface sites

    SciTech Connect (OSTI)

    Hiemstra, T.; Van Riemsdijk, W.H.

    2000-05-01

    Metal (hydr)oxides have different types of surface groups. Fluoride ions have been used as a probe to assess the number of surface sites. The authors have studied the F{sup {minus}} adsorption on goethite by measuring the F{sup {minus}} and H{sup +} interaction and F{sup {minus}} adsorption isotherms. Fluoride ions exchange against singly coordinated surface hydroxyls at low F{sup {minus}} concentrations. At higher concentrations also the doubly coordinated OH groups are involved. The replacement of a surface OH{sup {minus}} by F{sup {minus}} suggests that all F charge ({minus}1) is located at the surface in contrast to oxyanions which have a charge distribution in the interface due to the binding structure in which the anion only partially coordinates with the surface. Analysis of their F{sup {minus}} data with the CD-MUSIC approach shows that the formation of the fluoride surface complex is accompanied by a redistribution of charge. This is supposed to be due to a net switch in the H bonding as a result of the change of the type of surface complex from donating (FeOH, FeOH{sub 2}) to proton accepting (FeF). The modeled redistribution of charge is approximately equivalent with the change of a donating H bond into an accepting H bond. At high F{sup {minus}} concentrations precipitation of F{sup {minus}}, as for instance FeF{sub 3}(s), may occur. The rate of formation is catalyzed by the presence of high electrolyte concentrations.

  12. CRAD, Self-Assessment Program Assessment Plan | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Self-Assessment Program Assessment Plan CRAD, Self-Assessment Program Assessment Plan ... assessment supports management's goal to protect people and the environment from harm. ...

  13. The global gridded crop model intercomparison: Data and modeling protocols for Phase 1 (v1.0)

    SciTech Connect (OSTI)

    Elliott, J.; Müller, C.; Deryng, D.; Chryssanthacopoulos, J.; Boote, K. J.; Büchner, M.; Foster, I.; Glotter, M.; Heinke, J.; Iizumi, T.; Izaurralde, R. C.; Mueller, N. D.; Ray, D. K.; Rosenzweig, C.; Ruane, A. C.; Sheffield, J.

    2015-02-11

    We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project consist of global simulations of yields, phenologies, and many land-surface fluxes using 12–15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification of key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.

  14. The global gridded crop model intercomparison: Data and modeling protocols for Phase 1 (v1.0)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elliott, J.; Müller, C.; Deryng, D.; Chryssanthacopoulos, J.; Boote, K. J.; Büchner, M.; Foster, I.; Glotter, M.; Heinke, J.; Iizumi, T.; et al

    2015-02-11

    We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project consist of global simulations of yields, phenologies, and many land-surface fluxes using 12–15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification ofmore » key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.« less

  15. Ozone Risk Assessment Utilities

    Energy Science and Technology Software Center (OSTI)

    1999-08-10

    ORAMUS is a user-friendly, menu-driven software system that calculates and displays user-selected risk estimates for health effects attributable to short-term exposure to tropospheric ozone. Inputs to the risk assessment are estimates of exposure to ozone and exposure-response relationships to produce overall risk estimates in the form of probability distributions. Three fundamental models are included: headcount risk, benchmark risk, and hospital admissions. Exposure-response relationships are based on results of controlled human exposure studies. Exposure estimates aremore » based on the EPA''s probabilistic national ambient air quality standards (NAAQS) exposure model, pNEM/Osub3, which simulates air quality associated with attainment of alternative NAAQS. Using ORAMUS, risk results for 27 air quality scenarios, air quality in 9 urban areas, 33 health endpoints, and 4 chronic health endpoints can be calculated.« less

  16. The Fidelity of Ocean Models With Explicit Eddies (Chapter 17)

    SciTech Connect (OSTI)

    McClean, J; Jayne, S; Maltrud, M; Ivanova, D

    2007-08-01

    Current practices within the oceanographic community have been reviewed with regard to the use of metrics to assess the realism of the upper-ocean circulation, ventilation processes diagnosed by time-evolving mixed layer depth and mode water formation, and eddy heat fluxes in large-scale fine resolution ocean model simulations. We have striven to understand the fidelity of these simulations in the context of their potential use in future fine-resolution coupled climate system studies. A variety of methodologies are used to assess the veracity of the numerical simulations. Sea surface height variability and the location of western boundary current paths from altimetry have been used routinely as basic indicators of fine-resolution model performance. Drifters and floats have also been used to provide pseudo-Eulerian measures of the mean and variability of surface and sub-surface flows, while statistical comparisons of observed and simulated means have been carried out using James tests. Probability density functions have been used to assess the Gaussian nature of the observed and simulated flows. Length and time scales have been calculated in both Eulerian and Lagrangian frameworks from altimetry and drifters, respectively. Concise measures of multiple model performance have been obtained from Taylor diagrams. The time-evolution of the mixed layer depth at monitoring stations has been compared with simulated time series. Finally, eddy heat fluxes are compared to climatological inferences.

  17. SURFACE GEOPHYSICAL EXPLORATION - COMPENDIUM DOCUMENT

    SciTech Connect (OSTI)

    RUCKER DF; MYERS DA

    2011-10-04

    This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

  18. Multifunctional thin film surface

    DOE Patents [OSTI]

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  19. Autonomie Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Autonomie Model (Argonne National Laboratory) Objectives Perform simulations to assess the energy consumption and performance of advanced component and powertrain technologies in a vehicle system context. Key Attributes & Strengths Developed over the past 15 years, Autonomie has been validated using component and vehicle test data, providing confidence in the results. Thus, the tool is widely accepted by the industry and has been licensed to more than 150 organizations worldwide. The model

  20. Handsfree Surface Analysis

    Energy Science and Technology Software Center (OSTI)

    2006-11-01

    The HANDSFREE SURFACE ANALYSIS software code enables unattended analysis of surfaces by desorption electrospray (DESI) and liquid-junction surface sampling probe (SSP) mass spectrometry. The software allows automated lane scanning, imaging (e.g. lane rastering), spot and array sampling, and array scanning methods by controlling the movement of the sample attached to a computer-controlled stage. The software is able to collect, visualize and analyze mass spectrometry data real-time for surface analysis purposes by interacting with mass spectrometrymore » instrumentation software. The software also enables data post processing for imaging and other analytical purposes. The software also contains image analysis approaches to control the sampling capillary-to-surface distance when used with DESI, and for automated formation and real-time reoptimization of the sampling probe-to-surface liquid microjunction when used with SSP. Control of these distances is essential to automated, hands-free operation of a DESI or SSP mass spectrometry system.« less

  1. Surface-electronic-state effects in electron emission from the Be(0001) surface

    SciTech Connect (OSTI)

    Archubi, C. D.; Gravielle, M. S.; Silkin, V. M.

