Sample records for modeling system runs

  1. Run-time Modeling and Estimation of Operating System Power Consumption

    E-Print Network [OSTI]

    John, Lizy Kurian

    Run-time Modeling and Estimation of Operating System Power Consumption Tao Li Department computing systems point to the need for power modeling and estimation for all components of a system software power evaluation, as well as power management (e.g. dynamic thermal control and equal energy

  2. New Method and Reporting of Uncertainty in LBNL National Energy Modeling System Runs

    E-Print Network [OSTI]

    Gumerman, Etan Z.; LaCommare, Kristina Hamachi; Marnay, Chris

    2002-01-01T23:59:59.000Z

    GPRA Runs 3. Conclusion LBNL set out to establish a standarduncertainty into typical, LBNL-NEMS runs completed for GPRAwill be produced together with all future LBNL-NEMS runs.

  3. Modelling the effects of acid deposition and climate change on soil and run-off chemistry at Risdalsheia, Norway Hydrology and Earth System Sciences, 5(3), 487498 (2001) EGS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    at Risdalsheia, Norway 487 Hydrology and Earth System Sciences, 5(3), 487­498 (2001) © EGS Modelling effects of acid deposition and climate change on soil and run-off chemistry at Risdalsheia, Norway J.P. Mol Norway. These unique experiments at the ecosystem scale provide information on the short-term effects

  4. Running Jobs with the UGE Batch System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobs Quick Instructions for

  5. Running-mass inflation model and primordial black holes

    SciTech Connect (OSTI)

    Drees, Manuel; Erfani, Encieh, E-mail: drees@th.physik.uni-bonn.de, E-mail: erfani@th.physik.uni-bonn.de [Physikalisches Institut and Bethe Center for Theoretical Physics, Universitt Bonn, Nussallee 12, 53115 Bonn (Germany)

    2011-04-01T23:59:59.000Z

    We revisit the question whether the running-mass inflation model allows the formation of Primordial Black Holes (PBHs) that are sufficiently long-lived to serve as candidates for Dark Matter. We incorporate recent cosmological data, including the WMAP 7-year results. Moreover, we include ''the running of the running'' of the spectral index of the power spectrum, as well as the renormalization group ''running of the running'' of the inflaton mass term. Our analysis indicates that formation of sufficiently heavy, and hence long-lived, PBHs still remains possible in this scenario. As a by-product, we show that the additional term in the inflaton potential still does not allow significant negative running of the spectral index.

  6. Running Amok in Labyrinthine Systems: The Cyber-Behaviorist Origins of Soft Torture

    E-Print Network [OSTI]

    Lemov, Rebecca

    2011-01-01T23:59:59.000Z

    About Us Search for: Shop Running Amok in LabyrinthineIntroduction: Systemic Risk Running Amok in Labyrinthinetenable, and there it was running in circles in an endless

  7. Setting up the models on NYU's High Performance Computing System I recommend that you start with the exact same structure for running the

    E-Print Network [OSTI]

    Gerber, Edwin

    Setting up the models on NYU's High Performance Computing System I recommend that you start to understand how it all works. This is set up for work on bowery, as this is the main machine for parallel output or data. This file system is backed up, but it is small -- your quota is on the order

  8. Running Nuprl 5 3.1 System Requirements

    E-Print Network [OSTI]

    , but uses some extensions that require Lucid, Allegro or LCMU Common Lisp and a Unix-based X window system with smaller memory footprint but currently Allegro is a bit more stable. The Nuprl homepage provides an executable copies of the CMUCL version of Nuprl 5 running under Linux. Executable copies for Allegro can

  9. Running of Radiative Neutrino Masses: The Scotogenic Model

    E-Print Network [OSTI]

    Romain Bouchand; Alexander Merle

    2012-04-30T23:59:59.000Z

    We study the renormalization group equations of Ma's scotogenic model, which generates an active neutrino mass at 1-loop level. In addition to other benefits, the main advantage of the mechanism exploited in this model is to lead to a natural loop-suppression of the neutrino mass, and therefore to an explanation for its smallness. However, since the structure of the neutrino mass matrix is altered compared to the ordinary type I seesaw case, the corresponding running is altered as well. We have derived the full set of renormalization group equations for the scotogenic model which, to our knowledge, had not been presented previously in the literature. This set of equations reflects some interesting structural properties of the model, and it is an illustrative example for how the running of neutrino parameters in radiative models is modified compared to models with tree-level mass generation. We also study a simplified numerical example to illustrate some general tendencies of the running. Interestingly, the structure of the RGEs can be exploited such that a bimaximal leptonic mixing pattern at the high-energy scale is translated into a valid mixing pattern at low energies, featuring a large value of \\theta_{13}. This suggests very interesting connections to flavour symmetries.

  10. Power Systems Development Facility Gasification Test Run TC11

    SciTech Connect (OSTI)

    Southern Company Services

    2003-04-30T23:59:59.000Z

    This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

  11. The run control and monitoring system of the CMS experiment

    SciTech Connect (OSTI)

    Bauer, Gerry; /MIT; Boyer, Vincent; /CERN; Branson, James; /UCLA; Brett, Angela; Cano, Eric; Carboni, Andrea; Ciganek, Marek; Cittolin, Sergio; /CERN; O'Dell, Vivian; /Fermilab; Erhan, Samim; /CERN /UC, San Diego; Gigi, Dominique; /CERN /Kyungpook Natl. U. /MIT /UCLA /CERN /INFN, Legnaro

    2007-10-01T23:59:59.000Z

    The CMS experiment at the LHC at CERN will start taking data in 2008. To configure, control and monitor the experiment during data-taking the Run Control and Monitoring System (RCMS) was developed. This paper describes the architecture and the technology used to implement the RCMS, as well as the deployment and commissioning strategy of this important component of the online software for the CMS experiment.

  12. Calculating the running coupling in strong electroweak models

    E-Print Network [OSTI]

    Zoltan Fodor; Kieran Holland; Julius Kuti; Daniel Nogradi; Chris Schroeder

    2009-11-16T23:59:59.000Z

    One possibility for Beyond Standard Model physics is a new strongly-interacting gauge theory. One way to determine if a non-abelian gauge theory is QCD-like or conformal is to measure the running of the renormalized gauge coupling. We define the renormalized coupling from Wilson loop ratios, and measure these ratios via lattice simulations. We test this method in SU(3) pure gauge theory and show some first results for simulations with dynamical fermions in the fundamental representation.

  13. Spent fuel drying system test results (first dry-run)

    SciTech Connect (OSTI)

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01T23:59:59.000Z

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site. Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first dry-run test, which was conducted without a fuel element. The empty test apparatus was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The data from this dry-run test can serve as a baseline for the first two fuel element tests, 1990 (Run 1) and 3128W (Run 2). The purpose of this dry-run was to establish the background levels of hydrogen in the system, and the hydrogen generation and release characteristics attributable to the test system without a fuel element present. This test also serves to establish the background levels of water in the system and the water release characteristics. The system used for the drying test series was the Whole Element Furnace Testing System, described in Section 2.0, which is located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in section 3.0, and the experimental results provided in Section 4.0. These results are further discussed in Section 5.0.

  14. C-GOLDSTEIN A brief guide to running the model

    E-Print Network [OSTI]

    Oakley, Jeremy

    required to build, configure, execute and utilise the C-GOLDSTEIN Earth System Model are described herein some knowledge of Earth system modelling is assumed, but only at the most basic level. 1.2 Scope

  15. Power Systems Development Facility Gasification Test Run TC09

    SciTech Connect (OSTI)

    Southern Company Services

    2002-09-30T23:59:59.000Z

    This report discusses Test Campaign TC09 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC09 in air- and oxygen-blown modes. Test Run TC09 was started on September 3, 2002, and completed on September 26, 2002. Both gasifier and PCD operations were stable during the test run, with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen was smooth. The gasifier temperature varied between 1,725 and 1,825 F at pressures from 125 to 270 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC09, 414 hours of solid circulation and over 300 hours of coal feed were attained with almost 80 hours of pure oxygen feed.

  16. The Effective Standard Model after LHC Run I

    E-Print Network [OSTI]

    John Ellis; Veronica Sanz; Tevong You

    2014-10-28T23:59:59.000Z

    We treat the Standard Model as the low-energy limit of an effective field theory that incorporates higher-dimensional operators to capture the effects of decoupled new physics. We consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension-6 operators on electroweak precision tests that is more general than the standard $S,T$ formalism, and use measurements of Higgs couplings and the kinematics of associated Higgs production at the Tevatron and LHC, as well as triple-gauge couplings at the LHC. We highlight the complementarity between EWPTs, Tevatron and LHC measurements in obtaining model-independent limits on the effective Standard Model after LHC Run~1. We illustrate the combined constraints with the example of the two-Higgs doublet model.

  17. Computer support to run models of the atmosphere. Final report

    SciTech Connect (OSTI)

    Fung, I.

    1996-08-30T23:59:59.000Z

    This research is focused on a better quantification of the variations in CO{sub 2} exchanges between the atmosphere and biosphere and the factors responsible for these exchangers. The principal approach is to infer the variations in the exchanges from variations in the atmospheric CO{sub 2} distribution. The principal tool involves using a global three-dimensional tracer transport model to advect and convect CO{sub 2} in the atmosphere. The tracer model the authors used was developed at the Goddard institute for Space Studies (GISS) and is derived from the GISS atmospheric general circulation model. A special run of the GCM is made to save high-frequency winds and mixing statistics for the tracer model.

  18. A Heating Model for the Millennium Gas Run

    E-Print Network [OSTI]

    L. Gazzola; F. R. Pearce

    2006-11-22T23:59:59.000Z

    The comparison between observations of galaxy clusters thermo-dynamical properties and theoretical predictions suggests that non-gravitational heating needs to be added into the models. We implement an internally self-consistent heating scheme into GADGET-2 for the third (and fourth) run of the Millennium gas project (Pearce et al. in preparation), a set of four hydrodynamical cosmological simulations with N=2(5x10^8) particles and with the same volume (L=500 h-1 Mpc) and structures as the the N-body Millennium Simulation (Springel et al. 2005). Our aim is to reproduce the observed thermo-dynamical properties of galaxy clusters.

  19. The ATLAS Trigger System: Ready for Run-2

    E-Print Network [OSTI]

    Nakahama, Yu; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The ATLAS trigger has been used very successfully for the online event selection during the first run of the LHC between 2009-2013 at a centre-of-mass energy between 900 GeV and 8 TeV. The trigger system consists of a hardware Level-1 (L1) and a software based high-level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of a few hundred Hz. During the next data-taking period starting in early 2015 (Run-2) the LHC will operate at a centre-of-mass energy of about 13 TeV resulting in roughly five times higher trigger rates. We will review the upgrades to the ATLAS Trigger system that have been implemented during the shutdown and that will allow us to cope with these increased trigger rates while maintaining or even improving our efficiency to select relevant physics processes. This includes changes to the L1 calorimeter trigger, the introduction of a new L1 topological trigger module, improvements in the L1 muon system and the merging of the prev...

  20. Development and validation of a hurricane nature run using the joint OSSE nature run and the WRF model

    E-Print Network [OSTI]

    Nolan, David S.

    model David S. Nolan,1 Robert Atlas,2 Kieran T. Bhatia,1 and Lisa R. Bucci3 Received 6 March 2013 model (WRF), embedded within the Joint OSSE global nature run previously generated by the European observations. These include the pressure-wind relationship, the kinematic and thermodynamic structure

  1. An acquisition system based on a network of microvax's running the realtime DEC VAXELN operating system

    SciTech Connect (OSTI)

    D'Antone, I.; Mandrioli, G.; Matteuzzi, P.; Sanzani, G. (Bologna Univ. (Italy). Dipt. di Fisica); Bloise, C.; Grillo, A.F.; Marini, A.; Ronga, F. (INFN Laboratori Nazionali di Frascati, C.P.13, 00044 Frascati (IT)); Baldini, A. (Via Livornese, San Piero a Grado, 56100 Pisa (IT)); Mancarella, G.; Palamara, O.; Surdo, A. (Lecce Univ. (Italy). Ist. di Fisica)

    1989-10-01T23:59:59.000Z

    The authors describe an acquisition system based on a network (Ethernet/DECNET) of MicroVAX's running in the VAXELN environment. VAXELN is a Digital Equipment software product for the development of dedicated, real time systems for VAX processors. A central VAX running under the VAX/VMS operating system is used as file server and as an interface of the acquisition system with respect to the user's world.

  2. Power Systems Development Facility Gasification Test Run TC08

    SciTech Connect (OSTI)

    Southern Company Services

    2002-06-30T23:59:59.000Z

    This report discusses Test Campaign TC08 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier in air- and oxygen-blown modes during TC08. Test Run TC08 was started on June 9, 2002 and completed on June 29. Both gasifier and PCD operations were stable during the test run with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen blown was smooth. The gasifier temperature was varied between 1,710 and 1,770 F at pressures from 125 to 240 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC08, 476 hours of solid circulation and 364 hours of coal feed were attained with 153 hours of pure oxygen feed. The gasifier and PCD operations were stable in both enriched air and 100 percent oxygen blown modes. The oxygen concentration was slowly increased during the first transition to full oxygen-blown operations. Subsequent transitions from air to oxygen blown could be completed in less than 15 minutes. Oxygen-blown operations produced the highest synthesis gas heating value to date, with a projected synthesis gas heating value averaging 175 Btu/scf. Carbon conversions averaged 93 percent, slightly lower than carbon conversions achieved during air-blown gasification.

  3. Power Systems Development Facility Gasification Test Run TC10

    SciTech Connect (OSTI)

    Southern Company Services

    2002-12-30T23:59:59.000Z

    This report discusses Test Campaign TC10 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC10 in air- (mainly for transitions and problematic operations) and oxygen-blown mode. Test Run TC10 was started on November 16, 2002, and completed on December 18, 2002. During oxygen-blown operations, gasifier temperatures varied between 1,675 and 1,825 F at pressures from 150 to 180 psig. After initial adjustments were made to reduce the feed rate, operations with the new fluidized coal feeder were stable with about half of the total coalfeed rate through the new feeder. However, the new fluidized-bed coal feeder proved to be difficult to control at low feed rates. Later the coal mills and original coal feeder experienced difficulties due to a high moisture content in the coal from heavy rains. Additional operational difficulties were experienced when several of the pressure sensing taps in the gasifier plugged. As the run progressed, modifications to the mills (to address processing the wet coal) resulted in a much larger feed size. This eventually resulted in the accumulation of large particles in the circulating solids causing operational instabilities in the standpipe and loop seal. Despite problems with the coal mills, coal feeder, pressure tap nozzles and the standpipe, the gasifier did experience short periods of stability during oxygenblown operations. During these periods, the syngas quality was high. During TC10, the gasifier gasified over 609 tons of Powder River Basin subbituminous coal and accumulated a total of 416 hours of coal feed, over 293 hours of which were in oxygen-blown operation. No sorbent was used during the run.

  4. Multiple systems or task complexity 1 Running head: Multiple systems or task complexity

    E-Print Network [OSTI]

    Stoiciu, Mihai

    Multiple systems or task complexity 1 Running head: Multiple systems or task complexity Procedural memory effects in categorization: evidence for multiple systems or task complexity? Safa R. Zaki and Dave College Williamstown, MA 10267 413-597-4594 Email: szaki@williams.edu #12;Multiple systems or task

  5. Long-run growth rate in a random multiplicative model

    E-Print Network [OSTI]

    Dan Pirjol

    2015-03-07T23:59:59.000Z

    We consider the long-run growth rate of the average value of a random multiplicative process $x_{i+1} = a_i x_i$ where the multipliers $a_i=1+\\rho\\exp(\\sigma W_i - \\frac12 \\sigma^2 t_i)$ have Markovian dependence given by the exponential of a standard Brownian motion $W_i$. The average value $\\langle x_n\\rangle$ is given by the grand partition function of a one-dimensional lattice gas with two-body linear attractive interactions placed in a uniform field. We study the Lyapunov exponent $\\lambda(\\rho,\\beta) = \\lim_{n\\to \\infty} \\frac{1}{n} \\log \\langle x_n\\rangle$ at fixed $\\beta = \\frac12 \\sigma^2 t_n n$, and show that it is given by the equation of state of the lattice gas in thermodynamical equilibrium. The Lyapunov exponent has discontinuous first derivatives along a curve in the $(\\rho,\\beta)$ plane ending at a critical point $(\\rho_C,\\beta_C)$, which is related to a phase transition in the equivalent lattice gas. Using the equivalence of the lattice gas with a bosonic system, we obtain the exact solution for the equation of state in the thermodynamical limit $n\\to \\infty$.

  6. Long-run growth rate in a random multiplicative model

    SciTech Connect (OSTI)

    Pirjol, Dan [Institute for Physics and Nuclear Engineering, 077125 Bucharest (Romania)

    2014-08-01T23:59:59.000Z

    We consider the long-run growth rate of the average value of a random multiplicative process x{sub i+1} = a{sub i}x{sub i} where the multipliers a{sub i}=1+?exp(?W{sub i}?1/2 ?t{sub i}) have Markovian dependence given by the exponential of a standard Brownian motion W{sub i}. The average value (x{sub n}) is given by the grand partition function of a one-dimensional lattice gas with two-body linear attractive interactions placed in a uniform field. We study the Lyapunov exponent ?=lim{sub n??}1/n log(x{sub n}), at fixed ?=1/2 ?t{sub n}n, and show that it is given by the equation of state of the lattice gas in thermodynamical equilibrium. The Lyapunov exponent has discontinuous partial derivatives along a curve in the (?, ?) plane ending at a critical point (?{sub C}, ?{sub C}) which is related to a phase transition in the equivalent lattice gas. Using the equivalence of the lattice gas with a bosonic system, we obtain the exact solution for the equation of state in the thermodynamical limit n ? ?.

  7. 2013 CEF RUN - PHASE 1 DATA ANALYSIS AND MODEL VALIDATION

    SciTech Connect (OSTI)

    Choi, A.

    2014-05-08T23:59:59.000Z

    Phase 1 of the 2013 Cold cap Evaluation Furnace (CEF) test was completed on June 3, 2013 after a 5-day round-the-clock feeding and pouring operation. The main goal of the test was to characterize the CEF off-gas produced from a nitric-formic acid flowsheet feed and confirm whether the CEF platform is capable of producing scalable off-gas data necessary for the revision of the DWPF melter off-gas flammability model; the revised model will be used to define new safety controls on the key operating parameters for the nitric-glycolic acid flowsheet feeds including total organic carbon (TOC). Whether the CEF off-gas data were scalable for the purpose of predicting the potential flammability of the DWPF melter exhaust was determined by comparing the predicted H{sub 2} and CO concentrations using the current DWPF melter off-gas flammability model to those measured during Phase 1; data were deemed scalable if the calculated fractional conversions of TOC-to-H{sub 2} and TOC-to-CO at varying melter vapor space temperatures were found to trend and further bound the respective measured data with some margin of safety. Being scalable thus means that for a given feed chemistry the instantaneous flow rates of H{sub 2} and CO in the DWPF melter exhaust can be estimated with some degree of conservatism by multiplying those of the respective gases from a pilot-scale melter by the feed rate ratio. This report documents the results of the Phase 1 data analysis and the necessary calculations performed to determine the scalability of the CEF off-gas data. A total of six steady state runs were made during Phase 1 under non-bubbled conditions by varying the CEF vapor space temperature from near 700 to below 300C, as measured in a thermowell (T{sub tw}). At each steady state temperature, the off-gas composition was monitored continuously for two hours using MS, GC, and FTIR in order to track mainly H{sub 2}, CO, CO{sub 2}, NO{sub x}, and organic gases such as CH{sub 4}. The standard deviation of the average vapor space temperature during each steady state ranged from 2 to 6C; however, those of the measured off-gas data were much larger due to the inherent cold cap instabilities in the slurry-fed melters. In order to predict the off-gas composition at the sampling location downstream of the film cooler, the measured feed composition was charge-reconciled and input into the DWPF melter off-gas flammability model, which was then run under the conditions for each of the six Phase 1 steady states. In doing so, it was necessary to perform an overall heat/mass balance calculation from the melter to the Off-Gas Condensate Tank (OGCT) in order to estimate the rate of air inleakage as well as the true gas temperature in the CEF vapor space (T{sub gas}) during each steady state by taking into account the effects of thermal radiation on the measured temperature (T{sub tw}). The results of Phase 1 data analysis and subsequent model runs showed that the predicted concentrations of H{sub 2} and CO by the DWPF model correctly trended and further bounded the respective measured data in the CEF off-gas by over predicting the TOC-to-H{sub 2} and TOC-to-CO conversion ratios by a factor of 2 to 5; an exception was the 7X over prediction of the latter at T{sub gas} = 371C but the impact of CO on the off-gas flammability potential is only minor compared to that of H{sub 2}. More importantly, the seemingly-excessive over prediction of the TOC-to-H{sub 2} conversion by a factor of 4 or higher at T{sub gas} < ~350C was attributed to the conservative antifoam decomposition scheme added recently to the model and therefore is considered a modeling issue and not a design issue. At T{sub gas} > ~350C, the predicted TOC-to-H{sub 2} conversions were closer to but still higher than the measured data by a factor of 2, which may be regarded as adequate from the safety margin standpoint. The heat/mass balance calculations also showed that the correlation between T{sub tw} and T{sub gas} in the CEF vapor space was close to that of the scale SGM, whose data were ta

  8. Power Systems Development Facility Gasification Test Run TC07

    SciTech Connect (OSTI)

    Southern Company Services

    2002-04-05T23:59:59.000Z

    This report discusses Test Campaign TC07 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC07. Prior to TC07, the Transport Reactor was modified to allow operations as an oxygen-blown gasifier. Test Run TC07 was started on December 11, 2001, and the sand circulation tests (TC07A) were completed on December 14, 2001. The coal-feed tests (TC07B-D) were started on January 17, 2002 and completed on April 5, 2002. Due to operational difficulties with the reactor, the unit was taken offline several times. The reactor temperature was varied between 1,700 and 1,780 F at pressures from 200 to 240 psig. In TC07, 679 hours of solid circulation and 442 hours of coal feed, 398 hours with PRB coal and 44 hours with coal from the Calumet mine, and 33 hours of coke breeze feed were attained. Reactor operations were problematic due to instrumentation problems in the LMZ resulting in much higher than desired operating temperatures in the reactor. Both reactor and PCD operations were stable and the modifications to the lower part of the gasifier performed well while testing the gasifier with PRB coal feed.

  9. Models at Run-time for Sustaining User Interface Plasticity

    E-Print Network [OSTI]

    that is described in section 2. Section 4 opens the paper on a research agenda. 2. RUNNING EXAMPLE "Sedan-Bouillon" is a web site that aims at promoting tourism in the regions of Sedan and Bouillon in France and Belgium (http://www.bouillon-sedan.com/). Initially, the web site has been designed for PC screens only

  10. Spent fuel drying system test results (second dry-run)

    SciTech Connect (OSTI)

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01T23:59:59.000Z

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks have been detected in the basins and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the second dry-run test, which was conducted without a fuel element. With the concurrence of project management, the test protocol for this run, and subsequent drying test runs, was modified. These modifications were made to allow for improved data correlation with drying procedures proposed under the IPS. Details of these modifications are discussed in Section 3.0.

  11. Keller's model Variable energy recreation Bounding the derivative of f Optimization of running strategies based on

    E-Print Network [OSTI]

    Boyer, Edmond

    strategies based on anaerobic energy and variations of velocity J. Frederic Bonnans Inria-Saclay and CMAP of running strategies hal-01024231,version1-15Jul2014 #12;Keller's model Variable energy recreation Bounding.F. Bonnans, Optimization of running strategies based on anaerobic energy and variations of velocity. SIAM J

  12. Run-Time Security Traceability for Evolving Systems1

    E-Print Network [OSTI]

    Jurjens, Jan

    , integrity, authentication and others) and security assumptions on the system environment, can be specified applications (e.g., at BMW [5] and O2 (Germany) [6]). However, it is not enough that the specification

  13. Simple Dynamic Gasifier Model That Runs in Aspen Dynamics

    SciTech Connect (OSTI)

    Robinson, P.J.; Luyben, W.L. [Lehigh University, Bethlehem, PA (United States). Dept. of Chemical Engineering

    2008-10-15T23:59:59.000Z

    Gasification (or partial oxidation) is a vital component of 'clean coal' technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased, and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel for driving combustion turbines. Gasification units in a chemical plant generate gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The widely used process simulator Aspen Plus provides a library of models that can be used to develop an overall gasifier model that handles solids. So steady-state design and optimization studies of processes with gasifiers can be undertaken. This paper presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudofuel. This component should have the same 1:1 hydrogen-to-carbon ratio that is found in coal and biomass. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macroscale thermal, flow, composition, and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers but merely presents an idea of how to dynamically simulate coal gasification in an approximate way.

  14. The ATLAS Data Flow system for the Second LHC Run

    E-Print Network [OSTI]

    Hauser, Reiner; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    After its first shutdown, LHC will provide pp collisions with increased luminosity and energy. In the ATLAS experiment the Trigger and Data Acquisition (TDAQ) system has been upgraded to deal with the increased event rates. The Data Flow (DF) element of the TDAQ is a distributed hardware and software system responsible for buffering and transporting event data from the Readout system to the High Level Trigger (HLT) and to the event storage. The DF has been reshaped in order to profit from the technological progress and to maximize the flexibility and efficiency of the data selection process. The updated DF is radically different from the previous implementation both in terms of architecture and expected performance. The pre-existing two level software filtering, known as L2 and the Event Filter, and the Event Building are now merged into a single process, performing incremental data collection and analysis. This design has many advantages, among which are: the radical simplification of the architecture, the f...

  15. Renormalization group running of neutrino parameters in the inverse seesaw model

    E-Print Network [OSTI]

    Johannes Bergstrom; Michal Malinsky; Tommy Ohlsson; He Zhang

    2012-07-06T23:59:59.000Z

    We perform a detailed study of the renormalization group equations in the inverse seesaw model. Especially, we derive compact analytical formulas for the running of the neutrino parameters in the standard model and the minimal supersymmetric standard model, and illustrate that, due to large Yukawa coupling corrections, significant running effects on the leptonic mixing angles can be naturally obtained in the proximity of the electroweak scale, perhaps even within the reach of the LHC. In general, if the mass spectrum of the light neutrinos is nearly degenerate, the running effects are enhanced to experimentally accessible levels, well suitable for the investigation of the underlying dynamics behind the neutrino mass generation and the lepton flavor structure. In addition, the effects of the seesaw thresholds are discussed, and a brief comparison to other seesaw models is carried out.

  16. Renormalization group running of neutrino parameters in the inverse seesaw model

    SciTech Connect (OSTI)

    Bergstroem, Johannes; Malinsky, Michal; Ohlsson, Tommy; Zhang He [Department of Theoretical Physics, School of Engineering Sciences, Royal Institute of Technology (KTH)-AlbaNova University Center, Roslagstullsbacken 21, 106 91 Stockholm (Sweden)

    2010-06-01T23:59:59.000Z

    We perform a detailed study of the renormalization group equations in the inverse seesaw model. Especially, we derive compact analytical formulas for the running of the neutrino parameters in the standard model and the minimal supersymmetric standard model, and illustrate that, due to large Yukawa coupling corrections, significant running effects on the leptonic mixing angles can be naturally obtained in the proximity of the electroweak scale, perhaps even within the reach of the LHC. In general, if the mass spectrum of the light neutrinos is nearly degenerate, the running effects are enhanced to experimentally accessible levels, well suitable for the investigation of the underlying dynamics behind the neutrino mass generation and the lepton flavor structure. In addition, the effects of the seesaw thresholds are discussed, and a brief comparison to other seesaw models is carried out.

  17. Running jobs on Euclid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running jobs Running jobs Overview and Basic Description Euclid is a single node system with 48 processors. It supports both multiprocessing (MPI) and multithreading programming...

  18. Routine based OS-aware Microprocessor Resource Adaptation for Run-time Operating System Power Saving

    E-Print Network [OSTI]

    John, Lizy Kurian

    workloads (see section 2 for detail), making it a major power consumer. The proportion of the OS power, such as thermal sensor reading, energy accounting and power control for memory and I/O devices [2]. ClearlyRoutine based OS-aware Microprocessor Resource Adaptation for Run-time Operating System Power

  19. Running Inflation

    E-Print Network [OSTI]

    Jae-weon Lee; In-guy Koh

    1997-04-30T23:59:59.000Z

    A first order inflation model where a gauge coupling constant runs as the universe inflates is investigated. This model can solve the graceful-exit problem within Einstein gravity by varying the bubble formation rate. The sufficient expansion condition gives group theoretical constraints on the inflaton field, while the appropriate density perturbation requires an additional scalar field or cosmic strings.

  20. Low-energy run of Fermilab Electron Cooler's beam generation system

    SciTech Connect (OSTI)

    Prost, Lionel; Shemyakin, Alexander; /Fermilab; Fedotov, Alexei; Kewisch, Jorg; /Brookhaven

    2010-08-01T23:59:59.000Z

    As a part of a feasibility study of using the Fermilab Electron Cooler for a low-energy Relativistic Heavy Ion Collider (RHIC) run at Brookhaven National Laboratory (BNL), the cooler operation at 1.6 MeV electron beam energy was tested in a short beam line configuration. The main result of the study is that the cooler beam generation system is suitable for BNL needs. In a striking difference with running 4.3 MeV beam, no unprovoked beam recirculation interruptions were observed.

  1. Threshold effects on renormalization group running of neutrino parameters in the low-scale seesaw model

    E-Print Network [OSTI]

    Johannes Bergstrom; Tommy Ohlsson; He Zhang

    2011-04-04T23:59:59.000Z

    We show that, in the low-scale type-I seesaw model, renormalization group running of neutrino parameters may lead to significant modifications of the leptonic mixing angles in view of so-called seesaw threshold effects. Especially, we derive analytical formulas for radiative corrections to neutrino parameters in crossing the different seesaw thresholds, and show that there may exist enhancement factors efficiently boosting the renormalization group running of the leptonic mixing angles. We find that, as a result of the seesaw threshold corrections to the leptonic mixing angles, various flavor symmetric mixing patterns (e.g., bi-maximal and tri-bimaximal mixing patterns) can be easily accommodated at relatively low energy scales, which is well within the reach of running and forthcoming experiments (e.g., the LHC).

  2. The ATLAS Trigger Core Configuration and Execution System in Light of the ATLAS Upgrade for LHC Run 2

    E-Print Network [OSTI]

    Heinrich, Lukas; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    During the 2013/14 shutdown of the Large Hadron Collider (LHC) the ATLAS first level trigger (L1) and the data acquisition system (DAQ) were substantially upgraded to cope with the increase in luminosity and collision multiplicity, expected to be delivered by the LHC in 2015. Upgrades were performed at both the L1 stage and the single combined subsequent high level trigger (HLT) stage that has been introduced to replace the two-tiered HLT stage used in Run 1. Because of these changes, the HLT execution framework and the trigger configuration system had to be upgraded. Also, tools and data content were adapted to the new ATLAS analysis model.

  3. Absorbing Phase Transitions and Dynamic Freezing in Running Active Matter Systems

    E-Print Network [OSTI]

    C. Reichhardt; C. J. Olson Reichhardt

    2014-06-12T23:59:59.000Z

    We examine a two-dimensional system of sterically repulsive interacting disks where each particle runs in a random direction. This system is equivalent to a run-and-tumble dynamics system in the limit where the run time is infinite. At low densities, we find a strongly fluctuating state composed of transient clusters. Above a critical density that is well below the density at which non-active particles would crystallize, the system can organize into a drifting quiescent or frozen state where the fluctuations are lost and large crystallites form surrounded by a small density of individual particles. Although all the particles are still moving, their paths form closed orbits. The average transient time to organize into the quiescent state diverges as a power law upon approaching the critical density from above. We compare our results to the random organization observed for periodically sheared systems that can undergo an absorbing transition from a fluctuating state to a dynamical non-fluctuating state. In the random organization studies, the system organizes to a state in which the particles no longer interact; in contrast, we find that the randomly running active matter organizes to a strongly interacting dynamically jammed state. We show that the transition to the frozen state is robust against a certain range of stochastic fluctuations. We also examine the effects of adding a small number of pinned particles to the system and find that the transition to the frozen state shifts to significantly lower densities and arises via the nucleation of faceted crystals centered at the obstacles.

