Powered by Deep Web Technologies
Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mesoscale Modeling Spring Semester 2014  

E-Print Network [OSTI]

is to present the development of the basic equations used in mesoscale models, as well as the various methods Integrity: All students are subject to the policies regarding academic integrity found in Section 1://www.conflictresolution.colostate.edu/conduct-code). Other information on academic integrity can be found on the Learning@CSU website (http://learning.colostate.edu/integrity

2

Rotational and divergent kinetic energy in the mesoscale model ALADIN  

E-Print Network [OSTI]

energy, divergent energy, ALADIN, limited-area modelling 1. Introduction Horizontal divergenceRotational and divergent kinetic energy in the mesoscale model ALADIN By V. BLAZ ICA1 *, N. Z AGAR1 received 7 June 2012; in final form 7 March 2013) ABSTRACT Kinetic energy spectra from the mesoscale

Zagar, Nedjeljka

3

Wind resource assessment with a mesoscale non-hydrostatic model  

E-Print Network [OSTI]

Wind resource assessment with a mesoscale non- hydrostatic model Vincent Guénard, Center for Energy is developed for assessing the wind resource and its uncertainty. The work focuses on an existing wind farm mast measurements. The wind speed and turbulence fields are discussed. It is shown that the k

Boyer, Edmond

4

MESOSCALE MODELLING OF WIND ENERGY OVER NON-HOMOGENEOUS TERRAIN  

E-Print Network [OSTI]

MESOSCALE MODELLING OF WIND ENERGY OVER NON-HOMOGENEOUS TERRAIN (ReviewArticle) Y. MAHRER.1. OBSERVATIONALAPPROACHES Evaluations of wind energy based on wind observations (usually surface winds) at well, the resolution of the wind energy pattern throughout an extended area by this methodology requires a large number

Pielke, Roger A.

5

WIND ATLAS FOR EGYPT: MEASUREMENTS, MICRO-AND MESOSCALE MODELLING  

E-Print Network [OSTI]

sets for evaluating the potential wind power output from large electricity-producing wind turbine and accurate wind atlas data sets for evaluating the potential wind power output from large electricityWIND ATLAS FOR EGYPT: MEASUREMENTS, MICRO- AND MESOSCALE MODELLING Niels G. Mortensen1 , Jens

6

Mesoscale Modeling of LX-17 Under Isentropic Compression  

SciTech Connect (OSTI)

Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weighted specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.

Springer, H K; Willey, T M; Friedman, G; Fried, L E; Vandersall, K S; Baer, M R

2010-03-06T23:59:59.000Z

7

MESOSCALE AVERAGING OF NUCLEATION AND GROWTH MODELS  

E-Print Network [OSTI]

(cf. e.g. [49]), semiconductor crystal growth (cf. [37]), biomineralization (cf. e.g. [48]), DNA (cf. e.g. [2, 4, 10, 26, 28, 32]). The aim of this paper is to bridge between these two type of models

Burger, Martin

8

Meso-Scale Model for Simulations of Concrete Subjected to Cryogenic Temperatures  

E-Print Network [OSTI]

software ABAQUS. In this model, concrete is considered as a 3- phase composite material in a meso-scale structure: mortar matrix, aggregate, and interfacial transmission zone (ITZ). The Concrete Damage Plasticity model in ABAQUS is used to represent...

Masad, Noor Ahmad

2013-07-17T23:59:59.000Z

9

STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS  

SciTech Connect (OSTI)

The research under this project focused on a theoretical and computational modeling of dislocation dynamics of mesoscale deformation of metal single crystals. Specifically, the work aimed to implement a continuum statistical theory of dislocations to understand strain hardening and cell structure formation under monotonic loading. These aspects of crystal deformation are manifestations of the evolution of the underlying dislocation system under mechanical loading. The project had three research tasks: 1) Investigating the statistical characteristics of dislocation systems in deformed crystals. 2) Formulating kinetic equations of dislocations and coupling these kinetics equations and crystal mechanics. 3) Computational solution of coupled crystal mechanics and dislocation kinetics. Comparison of dislocation dynamics predictions with experimental results in the area of statistical properties of dislocations and their field was also a part of the proposed effort. In the first research task, the dislocation dynamics simulation method was used to investigate the spatial, orientation, velocity, and temporal statistics of dynamical dislocation systems, and on the use of the results from this investigation to complete the kinetic description of dislocations. The second task focused on completing the formulation of a kinetic theory of dislocations that respects the discrete nature of crystallographic slip and the physics of dislocation motion and dislocation interaction in the crystal. Part of this effort also targeted the theoretical basis for establishing the connection between discrete and continuum representation of dislocations and the analysis of discrete dislocation simulation results within the continuum framework. This part of the research enables the enrichment of the kinetic description with information representing the discrete dislocation systems behavior. The third task focused on the development of physics-inspired numerical methods of solution of the coupled dislocation kinetics and crystal mechanics framework. To a large extent, this task has also been successfully started. We have developed a custom finite-element approach with mesh points being a subset of the underlying crystal structure. When used to predict the evolution of the dislocation system, the planar motion of dislocations is naturally captured for all slip systems, thus minimizing numerical errors and providing simple ways to investigate cross slip and dislocation reactions. Preliminary results in this direction show that we are closer than ever in building a predictive framework for dislocation dynamics and mesoscale plasticity based on the first principles of dislocation dynamics. The rest of the report gives and overview of the research performed under this project and highlights the key results and open questions left for future investigations.

Anter El-Azab

2013-04-08T23:59:59.000Z

10

Meso-scale eects of tropical deforestation in Amazonia: preparatory LBA modelling studies  

E-Print Network [OSTI]

Meso-scale eects of tropical deforestation in Amazonia: preparatory LBA modelling studies A. J forest is good, above deforested areas (pasture) poor. The models' underestimate of the temperature Modelling studies with general circulation models have shown that large-scale deforestation of the Amazon

Paris-Sud XI, Université de

11

Mesoscale Modeling During Mixed-Phase Arctic Cloud Experiment  

SciTech Connect (OSTI)

Mixed-phase arctic stratus clouds are the predominant cloud type in the Arctic (Curry et al. 2000) and through various feedback mechanisms exert a strong influence on the Arctic climate. Perhaps one of the most intriguing of their features is that they tend to have liquid tops that precipitate ice. Despite the fact that this situation is colloidally unstable, these cloud systems are quite long lived - from a few days to over a couple of weeks. It has been hypothesized that mixed-phase clouds are maintained through a balance between liquid water condensation resulting from the cloud-top radiative cooling and ice removal by precipitation (Pinto 1998; Harrington et al. 1999). In their modeling study Harrington et al. (1999) found that the maintenance of this balance depends strongly on the ambient concentration of ice forming nucleus (IFN). In a follow-up study, Jiang et al. (2002), using only 30% of IFN concentration predicted by Meyers et al. (1992) IFN parameterization were able to obtain results similar to the observations reported by Pinto (1998). The IFN concentration measurements collected during the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004 over the North Slope of Alaska and the Beaufort Sea (Verlinde et al. 2005), also showed much lower values then those predicted (Prenne, pers. comm.) by currently accepted ice nucleation parameterizations (e.g. Meyers et al. 1992). The goal of this study is to use the extensive IFN data taken during M-PACE to examine what effects low IFN concentrations have on mesoscale cloud structure and coastal dynamics.

Avramov, A.; Harringston, J.Y.; Verlinde, J.

2005-03-18T23:59:59.000Z

12

Spatial-temporal mesoscale modelling of rainfall intensity using gage and radar data  

E-Print Network [OSTI]

Spatial-temporal mesoscale modelling of rainfall intensity using gage and radar data Montserrat fields. Doppler radar data offer better spatial and temporal coverage, but Doppler radar measures values. We use spatial logistic regression to model the probability of rain for both sources of data

Reich, Brian J.

13

Development and Evaluation of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model (GEM) for Mesoscale Weather Forecasting Applications  

E-Print Network [OSTI]

Development and Evaluation of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model (GEM) for Mesoscale Weather Forecasting Applications DEV NIYOGI Department of Agronomy, and Department form 13 May 2008) ABSTRACT Current land surface schemes used for mesoscale weather forecast models use

Niyogi, Dev

14

Mesoscale modelling for an offshore wind farm Jake Badger*, Rebecca Barthelmie, Sten Frandsen, Merete Bruun Christiansen  

E-Print Network [OSTI]

Mesoscale modelling for an offshore wind farm Jake Badger*, Rebecca Barthelmie, Sten Frandsen for an offshore wind farm in a coastal location. Spatial gradients and vertical profiles between 25 m and 70 m offshore wind farms tend to be placed within the coastal zone, the region within around 50km from

15

Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)  

SciTech Connect (OSTI)

Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

2014-06-01T23:59:59.000Z

16

Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part II: Imperfect Model Experiments  

E-Print Network [OSTI]

degraded). As in Part I, where the perfect model assumption was utilized, most analysis error reduction of significant model errors due to physical parameterizations by assimilating synthetic sounding and surfaceTests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part II

Meng, Zhiyong

17

Cloud shading retrieval and assimilation in a satellite-model coupled mesoscale analysis system  

SciTech Connect (OSTI)

A retrieval-assimilation method has been developed as a quantitative means to exploit the information in satellite imagery regarding shading of the ground by clouds, as applied to mesoscale weather analysis. Cloud radiative parameters are retrieved from satellite visible image data and used, along with parameters computed by a numerical model, to control the model's computation of downward radiative fluxes at the ground. These fluxes influence the analysis of ground surface temperatures under clouds. The method is part of a satellite-model coupled four-dimensional analysis system that merges information from visible image data in cloudy areas with infrared sounder data in clear areas, where retrievals of surface temperatures and water vapor concentrations are assimilated. The substantial impact of shading on boundary-layer development and mesoscale circulations was demonstrated in simulations, and the value of assimilating shading retrievals was demonstrated with a case study and with a simulated analysis that included the effects of several potential sources of error. The case study was performed in the northwestern Texas area, where convective cloud development was influenced by the shading effects of a persistent region of stratiform cloud cover. Analyses that included shading retrieval assimilation had consistently smaller shelter-height temperature errors than analyses without shading retrievals. When clear-area surface temperature retrievals from sounder data were analyzed along with cloudy-area shading retrievals, the contrast in heating between the shaded and clear parts of the domain led to large variations in analyzed boundary-layer depths and had a modest impact on analyzed wind flow. The analyzed locations of upward vertical motion corresponded roughly to areas of convective cloud development observed in satellite imagery. 29 refs., 17 figs., 2 tabs.

Lipton, A.E. (Phillips Lab., Hanscom AFB, MA (United States))

1993-11-01T23:59:59.000Z

18

The reduction of plankton biomass induced by mesoscale stirring: a modeling study in the Benguela upwelling  

E-Print Network [OSTI]

Recent studies, both based on remote sensed data and coupled models, showed a reduction of biological productivity due to vigorous horizontal stirring in upwelling areas. In order to better understand this phenomenon, we consider a system of oceanic flow from the Benguela area coupled with a simple biogeochemical model of Nutrient-Phyto-Zooplankton (NPZ) type. For the flow three different surface velocity fields are considered: one derived from satellite altimetry data, and the other two from a regional numerical model at two different spatial resolutions. We compute horizontal particle dispersion in terms of Lyapunov Exponents, and analyzed their correlations with phytoplankton concentrations. Our modelling approach confirms that in the south Benguela there is a reduction of biological activity when stirring is increased. Two-dimensional offshore advection and latitudinal difference in Primary Production, also mediated by the flow, seem to be the dominant processes involved. We estimate that mesoscale processes are responsible for 30 to 50% of the offshore fluxes of biological tracers. In the northern area, other factors not taken into account in our simulation are influencing the ecosystem. We suggest explanations for these results in the context of studies performed in other eastern boundary upwelling areas.

Ismael Hernndez-Carrasco; Vincent Rossi; Emilio Hernndez-Garca; Veronique Garon; Cristbal Lpez

2013-11-05T23:59:59.000Z

19

Coupling the High Complexity Land Surface Model ACASA to the Mesoscale Model WRF  

E-Print Network [OSTI]

In this study, the Weather Research and Forecasting Model (WRF) is coupled with the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA), a high complexity land surface model. Although WRF is a state-of-the-art regional ...

Xu, L.

20

Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material  

SciTech Connect (OSTI)

The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accounted for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed and executed for the purpose of validating closely-coupled 3D MSS. While the spall strength is nearly independent of specimen thickness, the fragment morphology varies widely. Detailed MSS demonstrate that the interactions between the tensile release waves are altered by specimen thickness and that these interactions are primarily responsible for fragment formation. MSS also provided insights on the regional amplification of damage, which enables the development of predictive void evolution models.

Springer, H K

2008-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Using Mesoscale Weather Model Output as Boundary Conditions for Atmospheric Large-Eddy Simulations and Wind-Plant Aerodynamic Simulations (Presentation)  

SciTech Connect (OSTI)

Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in wind plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.

Churchfield, M. J.; Michalakes, J.; Vanderwende, B.; Lee, S.; Sprague, M. A.; Lundquist, J. K.; Moriarty, P. J.

2013-10-01T23:59:59.000Z

22

Processing of cloud condensation nuclei by collision-coalescence in a mesoscale model  

E-Print Network [OSTI]

The Naval Research Laboratory's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is employed to explore the relative importance of source, sink, and transport processes in producing an accurate forecast of the ...

Mechem, David B.; Robinson, Paul C.; Kogan, Yefim L.

2006-09-26T23:59:59.000Z

23

Modeling of mesoscale coupled oceanatmosphere interaction and its feedback to ocean in the western Arabian Sea  

E-Print Network [OSTI]

-term in situ measurements. Given the shallow mixed layer, this additional surface heat flux warms the cold of the ocean. The observed relationship between the near-surface winds and mesoscale SSTs generate Ekman pump- ing velocities at the scale of the cold filaments, whose magnitude is the order of 1 m/day in both

Jochum, Markus

24

Transformed shoreline-following horizontal coordinates in a mesoscale model: A sea-land-breeze case study  

SciTech Connect (OSTI)

A hydrostatic and incompressible mesoscale model with transformed horizontal coordinates is presented. The model is applied to study the sea-land-breeze circulation over Rio de La Plata. One of the new coordinates is shoreline-following and the other one is locally quasi-perpendicular to the first one. The original set of equations in the Cartesian coordinates is rewritten in the curvilinear coordinates. This transformation is useful provided that the curvilinear coordinates are close to being orthogonal. The horizontal domain covers 250 km [times] 250 km, and the vertical domain is 2 km deep. To predict the sea-land-breeze circulation the model is integrated over 12 h. The forcing of the model is a cyclic perturbation of the surface temperature. The changes in the wind direction during the day are in good agreement with the observations from six weather stations in the region. The same program code is applied to uniform domains of different resolutions in order to test the coordinate transformation. Results show that the predictions based upon the variable-resolution version resemble ones obtained using high uniform resolution but consume only one-fourth the computer time needed by the latter. Comparison of the vertical velocity patterns predicted by the model to the cumulus clouds distribution observed from satellite images show a very good agreement too. The authors believe that all these results justify the use of the coordinate transformation in this type of model, although further verifications are needed in order to draw more definitive conclusions. 28 refs., 11 figs.

Berri, G.J.; Nunez, M.N. (Universidad de Buenos Aires (Argentina) Pabellon II Ciudad Universitaria, Buenos Aires (Argentina))

1993-05-01T23:59:59.000Z

25

Development of advanced cloud parameterizations to examine air quality, cloud properties, and cloud-radiation feedback in mesoscale models  

SciTech Connect (OSTI)

The distribution of atmospheric pollutants is governed by dynamic processes that create the general conditions for transport and mixing, by microphysical processes that control the evolution of aerosol and cloud particles, and by chemical processes that transform chemical species and form aerosols. Pollutants emitted into the air can undergo homogeneous gas reactions to create a suitable environment for the production by heterogeneous nucleation of embryos composed of a few molecules. The physicochemical properties of preexisting aerosols interact with newly produced embryos to evolve by heteromolecular diffusion and coagulation. Hygroscopic particles wig serve as effective cloud condensation nuclei (CCN), while hydrophobic particles will serve as effective ice-forming nuclei. Clouds form initially by condensation of water vapor on CCN and evolve in a vapor-liquid-solid system by deposition, sublimation, freezing, melting, coagulation, and breakup. Gases and aerosols that enter the clouds undergo aqueous chemical processes and may acidity hydrometer particles. Calculations for solar and longwave radiation fluxes depend on how the respective spectra are modified by absorbers such as H{sub 2}O, CO{sub 2}, O{sub 3}, CH{sub 4}, N{sub 2}O, chlorofruorocarbons, and aerosols. However, the flux calculations are more complicated for cloudy skies, because the cloud optical properties are not well defined. In this paper, key processes such as tropospheric chemistry, cloud microphysics parameterizations, and radiation schemes are reviewed in terms of physicochemical processes occurring, and recommendations are made for the development of advanced modules applicable to mesoscale models.

Lee, In Young

1993-09-01T23:59:59.000Z

26

Development and validation of a vertically two-dimensional mesoscale numerical model  

E-Print Network [OSTI]

because the model is dry. The equations are as follows: dv " ? 1 1 d dv f k X V ? ? Vp ? g Vz + ? ~ ? (pK ? ), (2) dt P pH ds m ds pgH do dn d o + 'it ~ pV + ? (ns) + p V ~ VH = 0 dt ds P H (4) dT . H Q sg ? + d t C p C p pRT The symbols... of the model. The remaining variables have been previously defined. 15 The finite difference equations are as follows: ~ H (o V (i, k) = H(i+1) * ( p(i+1, k) + p(i, k) ) * u(i+1, k) ? H(i) * ( p(i, k) + p (i-l, k) ) * u(i, k) / ( 2 a DX ) = DV(i k) (I...

Walters, Michael Kent

2012-06-07T23:59:59.000Z

27

Impact of Agricultural Practice on Regional Climate in a CoupledLand Surface Mesoscale Model  

SciTech Connect (OSTI)

The land surface has been shown to form strong feedbacks with climate due to linkages between atmospheric conditions and terrestrial ecosystem exchanges of energy, momentum, water, and trace gases. Although often ignored in modeling studies, land management itself may form significant feedbacks. Because crops are harvested earlier under drier conditions, regional air temperature, precipitation, and soil moisture, for example, affect harvest timing, particularly of rain-fed crops. This removal of vegetation alters the land surface characteristics and may, in turn, affect regional climate. We applied a coupled climate(MM5) and land-surface (LSM1) model to examine the effects of early and late winter wheat harvest on regional climate in the Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility in the Southern Great Plains, where winter wheat accounts for 20 percent of the land area. Within the winter wheat region, simulated 2 m air temperature was 1.3 C warmer in the Early Harvest scenario at mid-day averaged over the two weeks following harvest. Soils in the harvested area were drier and warmer in the top 10 cm and wetter in the 10-20 cm layer. Midday soils were 2.5 C warmer in the harvested area at mid-day averaged over the two weeks following harvest. Harvest also dramatically altered latent and sensible heat fluxes. Although differences between scenarios diminished once both scenarios were harvested, the short-term impacts of land management on climate were comparable to those from land cover change demonstrated in other studies.

Cooley, H.S.; Riley, W.J.; Torn, M.S.; He, Y.

2004-07-01T23:59:59.000Z

28

Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models  

SciTech Connect (OSTI)

We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.

Houze, Jr., Robert A. [University of Washington Dept. of Atmospheric Sciences

2013-11-13T23:59:59.000Z

29

Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models  

SciTech Connect (OSTI)

This three-year project, in cooperation with Professor Bob Houze at University of Washington, has been successfully finished as planned. Both ARM (the Atmospheric Radiation Measurement Program) data and cloud-resolving model (CRM) simulations were used to identify the water budgets of clouds observed in two international field campaigns. The research results achieved shed light on several key processes of clouds in climate change (or general circulation models), which are summarized below. 1. Revealed the effect of mineral dust on mesoscale convective systems (MCSs) Two international field campaigns near a desert and a tropical coast provided unique data to drive and evaluate CRM simulations, which are TWP-ICE (the Tropical Warm Pool International Cloud Experiment) and AMMA (the African Monsoon Multidisciplinary Analysis). Studies of the two campaign data were contrasted, revealing that much mineral dust can bring about large MCSs via ice nucleation and clouds. This result was reported as a PI presentation in the 3rd ASR Science Team meeting held in Arlington, Virginia in March 2012. A paper on the studies was published in the Journal of the Atmospheric Sciences (Zeng et al. 2013). 2. Identified the effect of convective downdrafts on ice crystal concentration Using the large-scale forcing data from TWP-ICE, ARM-SGP (the Southern Great Plains) and other field campaigns, Goddard CRM simulations were carried out in comparison with radar and satellite observations. The comparison between model and observations revealed that convective downdrafts could increase ice crystal concentration by up to three or four orders, which is a key to quantitatively represent the indirect effects of ice nuclei, a kind of aerosol, on clouds and radiation in the Tropics. This result was published in the Journal of the Atmospheric Sciences (Zeng et al. 2011) and summarized in the DOE/ASR Research Highlights Summaries (see http://www.arm.gov/science/highlights/RMjY5/view). 3. Used radar observations to evaluate model simulations In cooperation with Profs. Bob Houze at University of Washington and Steven Rutledge at Colorado State University, numerical model results were evaluated with observations from W- and C-band radars and CloudSat/TRMM satellites. These studies exhibited some shortcomings of current numerical models, such as too little of thin anvil clouds, directing the future improvement of cloud microphysics parameterization in CRMs. Two papers of Powell et al (2012) and Zeng et al. (2013), summarizing these studies, were published in the Journal of the Atmospheric Sciences. 4. Analyzed the water budgets of MCSs Using ARM data from TWP-ICE, ARM-SGP and other field campaigns, the Goddard CRM simulations were carried out to analyze the water budgets of clouds from TWP-ICE and AMMA. The simulations generated a set of datasets on clouds and radiation, which are available http://cloud.gsfc.nasa.gov/. The cloud datasets were available for modelers and other researchers aiming to improve the representation of cloud processes in multi-scale modeling frameworks, GCMs and climate models. Special datasets, such as 3D cloud distributions every six minutes for TWP-ICE, were requested and generated for ARM/ASR investigators. Data server records show that 86,206 datasets were downloaded by 120 users between April of 2010 and January of 2012. 5. MMF simulations The Goddard MMF (multi-scale modeling framework) has been improved by coupling with the Goddard Land Information System (LIS) and the Goddard Earth Observing System Model, Version 5 (GOES5). It has also been optimized on NASA HEC supercomputers and can be run over 4000 CPUs. The improved MMF with high horizontal resolution (1 x 1 degree) is currently being applied to cases covering 2005 and 2006. The results show that the spatial distribution pattern of precipitation rate is well simulated by the MMF through comparisons with satellite retrievals from the CMOPRH and GPCP data sets. In addition, the MMF results were compared with three reanalyses (MERRA, ERA-Interim and CFSR). Although the MMF tends

Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping

2013-03-14T23:59:59.000Z

30

Mesoscale Modeling and Validation of Texture Evolution during Asymmetric Rooling and Static Recrystallization of Magnesium Alloy AZ31B  

SciTech Connect (OSTI)

The focus of the present research is to develop an integrated deformation and recrystallization model for magnesium alloys at the microstructural length scale. It is known that in magnesium alloys nucleation of recrystallized grains occurs at various microstructural inhomogeneities such as twins and localized deformation bands. However, there is a need to develop models that can predict the evolution of the grain structure and texture developed during recrystallization and grain growth, especially when the deformation process follows a complicated deformation path such as in asymmetric rolling. The deformation model is based on a crystal plasticity approach implemented at the length scale of the microstructure that includes deformation mechanisms based on dislocation slip and twinning. The recrystallization simulation is based on a Monte Carlo technique that operates on the output of the deformation simulations. The nucleation criterion during recrystallization is based on the local stored energy and the Monte Carlo technique is used to simulate the growth of the nuclei due to local stored energy differences and curvature. The model predictions are compared with experimental data obtained through electron backscatter analysis and neutron diffraction.

Radhakrishnan, Balasubramaniam [ORNL; Gorti, Sarma B [ORNL; Stoica, Grigoreta M [ORNL; Muralidharan, Govindarajan [ORNL; Stoica, Alexandru Dan [ORNL; Wang, Xun-Li [ORNL; Specht, Eliot D [ORNL; Kenik, Edward A [ORNL; Muth, Thomas R [ORNL

2012-01-01T23:59:59.000Z

31

Soil moisture in complex terrain: quantifying effects on atmospheric boundary layer flow and providing improved surface boundary conditions for mesoscale models  

E-Print Network [OSTI]

compressible numerical weather prediction model incompressible numerical weather prediction model withcompressible numerical weather prediction model in

Daniels, Megan Hanako

2010-01-01T23:59:59.000Z

32

Determining Greenland Ice Sheet sensitivity to regional climate change: one-way coupling of a 3-D thermo-mechanical ice sheet model with a mesoscale climate model  

E-Print Network [OSTI]

in running RCMs over Greenland to produce high-qualityoutlet glaciers. For Greenland, this detail is specificallyCurrently, no coupled Greenland Ice Sheet model experiment

Schlegel, Nicole-Jeanne

2011-01-01T23:59:59.000Z

33

Top-down estimate of anthropogenic emission inventories and their interannual variability in Houston using a mesoscale inverse modeling technique  

SciTech Connect (OSTI)

The 2000 and 2006 Texas Air Quality Study (TexAQS 2000 and 2006) field campaigns took place in eastern Texas in August-October of 2000 and 2006. Several flights of the National Oceanic and Atmospheric Administration (NOAA) and National Center for Atmospheric Research (NCAR) research aircraft were dedicated to characterizing anthropogenic emissions over Houston. Houston is known for having serious problems with non-attainment of air quality standards. We present a method that uses three models and aircraft observations to assess and improve existing emission inventories using an inverse modeling technique. We used 3-dimensional and 4-dimensional variational (3D-VAR and 4D-VAR) inverse modeling techniques based on a least-squares method to improve the spatial and temporal distribution of CO, NOy (sum of all reactive nitrogen compounds), and SO2 emissions predicted by the 4-km-resolution U.S. Environmental Protection Agency (EPA) National Emission Inventory (NEI) for 2005. Differences between the prior and posterior inventories are discussed in detail. We found that in 2006 the prior daytime emissions in the urban area of Houston have to be reduced by 40% {+-} 12% for CO and 7% {+-} 13% for NOy. Over the Houston Ship Channel, where industrial emissions are predominant, the prior emissions have to be reduced by 41% {+-} 15% for CO and 51% {+-} 9% for NOy. Major ports around Houston have their NOy emissions reduced as well, probably due to uncertainties in near-shore ship emissions in the EPA NEI inventory. Using the measurements from the two field campaigns, we assessed the interannual emission variability between 2000 and 2006. Daytime CO emissions from the Houston urban area have been reduced by 8% {+-} 20%, while the NOy emissions have increased by 20% {+-} 12% from 2000 to 2006. In the Houston Ship Channel, the daytime NOy emissions have increased by 13% {+-} 17%. Our results show qualitative consistencies with known changes in Houston emissions sources.

Brioude, J.; Kim, S. W.; Angevine, Wayne M.; Frost, G. J.; Lee, S. H.; McKeen, S. A.; Trainer, Michael; Fehsenfeld, Fred C.; Holloway, J. S.; Ryerson, T. B.; Williams, E. J.; Petron, Gabrielle; Fast, Jerome D.

2011-10-31T23:59:59.000Z

34

Cloud in the operational DWD mesoscale model An extensive documentation of the physics included in the Lokal Modell (LM) can be found  

E-Print Network [OSTI]

in the Lokal Modell (LM) can be found in Doms et al. (2004). Here a short summary of the cloud physics is given-scale clouds Since 26th of April 2004 the Lokal Modell (LM) uses a two-category ice scheme which explicitly S that are considered in this two-category ice scheme of LM. The individual microphysical processes are: Sc condensation

Reading, University of

35

Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an implementation of a single-fluid inter- face model in the ALE-AMR code to simulate surface tension effects. The model does not require explicit information on the physical...

36

Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a single-fluid diffuse interface model in the ALE-AMR hydrodynamics code to simulate surface tension effects. We show simula- tions and compare them to other surface tension...

37

Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sion effects. We show the result of a test case, and compare it to the result without surface tension. The model describes droplet formation nicely. Application The ARRA-funded...

38

Modelling  

E-Print Network [OSTI]

Modeling of technical machines became a standard technique since computer became powerful enough to handle the amount of data relevant to the specific system. Simulation of an existing physical device requires the knowledge of all relevant quantities. Electric fields given by the surrounding boundary as well as magnetic fields caused by coils or permanent magnets have to be known. Internal sources for both fields are sometimes taken into account, such as space charge forces or the internal magnetic field of a moving bunch of charged particles. Used solver routines are briefly described and some bench-marking is shown to estimate necessary computing times for different problems. Different types of charged particle sources will be shown together with a suitable model to describe the physical model. Electron guns are covered as well as different ion sources (volume ion sources, laser ion sources, Penning ion sources, electron resonance ion sources, and H$^-$-sources) together with some remarks on beam transport.

Spdtke, P

2013-01-01T23:59:59.000Z

39

Self-Assembly of Mesoscale Isomers: The Role of Pathways and Degrees of Freedom  

E-Print Network [OSTI]

Self-Assembly of Mesoscale Isomers: The Role of Pathways and Degrees of Freedom Shivendra Pandey1 geometric path sampling and a mesoscale experimental model to investigate the self-assembly of a model. Citation: Pandey S, Johnson D, Kaplan R, Klobusicky J, Menon G, et al. (2014) Self-Assembly of Mesoscale

Menon, Govind

40

AMPS, a real-time mesoscale modeling system, has provided a decade of service for scientific and logistical needs and has helped advance polar numerical weather prediction  

E-Print Network [OSTI]

and logistical needs and has helped advance polar numerical weather prediction as well as understanding support for the USAP. The concern at the time was the numerical weather prediction (NWP) guidance-time implementation of the Weather Research and Forecasting model (WRF; Skamarock et al. 2008) to support the U

Howat, Ian M.

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mesoscale model cloud scheme assessment using satellite observations Jean-Pierre Chaboureau, Jean-Pierre Cammas, Patrick J. Mascart, and Jean-Pierre Pinty  

E-Print Network [OSTI]

, tests made with three different values of an ice to snow autoconversion threshold reveal a profound-scale cloudiness in the model. A similar test conducted on the ice water and the liquid water paths confirms and water vapor. Once cloud is formed, however, it is the role of the microphysical scheme to parameterize

Chaboureau, Jean-Pierre

42

Development and testing of parameterizations for continental and tropical ice cloud microphysical and radiative properties in GCM and mesoscale models. Final report  

SciTech Connect (OSTI)

The overall purpose of this research was to exploit measurements in clouds sampled during several field programs, especially from experiments in tropical regions, in a four-component study to develop and validate cloud parameterizations for general circulation models, emphasizing ice clouds. The components were: (1) parameterization of basic properties of mid- and upper-tropospheric clouds, such as condensed water content, primarily with respect to cirrus from tropical areas; (2) the second component was to develop parameterizations which express cloud radiative properties in terms of basic cloud microphysical properties, dealing primarily with tropical oceanic cirrus clouds and continental thunderstorm anvils, but also including altocumulus clouds; (3) the third component was to validate the parameterizations through use of ground-based measurements calibrated using existing and planned in-situ measurements of cloud microphysical properties and bulk radiative properties, as well as time-resolved data collected over extended periods of time; (4) the fourth component was to implement the parameterizations in the National Center for Atmospheric Research (NCAR) community climate model (CCM) II or in the NOAA-GFDL model (by L. Donner GFDL) and to perform sensitivity studies.