    2011-07-15

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  2. New Surface Meteorological Measurements at SGP,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM, March 22 - 26, 2004 1 New Surface Meteorological Measurements at SGP, and Their Use for Assessing Radiosonde Measurement Accuracy L.M. Miloshevich National Center for Atmospheric Research Boulder, Colorado B.M. Lesht and M. Ritche Argonne National Laboratory Argonne, Illinois Introduction Several recent ARM investigations have been directed toward characterizing and improving the accuracy of ARM radiosonde water vapor measurements. Tobin et al. (2002) showed that calculating the downwelling

  3. Facility Environmental Vulnerability Assessment

    SciTech Connect (OSTI)

    Van Hoesen, S.D.

    2001-07-09

    From mid-April through the end of June 2001, a Facility Environmental Vulnerability Assessment (FEVA) was performed at Oak Ridge National Laboratory (ORNL). The primary goal of this FEVA was to establish an environmental vulnerability baseline at ORNL that could be used to support the Laboratory planning process and place environmental vulnerabilities in perspective. The information developed during the FEVA was intended to provide the basis for management to initiate immediate, near-term, and long-term actions to respond to the identified vulnerabilities. It was expected that further evaluation of the vulnerabilities identified during the FEVA could be carried out to support a more quantitative characterization of the sources, evaluation of contaminant pathways, and definition of risks. The FEVA was modeled after the Battelle-supported response to the problems identified at the High Flux Beam Reactor at Brookhaven National Laboratory. This FEVA report satisfies Corrective Action 3A1 contained in the Corrective Action Plan in Response to Independent Review of the High Flux Isotope Reactor Tritium Leak at the Oak Ridge National Laboratory, submitted to the Department of Energy (DOE) ORNL Site Office Manager on April 16, 2001. This assessment successfully achieved its primary goal as defined by Laboratory management. The assessment team was able to develop information about sources and pathway analyses although the following factors impacted the team's ability to provide additional quantitative information: the complexity and scope of the facilities, infrastructure, and programs; the significantly degraded physical condition of the facilities and infrastructure; the large number of known environmental vulnerabilities; the scope of legacy contamination issues [not currently addressed in the Environmental Management (EM) Program]; the lack of facility process and environmental pathway analysis performed by the accountable line management or facility owner; and poor facility and infrastructure drawings. The assessment team believes that the information, experience, and insight gained through FEVA will help in the planning and prioritization of ongoing efforts to resolve environmental vulnerabilities at UT-Battelle--managed ORNL facilities.

  4. Demand Response Quick Assessment Tool

    Energy Science and Technology Software Center (OSTI)

    2008-12-01

    DRQAT (Demand Response Quick Assessment Tool) is the tool for assessing demand response saving potentials for large commercial buildings. This tool is based on EnergyPlus simulations of prototypical buildings and HVAC equipment. The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. The assessment tools will predict the energy and demand savings, the economic savings, and the thermal comfor impact for various demand responsive strategies.more » Users of the tools will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tools will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points adjustment.« less

  5. Appendix MASS: Performance Assessment Modeling Assumptions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Vaughn, P., M. Lord, J. Garner, and R. MacKinnon. 1995. Memorandum to D.R. Anderson (Subject: FEP Screening Issue GG-1). 10 October 1995. ERMS 230791. Albuquerque, NM: Sandia ...

  6. Dual surface interferometer

    DOE Patents [OSTI]

    Pardue, R.M.; Williams, R.R.

    1980-09-12

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  7. Compliant layer chucking surface

    DOE Patents [OSTI]

    Blaedel, Kenneth L. (Dublin, CA); Spence, Paul A. (Pleasanton, CA); Thompson, Samuel L. (Pleasanton, CA)

    2004-12-28

    A method and apparatus are described wherein a thin layer of complaint material is deposited on the surface of a chuck to mitigate the deformation that an entrapped particle might cause in the part, such as a mask or a wafer, that is clamped to the chuck. The harder particle will embed into the softer layer as the clamping pressure is applied. The material composing the thin layer could be a metal or a polymer for vacuum or electrostatic chucks. It may be deposited in various patterns to affect an interrupted surface, such as that of a "pin" chuck, thereby reducing the probability of entrapping a particle.

  8. Surface controlled blade stabilizer

    DOE Patents [OSTI]

    Russell, Larry R. (6025 Edgemor, Suite C, Houston, TX 77081)

    1983-01-01

    Drill string stabilizer apparatus, controllable to expand and retract entirely from the surface by control of drill string pressure, wherein increase of drill string pressure from the surface closes a valve to create a piston means which is moved down by drill string pressure to expand the stabilizer blades, said valve being opened and the piston moving upward upon reduction of drill string pressure to retract the stabilizer blades. Upward and downward movements of the piston and an actuator sleeve therebelow are controlled by a barrel cam acting between the housing and the actuator sleeve.

  9. ANALYZING SURFACE ROUGHNESS DEPENDENCE OF LINEAR RF LOSSES

    SciTech Connect (OSTI)

    Reece, Charles E.; Kelley, Michael J.; Xu, Chen

    2012-09-01

    Topographic structure on Superconductivity Radio Frequency (SRF) surfaces can contribute additional cavity RF losses describable in terms of surface RF reflectivity and absorption indices of wave scattering theory. At isotropic homogeneous extent, Power Spectrum Density (PSD) of roughness is introduced and quantifies the random surface topographic structure. PSD obtained from different surface treatments of niobium, such Buffered Chemical Polishing (BCP), Electropolishing (EP), Nano-Mechanical Polishing (NMP) and Barrel Centrifugal Polishing (CBP) are compared. A perturbation model is utilized to calculate the additional rough surface RF losses based on PSD statistical analysis. This model will not consider that superconductor becomes normal conducting at fields higher than transition field. One can calculate the RF power dissipation ratio between rough surface and ideal smooth surface within this field range from linear loss mechanisms.

  10. Sandia Energy - Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Assessment Home Stationary Power Energy Conversion Efficiency Water Power Resource Assessment Resource AssessmentAshley Otero2016-01-05T19:06:04+00:00 Characterizing wave...

  11. Fluid Dynamics with Free Surfaces

    Energy Science and Technology Software Center (OSTI)

    1992-02-01

    RIPPLE is a two-dimensional, transient, free surface incompressible fluid dynamics program. It allows multiple free surfaces with surface tension and wall adhesion forces and has a partial cell treatment which allows curved boundaries and interior obstacles.

  12. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOENETL-20151710 U.S. Department of Energy 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM 2 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM ...