  4. Running spectral index and formation of primordial black hole in single field inflation models

    SciTech Connect (OSTI)

    Drees, Manuel; Erfani, Encieh, E-mail: drees@th.physik.uni-bonn.de, E-mail: erfani@th.physik.uni-bonn.de [Physikalisches Institut and Bethe Center for Theoretical Physics, Universitt Bonn, Nussallee 12, 53115 Bonn (Germany)

    2012-01-01T23:59:59.000Z

    A broad range of single field models of inflation are analyzed in light of all relevant recent cosmological data, checking whether they can lead to the formation of long-lived Primordial Black Holes (PBHs). To that end we calculate the spectral index of the power spectrum of primordial perturbations as well as its first and second derivatives. PBH formation is possible only if the spectral index increases significantly at small scales, i.e. large wave number k. Since current data indicate that the first derivative ?{sub S} of the spectral index n{sub S}(k{sub 0}) is negative at the pivot scale k{sub 0}, PBH formation is only possible in the presence of a sizable and positive second derivative (''running of the running'') ?{sub S}. Among the three small-field and five large-field models we analyze, only one small-field model, the ''running mass'' model, allows PBH formation, for a narrow range of parameters. We also note that none of the models we analyze can accord for a large and negative value of ?{sub S}, which is weakly preferred by current data.

  5. A Run-Time System for Programming Out-of-Core Matrix Algorithms-by-Tiles on

    E-Print Network [OSTI]

    Batory, Don

    A Run-Time System for Programming Out-of-Core Matrix Algorithms-by-Tiles on Multithreaded. Quintana-Orti Robert van de Geijn Abstract Out-of-core implementations of algorithms for dense matrix and data movement in the hands of a run-time system. Remarkable performance is demonstrated

  6. Running Effects on Lepton Mixing Angles in Flavour Models with Type I Seesaw

    E-Print Network [OSTI]

    Yin Lin; Luca Merlo; Alessio Paris

    2009-11-27T23:59:59.000Z

    We study renormalization group running effects on neutrino mixing patterns when a (type I) seesaw model is implemented by suitable flavour symmetries. We are particularly interested in mass-independent mixing patterns to which the widely studied tribimaximal mixing pattern belongs. In this class of flavour models, the running contribution from neutrino Yukawa coupling, which is generally dominant at energies above the seesaw threshold, can be absorbed by a small shift on neutrino mass eigenvalues leaving mixing angles unchanged. Consequently, in the whole running energy range, the change in mixing angles is due to the contribution coming from charged lepton sector. Subsequently, we analyze in detail these effects in an explicit flavour model for tribimaximal neutrino mixing based on an A4 discrete symmetry group. We find that for normally ordered light neutrinos, the tribimaximal prediction is essentially stable under renormalization group evolution. On the other hand, in the case of inverted hierarchy, the deviation of the solar angle from its TB value can be large depending on mass degeneracy.

  7. A model for materials scientists: Water runs off the surface of a lotus leaf without a trace. Researchers

    E-Print Network [OSTI]

    on the water, not only dry but, most importantly, clean. As the water runs off, it rinses away the dirt, whichA model for materials scientists: Water runs off the surface of a lotus leaf without a trace. Researchers in Mainz use this concept to develop coatings that repel both water and oil. #12;TEXT ROLAND

  8. Bose-Einstein condensation of a system of two-level atoms in resonant interaction with a single-running-wave-mode laser field

    E-Print Network [OSTI]

    Wang, Xinfeng

    2001-01-01T23:59:59.000Z

    In this thesis, we study the influence of a single-running-wave-mode laser field to the critical temperature T[] of Bose-Einstein condensation(BEC) of a system of two-level bosonic atoms. Using a simple model, we obtain the dispersion relation...

  9. Dilepton constraints in the Inert Doublet Model from Run 1 of the LHC

    E-Print Network [OSTI]

    Belanger, G; Goudelis, A; Herrmann, B; Kraml, S; Sengupta, D

    2015-01-01T23:59:59.000Z

    Searches in final states with two leptons plus missing transverse energy, targeting supersymmetric particles or invisible decays of the Higgs boson, were performed during Run 1 of the LHC. Recasting the results of these analyses in the context of the Inert Doublet Model (IDM) using MadAnalysis 5, we show that they provide constraints on inert scalars that significantly extend previous limits from LEP. Moreover, these LHC constraints allow to test the IDM in the limit of very small Higgs-inert scalar coupling, where the constraints from direct detection of dark matter and the invisible Higgs width vanish.

  10. Running Head: The Autonomic Nervous System's responses to losses Loss aversion in the eye and in the heart: The

    E-Print Network [OSTI]

    Yechiam, Eldad

    Running Head: The Autonomic Nervous System's responses to losses Loss aversion in the eye and in the heart: The Autonomic Nervous System's responses to losses Guy Hochman and Eldad Yechiam Technion@tx.technion.ac.il #12;ANS responses to losses 2 Loss aversion in the eye and in the heart: The Autonomic Nervous System

  11. Queuing models System dynamics models

    E-Print Network [OSTI]

    Glushko, Robert J.

    models Value chain models Business Model / Organizational Perspective Process Perspective Information#12;#12;#12;#12;Queuing models System dynamics models #12;#12;#12;#12;Blueprint or touchpoint

  12. Near-optimal operation by self-optimizing control: From process con-trol to marathon running and business systems

    E-Print Network [OSTI]

    Skogestad, Sigurd

    range of systems. The idea of self-optimizing control is explained in more detail in the next sectionNear-optimal operation by self-optimizing control: From process con- trol to marathon running to implement optimal decisions in an uncertain world. A study of how this is done in real systems - from

  13. On the Role of the Running Coupling Constant in a Quark Model Analysis of T-odd TMDs

    E-Print Network [OSTI]

    A. Courtoy

    2011-07-25T23:59:59.000Z

    We revisit the standard procedure to match non-perturbative models to perturbative QCD, using experimental data. The strong coupling constant plays a central role in the QCD evolution of parton densities. We will extend this procedure with a non-perturbative generalization of the QCD running coupling and use this new development to understand why perturbative treatments are working reasonably well in the context of hadronic models. Vice versa, this new procedure broadens the ways of analyzing the freezing of the running coupling constant.

  14. Methods, media and systems for managing a distributed application running in a plurality of digital processing devices

    DOE Patents [OSTI]

    Laadan, Oren; Nieh, Jason; Phung, Dan

    2012-10-02T23:59:59.000Z

    Methods, media and systems for managing a distributed application running in a plurality of digital processing devices are provided. In some embodiments, a method includes running one or more processes associated with the distributed application in virtualized operating system environments on a plurality of digital processing devices, suspending the one or more processes, and saving network state information relating to network connections among the one or more processes. The method further include storing process information relating to the one or more processes, recreating the network connections using the saved network state information, and restarting the one or more processes using the stored process information.

  15. Comparison of CAISO-run Plexos output with LLNL-run Plexos output

    SciTech Connect (OSTI)

    Schmidt, A; Meyers, C; Smith, S

    2011-12-20T23:59:59.000Z

    In this report we compare the output of the California Independent System Operator (CAISO) 33% RPS Plexos model when run on various computing systems. Specifically, we compare the output resulting from running the model on CAISO's computers (Windows) and LLNL's computers (both Windows and Linux). We conclude that the differences between the three results are negligible in the context of the entire system and likely attributed to minor differences in Plexos version numbers as well as the MIP solver used in each case.

  16. 4522 J.Org. Chem. 1988,53,4522-4530 system. Thin-layer chromatography (TLC) was run with pre-

    E-Print Network [OSTI]

    RajanBabu, T. V. "Babu"

    4522 J.Org. Chem. 1988,53,4522-4530 system. Thin-layer chromatography (TLC) was run with pre- coated silica gel plates (Merck,Art. No. 5554). Spot detection was carried out by UV light and materials together with a stream of nitrogen. After dry chloroform(0.5 mL) was added to the residue

  17. A Survey of Systems for Detecting Serial Run-Time Errors

    E-Print Network [OSTI]

    Luecke, Glenn R.

    Performance Computing Group Glenn R. Luecke, James Coyle, Jim Hoekstra, Marina Kraeva, Ying Li, Olga Taborskaia, and Yanmei Wang {grl, jjc, hoekstra, kraeva, yingli, olga, yanmei}@iastate.edu Revised February-commercial software products to detect serial run-time errors in C and C++ programs, to issue meaningful messages

  18. Dual-use tools and systematics-aware analysis workflows in the ATLAS Run-II analysis model

    E-Print Network [OSTI]

    FARRELL, Steven; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The ATLAS analysis model has been overhauled for the upcoming run of data collection in 2015 at 13 TeV. One key component of this upgrade was the Event Data Model (EDM), which now allows for greater flexibility in the choice of analysis software framework and provides powerful new features that can be exploited by analysis software tools. A second key component of the upgrade is the introduction of a dual-use tool technology, which provides abstract interfaces for analysis software tools to run in either the Athena framework or a ROOT-based framework. The tool interfaces, including a new interface for handling systematic uncertainties, have been standardized for the development of improved analysis workflows and consolidation of high-level analysis tools. This presentation will cover the details of the dual-use tool functionality, the systematics interface, and how these features fit into a centrally supported analysis environment.

  19. Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum

    E-Print Network [OSTI]

    Daniel Abercrombie; Nural Akchurin; Ece Akilli; Juan Alcaraz Maestre; Brandon Allen; Barbara Alvarez Gonzalez; Jeremy Andrea; Alexandre Arbey; Georges Azuelos; Patrizia Azzi; Mihailo Backovi?; Yang Bai; Swagato Banerjee; James Beacham; Alexander Belyaev; Antonio Boveia; Amelia Jean Brennan; Oliver Buchmueller; Matthew R. Buckley; Giorgio Busoni; Michael Buttignol; Giacomo Cacciapaglia; Regina Caputo; Linda Carpenter; Nuno Filipe Castro; Guillelmo Gomez Ceballos; Yangyang Cheng; John Paul Chou; Arely Cortes Gonzalez; Chris Cowden; Francesco D'Eramo; Annapaola De Cosa; Michele De Gruttola; Albert De Roeck; Andrea De Simone; Aldo Deandrea; Zeynep Demiragli; Anthony DiFranzo; Caterina Doglioni; Tristan du Pree; Robin Erbacher; Johannes Erdmann; Cora Fischer; Henning Flaecher; Patrick J. Fox; Benjamin Fuks; Marie-Helene Genest; Bhawna Gomber; Andreas Goudelis; Johanna Gramling; John Gunion; Kristian Hahn; Ulrich Haisch; Roni Harnik; Philip C. Harris; Kerstin Hoepfner; Siew Yan Hoh; Dylan George Hsu; Shih-Chieh Hsu; Yutaro Iiyama; Valerio Ippolito; Thomas Jacques; Xiangyang Ju; Felix Kahlhoefer; Alexis Kalogeropoulos; Laser Seymour Kaplan; Lashkar Kashif; Valentin V. Khoze; Raman Khurana; Khristian Kotov; Dmytro Kovalskyi; Suchita Kulkarni; Shuichi Kunori; Viktor Kutzner; Hyun Min Lee; Sung-Won Lee; Seng Pei Liew; Tongyan Lin; Steven Lowette; Romain Madar; Sarah Malik; Fabio Maltoni; Mario Martinez Perez; Olivier Mattelaer; Kentarou Mawatari; Christopher McCabe; Tho Megy; Enrico Morgante; Stephen Mrenna; Siddharth M. Narayanan; Andy Nelson; Srgio F. Novaes; Klaas Ole Padeken; Priscilla Pani; Michele Papucci; Manfred Paulini; Christoph Paus; Jacopo Pazzini; Bjrn Penning; Michael E. Peskin; Deborah Pinna; Massimiliano Procura; Shamona F. Qazi; Davide Racco; Emanuele Re; Antonio Riotto; Thomas G. Rizzo; Rainer Roehrig; David Salek; Arturo Sanchez Pineda; Subir Sarkar; Alexander Schmidt; Steven Randolph Schramm; William Shepherd; Gurpreet Singh; Livia Soffi; Norraphat Srimanobhas; Kevin Sung; Tim M. P. Tait; Timothee Theveneaux-Pelzer; Marc Thomas; Mia Tosi; Daniele Trocino; Sonaina Undleeb; Alessandro Vichi; Fuquan Wang; Lian-Tao Wang; Ren-Jie Wang; Nikola Whallon; Steven Worm; Mengqing Wu; Sau Lan Wu; Hongtao Yang; Yong Yang; Shin-Shan Yu; Bryan Zaldivar; Marco Zanetti; Zhiqing Zhang; Alberto Zucchetta

    2015-07-03T23:59:59.000Z

    This document is the final report of the ATLAS-CMS Dark Matter Forum, a forum organized by the ATLAS and CMS collaborations with the participation of experts on theories of Dark Matter, to select a minimal basis set of dark matter simplified models that should support the design of the early LHC Run-2 searches. A prioritized, compact set of benchmark models is proposed, accompanied by studies of the parameter space of these models and a repository of generator implementations. This report also addresses how to apply the Effective Field Theory formalism for collider searches and present the results of such interpretations.

  20. Spectral Running and Non-Gaussianity from Slow-Roll Inflation in Generalised Two--Field Models

    E-Print Network [OSTI]

    Ki-Young Choi; Lisa M. H. Hall; Carsten van de Bruck

    2007-02-23T23:59:59.000Z

    Theories beyond the standard model such as string theory motivate low energy effective field theories with several scalar fields which are not only coupled through a potential but also through their kinetic terms. For such theories we derive the general formulae for the running of the spectral indices for the adiabatic, isocurvature and correlation spectra in the case of two field inflation. We also compute the expected non-Gaussianity in such models for specific forms of the potentials. We find that the coupling has little impact on the level of non-Gaussianity during inflation.

  1. Classical running and symmetry breaking in models with two extra dimensions

    E-Print Network [OSTI]

    Chloe Papineau

    2006-11-03T23:59:59.000Z

    We consider a codimension two scalar theory with brane-localised Higgs type potential. The six-dimensional field has Dirichlet boundary condition on the bounds of the transverse compact space. The regularisation of the brane singularity yields renormalisation group evolution for the localised couplings at the classical level. In particular, a tachyonic mass term grows at large distances and hits a Landau pole. We exhibit a peculiar value of the bare coupling such that the running mass parameter becomes large precisely at the compactification scale, and the effective four-dimensional zero mode is massless. Above the critical coupling, spontaneous symmetry breaking occurs and there is a very light state.

  2. Running Amok in Labyrinthine Systems: The Cyber-Behaviorist Origins of Soft Torture

    E-Print Network [OSTI]

    Lemov, Rebecca

    2011-01-01T23:59:59.000Z

    Labyrinthine Systems: The Cyber-Behaviorist Origins of SoftLabyrinthine Systems: The Cyber-Behaviorist Origins of Soft

  3. Comparing Computer Run Time of Building Simulation Programs

    E-Print Network [OSTI]

    Hong, Tianzhen

    2008-01-01T23:59:59.000Z

    an approach to comparing computer run time of buildingthe purpose of comparing computer run time. Modelers shouldATIONAL L ABORATORY Comparing Computer Run Time of Building

  4. Sandia National Laboratories: Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AnalysisSystems Modeling Systems Modeling Technical Expertise Projects Demos Partners Biographies Publications Technical Expertise Computer Assisted (CA) System dynamics modeling...

  5. RHIC Au beam in Run 2014

    SciTech Connect (OSTI)

    Zhang, S. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-09-15T23:59:59.000Z

    Au beam at the RHIC ramp in run 2014 is reviewed together with the run 2011 and run 2012. Observed bunch length and longitudinal emittance are compared with the IBS simulations. The IBS growth rate of the longitudinal emittance in run 2014 is similar to run 2011, and both are larger than run 2012. This is explained by the large transverse emittance at high intensity observed in run 2012, but not in run 2014. The big improvement of the AGS ramping in run 2014 might be related to this change. The importance of the injector intensity improvement in run 2014 is emphasized, which gives rise to the initial luminosity improvement of 50% in run 2014, compared with the previous Au-Au run 2011. In addition, a modified IBS model, which is calibrated using the RHIC Au runs from 9.8 GeV/n to 100 GeV/n, is presented and used in the study.

  6. Networking technology adoption : system dynamics modeling of fiber-to-the-home

    E-Print Network [OSTI]

    Kelic, Andjelka, 1972-

    2005-01-01T23:59:59.000Z

    A system dynamics model is developed and run to study the adoption of fiber-to-the-home as a residential broadband technology. Communities that currently do not have broadband in the United States are modeled. This case ...

  7. The readiness of ATLAS Trigger-DAQ system for the second LHC run

    E-Print Network [OSTI]

    Rammensee, Michael; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    After its first shutdown, LHC will provide pp collisions with increased luminosity and energy. In the ATLAS experiment, the Trigger and Data Acquisition (TDAQ) system has been upgraded to deal with the increased event rates. The updated system is radically different from the previous implementation, both in terms of architecture and expected performance. The main architecture has been reshaped in order to profit from the technological progress and to maximize the flexibility and efficiency of the data selection process. The trigger system in ATLAS consists of a hardware Level-1 (L1) and a software based high-level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of a few hundred Hz. The pre-existing two-level software filtering, known as L2 and the Event Filter, are now merged into a single process, performing incremental data collection and analysis. This design has many advantages, among which are: the radical simplification of the architec...

  8. Modelling a data acquisition system

    SciTech Connect (OSTI)

    Green, P.W.

    1986-02-01T23:59:59.000Z

    A data acquisition system to be run on a Data General ECLIPSE computer has been completely designed and developed using a VAX 11/780. This required that many of the features of the RDOS operating system be simulated on the VAX. Advantages and disadvantages of this approach are discussed, with particular regard to transportability of the system among different machines/operating systems, and the effect of the approach on various design decisions.

  9. Finding Benefits by Modeling and Optimizing Steam and Power Systems

    E-Print Network [OSTI]

    Harper, C.; Nelson, D. A.

    2008-01-01T23:59:59.000Z

    operator is given optimal production targets to achieve from Visual MESA Online writing to the plants SCADA system. The OCC duty control engineer monitors Bayous operations and the online Visual MESA model and also runs offline models to analyze potential...

  10. RSMASS system model development

    SciTech Connect (OSTI)

    Marshall, A.C.; Gallup, D.R.

    1998-07-01T23:59:59.000Z

    RSMASS system mass models have been used for more than a decade to make rapid estimates of space reactor power system masses. This paper reviews the evolution of the RSMASS models and summarizes present capabilities. RSMASS has evolved from a simple model used to make rough estimates of space reactor and shield masses to a versatile space reactor power system model. RSMASS uses unique reactor and shield models that permit rapid mass optimization calculations for a variety of space reactor power and propulsion systems. The RSMASS-D upgrade of the original model includes algorithms for the balance of the power system, a number of reactor and shield modeling improvements, and an automatic mass optimization scheme. The RSMASS-D suite of codes cover a very broad range of reactor and power conversion system options as well as propulsion and bimodal reactor systems. Reactor choices include in-core and ex-core thermionic reactors, liquid metal cooled reactors, particle bed reactors, and prismatic configuration reactors. Power conversion options include thermoelectric, thermionic, Stirling, Brayton, and Rankine approaches. Program output includes all major component masses and dimensions, efficiencies, and a description of the design parameters for a mass optimized system. In the past, RSMASS has been used as an aid to identify and select promising concepts for space power applications. The RSMASS modeling approach has been demonstrated to be a valuable tool for guiding optimization of the power system design; consequently, the model is useful during system design and development as well as during the selection process. An improved in-core thermionic reactor system model RSMASS-T is now under development. The current development of the RSMASS-T code represents the next evolutionary stage of the RSMASS models. RSMASS-T includes many modeling improvements and is planned to be more user-friendly. RSMASS-T will be released as a fully documented, certified code at the end of 1998. A radioisotope space power system model RISMASS is also under development. RISMASS will optimize and predict system masses for radioisotope power sources coupled with close-spaced thermionic diodes. Although RSMASS-D models have been developed for a broad variety of space nuclear power and propulsion systems, only a few concepts will be included in the releasable RSMASS-T computer code. A follow-on effort is recommended to incorporate all previous models as well as solar power system models into one general code. The proposed Space Power and propulsion system MASS (SPMASS) code would provide a consistent analysis tool for comparing a very broad range of alternative power and propulsion systems for any required power level and operating conditions. As for RSMASS-T the SPMASS model should be a certified, fully documented computer code available for general use. The proposed computer program would provide space mission planners with the capability to quickly and cost effectively explore power system options for any space mission. The code should be applicable for power requirements from as low as a few milliwatts (solar and isotopic system options) to many megawatts for reactor power and propulsion systems.

  11. Kestrel: An Interface from Modeling Systems to the NEOS Server

    E-Print Network [OSTI]

    4er PowerMac G4

    2002-09-30T23:59:59.000Z

    running modeling system can have much the same access to remote NEOS solvers as ... now readily handles 5,00010,000 submissions per month from a variety of business, ..... Kestrel solver object is then issued to free resources on the Kestrel server. ... and to use the local hard drive to encourage file system efficiency.

  12. A calculation method of running range of electric vehicle with battery hybrid system

    SciTech Connect (OSTI)

    Ohmae, T.; Naito, S.; Ishizuka, M.

    1980-05-01T23:59:59.000Z

    Much attention is being paid to electric vehicles from environmental standpoints. One disadvantage of the electric vehicle is that its operative range is short. A means to overcome this difficulty is to use a hybrid battery which consist of a energy battery and a power battery. A method to make it possible to calculate the discharge characteristics of the battery hybrid system taking into account the charging behavior from the energy battery to the power battery is presented. In the proposed method, first the output voltage and the output current of an equivalent battery, which is required for realizing the given operating pattern are calculated. Next, the conduction ratio of the main chopper and the equivalent discharge of electric charge of each battery are calculated. These calculated data are used to calculate the operating range.

  13. A Realistic Intersecting D6-Brane Model after the First LHC Run

    E-Print Network [OSTI]

    Tianjun Li; D. V. Nanopoulos; Shabbar Raza; Xiao-Chuan Wang

    2014-06-21T23:59:59.000Z

    With the Higgs boson mass around 125 GeV and the LHC supersymmetry search constraints, we revisit a three-family Pati-Salam model from intersecting D6-branes in Type IIA string theory on the $\\mathbf{T^6/(\\Z_2 \\times \\Z_2)}$ orientifold which has a realistic phenomenology. We systematically scan the parameter space for $\\mu0$, and find that the gravitino mass is generically heavier than about 2 TeV for both cases due to the Higgs mass low bound 123 GeV. In particular, we identify a region of parameter space with the electroweak fine-tuning as small as $\\Delta_{EW} \\sim$ 24-32 (3-4$\\%$). In the viable parameter space which is consistent with all the current constraints, the mass ranges for gluino, the first two-generation squarks and sleptons are respectively $[3, ~18]$ TeV, $[3, ~16]$ TeV, and $[2, ~7]$ TeV. For the third-generation sfermions, the light stop satisfying $5\\sigma$ WMAP bounds via neutralino-stop coannihilation has mass from 0.5 to 1.2 TeV, and the light stau can be as light as 800 GeV. We also show various coannihilation and resonance scenarios through which the observed dark matter relic density is achieved. Interestingly, the certain portions of parameter space has excellent $t$-$b$-$\\tau$ and $b$-$\\tau$ Yukawa coupling unification. Three regions of parameter space are highlighted as well where the dominant component of the lightest neutralino is a bino, wino or higgsino. We discuss various scenarios in which such solutions may avoid recent astrophysical bounds in case if they satisfy or above observed relic density bounds. Prospects of finding higgsino-like neutralino in direct and indirect searches are also studied. And we display six tables of benchmark points depicting various interesting features of our model.

  14. Running head: A Systematic Approach to Secure System Design 1 Towards a More Systematic Approach to Secure Systems

    E-Print Network [OSTI]

    Aickelin, Uwe

    advice given to software system designers. A set of thirty nine cyber-security experts took part ratings of their components. We show that when aggregated, a coherent consensus view of security emerges of this is that the cybersecurity of information systems has become an increasing concern. Assessing the level of risk posed

  15. Description and analysis of the shrimp raceway run for the summer 1990, Shrimp Mariculture Project, Texas A&M University System

    E-Print Network [OSTI]

    Mena, Luis

    1991-01-01T23:59:59.000Z

    " or "large tank" system by Heinen (1976), or "extensive" system by Lawrence and Huner (1987) . Later, a more complex indoor method known as the "Galveston" system was developed by The National Marine Fisheries Service (NMFS) at Galveston, Texas, after Dr... factors in ponds 12 14 17 25 Shrimp diseases. Virus bacteria Fungi. 30 32 33 36 Protozoan. Ecological and social problems Future 37 3B 41 III THE RACEWAY RUN, SUMMER 1990 Introduction Materials and methods. 44 44 46 Facility...

  16. Evaluation of daytime vs. nighttime red-light-running using an advanced warning for end of green phase system

    E-Print Network [OSTI]

    Obeng-Boampong, Kwaku Oduro

    2005-11-01T23:59:59.000Z

    The problem of dilemma zone protection and red-light-running is especially important in certain rural intersections due to the higher speeds at these intersections and their isolated nature. In addition, the presence of a larger percentage...

  17. Modeling the earth system

    SciTech Connect (OSTI)

    Ojima, D. [ed.

    1992-12-31T23:59:59.000Z

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  18. Space Power System Modeling with EBAL

    SciTech Connect (OSTI)

    Zillmer, Andrew; Hanks, David; Wen-Hsiung 'Tony' Tu [Pratt and Whitney Rocketdyne, 6633 Canoga Avenue MC LA 13, PO Box 7922, Canoga Park, CA 91309 (United States)

    2006-07-01T23:59:59.000Z

    Pratt and Whitney Rocket dyne's Engine Balance (EBAL) thermal/fluid system code has been expanded to model nuclear power closed Brayton cycle (CBC) power conversion systems. EBAL was originally developed to perform design analysis of hypersonic vehicle propellant and thermal management systems analysis. Later, it was adapted to rocket engine cycles. The new version of EBAL includes detailed, physics-based models of all key CBC system components. Some component examples are turbo-alternators, heat exchangers, heat pipe radiators, and liquid metal pumps. A liquid metal cooled reactor is included and a gas cooled reactor model is in work. Both thermodynamic and structural analyses are performed for each component. EBAL performs steady-state design analysis with optimization as well as off-design performance analysis. Design optimization is performed both at the component level by the component models and on the system level with a global optimizer. The user has the option to manually drive the optimization process or run parametric analysis to better understand system trade-off. Although recent EBAL developments have focused on a CBC conversion system, the code is easily extendible to other power conversion cycles. This new, more powerful version of EBAL allows for rapid design analysis and optimization of space power systems. A notional example of EBAL's capabilities is included. (authors)

  19. Title: Networking the Cloud: Enabling Enterprise Computing and Storage Cloud computing has been changing how enterprises run and manage their IT systems. Cloud

    E-Print Network [OSTI]

    Title: Networking the Cloud: Enabling Enterprise Computing and Storage Abstract: Cloud computing has been changing how enterprises run and manage their IT systems. Cloud computing platforms provide introduction on Cloud Computing. We propose a Virtual Cloud Pool abstraction to logically unify cloud

  20. Model-Integrated Embedded Systems Akos Ledeczi, Arpad Bakay, and Miklos Maroti

    E-Print Network [OSTI]

    Marti, Mikls

    and systems management during the entire life cycle of the system [7]. Partly to accomplish these and also software systems. Making the design- time models available at run-time benefits the development of dynamicModel-Integrated Embedded Systems Akos Ledeczi, Arpad Bakay, and Miklos Maroti Institute

  1. Sandia Energy - Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation Model Energy, Power & Water Simulation Model SunCity Model Water, Energy and Carbon Sequestration Model Gila Basin-Az Water Settlement Model Electrical Grid Storage...

  2. Model systems This year's model

    E-Print Network [OSTI]

    Raines, Ronald T.

    @biochem.wisc.edu RTR received ScB degrees in chemistry and biology from the Massachusetts Institute of Technology that initially inspired the chemical simplification. In such cases, the later stages of model studies can seem

  3. Optimization Online - Optimization Software and Modeling Systems ...

    E-Print Network [OSTI]

    Optimization Software and Modeling Systems Submissions - 2009. March 2009. Modeling Languages and Systems A Structure-Conveying Modelling Language...

  4. ATLAS Distributed Computing in LHC Run2

    E-Print Network [OSTI]

    Campana, Simone; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The ATLAS Distributed Computing infrastructure has evolved after the first period of LHC data taking in order to cope with the challenges of the upcoming LHC Run2. An increased data rate and computing demands of the Monte-Carlo simulation, as well as new approaches to ATLAS analysis, dictated a more dynamic workload management system (ProdSys2) and data management system (Rucio), overcoming the boundaries imposed by the design of the old computing model. In particular, the commissioning of new central computing system components was the core part of the migration toward the flexible computing model. The flexible computing utilization exploring the opportunistic resources such as HPC, cloud, and volunteer computing is embedded in the new computing model, the data access mechanisms have been enhanced with the remote access, and the network topology and performance is deeply integrated into the core of the system. Moreover a new data management strategy, based on defined lifetime for each dataset, has been defin...

  5. Model Based Control Refrigeration Systems

    E-Print Network [OSTI]

    Model Based Control of Refrigeration Systems Ph.D. Thesis Lars Finn Sloth Larsen Central R & D University, Denmark. The work has been carried out at the Central R&D - Refrigeration and Air Conditioning The subject for this Ph.D. thesis is model based control of refrigeration systems. Model based control covers

  6. Running of Running of the Spectral Index and WMAP Three-year data

    E-Print Network [OSTI]

    Qing-Guo Huang

    2006-10-21T23:59:59.000Z

    Three-year data of WMAP implies not only a negative running of the spectral index with large absolute value, but also a large positive running of running of the spectral index with order of the magnitude $10^{-2}$. We calculate the running of running in usual inflation model and noncommutative inflation model. A large tensor-scalar ratio $r\\geq 1.23$ is needed in order to fit the WMAP data in the noncommutative inflation model, which roughly saturates the observational upper bound on it.

  7. Nuclear Systems Modeling & Simulation | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Modeling and Simulation SHARE Nuclear Systems Modeling and Simulation Reactor physics depletion model for the Advanced Test Reactor Reactor physics depletion model for the...

  8. Running surface couplings

    E-Print Network [OSTI]

    S. D. Odintsov; A. Wipf

    1995-06-19T23:59:59.000Z

    We discuss the renormalization group improved effective action and running surface couplings in curved spacetime with boundary. Using scalar self-interacting theory as an example, we study the influence of the boundary effects to effective equations of motion in spherical cap and the relevance of surface running couplings to quantum cosmology and symmetry breaking phenomenon. Running surface couplings in the asymptotically free SU(2) gauge theory are found.

  9. New Method and Reporting of Uncertainty in LBNL National Energy Modeling System Runs

    E-Print Network [OSTI]

    Gumerman, Etan Z.; LaCommare, Kristina Hamachi; Marnay, Chris

    2002-01-01T23:59:59.000Z

    PV Quad SO 2 TWh Annual Energy Outlook combined GPRA caseshows the most recent Annual Energy Outlook (AEO) value, theradical. The Annual Energy Outlook forecasts unrestricted

  10. PACER -- A fast running computer code for the calculation of short-term containment/confinement loads following coolant boundary failure. Volume 1: Code models and correlations

    SciTech Connect (OSTI)

    Sienicki, J.J.