Heymsfield, A.

1997-09-01T23:59:59.000Z

43

Assessment of Molecular Modeling & Simulation  

SciTech Connect (OSTI)

This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

None

2002-01-03T23:59:59.000Z

44

Sensitivity of mesoscale gravity waves to the baroclinicity of jet-front systems  

E-Print Network [OSTI]

To investigate the generation of mesoscale gravity waves from upper-tropospheric jet-front systems, five different life cycles of baroclinic waves are simulated with a high-resolution mesoscale model (MM5 with 10-km grid spacing). The baroclinicity...

Wang, Shuguang

2006-04-12T23:59:59.000Z

45

Modeling, Analysis and Simulation of Multiscale Preferential Flow - 8/05-8/10 - Final Report  

SciTech Connect (OSTI)

The research agenda of this project are: (1) Modeling of preferential transport from mesoscale to macroscale; (2) Modeling of fast flow in narrow fractures in porous media; (3) Pseudo-parabolic Models of Dynamic Capillary Pressure; (4) Adaptive computational upscaling of flow with inertia from porescale to mesoscale; (5) Adaptive modeling of nonlinear coupled systems; and (6) Adaptive modeling and a-posteriori estimators for coupled systems with heterogeneous data.

Ralph Showalter; Malgorzata Peszynska

2012-07-03T23:59:59.000Z

46

Mesoscale Atmospheric Dispersion, 2001, Ed. Z. Boybeyi, WIT Publications, Southampton, UK, Advances in Air Pollution, Vol 9, p. 424.  

E-Print Network [OSTI]

surface­atmosphere exchanges in mesoscale air pollution systems Devdutta S. Niyogi & Sethu Raman NorthMesoscale Atmospheric Dispersion, 2001, Ed. Z. Boybeyi, WIT Publications, Southampton, UK, Advances in Air Pollution, Vol 9, p. 424. Chapter 9 Numerical modeling of gas deposition and bi- directional

Raman, Sethu

47

NEAMS FPL M2 Milestone Report: Development of a UO? Grain Size Model using Multicale Modeling and Simulation  

SciTech Connect (OSTI)

This report summarizes development work funded by the Nuclear Energy Advanced Modeling Simulation program's Fuels Product Line (FPL) to develop a mechanistic model for the average grain size in UO? fuel. The model is developed using a multiscale modeling and simulation approach involving atomistic simulations, as well as mesoscale simulations using INL's MARMOT code.

Tonks, Michael R. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

2014-06-01T23:59:59.000Z

48

MESOSCALE SIMULATIONS OF POWDER COMPACTION  

SciTech Connect (OSTI)

Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore CA 94551 (United States)

2009-12-28T23:59:59.000Z

49

Basic model Basic model  

E-Print Network [OSTI]

Early days Basic model Literature Classical literature Bayes pre-MCMC Bayes post-MCMC Basic model systems via latent factors Hedibert Freitas Lopes Booth School of Business University of Chicago Col / 66 #12;Early days Basic model Literature Classical literature Bayes pre-MCMC Bayes post-MCMC Basic

Liu, I-Shih

50

Review of structure representation and reconstruction on mesoscale and microscale  

SciTech Connect (OSTI)

Structure representation and reconstruction on mesoscale and microscale is critical in material design, advanced manufacturing and multiscale modeling. Microstructure reconstruction has been applied in different areas of materials science and technology, structural materials, energy materials, geology, hydrology, etc. This review summarizes the microstructure descriptors and formulations used to represent and algorithms to reconstruct structures at microscale and mesoscale. In the stochastic methods using correlation function, different optimization approaches have been adapted for objective function minimization. A variety of reconstruction approaches are compared in efficiency and accuracy.

Li, Dongsheng

2014-05-01T23:59:59.000Z

51

Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing  

SciTech Connect (OSTI)

A study was conducted to evaluate the capabilities of different numerical methods used to represent microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem. The purpose of the mesoscale benchmark problem was to provide a common basis to assess several mesoscale methods with the objective of identifying the strengths and areas of improvement in the predictive modeling of microstructure evolution. In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) developed by PNNL, INL, SNL, and ORNL were used to calculate the evolution kinetics of intra-granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions. The benchmark problem was constructed to include important microstructural evolution mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions was imposed on the benchmark problem to simplify the mechanisms considered. The capability and numerical efficiency of different models are compared against selected experimental and simulation results. These comparisons find that the phase-field methods, by the nature of the free energy formulation, are able to represent a larger subset of the mechanisms influencing the intra-granular bubble growth and coarsening mechanisms in the idealized benchmark problem as compared to the Potts and kinetic Monte Carlo methods. It is recognized that the mesoscale benchmark problem as formulated does not specifically highlight the strengths of the discrete particle modeling used in the Potts and kinetic Monte Carlo methods. Future efforts are recommended to construct increasingly more complex mesoscale benchmark problems to further verify and validate the predictive capabilities of the mesoscale modeling methods used in this study.

Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert; Gao, Fei; Sun, Xin; Tonks, Michael; Biner, Bullent; Millet, Paul; Tikare, Veena; Radhakrishnan, Balasubramaniam; Andersson , David

2012-04-11T23:59:59.000Z

52

Analysis of Mesoscale Model Data for Wind Integration (Poster)  

SciTech Connect (OSTI)

Supports examination of implications of national 20% wind vision, and provides input to integration and transmission studies for operational impact of large penetrations of wind on the grid.

Schwartz, M.; Elliott, D.; Lew, D.; Corbus, D.; Scott, G.; Haymes, S.; Wan, Y. H.

2009-05-01T23:59:59.000Z

53

AN URBAN SURFACE EXCHANGE PARAMETERISATION FOR MESOSCALE MODELS  

E-Print Network [OSTI]

boundary layer, Urban climato- logy, Urban energy balance. 1. Introduction The main reason floor) and vertical (walls) surfaces on the wind speed, temperature and turbulent kinetic energy in a bidimensional case of a city over flat terrain. The new parameterisation is shown to be able to reproduce

54

Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results  

E-Print Network [OSTI]

After completing a 9-month field experiment studying air pollution and meteorology in the Kathmandu Valley, Nepal, we set up the mesoscale meteorological model MM5 to simulate the Kathmandu Valley's meteorology with a ...

Panday, Arnico K.

55

Multiscale Modeling with Carbon Nanotubes  

SciTech Connect (OSTI)

Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

Maiti, A

2006-02-21T23:59:59.000Z

56

Queuing models System dynamics models  

E-Print Network [OSTI]

models Value chain models Business Model / Organizational Perspective Process Perspective Information#12;#12;#12;#12;Queuing models System dynamics models #12;#12;#12;#12;Blueprint or touchpoint

Glushko, Robert J.

57

Temporal Changes in Wind as Objects for Evaluating Mesoscale Numerical Weather Prediction  

E-Print Network [OSTI]

a method of evaluating numerical weather prediction models by comparing the characteristics of temporal for biases in features forecast by the model. 1. Introduction Verification of numerical weather predictionTemporal Changes in Wind as Objects for Evaluating Mesoscale Numerical Weather Prediction DARAN L

Knievel, Jason Clark

58

Our scenario is akin to the magnetic furnace model proposed by Axford and  

E-Print Network [OSTI]

Our scenario is akin to the magnetic furnace model proposed by Axford and McKenzie (14­16) and to ideas invoking reconnection of mesoscale loops (38, 39). We adopt from the furnace model the idea. However, our model of the nascent solar wind is intrinsically 3-D, and the magnetic field geometry

Pe'er, Dana

59

Final Report for Integrated Multiscale Modeling of Molecular Computing Devices  

SciTech Connect (OSTI)

In collaboration with researchers at Vanderbilt University, North Carolina State University, Princeton and Oakridge National Laboratory we developed multiscale modeling and simulation methods capable of modeling the synthesis, assembly, and operation of molecular electronics devices. Our role in this project included the development of coarse-grained molecular and mesoscale models and simulation methods capable of simulating the assembly of millions of organic conducting molecules and other molecular components into nanowires, crossbars, and other organized patterns.

Glotzer, Sharon C.

2013-08-28T23:59:59.000Z

60

Lifecycle Model  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter describes the lifecycle model used for the Departmental software engineering methodology.

1997-05-21T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Inferring catchment precipitation by doing hydrology backward: A test in 24 small and mesoscale catchments in Luxembourg  

E-Print Network [OSTI]

Inferring catchment precipitation by doing hydrology backward: A test in 24 small and mesoscale September 2012; published 10 October 2012. [1] The complexity of hydrological systems and the necessary simplification of models describing these systems remain major challenges in hydrological modeling. Kirchner

Kirchner, James W.

62

Silicon Micromachined Dimensional Calibration Artifact for Mesoscale...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 1 Silicon Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 2...

63

3.021J / 1.021J / 10.333J / 18.361J / 22.00J Introduction to Modeling and Simulation, Spring 2008  

E-Print Network [OSTI]

This course explores the basic concepts of computer modeling and simulation in science and engineering. We'll use techniques and software for simulation, data analysis and visualization. Continuum, mesoscale, atomistic and ...

Buehler, Markus

64

Modeling Transformation  

E-Print Network [OSTI]

Modeling Transformation What does each step do? #12;Transformation Procedure #12;Transformation Procedure #12;Building Your Model Yarn = chromosomal DNA Beads - - - - - - - - - - - - - - Ribosomes #12;Add transformation solution Tube CaCl2 #12;Transformation solution: CaCl2

Rose, Michael R.

65

Model Wind over the Central and Southern California Coastal Ocean HSIAO-MING HSU  

E-Print Network [OSTI]

Model Wind over the Central and Southern California Coastal Ocean HSIAO-MING HSU National Center of high-resolution wind in coastal ocean modeling. This paper tests the Coupled Ocean­Atmosphere Mesoscale Prediction System (COAMPS) at the 9-, 27-, and 81-km grid resolutions in simulating wind off the central

66

Development of an Adjoint for a Complex Atmospheric Model, the ARPS, using TAF  

E-Print Network [OSTI]

, such as operational weather predictions models, pose challenges on the applicability of AD tools. We report- ational weather prediction models are much more complex, and the problem sizes tend to be much larger as a system for mesoscale and storm-scale numerical weather prediction as well as a wide range of idealized

Gao, Jidong

67

An integrated model for the post-solidification shape and grain morphology of fusion welds  

E-Print Network [OSTI]

Through an integrated macroscale/mesoscale computational model, we investigate the developing shape and grain morphology during the melting and solidification of a weld. In addition to macroscale surface tension driven fluid flow and heat transfer, we predict the solidification progression using a mesoscale model accounting for realistic solidification kinetics, rather than quasi-equilibrium thermodynamics. The tight coupling between the macroscale and the mesoscale distinguishes our results from previously published studies. The inclusion of Marangoni driven fluid flow and heat transfer, both during heating and cooling, was found to be crucial for accurately predicting both weld pool shape and grain morphology. However, if only the shape of the weld pool is of interest, a thermodynamic quasi-equilibrium solidification model, neglecting solidification kinetics, was found to suffice when including fluid flow and heat transfer. We demonstrate that the addition of a sufficient concentration of approximately 1 $\\...

Kidess, Anton; Duggan, Gregory; Browne, David J; Kenjere, Saa; Richardson, Ian; Kleijn, Chris R

2015-01-01T23:59:59.000Z

68

Modeling atmospheric deposition using a stochastic transport model  

SciTech Connect (OSTI)

An advanced stochastic transport model has been modified to include the removal mechanisms of dry and wet deposition. Time-dependent wind and turbulence fields are generated with a prognostic mesoscale numerical model and are used to advect and disperse individually released particles that are each assigned a mass. These particles are subjected to mass reduction in two ways depending on their physical location. Particles near the surface experience a decrease in mass using the concept of a dry deposition velocity, while the mass of particles located within areas of precipitation are depleted using a scavenging coefficient. Two levels of complexity are incorporated into the particle model. The simple case assumes constant values of dry deposition velocity and scavenging coefficient, while the more complex case varies the values according to meteorology, surface conditions, release material, and precipitation intensity. Instantaneous and cumulative dry and wet deposition are determined from the mass loss due to these physical mechanisms. A useful means of validating the model results is with data available from a recent accidental release of Cesium-137 from a steel-processing furnace in Algeciras, Spain in May, 1998. This paper describes the deposition modeling technique, as well as a comparison of simulated concentration and deposition with measurements taken for the Algeciras release.

Buckley, R.L.

1999-12-17T23:59:59.000Z

69

PREDICTIVE MODELS  

SciTech Connect (OSTI)

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1) chemical flooding; 2) carbon dioxide miscible flooding; 3) in-situ combustion; 4) polymer flooding; and 5) steamflood. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes. The IBM PC/AT version includes a plotting capability to produces a graphic picture of the predictive model results.

Ray, R.M. (DOE Bartlesville Energy Technology Center, Bartlesville, OK (United States))

1988-10-01T23:59:59.000Z

70

OSPREY Model  

SciTech Connect (OSTI)

The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of off-gas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data is obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data and parameters were input into the adsorption model to develop models specific for krypton adsorption. The same can be done for iodine, xenon, and tritium. The model will be validated with experimental breakthrough curves. Customers will be given access to OSPREY to used and evaluate the model.

Veronica J. Rutledge

2013-01-01T23:59:59.000Z

71

Mesoscale hybrid calibration artifact  

DOE Patents [OSTI]

A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

Tran, Hy D. (Albuquerque, NM); Claudet, Andre A. (Albuquerque, NM); Oliver, Andrew D. (Waltham, MA)

2010-09-07T23:59:59.000Z

72

Junhong Wei and Fuqing Zhang, Pennsylvania State University Mesoscale Gravity Waves in Moist Baroclinic Jet-Front Systems  

E-Print Network [OSTI]

with small amount of moisture, dry dynamic gravity wave modes continue to dominate. However, convective-permitting simulations with the Weather Research and Forecast (WRF) model are performed to study mesoscale gravity waves/negative), and 7-km dynamic tropopause (turquoise lines). Wave Identification Figure 3. Comparison of WP5 at 132 h

Thompson, Anne

73

Programming models  

SciTech Connect (OSTI)

A programming model is a set of software technologies that support the expression of algorithms and provide applications with an abstract representation of the capabilities of the underlying hardware architecture. The primary goals are productivity, portability and performance.

Daniel, David J [Los Alamos National Laboratory; Mc Pherson, Allen [Los Alamos National Laboratory; Thorp, John R [Los Alamos National Laboratory; Barrett, Richard [SNL; Clay, Robert [SNL; De Supinski, Bronis [LLNL; Dube, Evi [LLNL; Heroux, Mike [SNL; Janssen, Curtis [SNL; Langer, Steve [LLNL; Laros, Jim [SNL

2011-01-14T23:59:59.000Z

74

Modeling Quality Information within Business Process Models  

E-Print Network [OSTI]

Modeling Quality Information within Business Process Models Robert Heinrich, Alexander Kappe. Business process models are a useful means to document information about structure and behavior literature and tool survey on modeling quality information within business process models. Keywords: Business

Paech, Barbara

75

PREDICTIVE MODELS  

SciTech Connect (OSTI)

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1) chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2) carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3) in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4) polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5) steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

Ray, R.M. (DOE Bartlesville Energy Technology Technology Center, Bartlesville, OK (United States))

1986-12-01T23:59:59.000Z

76

Model systems This year's model  

E-Print Network [OSTI]

@biochem.wisc.edu RTR received ScB degrees in chemistry and biology from the Massachusetts Institute of Technology that initially inspired the chemical simplification. In such cases, the later stages of model studies can seem

Raines, Ronald T.

77

Mesoscale Dynamics Spring Semester 2014  

E-Print Network [OSTI]

ATS 735 Mesoscale Dynamics (3 cr) Spring Semester 2014 Instructor: Richard H. Johnson, Room ATS 305, certain topics in mesoscale dynamics may be emphasized more than others. Although basic concepts lectures on some of the topics. Several books that are relevant to the course are: Cloud Dynamics, 1993 (R

78

Modelling osteomyelitis  

E-Print Network [OSTI]

13 of 14 12. Paoletti N, Lio P, Merelli E, Viceconti M: Multi-level Computational Modeling and Quantitative Analysis of Bone Remodeling. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2012, 99(PrePrints). 13. Geris L, Vander Sloten...

Li, Pietro; Paoletti, Nicola; Moni, Mohammad A; Atwell, Kathryn; Merelli, Emanuela; Viceconti, Marco

2012-09-07T23:59:59.000Z

79

Criticality Model  

SciTech Connect (OSTI)

The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality computational method will be used for evaluating the criticality potential of configurations of fissionable materials (in-package and external to the waste package) within the repository at Yucca Mountain, Nevada for all waste packages/waste forms. The criticality computational method is also applicable to preclosure configurations. The criticality computational method is a component of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). How the criticality computational method fits in the overall disposal criticality analysis methodology is illustrated in Figure 1 (YMP 2003, Figure 3). This calculation will not provide direct input to the total system performance assessment for license application. It is to be used as necessary to determine the criticality potential of configuration classes as determined by the configuration probability analysis of the configuration generator model (BSC 2003a).

A. Alsaed

2004-09-14T23:59:59.000Z

80

Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation  

E-Print Network [OSTI]

technique with real observations (Houtekamer et al. 2005; Whitaker et al. 2006). However, the performance of the EnKF implemented in mesoscale models has not been compared directly to that of variational method. ____________ This dissertation follows... while perturbing the observation. However, the computation cost is very large when applying this method to high-degree- of-freedom systems. Whitaker and Hamill (2002) introduced the ensemble square-root filter (EnSRF) as a better way to deal...

Meng, Zhiyong

2007-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Sandia National Laboratories: Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mark Boslough Featured in NOVA Special about the Chelyabinsk Meteor On April 3, 2013, in Capabilities, Computational Modeling & Simulation, Modeling, Modeling, Modeling & Analysis,...

82

Noncommutative Standard Model: Model Building  

E-Print Network [OSTI]

A noncommutative version of the usual electro-weak theory is constructed. We discuss how to overcome the two major problems: 1) although we can have noncommutative U(n) (which we denote by $U_{\\star}(n)$) gauge theory we cannot have noncommutative SU(n) and 2) the charges in noncommutative QED are quantized to just $0, \\pm 1$. We show how the problem with charge quantization, as well as with the gauge group, can be resolved by taking $U_{\\star}(3)\\times U_{\\star}(2)\\times U_{\\star}(1)$ gauge group and reducing the extra U(1) factors in an appropriate way. Then we proceed with building the noncommutative version of the standard model by specifying the proper representations for the entire particle content of the theory, the gauge bosons, the fermions and Higgs. We also present the full action for the noncommutative Standard Model (NCSM). In addition, among several peculiar features of our model, we address the {\\it inherent} CP violation and new neutrino interactions.

M. Chaichian; P. Presnajder; M. M. Sheikh-Jabbari; A. Tureanu

2003-08-12T23:59:59.000Z

83

Autonomie Model  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE BlogAttachmentFlash2011-21 AuditInsulated CladdingofofAutonomie Model

84

Models Datasets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0StatementsMixingAssessing8 MayModels-Datasets

85

ISDAC Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSLthe U.S.;2cSupercomputing: TheModeling

86

The Lagrangian particle dispersion model FLEXPART-WRF VERSION 3.1  

SciTech Connect (OSTI)

The Lagrangian particle dispersion model FLEXPART was originally designed for cal- culating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need from the modeler community has encouraged new developments in FLEXPART. In this document, we present a version that works with the Weather Research and Forecasting (WRF) mesoscale meteoro- logical model. Simple procedures on how to run FLEXPART-WRF are presented along with special options and features that differ from its predecessor versions. In addition, test case data, the source code and visualization tools are provided to the reader as supplementary material.

Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, Don; Seibert, P.; Angevine, W. M.; Evan, S.; Dingwell, A.; Fast, Jerome D.; Easter, Richard C.; Pisso, I.; Bukhart, J.; Wotawa, G.

2013-11-01T23:59:59.000Z

87

Graphical models, causal inference, and econometric models  

E-Print Network [OSTI]

Graphical models, causal inference, and econometric models Peter Spirtes Abstract A graphical model modeling has historical ties to causal modeling in econometrics and other social sciences, there have been isolated from the econometric tradition. In this paper I will describe a number of recent developments

Spirtes, Peter

88

Hydrologic Modeling Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Management Programs has both experience and technical knowledge to use and develop Earth systems models. Hydrological Modeling Models are simplified representations of...

89

Sandia National Laboratories: Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a model that can be used ... Sandian Mark Boslough Featured on NOVA Episode about Chelyabinsk Meteor On November 20, 2013, in Computational Modeling & Simulation, Modeling,...

90

Acoustic Characterization of Mesoscale Objects  

SciTech Connect (OSTI)

This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

2007-03-13T23:59:59.000Z

91

I&C Modeling in SPAR Models  

SciTech Connect (OSTI)

The Standardized Plant Analysis Risk (SPAR) models for the U.S. commercial nuclear power plants currently have very limited instrumentation and control (I&C) modeling [1]. Most of the I&C components in the operating plant SPAR models are related to the reactor protection system. This was identified as a finding during the industry peer review of SPAR models. While the Emergency Safeguard Features (ESF) actuation and control system was incorporated into the Peach Bottom Unit 2 SPAR model in a recent effort [2], various approaches to expend resources for detailed I&C modeling in other SPAR models are investigated.

John A. Schroeder

2012-06-01T23:59:59.000Z

92

Standard Solar Model  

SciTech Connect (OSTI)

Solar models are important in our understanding of stars and stellar evolution. Solar models have been constructed using different methods. In this work, a solar model will be built using the fitting method. The model will incorporate the most recent input data. The model will be evolved to the current epoch starting from the zero-age main sequence model.

Loong, Lim Yaw; Yusof, Norhasliza; Kassim, Hasan Abu [Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

2008-05-20T23:59:59.000Z

93

Mesoscale phenomena in solutions of 3-methylpyridine, heavy water, and an antagonistic salt  

E-Print Network [OSTI]

We have investigated controversial issues regarding the mesoscale behavior of 3-methylpyridine (3MP), heavy water, and sodium tetraphenylborate (NaBPh4) solutions by combining results obtained from dynamic light scattering (DLS) and small-angle neutron scattering (SANS). We have addressed three questions: (i) what is the origin of the mesoscale inhomogeneities (order of 100 nm in size) manifested by the "slow mode" in DLS? (ii) Is the periodic structure observed from SANS an inherent property of this system? (iii) What is the universality class of critical behavior in this system? Our results confirm that the "slow mode" observed from DLS experiments corresponds to long-lived, highly stable mesoscale droplets (order of 100 nm in size), which occur only when the solute (3MP) is contaminated by hydrophobic impurities. SANS data confirm the presence of a periodic structure with a periodicity of about 10 nm. This periodic structure cannot be eliminated by nanopore filtration and thus is indeed an inherent solution property. The critical behavior of this system, in the range of concentration and temperatures investigated by DLS experiments, indicates that the criticality belongs to the universality class of the 3-dimensional Ising model.

Jan Leys; Deepa Subramanian; Eva Rodezno; Boualem Hammouda; Mikhail A. Anisimov

2013-08-22T23:59:59.000Z

94

Gradient Plasticity Model and its Implementation into MARMOT  

SciTech Connect (OSTI)

The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in this model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.

Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.; Sun, Xin

2013-08-01T23:59:59.000Z

95

Rainfall-Runoff Modelling of Meso-Scale Catchments in the Upper Ewaso  

E-Print Network [OSTI]

, but growing demand for irrigation water on its foothills produces water shortage in the lowlands. Water founded River Water Users Associations, but their work is hindered by a lack of knowledge on the present and future availability of water resources. This study tries to make a contribution to better water

Richner, Heinz

96

Surface Stresses and Turbulent Fluxes: Problems in Mesoscale Modeling over Terrain  

E-Print Network [OSTI]

: Turbulent mixing in breaking waves (Epifanio and Qian, 2008) LES for breaking mountain wave Flow past a hill) = Dx Ly (u, v, w) = Dy One kinematic condition (no flow through the boundary): w = u h x + v h y at the boundary and combine with the kinematic condition Lx ui,j,0 vi,j,0 wi,j,0 = f (Dx i,j , interior) , Ly

97

Mesoscale environmental models accompanying convection in the Texas HIPLEX region / by Mark Edward Humbert  

E-Print Network [OSTI]

with convection is upward motion at all levels with a maximum value just prior to max1mum convect1ve intensity. Days without convection showed a cont1nual vertical turbulent m1xing of moisture from a shallow boundary layer to the 700 mb level. Lack... of 4 g kg 1 are observed. The moisture content increases at the 22 Post Big Spring Midland Robert Lee 4 500 mb cn 0 O m 8 L. cn 6 x 4 2 700 mb . . ~ ''. ~' . ~ / r 12 10 850 mb 15 18 21 00 03 Time (GNT hours) Fig. 9. Time profiles...

Humbert, Mark Edward

1980-01-01T23:59:59.000Z

98

Author's personal copy Mesoscale modeling of electric double layer capacitors with three-dimensional  

E-Print Network [OSTI]

, cylindrical, and spherical electrodes or pores. EDLCs with highly ordered porous electrodes. EDLC with ordered bimodal meso- porous formulations for simulating electric double layer capacitors (EDLCs) with three-dimensional ordered structures

Pilon, Laurent

99

Cognitive Modeling Cognitive Modelling -The nature of  

E-Print Network [OSTI]

Cognitive Modeling Cognitive Modelling - The nature of Connectionism and notes on computability Mathias Hinz Universität Bremen November 17, 2014 November 17, 2014 1 #12;Cognitive Modeling topic · Comparing PDP and nature · properties of PDP · computability · discussion November 17, 2014 2 #12;Cognitive

Bremen, Universität

100

The Standard Model Beyond the Standard Model  

E-Print Network [OSTI]

physics with top quark Search for Extra-dimensions Conclusions 1 The Standard Model Building block quark Search for Extra-dimensions Conclusions Building block The particles and forces The Standard Model the Standard Model New physics with top quark Search for Extra-dimensions Conclusions Building block

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Meso-scale machining capabilities and issues  

SciTech Connect (OSTI)

Meso-scale manufacturing processes are bridging the gap between silicon-based MEMS processes and conventional miniature machining. These processes can fabricate two and three-dimensional parts having micron size features in traditional materials such as stainless steels, rare earth magnets, ceramics, and glass. Meso-scale processes that are currently available include, focused ion beam sputtering, micro-milling, micro-turning, excimer laser ablation, femto-second laser ablation, and micro electro discharge machining. These meso-scale processes employ subtractive machining technologies (i.e., material removal), unlike LIGA, which is an additive meso-scale process. Meso-scale processes have different material capabilities and machining performance specifications. Machining performance specifications of interest include minimum feature size, feature tolerance, feature location accuracy, surface finish, and material removal rate. Sandia National Laboratories is developing meso-scale electro-mechanical components, which require meso-scale parts that move relative to one another. The meso-scale parts fabricated by subtractive meso-scale manufacturing processes have unique tribology issues because of the variety of materials and the surface conditions produced by the different meso-scale manufacturing processes.

BENAVIDES,GILBERT L.; ADAMS,DAVID P.; YANG,PIN

2000-05-15T23:59:59.000Z

102

Crossing the mesoscale no-mans land via parallel kinetic Monte Carlo.  

SciTech Connect (OSTI)

The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and applying it to materials modeling problems of interest to Sandia. In this report we give an overview of the methods and algorithms developed, and describe our new open-source code called SPPARKS, for Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth and evolution.

Garcia Cardona, Cristina (San Diego State University); Webb, Edmund Blackburn, III; Wagner, Gregory John; Tikare, Veena; Holm, Elizabeth Ann; Plimpton, Steven James; Thompson, Aidan Patrick; Slepoy, Alexander (U. S. Department of Energy, NNSA); Zhou, Xiao Wang; Battaile, Corbett Chandler; Chandross, Michael Evan

2009-10-01T23:59:59.000Z

103

Sandia Modeling Tool Webinar  

Office of Energy Efficiency and Renewable Energy (EERE)

Webinar attendees will learn what collaborative, stakeholder-driven modeling is, how the models developed have been and could be used, and how specifically this process and resulting models might...

104

Representing Cloud Processing of Aerosol in Numerical Models  

SciTech Connect (OSTI)

The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image is a demonstration of the first indirect effect, in which changes in aerosol modulate cloud droplet radius and concentration, which influences albedo. It is thought that, through the effects it has on precipitation (drizzle), aerosol can also affect the structure and persistence of planetary boundary layer (PBL) clouds. Regions of cellular convection, or open pockets of cloudiness (bottom image) are thought to be remnants of strongly drizzling PBL clouds. Pockets of Open Cloudiness (POCs) (Stevens et al. 2005) or Albrecht's ''rifts'' are low cloud fraction regions characterized by anomalously low aerosol concentrations, implying they result from precipitation. These features may in fact be a demonstration of the second indirect effect. To accurately represent these clouds in numerical models, we have to treat the coupled cloud-aerosol system. We present the following series of mesoscale and large eddy simulation (LES) experiments to evaluate the important aspects of treating the coupled cloud-aerosol problem. 1. Drizzling and nondrizzling simulations demonstrate the effect of drizzle on a mesoscale forecast off the California coast. 2. LES experiments with explicit (bin) microphysics gauge the relative importance of the shape of the aerosol spectrum on the 3D dynamics and cloud structure. 3. Idealized mesoscale model simulations evaluate the relative roles of various processes, sources, and sinks.

Mechem, D.B.; Kogan, Y.L.

2005-03-18T23:59:59.000Z

105

Geologic Framework Model Analysis Model Report  

SciTech Connect (OSTI)

The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the repository design. These downstream models include the hydrologic flow models and the radionuclide transport models. All the models and the repository design, in turn, will be incorporated into the Total System Performance Assessment (TSPA) of the potential radioactive waste repository block and vicinity to determine the suitability of Yucca Mountain as a host for the repository. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 2.

R. Clayton

2000-12-19T23:59:59.000Z

106

Sandia National Laboratories: Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Study Shows Large LNG Fires Hotter but Smaller Than Expected On December 6, 2011, in Analysis, Energy Assurance, Infrastructure Security, Modeling, Modeling & Analysis,...

107

Modeling and Analysis  

Broader source: Energy.gov [DOE]

DOE modeling and analysis activities focus on reducing uncertainties and improving transparency in photovoltaics (PV) and concentrating solar power (CSP) performance modeling. The overall goal of...