  13. ORISE: Hazard Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    internal and external radiation dose assessments. Our capabililities include: Linkage of exposure data to site rosters Assessment of retrospective exposures Preparation of...

  14. Northwest Energy Market Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Northwest Energy Market Assessment Pages Northwest-Energy-Market-Assessment Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects &...

  15. Decontaminating metal surfaces

    DOE Patents [OSTI]

    Childs, E.L.

    1984-01-23

    Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g., >600 g/1 of NaNO/sub 3/, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH < 6.

  16. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile...

  17. National Geothermal Resource Assessment and Classification

    Broader source: Energy.gov [DOE]

    This work will enable lower risk/cost deployment of conventional and EGS geothermal power. USGS is also supporting GTP input to DOE National Energy Modeling by providing resource assessment data by geothermal region as input to GTP supply curves.

  18. Risk assessment in international operations

    SciTech Connect (OSTI)

    Stricklin, Daniela L.

    2008-11-15

    During international peace-keeping missions, a diverse number of non-battle hazards may be encountered, which range from heavily polluted areas, endemic disease, toxic industrial materials, local violence, traffic, and even psychological factors. Hence, elevated risk levels from a variety of sources are encountered during deployments. With the emphasis within the Swedish military moving from national defense towards prioritization of international missions in atypical environments, the risk of health consequences, including long term health effects, has received greater consideration. The Swedish military is interested in designing an optimal approach for assessment of health threats during deployments. The Medical Intelligence group at FOI CBRN Security and Defence in Umea has, on request from and in collaboration with the Swedish Armed Forces, reviewed a variety of international health threat and risk assessment models for military operations. Application of risk assessment methods used in different phases of military operations will be reviewed. An overview of different international approaches used in operational risk management (ORM) will be presented as well as a discussion of the specific needs and constraints for health risk assessment in military operations. This work highlights the specific challenges of risk assessment that are unique to the deployment setting such as the assessment of exposures to a variety of diverse hazards concurrently.

  19. Liftoff Model for MELCOR.

    SciTech Connect (OSTI)

    Young, Michael F.

    2015-07-01

    Aerosol particles that deposit on surfaces may be subsequently resuspended by air flowing over the surface. A review of models for this liftoff process is presented and compared to available data. Based on this review, a model that agrees with existing data and is readily computed is presented for incorporation into a system level code such as MELCOR. Liftoff Model for MELCOR July 2015 4 This page is intentionally blank

  20. NATURAL RESOURCES ASSESSMENT

    SciTech Connect (OSTI)

    D.F. Fenster

    2000-12-11

    The purpose of this report is to summarize the scientific work that was performed to evaluate and assess the occurrence and economic potential of natural resources within the geologic setting of the Yucca Mountain area. The extent of the regional areas of investigation for each commodity differs and those areas are described in more detail in the major subsections of this report. Natural resource assessments have focused on an area defined as the ''conceptual controlled area'' because of the requirements contained in the U.S. Nuclear Regulatory Commission Regulation, 10 CFR Part 60, to define long-term boundaries for potential radionuclide releases. New requirements (proposed 10 CFR Part 63 [Dyer 1999]) have obviated the need for defining such an area. However, for the purposes of this report, the area being discussed, in most cases, is the previously defined ''conceptual controlled area'', now renamed the ''natural resources site study area'' for this report (shown on Figure 1). Resource potential can be difficult to assess because it is dependent upon many factors, including economics (demand, supply, cost), the potential discovery of new uses for resources, or the potential discovery of synthetics to replace natural resource use. The evaluations summarized are based on present-day use and economic potential of the resources. The objective of this report is to summarize the existing reports and information for the Yucca Mountain area on: (1) Metallic mineral and mined energy resources (such as gold, silver, etc., including uranium); (2) Industrial rocks and minerals (such as sand, gravel, building stone, etc.); (3) Hydrocarbons (including oil, natural gas, tar sands, oil shales, and coal); and (4) Geothermal resources. Groundwater is present at the Yucca Mountain site at depths ranging from 500 to 750 m (about 1,600 to 2,500 ft) below the ground surface. Groundwater resources are not discussed in this report, but are planned to be included in the hydrology section of future revisions of the ''Yucca Mountain Site Description'' (CRWMS M&O 2000c).

  1. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea

    Office of Environmental Management (EM)

    Surface, Subsurface and Airborne Electronic Systems | Department of Energy DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Report that assesses possible interference to various kinds of equipment operating in the marine environment where offshore wind farms could be installed. PDF icon

  2. Geologic and geotechnical assessment RFETS Building 371, Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Maryak, M.E.; Wyatt, D.E.; Bartlett, S.F.; Lewis, M.R.; Lee, R.C.

    1995-12-13

    This report describes the review and evaluation of the geological, geotechnical and geophysical data supporting the design basis analysis for the Rocky Flats Environmental Test Site (RFETS) Building 371. The primary purpose of the geologic and geotechnical reviews and assessments described herein are to assess the adequacy of the crustal and near surface rock and soil model used in the seismic analysis of Building 371. This review was requested by the RFETS Seismic Evaluation Program. The purpose was to determine the adequacy of data to support the design basis for Building 371, with respect to seismic loading. The objectives required to meet this goal were to: (1) review techniques used to gather data (2) review analysis and interpretations of the data; and (3) make recommendations to gather additional data if required. Where there were questions or inadequacies in data or interpretation, recommendations were made for new data that will support the design basis analysis and operation of Building 371. In addition, recommendations are provided for a geologic and geophysical assessment for a new facility at the Rocky Flats Site.

  3. Survey of Biomass Resource Assessments and Assessment Capabilities...

    Open Energy Info (EERE)

    Biomass Resource Assessments and Assessment Capabilities in APEC Economies Jump to: navigation, search Logo: Survey of Biomass Resource Assessments and Assessment Capabilities in...

  4. Simulation and Risk Assessment for Carbon Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture and Storage » Simulation and Risk Assessment for Carbon Storage Simulation and Risk Assessment for Carbon Storage Research in simulation and risk assessment is focused on development of advanced simulation models of the subsurface and integration of the results into a risk assessment that includes both technical and programmatic risks. Simulation models are critical for predicting the flow of the CO2 in the target formations, chemical changes that may occur in the reservoir, and

  5. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Final Report DE-EE0005380 - Assessment of Offshore...