    1997-06-01T23:59:59.000Z

    A fast running and simple computer code has been developed to calculate pressure loadings inside light water reactor containments/confinements under loss-of-coolant accident conditions. PACER was originally developed to calculate containment/confinement pressure and temperature time histories for loss-of-coolant accidents in Soviet-designed VVER reactors and is relevant to the activities of the US International Nuclear Safety Center. The code employs a multicompartment representation of the containment volume and is focused upon application to early time containment phenomena during and immediately following blowdown. Flashing from coolant release, condensation heat transfer, intercompartment transport, and engineered safety features are described using best estimate models and correlations often based upon experiment analyses. Two notable capabilities of PACER that differ from most other containment loads codes are the modeling of the rates of steam and water formation accompanying coolant release as well as the correlations for steam condensation upon structure.

  11. The use of a simulation model to test scheduling techniques for flexible manufacturing systems

    E-Print Network [OSTI]

    Ingalls, Ricki Gene

    1984-01-01T23:59:59.000Z

    Shop Scheduling Problem 3 FLEXIBLE MANUFACTURING SISTEMS An Analytical System The Harris Graphics System Comparisons 4 THE SIMULATION MODEL 5 TH'E EXPERIMENT 6 THE RESULTS Deterministic Setup and Run Times Stochastic Setup and Run Times... or a k-Erlang distribution. 4. The system is in steady state. 5. The number of possible states is finite. 6. Each machining center with m identical machines having a (1/m)~p service rate, is approximated to a single channel system with a service rate...

  12. Nuclear Systems Modeling, Simulation & Validation | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Modeling and Simulation SHARE Nuclear Systems Modeling, Simulation and Validation Reactor physics depletion model for the Advanced Test Reactor Reactor physics depletion...

  13. Combined Search for the Standard Model Higgs Boson Decaying to bb? Using the D0 Run II Data Set

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; et al

    2012-09-01T23:59:59.000Z

    We present the results of the combination of searches for the standard model Higgs boson produced in association with a W or Z boson and decaying into bb? using the data sample collected with the D0 detector in pp? collisions at ?s=1.96 TeV at the Fermilab Tevatron Collider. We derive 95% C.L. upper limits on the Higgs boson cross section relative to the standard model prediction in the mass range 100 GeV?MH?150 GeV, and we exclude Higgs bosons with masses smaller than 102 GeV at the 95% C.L. In the mass range 120 GeV?MH?145 GeV, the data exhibit an excessmoreabove the background prediction with a global significance of 1.5 standard deviations, consistent with the expectation in the presence of a standard model Higgs boson.less

  14. Combined Search for the Standard Model Higgs Boson Decaying to bb? Using the D0 Run II Data Set

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besanon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Prez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Thry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Dliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Garca-Gonzlez, J. A.; Garca-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grnendahl, S.; Grnewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffr, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaa-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martnez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Ptroff, P.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Salcido, P.; Snchez-Hernndez, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Sldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Takahashi, M.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.

    2012-09-01T23:59:59.000Z

    We present the results of the combination of searches for the standard model Higgs boson produced in association with a W or Z boson and decaying into bb? using the data sample collected with the D0 detector in pp? collisions at ?s=1.96 TeV at the Fermilab Tevatron Collider. We derive 95% C.L. upper limits on the Higgs boson cross section relative to the standard model prediction in the mass range 100 GeV?MH?150 GeV, and we exclude Higgs bosons with masses smaller than 102 GeV at the 95% C.L. In the mass range 120 GeV?MH?145 GeV, the data exhibit an excess above the background prediction with a global significance of 1.5 standard deviations, consistent with the expectation in the presence of a standard model Higgs boson.

  15. Gauge/Gravity Theory with Running Dilaton and Running Axion

    E-Print Network [OSTI]

    Girma Hailu

    2007-12-27T23:59:59.000Z

    We present a new gauge/gravity duality construction of the Klebanov-Strassler throat which takes corrections to the anomalous mass dimension proposed in [1] into account on the gauge theory side and both the dilaton and the axion run on the gravity side. The corresponding supergravity solutions are found using equations for type IIB flows with N=1 supersymmetry obtained in [2]. We find that magnetic couplings of the axion to D7-branes filling 4-d spacetime and wrapping 4-cycles at locations of duality transitions and invisible Dirac 8-branes whose worldvolume emanates from the worldvolume of the D7-branes are the sources for the runnings of the dilaton and the axion. Our construction provides the first explicit example of a gauge/gravity duality mapping with a running dilaton or a running axion which is an important component towards finding gravity duals to gauge theories with physically more interesting renormalization group flows such as pure confining gauge theories in four dimensions. The D7-branes also serve as gravitational source for Seiberg duality transitions. The supergravity background has distinct features which could be useful for constructing cosmological models and studying possibilities for probing stringy signatures from the early universe.

  16. Selection of LHCb results from Run I

    E-Print Network [OSTI]

    A. Hicheur

    2015-03-17T23:59:59.000Z

    At the eve of the second LHC data taking run, some of the most recent results obtained by the LHCb collaboration with Run I data are reviewed. Improved measurements on CP violation, unitary triangle and mixing parameters are shown. Recent progress on physics in the forward region is illustrated by examples picked up in the electroweak physics and beyond Standard Model searches.

  17. Combined search for the standard model Higgs boson decaying to b bbar using the D0 Run II data set

    E-Print Network [OSTI]

    D0 Collaboration

    2012-09-25T23:59:59.000Z

    We present the results of the combination of searches for the standard model Higgs boson produced in association with a W or Z boson and decaying into b bbar using the data sample collected with the D0 detector in p pbar collisions at sqrt{s}=1.96 TeV at the Fermilab Tevatron Collider. We derive 95% CL upper limits on the Higgs boson cross section relative to the standard model prediction in the mass range 100 GeV Higgs boson.

  18. Traffic-and Thermal-Aware Run-Time Thermal Management Scheme for 3D NoC Systems

    E-Print Network [OSTI]

    Hung, Shih-Hao

    C), the combination of NoC and die-stacking 3D IC technology, is motivated to achieve lower latency, lower power consumption, and higher network bandwidth. However, the length of heat conduction path and power density per the vulnerability of the system in performance, power, reliability, and cost. To ensure both thermal safety and less

  19. Launching applications on compute and service processors running under different operating systems in scalable network of processor boards with routers

    DOE Patents [OSTI]

    Tomkins, James L. (Albuquerque, NM); Camp, William J. (Albuquerque, NM)

    2009-03-17T23:59:59.000Z

    A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective segregation of classified and unclassified users. The physical interconnect structure also permits easy physical scalability of the computing apparatus. The computing apparatus can include an emulator which permits applications from the same job to be launched on processors that use different operating systems.

  20. Running with Java

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobs QuickRunning on CarverRunning

  1. Running head: GUIDING ATTENTION ON PHYSICS PROBLEMS 1 Guiding Attention on Physics Problems Using Visual Cues Modeled After Experts' Eye

    E-Print Network [OSTI]

    Zollman, Dean

    Visual Cues Modeled After Experts' Eye Movements Adrian Madsen, Adam Larson, Amy Rouinfar, Allison Coy by recording their eye movements. In Study 1, we record eye movements of introductory and graduate physics in visual attention. We use the eye movements of those who answer these questions correctly to design visual

  2. The Community Climate System Model Version 4

    SciTech Connect (OSTI)

    Gent, Peter R.; Danabasoglu, Gokhan; Donner, Leo J.; Holland, Marika M.; Hunke, Elizabeth C.; Jayne, Steve R.; Lawrence, David M.; Neale, Richard; Rasch, Philip J.; Vertenstein, Mariana; Worley, Patrick; Yang, Zong-Liang; Zhang, Minghua

    2011-10-01T23:59:59.000Z

    The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all the CCSM components, and documents fully coupled pre-industrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1{sup o} results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4{sup o} resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in the CCSM4 producing El Nino/Southern Oscillation variability with a much more realistic frequency distribution than the CCSM3, although the amplitude is too large compared to observations. They also improve the representation of the Madden-Julian Oscillation, and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the deep ocean density structure, especially in the North Atlantic. Changes to the CCSM4 land component lead to a much improved annual cycle of water storage, especially in the tropics. The CCSM4 sea ice component uses much more realistic albedos than the CCSM3, and the Arctic sea ice concentration is improved in the CCSM4. An ensemble of 20th century simulations runs produce an excellent match to the observed September Arctic sea ice extent from 1979 to 2005. The CCSM4 ensemble mean increase in globally-averaged surface temperature between 1850 and 2005 is larger than the observed increase by about 0.4 C. This is consistent with the fact that the CCSM4 does not include a representation of the indirect effects of aerosols, although other factors may come into play. The CCSM4 still has significant biases, such as the mean precipitation distribution in the tropical Pacific Ocean, too much low cloud in the Arctic, and the latitudinal distributions of short-wave and long-wave cloud forcings.

  3. Assistant Professor Agricultural Systems Modeler

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    Assistant Professor Agricultural Systems Modeler Department of Plant and Soil Sciences Division of Agricultural Sciences and Natural Resources Oklahoma State University Stillwater, Oklahoma POSITION DESCRIPTION The Department of Plant and Soil Sciences, Oklahoma State University is seeking applicants

  4. Runtime system library for parallel finite difference models with nesting

    SciTech Connect (OSTI)

    Michalakes, J.

    1997-03-01T23:59:59.000Z

    RSL is a parallel run-time system library for implementing regular-grid models with nesting on distributed memory parallel computers. RSL provides support for automatically decomposing multiple model domains and for redistributing work between processors at run time for dynamic load balancing. A unique feature of RSL is that processor subdomains need not be rectangular patches; rather, grid points are independently allocated to processors, allowing more precisely balanced allocation of work to processors. Communication mechanisms are tailored to the application: RSL provides an efficient high-level stencil exchange operation for updating subdomain ghost areas and interdomain communication to support two-way interaction between nest levels. RSL also provides run-time support for local iteration over subdomains, global-local index translation, and distributed I/O from ordinary Fortran record-blocked data sets. The interface to RSL supports Fortran77 and Fortran90. RSL has been used to parallelize the NCAR/Penn State Mesoscale Model (MM5).

  5. Calibration and Data Quality systems of the ATLAS Tile Calorimeter during the LHC Run-I operations

    E-Print Network [OSTI]

    Zenis, Tibor; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It consists of thin steel plates and scintillating tiles. Wavelength shifting fibres coupled to the tiles collect the produced light and are read out by photomultiplier tubes. The calibration scheme of the Tile Calorimeter comprises Cs radioactive source, laser and charge injection systems. Each stage of the signal production of the calorimeter from scintillation light to digitization is monitored and equalized. Description of the different TileCal calibration systems as well as the results on their performance in terms of calibration factors, linearity and stability are given. The data quality procedures and data quality efficiency of the Tile Calorimeter during the LHC data-taking period are presented as well.

  6. Sandia Energy - Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSitingStaffSunshine toSystems

  7. Research and Development for a Free-Running Readout System for the ATLAS LAr Calorimeters at the High Luminosity LHC

    E-Print Network [OSTI]

    Hils, Maximilian; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to \\SI{14}{\\tera\\electronvolt} and instantaneous luminosities up to \\SI{d34}{\\per\\centi\\meter\\squared\\per\\second}. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of \\SI{3000}{\\per\\femto\\barn}. In the HL-LHC phase, the increased radiation levels require a replacement of the front-end (FE) electronics of the LAr Calorimeters. Furthermore, the ATLAS trigger system is foreseen to increase the trigger accept rate and the trigger latency which requires a larger data volume to be buffered. Therefore, the LAr Calorimeter read-out will be exchanged with a new FE and a high bandwidth back-end (BE) system for receiving data from all \

  8. Research and Development for a Free-Running Readout System for the ATLAS LAr Calorimeters at the High Luminosity LHC

    E-Print Network [OSTI]

    Hils, Maximilian; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} \\text{cm}^{-2} \\text{s}^{-1}$. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of $3000~\\text{fb}^{-1}$. In the HL-LHC phase, the increased radiation levels require a replacement of the front-end electronics of the LAr Calorimeters. Furthermore, the ATLAS trigger system is foreseen to increase the trigger accept rate by a factor 10 to 1 MHz and the trigger latency by a factor of 20 which requires a larger data volume to be buffered. Therefore, the LAr Calorimeter read-out will be exchanged with a new front-end and a high bandwidth back-end system for receiving data from all 186.000 channels at 40 MHz LHC bunch-crossing frequency and for off-detector buffering...

  9. N Controller Target System

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Arch Evaluator Adaptation Engine Model Manager Adaptation Executor Running System System API System Layer Probes Resource Discovery Effectors Running System System API System Layer Probes Resource COSMOS asynchronous push pull COSMOS (a)synchronous pull Local SCA binding Remote SCA binding (REST, RPC

  10. Long Run Macroeconomic Relations in the Global Economy

    E-Print Network [OSTI]

    Dees, S; Holly, Sean; Pesaran, M Hashem; Smith, L Vanessa

    This paper focuses on testing long run macroeconomic relations for interest rates, equity, prices and exchange rates within a model of the global economy. It considers a number of plausible long run relationships suggested by arbitrage in financial...

  11. SPATIAL TRANSFORMATIONS 1 Running head: Spatial transformations

    E-Print Network [OSTI]

    Zacks, Jeffrey M.

    SPATIAL TRANSFORMATIONS 1 Running head: Spatial transformations Multiple Systems for Spatial Imagery: Transformations of Objects and Bodies Jeffrey M. Zacks* and Barbara Tversky * Washington COGNITION & COMPUTATION #12;SPATIAL TRANSFORMATIONS 2 Abstract Problem-solving often requires imagining

  12. Sandia National Laboratories: Photovoltaic System Model Calibration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic System Model Calibration Using Monitored System Data Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling &...

  13. GASIFICATION TEST RUN TC06

    SciTech Connect (OSTI)

    Southern Company Services, Inc.

    2003-08-01T23:59:59.000Z

    This report discusses test campaign TC06 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC06. Test run TC06 was started on July 4, 2001, and completed on September 24, 2001, with an interruption in service between July 25, 2001, and August 19, 2001, due to a filter element failure in the PCD caused by abnormal operating conditions while tuning the main air compressor. The reactor temperature was varied between 1,725 and 1,825 F at pressures from 190 to 230 psig. In TC06, 1,214 hours of solid circulation and 1,025 hours of coal feed were attained with 797 hours of coal feed after the filter element failure. Both reactor and PCD operations were stable during the test run with a stable baseline pressure drop. Due to its length and stability, the TC06 test run provided valuable data necessary to analyze long-term reactor operations and to identify necessary modifications to improve equipment and process performance as well as progressing the goal of many thousands of hours of filter element exposure.

  14. Running Large Scale Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobs Quick Instructions forRunning

  15. Running on Carver

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobs Quick InstructionsRunning on

  16. Running on Carver

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobs Quick InstructionsRunning

  17. Running on Carver

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobs QuickRunning on Carver

  18. Running on Carver

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobs QuickRunning on Carver

  19. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect (OSTI)

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01T23:59:59.000Z

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  20. Using a scalable modeling and simulation framework to evaluate the benefits of intelligent transportation systems.

    SciTech Connect (OSTI)

    Ewing, T.; Tentner, A.

    2000-03-21T23:59:59.000Z

    A scalable, distributed modeling and simulation framework has been developed at Argonne National Laboratory to study Intelligent Transportation Systems. The framework can run on a single-processor workstation, or run distributed on a multiprocessor computer or network of workstations. The framework is modular and supports plug-in models, hardware, and live data sources. The initial set of models currently includes road network and traffic flow, probe and smart vehicles, traffic management centers, communications between vehicles and centers, in-vehicle navigation systems, roadway traffic advisories. The modeling and simulation capability has been used to examine proposed ITS concepts. Results are presented from modeling scenarios from the Advanced Driver and Vehicle Advisory Navigation Concept (ADVANCE) experimental program to demonstrate how the framework can be used to evaluate the benefits of ITS and to plan future ITS operational tests and deployment initiatives.

  1. Probabilistic models for feedback systems.

    SciTech Connect (OSTI)

    Grace, Matthew D.; Boggs, Paul T.

    2011-02-01T23:59:59.000Z

    In previous work, we developed a Bayesian-based methodology to analyze the reliability of hierarchical systems. The output of the procedure is a statistical distribution of the reliability, thus allowing many questions to be answered. The principal advantage of the approach is that along with an estimate of the reliability, we also can provide statements of confidence in the results. The model is quite general in that it allows general representations of all of the distributions involved, it incorporates prior knowledge into the models, it allows errors in the 'engineered' nodes of a system to be determined by the data, and leads to the ability to determine optimal testing strategies. In this report, we provide the preliminary steps necessary to extend this approach to systems with feedback. Feedback is an essential component of 'complexity' and provides interesting challenges in modeling the time-dependent action of a feedback loop. We provide a mechanism for doing this and analyze a simple case. We then consider some extensions to more interesting examples with local control affecting the entire system. Finally, a discussion of the status of the research is also included.

  2. Catchline International Journal of Geographical Information System, Vol. X, No. X, Month 2006, xxxxxx Running heads (verso) J. Zhou and R. Golledge (recto) A three-step map matching method in the GIS environment A Three-step General Map Matching Method in the GIS Environment: Travel/Transportation Study Perspective

    E-Print Network [OSTI]

    Zhou, Jianyu Jack; Golledge, R G

    2006-01-01T23:59:59.000Z

    Information System, Vol. X, No. X, Month 2006, xxxxxx Running heads (verso) (recto) J. Zhou and R. Golledge A

  3. Climate System Model Plan (2000-2005)

    E-Print Network [OSTI]

    Community Climate System Model Plan (2000-2005) Prepared by the CCSM Scientific Steering Committee Development of the Climate System Model B. 300-Year Fully Coupled Control Simulation C. Simulation System Model Plan (2000-2005). The evolution of the NCAR Community Climate Model (CCM) from an atmosphere

  4. Hawaii International Conference on Systems Sciences, January 2002, Hawaii. IEEE Growth and Propagation of Disturbances in a Communication Network Model

    E-Print Network [OSTI]

    Newman, David

    , distribution systems, and electrical power transmission grids which run near their operational limits, can of dynamical models if we want to understand the temporal operation of the systems as well as having some ability to control the flows (information, power etc.) and to understand as well as avoid vulnerabilities

  5. ATLAS inner detector: the Run 1 to Run 2 transition, and first experience from Run 2

    E-Print Network [OSTI]

    Dobos, Daniel; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The ATLAS experiment is equipped with a tracking system, the Inner Detector, built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. For the LHC Run II, the system has been upgraded; taking advantage of the long showdown, the Pixel Detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm from the beam axis. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point and the increase of Luminosity that LHC will face in Run-2, a new read-out chip within CMOS 130nm and two different silicon sensor pixel technologies (planar and 3D) have been developed. SCT and TRT systems consolidation was also carri...

  6. Running Boundary Condition

    E-Print Network [OSTI]

    Satoshi Ohya; Makoto Sakamoto; Motoi Tachibana

    2013-01-28T23:59:59.000Z

    In this paper we argue that boundary condition may run with energy scale. As an illustrative example, we consider one-dimensional quantum mechanics for a spinless particle that freely propagates in the bulk yet interacts only at the origin. In this setting we find the renormalization group flow of U(2) family of boundary conditions exactly. We show that the well-known scale-independent subfamily of boundary conditions are realized as fixed points. We also discuss the duality between two distinct boundary conditions from the renormalization group point of view. Generalizations to conformal mechanics and quantum graph are also discussed.

  7. Running Jobs on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobs Quick Instructions for Hopper

  8. Running Jobs on Franklin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobs Quick Instructions for

  9. Running Jobs on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobs Quick Instructions for Queues

  10. Running jobs on Euclid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobs Quick Instructions

  11. Running on Carver

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobs Quick

  12. Fall Run | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFYRANDOMFailure Modes and Causes5Fall Run

  13. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

  14. Congestion modeling and mitigation in the National Airspace System

    E-Print Network [OSTI]

    Bertini, Robert L.

    Standard FEM implementations might assume uniform element widths when computing stiffness matrix and load time A complete stochastic profile of the solution can be generated in a single run of the model (a

  15. PDU Run 10

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    PDU Run 10, a 46-day H-Coal syncrude mode operation using Wyodak coal, successfully met all targeted objectives, and was the longest PDU operation to date in this program. Targeted coal conversion of 90 W % was exceeded with a C/sub 4/-975/sup 0/F distillate yield of 43 to 48 W %. Amocat 1A catalyst was qualified for Pilot Plant operation based on improved operation and superior performance. PDU 10 achieved improved yields and lower hydrogen consumption compared to PDU 6, a similar operation. High hydroclone efficiency and high solids content in the vacuum still were maintained throughout the run. Steady operations at lower oil/solids ratios were demonstrated. Microautoclave testing was introduced as an operational aid. Four additional studies were successfully completed during PDU 10. These included a catalyst tracer study in conjunction with Sandia Laboratories; tests on letdown valve trims for Battelle; a fluid dynamics study with Amoco; and special high-pressure liquid sampling.

  16. Modeling Timed Concurrent Systems using Generalized Ultrametrics

    E-Print Network [OSTI]

    Modeling Timed Concurrent Systems using Generalized Ultrametrics Xiaojun Liu Eleftherios Matsikoudis Edward A. Lee Electrical Engineering and Computer Sciences University of California at Berkeley to lists, requires prior specific permission. #12;Modeling Timed Concurrent Systems using Generalized

  17. Modeling the Earth System, volume 3

    SciTech Connect (OSTI)

    Ojima, D.

    1992-01-01T23:59:59.000Z

    The topics covered fall under the following headings: critical gaps in the Earth system conceptual framework; development needs for simplified models; and validating Earth system models and their subcomponents.

  18. Salinity routing in reservoir system modeling

    E-Print Network [OSTI]

    Ha, Mi Ae

    2007-04-25T23:59:59.000Z

    in several major river basins in Texas and neighboring states. WRAP is the river/reservoir system simulation model incorporated in the Water Availability Modeling (WAM) System applied by agencies and consulting firms in Texas in planning and water right...

  19. Model Development Development of a system emulating the global carbon cycle in Earth system models

    E-Print Network [OSTI]

    K. Tachiiri; J. C. Hargreaves; J. D. Annan; A. Oka; A. Abe-ouchi; M. Kawamiya

    2010-01-01T23:59:59.000Z

    developed a loosely coupled model (LCM) which can represent the outputs of a GCMbased Earth system model

  20. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01T23:59:59.000Z

    The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

  1. National Energy Modeling System (NEMS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

  2. Model Uncertainty in Discrete Event Systems \\Lambda

    E-Print Network [OSTI]

    Garg, Vijay

    that a correct model of the system to be controlled was avail­ able. A goal of this wok is to provide be controllably distin­ guished. We use the finite state machine model with controllable and uncontrollable events to control systems in the presence of uncertainty in the model of the system and environment in which

  3. Bifurcation Analysis of Various Power System Models

    E-Print Network [OSTI]

    Caizares, Claudio A.

    modeling, voltage collapse. I. Introduction Voltage stability problems in power systems may occurBifurcation Analysis of Various Power System Models William D. Rosehart Claudio A. Ca This paper presents the bifurcation analysis of a detailed power system model composed of an aggregated

  4. Physical Modeling of Scaled Water Distribution System Networks.

    SciTech Connect (OSTI)

    O'Hern, Timothy J.; Hammond, Glenn Edward; Orear, Leslie ,; van Bloemen Waanders, Bart G.; Paul Molina; Ross Johnson

    2005-10-01T23:59:59.000Z

    Threats to water distribution systems include release of contaminants and Denial of Service (DoS) attacks. A better understanding, and validated computational models, of the flow in water distribution systems would enable determination of sensor placement in real water distribution networks, allow source identification, and guide mitigation/minimization efforts. Validation data are needed to evaluate numerical models of network operations. Some data can be acquired in real-world tests, but these are limited by 1) unknown demand, 2) lack of repeatability, 3) too many sources of uncertainty (demand, friction factors, etc.), and 4) expense. In addition, real-world tests have limited numbers of network access points. A scale-model water distribution system was fabricated, and validation data were acquired over a range of flow (demand) conditions. Standard operating variables included system layout, demand at various nodes in the system, and pressure drop across various pipe sections. In addition, the location of contaminant (salt or dye) introduction was varied. Measurements of pressure, flowrate, and concentration at a large number of points, and overall visualization of dye transport through the flow network were completed. Scale-up issues that that were incorporated in the experiment design include Reynolds number, pressure drop across nodes, and pipe friction and roughness. The scale was chosen to be 20:1, so the 10 inch main was modeled with a 0.5 inch pipe in the physical model. Controlled validation tracer tests were run to provide validation to flow and transport models, especially of the degree of mixing at pipe junctions. Results of the pipe mixing experiments showed large deviations from predicted behavior and these have a large impact on standard network operations models.3

  5. Development and application of earth system models

    E-Print Network [OSTI]

    Development and application of earth system models Ronald G. Prinn *Reprinted from Proceedings, 2011) The global environment is a complex and dynamic system. Earth system modeling is needed to help: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Development and application of earth system

  6. Generic CSP Performance Model for NREL's System Advisor Model: Preprint

    SciTech Connect (OSTI)

    Wagner, M. J.; Zhu, G.

    2011-08-01T23:59:59.000Z

    The suite of concentrating solar power (CSP) modeling tools in NREL's System Advisor Model (SAM) includes technology performance models for parabolic troughs, power towers, and dish-Stirling systems. Each model provides the user with unique capabilities that are catered to typical design considerations seen in each technology. Since the scope of the various models is generally limited to common plant configurations, new CSP technologies, component geometries, and subsystem combinations can be difficult to model directly in the existing SAM technology models. To overcome the limitations imposed by representative CSP technology models, NREL has developed a 'Generic Solar System' (GSS) performance model for use in SAM. This paper discusses the formulation and performance considerations included in this model and verifies the model by comparing its results with more detailed models.

  7. Backward running or absence of running from Creutz ratios

    SciTech Connect (OSTI)

    Giedt, Joel; Weinberg, Evan [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12065 (United States)

    2011-10-01T23:59:59.000Z

    We extract the running coupling based on Creutz ratios in SU(2) lattice gauge theory with two Dirac fermions in the adjoint representation. Depending on how the extrapolation to zero fermion mass is performed, either backward running or an absence of running is observed at strong bare coupling. This behavior is consistent with other findings which indicate that this theory has an infrared fixed point.

  8. Comparison of Photovoltaic Models in the System Advisor Model: Preprint

    SciTech Connect (OSTI)

    Blair, N. J.; Dobos, A. P.; Gilman, P.

    2013-08-01T23:59:59.000Z

    The System Advisor Model (SAM) is free software developed by the National Renewable Energy Laboratory (NREL) for predicting the performance of renewable energy systems and analyzing the financial feasibility of residential, commercial, and utility-scale grid-connected projects. SAM offers several options for predicting the performance of photovoltaic (PV) systems. The model requires that the analyst choose from three PV system models, and depending on that choice, possibly choose from three module and two inverter component models. To obtain meaningful results from SAM, the analyst must be aware of the differences between the model options and their applicability to different modeling scenarios. This paper presents an overview the different PV model options and presents a comparison of results for a 200-kW system using different model options.

  9. Modeling Power Systems as Complex Adaptive Systems

    SciTech Connect (OSTI)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30T23:59:59.000Z

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  10. Copyrighted Material A smoothly running automobile is one of life's delights; it enables you to

    E-Print Network [OSTI]

    Landweber, Laura

    and start afresh with a brand new model. Life goes on, with hardly a ripple. But what about the huge system that makes this all possible: the high ways, the oil refineries, the auto makers, the insurance companies, the banks, the stock market, the government? Our civilization has been run ning smoothly--with some serious

  11. The Effects of Stressors on Voluntary Running

    E-Print Network [OSTI]

    Dlugosz, Elizabeth Maureen

    2012-01-01T23:59:59.000Z

    Energy cost of walking and running gaits and their aerobicEnergy cost of wheel running in house mice: implications forration predict maximal running speed in cursorial mammals?

  12. Running couplings in extra dimensions

    E-Print Network [OSTI]

    Jisuke Kubo; Haruhiko Terao; George Zoupanos

    2000-10-07T23:59:59.000Z

    The regularization scheme dependence of running couplings in extra compactified dimensions is discussed. We examine several regularization schemes explicitly in order to analyze the scheme dependence of the Kaluza-Klein threshold effects, which cause the power law running, in the case of the scalar theory in five dimensions with one dimension compactified. It is found that in 1-loop order, the net difference in the running of the coupling among the different schemes is reduced to be rather small after finite renormalization. An additional comment concerns the running couplings in the warped extra dimensions which are found to be regularization dependent above TeV scale.

  13. When can the Planck satellite measure spectral index running?

    E-Print Network [OSTI]

    Cdric Pahud; Andrew R. Liddle; Pia Mukherjee; David Parkinson

    2007-09-04T23:59:59.000Z

    We use model selection forecasting to assess the ability of the Planck satellite to make a positive detection of spectral index running. We simulate Planck data for a range of assumed cosmological parameter values, and carry out a three-way Bayesian model comparison of a Harrison-Zel'dovich model, a power-law model, and a model including running. We find that Planck will be able to strongly support running only if its true value satisfies |dn/d ln k| > 0.02.

  14. Running Jobs Intermittently Slow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    globalscratch2). It could also happen to aplications using shared libraries, or CCM jobs on any Hopper file systems. The slowness is identified to be related to DVSGPFS...

  15. Development and Application of Earth System Models

    E-Print Network [OSTI]

    Prinn, Ronald G.

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. ...

  16. Coordinating the 2009 RHIC Run

    ScienceCinema (OSTI)

    Brookhaven Lab - Mei Bai

    2010-01-08T23:59:59.000Z

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  17. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    SciTech Connect (OSTI)

    Turchi, C. S.; Heath, G. A.

    2013-02-01T23:59:59.000Z

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  18. Very Large System Dynamics Models - Lessons Learned

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Leonard Malczynski

    2008-10-01T23:59:59.000Z

    This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.

  19. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    SciTech Connect (OSTI)

    Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A. P.

    2013-12-01T23:59:59.000Z

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  20. Battery Model for Embedded Systems , Gaurav Singhal

    E-Print Network [OSTI]

    Navet, Nicolas

    Battery Model for Embedded Systems Venkat Rao , Gaurav Singhal , Anshul Kumar , Nicolas Navet in embedded systems. It describes the prominent battery models with their advantages and draw- backs of the battery. With the tremendous increase in the comput- ing power of hardware and the relatively slow growth

  1. Earth System Models especially those of

    E-Print Network [OSTI]

    Shepherd, John

    Dioxide Deep Ocean Carbon Dioxide Freshwater Outgasing Deep water Slide courtesy ofSlide courtesy of P.Valdes (Genie)P.Valdes (Genie) What is an Earth System Model ?What is an Earth System Model ? #12;Components-A Coupled Modes? Decadal Modes? ~1 Sea-ice variability #12;Existing EMICS Information from M. Claussen (PIK

  2. Modeling of Residential Buildings and Heating Systems

    E-Print Network [OSTI]

    Masy, G.; Lebrun, J.

    2004-01-01T23:59:59.000Z

    -zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

  3. Modeling of Residential Buildings and Heating Systems

    E-Print Network [OSTI]

    Masy, G.; Lebrun, J.

    2004-01-01T23:59:59.000Z

    -zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

  4. A model for international border management systems.

    SciTech Connect (OSTI)

    Duggan, Ruth Ann

    2008-09-01T23:59:59.000Z

    To effectively manage the security or control of its borders, a country must understand its border management activities as a system. Using its systems engineering and security foundations as a Department of Energy National Security Laboratory, Sandia National Laboratories has developed such an approach to modeling and analyzing border management systems. This paper describes the basic model and its elements developed under Laboratory Directed Research and Development project 08-684.