108

RSL: A parallel Runtime System Library for regional atmospheric models with nesting  

SciTech Connect (OSTI)

RSL is a parallel runtime system library developed at Argonne National Laboratory that is tailored to regular-grid atmospheric models with mesh refinement in the form of two-way interacting nested grids. RSL provides high-level stencil and interdomain communication, irregular domain decomposition, automatic local/global index translation, distributed I/O, and dynamic load balancing. RSL was used with Fortran90 to parallelize a well-known and widely used regional weather model, the Penn State/NCAR Mesoscale model.

Michalakes, J.G.

1997-08-01T23:59:59.000Z

109

Numerical simulations of mesoscale precipitation systems. Final progress report, 1 April-30 June 1981  

SciTech Connect (OSTI)

A numerical model designed for the study of mesoscale weather phenomena is presented. It is a three-dimensional, time-dependent model based upon a mesoscale primitive-equation system, and it includes parameterizations of cloud and precipitation processes, boundary-layer transfers, and ground surface energy and moisture budgets. This model was used to simulate the lake-effect convergence over and in the lee of Lake Michigan in late fall and early winter. The lake-effect convergence is created in advected cold air as it moves first from cold land to the warm constant-temperature lake surface, and then on to cold land. A numerical experiment with a prevailing northwesterly wind is conducted for a period of twelve hours. Two local maxima of the total precipitation are observed along the eastern shore of Lake Michigan. The results in this hypothetical case correspond quite well to the observed precipitation produced by a real event in which the hypothetical conditions are approximately fulfilled.

Dingle, A.N.

1982-05-12T23:59:59.000Z

110

MESOSCALENUMERICAL MODELING OF POLLUTANT TRANSPORT IN COMPLEX TERRAIN R. A. Pielke1j2, R..W. Arritt2, M. Segall, M. D. Moranl, and  

E-Print Network [OSTI]

-case impacts of power plant plumes on U.S. National Park lands in south Florida is presented based that synoptic baroclinicity, mesoscale thermal circulations, and boundary-layer turbulence can separately of the polluted air. Both a mathematical description and examples of numerical model simulations are used

Pielke, Roger A.

111

ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT  

SciTech Connect (OSTI)

The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS M&O 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS M&O 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4) Generation of derivative property models via linear coregionalization with porosity; (5) Post-processing of the simulated models to impart desired secondary geologic attributes and to create summary and uncertainty models; and (6) Conversion of the models into real-world coordinates. The conversion to real world coordinates is performed as part of the integration of the RPM into the Integrated Site Model (ISM) 3.1; this activity is not part of the current analysis. The ISM provides a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site and consists of three components: (1) Geologic Framework Model (GFM); (2) RPM, which is the subject of this AMR; and (3) Mineralogic Model. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 1. Figure 2 shows the geographic boundaries of the RPM and other component models of the ISM.

Clinton Lum

2002-02-04T23:59:59.000Z

112

Sandia National Laboratories: Modeling & Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On September 19, 2013, in Computational Modeling & Simulation, Distribution Grid Integration, Energy, Facilities, Grid Integration, Modeling, Modeling & Analysis, News, News &...

113

OSHWPP model programs guide  

SciTech Connect (OSTI)

Descriptions of model occupational health and safety programs implemented at DOE facilities are presented.

NONE

1995-06-01T23:59:59.000Z

114

PREDICTIVE MODELS. Enhanced Oil Recovery Model  

SciTech Connect (OSTI)

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding; 2 carbon dioxide miscible flooding; 3 in-situ combustion; 4 polymer flooding; and 5 steamflood. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes. The IBM PC/AT version includes a plotting capability to produces a graphic picture of the predictive model results.

Ray, R.M. [DOE Bartlesville Energy Technology Center, Bartlesville, OK (United States)

1992-02-26T23:59:59.000Z

115

Time Series Models: Hidden Markov Models  

E-Print Network [OSTI]

Time Series Models: Hidden Markov Models & Linear Dynamical Systems Sam Roweis Gatsby Computational before. Discrete state: { Moore and Mealy machines (engineering) { stochastic #12;nite state automata (CS chain with stochastic measurements. Gauss-Markov process in a pancake. PSfrag replacements x 1 y 1 x 2 y

Roweis, Sam

116

Time Series Models: Hidden Markov Models  

E-Print Network [OSTI]

Time Series Models: Hidden Markov Models & Linear Dynamical Systems Sam Roweis Gatsby Computational. Discrete state: { Moore and Mealy machines (engineering) { stochastic #12;nite state automata (CS with stochastic measurements. Gauss-Markov process in a pancake. PSfrag replacements x 1 y 1 x 2 y 2 x 3 y 3 x T y

Roweis, Sam

117

Model Validation Status Review  

SciTech Connect (OSTI)

The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and engineered barriers, plus the TSPA model itself Description of the model areas is provided in Section 3, and the documents reviewed are described in Section 4. The responsible manager for the Model Validation Status Review was the Chief Science Officer (CSO) for Bechtel-SAIC Co. (BSC). The team lead was assigned by the CSO. A total of 32 technical specialists were engaged to evaluate model validation status in the 21 model areas. The technical specialists were generally independent of the work reviewed, meeting technical qualifications as discussed in Section 5.

E.L. Hardin

2001-11-28T23:59:59.000Z

118

Energy-consumption modelling  

SciTech Connect (OSTI)

A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

Reiter, E.R.

1980-01-01T23:59:59.000Z

119

Impact of Resolution on Simulation of Closed Mesoscale Cellular Convection Identified by Dynamically Guided Watershed Segmentation  

SciTech Connect (OSTI)

Organized mesoscale cellular convection (MCC) is a common feature of marine stratocumulus that forms in response to a balance between mesoscale dynamics and smaller scale processes such as cloud radiative cooling and microphysics. We use the Weather Research and Forecasting model with chemistry (WRF-Chem) and fully coupled cloud-aerosol interactions to simulate marine low clouds during the VOCALS-REx campaign over the southeast Pacific. A suite of experiments with 3- and 9-km grid spacing indicates resolution-dependent behavior. The simulations with finer grid spacing have smaller liquid water paths and cloud fractions, while cloud tops are higher. The observed diurnal cycle is reasonably well simulated. To isolate organized MCC characteristics we develop a new automated method, which uses a variation of the watershed segmentation technique that combines the detection of cloud boundaries with a test for coincident vertical velocity characteristics. This ensures that the detected cloud fields are dynamically consistent for closed MCC, the most common MCC type over the VOCALS-REx region. We demonstrate that the 3-km simulation is able to reproduce the scaling between horizontal cell size and boundary layer height seen in satellite observations. However, the 9-km simulation is unable to resolve smaller circulations corresponding to shallower boundary layers, instead producing invariant MCC horizontal scale for all simulated boundary layers depths. The results imply that climate models with grid spacing of roughly 3 km or smaller may be needed to properly simulate the MCC structure in the marine stratocumulus regions.

Martini, Matus; Gustafson, William I.; Yang, Qing; Xiao, Heng

2014-11-27T23:59:59.000Z

120

Biosphere Model Report  

SciTech Connect (OSTI)

The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), TSPA-LA. The ERMYN provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs) (Section 6.2), the reference biosphere (Section 6.1.1), the human receptor (Section 6.1.2), and approximations (Sections 6.3.1.4 and 6.3.2.4); (3) Building a mathematical model using the biosphere conceptual model (Section 6.3) and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

D.W. Wu; A.J. Smith

2004-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale  

E-Print Network [OSTI]

Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k --> 0 limit, c0. A numerical solution to the PRISM integral equations is used to determine c0, by adjusting the value of the effective hard sphere diameter, d, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.

J. McCarty; A. J. Clark; J. Copperman; M. G. Guenza

2014-07-03T23:59:59.000Z

122

An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale  

SciTech Connect (OSTI)

Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k ? 0 limit, c{sub 0}. A numerical solution to the PRISM integral equations is used to determine c{sub 0}, by adjusting the value of the effective hard sphere diameter, d{sub HS}, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.

McCarty, J.; Clark, A. J.; Copperman, J.; Guenza, M. G., E-mail: mguenza@uoregon.edu [Department of Chemistry and Biochemistry, and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States)

2014-05-28T23:59:59.000Z

123

Ratchet Model of Baryogenesis  

E-Print Network [OSTI]

We propose a toy model of baryogenesis which applies the `ratchet mechanism,' used frequently in the theory of biological molecular motors, to a model proposed by Dimopoulos and Susskind.

Takeuchi, Tatsu; Sugamoto, Akio

2010-01-01T23:59:59.000Z

124

Ratchet Model of Baryogenesis  

E-Print Network [OSTI]

We propose a toy model of baryogenesis which applies the `ratchet mechanism,' used frequently in the theory of biological molecular motors, to a model proposed by Dimopoulos and Susskind.

Tatsu Takeuchi; Azusa Minamizaki; Akio Sugamoto

2013-01-06T23:59:59.000Z

125

Sandia Modeling Tool Webinar  

Broader source: Energy.gov [DOE]

Hosted by the Energy Department and Western Area Power Administration, this webinar will show attendees about what collaborative, stakeholder-driven modeling is and how the modeling tools and process developed by Sandia can be used in Indian Country.

126

Aircraft collision models  

E-Print Network [OSTI]

Introduction: The threat of midair collisions is one of the most serious problems facing the air traffic control system and has been studied by many researchers. The gas model is one of the models which describe the expected ...

Endoh, Shinsuke

1982-01-01T23:59:59.000Z

127

Optimizing Preventive Maintenance Models  

E-Print Network [OSTI]

Optimizing Preventive Maintenance Models. Michael Bartholomew-Biggs. School of Physics Astronomy and Mathematics, University of Hertfordshire.

128

PREDICTIVE MODELS. Enhanced Oil Recovery Model  

SciTech Connect (OSTI)

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2 carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3 in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4 polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5 steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

Ray, R.M. [DOE Bartlesville Energy Technology Technology Center, Bartlesville, OK (United States)

1992-02-26T23:59:59.000Z

129

IR DIAL performance modeling  

SciTech Connect (OSTI)

We are developing a DIAL performance model for CALIOPE at LLNL. The intent of the model is to provide quick and interactive parameter sensitivity calculations with immediate graphical output. A brief overview of the features of the performance model is given, along with an example of performance calculations for a non-CALIOPE application.

Sharlemann, E.T.

1994-07-01T23:59:59.000Z

130

Model Fire Protection Program  

Broader source: Energy.gov [DOE]

To facilitate conformance with its fire safety directives and the implementation of a comprehensive fire protection program, DOE has developed a number of "model" program documents. These include a comprehensive model fire protection program, model fire hazards analyses and assessments, fire protection system inspection and testing procedures, and related material.

131

A Holographic Energy Model  

E-Print Network [OSTI]

We suggest a holographic energy model in which the energy coming from spatial curvature, matter and radiation can be obtained by using the particle horizon for the infrared cut-off. We show the consistency between the holographic dark-energy model and the holographic energy model proposed in this paper. Then, we give a holographic description of the universe.

P. Huang; Yong-Chang Huang

2012-12-30T23:59:59.000Z

132

Rock Properties Model  

SciTech Connect (OSTI)

The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

C. Lum

2004-09-16T23:59:59.000Z

133

Preliminary Phase Field Computational Model Development  

SciTech Connect (OSTI)

This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus of the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in experiments, special experimental methods were devised to create similar boundary conditions in the iron films. Preliminary MFM studies conducted on single and polycrystalline iron films with small sub-areas created with focused ion beam have correlated quite well qualitatively with phase-field simulations. However, phase-field model dimensions are still small relative to experiments thus far. We are in the process of increasing the size of the models and decreasing specimen size so both have identical dimensions. Ongoing research is focused on validation of the phase-field model. Validation is being accomplished through comparison with experimentally obtained MFM images (in progress), and planned measurements of major hysteresis loops and first order reversal curves. Extrapolation of simulation sizes to represent a more stochastic bulk-like system will require sampling of various simulations (i.e., with single non-magnetic defect, single magnetic defect, single grain boundary, single dislocation, etc.) with distributions of input parameters. These outputs can then be compared to laboratory magnetic measurements and ultimately to simulate magnetic Barkhausen noise signals.

Li, Yulan; Hu, Shenyang Y.; Xu, Ke; Suter, Jonathan D.; McCloy, John S.; Johnson, Bradley R.; Ramuhalli, Pradeep

2014-12-15T23:59:59.000Z

134

Chaos Models in Economics  

E-Print Network [OSTI]

The paper discusses the main ideas of the chaos theory and presents mainly the importance of the nonlinearities in the mathematical models. Chaos and order are apparently two opposite terms. The fact that in chaos can be found a certain precise symmetry (Feigenbaum numbers) is even more surprising. As an illustration of the ubiquity of chaos, three models among many other existing models that have chaotic features are presented here: the nonlinear feedback profit model, one model for the simulation of the exchange rate and one application of the chaos theory in the capital markets.

Sorin Vlad; Paul Pascu; Nicolae Morariu

2010-01-20T23:59:59.000Z

135

UZ Colloid Transport Model  

SciTech Connect (OSTI)

The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

M. McGraw

2000-04-13T23:59:59.000Z

136

Calibrated Properties Model  

SciTech Connect (OSTI)

The purpose of this model report is to document the calibrated properties model that provides calibrated property sets for unsaturated zone (UZ) flow and transport process models (UZ models). The calibration of the property sets is performed through inverse modeling. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.6 and 2.1.1.6). Direct inputs to this model report were derived from the following upstream analysis and model reports: ''Analysis of Hydrologic Properties Data'' (BSC 2004 [DIRS 170038]); ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004 [DIRS 169855]); ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]); ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]). Additionally, this model report incorporates errata of the previous version and closure of the Key Technical Issue agreement TSPAI 3.26 (Section 6.2.2 and Appendix B), and it is revised for improved transparency.

T. Ghezzehej

2004-10-04T23:59:59.000Z

137

Foam process models.  

SciTech Connect (OSTI)

In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

Moffat, Harry K.; Noble, David R.; Baer, Thomas A. (Procter & Gamble Co., West Chester, OH); Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

2008-09-01T23:59:59.000Z

138

Vortex arrays and meso-scale turbulence of self-propelled particles  

E-Print Network [OSTI]

Inspired by the Turing mechanism for pattern formation, we propose a simple self-propelled particle model with short-ranged alignment and anti-alignment at larger distances. It is able to produce orientationally ordered states, periodic vortex patterns as well as meso-scale turbulence. The latter phase resembles observations in dense bacterial suspensions. The model allows a systematic derivation and analysis of a kinetic theory as well as hydrodynamic equations for density and momentum fields. A phase diagram with regions of such pattern formation as well as spatially homogeneous orientational order and disorder is obtained from a linear stability analysis of these continuum equations. Microscopic Langevin simulations of the self-propelled particle system are in agreement with these findings.

Robert Grossmann; Pawel Romanczuk; Markus Br; Lutz Schimansky-Geier

2014-05-30T23:59:59.000Z

139

RHP: HOW CLIMATE MODELS GAIN AND EXERCISE How Climate Models Gain and Exercise Authority  

E-Print Network [OSTI]

-dimensional models, intermediate complexity models, general circulation models, and Earth system models. 2 www

Hulme, Mike

140

Constitutive models in LAME.  

SciTech Connect (OSTI)

The Library of Advanced Materials for Engineering (LAME) provides a common repository for constitutive models that can be used in computational solid mechanics codes. A number of models including both hypoelastic (rate) and hyperelastic (total strain) constitutive forms have been implemented in LAME. The structure and testing of LAME is described in Scherzinger and Hammerand ([3] and [4]). The purpose of the present report is to describe the material models which have already been implemented into LAME. The descriptions are designed to give useful information to both analysts and code developers. Thus far, 33 non-ITAR/non-CRADA protected material models have been incorporated. These include everything from the simple isotropic linear elastic models to a number of elastic-plastic models for metals to models for honeycomb, foams, potting epoxies and rubber. A complete description of each model is outside the scope of the current report. Rather, the aim here is to delineate the properties, state variables, functions, and methods for each model. However, a brief description of some of the constitutive details is provided for a number of the material models. Where appropriate, the SAND reports available for each model have been cited. Many models have state variable aliases for some or all of their state variables. These alias names can be used for outputting desired quantities. The state variable aliases available for results output have been listed in this report. However, not all models use these aliases. For those models, no state variable names are listed. Nevertheless, the number of state variables employed by each model is always given. Currently, there are four possible functions for a material model. This report lists which of these four methods are employed in each material model. As far as analysts are concerned, this information is included only for the awareness purposes. The analyst can take confidence in the fact that model has been properly implemented and the methods necessary for achieving accurate and efficient solutions have been incorporated. The most important method is the getStress function where the actual material model evaluation takes place. Obviously, all material models incorporate this function. The initialize function is included in most material models. The initialize function is called once at the beginning of an analysis and its primary purpose is to initialize the material state variables associated with the model. Many times, there is some information which can be set once per load step. For instance, we may have temperature dependent material properties in an analysis where temperature is prescribed. Instead of setting those parameters at each iteration in a time step, it is much more efficient to set them once per time step at the beginning of the step. These types of load step initializations are performed in the loadStepInit method. The final function used by many models is the pcElasticModuli method which changes the moduli that are to be used by the elastic preconditioner in Adagio. The moduli for the elastic preconditioner are set during the initialization of Adagio. Sometimes, better convergence can be achieved by changing these moduli for the elastic preconditioner. For instance, it typically helps to modify the preconditioner when the material model has temperature dependent moduli. For many material models, it is not necessary to change the values of the moduli that are set initially in the code. Hence, those models do not have pcElasticModuli functions. All four of these methods receive information from the matParams structure as described by Scherzinger and Hammerand.

Hammerand, Daniel Carl; Scherzinger, William Mark

2007-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Postulated Mesoscale Quantum of Internal Friction Hysteresis  

E-Print Network [OSTI]

Evidence is provided, from yet another experiment, for the existence of a mesoscale quantum of internal friction hysteresis, having the value of the electron rest energy divided by the fine structure constant.

Randall D. Peters

2004-05-27T23:59:59.000Z

142

Sandia National Laboratories: Modeling & Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Integration, Wind Energy Sandia finalized and submitted the updated "WECC Wind Power Plant Dynamic Model-ing Guide" and the "WECC PV Power Plant Dynamic Modeling...

143

Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment  

SciTech Connect (OSTI)

We have developed a framework for assessing the leakage risk of geologic carbon sequestration sites. This framework, known as the Certification Framework (CF), emphasizes wells and faults as the primary potential leakage conduits. Vulnerable resources are grouped into compartments, and impacts due to leakage are quantified by the leakage flux or concentrations that could potentially occur in compartments under various scenarios. The CF utilizes several model components to simulate leakage scenarios. One model component is a catalog of results of reservoir simulations that can be queried to estimate plume travel distances and times, rather than requiring CF users to run new reservoir simulations for each case. Other model components developed for the CF and described here include fault characterization using fault-population statistics; fault connection probability using fuzzy rules; well-flow modeling with a drift-flux model implemented in TOUGH2; and atmospheric dense-gas dispersion using a mesoscale weather prediction code.

Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe; Kumar, Navanit; Zhang, Yingqi; Jordan, Preston; Pan, Lehua; Granvold, Patrick; Chow, Fotini K.

2009-06-01T23:59:59.000Z

144

The model coupling toolkit.  

SciTech Connect (OSTI)

The advent of coupled earth system models has raised an important question in parallel computing: What is the most effective method for coupling many parallel models to form a high-performance coupled modeling system? We present our solution to this problem--The Model Coupling Toolkit (MCT). We explain how our effort to construct the Next-Generation Coupler for NCAR Community Climate System Model motivated us to create this toolkit. We describe in detail the conceptual design of the MCT and explain its usage in constructing parallel coupled models. We present preliminary performance results for the toolkit's parallel data transfer facilities. Finally, we outline an agenda for future development of the MCT.

Larson, J. W.; Jacob, R. L.; Foster, I.; Guo, J.

2001-04-13T23:59:59.000Z

145

Studied models Numerical scheme  

E-Print Network [OSTI]

: Sound speed: c0 = 1500m/s Pressure: p0 = 105Pa Density: 0 = 1000kg/m3 Vapor: 1 = 1.4 (1 = 0) Water: 2. Helluy, S. M¨uller H´el`ene Mathis Micro-Macro Modelling and Simulation of Liquid-Vapour Flows #12 approximations H´el`ene Mathis Micro-Macro Modelling and Simulation of Liquid-Vapour Flows #12;Studied models

Helluy, Philippe

146

Modeling urban runoff characteristics  

E-Print Network [OSTI]

the impact that urban1zation has on storm runoff. An accurate method is required to model urban watersheds and to simulate storm runoff. Research Objectives The purpose of this research was to quantitatively define the effect that urbanization has... are typical in the sense that they follow the steps outlined above. These models include: the British Road Research Laboratory Nodel (RRL), 1962; the Chicago Hydrograph Method (NERO), 1970; the Environmental Protection Agency Storm Water Management Model...

Garcia, Alfred

1987-01-01T23:59:59.000Z

147

HOMER Micropower Optimization Model  

SciTech Connect (OSTI)

NREL has developed the HOMER micropower optimization model. The model can analyze all of the available small power technologies individually and in hybrid configurations to identify least-cost solutions to energy requirements. This capability is valuable to a diverse set of energy professionals and applications. NREL has actively supported its growing user base and developed training programs around the model. These activities are helping to grow the global market for solar technologies.

Lilienthal, P.

2005-01-01T23:59:59.000Z

148

Photovoltaics Business Models  

SciTech Connect (OSTI)

This report summarizes work to better understand the structure of future photovoltaics business models and the research, development, and demonstration required to support their deployment.

Frantzis, L.; Graham, S.; Katofsky, R.; Sawyer, H.

2008-02-01T23:59:59.000Z

149

Dispersion Modeling Project  

Broader source: Energy.gov (indexed) [DOE]

Dispersion Modeling Project Nuclear & Criticality Safety Engineering Andrew Vincent Germantown, MD DOE Workshop Savannah River Nuclear Solutions, LLC June, 2012 SRNS-...

150

Models and phenomenology  

E-Print Network [OSTI]

It is evident that models of the knee should match the observational phenomenology. In this talk I discuss a few aspects of phenomenology, which are important not only for the understanding of the knee origin, but also for the general problem of the origin of cosmic rays. Among them are the shape of the energy spectrum, its irregularity, the sharpness of the knee and its fine structure. The classification of models is given and some examples of the most recent models are discussed. The most probable conclusion deduced from this examination is that the knee has an astrophysical origin and the so called 'source' models of the knee are most likely among them.

A. D. Erlykin

2004-11-09T23:59:59.000Z

151

The Standard Model  

ScienceCinema (OSTI)

Fermilab scientist Don Lincoln describes the Standard Model of particle physics, covering both the particles that make up the subatomic realm and the forces that govern them.

Lincoln, Don

2014-08-12T23:59:59.000Z

152

Epidemic modeling techniques for smallpox  

E-Print Network [OSTI]

Infectious disease models predict the impact of outbreaks. Discrepancies between model predictions stem from both the disease parameters used and the underlying mathematics of the models. Smallpox has been modeled extensively ...

McLean, Cory Y. (Cory Yuen Fu)

2004-01-01T23:59:59.000Z

153

Better Buildings Neighborhood Program Business Models Guide:...  

Broader source: Energy.gov (indexed) [DOE]

Guide: HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model HVAC contractor business model...

154

Models of Dynamical Supersymmetry Breaking  

E-Print Network [OSTI]

We review a class of models of dynamical supersymmetry breaking, and give a unified description of these models.

Lisa Randall

1997-06-23T23:59:59.000Z

155

Biosphere Process Model Report  

SciTech Connect (OSTI)

To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor. Collectively, the potential human receptor and exposure pathways form the biosphere model. More detailed technical information and data about potential human receptor groups and the characteristics of exposure pathways have been developed in a series of AMRs and Calculation Reports.

J. Schmitt

2000-05-25T23:59:59.000Z

156

Composite Load Model Evaluation  

SciTech Connect (OSTI)

The WECC load modeling task force has dedicated its effort in the past few years to develop a composite load model that can represent behaviors of different end-user components. The modeling structure of the composite load model is recommended by the WECC load modeling task force. GE Energy has implemented this composite load model with a new function CMPLDW in its power system simulation software package, PSLF. For the last several years, Bonneville Power Administration (BPA) has taken the lead and collaborated with GE Energy to develop the new composite load model. Pacific Northwest National Laboratory (PNNL) and BPA joint force and conducted the evaluation of the CMPLDW and test its parameter settings to make sure that: the model initializes properly, all the parameter settings are functioning, and the simulation results are as expected. The PNNL effort focused on testing the CMPLDW in a 4-bus system. An exhaustive testing on each parameter setting has been performed to guarantee each setting works. This report is a summary of the PNNL testing results and conclusions.

Lu, Ning; Qiao, Hong (Amy)

2007-09-30T23:59:59.000Z

157

Cognitive Systems Cognitive Modeling  

E-Print Network [OSTI]

1 Cognitive Systems Cognitive Modeling Foundations of Information Processing in Natural Barkowsky, Christian Freksa 2 Cognitive Systems: Topics · Introduction · Perception · Memory and Reasoning · Learning and Action · Communication · Empirical Methods 3 Cognitive Modeling: Topics · Cognitive

Bremen, Universität

158

SUSY Model Building  

E-Print Network [OSTI]

I review some of the latest directions in supersymmetric model building, focusing on SUSY breaking mechanisms in the minimal supersymmetric standard model [MSSM], the "little" hierarchy and $\\mu$ problems, etc. I then discuss SUSY GUTs and UV completions in string theory.

Stuart Raby

2007-10-19T23:59:59.000Z

159

String Model Building  

E-Print Network [OSTI]

In this talk I review some recent progress in heterotic and F theory model building. I then consider work in progress attempting to find the F theory dual to a class of heterotic orbifold models which come quite close to the MSSM.

Stuart Raby

2009-11-06T23:59:59.000Z

160

Warm Bias and Parameterization of Boundary Upwelling in Ocean Models  

SciTech Connect (OSTI)

It has been demonstrated that Eastern Boundary Currents (EBC) are a baroclinic intensification of the interior circulation of the ocean due to the emergence of mesoscale eddies in response to the sharp buoyancy gradients driven by the wind-stress and the thermal surface forcing. The eddies accomplish the heat and salt transport necessary to insure that the subsurface flow is adiabatic, compensating for the heat and salt transport effected by the mean currents. The EBC thus generated occurs on a cross-shore scale of order 20-100 km, and thus this scale needs to be resolved in climate models in order to capture the meridional transport by the EBC. Our result indicate that changes in the near shore currents on the oceanic eastern boundaries are linked not just to local forcing, such as coastal changes in the winds, but depend on the basin-wide circulation as well.

Cessi, Paola; Wolfe, Christopher

2012-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

XAFS Model Compound Library  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The XAFS Model Compound Library contains XAFS data on model compounds. The term "model" compounds refers to compounds of homogeneous and well-known crystallographic or molecular structure. Each data file in this library has an associated atoms.inp file that can be converted to a feff.inp file using the program ATOMS. (See the related Searchable Atoms.inp Archive at http://cars9.uchicago.edu/~newville/adb/) This Library exists because XAFS data on model compounds is useful for several reasons, including comparing to unknown data for "fingerprinting" and testing calculations and analysis methods. The collection here is currently limited, but is growing. The focus to date has been on inorganic compounds and minerals of interest to the geochemical community. [Copied, with editing, from http://cars9.uchicago.edu/~newville/ModelLib/

Newville, Matthew

162

Anisotropic Rabi model  

E-Print Network [OSTI]

We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counter-rotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counter-rotating terms. The exact energy spectrum and eigenstates of the generalized model is worked out. The solution is obtained as an elaboration of a recent proposed method for the isotropic limit of the model. In this way, we provide a long sought solution of a cascade of models with immediate relevance in different physical fields, including i) quantum optics: two-level atom in single mode cross electric and magnetic fields; ii) solid state physics: electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; iii) mesoscopic physics: Josephson junctions flux-qubit quantum circuits.

Qiong-Tao Xie; Shuai Cui; Jun-Peng Cao; Luigi Amico; Heng Fan

2014-05-20T23:59:59.000Z

163

Global ice sheet modeling  

SciTech Connect (OSTI)

The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed.

Hughes, T.J.; Fastook, J.L. [Univ. of Maine, Orono, ME (United States). Institute for Quaternary Studies

1994-05-01T23:59:59.000Z

164

Varicella infection modeling.  

SciTech Connect (OSTI)

Infectious diseases can spread rapidly through healthcare facilities, resulting in widespread illness among vulnerable patients. Computational models of disease spread are useful for evaluating mitigation strategies under different scenarios. This report describes two infectious disease models built for the US Department of Veteran Affairs (VA) motivated by a Varicella outbreak in a VA facility. The first model simulates disease spread within a notional contact network representing staff and patients. Several interventions, along with initial infection counts and intervention delay, were evaluated for effectiveness at preventing disease spread. The second model adds staff categories, location, scheduling, and variable contact rates to improve resolution. This model achieved more accurate infection counts and enabled a more rigorous evaluation of comparative effectiveness of interventions.

Jones, Katherine A.; Finley, Patrick D.; Moore, Thomas W.; Nozick, Linda Karen; Martin, Nathaniel; Bandlow, Alisa; Detry, Richard Joseph; Evans, Leland B.; Berger, Taylor Eugen

2013-09-01T23:59:59.000Z

165

Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes.  

SciTech Connect (OSTI)

Most materials microstructural evolution processes progress with multiple processes occurring simultaneously. In this work, we have concentrated on the processes that are active in nuclear materials, in particular, nuclear fuels. These processes are coarsening, nucleation, differential diffusion, phase transformation, radiation-induced defect formation and swelling, often with temperature gradients present. All these couple and contribute to evolution that is unique to nuclear fuels and materials. Hybrid model that combines elements from the Potts Monte Carlo, phase-field models and others have been developed to address these multiple physical processes. These models are described and applied to several processes in this report. An important feature of the models developed are that they are coded as applications within SPPARKS, a Sandiadeveloped framework for simulation at the mesoscale of microstructural evolution processes by kinetic Monte Carlo methods. This makes these codes readily accessible and adaptable for future applications.