  6. Surface and grain boundary scattering in nanometric Cu thin films: A quantitative analysis including twin boundaries

    SciTech Connect (OSTI)

    Barmak, Katayun [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 and Department of Materials Science and Engineering and Materials Research Science and Engineering Center, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Darbal, Amith [Department of Materials Science and Engineering and Materials Research Science and Engineering Center, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Ganesh, Kameswaran J.; Ferreira, Paulo J. [Materials Science and Engineering, The University of Texas at Austin, 1 University Station, Austin, Texas 78712 (United States); Rickman, Jeffrey M. [Department of Materials Science and Engineering and Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Sun, Tik; Yao, Bo; Warren, Andrew P.; Coffey, Kevin R., E-mail: kb2612@columbia.edu [Department of Materials Science and Engineering, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816 (United States)

    2014-11-01

    The relative contributions of various defects to the measured resistivity in nanocrystalline Cu were investigated, including a quantitative account of twin-boundary scattering. It has been difficult to quantitatively assess the impact twin boundary scattering has on the classical size effect of electrical resistivity, due to limitations in characterizing twin boundaries in nanocrystalline Cu. In this study, crystal orientation maps of nanocrystalline Cu films were obtained via precession-assisted electron diffraction in the transmission electron microscope. These orientation images were used to characterize grain boundaries and to measure the average grain size of a microstructure, with and without considering twin boundaries. The results of these studies indicate that the contribution from grain-boundary scattering is the dominant factor (as compared to surface scattering) leading to enhanced resistivity. The resistivity data can be well-described by the combined FuchsSondheimer surface scattering model and MayadasShatzkes grain-boundary scattering model using Matthiessen's rule with a surface specularity coefficient of p?=?0.48 and a grain-boundary reflection coefficient of R?=?0.26.

  7. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  8. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, ... operating in the marine environment where offshore wind farms could be installed. ...

  9. Portsmouth Needs Assessment

    Broader source: Energy.gov [DOE]

    Needs Assessment for former Oak Ridge K-25, Paducah, and Portsmouth Gaseous Diffusion Plant production workers.

  10. Paducah Needs Assessment

    Broader source: Energy.gov [DOE]

    Needs Assessment for former Oak Ridge K-25, Paducah, and Portsmouth Gaseous Diffusion Plant production workers.

  11. Pocked surface neutron detector

    DOE Patents [OSTI]

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  12. Smart, passive sun facing surfaces

    DOE Patents [OSTI]

    Hively, L.M.

    1996-04-30

    An article adapted for selectively utilizing solar radiation comprises an absorptive surface and a reflective surface, the absorptive surface and the reflective surface oriented to absorb solar radiation when the sun is in a relatively low position, and to reflect solar radiation when the sun is in a relatively high position. 17 figs.

  13. Surface decontamination compositions and methods

    DOE Patents [OSTI]

    Wright; Karen E.; Cooper, David C.; Peterman, Dean R.; Demmer, Ricky L.; Tripp, Julia L.; Hull, Laurence C.

    2011-03-29

    Clay-based compositions capable of absorbing contaminants from surfaces or objects having surface faces may be applied to a surface and later removed, the removed clay-based compositions absorbing at least a portion of the contaminant from the surface or object to which it was applied.

  14. Smart, passive sun facing surfaces

    DOE Patents [OSTI]

    Hively, Lee M. (Knoxville, TN)

    1996-01-01

    An article adapted for selectively utilizing solar radiation comprises an absorptive surface and a reflective surface, the absorptive surface and the reflective surface oriented to absorb solar radiation when the sun is in a relatively low position, and to reflect solar radiation when the sun is in a relatively high position.

  15. Surface profiling interferometer

    DOE Patents [OSTI]

    Takacs, Peter Z. (P.O. Box 385, Upton, NY 11973); Qian, Shi-Nan (Hefei Synchrotron Radiation Laboratory, University of Science and, Hefei, Anhui, CN)

    1989-01-01

    The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.

  16. ORISE: Hazard Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazard Assessments The Oak Ridge Institute for Science and Education (ORISE) analyzes accumulated data to identify potential workplace hazards to which individuals or groups of workers may be exposed. ORISE assesses both chemical and radiation exposures, and conducts both internal and external radiation dose assessments. Our capabililities include: Linkage of exposure data to site rosters Assessment of retrospective exposures Preparation of assessment protocols Design and testing of dose

  17. Data Quality Assessment and Control for the ARM Climate Research Facility

    SciTech Connect (OSTI)

    Peppler, R

    2012-06-26

    The mission of the Atmospheric Radiation Measurement (ARM) Climate Research Facility is to provide observations of the earth climate system to the climate research community for the purpose of improving the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their coupling with the Earth's surface. In order for ARM measurements to be useful toward this goal, it is important that the measurements are of a known and reasonable quality. The ARM data quality program includes several components designed to identify quality issues in near-real-time, track problems to solutions, assess more subtle long-term issues, and communicate problems to the user community.

  18. Assessment of Controlling Processes for Field-Scale Uranium Reactive Transport under Highly Transient Flow Conditions

    SciTech Connect (OSTI)

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.

    2014-02-13

    This paper presents the results of a comprehensive model-based analysis of a uranium tracer test conducted at the U.S Department of Energy Hanford 300 Area (300A) IFRC site. A three-dimensional multi-component reactive transport model was employed to assess the key factors and processes that control the field-scale uranium reactive transport. Taking into consideration of relevant physical and chemical processes, the selected conceptual/numerical model replicates the spatial and temporal variations of the observed U(VI) concentrations reasonably well in spite of the highly complex field conditions. A sensitivity analysis was performed to interrogate the relative importance of various processes and factors for reactive transport of U(VI) at the field-scale. The results indicate that multi-rate U(VI) sorption/desorption, U(VI) surface complexation reactions, and initial U(VI) concentrations were the most important processes and factors controlling U(VI) migration. On the other hand, cation exchange reactions, the choice of the surface complexation model, and dual-domain mass transfer processes, which were previously identified to be important in laboratory experiments, played less important roles under the field-scale experimental condition at the 300A site. However, the model simulations also revealed that the groundwater chemistry was relatively stable during the uranium tracer experiment and therefore presumably not dynamic enough to appropriately assess the effects of ion exchange reaction and the choice of surface complexation models on U(VI) sorption and desorption. Furthermore, it also showed that the field experimental duration (16 days) was not sufficiently long to precisely assess the role of a majority of the sorption sites that were accessed by slow kinetic processes within the dual domain model. The sensitivity analysis revealed the crucial role of the intraborehole flow that occurred within the long-screened monitoring wells and thus significantly affected both field-scale measurements and simulated U(VI) concentrations as a combined effect of aquifer heterogeneity and highly dynamic flow conditions. Overall, this study, which provides one of the few detailed and highly data-constrained uranium transport simulations, highlights the difference in controlling processes between laboratory and field scale that prevent a simple direct upscaling of laboratory-scale models.

  19. Sandia Energy - DHS Mulls Updates to Chemical Site Risk Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DHS Mulls Updates to Chemical Site Risk Assessments Home Infrastructure Security Infrastructure Assurance Facilities News NISAC News & Events Research & Capabilities Modeling...