  5. 2005: Table of EMICs (Earth System Models of Intermediate Complexity

    E-Print Network [OSTI]

    Martin Claussen

    apparent that Earth system modelling has to rely on a hierarchy of models in which models of intermediate

  6. Modeling and Analysis ofModeling and Analysis of Hybrid Control SystemsHybrid Control Systems

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    control systems, MOVEP, Bordeaux, 2006 Automatic gear boxAutomatic gear box #12;Karl H. Johansson, HybridModeling and Analysis ofModeling and Analysis of Hybrid Control SystemsHybrid Control Systems Karl.kth.se/~kallej MOVEP 2006, Bordeaux, France Karl H. Johansson, Hybrid control systems, MOVEP, Bordeaux

  7. Running tool for liner hanger

    SciTech Connect (OSTI)

    Melenyzer, G.J.

    1990-03-27T23:59:59.000Z

    This patent describes a running tool. It is for a liner hanger having an annular groove in its bore, and upwardly facing slots in its upper end, and a liner string depending therefrom.

  8. Traffic congestion forecasting model for the INFORM System. Final report

    SciTech Connect (OSTI)

    Azarm, A.; Mughabghab, S.; Stock, D.

    1995-05-01T23:59:59.000Z

    This report describes a computerized traffic forecasting model, developed by Brookhaven National Laboratory (BNL) for a portion of the Long Island INFORM Traffic Corridor. The model has gone through a testing phase, and currently is able to make accurate traffic predictions up to one hour forward in time. The model will eventually take on-line traffic data from the INFORM system roadway sensors and make projections as to future traffic patterns, thus allowing operators at the New York State Department of Transportation (D.O.T.) INFORM Traffic Management Center to more optimally manage traffic. It can also form the basis of a travel information system. The BNL computer model developed for this project is called ATOP for Advanced Traffic Occupancy Prediction. The various modules of the ATOP computer code are currently written in Fortran and run on PC computers (pentium machine) faster than real time for the section of the INFORM corridor under study. The following summarizes the various routines currently contained in the ATOP code: Statistical forecasting of traffic flow and occupancy using historical data for similar days and time (long term knowledge), and the recent information from the past hour (short term knowledge). Estimation of the empirical relationships between traffic flow and occupancy using long and short term information. Mechanistic interpolation using macroscopic traffic models and based on the traffic flow and occupancy forecasted (item-1), and the empirical relationships (item-2) for the specific highway configuration at the time of simulation (construction, lane closure, etc.). Statistical routine for detection and classification of anomalies and their impact on the highway capacity which are fed back to previous items.

  9. Instrument Front-Ends at Fermilab During Run II

    SciTech Connect (OSTI)

    Meyer, Thomas; Slimmer, David; Voy, Duane; /Fermilab

    2011-07-13T23:59:59.000Z

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.

  10. Structural system identification: Structural dynamics model validation

    SciTech Connect (OSTI)

    Red-Horse, J.R.

    1997-04-01T23:59:59.000Z

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  11. Comparative Evaluation of Generalized River/Reservoir System Models

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer...

  12. ORC Closed Loop Control Systems for Transient and Steady State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    models using iterative concept analysis are being used on a closed loop controlled, waste heat recovery system running automatically over various drive cycles....

  13. A scalable methodology for modeling cities as systems of systems

    E-Print Network [OSTI]

    Wachtel, Amanda M. (Amanda Marie)

    2013-01-01T23:59:59.000Z

    As cities evolve in size and complexity, their component systems become more interconnected. Comprehensive modeling and simulation is needed to capture interactions and correctly assess the impact of changes. This thesis ...

  14. On linking an Earth system model to the equilibrium carbon representation of an economically optimizing land use model

    SciTech Connect (OSTI)

    Bond-Lamberty, Benjamin; Calvin, Katherine V.; Jones, Andrew D.; Mao, Jiafu; Patel, Pralit L.; Shi, Xiaoying; Thomson, Allison M.; Thornton, Peter E.; Zhou, Yuyu

    2014-01-01T23:59:59.000Z

    Human activities are significantly altering biogeochemical cycles at the global scale, posing a significant problem for earth system models (ESMs), which may incorporate static land-use change inputs but do not actively simulate policy or economic forces. One option to address this problem is a to couple an ESM with an economically oriented integrated assessment model. Here we have implemented and tested a coupling mechanism between the carbon cycles of an ESM (CLM) and an integrated assessment (GCAM) model, examining the best proxy variables to share between the models, and quantifying our ability to distinguish climate- and land-use-driven flux changes. CLMs net primary production and heterotrophic respiration outputs were found to be the most robust proxy variables by which to manipulate GCAMs assumptions of long-term ecosystem steady state carbon, with short-term forest production strongly correlated with long-term biomass changes in climate-change model runs. By leveraging the fact that carbon-cycle effects of anthropogenic land-use change are short-term and spatially limited relative to widely distributed climate effects, we were able to distinguish these effects successfully in the model coupling, passing only the latter to GCAM. By allowing climate effects from a full earth system model to dynamically modulate the economic and policy decisions of an integrated assessment model, this work provides a foundation for linking these models in a robust and flexible framework capable of examining two-way interactions between human and earth system processes.

  15. Maui Electrical System Model Development

    E-Print Network [OSTI]

    1 2. Simulation Data and Assumptions 1 2.1 Economic Data and Assumptions 1 2.1.1 Thermal Plants 1 2 of the power plant FUEL_TYPE OIL-Distillate Oil (No.2); RENEW - zero cost fuel used for modeling Wind & Geoth.1.2 Independent Power Producers 2 2.1.3 Load Demand 2 2.2 Dynamics 4 2.2.1 Load Flow 4 2.2.1.1 Database Conversion

  16. Climate system modeling on massively parallel systems: LDRD Project 95-ERP-47 final report

    SciTech Connect (OSTI)

    Mirin, A.A.; Dannevik, W.P.; Chan, B.; Duffy, P.B.; Eltgroth, P.G.; Wehner, M.F.

    1996-12-01T23:59:59.000Z

    Global warming, acid rain, ozone depletion, and biodiversity loss are some of the major climate-related issues presently being addressed by climate and environmental scientists. Because unexpected changes in the climate could have significant effect on our economy, it is vitally important to improve the scientific basis for understanding and predicting the earth`s climate. The impracticality of modeling the earth experimentally in the laboratory together with the fact that the model equations are highly nonlinear has created a unique and vital role for computer-based climate experiments. However, today`s computer models, when run at desired spatial and temporal resolution and physical complexity, severely overtax the capabilities of our most powerful computers. Parallel processing offers significant potential for attaining increased performance and making tractable simulations that cannot be performed today. The principal goals of this project have been to develop and demonstrate the capability to perform large-scale climate simulations on high-performance computing systems (using methodology that scales to the systems of tomorrow), and to carry out leading-edge scientific calculations using parallelized models. The demonstration platform for these studies has been the 256-processor Cray-T3D located at Lawrence Livermore National Laboratory. Our plan was to undertake an ambitious program in optimization, proof-of-principle and scientific study. These goals have been met. We are now regularly using massively parallel processors for scientific study of the ocean and atmosphere, and preliminary parallel coupled ocean/atmosphere calculations are being carried out as well. Furthermore, our work suggests that it should be possible to develop an advanced comprehensive climate system model with performance scalable to the teraflops range. 9 refs., 3 figs.

  17. Convex Models of Distribution System Reconfiguration

    E-Print Network [OSTI]

    Taylor, Joshua A.

    We derive new mixed-integer quadratic, quadratically constrained, and second-order cone programming models of distribution system reconfiguration, which are to date the first formulations of the ac problem that have convex, ...

  18. Hybrid Energy System Modeling in Modelica

    SciTech Connect (OSTI)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01T23:59:59.000Z

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  19. Oil shale project run summary small retort run S-7

    SciTech Connect (OSTI)

    Ackerman, F.J.; Sandholtz, W.A.; Miller, W.C.; Casamajor, A.B.

    1981-12-11T23:59:59.000Z

    Retort Run S-7 was a combustion run in the small retort conducted on October 10-11, 1975. Nitrogen was used to dilute the inlet air to 7.5% oxygen. Gas analysis shows that oil was not burned, but the oil yield was only 78%. If the oil yield was actually 90% and 1.3 kg of oil was lost up the stack, the mass balance would show a small improvement, 1.2 kg (approx. 0.5%) unaccounted for, the energy balance would have only 1% energy unaccounted for, and the carbon balance would be improved from 10.5% to 1.4% loss. (DLC)

  20. On modeling and controlling intelligent systems

    SciTech Connect (OSTI)

    Dress, W.B.

    1993-11-01T23:59:59.000Z

    The aim of this paper is to show how certain diverse and advanced techniques of information processing and system theory might be integrated into a model of an intelligent, complex entity capable of materially enhancing an advanced information management system. To this end, we first examine the notion of intelligence and ask whether a semblance thereof can arise in a system consisting of ensembles of finite-state automata. Our goal is to find a functional model of intelligence in an information-management setting that can be used as a tool. The purpose of this tool is to allow us to create systems of increasing complexity and utility, eventually reaching the goal of an intelligent information management system that provides and anticipates needed data and information. We base our attempt on the ideas of general system theory where the four topics of system identification, modeling, optimization, and control provide the theoretical framework for constructing a complex system that will be capable of interacting with complex systems in the real world. These four key topics are discussed within the purview of cellular automata, neural networks, and evolutionary programming. This is a report of ongoing work, and not yet a success story of a synthetic intelligent system.

  1. Systems Modeling | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action(InsertAbout theSystems Long Term

  2. Systems Modeling | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action(InsertAbout theSystems Long Term Computational

  3. Human performance modeling for system of systems analytics :soldier fatigue.

    SciTech Connect (OSTI)

    Lawton, Craig R.; Campbell, James E.; Miller, Dwight Peter

    2005-10-01T23:59:59.000Z

    The military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives as can be seen in the Department of Defense's (DoD) Defense Modeling and Simulation Office's (DMSO) Master Plan (DoD 5000.59-P 1995). To this goal, the military is currently spending millions of dollars on programs devoted to HPM in various military contexts. Examples include the Human Performance Modeling Integration (HPMI) program within the Air Force Research Laboratory, which focuses on integrating HPMs with constructive models of systems (e.g. cockpit simulations) and the Navy's Human Performance Center (HPC) established in September 2003. Nearly all of these initiatives focus on the interface between humans and a single system. This is insufficient in the era of highly complex network centric SoS. This report presents research and development in the area of HPM in a system-of-systems (SoS). Specifically, this report addresses modeling soldier fatigue and the potential impacts soldier fatigue can have on SoS performance.

  4. Maui Electrical System Simulation Model Validation

    E-Print Network [OSTI]

    Maui Electrical System Simulation Model Validation Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847 Task 9 Deliverable Baseline Model Validation By GE Global Research Niskayuna, New York And University of Hawaii Hawaii Natural

  5. MODELING SECURITY IN CYBER-PHYSICAL SYSTEMS

    E-Print Network [OSTI]

    Burmester, Mike

    network at the Davis-Besse nuclear power plant in Oak Harbor, Ohio, was infected [39]. There have been the behavior of the adversary is controlled by a threat model that captures both the cyber aspects (with-physical systems, threat models, protocols for treaty verification. 1. Introduction The rapid growth of information

  6. A toolkit for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1993-03-01T23:59:59.000Z

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth's weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  7. A toolkit for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1993-03-01T23:59:59.000Z

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth`s weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  8. HOW TO RUN DARS AUDITS ON STUDENT WEB

    E-Print Network [OSTI]

    HOW TO RUN DARS AUDITS ON STUDENT WEB 1. Open a browser window 2. Enter this address: http on "Student Services & Financial Aid" 7. Click on "DARS" Degree Audit Reporting System 8. Click on "Submit

  9. The Physics Case for Extended Tevatron Running

    E-Print Network [OSTI]

    Darien R. Wood

    2010-11-06T23:59:59.000Z

    Run II of the Tevatron collider at Fermilab is currently scheduled to end late in 2011. Given the current performance of the collider and of the CDF and D0 detectors, it is estimated that the current data set could be approximately doubled with a run extended into 2014. A few examples are presented of the physics potential of these additional statistics. These are discussed in the context of the expected reach of the LHC 7 TeV data and the existing Tevatron data. In particular, an extraordinary opportunity is described which could probe the existence of a standard model Higgs boson with mass in the currently preferred region between 115 GeV and 150 GeV.

  10. The Physics Case for Extended Tevatron Running

    SciTech Connect (OSTI)

    Wood, Darien R.

    2010-11-01T23:59:59.000Z

    Run II of the Tevatron collider at Fermilab is currently scheduled to end late in 2011. Given the current performance of the collider and of the CDF and D0 detectors, it is estimated that the current data set could be approximately doubled with a run extended into 2014. A few examples are presented of the physics potential of these additional statistics. These are discussed in the context of the expected reach of the LHC 7 TeV data and the existing Tevatron data. In particular, an extraordinary opportunity is described which could probe the existence of a standard model Higgs boson with mass in the currently preferred region between 115 GeV and 150 GeV.

  11. Comparison of the Accuracy and Speed of Transient Mobile A/C System Simulation Models: Preprint

    SciTech Connect (OSTI)

    Kiss, T.; Lustbader, J.

    2014-03-01T23:59:59.000Z

    The operation of air conditioning (A/C) systems is a significant contributor to the total amount of fuel used by light- and heavy-duty vehicles. Therefore, continued improvement of the efficiency of these mobile A/C systems is important. Numerical simulation has been used to reduce the system development time and to improve the electronic controls, but numerical models that include highly detailed physics run slower than desired for carrying out vehicle-focused drive cycle-based system optimization. Therefore, faster models are needed even if some accuracy is sacrificed. In this study, a validated model with highly detailed physics, the 'Fully-Detailed' model, and two models with different levels of simplification, the 'Quasi-Transient' and the 'Mapped- Component' models, are compared. The Quasi-Transient model applies some simplifications compared to the Fully-Detailed model to allow faster model execution speeds. The Mapped-Component model is similar to the Quasi-Transient model except instead of detailed flow and heat transfer calculations in the heat exchangers, it uses lookup tables created with the Quasi-Transient model. All three models are set up to represent the same physical A/C system and the same electronic controls. Speed and results of the three model versions are compared for steady state and transient operation. Steady state simulated data are also compared to measured data. The results show that the Quasi-Transient and Mapped-Component models ran much faster than the Fully-Detailed model, on the order of 10- and 100-fold, respectively. They also adequately approach the results of the Fully-Detailed model for steady-state operation, and for drive cycle-based efficiency predictions

  12. Power Flow Modelling of Dynamic Systems - Introduction to Modern Teaching Tools

    E-Print Network [OSTI]

    Geitner, Gert-Helge

    2015-01-01T23:59:59.000Z

    As tools for dynamic system modelling both conventional methods such as transfer function or state space representation and modern power flow based methods are available. The latter methods do not depend on energy domain, are able to preserve physical system structures, visualize power conversion or coupling or split, identify power losses or storage, run on conventional software and emphasize the relevance of energy as basic principle of known physical domains. Nevertheless common control structures as well as analysis and design tools may still be applied. Furthermore the generalization of power flow methods as pseudo-power flow provides with a universal tool for any dynamic modelling. The phenomenon of power flow constitutes an up to date education methodology. Thus the paper summarizes fundamentals of selected power flow oriented modelling methods, presents a Bond Graph block library for teaching power oriented modelling as compact menu-driven freeware, introduces selected examples and discusses special f...

  13. Long-run Implications of a Forest-based Carbon Sequestration Policy on the United States Economy: A Computable General Equilibrium (CGE) Modeling Approach

    E-Print Network [OSTI]

    Monge, Juan

    2012-10-19T23:59:59.000Z

    The economic impacts of a government-funded, forest-based sequestration program were analyzed under two different payment schemes. The impacts were obtained by developing a regional, static CGE model built to accommodate a modified IMPLAN SAM for a...

  14. Long-run Implications of a Forest-based Carbon Sequestration Policy on the United States Economy: A Computable General Equilibrium (CGE) Modeling Approach

    E-Print Network [OSTI]

    Monge, Juan

    2012-10-19T23:59:59.000Z

    The economic impacts of a government-funded, forest-based sequestration program were analyzed under two different payment schemes. The impacts were obtained by developing a regional, static CGE model built to accommodate a modified IMPLAN SAM for a...

  15. Protein viscoelastic dynamics: a model system

    E-Print Network [OSTI]

    Craig Fogle; Joseph Rudnick; David Jasnow

    2015-02-02T23:59:59.000Z

    A model system inspired by recent experiments on the dynamics of a folded protein under the influence of a sinusoidal force is investigated and found to replicate many of the response characteristics of such a system. The essence of the model is a strongly over-damped oscillator described by a harmonic restoring force for small displacements that reversibly yields to stress under sufficiently large displacement. This simple dynamical system also reveals unexpectedly rich behavior, exhibiting a series of dynamical transitions and analogies with equilibrium thermodynamic phase transitions. The effects of noise and of inertia are briefly considered and described.

  16. Run

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources ResourcesRobust,RomanRoy Primus RoyRufus

  17. Run

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember 15Rotary Firing inRotaryRui Liu

  18. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect (OSTI)

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01T23:59:59.000Z

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  19. APT Blanket System Model Based on Initial Conceptual Design - Integrated 1D TRAC System Model

    SciTech Connect (OSTI)

    Hamm, L.L.

    1998-10-07T23:59:59.000Z

    This report documents the approaches taken in establishing a 1-dimensional integrated blanket system model using the TRAC code, developed by Los Alamos National Laboratory.

  20. Modeling and Implementation of Energy Neutral Sensing Systems

    E-Print Network [OSTI]

    Carloni, Luca

    and sensing applications. The net- work energy-management is modeled as a feedback control systemModeling and Implementation of Energy Neutral Sensing Systems Marcin K. Szczodrak Columbia]: Organization and Design-- Distributed Systems General Terms Design, Modeling, Experimentation, Measurement

  1. Hot Water Distribution System Model Enhancements

    SciTech Connect (OSTI)

    Hoeschele, M.; Weitzel, E.

    2012-11-01T23:59:59.000Z

    This project involves enhancement of the HWSIM distribution system model to more accurately model pipe heat transfer. Recent laboratory testing efforts have indicated that the modeling of radiant heat transfer effects is needed to accurately characterize piping heat loss. An analytical methodology for integrating radiant heat transfer was implemented with HWSIM. Laboratory test data collected in another project was then used to validate the model for a variety of uninsulated and insulated pipe cases (copper, PEX, and CPVC). Results appear favorable, with typical deviations from lab results less than 8%.

  2. Distributed generation capabilities of the national energy modeling system

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01T23:59:59.000Z

    This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

  3. EnergyPlus Run Time Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2009-01-01T23:59:59.000Z

    integrated heat balance calculations for loads, systems, andintegrated heat balance calculations for loads, systems, andloads calculation time steps per hour, the model solution algorithms (envelope heat

  4. Synthetic Running Coupling of QCD

    E-Print Network [OSTI]

    Aleksey I. Alekseev

    2006-02-19T23:59:59.000Z

    Based on a study of the analytic running coupling obtained from the standard perturbation theory results up to four-loop order, the QCD ``synthetic'' running coupling \\alpha_{syn} is built. In so doing the perturbative time-like discontinuity is preserved and nonperturbative contributions not only remove the nonphysical singularities of the perturbation theory in the infrared region but also decrease rapidly in the ultraviolet region. In the framework of the approach, on the one hand, the running coupling is enhanced at zero and, on the other hand, the dynamical gluon mass m_g arises. Fixing the parameter which characterize the infrared enhancement corresponding to the string tension \\sigma and normalization, say, at M_\\tau completely define the synthetic running coupling. In this case the dynamical gluon mass appears to be fixed and the higher loop stabilization property of m_g is observed. For \\sigma = (0.42 GeV)^2 and \\alpha_{syn}(M^2_\\tau) = 0.33 \\pm 0.01 it is obtained that m_g = 530 \\pm 80 MeV.

  5. Reference Model for Control and Automation Systems in Electrical...

    Office of Environmental Management (EM)

    Model for Control and Automation Systems in Electrical Power (October 2005) Reference Model for Control and Automation Systems in Electrical Power (October 2005) Modern...

  6. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel...

    Office of Environmental Management (EM)

    and Fuel Cells Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells The Fuel Cell Technologies Office's systems analysis program uses a consistent set of models...

  7. Improving efficiency of a vehicle HVAC system with comfort modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices Improving efficiency of a vehicle HVAC system with comfort modeling, zonal...

  8. Advanced LD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LD Engine Systems and Emissions Control Modeling and Analysis Advanced LD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...

  9. NREL's System Advisor Model Simplifies Complex Energy Analysis...

    Office of Scientific and Technical Information (OSTI)

    NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet) Re-direct Destination: NREL has developed a tool -- the System Advisor Model (SAM) -- that can help...

  10. Statistically downscaling from an Earth System Model of Intermediate

    E-Print Network [OSTI]

    Feigon, Brooke

    Statistically downscaling from an Earth System Model of Intermediate Complexity to reconstruct past Earth System Models of Intermediate Complexity (EMICs) have the advantage of allowing transient

  11. White Paper Societal Dimensions of Earth System Modeling

    E-Print Network [OSTI]

    on Societal Dimensions of Earth System Modeling July 5, 2011 #12; 2 Executive Summary A Societal Dimensions of Earth System Modeling workshop was held

  12. Experimental Studies for DPF and SCR Model, Control System, and...

    Broader source: Energy.gov (indexed) [DOE]

    DPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels Experimental Studies for DPF and SCR Model, Control System, and OBD...

  13. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program,...

  14. Advanced HD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HD Engine Systems and Emissions Control Modeling and Analysis Advanced HD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...

  15. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    SciTech Connect (OSTI)

    Blair, N.; Dobos, A.; Ferguson, T.; Freeman, J.; Gilman, P.; Whitmore, J.

    2014-05-01T23:59:59.000Z

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysis and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.

  16. Reducing EnergyPlus Run Time For Code Compliance Tools

    SciTech Connect (OSTI)

    Athalye, Rahul A.; Gowri, Krishnan; Schultz, Robert W.; Glazer, Jason

    2014-09-12T23:59:59.000Z

    Integration of the EnergyPlus simulation engine into performance-based code compliance software raises a concern about simulation run time, which impacts timely feedback of compliance results to the user. EnergyPlus annual simulations for proposed and code baseline building models, and mechanical equipment sizing result in simulation run times beyond acceptable limits. This paper presents a study that compares the results of a shortened simulation time period using 4 weeks of hourly weather data (one per quarter), to an annual simulation using full 52 weeks of hourly weather data. Three representative building types based on DOE Prototype Building Models and three climate zones were used for determining the validity of using a shortened simulation run period. Further sensitivity analysis and run time comparisons were made to evaluate the robustness and run time savings of using this approach. The results of this analysis show that the shortened simulation run period provides compliance index calculations within 1% of those predicted using annual simulation results, and typically saves about 75% of simulation run time.

  17. Modelling TOVS radiances of synoptic systems

    E-Print Network [OSTI]

    Coe, Thomas Eddy

    1992-01-01T23:59:59.000Z

    MODELLING TOVS RADIANCES OF SYNOPTIC SYSTEMS A Thesis THOMAS EDDY COE Submitted to the Office of Graduate Studies of TBxBs AFxM Unlvezs&ty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1992 Major... Subject: Meteorology MODELLING TOVS RADIANCES OF SYNOPTIC SYSTEMS THOMAS EDDY COE Approved as to style and content by: James P. McGairk (Chair of Committee) gW('. Denrus M. Driscoll (~) J B. Valdes ~) ~ J. Zi (Head of Deparbrent) Decemter 1992...

  18. Dynamical System Analysis for a phantom model

    E-Print Network [OSTI]

    Nilanjana Mahata; Subenoy Chakraborty

    2014-04-24T23:59:59.000Z

    The paper deals with a dynamical system analysis related to phantom cosmological model . Here gravity is coupled to phantom scalar field having scalar coupling function and a potential. The field equations are reduced to an autonomous dynamical system by a suitable redefinition of the basic variables and assuming some suitable form of the potential function. Finally, critical points are evaluated, their nature have been analyzed and corresponding cosmological scenario has been discussed.

  19. Power-Invariant Magnetic System Modeling

    E-Print Network [OSTI]

    Gonzalez Dominguez, Guadalupe Giselle

    2012-10-19T23:59:59.000Z

    System Modeling. (August 2011) Guadalupe Giselle Gonzlez Domnguez, B.S., Universidad Tecnolgica de Panam Chair of Advisory Committee: Dr. Mehrdad Ehsani In all energy systems, the parameters necessary to calculate power are the same..., Mr. R. Smith, Mr. S. Emani and Mr. R. Castillo, for making my time at Texas A&M University a great experience. I also want to extend my gratitude to Dr. Daro Sols and Dr. Edilberto Hall at the Universidad Tecnolgica de Panam for their guidance...

  20. The spectral index and its running in axionic curvaton

    SciTech Connect (OSTI)

    Takahashi, Fuminobu, E-mail: fumi@tuhep.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

    2013-06-01T23:59:59.000Z

    We show that a sizable running spectral index suggested by the recent SPT data can be explained in the axionic curvaton model with a potential that consists of two sinusoidal contributions of different height and period. We find that the running spectral index is generically given by dn{sub s}/dln k ? 2?/?N (n{sub s}?1), where ?N is the e-folds during one period of modulations. In the string axiverse, axions naturally acquire a mass from multiple contributions, and one of the axions may be responsible for the density perturbations with a sizable running spectral index via the curvaton mechanism. We note that the axionic curvaton model with modulations can also accommodate the red-tilted spectrum with a negligible running, without relying on large-field inflation.

  1. System level modeling of thermoelectric generators for automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    level modeling of thermoelectric generators for automotive applications System level modeling of thermoelectric generators for automotive applications Uses a model to predict and...

  2. Combustion modeling in advanced gas turbine systems

    SciTech Connect (OSTI)

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

    1995-12-31T23:59:59.000Z

    Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

  3. Limiting velocities as running parameters and superluminal neutrinos

    E-Print Network [OSTI]

    Mohamed M. Anber; John F. Donoghue

    2011-10-01T23:59:59.000Z

    In the context of theories where particles can have different limiting velocities, we review the running of particle speeds towards a common limiting velocity at low energy. Motivated by the recent OPERA experimental results, we describe a model where the neutrinos would deviate from the common velocity by more than do other particles in the theory, because their running is slower due to weaker interactions.

  4. Can clocks really run backwards?

    E-Print Network [OSTI]

    Charles B. Leffert

    2002-08-12T23:59:59.000Z

    In an apparently unexplored region of relativistic spacetime, a simple thought experiment demonstrates that conjoined Lorentz transformations predict a proper clock at rest will run backwards and that prediction violates the logical principle of causality. Shown first in a modification of the standard clock paradox thought experiment, this fault carries over to finite accelerations of the moving observer. After re-examination of the standard clock paradox, a logical fault was also found in the concept of spacetime. A two-dimensional treatment of the Earth orbit predicts that our astronomers should measure proper time on distant variable objects in our own Galaxy as impossibly running backwards on approach-then-recede trajectories. The excellent record of relativity aside, we still have much new physics to learn about our spatially three-dimensional universe. It is suggested that space is not a freely stretching medium but is something that is substantive and is being produced.

  5. Using Run-Time Predictions to Estimate Queue Wait Times and Improve Scheduler Performance

    E-Print Network [OSTI]

    Feitelson, Dror

    that using our run-time predictor results in lower mean wait times for the workloads with higher o ered loads of the systems we are simulating.We also nd that using our run-time predictors result in mean wait timesUsing Run-Time Predictions to Estimate Queue Wait Times and Improve Scheduler Performance Warren

  6. CITI Technical Report 93-1 Long Running Jobs in an Authenticated Environment

    E-Print Network [OSTI]

    Michigan, University of

    . An unfortunate byproduct of building Kerberos-based systems is a loss of functionality, such as long running jobs-- -- CITI Technical Report 93-1 Long Running Jobs in an Authenticated Environment A. D. Rubin that a user have a valid token or ticket for a job to run. These tickets are issued with limited lifetimes

  7. Running coupling for Wilson bermions

    E-Print Network [OSTI]

    Juri Rolf; Ulli Wolff

    1999-07-15T23:59:59.000Z

    A non perturbative finite size scaling technique is used to study a running coupling in lattice Yang-Mills theory coupled to a bosonic Wilson spinor field in the Schr\\"odinger functional scheme. This corresponds to two negative flavours. The scaling behaviour in this case is compared to quenched results and to QCD with two flavours. The continuum limit is confronted with renormalized perturbation theory.

  8. Systems Modeling for Prognostic Cancer Biology

    E-Print Network [OSTI]

    Maccabe, Barney

    goal of this research is the development of personalized treatments in cancer, based on the genomic and treatment. A major challenge in contemporary cancer diagnosis and treatment is the development Systems Modeling for Prognostic Cancer Biology Xuefei Wang1 , BaiLian Li2 , Cheryl L. Willman

  9. Modeling Control Mechanisms with Normative Multiagent Systems

    E-Print Network [OSTI]

    van der Torre, Leon

    of renewable energy. We apply a conceptual model based on normative multiagent systems (NMAS). We propose to stimulate the production of #12;energy from renewable sources [20]. The ruling involves an obligation for energy sup- pliers to produce evidence of having distributed a certain minimal amount of renewable energy

  10. Cost effectiveness of recycling: A systems model

    SciTech Connect (OSTI)

    Tonjes, David J., E-mail: david.tonjes@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States); Waste Reduction and Management Institute, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 (United States); Center for Bioenergy Research and Development, Advanced Energy Research and Technology Center, Stony Brook University, 1000 Innovation Rd., Stony Brook, NY 11794-6044 (United States); Mallikarjun, Sreekanth, E-mail: sreekanth.mallikarjun@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States)

    2013-11-15T23:59:59.000Z

    Highlights: Curbside collection of recyclables reduces overall system costs over a range of conditions. When avoided costs for recyclables are large, even high collection costs are supported. When avoided costs for recyclables are not great, there are reduced opportunities for savings. For common waste compositions, maximizing curbside recyclables collection always saves money. - Abstract: Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets.

  11. Gas Centrifuge Enrichment Plant Safeguards System Modeling

    SciTech Connect (OSTI)

    Elayat, H A; O'Connell, W J; Boyer, B D

    2006-06-05T23:59:59.000Z

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems used in enrichment facilities. This research focuses on analyzing the effectiveness of the safeguards in protecting against the range of safeguards concerns for enrichment plants, including diversion of attractive material and unauthorized modes of use. We developed an Extend simulation model for a generic medium-sized centrifuge enrichment plant. We modeled the material flow in normal operation, plant operational upset modes, and selected diversion scenarios, for selected safeguards systems. Simulation modeling is used to analyze both authorized and unauthorized use of a plant and the flow of safeguards information. Simulation tracks the movement of materials and isotopes, identifies the signatures of unauthorized use, tracks the flow and compilation of safeguards data, and evaluates the effectiveness of the safeguards system in detecting misuse signatures. The simulation model developed could be of use to the International Atomic Energy Agency IAEA, enabling the IAEA to observe and draw conclusions that uranium enrichment facilities are being used only within authorized limits for peaceful uses of nuclear energy. It will evaluate improved approaches to nonproliferation concerns, facilitating deployment of enhanced and cost-effective safeguards systems for an important part of the nuclear power fuel cycle.

  12. Wind Farm Power System Model Development: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.

    2004-07-01T23:59:59.000Z

    In some areas, wind power has reached a level where it begins to impact grid operation and the stability of local utilities. In this paper, the model development for a large wind farm will be presented. Wind farm dynamic behavior and contribution to stability during transmission system faults will be examined.

  13. Self-propelled running droplets on solid substrates driven by chemical reactions

    E-Print Network [OSTI]

    K. John; M. Baer; U. Thiele

    2006-11-17T23:59:59.000Z

    We study chemically driven running droplets on a partially wetting solid substrate by means of coupled evolution equations for the thickness profile of the droplets and the density profile of an adsorbate layer. Two models are introduced corresponding to two qualitatively different types of experiments described in the literature. In both cases an adsorption or desorption reaction underneath the droplets induces a wettability gradient on the substrate and provides the driving force for droplet motion. The difference lies in the behavior of the substrate behind the droplet. In case I the substrate is irreversibly changed whereas in case II it recovers allowing for a periodic droplet movement (as long as the overall system stays far away from equilibrium). Both models allow for a non-saturated and a saturated regime of droplet movement depending on the ratio of the viscous and reactive time scales. In contrast to model I, model II allows for sitting drops at high reaction rate and zero diffusion along the substrate. The transition from running to sitting drops in model II occurs via a super- or subcritical drift-pitchfork bifurcation and may be strongly hysteretic implying a coexistence region of running and sitting drops.