Tikare, Veena; Hernandez-Rivera, Efrain; Madison, Jonathan D.; Holm, Elizabeth Ann [Carnegie Mellon University, Pittsburgh, PA; Patterson, Burton R. [University of Florida, Gainesville, FL; Homer, Eric R. [Brigham Young University, Provo, UT

2013-09-01T23:59:59.000Z

166

SPAR Model Structural Efficiencies  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) are supporting initiatives aimed at improving the quality of probabilistic risk assessments (PRAs). Included in these initiatives are the resolution of key technical issues that are have been judged to have the most significant influence on the baseline core damage frequency of the NRCs Standardized Plant Analysis Risk (SPAR) models and licensee PRA models. Previous work addressed issues associated with support system initiating event analysis and loss of off-site power/station blackout analysis. The key technical issues were: Development of a standard methodology and implementation of support system initiating events Treatment of loss of offsite power Development of standard approach for emergency core cooling following containment failure Some of the related issues were not fully resolved. This project continues the effort to resolve outstanding issues. The work scope was intended to include substantial collaboration with EPRI; however, EPRI has had other higher priority initiatives to support. Therefore this project has addressed SPAR modeling issues. The issues addressed are SPAR model transparency Common cause failure modeling deficiencies and approaches Ac and dc modeling deficiencies and approaches Instrumentation and control system modeling deficiencies and approaches

John Schroeder; Dan Henry

2013-04-01T23:59:59.000Z

167

Modeling Compressed Turbulence  

SciTech Connect (OSTI)

From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.

Israel, Daniel M. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

168

Semiempirical models of sunspots  

SciTech Connect (OSTI)

On the basis of spectroscopic observations in the Mg I b1, Fe I 5434 A, and Na I D2 lines, 12 semiempirical models of sunspots of different sizes (r umbral radius, 2-8 arcsec) are constructed for several stages of their development. It is shown that the model of an umbra varies greatly with an increase in umbral radius up to a limiting value of 3.5-4 arcsec (Su = 7.5 MSH), after which the changes are small, and for a fixed umbral radius there is no significant difference between the models of sunspots in different phases of their development. 16 references.

Sobotka, M.

1985-10-01T23:59:59.000Z

169

Tetrade Spin Foam Model  

E-Print Network [OSTI]

We propose a spin foam model of four-dimensional quantum gravity which is based on the integration of the tetrads in the path integral for the Palatini action of General Relativity. In the Euclidian gravity case we show that the model can be understood as a modification of the Barrett-Crane spin foam model. Fermionic matter can be coupled by using the path integral with sources for the tetrads and the spin connection, and the corresponding state sum is based on a spin foam where both the edges and the faces are colored independently with the irreducible representations of the spacetime rotations group.

A. Mikovic

2005-04-26T23:59:59.000Z

170

Modeling EERE Deployment Programs  

SciTech Connect (OSTI)

The purpose of this report is to compile information and conclusions gathered as part of three separate tasks undertaken as part of the overall project, Modeling EERE Deployment Programs, sponsored by the Planning, Analysis, and Evaluation office within the Department of Energys Office of Energy Efficiency and Renewable Energy (EERE). The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address improvements to modeling in the near term, and note gaps in knowledge where future research is needed.

Cort, Katherine A.; Hostick, Donna J.; Belzer, David B.; Livingston, Olga V.

2007-11-08T23:59:59.000Z

171

RSMASS system model development  

SciTech Connect (OSTI)

RSMASS system mass models have been used for more than a decade to make rapid estimates of space reactor power system masses. This paper reviews the evolution of the RSMASS models and summarizes present capabilities. RSMASS has evolved from a simple model used to make rough estimates of space reactor and shield masses to a versatile space reactor power system model. RSMASS uses unique reactor and shield models that permit rapid mass optimization calculations for a variety of space reactor power and propulsion systems. The RSMASS-D upgrade of the original model includes algorithms for the balance of the power system, a number of reactor and shield modeling improvements, and an automatic mass optimization scheme. The RSMASS-D suite of codes cover a very broad range of reactor and power conversion system options as well as propulsion and bimodal reactor systems. Reactor choices include in-core and ex-core thermionic reactors, liquid metal cooled reactors, particle bed reactors, and prismatic configuration reactors. Power conversion options include thermoelectric, thermionic, Stirling, Brayton, and Rankine approaches. Program output includes all major component masses and dimensions, efficiencies, and a description of the design parameters for a mass optimized system. In the past, RSMASS has been used as an aid to identify and select promising concepts for space power applications. The RSMASS modeling approach has been demonstrated to be a valuable tool for guiding optimization of the power system design; consequently, the model is useful during system design and development as well as during the selection process. An improved in-core thermionic reactor system model RSMASS-T is now under development. The current development of the RSMASS-T code represents the next evolutionary stage of the RSMASS models. RSMASS-T includes many modeling improvements and is planned to be more user-friendly. RSMASS-T will be released as a fully documented, certified code at the end of 1998. A radioisotope space power system model RISMASS is also under development. RISMASS will optimize and predict system masses for radioisotope power sources coupled with close-spaced thermionic diodes. Although RSMASS-D models have been developed for a broad variety of space nuclear power and propulsion systems, only a few concepts will be included in the releasable RSMASS-T computer code. A follow-on effort is recommended to incorporate all previous models as well as solar power system models into one general code. The proposed Space Power and propulsion system MASS (SPMASS) code would provide a consistent analysis tool for comparing a very broad range of alternative power and propulsion systems for any required power level and operating conditions. As for RSMASS-T the SPMASS model should be a certified, fully documented computer code available for general use. The proposed computer program would provide space mission planners with the capability to quickly and cost effectively explore power system options for any space mission. The code should be applicable for power requirements from as low as a few milliwatts (solar and isotopic system options) to many megawatts for reactor power and propulsion systems.

Marshall, A.C.; Gallup, D.R.

1998-07-01T23:59:59.000Z

172

Model Discrepancy in the Saturated Path Hydrology Model: Initial Analysis  

E-Print Network [OSTI]

Model Discrepancy in the Saturated Path Hydrology Model: Initial Analysis Tom Fricker University discrepancy in the Saturated Path Hydrology Model (logSPM, Kuczera et al., 2006). The purpose). 1 #12;3 The Saturated Path Hydrology Model We consider the Saturated Path Hydrology Model (log

Oakley, Jeremy

173

Regional Climate Model Projections for the State of Washington  

SciTech Connect (OSTI)

Global climate models do not have sufficient spatial resolution to represent the atmospheric and land surface processes that determine the unique regional heterogeneity of the climate of the State of Washington. If future large-scale weather patterns interact differently with the local terrain and coastlines than current weather patterns, local changes in temperature and precipitation could be quite different from the coarse-scale changes projected by global models. Regional climate models explicitly simulate the interactions between the large-scale weather patterns simulated by a global model and the local terrain. We have performed two 100-year climate simulations using the Weather and Research Forecasting (WRF) model developed at the National Center for Atmospheric Research (NCAR). One simulation is forced by the NCAR Community Climate System Model version 3 (CCSM3) and the second is forced by a simulation of the Max Plank Institute, Hamburg, global model (ECHAM5). The mesoscale simulations produce regional changes in snow cover, cloudiness, and circulation patterns associated with interactions between the large-scale climate change and the regional topography and land-water contrasts. These changes substantially alter the temperature and precipitation trends over the region relative to the global model result or statistical downscaling. To illustrate this effect, we analyze the changes from the current climate (1970-1999) to the mid 21st century (2030-2059). Changes in seasonal-mean temperature, precipitation, and snowpack are presented. Several climatological indices of extreme daily weather are also presented: precipitation intensity, fraction of precipitation occurring in extreme daily events, heat wave frequency, growing season length, and frequency of warm nights. Despite somewhat different changes in seasonal precipitation and temperature from the two regional simulations, consistent results for changes in snowpack and extreme precipitation are found in both simulations.

Salathe, E.; Leung, Lai-Yung R.; Qian, Yun; Zhang, Yongxin

2010-05-05T23:59:59.000Z

174

Refining climate models  

ScienceCinema (OSTI)

Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

2014-06-26T23:59:59.000Z

175

Wire and column modeling  

E-Print Network [OSTI]

The goal of this thesis is to introduce new methods to create intricate perforated shapes in a computing environment. Modeling shapes with a large number of holes and handles, while requiring minimal human interaction, is an unsolved research...

Mandal, Esan

2004-09-30T23:59:59.000Z

176

Model Wind Ordinance  

Broader source: Energy.gov [DOE]

''Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative...

177

Refining climate models  

SciTech Connect (OSTI)

Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

2012-10-31T23:59:59.000Z

178

Theory Modeling and Simulation  

SciTech Connect (OSTI)

Los Alamos has a long history in theory, modeling and simulation. We focus on multidisciplinary teams that tackle complex problems. Theory, modeling and simulation are tools to solve problems just like an NMR spectrometer, a gas chromatograph or an electron microscope. Problems should be used to define the theoretical tools needed and not the other way around. Best results occur when theory and experiments are working together in a team.

Shlachter, Jack [Los Alamos National Laboratory

2012-08-23T23:59:59.000Z

179

Improved steamflood analytical model  

E-Print Network [OSTI]

two field cases, a 45x23x8 model was used that represented 1/8 of a 10-acre 5-spot pattern unit, using typical rock and reservoir fluid properties. In the SPE project case, three models were used: 23x12x12 (2.5 ac), 31x16x12 (5 ac) and 45x23x8 (10 ac...

Chandra, Suandy

2006-10-30T23:59:59.000Z

180

ADVANCED CHEMISTRY BASINS MODEL  

SciTech Connect (OSTI)

The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2004-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SUSY GUT Model Building  

E-Print Network [OSTI]

I discuss an evolution of SUSY GUT model building, starting with the construction of 4d GUTs, to orbifold GUTs and finally to orbifold GUTs within the heterotic string. This evolution is an attempt to obtain realistic string models, perhaps relevant for the LHC. This review is in memory of the sudden loss of Julius Wess, a leader in the field, who will be sorely missed.

Stuart Raby

2008-08-27T23:59:59.000Z

182

Hoechst Celanese Energy Model  

E-Print Network [OSTI]

day, this report documents the key operating variables for optimal operation of plant energy systems, such as boiler load, breakdowns, steam vents and turbo-generator stage flows. LINEAR PROGRAMMING APPROACH Linear programming is an optimization... and for ongoing plant optimization. The model optimizes variable utilities production costs using a linear programming approach. Every operating area provides input to the model for use in forecasting their utilities demand. All costs associated...

Fitzpatrick, B. A.; Gangadhar, K.

183

Learning planar ising models  

SciTech Connect (OSTI)

Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We present the results of numerical experiments evaluating the performance of our algorithm.

Johnson, Jason K [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory; Netrapalli, Praneeth [STUDENT UT AUSTIN

2010-11-12T23:59:59.000Z

184

Generic CSP Performance Model for NREL's System Advisor Model: Preprint  

SciTech Connect (OSTI)

The suite of concentrating solar power (CSP) modeling tools in NREL's System Advisor Model (SAM) includes technology performance models for parabolic troughs, power towers, and dish-Stirling systems. Each model provides the user with unique capabilities that are catered to typical design considerations seen in each technology. Since the scope of the various models is generally limited to common plant configurations, new CSP technologies, component geometries, and subsystem combinations can be difficult to model directly in the existing SAM technology models. To overcome the limitations imposed by representative CSP technology models, NREL has developed a 'Generic Solar System' (GSS) performance model for use in SAM. This paper discusses the formulation and performance considerations included in this model and verifies the model by comparing its results with more detailed models.

Wagner, M. J.; Zhu, G.

2011-08-01T23:59:59.000Z

185

Modal aerosol dynamics modeling  

SciTech Connect (OSTI)

The report presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also reviewed. Described in detail is a computationally efficient numerical technique for simulating aerosol behavior in systems undergoing simultaneous heat transfer, fluid flow, and mass transfer in and between the gas and condensed phases. The technique belongs to a general class of models known as modal aerosol dynamics (MAD) models. These models solve for the temporal and spatial evolution of the particle size distribution function. Computational efficiency is achieved by representing the complete aerosol population as a sum of additive overlapping populations (modes), and solving for the time rate of change of integral moments of each mode. Applications of MAD models for simulating aerosol dynamics in continuous stirred tank aerosol reactors and flow aerosol reactors are provided. For the application to flow aerosol reactors, the discussion is developed in terms of considerations for merging a MAD model with the SIMPLER routine described by Patankar (1980). Considerations for incorporating a MAD model into the U.S. Environmental Protection Agency's Regional Particulate Model are also described. Numerical and analytical techniques for evaluating the size-space integrals of the modal dynamics equations (MDEs) are described. For multimodal logonormal distributions, an analytical expression for the coagulation integrals of the MDEs, applicable for all size regimes, is derived, and is within 20% of accurate numerical evaluation of the same moment coagulation integrals. A computationally efficient integration technique, based on Gauss-Hermite numerical integration, is also derived.

Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S.

1991-02-01T23:59:59.000Z

186

Multiscale Thermohydrologic Model  

SciTech Connect (OSTI)

The purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. Thus, the goal is to predict the range of possible thermal-hydrologic conditions across the repository; this is quite different from predicting a single expected thermal-hydrologic response. The MSTHM calculates the following thermal-hydrologic parameters: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes (Table 1-1). These thermal-hydrologic parameters are required to support ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]). The thermal-hydrologic parameters are determined as a function of position along each of the emplacement drifts and as a function of waste package type. These parameters are determined at various reference locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert. The parameters are also determined at various defined locations in the adjoining host rock. The MSTHM uses data obtained from the data tracking numbers (DTNs) listed in Table 4.1-1. The majority of those DTNs were generated from the following analyses and model reports: (1) ''UZ Flow Model and Submodels'' (BSC 2004 [DIRS 169861]); (2) ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004); (3) ''Calibrated Properties Model'' (BSC 2004 [DIRS 169857]); (4) ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]); (5) ''Thermal Conductivity of the Non-Repository Lithostratigraphic Layers'' (BSC 2004 [DIRS 170033]); (6) ''Ventilation Model and Analysis Report'' (BSC 2004 [DIRS 169862]); (7) ''Heat Capacity Analysis Report'' (BSC 2004 [DIRS 170003]).

T. Buscheck

2004-10-12T23:59:59.000Z

187

Foothills Model Forest Business Strategy  

E-Print Network [OSTI]

Foothills Model Forest Business Strategy 2007 ­ 2012 November 2006 #12;Page ii TABLE OF CONTENTS FOOTHILLS MODEL FOREST Business Strategy for April 2007 to March 2012 1.0 INTRODUCTION....................................................................................................................... 4 2.4 Foothills Model Forest Values

188

Data Modeling and Theory Construction  

E-Print Network [OSTI]

MODELING AND THEORY CONSTRUCTION F. Suppe. The Structure ofMODELING AND THEORY CONSTRUCTION JAN DE LEEUW This paper wasMODELING AND THEORY CONSTRUCTION F????? 1. The Scientist

Jan de Leeuw

2011-01-01T23:59:59.000Z

189

Mesoscale convective complex vs. non-mesoscale convective complex thunderstorms: a comparison of selected meteorological variables  

E-Print Network [OSTI]

MESOSCALE CONVECTIVE CCMPLLX VS. NON-MESOSCALE CONVECTIVE COMPLEX THUNDERSTORMS: A COMPARISON OF SELECTED METEOROLOGICAL VARIABLES A Thesis MICHAkL EUGENE JJOOFARD Submitted to the Graduate College of Texas AJkM University in partial... by MICHAEL EUGENE HOOFARD Approved as to style and content by: a ter . enry (Chairman of Committee) %~5 44 c5 c usan gur c (Member) ona . oc ing (Member) ames . cogg (Head of Department) August 1986 ABSTRACT Nesoscale Convective Complex vs. Non...

Hoofard, Michael Eugene

1986-01-01T23:59:59.000Z

190

The Standard Cosmological Model  

E-Print Network [OSTI]

The Standard Model of Particle Physics (SMPP) is an enormously successful description of high energy physics, driving ever more precise measurements to find "physics beyond the standard model", as well as providing motivation for developing more fundamental ideas that might explain the values of its parameters. Simultaneously, a description of the entire 3-dimensional structure of the present-day Universe is being built up painstakingly. Most of the structure is stochastic in nature, being merely the result of the particular realisation of the "initial conditions" within our observable Universe patch. However, governing this structure is the Standard Model of Cosmology (SMC), which appears to require only about a dozen parameters. Cosmologists are now determining the values of these quantities with increasing precision in order to search for "physics beyond the standard model", as well as trying to develop an understanding of the more fundamental ideas which might explain the values of its parameters. Although it is natural to see analogies between the two Standard Models, some intrinsic differences also exist, which are discussed here. Nevertheless, a truly fundamental theory will have to explain both the SMPP and SMC, and this must include an appreciation of which elements are deterministic and which are accidental. Considering different levels of stochasticity within cosmology may make it easier to accept that physical parameters in general might have a non-deterministic aspect.

Douglas Scott

2005-10-26T23:59:59.000Z

191

Advanced Chemistry Basins Model  

SciTech Connect (OSTI)

The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

2003-02-13T23:59:59.000Z

192

Sandia National Laboratories: Modeling & Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Study Shows Large LNG Fires Hotter but Smaller Than Expected On December 6, 2011, in Analysis, Energy Assurance, Infrastructure Security, Modeling, Modeling & Analysis,...

193

Simple ocean carbon cycle models  

SciTech Connect (OSTI)

Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

Caldeira, K. [Lawrence Livermore National Lab., CA (United States); Hoffert, M.I. [New York Univ., NY (United States). Dept. of Earth System Sciences; Siegenthaler, U. [Bern Univ. (Switzerland). Inst. fuer Physik

1994-02-01T23:59:59.000Z

194

Exponential Family Random Network Models  

E-Print Network [OSTI]

second block model nodal attributes, and the last are joint.second block model nodal attributes, and the last are joint.

Fellows, Ian

2012-01-01T23:59:59.000Z

195

Modelling Quintessential Inflation with Branes  

E-Print Network [OSTI]

I discuss why quintessential inflation model-building is more natural in the context of brane cosmology and study the dynamics of a particular model as an example.

Konstantinos Dimopoulos

2002-10-17T23:59:59.000Z

196

Business models of information aggregators  

E-Print Network [OSTI]

This thesis identifies the specific characteristics of information aggregators, and proposes nine business models appropriate for information aggregators. These nine models are: advertising, brokerage, subscription, ...

Hu, Jiangxia, S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

197

Simulations of amphiphilic fluids using mesoscale lattice-Boltzmann and lattice-gas methods  

E-Print Network [OSTI]

We compare two recently developed mesoscale models of binary immiscible and ternary amphiphilic fluids. We describe and compare the algorithms in detail and discuss their stability properties. The simulation results for the cases of self-assembly of ternary droplet phases and binary water-amphiphile sponge phases are compared and discussed. Both models require parallel implementation and deployment on large scale parallel computing resources in order to achieve reasonable simulation times for three-dimensional models. The parallelisation strategies and performance on two distinct parallel architectures are compared and discussed. Large scale three dimensional simulations of multiphase fluids requires the extensive use of high performance visualisation techniques in order to enable the large quantities of complex data to be interpreted. We report on our experiences with two commercial visualisation products: AVS and VTK. We also discuss the application and use of novel computational steering techniques for the more efficient utilisation of high performance computing resources. We close the paper with some suggestions for the future development of both models.

P. J. Love; M. Nekovee; J. Chin; N. Gonzalez-Segredo; P. V. Coveney

2002-12-06T23:59:59.000Z

198

Ocean General Circulation Models  

SciTech Connect (OSTI)

1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earths climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

Yoon, Jin-Ho; Ma, Po-Lun

2012-09-30T23:59:59.000Z

199

Modeling of engine sprays  

SciTech Connect (OSTI)

Atomization and full-cone sprays from single cylindrical orifices are considered. The following subjects are reviewed: the structure of the breakup region; the structure of the far field; modern models that, given the outcome of the breakup process, compute the steady and transient of sprays; some comparisons with detailed measurements; and some practical applications. The following conclusions are reached: the spray breakup and the development regions are the most relevant in engine applications; the inner structure of the breakup region is still largely unknown; two- and three-dimensional spray models are available but remain mostly untested, particularly in their vaporization and combustion components, in part because of a lack of accurate measurements in controlled engine-type environments; engine applications of such models are, nonetheless, recommended for very valuable learning, interpretative, and exploratory studies, but not for predictions.

Bracco, F.V.

1985-01-01T23:59:59.000Z

200

A Quantum Production Model  

E-Print Network [OSTI]

The production system is a theoretical model of computation relevant to the artificial intelligence field allowing for problem solving procedures such as hierarchical tree search. In this work we explore some of the connections between artificial intelligence and quantum computation by presenting a model for a quantum production system. Our approach focuses on initially developing a model for a reversible production system which is a simple mapping of Bennett's reversible Turing machine. We then expand on this result in order to accommodate for the requirements of quantum computation. We present the details of how our proposition can be used alongside Grover's algorithm in order to yield a speedup comparatively to its classical counterpart. We discuss the requirements associated with such a speedup and how it compares against a similar quantum hierarchical search approach.

Lus Tarrataca; Andreas Wichert

2015-02-06T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Calibrated Properties Model  

SciTech Connect (OSTI)

This report has documented the methodologies and the data used for developing rock property sets for three infiltration maps. Model calibration is necessary to obtain parameter values appropriate for the scale of the process being modeled. Although some hydrogeologic property data (prior information) are available, these data cannot be directly used to predict flow and transport processes because they were measured on scales smaller than those characterizing property distributions in models used for the prediction. Since model calibrations were done directly on the scales of interest, the upscaling issue was automatically considered. On the other hand, joint use of data and the prior information in inversions can further increase the reliability of the developed parameters compared with those for the prior information. Rock parameter sets were developed for both the mountain and drift scales because of the scale-dependent behavior of fracture permeability. Note that these parameter sets, except those for faults, were determined using the 1-D simulations. Therefore, they cannot be directly used for modeling lateral flow because of perched water in the unsaturated zone (UZ) of Yucca Mountain. Further calibration may be needed for two- and three-dimensional modeling studies. As discussed above in Section 6.4, uncertainties for these calibrated properties are difficult to accurately determine, because of the inaccuracy of simplified methods for this complex problem or the extremely large computational expense of more rigorous methods. One estimate of uncertainty that may be useful to investigators using these properties is the uncertainty used for the prior information. In most cases, the inversions did not change the properties very much with respect to the prior information. The Output DTNs (including the input and output files for all runs) from this study are given in Section 9.4.

H. H. Liu

2003-02-14T23:59:59.000Z

202

Appendix 3-3-The complete model formulation for detailed multiple release software product simulation model  

E-Print Network [OSTI]

simulation model In this appendix the model formulations for the detailed simulation model (discussed

Rahmandad, Hazhir

203

The Dynamics of Deterministic Chaos in Numerical Weather Prediction Models  

E-Print Network [OSTI]

Atmospheric weather systems are coherent structures consisting of discrete cloud cells forming patterns of rows/streets, mesoscale clusters and spiral bands which maintain their identity for the duration of their appreciable life times in the turbulent shear flow of the planetary Atmospheric Boundary Layer. The existence of coherent structures (seemingly systematic motion) in turbulent flows has been well established during the last 20 years of research in turbulence. Numerical weather prediction models based on the inherently non-linear Navier-Stokes equations do not give realistic forecasts because of the following inherent limitations: (1) the non-linear governing equations for atmospheric flows do not have exact analytic solutions and being sensitive to initial conditions give chaotic solutions characteristic of deterministic chaos (2) the governing equations do not incorporate the dynamical interactions and co-existence of the complete spectrum of turbulent fluctuations which form an integral part of the large coherent weather systems (3) limitations of available computer capacity necessitates severe truncation of the governing equations, thereby generating errors of approximations (4) the computer precision related roundoff errors magnify the earlier mentioned uncertainties exponentially with time and the model predictions become unrealistic. The accurate modelling of weather phenomena therefore requires alternative concepts and computational techniques. In this paper a universal theory of deterministic chaos applicable to the formation of coherent weather structures in the ABL is presented.

A. Mary Selvam

2003-10-07T23:59:59.000Z

204

Morphological modeling of neurons  

E-Print Network [OSTI]

of the Bifurcation Model . 2. Extension to Multifurcations 3. Diameter Dependence and Rail's Ratio . D. Representation of Somata E. Representation of the Environment 5 7 7 7 9 10 10 14 14 14 16 L-SYSTEM MODELING . A. L-system Grammars Can Generate... morphologies generated for a uniform logical space would have to be mapped into the generally non-uniform physical space. We suggest a so- lution to this problem which involves the use of three-dimensional grids and mapping these grids between the uniform...

Mulchandani, Kishore

1995-01-01T23:59:59.000Z

205

Modeling of buried explosions  

SciTech Connect (OSTI)

Los Alamos National Laboratory has been and continues developing techniques for modeling buried explosions using a large geotechnical centrifuge. When fully developed, the techniques should permit the accurate modeling of large explosions in complex geometries. Our intentional application is to study the phenomena of explosive cavity formation and collapse. However, the same methods should also be applicable to simulation of bursts shallow enough to produce craters, and perhaps even of airbursts in situations where soil overburden is important. We have placed primary emphasis on test bed construction methods and on accurate measurement of the ground shock produced by the explosions. 8 refs., 7 figs.

Gaffney, E.S.; Wohletz, K.H.; House, J.W.; Brown, J.A.

1987-01-01T23:59:59.000Z

206

Pistons modeled by potentials  

E-Print Network [OSTI]

In this article we consider a piston modelled by a potential in the presence of extra dimensions. We analyze the functional determinant and the Casimir effect for this configuration. In order to compute the determinant and Casimir force we employ the zeta function scheme. Essentially, the computation reduces to the analysis of the zeta function associated with a scalar field living on an interval $[0,L]$ in a background potential. Although, as a model for a piston, it seems reasonable to assume a potential having compact support within $[0,L]$, we provide a formalism that can be applied to any sufficiently smooth potential.

Guglielmo Fucci; Klaus Kirsten; Pedro Morales

2011-06-03T23:59:59.000Z

207

HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation  

SciTech Connect (OSTI)

HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where

Reaugh, J E

2011-11-22T23:59:59.000Z

208

High School Students' Modeling Knowledge High School Students' Modeling Knowledge  

E-Print Network [OSTI]

High School Students' Modeling Knowledge High School Students' Modeling Knowledge David Fortus of the authors. #12;High School Students' Modeling Knowledge Abstract Modeling is a core scientific practice a learning progression for this practice, focusing on the late elementary and early middle school years

209

Business surveys modelling with Seasonal-Cyclical Long Memory models  

E-Print Network [OSTI]

Business surveys modelling with Seasonal-Cyclical Long Memory models Ferrara L. and Guégan D. 2nd business surveys released by the European Commission. We introduce an innovative way for modelling those linear models. Keywords: Euro area, nowcasting, business surveys, seasonal, long memory. JEL

Paris-Sud XI, Université de

210

Stochastic Modeling Techniques: Understanding and using hidden Markov models  

E-Print Network [OSTI]

Tutorial Stochastic Modeling Techniques: Understanding and using hidden Markov models Leslie Grateolander kimmen@cse.ucsc.edu 1 #12; Contents 1 Introduction 3 2 Mathematical Foundations of Stochastic Models 4 2 : : : : : : : : : : : : : : : : : : : : : : : : : : 27 7 Validating a model 30 8 Local HMM installation 31 8.1 Obtaining SAM and HMMer

California at Santa Cruz, University of

211

Ecological Modelling 192 (2006) 143159 Nitrogen transformation and transport modeling  

E-Print Network [OSTI]

model; Transformation; Transport; Nitrification; Denitrification; RT3D 1. Introduction Nitrogen of this paper are to develop a nitro- gen transport and transformation model for saturated groundwater systemsEcological Modelling 192 (2006) 143­159 Nitrogen transformation and transport modeling

Clement, Prabhakar

212

Estimation of Two Popular Econometric Models: Random Effects Panel Data Model and Simultaneous Equations Model  

E-Print Network [OSTI]

1994. [9] Greene, W. B. , Econometric Analysis, Pearson /and Semiparametric Panel Econometric Models: Estimation andDEPendent models. This econometric software package was

Liu, Yue

2013-01-01T23:59:59.000Z

213

Short-term hydroelectric generation model. Model documentation report  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Energy Information Administration`s (EIA) Short-Term Hydroelectric Generation Model (STHGM), describe its basic approach, and to provide details on the model structure. This report is intended as a reference document for model analysts, users, and the general public. Documentation of the model is in accordance with the EIA`s legal obligation to provide adequate documentation in support of its models.

NONE

1996-12-01T23:59:59.000Z

214

Modeling the earth system  

SciTech Connect (OSTI)

The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

Ojima, D. [ed.

1992-12-31T23:59:59.000Z

215

Dynamic Modelling, Measurement and  

E-Print Network [OSTI]

Dynamic Modelling, Measurement and Control of Co-rotating Twin-Screw Extruders Justin Rae Elsey, B;Summary Co-rotating twin-screw extruders are unique and versatile machines that are used widely that these extruders are currently being optimally utilised. The most signi cant improvement to the eld of twin-screw

Fernandez, Thomas

216

Introduction Model Formulation  

E-Print Network [OSTI]

Two-Phase Flow Peter Knabner, Estelle Marchand, Torsten M¨uller Department Mathematics Friedrich June 13th, 2011 Peter Knabner, Estelle Marchand, Torsten M¨uller The Mathematics of Porous Media 2011 1 / 30 #12;Introduction Model Formulation Results Outline 1 Introduction Peter Knabner, Estelle Marchand

Gugat, Martin

217

Gas Kick Mechanistic Model  

E-Print Network [OSTI]

-gain and temperature profile in the annulus. This research focuses on these changes in these parameters to be able to detect the occurrence of gas kick and the circulation of the gas kick out from the well. In this thesis, we have developed a model that incorporates...

Zubairy, Raheel

2014-04-18T23:59:59.000Z

218

Rheological Model for Wood  

E-Print Network [OSTI]

Wood as the most important natural and renewable building material plays an important role in the construction sector. Nevertheless, its hygroscopic character basically affects all related mechanical properties leading to degradation of material stiffness and strength over the service life. Accordingly, to attain reliable design of the timber structures, the influence of moisture evolution and the role of time- and moisture-dependent behaviors have to be taken into account. For this purpose, in the current study a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive constitutive model for wood, with all material constants being defined as a function of moisture content, is presented. The corresponding numerical integration approach, with additive decomposition of the total strain is developed and implemented within the framework of the finite element method (FEM). Moreover to preserve a quadratic rate of asymptotic convergence the consistent tangent operator for the whole model is derived. Functionality and capability of the presented material model are evaluated by performing several numerical verification simulations of wood components under different combinations of mechanical loading and moisture variation. Additionally, the flexibility and universality of the introduced model to predict the mechanical behavior of different species are demonstrated by the analysis of a hybrid wood element. Furthermore, the proposed numerical approach is validated by comparisons of computational evaluations with experimental results.