  20. Operation Periods: Single Column Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    climate model. Researchers first use the SCM to efficiently improve submodels of clouds, solar radiation transfer, and atmosphere-surface interactions, then implement the results...

  1. Surface interactions involved in flashover with high density electronegative gases.

    SciTech Connect (OSTI)

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

    2010-01-01

    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  2. Assessing the impacts of climate change on natural resource systems

    SciTech Connect (OSTI)

    Frederick, K.D.; Rosenberg, N.J. [eds.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  3. Laser heterodyne surface profiler

    DOE Patents [OSTI]

    Sommargren, G.E.

    1980-06-16

    A method and apparatus are disclosed for testing the deviation of the face of an object from a flat smooth surface using a beam of coherent light of two plane-polarized components, one of a frequency constantly greater than the other by a fixed amount to produce a difference frequency with a constant phase to be used as a reference, and splitting the beam into its two components. The separate components are directed onto spaced apart points on the face of the object to be tested for smoothness while the face of the object is rotated on an axis normal to one point, thereby passing the other component over a circular track on the face of the object. The two components are recombined after reflection to produce a reflected frequency difference of a phase proportional to the difference in path length of one component reflected from one point to the other component reflected from the other point. The phase of the reflected frequency difference is compared with the reference phase to produce a signal proportional to the deviation of the height of the surface along the circular track with respect to the fixed point at the center, thereby to produce a signal that is plotted as a profile of the surface along the circular track. The phase detector includes a quarter-wave plate to convert the components of the reference beam into circularly polarized components, a half-wave plate to shift the phase of the circularly polarized components, and a polarizer to produce a signal of a shifted phase for comparison with the phase of the frequency difference of the reflected components detected through a second polarizer. Rotation of the half-wave plate can be used for phase adjustment over a full 360/sup 0/ range.

  4. Stability at the surface

    SciTech Connect (OSTI)

    Chambers, Scott A.

    2014-12-05

    Metal oxides are ubiquitous as minerals in the terrestrial environment, as well as in a variety of technologically important structures such as electronic devices and heterogeneous catalysts. Within these various contexts, interfaces between oxides and gases, liquids and solids drive many critically important phenomena ranging from the uptake of contaminants in groundwater by redox-active minerals to the switching of the millions of transistors found in every cell phone and computer. Function is tied to structure. Therefore, fundamental understanding of the structure of oxide surfaces and interfaces is of crucial importance to the comprehension of a plethora of phenomena involving this broad class of materials.

  5. Surface Radiation from GOES: A Physical Approach; Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Wilcox, S.

    2012-09-01

    Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.

  6. A Resilient Condition Assessment Monitoring System

    SciTech Connect (OSTI)

    Humberto Garcia; Wen-Chiao Lin; Semyon M. Meerkov

    2012-08-01

    An architecture and supporting methods are presented for the implementation of a resilient condition assessment monitoring system that can adaptively accommodate both cyber and physical anomalies to a monitored system under observation. In particular, the architecture includes three layers: information, assessment, and sensor selection. The information layer estimates probability distributions of process variables based on sensor measurements and assessments of the quality of sensor data. Based on these estimates, the assessment layer then employs probabilistic reasoning methods to assess the plant health. The sensor selection layer selects sensors so that assessments of the plant condition can be made within desired time periods. Resilient features of the developed system are then illustrated by simulations of a simplified power plant model, where a large portion of the sensors are under attack.

  7. AVLIS Criticality risk assessment

    SciTech Connect (OSTI)

    Brereton, S.J., LLNL

    1998-04-29

    Evaluation of criticality safety has become an important task in preparing for the Atomic Vapor Laser Isotope Separation (AVLIS) uranium enrichment runs that will take place during the Integrated Process Demonstration (IPD) at Lawrence Livermore National Laboratory (LLNL). This integrated operation of AVLIS systems under plant-like conditions will be used to verify the performance of process equipment and to demonstrate the sustained integrated enrichment performance of these systems using operating parameters that are similar to production plant specifications. Because of the potential criticality concerns associated with enriched uranium, substantial effort has been aimed towards understanding the potential system failures of interest from a criticality standpoint, and evaluating them in detail. The AVLIS process is based on selective photoionization of uranium atoms of atomic weight 235 (U-235) in a vapor stream, followed by electrostatic extraction. The process is illustrated in Figure 1. Two major subsystems are involved: the uranium separator and the laser system. In the separator, metallic uranium is fed into a crucible where it is heated and vaporized by an electron beam. The atomic U-235/U-238 vapor stream moves away from the molten uranium and is illuminated by precisely tuned beams of dye laser light. Upon absorption of the tuned dye laser light, the U-235 atoms become excited and eject electrons (become photoionized), giving them a net positive charge. The ions of U-235 are moved preferentially by an electrostatic field to condense on the product collector, forming the enriched uranium product. The remaining vapor, which is depleted in U-235 (tails), passes unaffected through the photoionization/extractor zone and accumulates on collectors in the top of the separator. Tails and product collector surfaces operate at elevated temperatures so that deposited materials flow as segregated liquid streams. The separated uranium condensates (uranium enriched in U-235 and uranium depleted in U-235) are cooled and accumulated in solid metallic form in canisters. The collected product and tails material is weighed and transferred into certified, critically safe, shipping containers (DOT specification 6M with 2R containment vessel). These will be temporarily stored, and then shipped offsite either for use by a fuel fabricator, or for disposal. Tails material will be packaged for disposal. A criticality risk assessment was performed for AVLIS IPD runs. In this analysis, the likelihood of occurrence of a criticality was examined. For the AVLIS process, there are a number of areas that have been specifically examined to assess whether or not the frequency of occurrence of a criticality is credible (frequency of occurrence > 10-6/yr). In this paper, we discuss only two of the areas: the separator and canister operations.

  8. Bidirectional reflection functions from surface bump maps

    SciTech Connect (OSTI)

    Cabral, B.; Max, N.; Springmeyer, R.

    1987-04-29

    The Torrance-Sparrow model for calculating bidirectional reflection functions contains a geometrical attenuation factor to account for shadowing and occlusions in a hypothetical distribution of grooves on a rough surface. Using an efficient table-based method for determining the shadows and occlusions, we calculate the geometric attenuation factor for surfaces defined by a specific table of bump heights. Diffuse and glossy specular reflection of the environment can be handled in a unified manner by using an integral of the bidirectional reflection function times the environmental illumination, over the hemisphere of solid angle above a surface. We present a method of estimating the integral, by expanding the bidirectional reflection coefficient in spherical harmonics, and show how the coefficients in this expansion can be determined efficiently by reorganizing our geometric attenuation calculation.