  14. Modeling Power System Operation with Intermittent Resources

    SciTech Connect (OSTI)

    Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.; Carlsen, Leif C.

    2013-02-27T23:59:59.000Z

    Electricity generating companies and power system operators face the need to minimize total fuel cost or maximize total profit over a given time period. These issues become optimization problems subject to a large number of constraints that must be satisfied simultaneously. The grid updates due to smart-grid technologies plus the penetration of intermittent re- sources in electrical grid introduce additional complexity to the optimization problem. The Renewable Integration Model (RIM) is a computer model of interconnected power system. It is intended to provide insight and advice on complex power systems management, as well as answers to integration of renewable energy questions. This paper describes RIM basic design concept, solution method, and the initial suite of modules that it supports.

  15. Modeling of Distributed Systems by Concurrent Regular Expressions

    E-Print Network [OSTI]

    Garg, Vijay

    Modeling of Distributed Systems by Concurrent Regular Expressions Vijay K. Garg Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78712 We propose an algebraic model called concurrent regular expressions for modeling and anal- ysis of distributed systems

  16. Modeling of Distributed Systems by Concurrent Regular Expressions

    E-Print Network [OSTI]

    Garg, Vijay

    Modeling of Distributed Systems by Concurrent Regular Expressions Vijay K. Garg Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78712 We propose an algebraic model called concurrent regular expressions for modeling and anal ysis of distributed systems

  17. Reuse of Verification Results Conditional Model Checking, Precision Reuse,

    E-Print Network [OSTI]

    Beyer, Dirk

    further verification runs of the system; information about the level of abstraction in the abstract modelReuse of Verification Results Conditional Model Checking, Precision Reuse, and Verification checker which parts of the system should be verified; thus, later verification runs can use the output

  18. Tachyonic Field Theory and Neutrino Mass Running

    E-Print Network [OSTI]

    U. D. Jentschura

    2012-05-01T23:59:59.000Z

    In this paper three things are done. (i) We investigate the analogues of Cerenkov radiation for the decay of a superluminal neutrino and calculate the Cerenkov angles for the emission of a photon through a W loop, and for a collinear electron-positron pair, assuming the tachyonic dispersion relation for the superluminal neutrino. The decay rate of a freely propagating neutrino is found to depend on the shape of the assumed dispersion relation, and is found to decrease with decreasing tachyonic mass of the neutrino. (ii) We discuss a few properties of the tachyonic Dirac equation (symmetries and plane-wave solutions), which may be relevant for the description of superluminal neutrinos seen by the OPERA experiment, and discuss the calculation of the tachyonic propagator. (iii) In the absence of a commonly accepted tachyonic field theory, and in view of an apparent "running" of the observed neutrino mass with the energy, we write down a model Lagrangian, which describes a Yukawa-type interaction of a neutrino coupling to a scalar background field via a scalar-minus-pseudoscalar interaction. This constitutes an extension of the standard model. If the interaction is strong, then it leads to a substantial renormalization-group "running" of the neutrino mass and could potentially explain the experimental observations.

  19. April 30, 2013 Mathematical and Computer Modelling of Dynamical Systems criticalTransitions Mathematical and Computer Modelling of Dynamical Systems

    E-Print Network [OSTI]

    Gedeon, Tomas

    , from those appearing in physiology and ecology to Earth systems modeling, often experience critical

  20. Nuclear Systems Modeling, Simulation & Validation | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /76SafeguardsSystems Modeling and

  1. Design Concept Evaluation Using System Throughput Model

    SciTech Connect (OSTI)

    G. Sequeira; W. M. Nutt Ph.D

    2004-05-28T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently developing the technical bases to support the submittal of a license application for construction of a geologic repository at Yucca Mountain, Nevada to the U.S. Nuclear Regulatory Commission. The Office of Repository Development (ORD) is responsible for developing the design of the proposed repository surface facilities for the handling of spent nuclear fuel and high level nuclear waste. Preliminary design activities are underway to sufficiently develop the repository surface facilities design for inclusion in the license application. The design continues to evolve to meet mission needs and to satisfy both regulatory and program requirements. A system engineering approach is being used in the design process since the proposed repository facilities are dynamically linked by a series of sub-systems and complex operations. In addition, the proposed repository facility is a major system element of the overall waste management process being developed by the OCRWM. Such an approach includes iterative probabilistic dynamic simulation as an integral part of the design evolution process. A dynamic simulation tool helps to determine if: (1) the mission and design requirements are complete, robust, and well integrated; (2) the design solutions under development meet the design requirements and mission goals; (3) opportunities exist where the system can be improved and/or optimized; and (4) proposed changes to the mission, and design requirements have a positive or negative impact on overall system performance and if design changes may be necessary to satisfy these changes. This paper will discuss the type of simulation employed to model the waste handling operations. It will then discuss the process being used to develop the Yucca Mountain surface facilities model. The latest simulation model and the results of the simulation and how the data were used in the design evolution process will also be discussed. Since the use of dynamic simulation is iterative and integral to the design effort, future activities will also be summarized. The paper will close discussing lessons learned from applying dynamic simulation to designing complex systems, and will discuss what pitfalls to avoid and recommendations for developing flexibility in system model development.

  2. Adaptive model training system and method

    DOE Patents [OSTI]

    Bickford, Randall L; Palnitkar, Rahul M; Lee, Vo

    2014-04-15T23:59:59.000Z

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  3. Adaptive model training system and method

    DOE Patents [OSTI]

    Bickford, Randall L; Palnitkar, Rahul M

    2014-11-18T23:59:59.000Z

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  4. World Energy Projection System model documentation

    SciTech Connect (OSTI)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01T23:59:59.000Z

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  5. Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides)

    E-Print Network [OSTI]

    Chen Li; S. Tonia Hsieh; Daniel I. Goldman

    2013-03-29T23:59:59.000Z

    A diversity of animals that run on solid, level, flat, non-slip surfaces appear to bounce on their legs; elastic elements in the limbs can store and return energy during each step. The mechanics and energetics of running in natural terrain, particularly on surfaces that can yield and flow under stress, is less understood. The zebra-tailed lizard (Callisaurus draconoides), a small desert generalist with a large, elongate, tendinous hind foot, runs rapidly across a variety of natural substrates. We use high speed video to obtain detailed three-dimensional running kinematics on solid and granular surfaces to reveal how leg, foot, and substrate mechanics contribute to its high locomotor performance. Running at ~10 body length/s (~1 m/s), the center of mass oscillates like a spring-mass system on both substrates, with only 15% reduction in stride length on the granular surface. On the solid surface, a strut-spring model of the hind limb reveals that the hind foot saves about 40% of the mechanical work needed per step, significant for the lizard's small size. On the granular surface, a penetration force model and hypothesized subsurface foot rotation indicates that the hind foot paddles through fluidized granular medium, and that the energy lost per step during irreversible deformation of the substrate does not differ from the reduction in the mechanical energy of the center of mass. The upper hind leg muscles must perform three times as much mechanical work on the granular surface as on the solid surface to compensate for the greater energy lost within the foot and to the substrate.

  6. Modeling and analysis of energy conversion systems

    SciTech Connect (OSTI)

    Den Braven, K.R. (Idaho Univ., Moscow, ID (USA). Dept. of Mechanical Engineering); Stanger, S. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-10-01T23:59:59.000Z

    An investigation was conducted to assess the need for and the feasibility of developing a computer code that could model thermodynamic systems and predict the performance of energy conversion systems. To assess the market need for this code, representatives of a few industrial organizations were contacted, including manufacturers, system and component designers, and research personnel. Researchers and small manufacturers, designers, and installers were very interested in the possibility of using the proposed code. However, large companies were satisfied with the existing codes that they have developed for their own use. Also, a survey was conduced of available codes that could be used or possibly modified for the desired purpose. The codes were evaluated with respect to a list of desirable features, which was prepared as a result of the survey. A few publicly available codes were found that might be suitable. The development, verification, and maintenance of such a code would require a substantial, ongoing effort. 21 refs.

  7. Multiple-Zone Variable Refrigerant Flow System Modeling and Equipment Performance Mapping

    SciTech Connect (OSTI)

    Shen, Bo [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    We developed a variable refrigerant flow (VRF) vapor compression system model, which has five indoor units, one outdoor unit and one water heater. The VRF system can run simultaneous space conditioning (cooling or heating) and water heating. The indoor units and outdoor unit use fin-&-tube coil heat exchangers, and the water heater uses a tube-in-tube heat exchanger. The fin-&-tube coil heat exchangers are modeled using a segment-by-segment approach and the tube-in-tube water heater is modeled using a phase-by-phase approach. The compressor used is a variable-speed rotary design. We calibrated our model against a manufacturer s product literature. Based on the vapor compression system model, we investigated the methodology for generating VRF equipment performance maps, which can be used for energy simulations in TRNSYS and EnergyPlus, etc. In the study, the major independent variables for mapping are identified and the deviations between the simplified performance map and the actual equipment system simulation are quantified.

  8. Solar Deployment System (SolarDS) Model: Documentation and Sample Results

    SciTech Connect (OSTI)

    Denholm, P.; Drury, E.; Margolis, R.

    2009-09-01T23:59:59.000Z

    The Solar Deployment System (SolarDS) model is a bottom-up, market penetration model that simulates the potential adoption of photovoltaics (PV) on residential and commercial rooftops in the continental United States through 2030. NREL developed SolarDS to examine the market competitiveness of PV based on regional solar resources, capital costs, electricity prices, utility rate structures, and federal and local incentives. The model uses the projected financial performance of PV systems to simulate PV adoption for building types and regions then aggregates adoption to state and national levels. The main components of SolarDS include a PV performance simulator, a PV annual revenue calculator, a PV financial performance calculator, a PV market share calculator, and a regional aggregator. The model simulates a variety of installed PV capacity for a range of user-specified input parameters. PV market penetration levels from 15 to 193 GW by 2030 were simulated in preliminary model runs. SolarDS results are primarily driven by three model assumptions: (1) future PV cost reductions, (2) the maximum PV market share assumed for systems with given financial performance, and (3) PV financing parameters and policy-driven assumptions, such as the possible future cost of carbon emissions.

  9. Development of Fast-Running Simulation Methodology Using Neural Networks for Load Follow Operation

    SciTech Connect (OSTI)

    Seong, Seung-Hwan [Korea Atomic Energy Research Institute (Korea, Republic of); Park, Heui-Youn [Korea Atomic Energy Research Institute (Korea, Republic of); Kim, Dong-Hoon [Korea Atomic Energy Research Institute (Korea, Republic of); Suh, Yong-Suk [Korea Atomic Energy Research Institute (Korea, Republic of); Hur, Seop [Korea Atomic Energy Research Institute (Korea, Republic of); Koo, In-Soo [Korea Atomic Energy Research Institute (Korea, Republic of); Lee, Un-Chul [Seoul National University (Korea, Republic of); Jang, Jin-Wook [Seoul National University (Korea, Republic of); Shin, Yong-Chul [Yonsei University (Korea, Republic of)

    2002-05-15T23:59:59.000Z

    A new fast-running analytic model has been developed for analyzing the load follow operation. The new model was based on the neural network theory, which has the capability of modeling the input/output relationships of a nonlinear system. The new model is made up of two error back-propagation neural networks and procedures to calculate core parameters, such as the distributions and density of xenon in a quasi-steady-state core like load follow operation. One neural network is designed to retrieve the axial offset of power distribution, and the other is for reactivity corresponding to a given core condition. The training data sets for learning the neural networks in the new model are generated with a three-dimensional nodal code and, also, the measured data of the first-day test of load follow operation. Using the new model, the simulation results of the 5-day load follow test in a pressurized water reactor show a good agreement between the simulation data and the actual measured data. Required computing time for simulating a load follow operation is comparable to that of a fast-running lumped model. Moreover, the new model does not require additional engineering factors to compensate for the difference between the actual measurements and analysis results because the neural network has the inherent learning capability of neural networks to new situations.

  10. System Level Design Using the SystemC Modeling Platform 1

    E-Print Network [OSTI]

    Ould Ahmedou, Mohameden

    System Level Design Using the SystemC Modeling Platform 1 1. Introduction1 As system complexity rosenstiel@informatik.uni-tuebingen.de Abstract This paper gives an overview of the SystemC modeling platform and outlines the features supported by the SystemC class library. The use of the modeling platform is shown

  11. Panel 2, Modeling the Financial and System Benefits of Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling the Financial and System Benefits of Energy Storage Applications in Distribution Systems Patrick Balducci, Senior Economist, Pacific NW National Laboratory Hydrogen Energy...

  12. animal model system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and understanding biological systems Harel, David 2 A Dynamic Emotion Representation Model Within a Facial Animation System CiteSeer Summary: This paper presents a Dynamic...

  13. animal model systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and understanding biological systems Harel, David 2 A Dynamic Emotion Representation Model Within a Facial Animation System CiteSeer Summary: This paper presents a Dynamic...

  14. Model for Energy Supply System Alternatives and their General...

    Open Energy Info (EERE)

    System Alternatives and their General Environmental Impacts (MESSAGE) (Redirected from Model for Energy Supply System Alternatives and their General Environmental Impacts) Jump to:...

  15. Model for Energy Supply System Alternatives and their General...

    Open Energy Info (EERE)

    for Energy Supply System Alternatives and their General Environmental Impacts (MESSAGE) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Model for Energy Supply System...

  16. Modeling of Diesel Exhaust Systems: A methodology to better simulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Modeling of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Discussed...

  17. analysis system modeling: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newcastle upon Tyne, University of 98 EquationFree System-Level Dynamic Modeling and Analysis in Energy Processing Engineering Websites Summary: Equation-Free System-Level...

  18. Lab Process AreaWhere CORAL Name It is: It does: Maker/Model Units per:(self-run) if staff EBL e-beam write24-041 Elionix 125 keV, hi-res e-beam writer Elionix F-125 7 hr 7

    E-Print Network [OSTI]

    Culpepper, Martin L.

    Lab Process AreaWhere CORAL Name It is: It does: Maker/Model Units per:(self-run) if staff EBL e, bakes 8 hr 12 EML photo photo coater-EML spinner coats PR Solitec 8 hr 12 EML metrologyhall dektak EML diffusion Resonetics rm OxidationTube tube furnace wet & dry ox, anneals, bakesLindberg 8 hr 12

  19. ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models

    E-Print Network [OSTI]

    Platzer, André

    dynamics. In CPS, models are essential; but any model we could possibly build necessarily deviates from. In CPS, models are essential; but a cyber- physical systems (CPS) safe. Formal methods make strong guarantees about the system behavior

  20. Historical and idealized model experiments: an intercomparison of Earth system models of

    E-Print Network [OSTI]

    Historical and idealized model experiments: an intercomparison of Earth system models: an intercomparison of Earth system models of intermediate complexity M. Eby1, A. J. Weaver1, K. Alexander1, K

  1. MODELING VENTILATION SYSTEM RESPONSE TO FIRE

    SciTech Connect (OSTI)

    Coutts, D

    2007-04-17T23:59:59.000Z

    Fires in facilities containing nuclear material have the potential to transport radioactive contamination throughout buildings and may lead to widespread downwind dispersal threatening both worker and public safety. Development and implementation of control strategies capable of providing adequate protection from fire requires realistic characterization of ventilation system response which, in turn, depends on an understanding of fire development timing and suppression system response. This paper discusses work in which published HEPA filter data was combined with CFAST fire modeling predictions to evaluate protective control strategies for a hypothetical DOE non-reactor nuclear facility. The purpose of this effort was to evaluate when safety significant active ventilation coupled with safety class passive ventilation might be a viable control strategy.

  2. A Bayesian Model for Image Sense Ambiguity in Pictorial Communication Systems

    E-Print Network [OSTI]

    Dyer, Charles R.

    systems aim to convey the mean- ing of a piece of natural language text (e.g., "The poo- dle runs out. From the user perspective, however, the image may mean "poo- dle," or its hypernyms "dog" or "animal

  3. Model NOx storage systems: Storage capacity and thermal aging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3NiAl(100). Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3...

  4. Community Earth System Modeling Tutorial 12-16 July 2010

    E-Print Network [OSTI]

    Community Earth System Modeling Tutorial 12-16 July 2010 National Center for Atmospheric Research, Boulder, CO APPLICATION DEADLINE: 15 April 2010 The Community Earth System Model (CESM) project

  5. Verifying Hybrid Systems Modeled as Timed Automata: A Case Study?

    E-Print Network [OSTI]

    -Vaandrager timed automata model, of the Steam Boiler Controller problem, a hybrid systems benchmark. This pa- per

  6. ModelBased Information Integration in a Neuroscience Mediator System

    E-Print Network [OSTI]

    Ludäscher, Bertram

    Model­Based Information Integration in a Neuroscience Mediator System Bertram Lud¨ascher ? Amarnath

  7. 2013 Community Earth System Model (CESM) Tutorial-Proposal to DOE

    SciTech Connect (OSTI)

    Holland, Marika; Bates, Susan

    2014-12-04T23:59:59.000Z

    THE SAME REQUEST WILL BE SENT TO BOTH NSF AND DOE TO EACH SUPPORT $35K. The third annual Community Earth System Model (CESM) tutorial for students and early career scientists was held from 30 July to 3 August, 2012. This event was extremely successful and, as for the tutorials in previous years, there was a greater demand than could be met. This indicates a continuing need for a tutorial of this type and we anticipate that the 2013 tutorial will be well received. The tutorial will include lectures on simulating the climate system and practical sessions on running CESM, modifying components, and analyzing data. These will be targeted to the graduate student level. Attendance will be limited to a maximum of 80 students with financial support for up to 40 students. Attendees will be balanced across institutions.

  8. Fuel Cell System Improvement for Model-Based Diagnosis Analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Fuel Cell System Improvement for Model-Based Diagnosis Analysis Philippe Fiani & Michel Batteux of a model of a fuel cell system, in order to make it usable for model- based diagnosis methods. A fuel cell for the fuel cell stack but also for the system environment. In this paper, we present an adapted library which

  9. Are natural microcosms useful model systems for ecology?

    E-Print Network [OSTI]

    Srivastava, Diane

    , but as complex and biologically realistic as other natural systems. Research to date combined with inherent of the power of model systems, and that natural MICROCOSMS (see Glossary) are worth considering as such modelsAre natural microcosms useful model systems for ecology? Diane S. Srivastava1 , Jurek Kolasa2 , Jan

  10. Algebra of systems: A metalanguage for model synthesis and evaluation

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Algebra of systems: A metalanguage for model synthesis and evaluation Citation Koo, B., W.L. Simmons, and E.F. Crawley. "Algebra of Systems: A Metalanguage for Model Synthesis and Evaluation 2009 501 Algebra of Systems: A Metalanguage for Model Synthesis and Evaluation Benjamin H. Y. Koo

  11. Port-Hamiltonian systems: network modeling and control of nonlinear physical systems

    E-Print Network [OSTI]

    Schaft, Arjan van der

    Port-Hamiltonian systems: network modeling and control of nonlinear physical systems A.J. van der systems (multi-body systems, electrical circuits, electromechanical systems, ..) naturally leads to a geometrically defined class of systems, called port-Hamiltonian systems. These are Hamiltonian systems defined

  12. Algebra of systems: A metalanguage for model synthesis and evaluation

    E-Print Network [OSTI]

    Koo, Benjamin H. Y.

    This paper represents system models as algebraic entities and formulates model transformation activities as algebraic operations. We call this modeling framework ldquoalgebra of systemsrdquo (AoS). To show that AoS can ...

  13. Natural versus Commercial Carbohydrate Supplementation and Endurance Running Performance

    E-Print Network [OSTI]

    Too, Brandon W; Cicai, Sarah; Hockett, Kali R; Applegate, Elizabeth; Davis, Brian A; Casazza, Gretchen A

    2012-01-01T23:59:59.000Z

    from a drink during running compared to cycling exercise.and gastrointestinal distress while running. Med Sci Sportssupplementation and endurance running performance. Journal

  14. Neurobiological and Physiological Underpinnings of High Voluntary Wheel Running

    E-Print Network [OSTI]

    Kolb, Erik Mason

    2010-01-01T23:59:59.000Z

    for high voluntary wheel running. Physiol. Behav. 83, 515-for high voluntary wheel-running: effect on skeletal musclefor high endurance running increases hindlimb symmetry.

  15. Modeling Water Resource Systems under Climate Change: IGSM-WRS

    E-Print Network [OSTI]

    Strzepek, K.

    Through the integration of a Water Resource System (WRS) component, the MIT Integrated Global System Model (IGSM) framework has been enhanced to study the effects of climate change on managed water-resource systems. ...

  16. CLIPPER: Counter-based Low Impact Processor Power Estimation at Run-time

    E-Print Network [OSTI]

    New South Wales, University of

    -time power/energy data has been presented. Current measurement systems draw too much power to be used is dif- ficult as measurement systems for power and energy usage draw too much power themselves, making the knowledge of processor power/energy consumption at run- time. So far, no efficient method to provide run

  17. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  18. Odderon with a running coupling constant

    E-Print Network [OSTI]

    M. A. Braun

    2007-07-16T23:59:59.000Z

    The running coupling is introduced into the equation for the odderon via the bootstrap relation. It is shown that the previously found odderon state with a maximal intercept, which is constructed from antisymmetric pomeron wave function, continues to exist in the running coupling case. Its intercept is found to remain equal to unity independent of the behaviour assumed for the running coupling at low momenta.

  19. Regularization Dependence of Running Couplings in Softly Broken Supersymmetry

    E-Print Network [OSTI]

    Stephen P. Martin; Michael T. Vaughn

    2008-07-24T23:59:59.000Z

    We discuss the dependence of running couplings on the choice of regularization method in a general softly-broken N=1 supersymmetric theory. Regularization by dimensional reduction respects supersymmetry, but standard dimensional regularization does not. We find expressions for the differences between running couplings in the modified minimal subtraction schemes of these two regularization methods, to one loop order. We also find the two-loop renormalization group equations for gaugino masses in both schemes, and discuss the application of these results to the Minimal Supersymmetric Standard Model.

  20. Model documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System; Volume 1

    SciTech Connect (OSTI)

    NONE

    1994-02-24T23:59:59.000Z

    The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).

  1. Running spectral index from inflation with modulations

    SciTech Connect (OSTI)

    Kobayashi, Takeshi [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Takahashi, Fuminobu, E-mail: takeshi.kobayashi@ipmu.jp, E-mail: fuminobu.takahashi@ipmu.jp [Institute for the Physics and Mathematics of the Universe, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

    2011-01-01T23:59:59.000Z

    We argue that a large negative running spectral index, if confirmed, might suggest that there are abundant structures in the inflaton potential, which result in a fairly large (both positive and negative) running of the spectral index at all scales. It is shown that the center value of the running spectral index suggested by the recent CMB data can be easily explained by an inflaton potential with superimposed periodic oscillations. In contrast to cases with constant running, the perturbation spectrum is enhanced at small scales, due to the repeated modulations. We mention that such features at small scales may be seen by 21 cm observations in the future.

  2. Fast Bunch Integrators at Fermilab During Run II

    SciTech Connect (OSTI)

    Meyer, Thomas; Briegel, Charles; Fellenz, Brian; Vogel, Greg; /Fermilab

    2011-07-13T23:59:59.000Z

    The Fast Bunch Integrator is a bunch intensity monitor designed around the measurements made from Resistive Wall Current Monitors. During the Run II period these were used in both Tevatron and Main Injector for single and multiple bunch intensity measurements. This paper presents an overview of the design and use of these systems during this period. During the Run II era the Fast Bunch integrators have found a multitude of uses. From antiproton transfers to muti-bunch beam coalescing, Main Injector transfers to halo scraping and lifetime measurements, the Fast Bunch Integrators have proved invaluable in the creation and maintenance of Colliding Beams stores at Fermilab.

  3. Solar system tests of brane world models

    E-Print Network [OSTI]

    Christian G. Boehmer; Tiberiu Harko; Francisco S. N. Lobo

    2008-02-05T23:59:59.000Z

    The classical tests of general relativity (perihelion precession, deflection of light, and the radar echo delay) are considered for the Dadhich, Maartens, Papadopoulos and Rezania (DMPR) solution of the spherically symmetric static vacuum field equations in brane world models. For this solution the metric in the vacuum exterior to a brane world star is similar to the Reissner-Nordstrom form of classical general relativity, with the role of the charge played by the tidal effects arising from projections of the fifth dimension. The existing observational solar system data on the perihelion shift of Mercury, on the light bending around the Sun (obtained using long-baseline radio interferometry), and ranging to Mars using the Viking lander, constrain the numerical values of the bulk tidal parameter and of the brane tension.

  4. Optimization of large-scale heterogeneous system-of-systems models.

    SciTech Connect (OSTI)

    Parekh, Ojas; Watson, Jean-Paul; Phillips, Cynthia Ann; Siirola, John; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Lee, Herbert K. H. (University of California, Santa Cruz, Santa Cruz, CA); Hart, William Eugene; Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA); Woodruff, David L. (University of California, Davis, Davis, CA)

    2012-01-01T23:59:59.000Z

    Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.

  5. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    NONE

    1996-02-26T23:59:59.000Z

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.

  6. ATLAS Jet Trigger Performance in LHC Run I and Initial Run II Results

    E-Print Network [OSTI]

    Shimizu, Shima; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The immense rate of proton-proton collisions at the Large Hadron Collider (LHC) must be reduced from the nominal bunch-crossing rate of 40 MHz to approximately 1 kHz before the data can be written on disk offline. The ATLAS Trigger System performs real-time selection of these events in order to achieve this reduction. Dedicated selection of events containing jets is uniquely challenging at a hadron collider where nearly every event contains significant hadronic energy. Following the very successful first LHC run from 2010 to 2012, the ATLAS Trigger was much improved, including a new hardware topological module and a restructured High Level Trigger system, merging two previous software-based processing levels. This allowed the optimization of resources and a much greater re-use of the precise but costly offline software base. After summarising the overall performance of the jet trigger during the first LHC run, the software design choices and use of the topological module will be reviewed. The expected perform...

  7. 1Earth System Models of Intermediate Complexity: Closing the Gap in the Spectrum of Climate System

    E-Print Network [OSTI]

    Martin Claussen; Michel Crucifix; Thierry Fichefet; Andrey Ganopolski; Huges Goosse; Vladimir Petoukhov; Thomas Stocker; Peter Stone; Zhaoming Wang; Andrew Weaver; Susanne L. Weber

    system models of intermediate complexity (EMICs) is discussed. It be-comes apparent that there exists a

  8. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01T23:59:59.000Z

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  9. 201202 Reservoir System Modeling Technologies Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algorithm to Incorporate the Columbia River Non-Power Flow Requirements in the BC Hydro Generalized Optimization Model - University of British Columbia Hydrologic Modeling...

  10. An investigation of simple nonsmooth power system models

    SciTech Connect (OSTI)

    Mantri, R.; Venkatasubramanian, V.; Saberi, A. [Washington State Univ., Pullman, WA (United States)

    1994-12-31T23:59:59.000Z

    Recently new notions of solutions and equilibrium points have been proposed for analyzing nonsmooth system descriptions. This paper observes certain new phenomena in simple nonsmooth power system models presenting a preliminary analysis. The results include an investigation of new Hopf-like bifurcations related to the birth of limit cycles in two dimensional non-Lipschitzian power system models.

  11. A Discrete-Event Systems Approach to Modeling Dextrous Manipulation

    E-Print Network [OSTI]

    Graham, Nick

    A Discrete-Event Systems Approach to Modeling Dextrous Manipulation S. L. Ricker? N. Sarkar?y K-event systems. The applicability of discrete-event systems to the modeling of dextrous manipulation tasks of the manipulation task, resulting in control discontinuities. The need for tech- niques to facilitate a smooth

  12. Model Reduction Near Periodic Orbits of Hybrid Dynamical Systems

    E-Print Network [OSTI]

    Sastry, S. Shankar

    manipulation in manufacturing [2], gene regulation in cells [3], and power generation in electrical systems [41 Model Reduction Near Periodic Orbits of Hybrid Dynamical Systems Samuel A. Burden, Shai Revzen system. We demonstrate reduction of a high­dimensional underactuated mechanical model for terrestrial

  13. Hamiltonian control systems From modeling to analysis and control

    E-Print Network [OSTI]

    Knobloch,Jrgen

    Hamiltonian control systems From modeling to analysis and control Arjan van der Schaft Johann-based modeling 3 Definition of port-Hamiltonian systems 4 Scattering: from power variables to wave variables 5, University of Groningen, the Netherlands DiHamiltonian control systems Elgersburg School, March, 2012 1 / 108

  14. Full-System Power Analysis and Modeling for Server Environments

    E-Print Network [OSTI]

    Kozyrakis, Christos

    Full-System Power Analysis and Modeling for Server Environments Dimitris Economou, Suzanne Rivoire-density computer systems, have created a growing demand for better power management in server environments. Despite consumption trends and developing simple yet accurate models to predict full-system power. We study

  15. Ris-R-1441 (EN) Power System Models

    E-Print Network [OSTI]

    Ris-R-1441 (EN) Power System Models A Description of Power Markets and Outline of Market Modelling that can handle system simulations for a larger geographical re- gion with an International power exchange Systems Integration 7 1.3 Objectives of Wilmar 8 1.4 The Aim of this Report 8 2 The Nordic Power Market 10

  16. abbott prism run: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sea ice interfaces Geosciences Websites Summary: -hoc approach. As integrated earth system models are increasingly used for climate studies and prediction System Models (http:...

  17. Engineered Barrier System: Physical and Chemical Environment Model

    SciTech Connect (OSTI)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09T23:59:59.000Z

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  18. Query Based UML Modeling Validation and Verification of the System Model and

    E-Print Network [OSTI]

    Austin, Mark

    1 Query Based UML Modeling Validation and Verification of the System Model and Behavior. UML/SysML was designed to provide simple but powerful constructs for modeling a wide range of systems for a Hydraulic Crane Denny Mathew ENPM 643 System Validation and Verification Instructor: Dr. Mark Austin Fall

  19. Action Models: A Reliability Modeling Formalism for Fault-Tolerant Distributed Computing Systems

    E-Print Network [OSTI]

    Newcastle upon Tyne, University of

    Action Models: A Reliability Modeling Formalism for Fault-Tolerant Distributed Computing Systems. Introduction Model-based evaluation of the reliability of distributed systems has traditionally required expert- proach to analyze the reliability of fault-tolerant distributed systems. More in particular, we want

  20. Integrating Security and Systems Engineering: Towards the Modelling of Secure Information Systems

    E-Print Network [OSTI]

    Integrating Security and Systems Engineering: Towards the Modelling of Secure Information Systems for information systems. Traditionally, security is considered after the definition of the system. However the health sector to military. As the use of Information Systems arises, the demand to secure those systems

  1. Elsevier Editorial System(tm) for Journal of Marine Systems Manuscript Draft

    E-Print Network [OSTI]

    Gnanadesikan, Anand

    productivity; decadal variability; earth system modelling Corresponding Author: Dr. Anand Gnanadesikan and month-by-month diatom biomass in two Earth System Models run at the Geophysical Fluid Dynamics and Biological Cycling in two Earth System Models" for inclusion in the Special Issue arising from the AMO

  2. ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models

    E-Print Network [OSTI]

    -physical systems (CPS) safe. Formal methods make strong guarantees about the system behavior if accurate models of the sys- tem can be obtained, including models of the controller and of the physical dynamics. In CPS, models are essential; but any model we could possibly build necessarily deviates from the real world

  3. SEMANTIC LEARNING MODEL AND EXTENDED STUDENT MODEL: TOWARDS AN AHAM-BASED ADAPTIVE SYSTEM

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    SEMANTIC LEARNING MODEL AND EXTENDED STUDENT MODEL: TOWARDS AN AHAM-BASED ADAPTIVE SYSTEM Hend hypermedia systems, we distinguish AHAM as the most popular reference model which is based on the Dexter hoc integration of the AHAM's user's model as well as the IMS/LIP and IEEE/PAPI standards. KEY WORDS

  4. A Model Checking Approach to Evaluating System Level Dynamic Power Management Policies for Embedded Systems

    E-Print Network [OSTI]

    Gupta, Rajesh

    A Model Checking Approach to Evaluating System Level Dynamic Power Management Policies for Embedded, and laptops, controlling power dissipation is an important system design issue [2]. This is either because enforced at the system level. In [3], a system modeling ap- proach for dynamic power management strategy

  5. Quantification of evaporative running loss emissions from gasoline-powered passenger cars in California. Final report

    SciTech Connect (OSTI)

    McClement, D.