Mohammad Masoud Hassani; Falk K. Wittel; Stefan Hering; Hans J. Herrmann

2014-10-15T23:59:59.000Z

219

Modelling radio communication  

E-Print Network [OSTI]

realistic models of application layer #12;Example ­ multiple radios #12;Very common scenario · HTTP GETModelling radio communication from the perspective of mobile apps Jukka Suomela · Aalto University · Finland WRAWN · 15 July 2014 Addressing real-world challenges, building on existing infrastructure #12

Suomela, Jukka

220

Multidimensional Model Programming  

E-Print Network [OSTI]

#12;Multidimensional Model Programming SQL Server 2012 Books Online Summary: Analysis Services provides several APIs that you can use to program against an Analysis Services instance this information to choose the programming interface that best meets the requirements of a particular project

Hunt, Galen

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

MODIS-Derived Boundary Conditions for a Mesoscale Climate Model: Application to Irrigated Agriculture in the Euphrates Basin  

E-Print Network [OSTI]

-level water consumption were more than doubled relative to simulations that did not incorporate MODIS data. 1. Introduction The dual pressures of local water consumption and global climate change threaten of potential evapotranspiration (PET) from the surface (Penman 1948). Surface conditions, including soil mois

Evans, Jason

222

Development of a Meso-Scale Material Model for Ballistic Fabric and Its Use in Flexible-Armor  

E-Print Network [OSTI]

.g., as reinforcements in rigid polymer matrix composites, PMCs, for lightweight vehicle- armor systems). Flexible-amide) fabric and an E-glass fiber/ethyl cellulose composite in body-armor systems can be linked to the Korean of the body- armor vests relative to up to 0.30 caliber threats, ceramic insert strike-plates are commonly

Grujicic, Mica

223

Experiences with the Application of the Non-Hydrostatic Mesoscale Model GESIMA for assessing Wind Potential in  

E-Print Network [OSTI]

.physik.uni-oldenburg.de/ehf *GKSS Research Center Geesthacht, Max-Planck-Stra?e 1, D-21494 Geesthacht, Germany To asses wind has been developed at the GKSS Research Center in Geesthacht, Germany ([8]). It numerically solves

Heinemann, Detlev

224

Mesoscale Eddy Energy Locality in an Idealized Ocean Model IAN GROOMS, LOUIS-PHILIPPE NADEAU, AND K. SHAFER SMITH  

E-Print Network [OSTI]

. SHAFER SMITH Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York

Smith, K. Shafer

225

LAGRANGIAN COORDINATES AND MULTICLASS MODELS  

E-Print Network [OSTI]

LAGRANGIAN COORDINATES AND MULTICLASS MODELS The kinematic wave model, also known as the Lighthill. introduced a kinematic wave model with multiple user classes (7). They show qualitatively Formulation of Multiclass Kinematic Wave Model Femke van Wageningen-Kessels, Hans van Lint, Serge P

Vuik, Kees

226

Interactive modeler for cloth draping  

E-Print Network [OSTI]

Cloth modeling is a challenging field in computer graphics, being a typical example of a soft-object. One of the approaches toward modeling cloth is a geometric approach. This thesis develops a conceptual model for modeling cloth drape using a...

Thumrugoti, Umakanth

2012-06-07T23:59:59.000Z

227

A model for projectile fragmentation  

E-Print Network [OSTI]

A model for projectile fragmentation is developed whose origin can be traced back to the Bevalac era. The model positions itself between the phenomenological EPAX parametrization and microscopic transport models like "Heavy Ion Phase Space Exploration" (HIPSE) model and antisymmetrised molecular dynamics (AMD) model. A very simple impact parameter dependence of input temperature is incorporated in the model which helps to analyze the more peripheral collisions. The model is applied to calculate the charge, isotopic distributions, average number of intermediate mass fragments and the average size of largest cluster at different $Z_{bound}$ of different projectile fragmentation reactions at different energies.

Chaudhuri, G; Gupta, S Das

2012-01-01T23:59:59.000Z

228

Business Model Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Run a Program Getting Started Business Model Resources Business Model Resources Business Models Guide Business Model Planning Resources - Working with Partners Sample Program...

229

Nuclear Systems Modeling & Simulation | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Modeling and Simulation SHARE Nuclear Systems Modeling and Simulation Reactor physics depletion model for the Advanced Test Reactor Reactor physics depletion model for the...

230

GROUT HOPPER MODELING STUDY  

SciTech Connect (OSTI)

The Saltstone facility has a grout hopper tank to provide agitator stirring of the Saltstone feed materials. The tank has about 300 gallon capacity to provide a larger working volume for the grout slurry to be held in case of a process upset, and it is equipped with a mechanical agitator, which is intended to keep the grout in motion and agitated so that it won't start to set up. The dry feeds and the salt solution are already mixed in the mixer prior to being transferred to the hopper tank. The hopper modeling study through this work will focus on fluid stirring and agitation, instead of traditional mixing in the literature, in order to keep the tank contents in motion during their residence time so that they will not be upset or solidified prior to transferring the grout to the Saltstone disposal facility. The primary objective of the work is to evaluate the flow performance for mechanical agitators to prevent vortex pull-through for an adequate stirring of the feed materials and to estimate an agitator speed which provides acceptable flow performance with a 45{sup o} pitched four-blade agitator. In addition, the power consumption required for the agitator operation was estimated. The modeling calculations were performed by taking two steps of the Computational Fluid Dynamics (CFD) modeling approach. As a first step, a simple single-stage agitator model with 45{sup o} pitched propeller blades was developed for the initial scoping analysis of the flow pattern behaviors for a range of different operating conditions. Based on the initial phase-1 results, the phase-2 model with a two-stage agitator was developed for the final performance evaluations. A series of sensitivity calculations for different designs of agitators and operating conditions have been performed to investigate the impact of key parameters on the grout hydraulic performance in a 300-gallon hopper tank. For the analysis, viscous shear was modeled by using the Bingham plastic approximation. Steady state analyses with a two-equation turbulence model were performed with the FLUENT{trademark} codes. All analyses were based on three-dimensional results. Recommended operational guidance was developed by using the basic concept that local shear rate profiles and flow patterns can be used as a measure of hydraulic performance and spatial stirring. Flow patterns were estimated by a Lagrangian integration technique along the flow paths from the material feed inlet. The modeling results show that when the two-stage agitator consisting of a 45{sup o} pitched propeller and radial flat-plate blades is run at 140 rpm speed with 28 in diameter, the agitator provides an adequate stirring of the feed materials for a wide range of yield stresses (1 to 21 Pa) and the vortex system is shed into the remote region of the tank boundary by the blade passage in an efficient way. The results of this modeling study were used to develop the design guidelines for the agitator stirring and dispersion of the Saltstone feed materials in a hopper tank.

Lee, S.

2011-08-30T23:59:59.000Z

231

LLNL Chemical Kinetics Modeling Group  

SciTech Connect (OSTI)

The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

2008-09-24T23:59:59.000Z

232

Natural Poincare gauge model  

SciTech Connect (OSTI)

Because it acts on space-time and is not semisimple, the Poincare group cannot lead to a gauge theory of the usual kind. A candidate model is discussed which keeps itself as close as possible to the typical gauge scheme. Its field equations are the Yang-Mills equations for the Poincare group. It is shown that there exists no Lagrangian for these equations.

Aldrovandi, R.; Pereira, J.G.

1986-05-15T23:59:59.000Z

233

The Paradata Information Model  

E-Print Network [OSTI]

the Strawman: Generic Longitudinal Business Process Model (GLBPM) Specializing GLBPM The PIM Formalism Sequencing Data Collection, Data Processing and Data Understanding Activities The Microarray Experiment Use Case Understanding Sequences The Gamification... Understanding Sequences The Gamification of GSBPM Next Steps 2 PARADATA IN THE NATIONAL CHILDRENS STUDY Use Case 3 In the NCS so-called operational data elements were defined and designed to assist in the assessment of feasibility, acceptability...

Greenfield, Jay; Carpenter, Danielle

2013-04-02T23:59:59.000Z

234

Paraphrastic Language Models  

E-Print Network [OSTI]

Paraphrastic Language Models X. Liu1, M. J. F. Gales & P. C. Woodland Cambridge University Engineering Department Trumpington Street, Cambridge CB2 1PZ, England Abstract Natural languages are known for their expressive richness. Many sentences can... . In section 7 a range of para- phrastic LMs are evaluated on two state-of-the-art speech recognition tasks for English conversational telephone speech and Chinese broadcast speech respectively. Section 8 is the conclusion and possible future work. 2...

Liu, X.; Gales, M. J. F.; Woodland, P. C.

2014-04-30T23:59:59.000Z

235

Chaplygin electron gas model  

E-Print Network [OSTI]

We provide a new electromagnetic mass model admitting Chaplygin gas equation of state. We investigate three specializations, the first characterized by a vanishing effective pressure, the second provided with a constant effective density and the third is described by a constant effective pressure. For these specializations two particular cases are discussed. In addition, for specialization I, case I we found isotropic coordinate as well as Kretschmann scalar, and for specialization III, case II two special scenarios have been studied.

I. Radinschi; F. Rahaman; M. Kalam; K. Chakraborty

2008-11-01T23:59:59.000Z

236

Recovery Boiler Modeling  

E-Print Network [OSTI]

, east, e, west, w, bot tom, b, and top, t, neighbors. The neighboring cou pling coefficients (an, a., .. , etc) express the magnitudes of the convection and diffusion which occur across the control volume boundaries. The variable b p represents... represents a model of one half of the recovery boiler. The boiler has three air levels. The North, South and East boundaries of the computational domain represent the water walls of the boiler. The West boundary represents a symmetry plane. It should...

Abdullah, Z.; Salcudean, M.; Nowak, P.

237

Anomaly for Model Building  

E-Print Network [OSTI]

A simple algorithm to calculate the group theory factor entering in anomalies at four and six dimensions for SU(N) and SO(N) groups in terms of the Casimir invariants of their subgroups is presented. Explicit examples of some of the lower dimensional representations of $SU(n), n \\leq 5$ and SO(10) groups are presented, which could be used for model building in four and six dimensions.

Utpal Sarkar

2006-06-19T23:59:59.000Z

238

Radiolysis Process Model  

SciTech Connect (OSTI)

Assessing the performance of spent (used) nuclear fuel in geological repository requires quantification of time-dependent phenomena that may influence its behavior on a time-scale up to millions of years. A high-level waste repository environment will be a dynamic redox system because of the time-dependent generation of radiolytic oxidants and reductants and the corrosion of Fe-bearing canister materials. One major difference between used fuel and natural analogues, including unirradiated UO2, is the intense radiolytic field. The radiation emitted by used fuel can produce radiolysis products in the presence of water vapor or a thin-film of water (including OH and H radicals, O2-, eaq, H2O2, H2, and O2) that may increase the waste form degradation rate and change radionuclide behavior. H2O2 is the dominant oxidant for spent nuclear fuel in an O2 depleted water environment, the most sensitive parameters have been identified with respect to predictions of a radiolysis model under typical conditions. As compared with the full model with about 100 reactions it was found that only 30-40 of the reactions are required to determine [H2O2] to one part in 105 and to preserve most of the predictions for major species. This allows a systematic approach for model simplification and offers guidance in designing experiments for validation.

Buck, Edgar C.; Wittman, Richard S.; Skomurski, Frances N.; Cantrell, Kirk J.; McNamara, Bruce K.; Soderquist, Chuck Z.

2012-07-17T23:59:59.000Z

239

Modeling volcanic ash dispersal  

ScienceCinema (OSTI)

Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

None

2011-10-06T23:59:59.000Z

240

Sequence modelling and an extensible data model for genomic database  

SciTech Connect (OSTI)

The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS's do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data model that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the Extensible Object Model'', to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.

Li, Peter Wei-Der (California Univ., San Francisco, CA (United States) Lawrence Berkeley Lab., CA (United States))

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sequence modelling and an extensible data model for genomic database  

SciTech Connect (OSTI)

The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS`s do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data model that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the ``Extensible Object Model``, to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.

Li, Peter Wei-Der [California Univ., San Francisco, CA (United States); [Lawrence Berkeley Lab., CA (United States)

1992-01-01T23:59:59.000Z

242

Modeling for Airborne Contamination  

SciTech Connect (OSTI)

The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift walls. The gamma-ray scattering properties of concrete are sufficiently similar to those of the host rock and proposed insert material; use of concrete will have no significant impact on the conclusions. The information in this report is presented primarily for use in performing pre-closure radiological safety evaluations of radiological contaminants, but it may also be used to develop strategies for contaminant leak detection and monitoring in the MGR. Included in this report are the methods for determining the source terms and release fractions, and mathematical models and model parameters for contaminant transport and distribution within the repository. Various particle behavior mechanisms that affect the transport of contaminant are included. These particle behavior mechanisms include diffusion, settling, resuspension, agglomeration and other deposition mechanisms.

F.R. Faillace; Y. Yuan

2000-08-31T23:59:59.000Z

243

Review of Wind Energy Forecasting Methods for Modeling Ramping Events  

SciTech Connect (OSTI)

Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

2011-03-28T23:59:59.000Z

244

Comparison of Photovoltaic Models in the System Advisor Model: Preprint  

SciTech Connect (OSTI)

The System Advisor Model (SAM) is free software developed by the National Renewable Energy Laboratory (NREL) for predicting the performance of renewable energy systems and analyzing the financial feasibility of residential, commercial, and utility-scale grid-connected projects. SAM offers several options for predicting the performance of photovoltaic (PV) systems. The model requires that the analyst choose from three PV system models, and depending on that choice, possibly choose from three module and two inverter component models. To obtain meaningful results from SAM, the analyst must be aware of the differences between the model options and their applicability to different modeling scenarios. This paper presents an overview the different PV model options and presents a comparison of results for a 200-kW system using different model options.

Blair, N. J.; Dobos, A. P.; Gilman, P.

2013-08-01T23:59:59.000Z

245

Modeling prosodic features in language models for meetings.  

E-Print Network [OSTI]

In this paper we investigate the application of a novel technique for language modeling - a hierarchical Bayesian language model (LM) based on the Pitman-Yor process - on automatic speech recognition (ASR) for multiparty meetings. The hierarchical...

Huang, Songfang; Renals, Steve

2007-01-01T23:59:59.000Z

246

Model building in neural networks with hidden Markov models  

E-Print Network [OSTI]

This thesis concerns the automatic generation of architectures for neural networks and other pattern recognition models comprising many elements of the same type. The requirement for such models, with automatically ...

Wynne-Jones, Michael

247

Random Item Modeling: An Extension and Generalization of MIRID models  

E-Print Network [OSTI]

be seen in both the RF- and the RR-MIRD models and meets ourthe FR- MIRID and the RR-MIRD show the better fit than thestudy shows how various RI-MIRD models fit verbal aggression

Lee, Yongsang

2010-01-01T23:59:59.000Z

248

Testing of the METSTAT model  

SciTech Connect (OSTI)

The METSTAT model is a comprehensive model for estimating insolation on an hourly basis from cloud cover and other meteorological data. However, the METSTAT model does not reproduce the statistics found in measured daily data during periods of extensive cloud cover. In this study, METSTAT modeled estimates and measured hourly solar radiation data from Burns and Eugene Oregon are examined and compared. A source of the discrepancy between the modeled and measured data is identified. Slight modifications to the METSTAT model that significantly reduce the discrepancy are demonstrated for the Burns and Eugene sites.

Vignola, F. [Univ. of Oregon, Eugene, OR (United States). Physics Dept.

1997-12-31T23:59:59.000Z

249

EG-Models -A New Journal for Digital Geometry Models  

E-Print Network [OSTI]

to build up large col- lections of plaster models in the 19th century for educational purposes and the plaster collections with mod- ern computer tools. But the possibilities of the digital models go well beyond those of the libraries with classical plaster shapes and dynamic steel models in earlier days

Polthier, Konrad

250

Gas Distribution Modeling using Sparse Gaussian Process Mixture Models  

E-Print Network [OSTI]

Gas Distribution Modeling using Sparse Gaussian Process Mixture Models Cyrill Stachniss1 Christian-- In this paper, we consider the problem of learning a two dimensional spatial model of a gas distribution with a mobile robot. Building maps that can be used to accurately predict the gas concentration at query

Stachniss, Cyrill

251

Chemical kinetics modeling  

SciTech Connect (OSTI)

This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

252

Models of granular ratchets  

E-Print Network [OSTI]

We study a general model of granular Brownian ratchet consisting of an asymmetric object moving on a line and surrounded by a two-dimensional granular gas, which in turn is coupled to an external random driving force. We discuss the two resulting Boltzmann equations describing the gas and the object in the dilute limit and obtain a closed system for the first few moments of the system velocity distributions. Predictions for the net ratchet drift, the variance of its velocity fluctuations and the transition rates in the Markovian limit, are compared to numerical simulations and a fair agreement is observed.

G. Costantini; A. Puglisi; U. Marini Bettolo Marconi

2009-05-26T23:59:59.000Z

253

Integrated Assessment Modeling  

SciTech Connect (OSTI)

This paper discusses the role of Integrated Assessment models (IAMs) in climate change research. IAMs are an interdisciplinary research platform, which constitutes a consistent scientific framework in which the large-scale interactions between human and natural Earth systems can be examined. In so doing, IAMs provide insights that would otherwise be unavailable from traditional single-discipline research. By providing a broader view of the issue, IAMs constitute an important tool for decision support. IAMs are also a home of human Earth system research and provide natural Earth system scientists information about the nature of human intervention in global biogeophysical and geochemical processes.

Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Janetos, Anthony C.; Kim, Son H.; Wise, Marshall A.; McJeon, Haewon C.

2012-10-31T23:59:59.000Z

254

Modeling & Simulation publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0StatementsMixing UpModeling & Simulation

255

Enterprise Risk Management Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects the FutureEnrico Rossi College2005Model The

256

Sandia National Laboratories: Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation TechnologyWindInternational SmartModeling Sandia and

257

Model Verification and Validation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8Mistakes to Avoid Mistakes toU.S. DOE OfficeModel

258

Sandia National Laboratories: Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLosSandia ParticipatedBuilding a MicrogridModeling

259

Stochastic modeling of Congress  

E-Print Network [OSTI]

We analyze the dynamics of growth of the number of congressmen supporting the resolution HR1207 to audit the Federal Reserve. The plot of the total number of co-sponsors as a function of time is of "Devil's staircase" type. The distribution of the numbers of new co-sponsors joining during a particular day (step height) follows a power law. The distribution of the length of intervals between additions of new co-sponsors (step length) also follows a power law. We use a modification of Bak-Tang-Wiesenfeld sandpile model to simulate the dynamics of Congress and obtain a good agreement with the data.

Simkin, M V

2010-01-01T23:59:59.000Z

260

Optimal Model-Based Production Planning  

E-Print Network [OSTI]

1 Optimal Model-Based Production Planning for Refinery Operation Abdulrahman Alattas Advisor;2 Outline Introduction Problem Statement Refinery Planning Model Development LP Planning Models NLP Planning Models Conclusion #12;3 Introduction Refinery production planning models Optimizing refinery

Grossmann, Ignacio E.

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A framework for benchmarking land models  

E-Print Network [OSTI]

their inclu- sion in Earth system models (ESMs). State-of-land models cou- pled to Earth system models should simulateland models within Earth system models, however, can help

2012-01-01T23:59:59.000Z

262

Tools for dynamic model development  

E-Print Network [OSTI]

For this thesis, several tools for dynamic model development were developed and analyzed. Dynamic models can be used to simulate and optimize the behavior of a great number of natural and engineered systems, from the ...

Schaber, Spencer Daniel

2014-01-01T23:59:59.000Z

263

Models for solvated biomolecular structures  

E-Print Network [OSTI]

Point Charge / Extended (SPC/E) [15] [100] and Transferableexplicit water models). In both SPC/E and TIP3P, the siteearlier, models such as TIP3P and SPC/E describe water in a

Cerutti, David

2007-01-01T23:59:59.000Z

264

3D Modeling with Silhouettes  

E-Print Network [OSTI]

We present a new sketch-based modeling approach in which models are interactively designed by drawing their 2D silhouettes from different views. The core idea of our paper is to limit the input to 2D silhouettes, removing ...

Rivers, Alec Rothmyer

265

Phenomenology Beyond the Standard Model  

E-Print Network [OSTI]

An elementary review of models and phenomenology for physics beyond the Standard Model (excluding supersymmetry). The emphasis is on LHC physics. Based upon a talk given at the Physics at LHC conference, Vienna, 13-17 July 2004.

Joseph D. Lykken

2005-03-16T23:59:59.000Z

266

The DCC Curation Lifecycle Model  

E-Print Network [OSTI]

The DCC Curation Lifecycle Model provides a graphical high level overview of the stages required for successful curation and preservation of data from initial conceptualisation or receipt. The model can be used to plan activities within...

Higgins, Sarah

2009-01-01T23:59:59.000Z

267

Modeling applied to problem solving  

E-Print Network [OSTI]

We describe a modeling approach to help students learn expert problem solving. Models are used to present and hierarchically organize the syllabus content and apply it to problem solving, but students do not develop and ...

Pawl, Andrew

268

Geologic Framework Model (GFM2000)  

SciTech Connect (OSTI)

The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the geologic framework model (200 feet [61 meters]), discussed in Section 6.4.2, limits the size of features that can be resolved by the model but is appropriate for the distribution of data available and its intended use. Uncertainty and limitations are discussed in Section 6.6 and model validation is discussed in Section 7.

T. Vogt

2004-08-26T23:59:59.000Z

269

Copula Based Hierarchical Bayesian Models  

E-Print Network [OSTI]

WITH THE SAME MARGINAL AND CONDITIONAL LINK . 9 III.1. Random effects model . . . . . . . . . . . . . . . . . . . . 12 III.1.1. Logistic link with bridge random effects . . . . . 15 III.1.2. Log-log link with positive stable random effects . 19 III.1.3. Logistic... probabilities for models of various order . . . . . . . . . . . 58 8. Comparison among various mixture-copula models . . . . . . . . . . 59 9. DIC, AAPE and AAD for the two competing models . . . . . . . . . 93 10. Posterior summary of parameters for the two...

Ghosh, Souparno

2010-10-12T23:59:59.000Z

270

Business Model Guide Executive Summary  

Broader source: Energy.gov [DOE]

The Business Model Guide Executive Summary by the U.S. Department of Energy's Better Buildings Neighborhood Program.

271

Computer aided nuclear reactor modeling  

E-Print Network [OSTI]

CHAPTER Page IV ALPHA ARCHITECTURE Design Philosophy Abstract Data Type Based Modules Grouping by Functions Miscellaneous Design Influences Architecture . . X Window System . Editor Library Model Library User Interface Library . V CONCLUSIONS... Connected Model . . . . , . . . 31 12 13 Header Section Editor Editing a "Choice" Attribute A Table of Vectors . 32 33 . 34 14 15 16 Current Reactor Modeling Schematic Reactor Modeling Schematic with Alpha Public Header File of Vertex Module...

Warraich, Khalid Sarwar

1995-01-01T23:59:59.000Z

272

Nonparametric GARCH Models Peter Buhlmann  

E-Print Network [OSTI]

Nonparametric GARCH Models Peter Buhlmann #3; Seminar fur Statistik Federal Institute describe a nonparametric GARCH model of #12;rst order and pro- pose a simple iterative algorithm for its GARCH(1,1) modelling, particularly when asymmetries are present in the data. We show how the basic

McNeil, Alexander J.

273

Reliability onMultilayerModels  

E-Print Network [OSTI]

Network Reliability Analysis Based onMultilayerModels László Jereb, Péter Bajor, Attila Kiss a reliability analysis approach which is based on the multilayer model of the telecommunication network. Simple two­state reliability models are assigned to the network elements making it possible to describe

László, Jereb

274

Introduction Cognitive Models of Science  

E-Print Network [OSTI]

Introduction Cognitive Models of Science Ronald N. Giere MINNESOTA STUDIES IN THE PHILOSOPHY OF SCIENCE VOLUME XV Cognitive Models of Science RONALD N. GIERE, EDITOR Terms and Conditions: You may use://www.upress.umn.edu/Books/K/kellert_scientific.html http://www.mcps.umn.edu #12;#12;Cognitive Models of Science, Volume XV RONALD N. GIERE UNIVERSITY

Janssen, Michel

275

Regions in Energy Market Models  

SciTech Connect (OSTI)

This report explores the different options for spatial resolution of an energy market model--and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

Short, W.

2007-02-01T23:59:59.000Z

276

Biomass from Combined Backseatter Modeling  

E-Print Network [OSTI]

and SAR back- scatter. In this article we discuss' the use of models to help develop a relationship to an airbomw SAR (AIB- SAB) image over a fi?rested area in Maine. A relationship derived totall!l from model results was fi?und to undervs- timate biomass. Calibrating the modeled backscatter with limited AIRSAB

Weishampel, John F.

277

RMP Colloquia Modeling molecular motors  

E-Print Network [OSTI]

The authors present general considerations and simple models for the operation of isothermal motors at small structural differences from the usual Carnot engines. Turning to more explicit models for a single motorRMP Colloquia Modeling molecular motors Frank Julicher,* Armand Ajdari, and Jacques Prost

Jlicher, Frank

278

Bianchi Models with Chaplygin Gas  

E-Print Network [OSTI]

Einstein Gravitational Field Equations (EFE) of Chaplygin gas dominated Bianchi-type models are obtained by using metric approximation. The solutions of equations for a special case, namely Bianchi I model which is a generalization of isotropic Friedmann-Robertson-Walker (FRW) cosmology, are obtained. The early and late behaviours of some kinematic parameters in model are presented in graphically.

Glin; Uluyazi; zgr Sevinc

2012-09-13T23:59:59.000Z

279

Advanced Chemistry Basins Model  

SciTech Connect (OSTI)

The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2002-11-10T23:59:59.000Z

280

Precipitation and Air Pollution at Mountain and Plain Stations in Northern China: Insights Gained from Observations and Modeling  

SciTech Connect (OSTI)

We analyzed 40 year data sets of daily average visibility (a proxy for surface aerosol concentration) and hourly precipitation at seven weather stations, including three stations located on the Taihang Mountains, during the summertime in northern China. There was no significant trend in summertime total precipitation at almost all stations. However, light rain decreased, whereas heavy rain increased as visibility decreased over the period studied. The decrease in light rain was seen in both orographic-forced shallow clouds and mesoscale stratiform clouds. The consistent trends in observed changes in visibility, precipitation, and orographic factor appear to be a testimony to the effects of aerosols. The potential impact of large-scale environmental factors, such as precipitable water, convective available potential energy, and vertical wind shear, on precipitation was investigated. No direct links were found. To validate our observational hypothesis about aerosol effects, Weather Research and Forecasting model simulations with spectral-bin microphysics at the cloud-resolving scale were conducted. Model results confirmed the role of aerosol indirect effects in reducing the light rain amount and frequency in the mountainous area for both orographic-forced shallow clouds and mesoscale stratiform clouds and in eliciting a different response in the neighboring plains. The opposite response of light rain to the increase in pollution when there is no terrain included in the model suggests that orography is likely a significant factor contributing to the opposite trends in light rain seen in mountainous and plain areas.

Guo, Jianping; Deng, Minjun; Fan, Jiwen; Li, Zhanqing; Chen, Qian; Zhai, Panmao; Dai, Zhijian; Li, Xiaowen

2014-04-27T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys  

SciTech Connect (OSTI)

Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubble evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.

Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.

2011-06-15T23:59:59.000Z

282

Model documentation report: Transportation sector model of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

Not Available

1994-03-01T23:59:59.000Z

283

Key challenges to model-based design : distinguishing model confidence from model validation  

E-Print Network [OSTI]

Model-based design is becoming more prevalent in industry due to increasing complexities in technology while schedules shorten and budgets tighten. Model-based design is a means to substantiate good design under these ...

Flanagan, Genevieve (Genevieve Elise Cregar)

2012-01-01T23:59:59.000Z

284

Inventory of state energy models  

SciTech Connect (OSTI)

These models address a variety of purposes, such as supply or demand of energy or of certain types of energy, emergency management of energy, conservation in end uses of energy, and economic factors. Fifty-one models are briefly described as to: purpose; energy system; applications;status; validation; outputs by sector, energy type, economic and physical units, geographic area, and time frame; structure and modeling techniques; submodels; working assumptions; inputs; data sources; related models; costs; references; and contacts. Discussions in the report include: project purposes and methods of research, state energy modeling in general, model types and terminology, and Federal legislation to which state modeling is relevant. Also, a state-by-state listing of modeling efforts is provided and other model inventories are identified. The report includes a brief encylopedia of terms used in energy models. It is assumed that many readers of the report will not be experienced in the technical aspects of modeling. The project was accomplished by telephone conversations and document review by a team from the Colorado School of Mines Research Institute and the faculty of the Colorado School of Mines. A Technical Committee (listed in the report) provided advice during the course of the project.

Melcher, A.G.; Gist, R.L.; Underwood, R.G.; Weber, J.C.

1980-03-31T23:59:59.000Z

285

Detailed Physical Trough Model for NREL's Solar Advisor Model: Preprint  

SciTech Connect (OSTI)

Solar Advisor Model (SAM) is a free software package made available by the National Renewable Energy Laboratory (NREL), Sandia National Laboratory, and the US Department of Energy. SAM contains hourly system performance and economic models for concentrating solar power (CSP) systems, photovoltaic, solar hot-water, and generic fuel-use technologies. Versions of SAM prior to 2010 included only the parabolic trough model based on Excelergy. This model uses top-level empirical performance curves to characterize plant behavior, and thus is limited in predictive capability for new technologies or component configurations. To address this and other functionality challenges, a new trough model; derived from physical first principles was commissioned to supplement the Excelergy-based empirical model. This new 'physical model' approaches the task of characterizing the performance of the whole parabolic trough plant by replacing empirical curve-fit relationships with more detailed calculations where practical. The resulting model matches the annual performance of the SAM empirical model (which has been previously verified with plant data) while maintaining run-times compatible with parametric analysis, adding additional flexibility in modeled system configurations, and providing more detailed performance calculations in the solar field, power block, piping, and storage subsystems.

Wagner, M. J.; Blair, N.; Dobos, A.

2010-10-01T23:59:59.000Z

286

Fusion of \\ade Lattice Models  

E-Print Network [OSTI]

Fusion hierarchies of \\ade face models are constructed. The fused critical $D$, $E$ and elliptic $D$ models yield new solutions of the Yang-Baxter equations with bond variables on the edges of faces in addition to the spin variables on the corners. It is shown directly that the row transfer matrices of the fused models satisfy special functional equations. Intertwiners between the fused \\ade models are constructed by fusing the cells that intertwine the elementary face weights. As an example, we calculate explicitly the fused $2\\times 2$ face weights of the 3-state Potts model associated with the $D_4$ diagram as well as the fused intertwiner cells for the $A_5$--$D_4$ intertwiner. Remarkably, this $2\\times 2$ fusion yields the face weights of both the Ising model and 3-state CSOS models.

Yu-kui Zhou; Paul A. Pearce

1994-05-04T23:59:59.000Z

287

Application of Improved Radiation Modeling to General Circulation Models  

SciTech Connect (OSTI)

This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

Michael J Iacono

2011-04-07T23:59:59.000Z

288

Modeling cortical circuits.  