  9. Laser heterodyne surface profiler

    DOE Patents [OSTI]

    Sommargren, Gary E. (Livermore, CA)

    1982-01-01

    A method and apparatus is disclosed for testing the deviation of the face of an object from a flat smooth surface using a beam of coherent light of two plane-polarized components, one of a frequency constantly greater than the other by a fixed amount to produce a difference frequency with a constant phase to be used as a reference. The beam also is split into its two components with the separate components directed onto spaced apart points onthe face of the object to be tested for smoothness. The object is rotated on an axis coincident with one component which is directed to the face of the object at the center which constitutes a virtual fixed point. This component also is used as a reference. The other component follows a circular track on the face of the object as the object is rotated. The two components are recombined after reflection to produce a reflected frequency difference of a phase proportional to the difference in path length which is compared with the reference phase to produce a signal proportional to the deviation of the height of the surface along the circular track with respect to the fixed point at the center.

  10. Laser heterodyne surface profiler

    DOE Patents [OSTI]

    Sommargren, Gary E. (Livermore, CA)

    1984-01-01

    Method and apparatus for testing the deviation of the face of an object from a flat smooth surface using a laser beam having two plane-polarized components, one of a frequency greater than the other to produce a difference frequency with a phase to be used as a reference. The beam also is split into its two components which are directed onto spaced apart points on the face of the object. The object is rotated on an axis coincident with one component as a reference. The other component follows a circular track on the face of the object as the object is rotated. The two components are recombined after reflection to produce a difference frequency having a phase that is shifted in an amount that is proportional to the difference in path length as compared to the reference phase to produce an electrical output signal proportional to the deviation of the height of the surface along the circular track. The output signal is generated by means of a phase detector that includes a first photodetector in the path of the recombined components and a second photodetector in the path of the reference phase. The output signal is dependent on the phase difference of the two photodetector signals. A polarizer, a quarter-wave plate and a half-wave plate are in series in the path of the reference phase. Rotation of the half-wave plate can be used for phase adjustment over a full 360.degree. range for initial calibration of the apparatus.

  11. Probing the surface structure of divalent transition metals using surface

    Office of Scientific and Technical Information (OSTI)

    specific solid-state NMR spectroscopy (Journal Article) | SciTech Connect Probing the surface structure of divalent transition metals using surface specific solid-state NMR spectroscopy Citation Details In-Document Search Title: Probing the surface structure of divalent transition metals using surface specific solid-state NMR spectroscopy Authors: Mason, H E ; Harley, S J ; Maxwell, R S ; Carroll, S A Publication Date: 2011-12-07 OSTI Identifier: 1107317 Report Number(s): LLNL-JRNL-520237

  12. Materials Characterization Capabilities at the HTML: Surface/Sub-surface

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    dislocation density analysis of forming samples using advanced characterization techniques | Department of Energy HTML: Surface/Sub-surface dislocation density analysis of forming samples using advanced characterization techniques Materials Characterization Capabilities at the HTML: Surface/Sub-surface dislocation density analysis of forming samples using advanced characterization techniques 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and

  13. Model Fire Protection Program

    Broader source: Energy.gov [DOE]

    To facilitate conformance with its fire safety directives and the implementation of a comprehensive fire protection program, DOE has developed a number of "model" program documents. These include a comprehensive model fire protection program, model fire hazards analyses and assessments, fire protection system inspection and testing procedures, and related material.

  14. Test surfaces useful for calibration of surface profilometers

    DOE Patents [OSTI]

    Yashchuk, Valeriy V; McKinney, Wayne R; Takacs, Peter Z

    2013-12-31

    The present invention provides for test surfaces and methods for calibration of surface profilometers, including interferometric and atomic force microscopes. Calibration is performed using a specially designed test surface, or the Binary Pseudo-random (BPR) grating (array). Utilizing the BPR grating (array) to measure the power spectral density (PSD) spectrum, the profilometer is calibrated by determining the instrumental modulation transfer.

  15. 2012Modeling_Factsheet.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation code (VERA) to model the formation of deposits on reactor fuel cladding and mechanical fretting within fuel assemblies to assess the potential for power uprates and...

  16. The Enterprise Risk Management Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enterprise Risk Management Model Using the Risk Assessment Tool to Prepare a Justification Memorandum for the Development and Revision of Departmental Directives * On January 14,...

  17. Evaluation of flyash surface phenomena and the application of surface analysis technology. Summary report: Phase I. [44 elements; 86 references

    SciTech Connect (OSTI)

    Smith, R.D.

    1981-06-01

    The factors governing the formation of flyash surfaces during and following coal combustion are reviewed. The competing chemical and physical processes during the evolution of inorganic material in coal during combustion into flyash are described with respect to various surface segregation processes. Two mechanisms leading to surface enrichment are volatilization-condensation processes and diffusion processes within individual flyash particles. The experimental evidence for each of these processes is reviewed. It is shown that the volatilization-condensation process is the major factor leading to trace element enrichment in smaller flyash particles. Evidence also exists from surface analyses of flyash and representative mineral matter that diffusion processes may lead to surface enrichment of elements not volatilized or cause transport of surface-condensed elements into the flyash matrix. The semiquantitative determination of the relative importance of these two processes can be determined by comparison of concentration versus particle size profiles with surface-depth profiles obtained using surface analysis techniques. A brief description of organic transformations on flyash surfaces is also presented. The various surface analytical techniques are reviewed and the relatively new technique of Static-Secondary Ion Mass Spectroscopy is suggested as having significant advantages in studies of surfaces and diffusion processes in model systems. Several recommendations are made for research relevant to flyash formation and processes occurring on flyash surfaces.

  18. Home Energy Assessments

    Broader source: Energy.gov [DOE]

    A home energy assessment, also known as a home energy audit, is the first step to assess how much energy your home consumes and to evaluate what measures you can take to make your home more energy...

  19. Caraustar Industries Energy Assessment

    SciTech Connect (OSTI)

    2010-06-25

    This plant-wide assessment case study is about commissioned energy assessments by the U.S. Department of Energy Industrial Technologies Program at two of Caraustar's recycled paperboard mills.

  20. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect (OSTI)

    K. Rehfeldt

    2004-10-08

    This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In addition to being utilized by the SZ site-scale flow model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for groundwater management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model and provides information useful to estimation of the magnitude and direction of lateral groundwater flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment (TSPA).