    1992-01-01T23:59:59.000Z

    The purpose of the study was to collect evaporative running emissions data from a cross section of in-use, light-duty passenger cars. Forty vehicles were procured and tested using the 'LA-4' cycle (the EPA Urban Dynamometer Driving Cycle (UDDS)) and the New York City Cycle (NYCC). The LA-4 cycle was run three times with a two minute idle period between the first two runs. The NYCC was run six times with a two minute idle between the first five runs of the cycle. Tests were performed at 95 and 105 degrees Farenheit, and using 7.5 and 9.0 Reid Vapor Pressure (RVP) fuel. The report describes two types of running losses - Type 1 where emissions are emitted at a constant, low level (typical of late model, properly operating vehicles), and Type II emissions, where there is a high rate of emissions (typical in uncontrolled vehicles).

  6. Energy Systems Modeling Symposium Co-Sponsored by

    E-Print Network [OSTI]

    Knowlton School of Architecture, OSU Natural Gas Infrastructure Modeling: From Local Distribution to Transboundary Networks Bhavik Bakshi Chemical and Biomolecular Engineering, OSU The Role of Natural Capital Industrial and Systems Engineering, OSU Integrating Energy Modeling with the Environment, Economy & Society

  7. Utility system integration and optimization models for nuclear power management

    E-Print Network [OSTI]

    Deaton, Paul Ferris

    1973-01-01T23:59:59.000Z

    A nuclear power management model suitable for nuclear utility systems optimization has been developed for use in multi-reactor fuel management planning over periods of up to ten years. The overall utility planning model ...

  8. Modeling and Analysis of CSP Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    Fact sheet describing NREL CSP Program capabilities in the area of modeling and analysis of CSP systems: assessing the solar resource, predicting performance and cost, studying environmental impact, and developing modeling software packages.

  9. Temperature Modeling in Activated Sludge Systems: A Case Study

    E-Print Network [OSTI]

    Wells, Scott A.

    Temperature Modeling in Activated Sludge Systems: A Case Study Jacek Makinia, Scott A. Wells, Piotr Zima ABSTRACT: A model of temperature dynamics was developed as part of a general model of activated-sludge biochemical-energy inputs and other activated-sludge, heat-balance terms. All the models were tested under

  10. A Framework for Modeling Strategy, Business Processes and Information Systems

    E-Print Network [OSTI]

    A Framework for Modeling Strategy, Business Processes and Information Systems André Vasconcelos, an organization requires modeling its business processes. Business process modeling comprises the description is used not only in the business but also in the software domain. To represent the goal model, we propose

  11. Model Predictability-Form Lorenz System to Operational Ocean and

    E-Print Network [OSTI]

    Chu, Peter C.

    Model Predictability- Form Lorenz System to Operational Ocean and Atmospheric Models Peter C Chu. Poberezhny, 2002: Power law decay in model predictability skill. Geophysical Research Letters, 29 (15), 10 Six Months Four-Times Daily Data From July 9, 1998 for Verification #12;Model Generated Velocity

  12. Running coupling corrections to inclusive gluon production

    E-Print Network [OSTI]

    W. A. Horowitz; Yuri V. Kovchegov

    2011-06-27T23:59:59.000Z

    We calculate running coupling corrections for the lowest-order gluon production cross section in high energy hadronic and nuclear scattering using the BLM scale-setting prescription. At leading order there are three powers of fixed coupling; in our final answer, these three couplings are replaced by seven factors of running coupling: five in the numerator and two in the denominator, forming a `septumvirate' of running couplings, analogous to the `triumvirate' of running couplings found earlier for the small-x BFKL/BK/JIMWLK evolution equations. It is interesting to note that the two running couplings in the denominator of the `septumvirate' run with complex-valued momentum scales, which are complex conjugates of each other, such that the production cross section is indeed real. We use our lowest-order result to conjecture how running coupling corrections may enter the full fixed-coupling k_T-factorization formula for gluon production which includes non-linear small-x evolution.

  13. Models used to assess the performance of photovoltaic systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Klise, Geoffrey T.

    2009-12-01T23:59:59.000Z

    This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.

  14. Delivering Document Management Systems Through the ASP Model

    E-Print Network [OSTI]

    Furht, Borko

    Delivering Document Management Systems Through the ASP Model Borko Furht, Florida Atlantic, Boca Raton, Florida Introduction Electronic Document Management Systems (DMS) are commercial off and short records, such as name, address, account number, and social security number. Document management

  15. Applications of axial and radial compressor dynamic system modeling

    E-Print Network [OSTI]

    Spakovszky, Zoltn S. (Zoltn Sndor), 1972-

    2001-01-01T23:59:59.000Z

    The presented work is a compilation of four different projects related to axial and centrifugal compression systems. The projects are related by the underlying dynamic system modeling approach that is common in all of them. ...

  16. 15.094 Systems Optimization: Models and Computation, Spring 2002

    E-Print Network [OSTI]

    Freund, Robert Michael

    A computational and application-oriented introduction to the modeling of large-scale systems in a wide variety of decision-making domains and the optimization of such systems using state-of-the-art optimization software. ...

  17. Model Abstraction Techniques for Large-Scale Power Systems

    E-Print Network [OSTI]

    Report on System Simulation using High Performance Computing Prepared by New Mexico Tech New Mexico: Application of High Performance Computing to Electric Power System Modeling, Simulation and Analysis Task Two

  18. Model reduction for nonlinear dynamical systems with parametric uncertainties

    E-Print Network [OSTI]

    Zhou, Yuxiang Beckett

    2012-01-01T23:59:59.000Z

    Nonlinear dynamical systems are known to be sensitive to input parameters. In this thesis, we apply model order reduction to an important class of such systems -- one which exhibits limit cycle oscillations (LCOs) and ...

  19. Reference Model for Control and Automation Systems in Electrical...

    Broader source: Energy.gov (indexed) [DOE]

    Reference Model for Control and Automation Systems in Electrical Power Version 1.2 October 12, 2005 Prepared by: Sandia National Laboratories' Center for SCADA Security Jason...

  20. An overview of system modeling and identification Gerard Favier

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    useful for various application areas including chemical and biochemical processes (distillation columns developed for designing model- based control systems. More generally, parameter estimation is at the heart

  1. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Broader source: Energy.gov (indexed) [DOE]

    PHEV Engine Systems and Emissions Control Modeling and Analysis Stuart Daw (PI), Zhiming Gao, Kalyan Chakravarthy Oak Ridge National Laboratory 2011 U.S. DOE Hydrogen and Vehicle...

  2. Macro-System Model Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation on Macro-System Model Overview given by Mark Ruth of the National Renewable Energy Laboratory during the DOE Hydrogen Transition Analysis Workshop on January 26,...

  3. Unified Modeling of Complex Real-Time Control Systems

    E-Print Network [OSTI]

    Hai, He; Chi-Lan, Cai

    2011-01-01T23:59:59.000Z

    Complex real-time control system is a software dense and algorithms dense system, which needs modern software engineering techniques to design. UML is an object-oriented industrial standard modeling language, used more and more in real-time domain. This paper first analyses the advantages and problems of using UML for real-time control systems design. Then, it proposes an extension of UML-RT to support time-continuous subsystems modeling. So we can unify modeling of complex real-time control systems on UML-RT platform, from requirement analysis, model design, simulation, until generation code.

  4. aqueous model system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    King, Simon; Wrench, Alan 1999-01-01 69 Development and application of earth system models Environmental Sciences and Ecology Websites Summary: Development and...

  5. atmospheric modeling system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models University of California eScholarship Repository Summary: Atmosphere and Ocean...

  6. H2 -optimal model reduction of MIMO systems

    E-Print Network [OSTI]

    2007-09-28T23:59:59.000Z

    Keyword Multivariable systems, model reduction, optimal H2 approximation, tangential interpolation. 1 Introduction. In this paper we will consider the problem of...

  7. Solar system constraints on f(G) gravity models

    E-Print Network [OSTI]

    Antonio De Felice; Shinji Tsujikawa

    2009-07-10T23:59:59.000Z

    We discuss solar system constraints on f(G) gravity models, where f is a function of the Gauss-Bonnet term G. We focus on cosmologically viable f(G) models that can be responsible for late-time cosmic acceleration. These models generally give rise to corrections of the form epsilon*(r/rs)^p to the vacuum Schwarzschild solution, where epsilon = H^2 rs^2 solar system constraints for a wide range of model parameters.

  8. A Formal Model of Provenance in Distributed Systems

    E-Print Network [OSTI]

    Francalanza, Adrian

    A Formal Model of Provenance in Distributed Systems Issam Souilah2 Adrian Francalanza1 Vladimiro;Motivation Trust In a Distributed System #12;Motivation Trust In a Distributed System Distribution inherent parallelism. #12;Motivation Trust In a Distributed System Distribution inherent parallelism. Distribution

  9. NDA SYSTEM RESPONSE MODELING AND ITS APPLICATION

    SciTech Connect (OSTI)

    Vinson, D.

    2010-03-01T23:59:59.000Z

    The Portsmouth gaseous diffusion plant (PORTS) is a uranium enrichment facility that was historically used to enrich uranium to levels that range from 2% to greater than 97%. The feed material for PORTS was obtained from the Paducah Gaseous Diffusion Plant (PGDP) that produced uranium in the form of UF6 that was enriched to about 1 to 2%. The enrichment process involves a multistage process by which gaseous UF{sub 6} passed through a diffusion barrier in each stage. The porous diffusion barrier in each stage retards the rate of the diffusion of the heavier {sup 238}U atoms relative to the diffusion of the lighter {sup 235}U atoms. By this process the product stream is slightly enriched by each stage of the process. Each stage consists of a compressor, converter and a motor. There are more than 4000 stages that are linked together with piping of various diameters to form the PORTS cascade. The cascade spans three interconnected buildings and comprises miles of piping, thousands of seals, converters, valves, motors, and compressors. During operation, PORTS process equipment contained UF{sub 6} gas with uranium enrichment that increased in the process stream from the first to the last stage in a known manner. Gaseous UF{sub 6} moving through the PORTS process equipment had potential to form deposits within the process equipment by several mechanisms, including solidification due to incorrect temperature and pressure conditions during the process, inleakage of atmospheric moisture that chemically reacts with UF{sub 6} to form hydrated uranyl fluoride solids, reduction reactions of UF{sub 6} with cascade metals, and UF{sub 6} condensation on the internal equipment surfaces. As a result, the process equipment of the PORTS contains a variable and unknown quantity of uranium with variable enrichment that has been deposited within the equipment during plant operations. The exact chemical form of this uranium is variable, although it is expected that the bulk of the material is of the form of uranyl fluoride that will become hydrated on exposure to moisture in air when the systems are no longer buffered. The deposit geometry and thickness is uncertain and variable. However, a reasonable assessment of the level of material holdup in this equipment is necessary to support decommissioning efforts. The assessment of nuclear material holdup in process equipment is a complex process that requires integration of process knowledge, nondestructive assay (NDA) measurements, and computer modeling to maximize capabilities and minimize uncertainty. The current report is focused on the use of computer modeling and simulation of NDA measurements.

  10. Modeling technical systems Tasks 1 Franz Wotawa

    E-Print Network [OSTI]

    : Solve the following 3 examples. For this purpose invent a model written in Modelica and simulate it not use the pre-defined models from the Modelica standard libraries. Simulate the filters using different

  11. Modeling for ship power system emulation

    E-Print Network [OSTI]

    Leghorn, Jeremy T. (Jeremy Thomas)

    2009-01-01T23:59:59.000Z

    With the U.S. Navy's continued focus on Integrated Fight Thru Power (IFTP) there has been an ever increasing effort to ensure an electrical distribution system that maintains maximum capabilities in the event of system ...

  12. Generic solar photovoltaic system dynamic simulation model specification.

    SciTech Connect (OSTI)

    Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas

    2013-10-01T23:59:59.000Z

    This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.

  13. Process modeling for the Integrated Nonthermal Treatment System (INTS) study

    SciTech Connect (OSTI)

    Brown, B.W.

    1997-04-01T23:59:59.000Z

    This report describes the process modeling done in support of the Integrated Nonthermal Treatment System (INTS) study. This study was performed to supplement the Integrated Thermal Treatment System (ITTS) study and comprises five conceptual treatment systems that treat DOE contract-handled mixed low-level wastes (MLLW) at temperatures of less than 350{degrees}F. ASPEN PLUS, a chemical process simulator, was used to model the systems. Nonthermal treatment systems were developed as part of the INTS study and include sufficient processing steps to treat the entire inventory of MLLW. The final result of the modeling is a process flowsheet with a detailed mass and energy balance. In contrast to the ITTS study, which modeled only the main treatment system, the INTS study modeled each of the various processing steps with ASPEN PLUS, release 9.1-1. Trace constituents, such as radionuclides and minor pollutant species, were not included in the calculations.

  14. 3.System Design Basis 2) MODELING

    E-Print Network [OSTI]

    Hong, Deog Ki

    was added to the heat gain of the each tank, because propane circulation system does not affect the propane

  15. Epistemological resources 1 Running Head: EPISTEMOLOGICAL RESOURCES

    E-Print Network [OSTI]

    Elby, Andy

    Epistemological resources 1 Running Head: EPISTEMOLOGICAL RESOURCES Epistemological resources University Maryland, College Park Trisha Kagey Montgomery County Public Schools #12;Epistemological resources are better understood as made up of finer-grained cognitive resources whose activation depends sensitively

  16. Facilitating Forgiveness 1 Running head: FACILITATING FORGIVENESS

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Facilitating Forgiveness 1 Running head: FACILITATING FORGIVENESS FACILITATING FORGIVENESS. Infidelity causes significant damage for couples and results in a loss of trust and relationship stability undermine a relationship's stability and security, resulting in confusion, loss of trust, and tremendous

  17. Petroleum Market Model of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions. The production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level. This report is organized as follows: Chapter 2, Model Purpose; Chapter 3, Model Overview and Rationale; Chapter 4, Model Structure; Appendix A, Inventory of Input Data, Parameter Estimates, and Model Outputs; Appendix B, Detailed Mathematical Description of the Model; Appendix C, Bibliography; Appendix D, Model Abstract; Appendix E, Data Quality; Appendix F, Estimation methodologies; Appendix G, Matrix Generator documentation; Appendix H, Historical Data Processing; and Appendix I, Biofuels Supply Submodule.

  18. A View on Future Building System Modeling and Simulation

    SciTech Connect (OSTI)

    Wetter, Michael

    2011-04-01T23:59:59.000Z

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  19. Running heavy-quark masses in DIS

    E-Print Network [OSTI]

    S. Alekhin; S. -O. Moch

    2011-07-03T23:59:59.000Z

    We report on determinations of the running mass for charm quarks from deep-inelastic scattering reactions. The method provides complementary information on this fundamental parameter from hadronic processes with space-like kinematics. The obtained values are consistent with but systematically lower than the world average as published by the PDG. We also address the consequences of the running mass scheme for heavy-quark parton distributions in global fits to deep-inelastic scattering data.

  20. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-02-17T23:59:59.000Z

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

  1. Systems-Level Modeling of Particle Steering using Microfluidic Device

    E-Print Network [OSTI]

    Austin, Mark

    Systems-Level Modeling of Particle Steering using Microfluidic Device ENES489P: Hands-On Systems of the device consists of the particles, steering mechanism, optical sensor, control algorithm, computer, fluid tool in modeling many different types of processes. It can be used to simplify complex biological

  2. Modelling and simulation of multidisciplinary dynamic systems Lead: A. Fakri.

    E-Print Network [OSTI]

    Baudoin, Geneviève

    Modelling and simulation of multidisciplinary dynamic systems Lead: A. Fakri. Permanent members: P. Integration of various engineering disciplines and the consideration of the dynamic control need a concurrent suited for the energy exchanges to study multidisciplinary dynamic engineering systems modelling. Our

  3. Data Mining for Modeling Chiller Systems in Data Centers

    E-Print Network [OSTI]

    Data Mining for Modeling Chiller Systems in Data Centers Debprakash Patnaik1 , Manish Marwah2 in data centers, particularly the chiller ensemble. These infrastructures are poorly understood due to the lack of "first principles" models of chiller systems. At the same time, they abound in data due

  4. INFORMATION SYSTEMS MODELLING USING LOOPN++, AN OBJECT PETRI NET SCHEME

    E-Print Network [OSTI]

    Lakos, Charles

    INFORMATION SYSTEMS MODELLING USING LOOPN++, AN OBJECT PETRI NET SCHEME Chris Keen and Charles, object petri nets, information systems modelling, ontological expressiveness Abstract There have been formalisms based on petri nets. In particular, the application of object­based design principles have

  5. Proposal full title: Comprehensive Modelling of the Earth System for

    E-Print Network [OSTI]

    Couvreux, Fleur

    .....................................................................................................................7 1.1.4 Earth System Model Ensemble-scale integrating project Work programme topics addressed: ENV.2008.1.1.4.1. New components in Earth System modelling for better climate projections Name of the coordinating person: Marco Giorgetta List

  6. Rock-physics Models for Gas-hydrate Systems Associated

    E-Print Network [OSTI]

    Texas at Austin, University of

    Rock-physics Models for Gas-hydrate Systems Associated with Unconsolidated Marine Sediments Diana at Austin, Austin, Texas, U.S.A. ABSTRACT R ock-physics models are presented describing gas-hydrate systems associated with unconsolidated marine sediments. The goals are to predict gas-hydrate concentration from

  7. CMS physics highlights in the LHC Run 1

    E-Print Network [OSTI]

    David d'Enterria for the CMS Collaboration

    2015-05-18T23:59:59.000Z

    The main physics results obtained by the CMS experiment during the first three years of operation of the CERN Large Hadron Collider (2010--2013, aka. Run 1) are summarized. The advances in our understanding of the fundamental particles and their interactions are succinctly reviewed under the following physics topics: (i) Quantum Chromodynamics, (ii) Quark Gluon Plasma, (iii) Electroweak interaction, (iv) Top quark, (v) Higgs boson, (vi) Flavour, (vii) Supersymmetry, (viii) Dark Matter, and (ix) other searches of physics beyond the Standard Model.

  8. Neutrons used to study model vascular systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the endothelial cells and the supporting substrate. In what may be the first use of neutron scattering to study complex bio-medical systems under dynamic conditions, Los...

  9. Supercomputers model and simulate complex, dynamic systems

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory System has built and deployed some of the most significant high-performance computing (HPC) resources available anywhere, including 32 of the 500 fastest...

  10. Development of a GIS Based Dust Dispersion Modeling System.

    SciTech Connect (OSTI)

    Rutz, Frederick C.; Hoopes, Bonnie L.; Crandall, Duard W.; Allwine, K Jerry

    2004-08-12T23:59:59.000Z

    With residential areas moving closer to military training sites, the effects upon the environment and neighboring civilians due to dust generated by training exercises has become a growing concern. Under a project supported by the Strategic Environmental Research and Development Program (SERDP) of the Department of Defense, a custom application named DUSTRAN is currently under development that integrates a system of EPA atmospheric dispersion models with the ArcGIS application environment in order to simulate the dust dispersion generated by a planned training maneuver. This integration between modeling system and GIS application allows for the use of real world geospatial data such as terrain, land-use, and domain size as input by the modeling system. Output generated by the modeling system, such as concentration and deposition plumes, can then be displayed upon accurate maps representing the training site. This paper discusses the development of this integration between modeling system and Arc GIS application.

  11. Quantum chaotic system as a model of decohering environment

    E-Print Network [OSTI]

    Jayendra N. Bandyopadhyay

    2009-04-24T23:59:59.000Z

    As a model of decohering environment, we show that quantum chaotic system behave equivalently as many-body system. An approximate formula for the time evolution of the reduced density matrix of a system interacting with a quantum chaotic environment is derived. This theoretical formulation is substantiated by the numerical study of decoherence of two qubits interacting with a quantum chaotic environment modeled by a chaotic kicked top. Like the many-body model of environment, the quantum chaotic system is efficient decoherer, and it can generate entanglement between the two qubits which have no direct interaction.

  12. Detailed Performance Model for Photovoltaic Systems: Preprint

    SciTech Connect (OSTI)

    Tian, H.; Mancilla-David, F.; Ellis, K.; Muljadi, E.; Jenkins, P.

    2012-07-01T23:59:59.000Z

    This paper presents a modified current-voltage relationship for the single diode model. The single-diode model has been derived from the well-known equivalent circuit for a single photovoltaic cell. The modification presented in this paper accounts for both parallel and series connections in an array.

  13. Hydrogen Deployment System Modeling Environment (HyDS ME) Documentation: Milestone Report FY 2006

    SciTech Connect (OSTI)

    Parks. K.

    2006-11-01T23:59:59.000Z

    This report introduces the Hydrogen Deployment System Modeling Environment model, assumptions, and basic operations.

  14. Dynamic Modeling of Cascading Failure in Power Systems

    E-Print Network [OSTI]

    Song, Jiajia; Ghanavati, Goodarz; Hines, Paul D H

    2014-01-01T23:59:59.000Z

    The modeling of cascading failure in power systems is difficult because of the many different mechanisms involved; no single model captures all of these mechanisms. Understanding the relative importance of these different mechanisms is an important step in choosing which mechanisms need to be modeled for particular types of cascading failure analysis. This work presents a dynamic simulation model of both power networks and protection systems, which can simulate a wider variety of cascading outage mechanisms, relative to existing quasi-steady state (QSS) models. The model allows one to test the impact of different load models and protections on cascading outage sizes. This paper describes each module of the developed dynamic model and demonstrates how different mechanisms interact. In order to test the model we simulated a batch of randomly selected $N-2$ contingencies for several different static load configurations, and found that the distribution of blackout sizes and event lengths from the proposed dynamic...

  15. Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System

    SciTech Connect (OSTI)

    Recknagle, Kurtis P.; Barnett, J. M.; Suffield, Sarah R.

    2013-01-23T23:59:59.000Z

    Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle dispersion. The results of these simulations suggest the air blender should be included in the stack system to ensure qualification of the stack.

  16. WATER DATA MANAGEMENT SYSTEMS INTEGRATIONS WITH MODELS

    E-Print Network [OSTI]

    Rhode Island, University of

    Acquisition (SCADA) system that can control operations in treatment plants, as well as continuously check and SCADA interfaces for even more integrated analyses, which is important since many suppliers are implementing SCADA systems. However, only about thirty-five (35) percent of the suppliers have a functioning

  17. Thermodynamic Modeling of a Membrane Dehumidification System

    E-Print Network [OSTI]

    Bynum, John 1983-

    2012-11-28T23:59:59.000Z

    ............................................................... 157 4.5 Original and ARPA-E condition COP results for cooling tower approach of 5?F detailed simulation results for five evaporative cooling steps and membrane cooling combined system... evaporative cooling steps and membrane cooling combined system for ARPA-E inlet and outlet conditions ................................................................... 163 4.13 Cooling tower approach of 5?F detailed simulation results for five...

  18. Systems and methods for modeling and analyzing networks

    DOE Patents [OSTI]

    Hill, Colin C; Church, Bruce W; McDonagh, Paul D; Khalil, Iya G; Neyarapally, Thomas A; Pitluk, Zachary W

    2013-10-29T23:59:59.000Z

    The systems and methods described herein utilize a probabilistic modeling framework for reverse engineering an ensemble of causal models, from data and then forward simulating the ensemble of models to analyze and predict the behavior of the network. In certain embodiments, the systems and methods described herein include data-driven techniques for developing causal models for biological networks. Causal network models include computational representations of the causal relationships between independent variables such as a compound of interest and dependent variables such as measured DNA alterations, changes in mRNA, protein, and metabolites to phenotypic readouts of efficacy and toxicity.

  19. CDF Run IIb Silicon Vertex Detector DAQ Upgrade

    SciTech Connect (OSTI)

    S. Behari et al.

    2003-12-18T23:59:59.000Z

    The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.

  20. ELECTRICAL ANALOGY MODELLING OF PEFC SYSTEM FED BY A COMPRESSOR

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    1 PB13-078 ELECTRICAL ANALOGY MODELLING OF PEFC SYSTEM FED BY A COMPRESSOR Moussa Chnani1 , Hattab to be integrated in the simulation of an electrical vehicle power train. As many components have to be modelled by the motor speed. The modelling of the fuel cell electrical response is developed, based on semi

  1. Model discrimination for dephasing two-level systems

    E-Print Network [OSTI]

    Erling Gong; Weiwei Zhou; Sophie Schirmer

    2014-12-13T23:59:59.000Z

    The problem of model discriminability and parameter identifiability for dephasing two-level systems subject to Hamiltonian control is studied. Analytic solutions of the Bloch equations are used to derive explicit expressions for observables as functions of time for different models. This information is used to give criteria for model discrimination and parameter estimation based on simple experimental paradigms.

  2. Uncertainty and sensitivity analysis for photovoltaic system modeling.

    SciTech Connect (OSTI)

    Hansen, Clifford W.; Pohl, Andrew Phillip; Jordan, Dirk [National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO] [National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO

    2013-12-01T23:59:59.000Z

    We report an uncertainty and sensitivity analysis for modeling DC energy from photovoltaic systems. We consider two systems, each comprised of a single module using either crystalline silicon or CdTe cells, and located either at Albuquerque, NM, or Golden, CO. Output from a PV system is predicted by a sequence of models. Uncertainty in the output of each model is quantified by empirical distributions of each model's residuals. We sample these distributions to propagate uncertainty through the sequence of models to obtain an empirical distribution for each PV system's output. We considered models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane-of-array irradiance; (2) estimate effective irradiance from plane-of-array irradiance; (3) predict cell temperature; and (4) estimate DC voltage, current and power. We found that the uncertainty in PV system output to be relatively small, on the order of 1% for daily energy. Four alternative models were considered for the POA irradiance modeling step; we did not find the choice of one of these models to be of great significance. However, we observed that the POA irradiance model introduced a bias of upwards of 5% of daily energy which translates directly to a systematic difference in predicted energy. Sensitivity analyses relate uncertainty in the PV system output to uncertainty arising from each model. We found that the residuals arising from the POA irradiance and the effective irradiance models to be the dominant contributors to residuals for daily energy, for either technology or location considered. This analysis indicates that efforts to reduce the uncertainty in PV system output should focus on improvements to the POA and effective irradiance models.

  3. Risk Modelling the Transition of SCADA System to IPv6

    E-Print Network [OSTI]

    Boyer, Edmond

    Risk Modelling the Transition of SCADA System to IPv6 Suriadi Suriadi, Alan Tickle, Ejaz Ahmed.morarji@qut.edu.au Abstract. SCADA is one of a set of manufacturing-and-control systems that are used to monitor and control6 protocol and inevitably this change will affect SCADA systems. However IPv6 introduces its own set

  4. Model Predictive Control based Real Time Power System Protection Schemes

    E-Print Network [OSTI]

    Kumar, Ratnesh

    1 Model Predictive Control based Real Time Power System Protection Schemes Licheng Jin, Member by controlling the production, absorption as well as flow of reactive power at various locations in the system predictive control, trajectory sensitivity, voltage stabilization, switching control, power system I

  5. Model-Based Commissioning Methodology for Simple Duct System

    E-Print Network [OSTI]

    Odajima, T.; Takashi, M.; Juckel-Murakami, B.

    2004-01-01T23:59:59.000Z

    This paper presents how a simulation model is applied on air leakage and pressure distribution in a duct system and how it is utilized for duct system commissioning on the three categories below. It focuses on a duct system, which participates...

  6. Bayesian Networks and Evidence Theory to Model Complex Systems Reliability

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    , infrastructure of water distribution or electricity. The reliability studies of such systems are consequentlyBayesian Networks and Evidence Theory to Model Complex Systems Reliability Ch. SIMON, Ph. WEBER, E.levrat}@cran.uhp-nancy.fr Abstract-- This paper deals with the use of Bayesian Net- works to compute system reliability of complex

  7. A Hierarchical Model for Estimating the Reliability of Complex Systems

    E-Print Network [OSTI]

    Reese, Shane

    an approximation to the joint posterior distribution on the total system reliability was obtained. Many reliability or bounding moments of the system reliability posterior distribution (Cole (1975), Mastran (1976), DostalA Hierarchical Model for Estimating the Reliability of Complex Systems Valen E. Johnson, Todd L

  8. Power-Invariant Magnetic System Modeling

    E-Print Network [OSTI]

    Gonzalez Dominguez, Guadalupe Giselle

    2012-10-19T23:59:59.000Z

    : the reluctance, as analogous to the electric resistance, should be a dissipative element instead it is an energy storage element. Furthermore, the two other elements are not defined. This difference has initiated a reevaluation of the conventional magnetic model...

  9. Thermodynamic Modeling of a Membrane Dehumidification System

    E-Print Network [OSTI]

    Bynum, John 1983-

    2012-11-28T23:59:59.000Z

    optimizations to meet the target performance: condenser pressure optimization and the use of multiple membrane segments operating at different pressures. The latent only COP including the optimizations was a maximum of 4.23. A second model was then developed...

  10. Simulation Models for Improved Water Heating Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01T23:59:59.000Z

    and Simulation of a Smart Water Heater. In Workshop inFreezers, Furnaces, Water Heaters, Room and Central AirNovember. ADL. 1982b. Water Heater Computer Model Users

  11. Multiscale modeling of clay-water systems

    E-Print Network [OSTI]

    Ebrahimi, Davoud

    2014-01-01T23:59:59.000Z

    The engineering properties of soils are highly affected by clay content and clay-water interactions. However, existing macro-scale continuum models have no length scale to describe the evolution of the clay microstructure ...

  12. Short-run interfuel substitution in West European power generation : a restriced cost function approach

    E-Print Network [OSTI]

    Sderholm, Patrik

    1999-01-01T23:59:59.000Z

    This paper analyzes short-run interfuel substitution between fossil fuels in West European power generation. The problem is studied within a restricted translog cost model, which is estimated by pooling time-series data ...

  13. A conceptual model for particle systems animation

    E-Print Network [OSTI]

    Flaherty, Eric Wayne

    1992-01-01T23:59:59.000Z

    Particle systems represent a technique for creating a special class of computer generated images. This class of imagery would be difficult or impossible to create using traditional surface based representations found in current computer animation...

  14. Factory Models for Manufacturing Systems Engineering

    E-Print Network [OSTI]

    Gershwin, Stanley B.

    We review MIT research in manufacturing systems engineering, and we describe current and possible future research activities in this area. This includes advances in decomposition techniques, optimization, token-based control ...

  15. Wilis: Architectural Modeling of Wireless Systems

    E-Print Network [OSTI]

    Fleming, Kermin Elliott

    The performance of a wireless system depends on the wireless channel as well as the algorithms used in the transceiver pipelines. Because physical phenomena affect transceiver pipelines in difficult to predict ways, detailed ...

  16. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  17. Wetland model in an earth systems modeling framework for regional environmental policy analysis

    E-Print Network [OSTI]

    Awadalla, Sirein Salah

    2011-01-01T23:59:59.000Z

    The objective of this research is to investigate incorporating a wetland component into a land energy and water fluxes model, the Community Land Model (CLM). CLM is the land fluxes component of the Integrated Global Systems ...

  18. Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity

    E-Print Network [OSTI]

    Monier, Erwan

    Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate ...