SciTech Connect (OSTI)

The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

2010-09-01T23:59:59.000Z

289

Determining Greenland Ice Sheet sensitivity to regional climate change: one-way coupling of a 3-D thermo-mechanical ice sheet model with a mesoscale climate model  

E-Print Network [OSTI]

Jakobshavn I. Rinks Observed Historic Flux (km 3 ice/year)I. Rinks * Outlets fed by the Northeast Greenland Ice StreamRinks, measured in 2000). Figure 3.1: Steady-state (A) topography (m) and (C) ice

Schlegel, Nicole-Jeanne

2011-01-01T23:59:59.000Z

290

Radiolysis Model Formulation for Integration with the Mixed Potential Model  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel (UNF) and high-level radioactive waste. Within the UFDC, the components for a general system model of the degradation and subsequent transport of UNF is being developed to analyze the performance of disposal options [Sassani et al., 2012]. Two model components of the near-field part of the problem are the ANL Mixed Potential Model and the PNNL Radiolysis Model. This report is in response to the desire to integrate the two models as outlined in [Buck, E.C, J.L. Jerden, W.L. Ebert, R.S. Wittman, (2013) Coupling the Mixed Potential and Radiolysis Models for Used Fuel Degradation, FCRD-UFD-2013-000290, M3FT-PN0806058

Buck, Edgar C.; Wittman, Richard S.

2014-07-10T23:59:59.000Z

291

Model stars for the modelling of galaxies: $?$-enhancement in stellar populations models  

E-Print Network [OSTI]

Stellar population (SP) models are an essential tool to understand the observations of galaxies and clusters. One of the main ingredients of a SP model is a library of stellar spectra, and both empirical and theoretical libraries can been used for this purpose. Here I will start by giving a short overview of the pros and cons of using theoretical libraries, i.e. model stars, to produce our galaxy models. Then I will address the question on how theoretical libraries can be used to model stellar populations, in particular to explore the effect of $\\alpha$-enhancement on spectral observables.

P. Coelho

2008-02-19T23:59:59.000Z

292

Solar Advisor Model; Session: Modeling and Analysis (Presentation)  

SciTech Connect (OSTI)

This project supports the Solar America Initiative by: (1) providing a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, PV, solar heat systems, CSP, residential, commercial and utility markets; (2) developing and validating performance models to enable accurate calculation of levelized cost of energy (LCOE); (3) providing a consistent modeling platform for all TPP's; and (4) supporting implementation and usage of cost models.

Blair, N.

2008-04-01T23:59:59.000Z

293

Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays  

SciTech Connect (OSTI)

The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatial resolution of meso-scale clustering heterogeneities is sacrificed.

Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

2014-03-01T23:59:59.000Z

294

MODEL SELECTION FOR SPECTROPOLARIMETRIC INVERSIONS  

SciTech Connect (OSTI)

Inferring magnetic and thermodynamic information from spectropolarimetric observations relies on the assumption of a parameterized model atmosphere whose parameters are tuned by comparison with observations. Often, the choice of the underlying atmospheric model is based on subjective reasons. In other cases, complex models are chosen based on objective reasons (for instance, the necessity to explain asymmetries in the Stokes profiles) but it is not clear what degree of complexity is needed. The lack of an objective way of comparing models has, sometimes, led to opposing views of the solar magnetism because the inferred physical scenarios are essentially different. We present the first quantitative model comparison based on the computation of the Bayesian evidence ratios for spectropolarimetric observations. Our results show that there is not a single model appropriate for all profiles simultaneously. Data with moderate signal-to-noise ratios (S/Ns) favor models without gradients along the line of sight. If the observations show clear circular and linear polarization signals above the noise level, models with gradients along the line are preferred. As a general rule, observations with large S/Ns favor more complex models. We demonstrate that the evidence ratios correlate well with simple proxies. Therefore, we propose to calculate these proxies when carrying out standard least-squares inversions to allow for model comparison in the future.

Asensio Ramos, A.; Manso Sainz, R.; Martinez Gonzalez, M. J.; Socas-Navarro, H. [Instituto de Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain); Viticchie, B. [ESA/ESTEC RSSD, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Orozco Suarez, D., E-mail: aasensio@iac.es [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

2012-04-01T23:59:59.000Z

295

Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1  

SciTech Connect (OSTI)

The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.

NONE

1996-02-26T23:59:59.000Z

296

UZ Flow Models and Submodels  

SciTech Connect (OSTI)

The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

Y. Wu

2004-11-01T23:59:59.000Z

297

Sandia National Laboratories: PV Reliability & Performance Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

298

Sandia National Laboratories: Performance Modeling Workshop Presentati...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

299

Medion:The "Orchestrator" Business Model  

E-Print Network [OSTI]

The Orchestrator Business Model November 2006 ANDREAThe Orchestrator Business Model Medion is not a producta strongly atypical business model in the PC value chain. It

Ordanini, Andrea; Dedrick, Jason; Kraemer, Kenneth L

2006-01-01T23:59:59.000Z

300

Innovative Corridors Initiative: Business Model Analysis  

E-Print Network [OSTI]

Wenger, Joyce. Business Models for Vehicle InfrastructureCorridors Initiative: Business Model Analysis Rachel S.Corridors Initiative: Business Model Analysis Task Order

Shaheen, Susan; Lingham, Viginia; Finson, Rachel S.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modelling of magnesium metabolism in dairy cattle.  

E-Print Network [OSTI]

??A model of magnesium metabolism in dairy cattle has been developed by adapting and improving an earlier model of magnesium metabolism in sheep. The model (more)

Bell, S. T.

2006-01-01T23:59:59.000Z

302

Watershed Modeling for Biofuels | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Watershed Modeling for Biofuels Argonne's watershed modeling research addresses water quality in tributary basins of the Mississippi River Basin Argonne's watershed modeling...

303

Realization Modeling and Simulation in the  

E-Print Network [OSTI]

: Decision: objective hierarchies and influence diagram System: rover suspension model using Modelica Realization Laboratory System Modeling Modelica language: an object-oriented modeling language for engineering

304

Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling...  

Broader source: Energy.gov (indexed) [DOE]

Spray, Combustion, & Emission Modeling using KH-ACT Primary Breakup Model & Detailed Chemistry Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling using KH-ACT Primary...

305

Nuclear Systems Modeling, Simulation & Validation | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Modeling and Simulation SHARE Nuclear Systems Modeling, Simulation and Validation Reactor physics depletion model for the Advanced Test Reactor Reactor physics depletion...

306

A probabilistic graphical model based stochastic input model construction  

SciTech Connect (OSTI)

Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: Data-driven stochastic input models without the assumption of independence of the reduced random variables. The problem is transformed to a Bayesian network structure learning problem. Examples are given in flows in random media.

Wan, Jiang [Materials Process Design and Control Laboratory, Sibley School of Mechanical and Aerospace Engineering, 101 Frank H.T. Rhodes Hall, Cornell University, Ithaca, NY 14853-3801 (United States); Zabaras, Nicholas, E-mail: nzabaras@gmail.com [Materials Process Design and Control Laboratory, Sibley School of Mechanical and Aerospace Engineering, 101 Frank H.T. Rhodes Hall, Cornell University, Ithaca, NY 14853-3801 (United States); Center for Applied Mathematics, 657 Frank H.T. Rhodes Hall, Cornell University, Ithaca, NY 14853-3801 (United States)

2014-09-01T23:59:59.000Z

307

Conceptual Geologic Model and Native State Model of the Roosevelt...  

Open Energy Info (EERE)

a meteoricrecharge area in the Mineral Mountains, fluidcirculation paths to depth, a heat source, andan outflow plume. A conceptual model based onthe available data can be...

308

Petroleum Market Model of the National Energy Modeling System  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions. The production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level. This report is organized as follows: Chapter 2, Model Purpose; Chapter 3, Model Overview and Rationale; Chapter 4, Model Structure; Appendix A, Inventory of Input Data, Parameter Estimates, and Model Outputs; Appendix B, Detailed Mathematical Description of the Model; Appendix C, Bibliography; Appendix D, Model Abstract; Appendix E, Data Quality; Appendix F, Estimation methodologies; Appendix G, Matrix Generator documentation; Appendix H, Historical Data Processing; and Appendix I, Biofuels Supply Submodule.

NONE

1997-01-01T23:59:59.000Z

309

Modeling Fluid Flow in Natural Systems, Model Validation and...  

Broader source: Energy.gov (indexed) [DOE]

rock, flow is primarily in relatively sparse networks of fractures. Discrete fracture network (DFNs) models are an approach to representing flow in fractured rock that...

310

Model prediction for reactor control  

SciTech Connect (OSTI)

Model prediction is offered as a substitute to lengthy analysis of sample procedures to control product properties not amendable to direct measurement during chemical processing. A computer model of a reactor is set up, and control actions, based on current predicted values, are established. The control is based on predicted ''measurements'' which are derived using a dynamic process model solved on-line. The model is corrected by real measurements in the process operation. A two phase exothermic catalyzed reaction, with the objective of producing material with specified properties, is tested in this paper. The model prediction performance was very good. Model systems enable a more effective control to be exercised than the sample method.

Ardell, G.G.; Gumowski, B.

1983-06-01T23:59:59.000Z

311

Pulsar Wind Nebulae Modeling  

E-Print Network [OSTI]

Pulsar Wind Nebulae (PWNe) are ideal astrophysical laboratories where high energy relativistic phenomena can be investigated. They are close, well resolved in our observations, and the knowledge derived in their study has a strong impact in many other fields, from AGNs to GRBs. Yet there are still unresolved issues, that prevent us from a full clear understanding of these objects. The lucky combination of high resolution X-ray imaging and numerical codes to handle the outflow and dynamical properties of relativistic MHD, has opened a new avenue of investigation that has lead to interesting progresses in the last years. Despite all of this, we do not understand yet how particles are accelerated, and the functioning of the pulsar wind and pulsar magnetosphere, that power PWNe. I will review what is now commonly known as the MHD paradigm, and in particular I will focus on various approaches that have been and are currently used to model these systems. For each I will highlight its advantages, limitations, and de...

Bucciantini, N

2013-01-01T23:59:59.000Z

312

Structural model of uramarsite  

SciTech Connect (OSTI)

The structural model of uramarsite, a new mineral of the uran-mica family from the Bota-Burum deposit (South Kazakhstan), is determined using a single-crystal X-ray diffraction analysis. The parameters of the triclinic unit cell are as follows: a = 7.173(2) A, b = 7.167(5) A, c = 9.30(1) A, {alpha} = 90.13(7){sup o}, {beta} = 90.09(4){sup o}, {gamma} = 89.96(4){sup o}, and space group P1. The crystal chemical formula of uramarsite is: (UO{sub 2}){sub 2}[AsO{sub 4}][PO{sub 4},AsO{sub 4}][NH{sub 4}][H{sub 3}O] . 6H{sub 2}O (Z = 1). Uramarsite is the second ammonium-containing mineral of uranium and an arsenate analogue of uramphite. In the case of uramarsite, the lowering of the symmetry from tetragonal to triclinic, which is accompanied by a triclinic distortion of the tetragonal unit cell, is apparently caused by the ordering of the As and P atoms and the NH{sub 4}, H{sub 3}O, and H{sub 2}O groups.

Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Sidorenko, G. A. [All-Russia Research Institute of Mineral Resources (VIMS) (Russian Federation); Ivanova, A. G. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Chukanov, N. V. [Russian Academy of Sciences, Institute of Problems of Chemical Physics (Russian Federation)

2008-09-15T23:59:59.000Z

313

Thin shell model revisited  

E-Print Network [OSTI]

We reconsider some fundamental problems of the thin shell model. First, we point out that the "cut and paste" construction does not guarantee a well-defined manifold because there is no overlap of coordinates across the shell. When one requires that the spacetime metric across the thin shell is continuous, it also provides a way to specify the tangent space and the manifold. Other authors have shown that this specification leads to the conservation laws when shells collide. On the other hand, the well-known areal radius $r$ seems to be a perfect coordinate covering all regions of a spherically symmetric spacetime. However, we show by simple but rigorous arguments that $r$ fails to be a coordinate covering a neighborhood of the thin shell if the metric across the shell is continuous. When two spherical shells collide and merge into one, we show that it is possible that $r$ remains to be a good coordinate and the conservation laws hold. To make this happen, different spacetime regions divided by the shells must be glued in a specific way such that some constraints are satisfied. We compare our new construction with the old one by solving constraints numerically.

Sijie Gao; Xiaobao Wang

2014-12-26T23:59:59.000Z

314

Kinetic models of opinion formation  

E-Print Network [OSTI]

We introduce and discuss certain kinetic models of (continuous) opinion formation involving both exchange of opinion between individual agents and diffusion of information. We show conditions which ensure that the kinetic model reaches non trivial stationary states in case of lack of diffusion in correspondence of some opinion point. Analytical results are then obtained by considering a suitable asymptotic limit of the model yielding a Fokker-Planck equation for the distribution of opinion among individuals.

G. Toscani

2006-05-17T23:59:59.000Z

315

An inhomogeneous fractal cosmological model  

E-Print Network [OSTI]

We present a cosmological model in which the metric allows for an inhomogeneous Universe with no intrinsic symmetries (Stephani models), providing the ideal features to describe a fractal distribution of matter. Constraints on the metric functions are derived using the expansion and redshift relations and allowing for scaling number counts, as expected in a fractal set. The main characteristics of such a cosmological model are discussed.

Fulvio Pompilio; Marco Montuori

2001-11-28T23:59:59.000Z

316

Modeling of shallow stabilization ponds  

SciTech Connect (OSTI)

A two-dimensional hydrodynamic model is used to simulate shallow stabilization ponds. The model computes the flow field and the concentration distribution of a conservative tracer in the entire area of a pond. The location and the size of the dead zones, the bypassing, and the recirculating areas are also determined by the model. The numerical results are in good agreement with the experimental data obtained in the laboratory.

Babarutsi, S.; Marchand, P.; Safieddine, T.

1999-07-01T23:59:59.000Z

317

Phenomenologies of Higgs messenger models  

E-Print Network [OSTI]

In this paper, we investigate the phenomenologies of models where the Higgs sector plays the role of messengers in gauge mediation. The minimal Higgs sector and its extension are considered respectively. We find that there exist viable models when an appropriate parity is imposed. Phenomenological features in these kind of models include three sum rules for scalar masses, light gluino as well as one-loop $\\mu$ and two-loop $B\\mu$ terms.

Sibo Zheng; Yao Yu; Xing-Gang Wu

2011-06-28T23:59:59.000Z

318

Are Standard Solar Models Reliable?  

E-Print Network [OSTI]

The sound speeds of solar models that include element diffusion agree with helioseismological measurements to a rms discrepancy of better than 0.2% throughout almost the entire sun. Models that do not include diffusion, or in which the interior of the sun is assumed to be significantly mixed, are effectively ruled out by helioseismology. Standard solar models predict the measured properties of the sun more accurately than is required for applications involving solar neutrinos.

John N. Bahcall; M. H. Pinsonneault; Sarbani Basu; J. Christensen-Dalsgaard

1996-12-20T23:59:59.000Z

319

Model Checking for Software Architectures  

E-Print Network [OSTI]

-Dulay-Eisenbach-Kramer-95] ­ -calculus + FSP ­ LTSA (LTL properties) #12;6EWSA 2004 (May 21-22, St Andrews, Scotland) Model

Joseph Fourier Grenoble-I, Université

320

Transformer modeling in power systems  

SciTech Connect (OSTI)

A practical and accurate method of modeling various transformers in power systems using a general circuit model approach is described in this paper. The advantage of the new approach is that it can model transformers along with a complex circuit network, while avoiding the use of symmetrical components, unlike other approaches. The transformer modeling technique introduced in this paper is very useful to accurately determine fault current distribution in a power system and electromagnetic interference on pipelines and communication lines installed in a right-of-way consisting of transmission lines operating at different voltages.

Ma, J.; Dawalibi, F.P. [Safe Engineering Services and Technologies Ltd., Montreal, Quebec (Canada)

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nuclear Fallout Models An Overview  

SciTech Connect (OSTI)

This presentation is an introduction to a full report, which is a tutorial for individuals using the products of the models reviewed.

Hodges, Matthew [UNLV

2014-10-21T23:59:59.000Z

322

Critique of ``Expected Value`` models  

SciTech Connect (OSTI)

There are a number of models in the defense community which use a methodology referred to as ``Expected Value`` to perform sequential calculations of unit attritions or expenditures. The methodology applied to two-sided, dependent, sequential events can result in an incorrect model. An example of such an incorrect model is offered to show that these models may yield results which deviate significantly from a stochastic or Markov process approach. The example was derived from an informal discussion at the Center for Naval Analyses.

May, W.L.

1996-06-01T23:59:59.000Z

323

Different convection models in ATLAS  

E-Print Network [OSTI]

Convection is an important phenomenon in the atmospheres of A-type and cooler stars. A description of convection in ATLAS models is presented, together with details of how it is specified in model calculations. The effects of changing the treatment of convection on model structures and how this affects observable quantities are discussed. The role of microturbulence is examined, and its link to velocity fields within the atmosphere. Far from being free parameters, mixing-length and microturbulence should be constrained in model calculations.

Barry Smalley

2005-09-19T23:59:59.000Z

324

Spatiotemporal brain imaging and modeling  

E-Print Network [OSTI]

This thesis integrates hardware development, data analysis, and mathematical modeling to facilitate our understanding of brain cognition. Exploration of these brain mechanisms requires both structural and functional knowledge ...

Lin, Fa-Hsuan, 1972-

2004-01-01T23:59:59.000Z

325

Model building techniques for analysis.  

SciTech Connect (OSTI)

The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the product definition stage of parts and assemblies at SNL. The three-dimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM.

Walther, Howard P.; McDaniel, Karen Lynn; Keener, Donald; Cordova, Theresa Elena; Henry, Ronald C.; Brooks, Sean; Martin, Wilbur D.

2009-09-01T23:59:59.000Z

326

Numerical Modeling of HCCI Combustion  

Broader source: Energy.gov (indexed) [DOE]

Numerical Modeling of HCCI Combustion Salvador M. Aceves, Daniel L. Flowers, J. Ray Smith, Joel Martinez-Frias, Francisco Espinosa-Loza, Tim Ross, Bruce Buchholz, Nick...

327

Kinetic Modeling of Microbiological Processes  

SciTech Connect (OSTI)

Kinetic description of microbiological processes is vital for the design and control of microbe-based biotechnologies such as waste water treatment, petroleum oil recovery, and contaminant attenuation and remediation. Various models have been proposed to describe microbiological processes. This editorial article discusses the advantages and limiation of these modeling approaches in cluding tranditional, Monod-type models and derivatives, and recently developed constraint-based approaches. The article also offers the future direction of modeling researches that best suit for petroleum and environmental biotechnologies.

Liu, Chongxuan; Fang, Yilin

2012-09-17T23:59:59.000Z

328

ORISE: Dose modeling and assessments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or state regulatory compliance requirements are being met during the decontamination and decommissioning of nuclear facilities. Dose modeling is an important step in the...

329

Transport Properties for Combustion Modeling  

E-Print Network [OSTI]

a critical role in combustion processes just as chemicalparameters are essential for combustion modeling; molecularwith Application to Combustion. Transport Theor Stat 2003;

Brown, N.J.

2010-01-01T23:59:59.000Z

330

Power Plant Modeling and Simulation  

ScienceCinema (OSTI)

The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

None

2010-01-08T23:59:59.000Z

331

Toward Models for Forensic Analysis  

E-Print Network [OSTI]

Farmer and Wietse Venema. Forensic Discovery. Addison WesleyTo summarize, a good forensic model should possess theparameter that enables a forensic analyst to decide what to

Peisert, Sean; Bishop, Matt; Karin, Sidney; Marzullo, Keith

2007-01-01T23:59:59.000Z

332

Vegetated Roof Water-Balance Model: Experimental and Model Results  

E-Print Network [OSTI]

urbanization effects on the water cycle. Although there are many stormwater best management practices (BMPs (ET) and soil media water storage between storm events. Lazzarin et al. (2005) estimated that ET ratesVegetated Roof Water-Balance Model: Experimental and Model Results James A. Sherrard Jr.1

333

Modelling and Hazard Analysis for Contaminated Sediments Using Stamp Model  

E-Print Network [OSTI]

Modelling and Hazard Analysis for Contaminated Sediments Using Stamp Model Karim Hardy* , Franck or contaminants) of contaminated sediments have become very efficient. These technologies, which are particularly sections. The first describes the Novosol® process for treating contaminated sediments. The second

Boyer, Edmond

334

Modeling of Organizational Violence Violent Intent Modeling and Simulation (VIMS)  

E-Print Network [OSTI]

111 Modeling of Organizational Violence Violent Intent Modeling and Simulation (VIMS) Georgiy Bobashev, Burton Levine, Joe Eyerman, Michael Schwerin, and Richard Legault November 04, 2010 #12;2 VIMS Background #12;3 VIMS: Background · R&D sponsored by Human Factors Division at DHS S&T · Initial work

McShea, Daniel W.

335

Paraphrastic language models and combination with neural network language models  

E-Print Network [OSTI]

-gram models of nat- ural language. Computational Linguistics 18(4) pp.467-470. [3] G. Cao, J-Y Nie & J. Bai (2005). Integrating word relation- ships into language models, in Proc. ACM SIGIR2005, pp. 298-305, Salvador, Brazil. [4] Z. Dong & Q. Dong (2006). How...

Liu, X.; Gales, M. J. F; Woodland, P. C.

2014-07-17T23:59:59.000Z

336

Model-Based Testing : The Test of Formal Models  

E-Print Network [OSTI]

Model-Based Testing : The Test of Formal Models Jan Tretmans ESI & Radboud University Nijmegen #12;2 Testing (Software) Testing: checking or measuring some quality characteristics of an executing object by performing experiments in a controlled way w.r.t. a specification tester specification SUT System Under Test

337

Evaluation of a Vector Hypercube for Seismic Modelling Seismic modelling  

E-Print Network [OSTI]

Evaluation of a Vector Hypercube for Seismic Modelling Abstract Seismic modelling is a computationally to produce realistic seismic traces intensive problem. A 2D syn- Rosemary Renautt and Johnny of seismic data. The two-dimensional wave equation which describes the propagation of stress waves

Renaut, Rosemary

338

Modeling Web Maintenance Centers Through Queue Models M. Di Penta  

E-Print Network [OSTI]

Modeling Web Maintenance Centers Through Queue Models M. Di Penta , G. Casazza ¡ , G. Antoniol´eal Abstract The Internet and WEB pervasiveness are changing the landscape of several different areas ranging from infor- mation gathering/managing and commerce to software development, maintenance and evolution

Di Penta, Massimiliano

339

Reduced-Order Model Design for Nonlinear Smart System Models  

E-Print Network [OSTI]

nonlinear smart material system models can yield full-order numerical models that accurately characterize: Smart materials, proper orthogonal decomposition 1. Introduction Proper Orthogonal Decomposition (POD those seeking to implement real-time control on smart material structures (see [1] and the references

340

Updating MIT's cost estimation model for shipbuilding  

E-Print Network [OSTI]

This thesis project will update the MIT ship cost estimation model by combining the two existing models (the Basic Military Training School (BMTS) Cost Model and the MIT Math Model) in order to develop a program that can ...

Smith, Matthew B., Lieutenant, junior grade

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Modeling and optimization of building HVAC systems.  

E-Print Network [OSTI]

??This thesis presents the development of hybrid modeling methodologies for HVAC component static/steady-state models and dynamic/transient models, and the development and implementation of a model-based (more)

Jin, Guang Yu.

2012-01-01T23:59:59.000Z

342

Accelerating Energy Savings Performance Contracting Through Model...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Accelerating Energy Savings Performance Contracting Through Model Statewide Programs Accelerating Energy Savings Performance Contracting Through Model Statewide Programs Provides...

343

Application of reservoir models to Cherokee Reservoir  

SciTech Connect (OSTI)

As a part of the Cherokee Reservoir Project hydrodynamic-temperature models and water quality models hav

Kim, B.R.; Bruggink, D.J.

1982-01-01T23:59:59.000Z

344

Geothermal Electricity Technology Evaluation Model (GETEM) Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Technology Evaluation Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating...

345

GLOBAL COMPREHENSIVE MODELS IN POLITICS AND POLICYMAKING  

E-Print Network [OSTI]

. In this editorial, I reflect on the role of comprehensive models, such as IAMs and earth system models (ESMs

Edwards, Paul N.

346

Model documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System; Volume 1  

SciTech Connect (OSTI)

The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).

NONE

1994-02-24T23:59:59.000Z

347

Optimal Model-Based Production Planning  

E-Print Network [OSTI]

Optimal Model-Based Production Planning for Refinery Operation Abdulrahman Alattas Advisor: Ignacio;Outline Introduction Refinery Planning Model Development LP Planning Models NLP Planning Models FI Model Aggregate Model Conclusion & Future work 2 #12;3 Introduction Refinery production planning

Grossmann, Ignacio E.

348

Integration of Nonlinear CDU Models in Refinery  

E-Print Network [OSTI]

Integration of Nonlinear CDU Models in Refinery Planning Optimization Abdulrahman Alattas, Advisor #12;Refinery Planning Model Development Fixed-yieldModels SwingcutsModels LPPlanningModels Aggregate for the CDU #12;Planning Model Example Typical Refinery Configuration (Adapted from Aronofsky, 1978) Cat Ref

Grossmann, Ignacio E.

349

Multipole Expansion Model in Gravitational Lensing  

E-Print Network [OSTI]

Non-transparent models of multipole expansion model and two point-mass model are analyzed from the catastrophe theory. Singularity behaviours of $2^n$-pole moments are discussed. We apply these models to triple quasar PG1115+080 and compare with the typical transparent model, softened power law spheroids. Multipole expansion model gives the best fit among them.

T. Fukuyama; Y. Kakigi; T. Okamura

1997-01-31T23:59:59.000Z

350

Mesoscale Quantization and Self-Organized Stability  

E-Print Network [OSTI]

In the world of technology, one of the most important forms of friction is that of rolling friction. Yet it is one of the least studied of all the known forms of energy dissipation. In the present experiments we investigate the oscillatory free-decay of a rigid cube, whose side-length is less than the diameter of the rigid cylinder on which it rests. The resulting free-decay is one of harmonic motion with damping. The non-dissipative character of the oscillation yields to a linear differential equation; however, the damping is found to involve more than a deterministic nonlinearity. Dominated by rolling friction, the damping is sensitive to the material properties of the contact surfaces. For `clean' surfaces of glass on glass, the decay shows features of mesoscale quantization and self-organized stability.

Randall D. Peters

2005-06-16T23:59:59.000Z

351

Biomechanics and Modeling in Mechanobiology  

E-Print Network [OSTI]

PAPER Mechanics of blast loading on the head models in the study of traumatic brain injury using.1007/s10237-012-0421-8 Mechanics of blast loading on the head models in the study of traumatic brain. To understand the interactions of blast waves on the head and brain and to identify the mech- anisms of injury

Farritor, Shane

352

Consumer Vehicle Choice Model Documentation  

SciTech Connect (OSTI)

In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle. Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

2012-08-01T23:59:59.000Z

353

Modelling sustainable development Ivar Ekeland  

E-Print Network [OSTI]

Modelling sustainable development Ivar Ekeland www.ceremade.dauphine.fr/~ekeland CERMADE.ceremade.dauphine.fr/~ekeland (CERMADE, Universite Paris-Dauphine)Modelling sustainable development Collloque Sorin, IHP, Juin 2012 1 / 17 #12;Sustainable development The de...nition given by the Brundtland commision to the UN (1987

Ekeland, Ivar

354

4, 1367, 2007 Modelling carbon  

E-Print Network [OSTI]

BGD 4, 13­67, 2007 Modelling carbon overconsumption and extracellular POC formation M. Schartau et carbon overconsumption and the formation of extracellular particulate organic carbon M. Schartau1 , A Correspondence to: M. Schartau (markus.schartau@gkss.de) 13 #12;BGD 4, 13­67, 2007 Modelling carbon

Paris-Sud XI, Université de

355

CFT, Integrable Models Liouville Gravity  

E-Print Network [OSTI]

CFT, Integrable Models And Liouville Gravity Chernogolovka 2009 Sunday June 28, 2009. Conference as one of components of their L, A pairs. #12;CFT, Integrable Models And Liouville Gravity Chernogolovka Gravity Chernogolovka, 2009 Tuesday June 30, 2009. CONFERENCE HALL 09:30­10:10 Herman Boos (Wuppertal

Fominov, Yakov

356

Infrared Catastrophe for Nelson's Model  

E-Print Network [OSTI]

We mathematically study the infrared catastrophe for the Hamiltonian of Nelson's model when it has the external potential in a general class. For the model, we prove the pull-through formula on ground states in operator theory first. Based on this formula, we show both non-existence of any ground state and divergence of the total number of soft bosons.

Masao Hirokawa

2005-11-08T23:59:59.000Z

357

Advanced Modeling Environments Daniel Dolk  

E-Print Network [OSTI]

of system software for managing them. In the case of databases, database management systems are mature quality are available and heavily used by organizations. This is not the case for model manage- ment research in model management and decision support systems and related fields. With this as background

Kimbrough, Steven Orla

358

Autotune E+ Building Energy Models  

SciTech Connect (OSTI)

This paper introduces a novel Autotune methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting best-match E+ input parameters in a systematic, automated, and repeatable fashion. The approach is applicable to a building retrofit scenario and aims to quantify the trade-offs between tuning accuracy and the minimal amount of ground truth data required to calibrate the model. Autotune will use a suite of machine-learning algorithms developed and run on supercomputers to generate calibration functions. Specifically, the project will begin with a de-tuned model and then perform Monte Carlo simulations on the model by perturbing the uncertain parameters within permitted ranges. Machine learning algorithms will then extract minimal perturbation combinations that result in modeled results that most closely track sensor data. A large database of parametric EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied to a heavily instrumented residential building as well as three light commercial buildings in which a de-tuned model is autotuned using faux sensor data from the corresponding target E+ model.

New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL

2012-01-01T23:59:59.000Z

359

A holographic charged preon model  

E-Print Network [OSTI]

The Standard Model (SM) is a successful approach to particle physics calculations. However, there are indications that the SM is only a good approximation to an underlying non-local reality involving fundamental entities (preons) that are not point particles. Furthermore, our universe seems to be dominated by a vacuum energy/cosmological constant. The holographic principle then indicates only a finite number of bits of information will ever be available to describe the observable universe, and that requires a holographic preon model linking the (0,1) holographic bits to SM particles. All SM particles have charges 0, 1/3, 2/3 or 1 in units of the electron charge, so the bits in a holographic preon model must be identified with fractional electric charge. Such holographic charged preon models require baryon asymmetry and also suggest a mechanism for stationary action. This paper outlines a holographic charged preon model where preons are strands with finite energy density specified by bits of information identifying the charge on each end. In the model, SM particles consist of three strands with spin states corresponding to wrapped states of the strands. SM particles in this wrapped preon model can be approximated by preon bound states in non-local dynamics based on three-preon Bethe-Salpeter equations with instantaneous three-preon interactions. The model can be falsified by data from the Large Hadron Collider because it generates baryon asymmetry without axions, and does not allow more than three generations of SM fermions.