  1. Ecological Risk Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community, Environment » Environmental Stewardship » Environmental Protection » Ecological Risk Assessments Ecological Risk Assessments Ecological risk assessment is the appraisal of potential adverse effects of exposure to contaminants on plants and animals. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The ECORISK Database is a screening tool that helps scientists evaluate impacts on LANL's ecology. Assessing our

  2. Radiological Assessment for the Removal of Legacy BPA Power Lines that Cross the Hanford Site

    SciTech Connect (OSTI)

    Millsap, William J.; Brush, Daniel J.

    2013-11-13

    This paper discusses some radiological field monitoring and assessment methods used to assess the components of an old electrical power transmission line that ran across the Hanford Site between the production reactors area (100 Area) and the chemical processing area (200 Area). This task was complicated by the presence of radon daughters -- both beta and alpha emitters -- residing on the surfaces, particularly on the surfaces of weathered metals and metals that had been electrically-charged. In many cases, these activities were high compared to the DOE Surface Contamination Guidelines, which were used as guides for the assessment. These methods included the use of the Toulmin model of argument, represented using Toulmin diagrams, to represent the combined force of several strands of evidences, rather than a single measurement of activity, to demonstrate beyond a reasonable doubt that no or very little Hanford activity was present and mixed with the natural activity. A number of forms of evidence were used: the overall chance of Hanford contamination; measurements of removable activity, beta and alpha; 1-minute scaler counts of total surface activity, beta and alpha, using "background makers"; the beta activity to alpha activity ratios; measured contamination on nearby components; NaI gamma spectral measurements to compare uncontaminated and potentially-contaminated spectra, as well as measurements for the sentinel radionuclides, Am- 241 and Cs-137 on conducting wire; comparative statistical analyses; and in-situ measurements of alpha spectra on conducting wire showing that the alpha activity was natural Po-210, as well as to compare uncontaminated and potentially-contaminated spectra.

  3. Baseline biological risk assessment for aquatic populations occurring near Eielson Air Force Base, Alaska

    SciTech Connect (OSTI)

    Dauble, D.; Brandt, C.; Lewis, R.; Smith, R.

    1995-12-31

    Eielson Air Force Base (AFB), Alaska was listed as a Superfund site in November 1989 with 64 potential source areas of contamination. As part of a sitewide remedial investigation, baseline risk assessments were conducted in 1993 and 1994 to evaluate hazards posed to biological receptors and to human health. Fish tissue, aquatic invertebrates, aquatic vegetation, sediment, and surface water data were collected from several on-site and off-site surface water bodies. An initial screening risk assessment indicated that several surface water sites along two major tributary creeks flowing through the base had unacceptable risks to both aquatic receptors and to human health because of DDTs. Other contaminants of concern (i.e., PCBs and PAHs) were below screening risk levels for aquatic organisms, but contributed to an unacceptable risk to human health. Additional samples was taken in 1994 to characterize the site-wide distribution of PAHs, DDTs, and PCBs in aquatic biota and sediments. Concentrations of PAHs were invertebrates > aquatic vegetation > fish, but concentrations were sufficiently low that they posed no significant risk to biological receptors. Pesticides were detected in all fish tissue samples. Polychlorinated biphenyls (PCBs) were also detected in most fish from Garrison Slough. The pattern of PCB concentrations in Arctic grayling (Thymallus arcticus) was related to their proximity to a sediment source in lower Garrison Slough. Ingestion of PCB-contaminated fish is the primary human-health risk driver for surface water bodies on Eielson AFB, resulting in carcinogenic risks > 1 {times} 10{sup {minus}4} for future recreational land-use at some sites. Principal considerations affecting uncertainty in the risk assessment process included spatial and temporal variability in media contaminant concentrations and inconsistencies between modelled and measured body burdens.

  4. Management Assessment and Independent Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-05-31

    The revision to this Guide reflects current assessment practices, international standards, and changes in the Department of Energy expectations. Cancels DOE G 414.1-1. Canceled by DOE G 414.1-1B.

  5. Assessing the assessments: Pharmaceuticals in the environment

    SciTech Connect (OSTI)

    Enick, O.V. Moore, M.M.

    2007-11-15

    The relatively new issue of pharmaceutical contamination of the environment offers the opportunity to explore the application of values to the construction, communication and management of risk. The still-developing regulatory policies regarding environmental contamination with pharmaceuticals provide fertile ground for the introduction of values into the definition and management of risk. In this report, we summarize the current knowledge regarding pharmaceutical contamination of the environment and discuss specific attributes of pharmaceuticals that require special consideration. We then present an analysis showing that if values are incorporated into assessing, characterizing and managing risk, the results of risk assessments will more accurately reflect the needs of various stakeholders. Originating from an acknowledgement of the inherent uncertainty and value-laden nature of risk assessment, the precautionary principle (and later, the multi-criteria, integrated risk assessment), provides a direction for further research and policy development.

  6. Recharge Data Package for the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Fayer, Michael J.; Szecsody, Jim E.

    2004-06-30

    Pacific Northwest National Laboratory assisted CH2M Hill Hanford Group, Inc., (CHG) by providing estimates of recharge rates for current conditions and long-term scenarios involving disposal in the Integrated Disposal Facility (IDF). The IDF will be located in the 200 East Area at the Hanford Site and will receive several types of waste including immobilized low-activity waste. The recharge estimates for each scenario were derived from lysimeter and tracer data collected by the IDF PA Project and from modeling studies conducted for the project. Recharge estimates were provided for three specific site features (the surface barrier; possible barrier side slopes; and the surrounding soil) and four specific time periods (pre-Hanford; Hanford operations; surface barrier design life; post-barrier design life). CHG plans to conduct a performance assessment of the latest IDF design and call it the IDF 2005 PA; this recharge data package supports the upcoming IDF 2005 PA.

  7. Umbral moonshine and K3 surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Miranda C. N.; Harrison, Sarah

    2015-06-25

    Recently, 23 cases of umbral moonshine, relating mock modular forms and finite groups, have been discovered in the context of the 23 even unimodular Niemeier lattices. One of the 23 cases in fact coincides with the so-called Mathieu moonshine, discovered in the context of K3 non-linear sigma models. In this paper we establish a uniform relation between all 23 cases of umbral moonshine and K3 sigma models, and thereby take a first step in placing umbral moonshine into a geometric and physical context. In addition, this is achieved by relating the ADE root systems of the Niemeier lattices to themore » ADE du Val singularities that a K3 surface can develop, and the configuration of smooth rational curves in their resolutions. A geometric interpretation of our results is given in terms of the marking of K3 surfaces by Niemeier lattices.« less

  8. Water and Heat Balance Model for Predicting Drainage Below the Plant Root Zone

    Energy Science and Technology Software Center (OSTI)