  19. Viable System Model approach for holonic product-driven manufacturing systems

    E-Print Network [OSTI]

    Boyer, Edmond

    Viable System Model approach for holonic product-driven manufacturing systems Carlos Herrera , Sana manuscript, published in "1st Workshop on Service Orientation in Holonic and Multi Agent Manufacturing

  20. Dynamic Model for Assessing Impact of Regeneration Actions on System Availability: Application to Weapon Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Dynamic Model for Assessing Impact of Regeneration Actions on System Availability: Application) Key Words: failure, damage, regeneration, availability assessment, stochastic activity networks, Monte Carlo simulations SUMMARY & CONCLUSIONS Availability is a determining factor in systems characterization

  1. Running Allegro Common Lisp From Emacs 1 Getting Started

    E-Print Network [OSTI]

    Anderson, Charles W.

    Running Allegro Common Lisp From Emacs 1 Getting Started A powerful alternative to running ACL from the unix command line is to run Allegro Common Lisp (ACL) within one window of an Emacs \\Lambda screen

  2. Design of running-man, a bipedal robot

    E-Print Network [OSTI]

    Chen, Jin

    2011-01-01T23:59:59.000Z

    Table 4.1 Specifications of Running Man robot prototype HipSan Diego Design of running-man, a bipedal robot A Thesis41 v Implementation of Running

  3. SS-shifted architecture Run roadfinder with default bank

    E-Print Network [OSTI]

    SS-shifted architecture Run roadfinder with default bank Run roadfinder with ss-shifted bank track fitter DONE DONE #12;SCT-first architecture Run full chain in SCT-only configuration Road

  4. The Community Earth System Model: A Framework for Collaborative Research

    SciTech Connect (OSTI)

    Hurrell, Jim; Holland, Marika M.; Gent, Peter R.; Ghan, Steven J.; Kay, Jennifer; Kushner, P.; Lamarque, J.-F.; Large, William G.; Lawrence, David M.; Lindsay, Keith; Lipscomb, William; Long , Matthew; Mahowald, N.; Marsh, D.; Neale, Richard; Rasch, Philip J.; Vavrus, Steven J.; Vertenstein, Mariana; Bader, David C.; Collins, William D.; Hack, James; Kiehl, J. T.; Marshall, Shawn

    2013-09-30T23:59:59.000Z

    The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of earth system interactions across multiple time and space scales. This global coupled model is a natural evolution from its predecessor, the Community Climate System Model, following the incorporation of new earth system capabilities. These include the ability to simulate biogeochemical cycles, atmospheric chemistry, ice sheets, and a high-top atmosphere. These and other new model capabilities are enabling investigations into a wide range of pressing scientific questions, providing new predictive capabilities and increasing our collective knowledge about the behavior and interactions of the earth system. Simulations with numerous configurations of the CESM have been provided to the Coupled Model Intercomparison Project Phase 5 (CMIP5) and are being analyzed by the broader community of scientists. Additionally, the model source code and associated documentation are freely available to the scientific community to use for earth system studies, making it a true community tool. Here we describe this earth modeling system, its various possible configurations, and illustrate its capabilities with a few science highlights.

  5. Improving Modeling of Iodine-129 Groundwater Contamination Plumes Using the System Assessment Capability

    SciTech Connect (OSTI)

    Dirkes, J.; Nichols, W.E.; Wurstner, S.K.

    2004-01-01T23:59:59.000Z

    Years of production of radioactive materials at the Hanford Site in southeastern Washington State has resulted in contamination of surface, subsurface, and surface water environments. Cleanup of the site has been aided by various tools, including computer software used to predict contaminant migration in the future and estimate subsequent impacts. The System Assessment Capability (SAC) is a total systems tool designed to simulate the movement of contaminants from all waste sites at Hanford through the vadose zone, the unconfined aquifer, and the Columbia River. Except for iodine-129, most of the contaminants modeled by SAC have acceptably matched field measurements. The two most likely reasons for the inconsistency between the measured field data and SAC modeled predictions are an underestimated inventory and an overestimated sorption value (Kd). Field data tend to be point measurements taken from near the surface of the unconfined aquifer. Thus, the depth of the iodine-129 contamination plume on the site is not well characterized. Geostatistical analyses of the measured data were conducted to determine the mass of iodine-129 for four assumed plume depths within the unconfined aquifer. Several simulations for two different Kds using the initial SAC inventory were run to determine the effect of an overestimated sorption value on SAC modeled predictions. The initial SAC inventory was then increased for the two different Kds to determine the influence of an underestimated inventory on SAC modeled predictions. It was found that evidence for both an underestimated inventory and for an overestimated sorption value for iodine-129 exist. These results suggest that the Kd for iodine-129 should be reevaluated and that a more complete inventory must be generated in order to more accurately model iodine-129 groundwater contamination plumes that match available field data.

  6. Design theoretic analysis of three system modeling frameworks.

    SciTech Connect (OSTI)

    McDonald, Michael James

    2007-05-01T23:59:59.000Z

    This paper analyzes three simulation architectures from the context of modeling scalability to address System of System (SoS) and Complex System problems. The paper first provides an overview of the SoS problem domain and reviews past work in analyzing model and general system complexity issues. It then identifies and explores the issues of vertical and horizontal integration as well as coupling and hierarchical decomposition as the system characteristics and metrics against which the tools are evaluated. In addition, it applies Nam Suh's Axiomatic Design theory as a construct for understanding coupling and its relationship to system feasibility. Next it describes the application of MATLAB, Swarm, and Umbra (three modeling and simulation approaches) to modeling swarms of Unmanned Flying Vehicle (UAV) agents in relation to the chosen characteristics and metrics. Finally, it draws general conclusions for analyzing model architectures that go beyond those analyzed. In particular, it identifies decomposition along phenomena of interaction and modular system composition as enabling features for modeling large heterogeneous complex systems.

  7. Methanol Reformer System Modeling and Control using an Adaptive Neuro-Fuzzy Inference System approach

    E-Print Network [OSTI]

    Andreasen, Sren Juhl

    Methanol Reformer System Modeling and Control using an Adaptive Neuro-Fuzzy Inference System East, Denmark Introduction This work presents a control strategy for a reformed methanol fuel cell system, which uses a reformer to produce hydrogen for a HTPEM fuel cell. Such systems can advantageously

  8. Cooperative Server Clustering for a Scalable GAS Model on Petascale Cray XT5 Systems

    SciTech Connect (OSTI)

    Yu, Weikuan [ORNL; Que, Xinyu [ORNL; Tipparaju, Vinod [ORNL; Graham, Richard L [ORNL; Vetter, Jeffrey S [ORNL

    2010-05-01T23:59:59.000Z

    Global Address Space (GAS) programming models are attractive because they retain the easy-to-use addressing model that is the characteristic of shared-memory style load and store operations. The scalability of GAS models depends directly on the design and implementation of runtime libraries on the targeted platforms. In this paper, we examine the memory requirement of a popular GAS run-time library, Aggregate Remote Memory Copy Interface (ARMCI) on petascale Cray XT 5 systems. Then we describe a new technique, cooperative server clustering, that enhances the memory scalability of ARMCI communication servers. In cooperative server clustering, ARMCI servers are organized into clusters, and cooperatively process incoming communication requests among them. A request intervention scheme is also designed to expedite the return of responses to the initiating processes. Our experimental results demonstrate that, with very little impact on ARMCI communication latency and bandwidth, cooperative server clustering is able to significantly reduce the memory requirement of ARMCI communication servers, thereby enabling highly scalable scientific applications. In particular, it dramatically reduces the total execution time of a scientific application, NWChem, by 45% on 2400 processes.

  9. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    SciTech Connect (OSTI)

    Hassan, Yassin; Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14T23:59:59.000Z

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during stead-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the stead-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  10. The Higgs Legacy of the LHC Run I

    E-Print Network [OSTI]

    Corbett, Tyler; Goncalves, Dorival; Gonzalez-Fraile, J; Plehn, Tilman; Rauch, Michael

    2015-01-01T23:59:59.000Z

    Based on Run I data we present a comprehensive analysis of Higgs couplings. For the first time this SFitter analysis includes independent tests of the Higgs-gluon and top Yukawa couplings, Higgs decays to invisible particles, and off-shell Higgs measurements. The observed Higgs boson is fully consistent with the Standard Model, both in terms of coupling modifications and effective field theory. Based only on Higgs total rates the results using both approaches are essentially equivalent, with the exception of strong correlations in the parameter space induced by effective operators. These correlations can be controlled through additional experimental input, namely kinematic distributions. Including kinematic distributions the typical Run I reach for weakly interacting new physics now reaches 300 to 500 GeV.

  11. A nuclear data acquisition system flow control model

    SciTech Connect (OSTI)

    Hack, S.N.

    1988-02-01T23:59:59.000Z

    A general Petri Net representation of a nuclear data acquisition system model is presented. This model provides for the unique requirements of a nuclear data acquisition system including the capabilities of concurrently acquiring asynchronous and synchronous data, of providing multiple priority levels of flow control arbitration, and of permitting multiple input sources to reside at the same priority without the problem of channel lockout caused by a high rate data source. Finally, a previously implemented gamma camera/physiological signal data acquisition system is described using the models presented.

  12. Running fermi with one-stage compressor: advantages, layout, performance

    E-Print Network [OSTI]

    Cornacchia, M.; Craievich, P.; Di Mitri, S.; Penco, G.; Venturini, M.; Zholents, A.

    2008-01-01T23:59:59.000Z

    Running FERMI with one-stage compressor: advantages, layout,re-examines the option of running the FERMI FEL driver with

  13. Thermal modeling of the Tevatron magnet system

    SciTech Connect (OSTI)

    Jay C. Theilacker; Arkadiy L. Klebaner

    2004-07-20T23:59:59.000Z

    Operation of the Tevatron at lower temperatures, for the purpose of allowing higher energies, has resulted in a renewed interest in thermal modeling of the magnet strings. Static heat load and AC loses in the superconducting coils are initially transported through subcooled liquid helium. Heat exchange between the subcooled liquid and a counter flowing two-phase stream transfers the load to the latent heat. Stratification of the two-phase helium stream has resulted in considerably less heat exchange compared to the original design. Spool pieces have virtually no heat transfer to the two-phase resulting in a ''warm'' dipole just downstream. A model of the magnet string thermal behavior has been developed. The model has been used to identify temperature profiles within magnet strings. The temperature profiles are being used in conjunction with initial magnet quench performance data to predict the location of quench limiting magnets within the Tevatron. During thermal cycles of magnet strings, the model is being used to ''shuffle'' magnets within the magnet string in order to better match the magnets quench performance with its actual predicted temperature. The motivation for this analysis is to raise the operating energy of the Tevatron using a minimal number of magnets from the spares pool.

  14. Integrated Baseline System (IBS) Version 2.0: Models guide

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Models Guide summarizes the IBS use of several computer models for predicting the results of emergency situations. These include models for predicting dispersion/doses of airborne contaminants, traffic evacuation, explosion effects, heat radiation from a fire, and siren sound transmission. The guide references additional technical documentation on the models when such documentation is available from other sources. The audience for this manual is chiefly emergency management planners and analysts, but also data managers and system managers.

  15. 247VECTORIZING THE COMMUNITY LAND MODEL VECTORIZING THE COMMUNITY

    E-Print Network [OSTI]

    Hoffman, Forrest M.

    systems models (including the CLM) on vector architectures. However, the prior development of the CLM in Japan and the Cray X1 at Oak Ridge National Laboratory (ORNL) spawned renewed interest in running Earth

  16. E-AMOM: An Energy-Aware Modeling and Optimization Methodology for Scientific Applications on Multicore Systems

    E-Print Network [OSTI]

    Lively, Charles

    2012-07-16T23:59:59.000Z

    Hybrid (MPI/OpenMP) and MPI implementations for six scientific applications. E-AMOM includes an optimization component that utilizes our models to employ run-time Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic Concurrency Throttling to reduce...

  17. CESMCommunity Earth System Model CSL Accomplishments Report

    E-Print Network [OSTI]

    tropical cyclone structures and frequency statistics as well as propagating systems through the central cyclones, particularly its path and minimum low pressure, at several days lead time. High resolution paradigm beyond the artificial separation of the shallow and deep convection. This has lead to extensive

  18. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect (OSTI)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01T23:59:59.000Z

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  19. Scheduling Job Families on Non-Identical Parallel Machines under Run-To-Run Control Constraints

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    1 Scheduling Job Families on Non-Identical Parallel Machines under Run-To-Run Control Constraints A constraint on jobs of the same product, i.e. the time interval between two consecutive jobs of the same are presented for scheduling jobs on non-identical parallel machines with setup times. In semiconductor

  20. CMS Data Processing Workflows during an Extended Cosmic Ray Run

    SciTech Connect (OSTI)

    Not Available

    2009-11-01T23:59:59.000Z

    The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data.

  1. D-Factor: A Quantitative Model of Application Slow-Down in Multi-Resource Shared Systems

    SciTech Connect (OSTI)

    Lim, Seung-Hwan [ORNL] [ORNL; Huh, Jae-Seok [ORNL] [ORNL; Kim, Youngjae [ORNL] [ORNL; Shipman, Galen M [ORNL] [ORNL; Das, Chita [Pennsylvania State University, University Park, PA] [Pennsylvania State University, University Park, PA

    2012-01-01T23:59:59.000Z

    Scheduling multiple jobs onto a platform enhances system utilization by sharing resources. The benefits from higher resource utilization include reduced cost to construct, operate, and maintain a system, which often include energy consumption. Maximizing these benefits comes at a price - resource contention among jobs increases job completion time. In this paper, we analyze slow-downs of jobs due to contention for multiple resources in a system; referred to as dilation factor. We observe that multiple-resource contention creates non-linear dilation factors of jobs. From this observation, we establish a general quantitative model for dilation factors of jobs in multi-resource systems. A job is characterized by a vector-valued loading statistics and dilation factors of a job set are given by a quadratic function of their loading vectors. We demonstrate how to systematically characterize a job, maintain the data structure to calculate the dilation factor (loading matrix), and calculate the dilation factor of each job. We validate the accuracy of the model with multiple processes running on a native Linux server, virtualized servers, and with multiple MapReduce workloads co-scheduled in a cluster. Evaluation with measured data shows that the D-factor model has an error margin of less than 16%. We also show that the model can be integrated with an existing on-line scheduler to minimize the makespan of workloads.

  2. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  3. A New Model to Simulate Energy Performance of VRF Systems

    SciTech Connect (OSTI)

    Hong, Tianzhen; Pang, Xiufeng; Schetrit, Oren; Wang, Liping; Kasahara, Shinichi; Yura, Yoshinori; Hinokuma, Ryohei

    2014-03-30T23:59:59.000Z

    This paper presents a new model to simulate energy performance of variable refrigerant flow (VRF) systems in heat pump operation mode (either cooling or heating is provided but not simultaneously). The main improvement of the new model is the introduction of the evaporating and condensing temperature in the indoor and outdoor unit capacity modifier functions. The independent variables in the capacity modifier functions of the existing VRF model in EnergyPlus are mainly room wet-bulb temperature and outdoor dry-bulb temperature in cooling mode and room dry-bulb temperature and outdoor wet-bulb temperature in heating mode. The new approach allows compliance with different specifications of each indoor unit so that the modeling accuracy is improved. The new VRF model was implemented in a custom version of EnergyPlus 7.2. This paper first describes the algorithm for the new VRF model, which is then used to simulate the energy performance of a VRF system in a Prototype House in California that complies with the requirements of Title 24 ? the California Building Energy Efficiency Standards. The VRF system performance is then compared with three other types of HVAC systems: the Title 24-2005 Baseline system, the traditional High Efficiency system, and the EnergyStar Heat Pump system in three typical California climates: Sunnyvale, Pasadena and Fresno. Calculated energy savings from the VRF systems are significant. The HVAC site energy savings range from 51 to 85percent, while the TDV (Time Dependent Valuation) energy savings range from 31 to 66percent compared to the Title 24 Baseline Systems across the three climates. The largest energy savings are in Fresno climate followed by Sunnyvale and Pasadena. The paper discusses various characteristics of the VRF systems contributing to the energy savings. It should be noted that these savings are calculated using the Title 24 prototype House D under standard operating conditions. Actual performance of the VRF systems for real houses under real operating conditions will vary.

  4. Modeling for System Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Orwig, K. D.

    2012-05-01T23:59:59.000Z

    This presentation describes some the data requirements needed for grid integration modeling and provides real-world examples of such data and its format. Renewable energy integration studies evaluate the operational impacts of variable generation. Transmission planning studies investigate where new transmission is needed to transfer energy from generation sources to load centers. Both use time-synchronized wind and solar energy production and load as inputs. Both examine high renewable energy penetration scenarios in the future.

  5. Model Specification for Networked Outdoor Lighting Control Systems

    Broader source: Energy.gov [DOE]

    The DOE Municipal Solid-State Street Lighting Consortium's Model Specification for Networked Outdoor Lighting Control Systems is a tool designed to help cities, utilities, and other local agencies...

  6. Fuel Cell Power Model for CHHP System Economics and Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Tri-Generation System Case Study using the H2A Stationary Model Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley Biogas Opportunities Roadmap...

  7. System Identification and the Modeling of Sailing Yachts

    E-Print Network [OSTI]

    Legursky, Katrina

    2013-12-31T23:59:59.000Z

    This research represents an exploration of sailing yacht dynamics with full-scale sailing motion data, physics-based models, and system identification techniques. The goal is to provide a method of obtaining and validating suitable physics...

  8. Review and evaluation of national airspace system models

    E-Print Network [OSTI]

    Odoni, Amedeo R.

    1979-01-01T23:59:59.000Z

    Abstract from Technical Report Documentation Page: This report is intended to serve as a guide to the availability and capability of state-of-the-art analytical and simulation models of the National Airspace System (NAS). ...

  9. UNCORRECTED 2 Stochastic adaptive control model for traffic signal systems

    E-Print Network [OSTI]

    Detwiler, Russell

    UNCORRECTED PROOF 1 2 Stochastic adaptive control model for traffic signal systems 3 X.-H. Yu a,1 , W.W. Recker b,* 4 a Department of Electrical Engineering, California Polytechnic State University

  10. Advanced LD Engine Systems and Emissions Control Modeling and...

    Broader source: Energy.gov (indexed) [DOE]

    Light-Duty Engine Systems and Emissions Control Modeling and Analysis Zhiming Gao (PI) C. Stuart Daw (Co-PI, Presenter) Oak Ridge National Laboratory This presentation does not...

  11. Modeling of Porous Electrodes in Molten-Salt Systems

    E-Print Network [OSTI]

    Newman, John

    1986-01-01T23:59:59.000Z

    of Porous Electrodes in Molten-Salt Systems^ John Newmanon High-Temperature Molten Salt B a t - teries, Argonneby the modeling of molten-salt cells, including some

  12. Analysis of Attic Radiant Barrier Systems Using Mathematical Models

    E-Print Network [OSTI]

    Fairey, P.; Swami, M.

    1988-01-01T23:59:59.000Z

    During the past six years, the Florida Solar Energy Center (FSEC) has conducted extensive experimental research on radiant barrier systems (RBS). This paper presents recent research on the development of mathematical attic models. Two levels...

  13. Basic Integrative Models for Offshore Wind Turbine Systems

    E-Print Network [OSTI]

    Aljeeran, Fares

    2012-07-16T23:59:59.000Z

    This research study developed basic dynamic models that can be used to accurately predict the response behavior of a near-shore wind turbine structure with monopile, suction caisson, or gravity-based foundation systems. The marine soil conditions...

  14. Analysis of Attic Radiant Barrier Systems Using Mathematical Models

    E-Print Network [OSTI]

    Fairey, P.; Swami, M.

    1988-01-01T23:59:59.000Z

    During the past six years, the Florida Solar Energy Center (FSEC) has conducted extensive experimental research on radiant barrier systems (RBS). This paper presents recent research on the development of mathematical attic models. Two levels...

  15. Experimental Studies for DPF and SCR Model, Control System, and...

    Broader source: Energy.gov (indexed) [DOE]

    CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels John H. Johnson, P.I. Gordon G. Parker, Co-P.I. & Presenter Jeffrey D. Naber,...

  16. Experimental Studies for DPF and SCR Model, Control System, and...

    Broader source: Energy.gov (indexed) [DOE]

    DPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels John H. Johnson, P.I. Gordon G. Parker, Co-P.I. & Presenter Michigan...

  17. Experimental Studies for DPF and SCR Model, Control System, and...

    Broader source: Energy.gov (indexed) [DOE]

    CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels John H. Johnson, P.I. Gordon G. Parker, Co-P.I. & Presenter Michigan...

  18. The National Energy Modeling System: An overview 1998

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors world energy markets, resource availability and costs, behavior and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. 21 figs.

  19. Regional scale cropland carbon budgets: evaluating a geospatial agricultural modeling system using inventory data

    SciTech Connect (OSTI)

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; Sahajpal, Ritvik; West, Tristram O.; Thomson, Allison M.; Xu, Min; Zhao, Kaiguang; LeDuc, Stephen D.; Williams, Jimmy R.

    2015-01-01T23:59:59.000Z

    Accurate quantification and clear understanding of regional scale cropland carbon (C) cycling is critical for designing effective policies and management practices that can contribute toward stabilizing atmospheric CO2 concentrations. However, extrapolating site-scale observations to regional scales represents a major challenge confronting the agricultural modeling community. This study introduces a novel geospatial agricultural modeling system (GAMS) exploring the integration of the mechanistic Environmental Policy Integrated Climate model, spatially-resolved data, surveyed management data, and supercomputing functions for cropland C budgets estimates. This modeling system creates spatially-explicit modeling units at a spatial resolution consistent with remotely-sensed crop identification and assigns cropping systems to each of them by geo-referencing surveyed crop management information at the county or state level. A parallel computing algorithm was also developed to facilitate the computationally intensive model runs and output post-processing and visualization. We evaluated GAMS against National Agricultural Statistics Service (NASS) reported crop yields and inventory estimated county-scale cropland C budgets averaged over 20002008. We observed good overall agreement, with spatial correlation of 0.89, 0.90, 0.41, and 0.87, for crop yields, Net Primary Production (NPP), Soil Organic C (SOC) change, and Net Ecosystem Exchange (NEE), respectively. However, we also detected notable differences in the magnitude of NPP and NEE, as well as in the spatial pattern of SOC change. By performing crop-specific annual comparisons, we discuss possible explanations for the discrepancies between GAMS and the inventory method, such as data requirements, representation of agroecosystem processes, completeness and accuracy of crop management data, and accuracy of crop area representation. Based on these analyses, we further discuss strategies to improve GAMS by updating input data and by designing more efficient parallel computing capability to quantitatively assess errors associated with the simulation of C budget components. The modularized design of the GAMS makes it flexible to be updated and adapted for different agricultural models so long as they require similar input data, and to be linked with socio-economic models to understand the effectiveness and implications of diverse C management practices and policies.

  20. Simple model of photo acoustic system for greenhouse effect

    E-Print Network [OSTI]

    Fukuhara, Akiko; Ogawa, Naohisa

    2010-01-01T23:59:59.000Z

    The simple theoretical basis for photo acoustic (PA) system for studying infrared absorption properties of greenhouse gases is constructed. The amplitude of sound observed in PA depends on the modulation frequency of light pulse. Its dependence can be explained by our simple model. According to this model, sound signal has higher harmonics. The theory and experiment are compared in third and fifth harmonics by spectrum analysis. The theory has the analogy with electric circuits. This analogy helps students for understanding the PA system.

  1. Probability Primer 1 Running head: PROBABILITY PRIMER

    E-Print Network [OSTI]

    Yuille, Alan L.

    provides the opportunity to draw upon work in computer science, engineering, mathematics, and statisticsProbability Primer 1 Running head: PROBABILITY PRIMER A Primer on Probabilistic Inference Thomas L. Griffiths Department of Psychology University of California, Berkeley Alan Yuille Department of Statistics

  2. Hazard % free free espresso Over Run

    E-Print Network [OSTI]

    Dill, David L.

    Total Products Hazard Hazard % free free espresso Over Run name in/out Method exact head time 5 0 1 dmefastopt 5/3 8 8 0 1 Table 2. Comparison of HazardFree Logic Minimization with espressolevel hazardfree minimization prob lem for several reasons: the general problem has not pre viously been

  3. Run-Time Library Routines Reference

    E-Print Network [OSTI]

    California at San Diego, University of

    MDS Run-Time Library Routines Reference Manual February 1993 Software Version: MDS 5.2 VAX.S.A. The following are trademarks of Digitial Equipment Corporation: CDD DECnet VAX DATATRIEVE DECUS VAXcluster DEC MicroVAX VAX Information Architecture DEC/CMS MicroVMS VMS DEC/MMS Rdb/VMS VT IDL (Interactive Data

  4. Revised Run 10 Plan (Nov. 25, 2009)

    E-Print Network [OSTI]

    at energies below the RHIC transition energy, without the addition of new trigger detectors. The latter discussion of priorities for the start of a low-energy scan in Run 10. This discussion was prompted by two new facts revealed in the preceding weeks: (1) we received an FY10 RHIC budget from the Office

  5. Gravitational Correction to Running of Gauge Couplings

    E-Print Network [OSTI]

    Sean P. Robinson; Frank Wilczek

    2006-06-09T23:59:59.000Z

    We calculate the contribution of graviton exchange to the running of gauge couplings at lowest non-trivial order in perturbation theory. Including this contribution in a theory that features coupling constant unification does not upset this unification, but rather shifts the unification scale. When extrapolated formally, the gravitational correction renders all gauge couplings asymptotically free.

  6. The QCD Running Coupling and its Measurement

    E-Print Network [OSTI]

    Guido Altarelli

    2013-03-25T23:59:59.000Z

    In this lecture, after recalling the basic definitions and facts about the running coupling in QCD, I present a critical discussion of the methods for measuring $\\alpha_s$ and select those that appear to me as the most reliably precise

  7. Modeling particle loss in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2003-04-01T23:59:59.000Z

    Empirical equations were developed and applied to predict losses of 0.01-100 {micro}m airborne particles making a single pass through 120 different ventilation duct runs typical of those found in mid-sized office buildings. For all duct runs, losses were negligible for submicron particles and nearly complete for particles larger than 50 {micro}m. The 50th percentile cut-point diameters were 15 {micro}m in supply runs and 25 {micro}m in return runs. Losses in supply duct runs were higher than in return duct runs, mostly because internal insulation was present in portions of supply duct runs, but absent from return duct runs. Single-pass equations for particle loss in duct runs were combined with models for predicting ventilation system filtration efficiency and particle deposition to indoor surfaces to evaluate the fates of particles of indoor and outdoor origin in an archetypal mechanically ventilated building. Results suggest that duct losses are a minor influence for determining indoor concentrations for most particle sizes. Losses in ducts were of a comparable magnitude to indoor surface losses for most particle sizes. For outdoor air drawn into an unfiltered ventilation system, most particles smaller than 1 {micro}m are exhausted from the building. Large particles deposit within the building, mostly in supply ducts or on indoor surfaces. When filters are present, most particles are either filtered or exhausted. The fates of particles generated indoors follow similar trends as outdoor particles drawn into the building.

  8. Steam System Modeler | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Staffing Model5ThomasEnergyReceives Energy Assessment |Steam

  9. System Advisor Model (SAM) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shrenik IndustriesState ofSwitchpower JumpSystem

  10. Systems Advisor Model | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -BlueprintThis documentEnergy(SHINES)Full DocumentSystem

  11. Particle Systems for Adaptive, Isotropic Meshing of CAD Models

    E-Print Network [OSTI]

    Utah, University of

    Particle Systems for Adaptive, Isotropic Meshing of CAD Models Jonathan R. Bronson, Joshua A adaptive triangular surface and tetrahedral volume meshes from CAD models. Input shapes are treated. These particles reach a good distribution by minimizing an energy computed in 3D world space, with movements

  12. IMPROVEMENTS IN MODELLING DISSOLVED OXYGEN IN ACTIVATED SLUDGE SYSTEMS

    E-Print Network [OSTI]

    Wells, Scott A.

    1 IMPROVEMENTS IN MODELLING DISSOLVED OXYGEN IN ACTIVATED SLUDGE SYSTEMS Jacek Makinia*, Scott A in a full-scale activated sludge reactor. The Activated Sludge Model No. 1 was used to describe for dissolved oxygen. KEYWORDS Activated sludge; dispersion; dissolved oxygen dynamics; mass transfer

  13. Model-Driven Process Configuration of Enterprise Systems*

    E-Print Network [OSTI]

    van der Aalst, Wil

    have been funded by SAP Research and Queensland University of Technology with the project "ModellingModel-Driven Process Configuration of Enterprise Systems* Alexander Dreiling, Michael Rosemann Queensland University of Technology Wil van der Aalst Eindhoven University of Technology Wasim Sadiq SAP

  14. Exploiting Behavior Models for Availability Analysis of Interactive Systems

    E-Print Network [OSTI]

    Cengarle, Mara Victoria

    Exploiting Behavior Models for Availability Analysis of Interactive Systems Maximilian Junker Technische Universitat Munchen Abstract--We propose an approach for availability analysis that directly are reduced effort as no dedicated availability models need to be created as well as precise results due

  15. System Identification and Modelling of a High Performance Hydraulic Actuator

    E-Print Network [OSTI]

    Hayward, Vincent

    System Identification and Modelling of a High Performance Hydraulic Actuator Benoit Boulet, Laeeque with the experimental identification and modelling of the nonlinear dynamics ofa high performance hydraulic actuator. The actuator properties and performance are also discussed. 1 Introduction Hydraulic actuation used to be

  16. Heat transfer model of above and underground insulated piping systems

    SciTech Connect (OSTI)

    Kwon, K.C.

    1998-07-01T23:59:59.000Z

    A simplified heat transfer model of above and underground insulated piping systems was developed to perform iterative calculations for fluid temperatures along the entire pipe length. It is applicable to gas, liquid, fluid flow with no phase change. Spreadsheet computer programs of the model have been developed and used extensively to perform the above calculations for thermal resistance, heat loss and core fluid temperature.

  17. MODELS AND METRICS FOR ENERGY-EFFICIENT COMPUTER SYSTEMS

    E-Print Network [OSTI]

    Kozyrakis, Christos

    MODELS AND METRICS FOR ENERGY-EFFICIENT COMPUTER SYSTEMS A DISSERTATION SUBMITTED TO THE DEPARTMENT promising energy-efficient technolo- gies, and models to understand the effects of resource utilization decisions on power con- sumption. To facilitate energy-efficiency improvements, this dissertation presents

  18. Biological Development model for the Design of Robust Digital System

    E-Print Network [OSTI]

    Fernandez, Thomas

    Biological Development model for the Design of Robust Digital System Heng Liu Doctor of Philosophy and Keywords i Abstract This thesis presents a biologically-inspired developmental model for the design. The methods presented have been applied to produce a self-repairing two bit multiplier and an autonomous robot

  19. An Introduction to Semantic Modeling for Logistical Systems

    E-Print Network [OSTI]

    Brock, David

    Infrastructure A Method for Networking Physical Objects," MIT Smart World Conference. BROCK, D.L. 2003. "The. "Developing and Implementing a Production Planning DSS for CTI Using Structured Modeling." Interfaces 31 models may exist in different host systems and organizations. #12;A Visualization of M #12;Grid Computing

  20. Service-Oriented Modelling of Automotive Systems Laura Bocchi

    E-Print Network [OSTI]

    Bocchi, Laura

    Service-Oriented Modelling of Automotive Systems Laura Bocchi Department of Computer Science@di.fc.ul.pt ABSTRACT We discuss the suitability of service-oriented computing for the automotive domain. We present a formal high-level language in which complex automotive activities can be modelled in terms of core

  1. Adaptive Methods for Modelling Transport Processes in Fractured Subsurface Systems

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    ­ discrete Galerkin method applying finite differences for the discretization in time and the StreamlineAdaptive Methods for Modelling Transport Processes in Fractured Subsurface Systems 3rd­adaptive methods for modelling transport processes in fractured rock. As a simplification, ideal tracers

  2. Paper Number 20 Organizational model of a hospital system

    E-Print Network [OSTI]

    Bruneau, Michel

    Paper Number 20 Organizational model of a hospital system G.P. Cimellaro Department of Civil of a hospital network has been estimated using an organizational metamodel that is able to incorporate the influence of facility damage of structural and no-structural components on the organizational system

  3. Comparison of Building Energy Modeling Programs: HVAC Systems

    E-Print Network [OSTI]

    LBNL-6432E Comparison of Building Energy Modeling Programs: HVAC Systems Xin Zhou1 , Tianzhen Hong2 programs (BEMPs) for HVAC calculations: EnergyPlus, DeST, and DOE-2.1E. This is a joint effort between purposes, BEMPs can be divided into load modules and HVAC system modules. This technical report

  4. Dynamic wind turbine models in power system simulation tool

    E-Print Network [OSTI]

    Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D. Hansen, Florin Iov Iov, Poul Sørensen, Nicolaos Cutululis, Clemens Jauch, Frede Blaabjerg Title: Dynamic wind turbine system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second

  5. UCSF Chimera, MODELLER, and IMP: An integrated modeling system Zheng Yang a

    E-Print Network [OSTI]

    Sali, Andrej

    UCSF Chimera, MODELLER, and IMP: An integrated modeling system Zheng Yang a , Keren Lasker b we present the integration of several modeling tools into UCSF Chimera. These include com- parative probabilities and local interactions by Chimera. ? 2011 Published by Elsevier Inc. 1. Introduction Proteins

  6. Model documentation Renewable Fuels Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This report documents the objectives, analaytical approach and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1996 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described.