T. R. Mongan

2013-04-20T23:59:59.000Z

360

Modelling the Galaxy for GAIA  

E-Print Network [OSTI]

Techniques for the construction of dynamical Galaxy models should be considered essential infrastructure that should be put in place before GAIA flies. Three possible modelling techniques are discussed. Although one of these seems to have significantly more potential than the other two, at this stage work should be done on all three. A major effort is needed to decide how to make a model consistent with a catalogue such as that which GAIA will produce. Given the complexity of the problem, it is argued that a hierarchy of models should be constructed, of ever increasing complexity and quality of fit to the data. The potential that resonances and tidal streams have to indicate how a model should be refined is briefly discussed.

James Binney

2004-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Modelling Chinese Smart Grid: A Stochastic Model Checking Case Study  

E-Print Network [OSTI]

Cyber-physical systems integrate information and communication technology functions to the physical elements of a system for monitoring and controlling purposes. The conversion of traditional power grid into a smart grid, a fundamental example of a cyber-physical system, raises a number of issues that require novel methods and applications. In this context, an important issue is the verification of certain quantitative properties of the system. In this technical report, we consider a specific Chinese Smart Grid implementation and try to address the verification problem for certain quantitative properties including performance and battery consumption. We employ stochastic model checking approach and present our modelling and analysis study using PRISM model checker.

Yksel, Ender; Nielson, Flemming; Zhu, Huibiao; Huang, Heqing

2012-01-01T23:59:59.000Z

362

Evolution of moisture convergence in a mesoscale convective complex  

E-Print Network [OSTI]

Committee: Dr. Keuneth C. Brundidge Two separate Mesoscale Convective Complexes (MCCs) were investigated to determine if a characteristic surface moisture convergence (MC) signature existed on the mesoscale during their lifecycle. The first storm (Case 1... convergence, a bandpass filtering technique was utilized. It was found that MC could identify the general area of initial thunderstorm activity 2 h prior to its development for both cases. During the initial development stage of Case 1, advection...

Bercherer, John Phillip

1990-01-01T23:59:59.000Z

363

Improvement of snowpack simulations in a regional climate model  

SciTech Connect (OSTI)

To improve simulations of regional-scale snow processes and related cold-season hydroclimate, the Community Land Model version 3 (CLM3), developed by the National Center for Atmospheric Research (NCAR), was coupled with the Pennsylvania State University/NCAR fifth-generation Mesoscale Model (MM5). CLM3 physically describes the mass and heat transfer within the snowpack using five snow layers that include liquid water and solid ice. The coupled MM5CLM3 model performance was evaluated for the snowmelt season in the Columbia River Basin in the Pacific Northwestern United States using gridded temperature and precipitation observations, along with station observations. The results from MM5CLM3 show a significant improvement in the SWE simulation, which has been underestimated in the original version of MM5 coupled with the Noah land-surface model. One important cause for the underestimated SWE in Noah is its unrealistic land-surface structure configuration where vegetation, snow and the topsoil layer are blended when snow is present. This study demonstrates the importance of the sheltering effects of the forest canopy on snow surface energy budgets, which is included in CLM3. Such effects are further seen in the simulations of surface air temperature and precipitation in regional weather and climate models such as MM5. In addition, the snow-season surface albedo overestimated by MM5Noah is now more accurately predicted by MM5CLM3 using a more realistic albedo algorithm that intensifies the solar radiation absorption on the land surface, reducing the strong near-surface cold bias in MM5Noah. The cold bias is further alleviated due to a slower snowmelt rate in MM5CLM3 during the early snowmelt stage, which is closer to observations than the comparable components of MM5Noah. In addition, the over-predicted precipitation in the Pacific Northwest as shown in MM5Noah is significantly decreased in MM5 CLM3 due to the lower evaporation resulting from the longer snow duration.

Jin, J.; Miller, N.L.

2011-01-10T23:59:59.000Z

364

ADVANCED MIXING MODELS  

SciTech Connect (OSTI)

The process of recovering and processing High Level Waste (HLW) the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four mixers (pumps) located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are typically set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The focus of the present work is to establish mixing criteria applicable to miscible fluids, with an ultimate goal of addressing waste processing in HLW tanks at SRS and quantifying the mixing time required to suspend sludge particles with the submersible jet pump. A single-phase computational fluid dynamics (CFD) approach was taken for the analysis of jet flow patterns with an emphasis on the velocity decay and the turbulent flow evolution for the farfield region from the pump. Literature results for a turbulent jet flow are reviewed, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. The work described in this report suggests a basis for further development of the theory leading to the identified mixing indicators, with benchmark analyses demonstrating their consistency with widely accepted correlations. Although the indicators are somewhat generic in nature, they are applied to Savannah River Site (SRS) waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. One of the main objectives in the waste processing is to provide feed of a uniform slurry composition at a certain weight percentage (e.g. typically {approx}13 wt% at SRS) over an extended period of time. In preparation of the sludge for slurrying, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination?

Lee, S.; Dimenna, R.; Tamburello, D.

2011-02-14T23:59:59.000Z

365

EIA model documentation: Petroleum Market Model of the National Energy Modeling System  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2). The PMM models petroleum refining activities, the marketing of products, the production of natural gas liquids and domestic methanol, projects petroleum provides and sources of supplies for meeting demand. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption.

NONE

1994-12-30T23:59:59.000Z

366

HTGR Cost Model Users' Manual  

SciTech Connect (OSTI)

The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

A.M. Gandrik

2012-01-01T23:59:59.000Z

367

System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report  

SciTech Connect (OSTI)

The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A. P.

2013-12-01T23:59:59.000Z

368

An approximate internal model principle: Applications to nonlinear models of  

E-Print Network [OSTI]

that the system has an internal model in the feedback loop. In this paper we relax the requirement is to achieve adaptation include blood calcium regulation (El-Samad et al. 2002), neuronal control

Sontag, Eduardo

369

Statistical Modeling with the Virtual Source MOSFET Model  

E-Print Network [OSTI]

A statistical extension of the ultra-compact Virtual Source (VS) MOSFET model is developed here for the first time. The characterization uses a statistical extraction technique based on the backward propagation of variance ...

Yu, Li

370

Modeling reaction time within a traffic simulation model  

E-Print Network [OSTI]

Human reaction time has a substantial effect on modeling of human behavior at a microscopic level. Drivers and pedestrian do not react to an event instantaneously; rather, they take time to perceive the event, process the ...

Basak, Kakali

371

Air Conditioner Compressor Performance Model  

SciTech Connect (OSTI)

During the past three years, the Western Electricity Coordinating Council (WECC) Load Modeling Task Force (LMTF) has led the effort to develop the new modeling approach. As part of this effort, the Bonneville Power Administration (BPA), Southern California Edison (SCE), and Electric Power Research Institute (EPRI) Solutions tested 27 residential air-conditioning units to assess their response to delayed voltage recovery transients. After completing these tests, different modeling approaches were proposed, among them a performance modeling approach that proved to be one of the three favored for its simplicity and ability to recreate different SVR events satisfactorily. Funded by the California Energy Commission (CEC) under its load modeling project, researchers at Pacific Northwest National Laboratory (PNNL) led the follow-on task to analyze the motor testing data to derive the parameters needed to develop a performance models for the single-phase air-conditioning (SPAC) unit. To derive the performance model, PNNL researchers first used the motor voltage and frequency ramping test data to obtain the real (P) and reactive (Q) power versus voltage (V) and frequency (f) curves. Then, curve fitting was used to develop the P-V, Q-V, P-f, and Q-f relationships for motor running and stalling states. The resulting performance model ignores the dynamic response of the air-conditioning motor. Because the inertia of the air-conditioning motor is very small (H<0.05), the motor reaches from one steady state to another in a few cycles. So, the performance model is a fair representation of the motor behaviors in both running and stalling states.

Lu, Ning; Xie, YuLong; Huang, Zhenyu

2008-09-05T23:59:59.000Z

372

INEEL AIR MODELING PROTOCOL ext  

SciTech Connect (OSTI)

Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

C. S. Staley; M. L. Abbott; P. D. Ritter

2004-12-01T23:59:59.000Z

373

A model of nonlinear electrodynamics  

E-Print Network [OSTI]

A new model of nonlinear electrodynamics with two parameters is investigated. We also consider a model with one dimensional parameter. It was shown that the electric field of a point-like charge is not singular at the origin and there is the finiteness of the static electric energy of point-like charged particle. We obtain the canonical and symmetrical Belinfante energy-momentum tensors and dilatation currents. It is demonstrated that the dilatation symmetry and dual symmetry are broken in the models suggested. We have calculated the static electric energy of point-like particles.

S. I. Kruglov

2014-12-02T23:59:59.000Z

374

Fracture model for cemented aggregates  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

A mechanisms-based fracture model applicable to a broad class of cemented aggregates and, among them, plastic-bonded explosive (PBX) composites, is presented. The model is calibrated for PBX 9502 using the available experimental data under uniaxial compression and tension gathered at various strain rates and temperatures. We show that the model correctly captures inelastic stress-strain responses prior to the load peak and it predicts the post-critical macro-fracture processes, which result from the growth and coalescence of micro-cracks. In our approach, the fracture zone is embedded into elastic matrix and effectively weakens the material's strength along the plane of the dominant fracture.

Zubelewicz, Aleksander; Thompson, Darla G.; Ostoja-Starzewski, Martin; Ionita, Axinte; Shunk, Devin; Lewis, Matthew W.; Lawson, Joe C.; Kale, Sohan; Koric, Seid

2013-01-01T23:59:59.000Z

375

Introduction to Holographic Superconductor Models  

E-Print Network [OSTI]

In the last years it has been shown that some properties of strongly coupled superconductors can be potentially described by classical general relativity living in one higher dimension, which is known as holographic superconductors. This paper gives a quick and introductory overview of some holographic superconductor models with s-wave, p-wave and d-wave orders in the literature from point of view of bottom-up, and summarizes some basic properties of these holographic models in various regimes. The competition and coexistence of these superconductivity orders are also studied in these superconductor models.

Cai, Rong-Gen; Li, Li-Fang; Yang, Run-Qiu

2015-01-01T23:59:59.000Z

376

Introduction to Holographic Superconductor Models  

E-Print Network [OSTI]

In the last years it has been shown that some properties of strongly coupled superconductors can be potentially described by classical general relativity living in one higher dimension, which is known as holographic superconductors. This paper gives a quick and introductory overview of some holographic superconductor models with s-wave, p-wave and d-wave orders in the literature from point of view of bottom-up, and summarizes some basic properties of these holographic models in various regimes. The competition and coexistence of these superconductivity orders are also studied in these superconductor models.

Rong-Gen Cai; Li Li; Li-Fang Li; Run-Qiu Yang

2015-03-12T23:59:59.000Z

377

Introduction to Holographic Superconductor Models  

E-Print Network [OSTI]

In the last years it has been shown that some properties of strongly coupled superconductors can be potentially described by classical general relativity living in one higher dimension, which is known as holographic superconductors. This paper gives a quick and introductory overview of some holographic superconductor models with s-wave, p-wave and d-wave orders in the literature from point of view of bottom-up, and summarizes some basic properties of these holographic models in various regimes. The competition and coexistence of these superconductivity orders are also studied in these superconductor models.

Rong-Gen Cai; Li Li; Li-Fang Li; Run-Qiu Yang

2015-02-02T23:59:59.000Z

378

Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)  

SciTech Connect (OSTI)

This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysis and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.

Blair, N.; Dobos, A.; Ferguson, T.; Freeman, J.; Gilman, P.; Whitmore, J.

2014-05-01T23:59:59.000Z

379

Hyperbolic chemotaxis Hyperbolic chemotaxis on networks Models for biofilms Models for algae Some issues in the modeling of movement  

E-Print Network [OSTI]

Hyperbolic chemotaxis Hyperbolic chemotaxis on networks Models for biofilms Models for algae Some issues in the modeling of movement of cells : chemotaxis, biofilms, algae, etc... Magali Ribot;Hyperbolic chemotaxis Hyperbolic chemotaxis on networks Models for biofilms Models for algae Hyperbolic

Ribot, Magali

380

MODELING THE TRANSPORT AND CHEMICAL EVOLUTION OF ONSHORE AND OFFSHORE EMISSIONS AND THEIR IMPACT ON LOCAL AND REGIONAL AIR QUALITY USING A VARIABLE-GRID-RESOLUTION AIR QUALITY MODEL  

SciTech Connect (OSTI)

This document, the project's first semiannual report, summarizes the research performed from 04/17/2003 through 10/16/2003. Portions of the research in several of the project's eight tasks were completed, and results obtained are briefly presented. We have tested the applicability of two different atmospheric boundary layer schemes for use in air quality model simulations. Preliminary analysis indicates that a scheme that uses sophisticated atmospheric boundary physics resulted in better simulation of atmospheric circulations. We have further developed and tested a new surface data assimilation technique to improve meteorological simulations, which will also result in improved air quality model simulations. Preliminary analysis of results indicates that using the new data assimilation technique results in reduced modeling errors in temperature and moisture. Ingestion of satellite-derived sea surface temperatures into the mesoscale meteorological model led to significant improvements in simulated clouds and precipitation compared to that obtained using traditional analyzed sea surface temperatures. To enhance the capabilities of an emissions processing system so that it can be used with our variable-grid-resolution air quality model, we have identified potential areas for improvements. Also for use in the variable-grid-resolution air quality model, we have tested a cloud module offline for its functionality, and have implemented and tested an efficient horizontal diffusion algorithm within the model.

Kiran Alapaty

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ADVANCED MIXING MODELS  

SciTech Connect (OSTI)

The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and schedule savings. The focus of the present work is to establish mixing criteria associated with the waste processing at SRS and to quantify the mixing time required to suspend sludge particles with the submersible jet pump. Literature results for a turbulent jet flow are reviewed briefly, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. One of the main objectives in the waste processing is to provide the DWPF a uniform slurry composition at a certain weight percentage (typically {approx}13 wt%) over an extended period of time. In preparation of the sludge for slurrying to DWPF, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition for DWPF? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination? Grenville and Tilton (1996) investigated the mixing process by giving a pulse of tracer (electrolyte) through the submersible jet nozzle and by monitoring the conductivity at three locations within the cylindrical tank. They proposed that the mixing process was controlled by the turbulent kinetic energy dissipation rate in the region far away from the jet entrance. They took the energy dissipation rates in the regions remote from the nozzle to be proportional to jet velocity and jet diameter at that location. The reduction in the jet velocity was taken to be proportional to the nozzle velocity and distance from the nozzle. Based on their analysis, a correlation was proposed. The proposed correlation was shown to be valid over a wide range of Reynolds numbers (50,000 to 300,000) with a relative standard deviation of {+-} 11.83%. An improved correlat

Lee, S; Richard Dimenna, R; David Tamburello, D

2008-11-13T23:59:59.000Z

382

Discrete element modeling of rock deformation, fracture network development and permeability evolution under hydraulic stimulation  

SciTech Connect (OSTI)

Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be discussed. Methodology for coupling the DEM model with continuum flow and heat transport models will also be discussed.

Shouchun Deng; Robert Podgorney; Hai Huang

2011-02-01T23:59:59.000Z

383

Comparison of model predicted to observed winds in the coastal zone  

SciTech Connect (OSTI)

Predictions of near-surface (10 to 100 m) wind velocities made by a mesoscale numerical model on a 10 km grid over and near the coastline are checked against observations. Two comparisons are made. The first is between observed and model-estimated mean annual wind power density at locations where surface observations exist in three coastal areas: the Chesapeake Bay, the Apalachee Bay and the South Texas coastal area. The second comparison is made between model predictions over the Delmarva Peninsula and adjacent ocean and observations made over a 120 x 30 km rectangle extending across the peninsula and out to sea. It is concluded that the unbiased error analysis skill ratings of 81% and 76% are attained for two days of prediction-observation comparisons. In the meantime, the skill of the model in duplicating individual coastal wind fields is taken as 78%. In addition, a qualitative comparison is made between the predicted fields of wind and the observed wind field. The predicted wind field unquestionably reproduces the observed field.

Garstang, M.; Pielke, R.A.; Snow, J.W.

1982-06-01T23:59:59.000Z

384

Electric motor model repair specifications  

SciTech Connect (OSTI)

These model repair specifications list the minimum requirements for repair and overhaul of polyphase AC squireel cage induction motors. All power ranges, voltages, and speeds of squirrel cage motors are covered.

NONE

1995-08-01T23:59:59.000Z

385

Modeling Warm Dense Matter Experiments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center (NERSC) at LBNL and has been shown to scale well to thousands of CPUs. New surface tension models that are being implemented and applied to WDM experiments. Some of...

386

EMMA: Electromechanical Modeling in ALEGRA  

SciTech Connect (OSTI)

To ensure high levels of deterrent capability in the 21st century, new stockpile stewardship principles are being embraced at Sandia National Laboratories. The Department of Energy Accelerated Strategic Computing Initiative (ASCI) program is providing the computational capacity and capability as well as funding the system and simulation software infrastructure necessary to provide accurate, precise and predictive modeling of important components and devices. An important class of components require modeling of piezoelectric and ferroceramic materials. The capability to run highly resolved simulations of these types of components on the ASCI parallel computers is being developed at Sandia in the ElectroMechanical Modeling in Alegra (EMMA) code. This a simulation capability being developed at Sandia National Laboratories for high-fidelity modeling of electromechanical devices. these devices can produce electrical current arising from material changes due to shock impact or explosive detonation.

NONE

1996-12-31T23:59:59.000Z

387

2014 PV Performance Modeling Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2014 PV Performance Modeling Workshop Photo courtesy of Sempra Energy 8:00 AM to 9:00 PM Monday, May 5, 2014 At Biltmore Hotel, Santa Clara, California 512014 Agenda: Start Time...

388

3D modeling with silhouettes  

E-Print Network [OSTI]

With the increasing power of computers and the spread of dedicated graphics hardware, 3D content has become ubiquitous in every field, from medicine to video games. However, designing 3D models remains a time-consuming and ...

Rivers, Alec (Alec Rothmyer)

2010-01-01T23:59:59.000Z

389

Modelling of friction stir welding  

E-Print Network [OSTI]

This thesis investigates the modelling of friction stir welding (FSW). FSW is a relatively new welding process where a rotating non-consumable tool is used to join two materials through high temperature deformation. The aim of the thesis...

Colegrove, Paul Andrew

390

Aggregate vehicle travel forecasting model  

SciTech Connect (OSTI)

This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

1995-05-01T23:59:59.000Z

391

The Schwarzschild Static Cosmological Model  

E-Print Network [OSTI]

The present work describes an immersion in 5D of the interior Schwarzschild solution of the general relativity equations. The model theory is defined in the context of a flat 5D space time matter Minkowski model, using a Tolman like technique, which shows via Lorentz transformations that the solution is compatible with homogeneity and isotropy,thus obeying the cosmological principle. These properties permit one to consider the solution in terms of a cosmological model. In this model, the Universe may be treated as an idealized star with constant density and variable pressure, where each observer can be the center of the same. The observed redshift appears as a static gravitational effect which obeys the sufficiently verified and generally accepted square distance law. The Buchdahl stability theorem establishes a limit of distance observation with density dependence.

P. H. Pereyra

2009-04-16T23:59:59.000Z

392

Software Modeling and Verification Professors  

E-Print Network [OSTI]

Software Modeling and Verification Staff · Professors Prof. Dr. Ir. Joost-Pieter Katoen Prof. em) Mark Timmer (Uni Twente, NL) Dr. Olga Tveretina (Karlsruhe University, D) Ralf Wimmer (Universität

Ábrahám, Erika

393

Modeling DNA Shuffling Fengzhu Sun  

E-Print Network [OSTI]

Modeling DNA Shuffling Fengzhu Sun 1Department of Genetics Emory University School of Medicine property are selected. Irvine et al. (1991) and Sun et al. (1996) studied in vitro evolution not involving

Sun, Fengzhu - Sun, Fengzhu

394

Hierarchical aggregation in percolation model  

E-Print Network [OSTI]

There is a growing belief that the complex dynamics of seismicity can be better understood by studying the collective behavior .... for building an empirical description and developing ... is largely predicated in this geometrical model and there.

2006-01-17T23:59:59.000Z

395

Crystal-Like geometric modeling  

E-Print Network [OSTI]

faces, symmetry, and fractal geometry. The techniques have also been implemented in software, as a proof of concept. They are used in an interactive geometric modeling system, in which users can use these techniques to create crystal-like shapes...

Landreneau, Eric Benjamin

2006-08-16T23:59:59.000Z

396

Model Wind Energy Facility Ordinance  

Broader source: Energy.gov [DOE]

Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative...

397

Multiscale modeling in granular flow  

E-Print Network [OSTI]

Granular materials are common in everyday experience, but have long-resisted a complete theoretical description. Here, we consider the regime of slow, dense granular flow, for which there is no general model, representing ...

Rycroft, Christopher Harley

2007-01-01T23:59:59.000Z

398

Graphical Models Michael I. Jordan  

E-Print Network [OSTI]

Graphical Models Michael I. Jordan Computer Science Division and Department of Statistics; errorcontrol coding. 1. Introduction The fields of Statistics and Computer Science have generally statistics. However, by providing general machinery for manipulating joint probability distribu tions

Jordan, Michael I.

399

A supersymmetric model for graphene  

E-Print Network [OSTI]

In this work, we focus on the fermionic structure of the low-energy excitations of graphene (a monolayer of carbon atoms) to propose a new supersymmetric field-theoretic model for this physical system. In the current literature, other proposals for describing graphene physics have been contemplated at the level of supersymmetric quantum mechanics. Also, by observing the inhomogeneities between neighbor carbon atoms, Jackiw {\\it et al.} have set up an interesting chiral Abelian gauge theory. We show in this paper that our formulation encompasses models discussed previously as sectors of an actually richer (supersymmetric) planar gauge model. Possible interpretations for the fields involved in the present graphene model are proposed and the question of supersymmetry breaking is discussed.

Everton M. C. Abreu; Marco A. De Andrade; Leonardo P. G. de Assis; Jose A. Helayel-Neto; A. L. M. A. Nogueira; Ricardo C. Paschoal

2014-07-21T23:59:59.000Z

400

Modeling the Clustering of Objects  

E-Print Network [OSTI]

I review the main steps made so far towards the construction of a (semi) analytical model for describing the growth history of bound virialized objects or haloes in the gravitational instability scenario. I mainly focus on those models relying on the spherical collapse approximation which have led to the most complete description. I insist on the different assumptions of each model and outline their main advantages and shortcomings. The work is divided in two parts: a first one dealing with the theoretical mass function of objects, and a second one dealing with the typical growth times and rates. Particular attention is paid to a new model making the practical distinction between accretion and merger events.

E. Salvador-Sole

1995-12-07T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Physics Beyond the Standard Model  

E-Print Network [OSTI]

I present a brief overview of some exciting possibilities for physics Beyond the Standard Model. I include short discussions of neutrino physics, the strong CP problem and axions, GUTs, large and warped extra dimensions, Little Higgs models and supersymmetry. The chances appear excellent that in the next few years-- as the LHC era gets underway-- data from a bevy of experiments will point the way to a new paradigm for the laws of physics as we know them.

Howard Baer

2009-08-19T23:59:59.000Z

402

Image Processing with Manifold Models  

E-Print Network [OSTI]

to the following signals ensemble def. = {x f(x) = A(x) cos((x)) \\ ||A || Amax and || || max.} This model to = R+ ? R+ ? S1 . The projection of a patch p L2 ([-/2, /2]) on M can be carried over approximately] and defines the windowed Fourier 20 = {x f(x) = A(x) cos((x)) \\ ||A || Amax and || || max.} model of locally

Milanfar, Peyman

403

How to model quantum plasmas  

E-Print Network [OSTI]

Traditional plasma physics has mainly focused on regimes characterized by high temperatures and low densities, for which quantum-mechanical effects have virtually no impact. However, recent technological advances (particularly on miniaturized semiconductor devices and nanoscale objects) have made it possible to envisage practical applications of plasma physics where the quantum nature of the particles plays a crucial role. Here, I shall review different approaches to the modeling of quantum effects in electrostatic collisionless plasmas. The full kinetic model is provided by the Wigner equation, which is the quantum analog of the Vlasov equation. The Wigner formalism is particularly attractive, as it recasts quantum mechanics in the familiar classical phase space, although this comes at the cost of dealing with negative distribution functions. Equivalently, the Wigner model can be expressed in terms of $N$ one-particle Schr{\\"o}dinger equations, coupled by Poisson's equation: this is the Hartree formalism, which is related to the `multi-stream' approach of classical plasma physics. In order to reduce the complexity of the above approaches, it is possible to develop a quantum fluid model by taking velocity-space moments of the Wigner equation. Finally, certain regimes at large excitation energies can be described by semiclassical kinetic models (Vlasov-Poisson), provided that the initial ground-state equilibrium is treated quantum-mechanically. The above models are validated and compared both in the linear and nonlinear regimes.

G. Manfredi

2005-05-01T23:59:59.000Z

404

An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1  

E-Print Network [OSTI]

into the numerical weather prediction model COSMO, BorealCurrent numerical weather prediction (NWP) models, regionalof lakes in numerical weather prediction and climate models:

Subin, Z.M.

2013-01-01T23:59:59.000Z

405

Ecological Modelling 193 (2006) 271294 A simulation model of sustainability of coastal communities  

E-Print Network [OSTI]

Ecological Modelling 193 (2006) 271­294 A simulation model of sustainability of coastal communities. Keywords: Aquaculture; Sustainability; Fisheries; Simulation model; Employment; Coastal communities

Pierce, Graham

406

CARD No. 23 Models and Computer Codes  

E-Print Network [OSTI]

CARD No. 23 Models and Computer Codes 23.A BACKGROUND Section 194.23 addresses the compliance criteria requirements for conceptual models and computer codes. Conceptual models capture a general (PA). The design of computer codes begins with the development of conceptual models. Conceptual models

407

Reduced models of algae growth Heikki Haario,  

E-Print Network [OSTI]

Reduced models of algae growth Heikki Haario, Leonid Kalachev Marko Laine, Lappeenranta University of the phenomena studied. Here, in the case of algae growth modelling, we show how a systematic model reduction may: Algae growth modelling, asymptotic methods, model reduction, MCMC, Adaptive Markov chain Monte Carlo. 1

Bardsley, John

408

3, 35253541, 2003 Modelling of Mercury  

E-Print Network [OSTI]

ACPD 3, 3525­3541, 2003 Modelling of Mercury with the Danish Eulerian Hemispheric Model J. H and Physics Discussions Modelling of mercury with the Danish Eulerian Hemispheric Model J. H. Christensen, J Correspondence to: J. H. Christensen (jc@dmu.dk) 3525 #12;ACPD 3, 3525­3541, 2003 Modelling of Mercury

Paris-Sud XI, Université de

409

Hybrid Diverter Sheath Model Jeff Hammel  

E-Print Network [OSTI]

Hybrid Diverter Sheath Model Jeff Hammel Plasma Theory and Simulation Group APS ­ Division using a particle-fluid hybrid model. Electrons are modeled as an inertia-less (Boltzmann) fluid gyrokinetic code. The modeling methodology for the iterative nonlinear solver is presented. The hybrid model

Wurtele, Jonathan

410

TANK48 CFD MODELING ANALYSIS  

SciTech Connect (OSTI)

The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.

Lee, S.

2011-05-17T23:59:59.000Z

411

06241 Abstracts Collection Human Motion -Understanding, Modeling,  

E-Print Network [OSTI]

06241 Abstracts Collection Human Motion - Understanding, Modeling, Capture and Animation. 13th Summary Human Motion - Understanding, Modeling, Capture and Animation. 13th Workshop Reinhard Klette 06241 Human Motion - Understanding, Modeling, Capture and Animation. 13th Workshop "Theoretical

412

Medion:The "Orchestrator" Business Model  

E-Print Network [OSTI]

a strongly atypical business model in the PC value chain. Itwas able to execute this business model with flexibility,is to analyze Medions business model in detail, in order to

Ordanini, Andrea; Dedrick, Jason; Kraemer, Kenneth L

2006-01-01T23:59:59.000Z

413

A Model Graphene Diffraction Pattern Frank Rioux  

E-Print Network [OSTI]

A Model Graphene Diffraction Pattern Frank Rioux The purpose of this tutorial is to model graphene d Pj k px j py k 2 i 1 A Graphene Model Diffraction Pattern #12;

Rioux, Frank

414

Modeling of Residential Attics with Radiant Barriers  

E-Print Network [OSTI]

This paper gives a summary of the efforts at ORNL in modeling residential attics with radiant barriers. Analytical models based on a system of macroscopic heat balances have been developed. Separate models have been developed for horizontal radiant...

Wilkes, K. E.

1988-01-01T23:59:59.000Z

415

Computer Modeling Illuminates Degradation Pathways of  

E-Print Network [OSTI]

Computer Modeling Illuminates Degradation Pathways of Cations in Alkaline Membrane Fuel Cells Cation degradation insights obtained by computational modeling could result in better performance are effective in increasing cation stability. With the help of computational modeling, more cations are being

416

Modeling Texture Evolution during Recrystallization in Aluminum  

E-Print Network [OSTI]

Modeling Texture Evolution during Recrystallization in Aluminum Abhijit Brahme1,2 , Joseph Fridy3, Aluminum, Grain Boundary Mobility, Nucleation, Oriented Growth, Oriented Nucleation, Stored Energy, Monte Carlo Modeling. #12;Modeling Texture Evolution during Recrystallization in Aluminum 2 1. Introduction

Rollett, Anthony D.

417

Modeling Water, Climate, Agriculture, and the Economy  

E-Print Network [OSTI]

Describes two models used in the integrated modeling framework designed to study water, climate, agriculture and the economy in Pakistan's Indus Basin: (1) the Indus Basin Model Revised (IBMR-1012), a hydro-economic ...

Yu, Winston

418

HYBRID MODELING OF COMMUNICATION NETWORKS USING MODELICA  

E-Print Network [OSTI]

HYBRID MODELING OF COMMUNICATION NETWORKS USING MODELICA Daniel Farnqvist Katrin Strandemar and simulation of communication networks using the modeling language Modelica are discussed. Congestion control model, that Modelica provides an efficient platform for the analysis of communication networks

Johansson, Karl Henrik

419

Developing fast and efficient climate models  

E-Print Network [OSTI]

, based on the global model of Tim Lenton. The resulting package comprises an Earth System Model was closely integrated with the GENIE (Grid ENabled Integrated Earth system model) project, funded by the NERC

Williamson, Mark

420

At the Biological Modeling and Simulation Frontier  

E-Print Network [OSTI]

Modeling and Simulation Frontier 57. Norinder U, BergstrmModeling and Simulation Frontier C. Anthony Hunt, 1,3,4 GlenThe Modeling and Simulation Frontier Fig. 7. Illustrated are

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Selected problems in turbulence theory and modeling  

E-Print Network [OSTI]

Three different topics of turbulence research that cover modeling, theory and model computation categories are selected and studied in depth. In the first topic, "velocity gradient dynamics in turbulence" (modeling), the Lagrangian linear diffusion...