    1989-11-01

    UNSAT-H Version 2.0 is a one-dimensional model that simulates the dynamic processes of infiltration, drainage, redistribution, surface evaporation, and the uptake of water from soil by plants. The model was developed for assessing the water dynamics of arid sites used or proposed for near-surface waste disposal. In particular, the model is used for simulating the water balance of cover systems over buried waste and for estimating the recharge rate (i.e., the drainage rate beneath themore » plant root zone when a sizable vadose zone is present). The mathematical base of the model are Richards'' equation for water flow, Ficks'' law for vapor diffusion, and Fouriers law for heat flow. The simulated profile can be homogeneous or layered. The boundary conditions can be controlled as either constant (potential or temperature) or flux conditions to reflect actual conditions at a given site.« less

  9. Surface Binding and Organization of Sensitizing Dyes on Metal Oxide Single Crystal Surfaces

    SciTech Connect (OSTI)

    Parkinson, Bruce

    2010-06-04

    Even though investigations of dye-sensitized nanocrystalline semiconductors in solar cells has dominated research on dye-sensitized semiconductors over the past two decades. Single crystal electrodes represent far simpler model systems for studying the sensitization process with a continuing train of studies dating back more than forty years. Even today single crystal surfaces prove to be more controlled experimental models for the study of dye-sensitized semiconductors than the nanocrystalline substrates. We analyzed the scientific advances in the model sensitized single crystal systems that preceded the introduction of nanocrystalline semiconductor electrodes. It then follows the single crystal research to the present, illustrating both their striking simplicity of use and clarity of interpretation relative to nanocrystalline electrodes. Researchers have employed many electrochemical, photochemical and scanning probe techniques for studying monolayer quantities of sensitizing dyes at specific crystallographic faces of different semiconductors. These methods include photochronocoulometry, electronic spectroscopy and flash photolysis of dyes at potential-controlled semiconductor electrodes and the use of total internal reflection methods. In addition, we describe the preparation of surfaces of single crystal SnS2 and TiO2 electrodes to serve as reproducible model systems for charge separation at dye sensitized solar cells. This process involves cleaving the SnS2 electrodes and a photoelectrochemical surface treatment for TiO2 that produces clean surfaces for sensitization (as verified by AFM) resulting in near unity yields for electron transfer from the molecular excited dyes into the conduction band.

  10. Risk Assessment & Management Information

    Broader source: Energy.gov [DOE]

    NRC - A Proposed Risk Management Regulatory Framework, April 2012 Risk Assessment Technical Experts Working Group (RWG) web page DOE Standard on Development and Use of Probabilistic Risk Assessment in DOE Nuclear Safety Applications (draft), December 2010 Consortium for Risk Evaluation with Stakeholder Participation Workshop on Risk Assessment and Safety Decision Making Under Uncertainty

  11. Industrial Energy Efficiency Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility *

  12. Chemical enhancement of surface deposition

    DOE Patents [OSTI]

    Patch, K.D.; Morgan, D.T.

    1997-07-29

    A method and apparatus are disclosed for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector. 16 figs.

  13. Chemical enhancement of surface deposition

    DOE Patents [OSTI]

    Patch, Keith D. (Lexington, MA); Morgan, Dean T. (Sudbury, MA)

    1997-07-29

    A method and apparatus for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector.

  14. Method for lubricating contacting surfaces

    DOE Patents [OSTI]

    Dugger, Michael T. (Tijeras, NM); Ohlhausen, James A. (Albuquerque, NM); Asay, David B. (Boalsburg, PA); Kim, Seong H. (State College, PA)

    2011-12-06

    A method is provided for tribological lubrication of sliding contact surfaces, where two surfaces are in contact and in motion relative to each other, operating in a vapor-phase environment containing at least one alcohol compound at a concentration sufficiently high to provide one monolayer of coverage on at least one of the surfaces, where the alcohol compound continuously reacts at the surface to provide lubrication.

  15. ARM - Measurement - Soil surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil surface temperature The temperature of the soil measured near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  16. ARM - Measurement - Surface skin temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    skin temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface skin temperature The radiative surface skin temperature, from an IR thermometer measuring the narrowband radiating temperature of the ground surface in its field of view. Categories Radiometric, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the

  17. Tunable surface plasmon devices

    DOE Patents [OSTI]

    Shaner, Eric A. (Rio Rancho, NM); Wasserman, Daniel (Lowell, MA)

    2011-08-30

    A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.

  18. Surface-controlled deuterium-palladium interactions

    SciTech Connect (OSTI)

    Wampler, W.R.; Richards, P.M. )

    1990-04-15

    Measurements were made of the uptake of deuterium (D) into traps within the bulk of palladium, and the release of D back to the gas phase. The study was done with bare metal surfaces under UHV conditions using a novel method based on ion-beam analysis. The D uptake rate was proportional to gas pressure and about a factor of 3 less than the rate of impingement onto the surface from the gas. The release of D was limited by molecular recombination at the surface. A model for surface-limited release of D is presented which shows how the difference in energy between D in traps and recombination sites is a critical parameter in determining the time dependence of the D release. The observed kinetics of the D release from Pd lead to the conclusion that D in recombination sites is less strongly bound than D in traps which in turn is less strongly bound than D in the low-coverage surface chemisorption sites. Molecular recombination must therefore occur from sites with weaker binding, while the low-coverage chemisorption sites with stronger binding are nearly fully occupied, but do not contribute significantly to the release because of the strong binding.

  19. Ability of TiO2(110) Surface to Be Fully Hydroxylated and Fully...

    Office of Scientific and Technical Information (OSTI)

    The resulting hydroxylation can significantly alter its surface properties. While behavior of single, isolated OH species on the model metal oxide surface of rutile TiO2(110) is ...

  20. Laser heterodyne surface profiler

    DOE Patents [OSTI]

    Sommargren, G.E.

    1984-06-26

    Method and apparatus are disclosed for testing the deviation of the face of an object from a flat smooth surface using a laser beam having two plane-polarized components, one of a frequency greater than the other to produce a difference frequency with a phase to be used as a reference. The beam also is split into its two components which are directed onto spaced apart points on the face of the object. The object is rotated on an axis coincident with one component as a reference. The other component follows a circular track on the face of the object as the object is rotated. The two components are recombined after reflection to produce a difference frequency having a phase that is shifted in an amount that is proportional to the difference in path length as compared to the reference phase to produce an electrical output signal proportional to the deviation of the height of the surface along the circular track. The output signal is generated by means of a phase detector that includes a first photodetector in the path of the recombined components and a second photodetector in the path of the reference phase. The output signal is dependent on the phase difference of the two photodetector signals. A polarizer, a quarter-wave plate and a half-wave plate are in series in the path of the reference phase. Rotation of the half-wave plate can be used for phase adjustment over a full 360[degree] range for initial calibration of the apparatus. 12 figs.