  7. Decisions, Models, and Monitoring A Lifecycle Model for the Evolution of Service-Based Systems

    E-Print Network [OSTI]

    Dustdar, Schahram

    . In this paper, we present a novel approach to support a continuous development lifecycle of SBSs. Our approach. During the course of the development phases, software architects and developers use different modelsDecisions, Models, and Monitoring A Lifecycle Model for the Evolution of Service-Based Systems

  8. EMTP modeling of CIGRE benchmark based HVDC transmission system operating with weak AC systems

    SciTech Connect (OSTI)

    Sood, V.K. [Hydro-Quebec, Varennes, Quebec (Canada); Khatri, V.; Jin, H. [Concordia Univ., Montreal, Quebec (Canada). Dept. of Electrical and Computer Engineering

    1995-12-31T23:59:59.000Z

    An EMTP based study of a CIGRE benchmark based HVDC system operating with weak ac systems is carried out. The modeled system provides a starting point for (a) educators teaching HVDC transmission courses and (b) for utility planners to develop their own low-cost dedicated digital simulators for training purposes. In this paper, modeling details of the ac-dc system, dc converters and control are presented. To validate the control schemes presented, the HVDC system is tested under ac-dc fault conditions. Results obtained from an EMTP-based study under these fault conditions are also presented in this paper.

  9. Delay Induced Oscillations in a Fundamental Power System Model

    E-Print Network [OSTI]

    Rajesh G. Kavasseri

    2006-04-02T23:59:59.000Z

    In this paper, we study the dynamics and stability of a fundamental power system model when a time delay is imposed on the excitation of the generator. It is observed that sustained oscillations can arise in an otherwise stable power system through a delay induced Andronov-Hopf bifurcation. Numerical simulations are conducted to explore the dynamics of the time delayed system after the bifurcation which indicate period doublings culminating in a strange attractor.

  10. Cyber-Physical System Requirements -A Model Driven Approach Cyber-physical systems (CPS) networked

    E-Print Network [OSTI]

    Minnesota, University of

    systems such as infusion pumps. Complete and consistent requirements are central to analysis. A generic patient controlled analgesia (GPCA) infusion pump system was used as a case example to provide: Generic Patient Controlled Analgesia Infusion Pump System. Figure: Infusion Pump Plant Model. Figure

  11. The ATLAS Tau Trigger Performance during LHC Run 1 and Prospects for Run 2

    E-Print Network [OSTI]

    Yuki Sakurai

    2014-09-09T23:59:59.000Z

    Triggering on hadronic tau decays is essential for a wide variety of analyses of interesting physics processes at ATLAS. The ATLAS tau trigger combines information from the tracking detectors and calorimeters to identify the signature of hadronically decaying tau leptons. In Run 2 operation expected to start in 2015, the trigger strategies will become more important than ever before. In this paper, the tau trigger performance during Run 1 is summarized and also an overview of the developments of Run 2 tau trigger strategy is presented.

  12. Modeling Offgas Systems for the Hanford Waste Treatment Plant

    SciTech Connect (OSTI)

    Smith, Frank G., III

    2005-09-02T23:59:59.000Z

    To augment steady-state design calculations, dynamic models of three offgas systems that will be used in the Waste Treatment Plant now under construction at the Hanford Site were developed using Aspen Custom Modeler{trademark}. The offgas systems modeled were those for the High Level Waste (HLW) melters, Low Activity Waste (LAW) melters and HLW Pulse Jet Ventilation (PJV) system. The models do not include offgas chemistry but only consider the two major species in the offgas stream which are air and water vapor. This is sufficient to perform material and energy balance calculations that accurately show the dynamic behavior of gas pressure, temperature, humidity and flow throughout the systems. The models are structured to perform pressure drop calculations across the various unit operations using a combination of standard engineering calculations and empirical data based correlations for specific pieces of equipment. The models include process controllers, gas ducting, control valves, exhaust fans and the offgas treatment equipment. The models were successfully used to analyze a large number of operating scenarios including both normal and off-normal conditions.

  13. White paper on VU for Modeling Nuclear Energy Systems

    SciTech Connect (OSTI)

    Klein, R; Turinsky, P

    2009-05-07T23:59:59.000Z

    The purpose of this whitepaper is to provide a framework for understanding the role that Verification and Validation (V&V), Uncertainty Quantification (UQ) and Risk Quantification, collectively referred to as VU, is expected to play in modeling nuclear energy systems. We first provide background for the modeling of nuclear energy based systems. We then provide a brief discussion that emphasizes the critical elements of V&V as applied to nuclear energy systems but is general enough to cover a broad spectrum of scientific and engineering disciplines that include but are not limited to astrophysics, chemistry, physics, geology, hydrology, chemical engineering, mechanical engineering, civil engineering, electrical engineering, nu nuclear engineering material clear science science, etc. Finally, we discuss the critical issues and challenges that must be faced in the development of a viable and sustainable VU program in support of modeling nuclear energy systems.

  14. LHCb : LHCbVELO: Performance and Radiation Damage in LHC Run I and Preparationfor Run II

    E-Print Network [OSTI]

    Szumlak, Tomasz

    2015-01-01T23:59:59.000Z

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC) at CERN. Heavy hadrons are identified through their flight distance in the Vertex Locator (VELO). The VELO comprises 42 modules made of two n+-on-n 300 um thick half-disc silicon sensors with R-measuring and Phi-measuring micro-strips. In order to allow retracting the detector, the VELO is installed as two movable halves containing 21 modules each. The detectors are operated in a secondary vacuum and are cooled by a bi-phase CO2 cooling system. During data taking in LHC Run 1 the LHCb VELO has operated with an extremely high efficiency and excellent performance. The track finding efficiency is typically greater than 98%. An impact parameter resolution of less than 35 um is achieved for particles with transverse momentum greater than 1 GeV/c. An overview of all important performance parameters will be given. The VELO sensors have received a large and non-uniform radiation dose of up to 1.2 x 10...

  15. Model documentation renewable fuels module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1997 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs. and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves three purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Finally, such documentation facilitates continuity in EIA model development by providing information sufficient to perform model enhancements and data updates as part of EIA`s ongoing mission to provide analytical and forecasting information systems.

  16. A new tool for accelerator system modeling and analysis

    SciTech Connect (OSTI)

    Gillespie, G.H.; Hill, B.W. [G.H. Gillespie Associates, Inc., Del Mar, CA (United States); Jameson, R.A. [Los Alamos National Lab., NM (United States)

    1994-09-01T23:59:59.000Z

    A novel computer code is being developed to generate system level designs of radiofrequency ion accelerators. The goal of the Accelerator System Model (ASM) code is to create a modeling and analysis tool that is easy to use, automates many of the initial design calculations, supports trade studies used in assessing alternate designs and yet is flexible enough to incorporate new technology concepts as they emerge. Hardware engineering parameters and beam dynamics are modeled at comparable levels of fidelity. Existing scaling models of accelerator subsystems were sued to produce a prototype of ASM (version 1.0) working within the Shell for Particle Accelerator Related Codes (SPARC) graphical user interface. A small user group has been testing and evaluating the prototype for about a year. Several enhancements and improvements are now being developed. The current version (1.1) of ASM is briefly described and an example of the modeling and analysis capabilities is illustrated.

  17. Model Driven Mutation Applied to Adaptative Systems Testing

    E-Print Network [OSTI]

    Bartel, Alexandre; Munoz, Freddy; Klein, Jacques; Mouelhi, Tejeddine; Traon, Yves Le

    2012-01-01T23:59:59.000Z

    Dynamically Adaptive Systems modify their behav- ior and structure in response to changes in their surrounding environment and according to an adaptation logic. Critical sys- tems increasingly incorporate dynamic adaptation capabilities; examples include disaster relief and space exploration systems. In this paper, we focus on mutation testing of the adaptation logic. We propose a fault model for adaptation logics that classifies faults into environmental completeness and adaptation correct- ness. Since there are several adaptation logic languages relying on the same underlying concepts, the fault model is expressed independently from specific adaptation languages. Taking benefit from model-driven engineering technology, we express these common concepts in a metamodel and define the operational semantics of mutation operators at this level. Mutation is applied on model elements and model transformations are used to propagate these changes to a given adaptation policy in the chosen formalism. Preliminary resul...

  18. Natural gas transmission and distribution model of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

  19. Pajarito Plateau Groundwater Flow and Transport Modeling Process-Level and Systems Models of Groundwater Flow and

    E-Print Network [OSTI]

    Lu, Zhiming

    Pajarito Plateau Groundwater Flow and Transport Modeling 1 Process-Level and Systems Models of Groundwater Flow and Transport Beneath the Pajarito Plateau: Migration of High Explosives from Technical Area Groundwater Modeling Project Systems Model Vadose Zone Model Regional Aquifer Model #12;Pajarito Plateau

  20. PERFORMANCE MODELING OF DAYLIGHT INTEGRATED PHOTOSENSOR- CONTROLLED LIGHTING SYSTEMS

    E-Print Network [OSTI]

    S. Jain; R. R. Creasey; J. Himmelspach; K. P. White; M. Fu; Richard G. Mistrick

    Some building energy codes now require the incorporation of daylight into buildings and automatic photosensor-controlled switching or dimming of the electric lighting system in areas that receive daylight. This paper describes enhancements to the open-source Daysim daylight analysis software that permit users to model a photosensor control system as it will perform in a real space, considering the directional sensitivity of the photosensor, its mounting position, the space and daylight aperture geometry, window shading configuration; the electric lighting equipment and control zones; exterior obstructions; and site weather conditions. System output includes assessment of the daylight distribution in a space throughout the year, the photosensors ability to properly track the daylight and modify electric lighting system output, and the energy savings provided by the modeled control system. The application of daylight coefficients permits annual simulations to be conducted efficiently using hourly or finer weather data time increments. 1

  1. Results from modeling and simulation of chemical downstream etch systems

    SciTech Connect (OSTI)

    Meeks, E.; Vosen, S.R.; Shon, J.W.; Larson, R.S.; Fox, C.A.; Buchenauer

    1996-05-01T23:59:59.000Z

    This report summarizes modeling work performed at Sandia in support of Chemical Downstream Etch (CDE) benchmark and tool development programs under a Cooperative Research and Development Agreement (CRADA) with SEMATECH. The Chemical Downstream Etch (CDE) Modeling Project supports SEMATECH Joint Development Projects (JDPs) with Matrix Integrated Systems, Applied Materials, and Astex Corporation in the development of new CDE reactors for wafer cleaning and stripping processes. These dry-etch reactors replace wet-etch steps in microelectronics fabrication, enabling compatibility with other process steps and reducing the use of hazardous chemicals. Models were developed at Sandia to simulate the gas flow, chemistry and transport in CDE reactors. These models address the essential components of the CDE system: a microwave source, a transport tube, a showerhead/gas inlet, and a downstream etch chamber. The models have been used in tandem to determine the evolution of reactive species throughout the system, and to make recommendations for process and tool optimization. A significant part of this task has been in the assembly of a reasonable set of chemical rate constants and species data necessary for successful use of the models. Often the kinetic parameters were uncertain or unknown. For this reason, a significant effort was placed on model validation to obtain industry confidence in the model predictions. Data for model validation were obtained from the Sandia Molecular Beam Mass Spectrometry (MBMS) experiments, from the literature, from the CDE Benchmark Project (also part of the Sandia/SEMATECH CRADA), and from the JDP partners. The validated models were used to evaluate process behavior as a function of microwave-source operating parameters, transport-tube geometry, system pressure, and downstream chamber geometry. In addition, quantitative correlations were developed between CDE tool performance and operation set points.

  2. Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    2013), The Community Earth System Model: A framework forcycle in the CMIP5 Earth System Models, J. Clim. , 26(18),feedbacks in CMIP5 Earth System Models, J. Clim. , 26(15),

  3. Changes in soil organic carbon storage predicted by Earth system models during the 21st century

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    carbon changes in Earth system models K. E. O. Todd-Brown etcarbon changes in Earth system models K. E. O. Todd-Brown etcarbon changes in Earth system models K. E. O. Todd-Brown et

  4. Inequality and Economic Growth: Bridging the Short-run and the Long-run

    E-Print Network [OSTI]

    Grijalva, Diego F.

    2011-01-01T23:59:59.000Z

    40, 146. Benabou, Roland, Inequality and Growth, in BenAkira Nishiyama, Income Inequality and Growth - Does theU Relationship between Inequality and Long-run Growth,

  5. Dry Run, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey: EnergyDrewDrillingProject (2) JumpRun,

  6. The Los Alamos coupled climate model

    SciTech Connect (OSTI)

    Jones, P.W.; Malone, R.C.; Lai, C.A.

    1998-12-31T23:59:59.000Z

    To gain a full understanding of the Earth`s climate system, it is necessary to understand physical processes in the ocean, atmosphere, land and sea ice. In addition, interactions between components are very important and models which couple all of the components into a single coupled climate model are required. A climate model which couples ocean, sea ice, atmosphere and land components is described. The component models are run as autonomous processes coupled to a flux coupler through a flexible communications library. Performance considerations of the model are examined, particularly for running the model on distributed-shared-memory machine architectures.

  7. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  8. Best Practices for Running a Hyperfunctional Psychology

    E-Print Network [OSTI]

    Siegle, Greg J.

    Best Practices for Running a Hyperfunctional Psychology Laboratory Greg J. Siegle, Ph.D. University of Pittsburgh School of Medicine Presented work supported by MH082998 These slides available at http://www.pitt.edu/~gsiegle/SiegleLaboratoryBestPracticesColloquium.pdf #12;Why bother? · You and others can trust your data ­ It's easy to know when you step into a best-practices

  9. Jet physics in Run 2 at CDF

    SciTech Connect (OSTI)

    Field, R.; /Florida U.

    2005-01-01T23:59:59.000Z

    New CDF Run 2 results on the inclusive jet cross section (K{sub T} algorithm) and the b-jet cross section (MidPoint algorithm) are presented and compared with theory. We also study the ''underlying event'' by using the direction of the leading jet to isolate regions of {eta}-{phi} space that are very sensitive to the ''beam-beam'' remnants and to multiple parton interactions.

  10. Information model for on-site inspection system

    SciTech Connect (OSTI)

    Bray, O.H.; Deland, S.

    1997-01-01T23:59:59.000Z

    This report describes the information model that was jointly developed as part of two FY93 LDRDs: (1) Information Integration for Data Fusion, and (2) Interactive On-Site Inspection System: An Information System to Support Arms Control Inspections. This report describes the purpose and scope of the two LDRD projects and reviews the prototype development approach, including the use of a GIS. Section 2 describes the information modeling methodology. Section 3 provides a conceptual data dictionary for the OSIS (On-Site Information System) model, which can be used in conjunction with the detailed information model provided in the Appendix. Section 4 discussions the lessons learned from the modeling and the prototype. Section 5 identifies the next steps--two alternate paths for future development. The long-term purpose of the On-Site Inspection LDRD was to show the benefits of an information system to support a wide range of on-site inspection activities for both offensive and defensive inspections. The database structure and the information system would support inspection activities under nuclear, chemical, biological, and conventional arms control treaties. This would allow a common database to be shared for all types of inspections, providing much greater cross-treaty synergy.

  11. Modeling the Performance and Energy of Storage Arrays

    E-Print Network [OSTI]

    Liu, Ling

    characteristics of the system for that workload. The key abstraction used in our analytical model is the run and power predicted by the model under the migration and layout policies of PARAID accurately match the results of a detailed simulation of the system. The analytic model allows us to identify key parameters

  12. Extending the Capabilities of Component Models for Embedded Systems

    E-Print Network [OSTI]

    Kuz, Ihor

    on slower processors, can fit into reduced memory, and can run efficiently in order to conserve energy features and also embeds services for developing extra features in a monolithic design. This is similar

  13. An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    system in a Gas-cooled Fast Reactor (GFR) of literature [3]. Keywords: Functional failure probability direction; ii) employing Artificial Neural Network (ANN) regression models as fast-running surrogates, Genetic Algorithm, long-running code, computational cost. 1 Introduction Modern nuclear reactor concepts

  14. Building Scientific Workflows for Earth System Modelling with Windows Workflow Foundation

    E-Print Network [OSTI]

    Building Scientific Workflows for Earth System Modelling with Windows Workflow Foundation Matthew J developed a framework for the composition, execution and management of integrated Earth system models

  15. Graduate Opportunities in Earth Systems Modeling and Climate Impacts on Hydrology and Water Resources

    E-Print Network [OSTI]

    Graduate Opportunities in Earth Systems Modeling and Climate Impacts on Hydrology and Water research assistantships available in the general area of earth systems modeling and climate impacts

  16. Multiobjective tuning of Grid-enabled Earth System Models using a Non-dominated Sorting Genetic

    E-Print Network [OSTI]

    A. R. Price; I. I. Voutchkov; G. E. Pound; N. R. Edwards; T. M. Lenton; S. J. Cox; The Genie Team

    -dominated sorting genetic algorithm (NSGA-II) to the GENIE-1 Earth System Model (ESM). Twelve model parameters are

  17. Development of a system model for advanced small modular reactors.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01T23:59:59.000Z

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  18. MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation

    E-Print Network [OSTI]

    Sokolov, Andrei P.

    The MIT Integrated Global System Model (IGSM) is designed for analyzing the global environmental changes that may result from anthropogenic causes, quantifying the uncertainties associated with the projected changes, and ...

  19. Reliability modeling and evaluation of HVDC power transmission systems

    SciTech Connect (OSTI)

    Dialynas, E.N.; Koskolos, N.C. (National Technical Univ., Athens (Greece). Dept. of Electrical and Computer Engineering)

    1994-04-01T23:59:59.000Z

    The objective of this paper is to present an improved computational method for evaluating the reliability indices of HVdc transmission systems. The developed models and computational techniques are described. These can be used to simulate the operational practices and characteristics of a system under study efficiently and realistically. This method is based on the failure modes and effects analysis and uses the event tree method and the minimal cut set approach to represent the system's operational behavior and deduce the appropriate system's failure modes. A set of five reliability indices is evaluated for each output node being analyzed together with the probability and frequency of encountering particular regions of system performance levels. The analysis of an assumed HVdc bipolar transmission system is also included.

  20. 888 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 2, MAY 2005 Model Reduction in Power Systems Using

    E-Print Network [OSTI]

    888 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 2, MAY 2005 Model Reduction in Power Systems Abstract--This paper describes the use of Krylov subspace methods in the model reduction of power systems. Additionally, a connection between the Krylov subspace model reduction and coherency in power systems

  1. System Level Modelling of Reconfigurable FFT Architecture for System-on-Chip Ali Ahmadinia, Balal Ahmad, Tughrul Arslan

    E-Print Network [OSTI]

    Arslan, Tughrul

    's productivity. This paper aims to produce new high level IP models in SystemC for functional verification of IP and modelled in SystemC. Power, area and performance figures are presented as well. 1 Introduction In SoSystem Level Modelling of Reconfigurable FFT Architecture for System-on-Chip Design Ali Ahmadinia

  2. Running loss emissions from in-use vehicles (CRC project number E-35-2). Final report

    SciTech Connect (OSTI)

    Haskew, H.M.; Eng, K.D.; Liberty, T.F.; Reuter, R.M.

    1999-02-01T23:59:59.000Z

    In Mesa, Arizona, a total of 150 vehicles were recruited at a local I/M lane and tested for running loss emissions at the Automotive Testing Labs (ATL). Running loss emissions were measured in a Running Loss SHED (Sealed Housing for Evaporative Determination) for a 25 minute, 7.5 mile trip on a hot summer day (95 deg F). Vehicles from model years 1971 through 1991 were tested. The program identified 30 vehicles as candidates for repair and retest. The result showed a very high (ca. 90%) effectiveness for the repairs. Repeat tests were run on 10 vehicles to provide an estimate for test-to-test variability.

  3. Macro System Model (MSM) User Guide, Version 1.3

    SciTech Connect (OSTI)

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.

    2011-09-01T23:59:59.000Z

    This user guide describes the macro system model (MSM). The MSM has been designed to allow users to analyze the financial, environmental, transitional, geographical, and R&D issues associated with the transition to a hydrogen economy. Basic end users can use the MSM to answer cross-cutting questions that were previously difficult to answer in a consistent and timely manner due to various assumptions and methodologies among different models.

  4. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    SciTech Connect (OSTI)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01T23:59:59.000Z

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  5. ISSUES ASSOCIATED WITH PROBABILISTIC FAILURE MODELING OF DIGITAL SYSTEMS

    SciTech Connect (OSTI)

    CHU,T.L.; MARTINEZ-GURIDI,G.; LEHNER,J.; OVERLAND,D.

    2004-09-19T23:59:59.000Z

    The current U.S. Nuclear Regulatory Commission (NRC) licensing process of instrumentation and control (I&C) systems is based on deterministic requirements, e.g., single failure criteria, and defense in depth and diversity. Probabilistic considerations can be used as supplements to the deterministic process. The National Research Council has recommended development of methods for estimating failure probabilities of digital systems, including commercial off-the-shelf (COTS) equipment, for use in probabilistic risk assessment (PRA). NRC staff has developed informal qualitative and quantitative requirements for PRA modeling of digital systems. Brookhaven National Laboratory (BNL) has performed a review of the-state-of-the-art of the methods and tools that can potentially be used to model digital systems. The objectives of this paper are to summarize the review, discuss the issues associated with probabilistic modeling of digital systems, and identify potential areas of research that would enhance the state of the art toward a satisfactory modeling method that could be integrated with a typical probabilistic risk assessment.

  6. Further Developments on the Geothermal System Scoping Model: Preprint

    SciTech Connect (OSTI)

    Antkowiak, M.; Sargent, R.; Geiger, J. W.

    2010-07-01T23:59:59.000Z

    This paper discusses further developments and refinements for the uses of the Geothermal System Scoping Model in an effort to provide a means for performing a variety of trade-off analyses of surface and subsurface parameters, sensitivity analyses, and other systems engineering studies in order to better inform R&D direction and investment for the development of geothermal power into a major contributor to the U.S. energy supply.

  7. Coupling from the Past in Hybrid Models for File Sharing Peer to Peer Systems

    E-Print Network [OSTI]

    Boyer, Edmond

    Coupling from the Past in Hybrid Models for File Sharing Peer to Peer Systems Bruno Gaujal1 systems can be modeled by hybrid systems with a continuous part corresponding to a fluid limit of files of sto- chastic hybrid systems. 1 Introduction Hybrid systems are very useful to model discrete systems

  8. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    and benchmarks in Earth system models sitivity of the Amazonand benchmarks in Earth system models Thornton, P. E. ,simulations from CMIP5 Earth system models and comparison

  9. Direct-Steam Linear Fresnel Performance Model for NREL's System Advisor Model

    SciTech Connect (OSTI)

    Wagner, M. J.; Zhu, G.

    2012-09-01T23:59:59.000Z

    This paper presents the technical formulation and demonstrated model performance results of a new direct-steam-generation (DSG) model in NREL's System Advisor Model (SAM). The model predicts the annual electricity production of a wide range of system configurations within the DSG Linear Fresnel technology by modeling hourly performance of the plant in detail. The quasi-steady-state formulation allows users to investigate energy and mass flows, operating temperatures, and pressure drops for geometries and solar field configurations of interest. The model includes tools for heat loss calculation using either empirical polynomial heat loss curves as a function of steam temperature, ambient temperature, and wind velocity, or a detailed evacuated tube receiver heat loss model. Thermal losses are evaluated using a computationally efficient nodal approach, where the solar field and headers are discretized into multiple nodes where heat losses, thermal inertia, steam conditions (including pressure, temperature, enthalpy, etc.) are individually evaluated during each time step of the simulation. This paper discusses the mathematical formulation for the solar field model and describes how the solar field is integrated with the other subsystem models, including the power cycle and optional auxiliary fossil system. Model results are also presented to demonstrate plant behavior in the various operating modes.

  10. Updated values of running quark and lepton masses at GUT scale in SM, 2HDM and MSSM

    E-Print Network [OSTI]

    Kalpana Bora

    2012-06-26T23:59:59.000Z

    Updated values of running quark and lepton masses at GUT (Grand unified theories) scales are important for fermion mass model building, and to calculate neutrino masses, in GUTs . We present their values at GUT scales, in SM, MSSM and 2HDM theories, using the latest values of running quark and lepton masses.

  11. SARA (System ARchitects Apprentice): Modeling, analysis, and simulation support for design of concurrent systems

    SciTech Connect (OSTI)

    Estrin, G.; Fenchel, R.S.; Razouk, R.R.; Vernon, M.K.

    1986-02-01T23:59:59.000Z

    An environment to support designers in the modeling, analysis and simulation of concurrent systems is described. It is shown how a fully nested structure model supports multilevel design and focuses attention on the interfaces between the modules which serve to encapsulate behavior. Using simple examples the paper indicates how a formal graph model can be used to model behavior in three domains: control flow, data flow, and interpretation. The effectiveness of the explicity environment model in SARA is discussed and the capability to analyze correctness and evaluate performance of a system model are demonstrated. A description of the integral help designed into SARA shows how the designer can be offered consistent use of any new tool introduced to support the design process.

  12. Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint

    SciTech Connect (OSTI)

    Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

    2012-06-01T23:59:59.000Z

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  13. How to obtain the National Energy Modeling System (NEMS)

    Reports and Publications (EIA)

    2013-01-01T23:59:59.000Z

    The National Energy Modeling System (NEMS) NEMS is used by the modelers at the U. S. Energy Information Administration (EIA) who understand its structure and programming. NEMS has only been used by a few organizations outside of the EIA, because most people that requested NEMS found out that it was too difficult or rigid to use. NEMS is not typically used for state-level analysis and is poorly suited for application to other countries. However, many do obtain the model simply to use the data in its input files or to examine the source code.

  14. Di-J/psi Studies, Level 3 Tracking and the D0 Run IIb Upgrade

    SciTech Connect (OSTI)

    Vint, Philip John; /Imperial Coll., London

    2009-10-01T23:59:59.000Z

    The D0 detector underwent an upgrade to its silicon vertex detector and triggering systems during the transition from Run IIa to Run IIb to maximize its ability to fully exploit Run II at the Fermilab Tevatron. This thesis describes improvements made to the tracking and vertexing algorithms used by the high level trigger in both Run IIa and Run IIb, as well as a search for resonant di-J/{psi} states using both Run IIa and Run IIb data. Improvements made to the tracking and vertexing algorithms during Run IIa included the optimization of the existing tracking software to reduce overall processing time and the certification and testing of a new software release. Upgrades made to the high level trigger for Run IIb included the development of a new tracking algorithm and the inclusion of the new Layer 0 silicon detector into the existing software. The integration of Layer 0 into the high level trigger has led to an improvement in the overall impact parameter resolution for tracks of {approx}50%. The development of a new parameterization method for finding the error associated to the impact parameter of tracks returned by the high level tracking algorithm, in association with the inclusion of Layer 0, has led to improvements in vertex resolution of {approx}4.5 {micro}m. A previous search in the di-J/{psi} channel revealed a unpredicted resonance at {approx}13.7 GeV/c{sup 2}. A confirmation analysis is presented using 2.8 fb{sup -1} of data and two different approaches to cuts. No significant excess is seen in the di-J/{psi} mass spectrum.

  15. Pomeron loop and running coupling effects in high energy QCD evolution

    E-Print Network [OSTI]

    A. Dumitru; E. Iancu; L. Portugal; G. Soyez; D. N. Triantafyllopoulos

    2007-06-18T23:59:59.000Z

    Within the framework of a (1+1)-dimensional model which mimics evolution and scattering in QCD at high energy, we study the influence of the running of the coupling on the high-energy dynamics with Pomeron loops. We find that the particle number fluctuations are strongly suppressed by the running of the coupling, by at least one order of magnitude as compared to the case of a fixed coupling, for all the rapidities that we have investigated, up to Y=200. This reflects the slowing down of the evolution by running coupling effects, in particular, the large rapidity evolution which is required for the formation of the saturation front via diffusion. We conclude that, for all energies of interest, processes like deep inelastic scattering or forward particle production can be reliably studied within the framework of a mean-field approximation (like the Balitsky-Kovchegov equation) which includes running coupling effects.

  16. A near-Zero Run-time Energy Overhead within a Computation Outsourcing Framework for Energy Management in Mobile Devices

    E-Print Network [OSTI]

    Helal, Abdelsalam

    with a run-time monitoring system that consumes an extremely low amount of energy (near-Zero). This near Monitor, Battery Monitor. 1. Introduction Energy/Power management in mobile devices has been and continues incurring a near-Zero run-time overhead. Key Words- Energy Management, Outsourcing, Smart Spaces, Energy

  17. Modeling On-Site Utility Systems Using "APLUS"

    E-Print Network [OSTI]

    Ranade, S. M.; Jones, D. H.; Shrec, S. C.

    MODELING ON-SITE UTILITY SYSTEMS USING "APLUS" S. M. RANADE D. H. JONES S. C. SHREC Res. & Tech.Coord. Consultant Engineer ConsultantEngineer ICI-TENSA Services, Houston, Texas ABSTRACT Most energy saving schemes on industrial sites lead... to reductions in the steam and/or power demands on an on-site utility system. Accurate knowledge of the marginal and incremental costs of the available levels of steam and shaft power from such systems is, therefore, essential for the correct economic...

  18. A management information system model for convenience stores

    E-Print Network [OSTI]

    Moede, Eric Arne

    1978-01-01T23:59:59.000Z

    of infomna- tion that convenience store managers can use to accomplisll coimoany objecti v s . This model will serv as a guide with which convenience store companies can set up thei r own management information systems . ~si. Obj eii es 1) Identify...', and 6) the organizational impact of a manage- ment information system. E~i i 1 R h i ll g I I 0 ~tip. 5 -. +s The majority of research on management information systems has been theoretically oriented. Little empirical research has been achieved...

  19. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  20. The gradient flow running coupling scheme

    E-Print Network [OSTI]

    Zoltan Fodor; Kieran Holland; Julius Kuti; Daniel Nogradi; Chik Him Wong

    2012-11-14T23:59:59.000Z

    The Yang-Mills gradient flow in finite volume is used to define a running coupling scheme. As our main result the discrete beta-function, or step scaling function, is calculated for scale change s=3/2 at several lattice spacings for SU(3) gauge theory coupled to N_f = 4 fundamental massless fermions. The continuum extrapolation is performed and agreement is found with the continuum perturbative results for small renormalized coupling. The case of SU(2) gauge group is briefly commented on.