Jeong, Eun-Hwan

2004-09-30T23:59:59.000Z

422

Mathematical modelings of smart materials and structures  

E-Print Network [OSTI]

Mathematical modelings of smart materials and structures Christian Licht , Thibaut Weller mathematical models of smart materials and smart structures. Smart materials are materials which present perturbations methods, asymptotic analysis, plates and rods models. 1 Introduction Smart materials present

Paris-Sud XI, Université de

423

Comparison of Chiller Models for Use in Model-Based Fault Detection  

E-Print Network [OSTI]

, and computational requirements. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression chillers. Three different models were studied: the Gordon and Ng Universal Chiller model (2nd...

Sreedhara, P.; Haves, P.

2001-01-01T23:59:59.000Z

424

Automated inter-model parameter connection synthesis for simulation model integration  

E-Print Network [OSTI]

New simulation modeling environments have been developed such that multiple models can be integrated into a single model. This conglomeration of model data allows designers to better understand the physical phenomenon being ...

Ligon, Thomas (Thomas Crumrine)

2007-01-01T23:59:59.000Z

425

Separations and safeguards model integration.  

SciTech Connect (OSTI)

Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

Cipiti, Benjamin B.; Zinaman, Owen

2010-09-01T23:59:59.000Z

426

Ventilation Model and Analysis Report  

SciTech Connect (OSTI)

This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity.

V. Chipman

2003-07-18T23:59:59.000Z

427

String bit models for superstring  

SciTech Connect (OSTI)

The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.

Bergman, O.; Thorn, C.B.

1995-12-31T23:59:59.000Z

428

Modeling Molecular Dynamics from Simulations  

SciTech Connect (OSTI)

Many important processes in biology occur at the molecular scale. A detailed understanding of these processes can lead to significant advances in the medical and life sciences. For example, many diseases are caused by protein aggregation or misfolding. One approach to studying these systems is to use physically-based computational simulations to model the interactions and movement of the molecules. While molecular simulations are computationally expensive, it is now possible to simulate many independent molecular dynamics trajectories in a parallel fashion by using super- or distributed- computing methods such as Folding@Home or Blue Gene. The analysis of these large, high-dimensional data sets presents new computational challenges. In this seminar, I will discuss a novel approach to analyzing large ensembles of molecular dynamics trajectories to generate a compact model of the dynamics. This model groups conformations into discrete states and describes the dynamics as Markovian, or history-independent, transitions between the states. I will discuss why the Markovian state model (MSM) is suitable for macromolecular dynamics, and how it can be used to answer many interesting and relevant questions about the molecular system. I will also discuss many of the computational and statistical challenges in building such a model, such as how to appropriately cluster conformations, determine the statistical reliability, and efficiently design new simulations.

Hinrichs, Nina Singhal (University of Chicago) [University of Chicago

2009-01-28T23:59:59.000Z

429

A Three site Higgsless model  

SciTech Connect (OSTI)

We analyze the spectrum and properties of a highly deconstructed Higgsless model with only three sites. Such a model contains sufficient complexity to incorporate interesting physics issues related to fermion masses and electroweak observables, yet remains simple enough that it could be encoded in a Matrix Element Generator program for use with Monte Carlo simulations. The gauge sector of this model is equivalent to that of the Breaking Electroweak Symmetry Strongly (BESS) model; the new physics of interest here lies in the fermion sector. We analyze the form of the fermion Yukawa couplings required to produce the ideal fermion delocalization that causes tree-level precision electroweak corrections to vanish. We discuss the size of one-loop corrections to b{yields}s{gamma}, the weak-isospin violating parameter {alpha}T and the decay Z{yields}bb. We find that the new fermiophobic vector states (the analogs of the gauge-boson Kaluza-Klein modes in a continuum model) can be reasonably light, with a mass as low as 380 GeV, while the extra (approximately vectorial) quark and lepton states (the analogs of the fermion Kaluza-Klein modes) must be heavier than 1.8 TeV.

Chivukula, R. Sekhar; Coleppa, Baradhwaj; Chiara, Stefano Di; Simmons, Elizabeth H.; He, Hong-Jian; Kurachi, Masafumi; Tanabashi, Masaharu [Department of Physics and Astronomy, Michigan State University East Lansing, Michigan 48824 (United States); Center for High Energy Physics, Tsinghua University Beijing 100084 (China); C.N. Yang Institute for Theoretical Physics, State University of New York Stony Brook, New York 11794 (United States); Department of Physics, Tohoku University Sendai 980-8578 (Japan)

2006-10-01T23:59:59.000Z

430

Reduced models for quantum gravity  

E-Print Network [OSTI]

The preceding talks given at this conference have dealt mainly with general ideas for, main problems of and techniques for the task of quantizing gravity canonically. Since one of the major motivations to arrange for this meeting was that it should serve as a beginner's introduction to canonical quantum gravity, we regard it as important to demonstrate the usefulness of the formalism by means of applying it to simplified models of quantum gravity, here formulated in terms of Ashtekar's new variables. From the various, completely solvable, models that have been discussed in the literature we choose those that we consider as most suitable for our pedagogical reasons, namely 2+1 gravity and the spherically symmetric model. The former model arises from a dimensional, the latter from a Killing reduction of full 3+1 gravity. While 2+1 gravity is usually treated in terms of closed topologies without boundary of the initial data hypersurface, the toplogy for the spherically symmetric system is chosen to be asymptotically flat. Finally, 2+1 gravity is more suitably quantized using the loop representation while spherically symmetric gravity is easier to quantize via the self-dual representation. Accordingly, both types of reductions, both types of topologies and both types of representations that are mainly employed in the literature in the context of the new variables come into practice. What makes the discussion especially clear is the fact that for both models the reduced phase space turns out to be finitely dimensional.

T. Thiemann

1999-10-04T23:59:59.000Z

431

Model Development Development of a system emulating the global carbon cycle in Earth system models  

E-Print Network [OSTI]

developed a loosely coupled model (LCM) which can represent the outputs of a GCMbased Earth system model

K. Tachiiri; J. C. Hargreaves; J. D. Annan; A. Oka; A. Abe-ouchi; M. Kawamiya

2010-01-01T23:59:59.000Z

432

Essays on Multivariate Modeling in Financial Econometrics  

E-Print Network [OSTI]

24 5.1 GARCHTESTING IN MULTIVARIETE GARCH MODELS . . . . . . . . . . .t and J-Statistics for GARCH (1,1) Model of NYSE Returns

Yoldas, Emre

2008-01-01T23:59:59.000Z

433

FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH  

E-Print Network [OSTI]

AirConditionerTestinginWECC,IEEEPower EngineeringAirConditionerModeling,WECCLoadModelingTask Forceinpowersystemstudies:WECCprogressupdate,?Powerand

Lesieutre, Bernard

2013-01-01T23:59:59.000Z

434

Model Refinement for Economic Assessments of  

E-Print Network [OSTI]

Model Refinement for Economic Assessments of Hawai`i Clean Energy Policies: Scenario Selection agency thereof. #12;Model Refinement for Economic Assessments of Hawaii Clean Energy Policies Selection

435

Colorado: Energy Modeling Products Support Energy Efficiency...  

Office of Environmental Management (EM)

Colorado: Energy Modeling Products Support Energy Efficiency Projects Colorado: Energy Modeling Products Support Energy Efficiency Projects May 1, 2014 - 11:04am Addthis Xcel...

436

Reduced Rank Models for Contingency Tables  

E-Print Network [OSTI]

Solution problem 73-14, Rank factorization of nonnegativein Great Britain Reduced rank models for contingency tablesclass analysis; Reduced rank models. 1. INTRODUCTION In

Jan de Leeuw; Peter van der Heijden

2011-01-01T23:59:59.000Z

437

Sustainable Business Models - Utilities and Efficiency Partnerships...  

Energy Savers [EERE]

Sustainable Business Models - Utilities and Efficiency Partnerships Sustainable Business Models - Utilities and Efficiency Partnerships Provides an overview and lessons learned on...

438

Essays on inference and strategic modeling  

E-Print Network [OSTI]

and Q Vuong. Structural econometric analysis of descendinga class of nonregular econometric models. Econometrica, 72(for parameter sets in econometric models. Econometrica, 75(

Gillen, Benjamin J.

2010-01-01T23:59:59.000Z

439

201202 Reservoir System Modeling Technologies Conference  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Algorithm to Incorporate the Columbia River Non-Power Flow Requirements in the BC Hydro Generalized Optimization Model - University of British Columbia Hydrologic Modeling...

440

GETEM -Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers [EERE]

GETEM -Geothermal Electricity Technology Evaluation Model GETEM -Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal Electricity...

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electricity Subsector Cybersecurity Capability Maturity Model...  

Office of Environmental Management (EM)

Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Electricity Subsector Cybersecurity...

442

Electricity Subsector Cybersecurity Capability Maturity Model...  

Office of Environmental Management (EM)

Electricity Subsector Cybersecurity Capability Maturity Model v. 1.1. (February 2014) Electricity Subsector Cybersecurity Capability Maturity Model v. 1.1. (February 2014) The...

443

Directory of Energy Information Administration Models 1994  

SciTech Connect (OSTI)

This directory revises and updates the 1993 directory and includes 15 models of the National Energy Modeling System (NEMS). Three other new models in use by the Energy Information Administration (EIA) have also been included: the Motor Gasoline Market Model (MGMM), Distillate Market Model (DMM), and the Propane Market Model (PPMM). This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses and requirements. Sources for additional information are identified. Included in this directory are 37 EIA models active as of February 1, 1994.

Not Available

1994-07-01T23:59:59.000Z

444

Tribo-Chemical Modeling of Copper CMP  

E-Print Network [OSTI]

TRIBO-CHEMICAL MODELING OF COPPER CMP Shantanu Tripathi 1 ,Technical Area: CMP (Copper) Abstract We are developing antribo-chemical model of copper CMP that considers abrasive

Tripathi, Shantanu; Doyle, Fiona; Dornfeld, David

2006-01-01T23:59:59.000Z

445

Mineralogic Model (MM3.0) Report  

SciTech Connect (OSTI)

The purpose of this report is to provide a three-dimensional (3-D) representation of the mineral abundance within the geologic framework model domain. The mineralogic model enables project personnel to estimate mineral abundances at any position, within the model region, and within any stratigraphic unit in the model area. The model provides the abundance and distribution of 10 minerals and mineral groups within 22 stratigraphic sequences or model layers in the Yucca Mountain area. The uncertainties and limitations associated with this model are discussed in Section 6.4. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7.

A. Sanchez

2004-09-07T23:59:59.000Z

446

Cybersecurity Capability Maturity Model - Frequently Asked Questions...  

Broader source: Energy.gov (indexed) [DOE]

- Frequently Asked Questions (February 2014) Cybersecurity Capability Maturity Model - Frequently Asked Questions (February 2014) The Cybersecurity Capability Maturity Model (C2M2)...

447

Cybersecurity Capability Maturity Model - Facilitator Guide ...  

Broader source: Energy.gov (indexed) [DOE]

- Facilitator Guide (February 2014) Cybersecurity Capability Maturity Model - Facilitator Guide (February 2014) The Cybersecurity Capability Maturity Model (C2M2) program is...

449

Hydrogen Embrittlement Fundamentals, Modeling, and Experiment...  

Energy Savers [EERE]

Hydrogen Embrittlement Fundamentals, Modeling, and Experiment Hydrogen Embrittlement Fundamentals, Modeling, and Experiment Embrittlement, under static load could be a result of...

450

Verification and Validation of Simulation Model  

E-Print Network [OSTI]

Verification and Validation of Simulation Model 1 Verification and Validation 2 #12;Verification · Examples ­ simulation model: open networks with exponential interarrival time distribution and uniform

Shihada, Basem

451

Peridynamic model for fatigue cracking.  

SciTech Connect (OSTI)

The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the %22remaining life%22 of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

Silling, Stewart A.; Abe Askari (Boeing)

2014-10-01T23:59:59.000Z

452

Modeling Hepatitis C treatment policy.  

SciTech Connect (OSTI)

Chronic infection with Hepatitis C virus (HCV) results in cirrhosis, liver cancer and death. As the nation's largest provider of care for HCV, US Veterans Health Administration (VHA) invests extensive resources in the diagnosis and treatment of the disease. This report documents modeling and analysis of HCV treatment dynamics performed for the VHA aimed at improving service delivery efficiency. System dynamics modeling of disease treatment demonstrated the benefits of early detection and the role of comorbidities in disease progress and patient mortality. Preliminary modeling showed that adherence to rigorous treatment protocols is a primary determinant of treatment success. In depth meta-analysis revealed correlations of adherence and various psycho-social factors. This initial meta-analysis indicates areas where substantial improvement in patient outcomes can potentially result from VA programs which incorporate these factors into their design.

Kuypers, Marshall A.; Lambert, Gregory Joseph; Moore, Thomas W.; Glass, Robert John,; Finley, Patrick D.; Ross, David [Clinical Public Health Group, Veterans Health Administration, Washington, D.C.; Chartier, Maggie

2013-09-01T23:59:59.000Z

453

Maxwell's fluid model of magnetism  

E-Print Network [OSTI]

In 1861, Maxwell derived two of his equations of electromagnetism by modelling a magnetic line of force as a `molecular vortex' in a fluid-like medium. Later, in 1980, Berry and colleagues conducted experiments on a `phase vortex', a wave geometry in a fluid which is analogous to a magnetic line of force and also exhibits behaviour corresponding to the quantisation of magnetic flux. Here we unify these approaches by writing down a solution to the equations of motion for a compressible fluid which behaves in the same way as a magnetic line of force. We then revisit Maxwell's historical inspiration, namely Faraday's 1846 model of light as disturbances in lines of force. Using our unified model, we show that such disturbances resemble photons: they are polarised, absorbed discretely, obey Maxwell's full equations of electromagnetism to first order, and quantitatively reproduce the correlation that is observed in the Bell tests.

Robert Brady; Ross Anderson

2015-02-20T23:59:59.000Z

454

Models of isospin violating ADM  

SciTech Connect (OSTI)

The isospin violating dark matter (IVDM) scenario offers an interesting possibility to reconcile conflicting results among direct dark matter search experiments for a mass range around 10 GeV. We consider two simple renormalizable IVDM models with a complex scalar dark matter and a Dirac fermion dark matter, respectively, whose stability is ensured by the conservation of dark matter number. Although both models successfully work as the IVDM scenario with destructive interference between effective couplings to proton and neutron, the dark matter annihilation cross section is found to exceed the cosmological/astrophysical upper bounds. Then, we propose a simple scenario to reconcile the IVDM scenario with the cosmological/astrophysical bounds, namely, the IVDM being asymmetric. We also discuss collider experimental constraints on the models and an implication to Higgs boson physics.

Okada, Nobuchika [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Seto, Osamu [Department of Life Science and Technology, Hokkai-Gakuen University, Sapporo 062-8605 (Japan)

2014-06-24T23:59:59.000Z

455

Thermomechanical cavity-growth modeling  

SciTech Connect (OSTI)

The results of recent field tests, laboratory studies, and modeling efforts in UCG have indicated that the thermal and mechanical properties of coal may be the controlling parameters in determining initial cavity shape. In examining this possibility, laboratory efforts have been directed at determining temperature and bedding plane dependent properties of coal. A thermomechanical model which uses these properties has indicated that the cavity shapes seen at both the Hanna and Hoe Creek test sites result from the temperature dependent properties of the coal such as the coefficients of thermal expansion and the elastic moduli. The model determines stress levels and uses a simple bedding plane dependent stress failure mechanism to determine cavity growth.

Glass, R.E.

1982-01-01T23:59:59.000Z

456

Model-Inspired Research. TES research uses modeling, prediction, and synthesis to identify  

E-Print Network [OSTI]

in Earth system models (ESMs). TES supports research to advance fundamental understanding of terrestrial-process models, ecosystem models, and the Community Earth System Model). This emphasis on the capture of advanced in Earth system models to increase the quality of climate model projections and to provide the scientific

457

MODELING PLANT COMPETITION WITH THE GAPS OBJECT-ORIENTED DYNAMIC SIMULATION MODEL  

E-Print Network [OSTI]

MODELING PLANT COMPETITION WITH THE GAPS OBJECT-ORIENTED DYNAMIC SIMULATION MODEL David G. Rossiter of Agronomy, Inc. #12;MODELING PLANT COMPETITION WITH THE GAPS OBJECT-ORIENTED DYNAMIC SIMULATION MODEL Abstract Modeling inter-species competition is a natural application for dynamic simulation models

Rossiter, D G "David"

458

Neural Networks:Neural Networks: Modeling ApplicationsModeling Applications  

E-Print Network [OSTI]

and/or integral equations representing mathematical model of a given physical process. The coefficients of these equations must be exactly known as they are used to program/adjust the coefficient inherent in analog differentiation the [differential] equation is rearranged so that it can be solved

Petriu, Emil M.

459

ORQA: Modeling Energy and Quality of Service within AUTOSAR Models  

E-Print Network [OSTI]

Systems]: Consumer Products--electric vehicle General Terms Design, Management Keywords Autosar, model­21, 2013, Vancouver, BC, Canada. 1. INTRODUCTION The Electric Vehicle (EV) has now reached an industrial CERIE, ESTACA Laval, France 2 MOCS, CACS team Lab-STICC, UEB, UBO Brest, France ABSTRACT Electric

Boyer, Edmond

460

EnergyPlus Model Appendix G -EnergyPlus Model  

E-Print Network [OSTI]

Home B) C_ela 55.66 51.51 ELA (in.2) 38.83 35.93 The heating, ventilation, and air conditioning (HVAC) system is modeled as a single-speed heat pump with a Seasonal Energy Efficiency Ratio (SEER) of 13 where internal gains, heat pump operation mode and zone thermostat set-points are varied. Two sets

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Conditional Markov regime switching model applied to economic modelling.  

E-Print Network [OSTI]

and Brent oil price) to show that this modelling well identifies both mean reverting and volatility regimes times series data as business cycle, economic growth or unemployment is not new. In his seminal paper [7 to reproduce the different phase of the business cycles and captures the cyclical behavior of the U.S. GDP

Paris-Sud XI, Université de

462

Modeling of Antarctic sea ice in a general circulation model  

SciTech Connect (OSTI)

A dynamic-thermodynamic sea ice model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea ice distributions The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea ice model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified ice rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the ice/snow, the ice/water interface, and the open water area to determine the ice formation, accretion, and ablation. A lead parameterization is introduced with an effective partitioning scheme for freezing between and under the ice floes. The dynamic calculation determines the motion of ice, which is forced with the atmospheric wind, taking account of ice resistance and rafting. The simulated sea ice distribution compares reasonably well with observations. The seasonal cycle of ice extent is well simulated in phase as well as in magnitude. Simulated sea ice thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea ice distribution. 64 refs., 15 figs., 2 tabs.

Wu, Xingren; Budd, W.F. [Antarctic Cooperative Research Centre, Tasmania (Australia)] [Antarctic Cooperative Research Centre, Tasmania (Australia); Simmonds, I. [School of Earth Sciences, Victoria (Australia)] [School of Earth Sciences, Victoria (Australia)

1997-04-01T23:59:59.000Z

463

HYPERELASTIC MODELS FOR GRANULAR MATERIALS  

SciTech Connect (OSTI)

A continuum framework for modeling of dust mobilization and transport, and the behavior of granular systems in general, has been reviewed, developed and evaluated for reactor design applications. The large quantities of micron-sized particles expected in the international fusion reactor design, ITER, will accumulate into piles and layers on surfaces, which are large relative to the individual particle size; thus, particle-particle, rather than particle-surface, interactions will determine the behavior of the material in bulk, and a continuum approach is necessary and justified in treating the phenomena of interest; e.g., particle resuspension and transport. The various constitutive relations that characterize these solid particle interactions in dense granular flows have been discussed previously, but prior to mobilization their behavior is not even fluid. Even in the absence of adhesive forces between particles, dust or sand piles can exist in static equilibrium under gravity and other forces, e.g., fluid shear. Their behavior is understood to be elastic, though not linear. The recent granular elasticity theory proposes a non-linear elastic model based on Hertz contacts between particles; the theory identifies the Coulomb yield condition as a requirement for thermodynamic stability, and has successfully reproduced experimental results for stress distributions in sand piles. The granular elasticity theory is developed and implemented in a stand- alone model and then implemented as part of a finite element model, ABAQUS, to determine the stress distributions in dust piles subjected to shear by a fluid flow. We identify yield with the onset of mobilization, and establish, for a given dust pile and flow geometry, the threshold pressure (force) conditions on the surface due to flow required to initiate it. While the granular elasticity theory applies strictly to cohesionless granular materials, attractive forces are clearly important in the interaction of micron-sized particles; extension of the theory to account for these effects is also considered. A set of continuum models are proposed for use in the future dust transport modeling.

Humrickhouse, Paul W; Corradini, Michael L

2009-01-29T23:59:59.000Z

464

Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-lived Surface Caps  

SciTech Connect (OSTI)

Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone's back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: (a) improve the knowledge of degradation mechanisms in times shorter than service life; (b) improve modeling of barrier degradation dynamics; (c) develop sensor systems to identify early degradation; and (d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing at the intermediate meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The emphasis on meso-scale (coupled) tests, accelerated effects testing, and dynamic modeling differentiates the project from other efforts, while simultaneously building on that body of knowledge. The performance of evapotranspiration, capillary, and grout-based barriers is being examined. To date, the project can report new approaches to the problem, building new experimental and modeling capabilities, and a few preliminary results.

Piet, S. J.; Breckenridge, R. P.; Burns, D. E.

2003-02-25T23:59:59.000Z

465

Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-Lived Surface Caps  

SciTech Connect (OSTI)

Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someones back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: a) improve the knowledge of degradation mechanisms in times shorter than service life; b) improve modeling of barrier degradation dynamics; c) develop sensor systems to identify early degradation; and d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing at the intermediate meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The emphasis on meso-scale (coupled) tests, accelerated effects testing, and dynamic modeling differentiates the project from other efforts, while simultaneously building on that body of knowledge. The performance of evapotranspiration, capillary, and grout-based barriers is being examined. To date, the project can report new approaches to the problem, building new experimental and modeling capabilities, and a few preliminary results.

Piet, Steven James; Breckenridge, Robert Paul; Burns, Douglas Edward

2003-02-01T23:59:59.000Z

466

Chemical kinetics and combustion modeling  

SciTech Connect (OSTI)

The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

467

Community Renewables: Model Program Rules  

Broader source: Energy.gov [DOE]

The Interstate Renewable Energy Council (IREC) has worked closely with The Vote Solar Initiative to develop model program rules for community-scale renewables that consider many of the basic issues facing community renewables programs. IRECs model program rules address such issues as renewable system size, interconnection, eligibility for participation, allocation of the benefits flowing from participation, net metering of system production, and other essential features of a community renewables program. The goal of this effort is to provide stakeholders with program rules they can tailor to the individual circumstances and policy preferences of their state without having to reinvent the wheel at each turn.

468

Fermionic Models with Superconducting Circuits  

E-Print Network [OSTI]

We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups.

U. Las Heras; L. Garca-lvarez; A. Mezzacapo; E. Solano; L. Lamata

2014-11-10T23:59:59.000Z

469

Fermionic Models with Superconducting Circuits  

E-Print Network [OSTI]

We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups.

U. Las Heras; L. Garca-lvarez; A. Mezzacapo; E. Solano; L. Lamata

2015-03-31T23:59:59.000Z

470

Extreme Conditions Modeling Workshop Report  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, NM on May 13th-14th, 2014. The objective of the workshop was to review the current state of knowledge on how to model WECs in extreme conditions (e.g. hurricanes and other large storms) and to suggest how U.S. Department of Energy (DOE) and national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry.

Coe, R. G.; Neary, V. S.; Lawson, M. J.; Yu, Y.; Weber, J.

2014-07-01T23:59:59.000Z

471

Model Validation with Hybrid Dynamic Simulation  

SciTech Connect (OSTI)

AbstractModel validation has been one of the central topics in power engineering studies for years. As model validation aims at obtaining reasonable models to represent actual behavior of power system components, it has been essential to validate models against actual measurements or known benchmark behavior. System-wide model simulation results can be compared with actual recordings. However, it is difficult to construct a simulation case for a large power system such as the WECC system and to narrow down to problematic models in a large system. Hybrid dynamic simulation with its capability of injecting external signals into dynamic simulation enables rigorous comparison of measurements and simulation in a small subsystem of interest. This paper presents such a model validation methodology with hybrid dynamic simulation. Two application examples on generator and load model validation are presented to show the validity of this model validation methodology. This methodology is further extended for automatic model validation and dichotomous subsystem model validation.

Huang, Zhenyu; Kosterev, Dmitry; Guttromson, Ross T.; Nguyen, Tony B.

2006-06-18T23:59:59.000Z

472

EIA model documentation: Petroleum market model of the national energy modeling system  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.

NONE

1995-12-28T23:59:59.000Z

473

Confronting the challenge of hybrid modeling: Using discrete choice models to inform the behavioural parameters of a hybrid model  

E-Print Network [OSTI]

, Habart and Associates ABSTRACT The development of hybrid models represents an important step in energy parameters of a hybrid model, the behavioural realism of the DCM can be coupled with the system feedbacks of the energy economy hybrid model to produce an integrated model that is both behaviourally realistic

474

Water Distribution and Removal Model  

SciTech Connect (OSTI)

The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD&R) Model; (2) EBS Physical and Chemical Environment (P&CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD&R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment. The purposes of this WD&R model (CRWMS M&O 2000b) are to quantify and evaluate the distribution and drainage of seepage water within emplacement drifts during the period of compliance for post-closure performance. The model bounds the fraction of water entering the drift that will be prevented from contacting the waste by the combined effects of engineered controls on water distribution and on water removal. For example, water can be removed during pre-closure operation by ventilation and after closure by natural drainage into the fractured rock. Engineered drains could be used, if demonstrated to be necessary and effective, to ensure that adequate drainage capacity is provided. This report provides the screening arguments for certain Features, Events, and Processes (FEPs) that are related to water distribution and removal in the EBS. Applicable acceptance criteria from the Issue Resolution Status Reports (IRSRs) developed by the U.S. Nuclear Regulatory Commission (NRC 1999a; 1999b; 1999c; and 1999d) are also addressed in this document.

Y. Deng; N. Chipman; E.L. Hardin

2005-08-26T23:59:59.000Z

475

Viscoelastic Model for Lung Parenchyma for Multi-Scale Modeling of Respiratory System, Phase II: Dodecahedral Micro-Model  

SciTech Connect (OSTI)

In the first year of this contractual effort a hypo-elastic constitutive model was developed and shown to have great potential in modeling the elastic response of parenchyma. This model resides at the macroscopic level of the continuum. In this, the second year of our support, an isotropic dodecahedron is employed as an alveolar model. This is a microscopic model for parenchyma. A hopeful outcome is that the linkage between these two scales of modeling will be a source of insight and inspiration that will aid us in the final year's activity: creating a viscoelastic model for parenchyma.

Freed, Alan D.; Einstein, Daniel R.; Carson, James P.; Jacob, Rick E.

2012-03-01T23:59:59.000Z

476

Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0StatementsMixing Up aSTANDARDS

477

Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0StatementsMixing Up aSTANDARDSwarm dense

478

Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0StatementsMixing Up aSTANDARDSwarm densein

479

Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0StatementsMixing Up aSTANDARDSwarm

480

Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0StatementsMixing Up

Note: This page contains sample records for the topic "modeling mesoscale modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Software Reliability Modeling James LEDOUX  

E-Print Network [OSTI]

Software Reliability Modeling James LEDOUX Centre de Math´ematiques INSA & IRMAR 20 Avenue des an overview of some aspects of Software Reliability (SR) engineering. Most systems are now driven by software in reliability engineering, particularly in terms of cost. But predicting software reliability is not easy

Paris-Sud XI, Université de

482

Deformable human body model development  

SciTech Connect (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A Deformable Human Body Model (DHBM) capable of simulating a wide variety of deformation interactions between man and his environment has been developed. The model was intended to have applications in automobile safety analysis, soldier survivability studies and assistive technology development for the disabled. To date, we have demonstrated the utility of the DHBM in automobile safety analysis and are currently engaged in discussions with the U.S. military involving two additional applications. More specifically, the DHBM has been incorporated into a Virtual Safety Lab (VSL) for automobile design under contract to General Motors Corporation. Furthermore, we have won $1.8M in funding from the U.S. Army Medical Research and Material Command for development of a noninvasive intracranial pressure measurement system. The proposed research makes use of the detailed head model that is a component of the DHBM; the project duration is three years. In addition, we have been contacted by the Air Force Armstrong Aerospace Medical Research Laboratory concerning possible use of the DHBM in analyzing the loads and injury potential to pilots upon ejection from military aircraft. Current discussions with Armstrong involve possible LANL participation in a comparison between DHBM and the Air Force Articulated Total Body (ATB) model that is the current military standard.

Wray, W.O.; Aida, T.

1998-11-01T23:59:59.000Z

483

Probabilistic Methods for Model Validation  

E-Print Network [OSTI]

to Galileos observation of four moons of Jupiter, and phases of Venus in 1610, and Giovanni Zupis observation of phases of Mercury in 1639. Based on the astronomical observation of Tycho Brahe, the Copernicuss model was refined by Johannes Kepler...

Halder, Abhishek

2014-05-01T23:59:59.000Z

484

Building statistical models by visualization  

E-Print Network [OSTI]

books · "The Elements of Graphing Data", William Cleveland, 2nd Ed. · "Visualizing Data", WilliamBuilding statistical models by visualization Tom Minka CMU Statistics Dept #12;Outline-scatterplot for unpaired data · Quantile of x = fraction of points

Minka,Tom

485

4, 81110, 2008 Modeling marine  

E-Print Network [OSTI]

Discussion EGU Abstract When dating marine samples with 14 C, the reservoir-age effect is usually assumed and effect in paleoclimate data. We used a5 global ocean circulation model forced by transient atmospheric., 2004a). Regional reservoir-age anomalies for the time before nuclear weapon tests25 are mainly known

Paris-Sud XI, Universit de

486

90 june2008 Modeling Infectious  

E-Print Network [OSTI]

. The model was developed by solving the non-conservative mass balance equation in the feed channel employing the solute mass balance equation with appropriate fluid velocity pro- files using v- centration of contaminants such as bacteria, organic and inorganic material near the membrane surface, which

Rohani, Pej

487

Markov Topic Models Chong Wang  

E-Print Network [OSTI]

. For example, papers from different scien- tific conferences and journals can be viewed as a collection the correlations of different cor- pora. MTMs capture both the internal topic structure within each corpus collection. Probabilistic topic models Part of this work was done when Chong Wang was an intern at Microsoft

Blei, David M.

488

TRAC methods and models. [PWR  

SciTech Connect (OSTI)

The numerical methods and physical models used in the Transient Reactor Analysis Code (TRAC) versions PD2 and PF1 are discussed. Particular emphasis is placed on TRAC-PF1, the version specifically designed to analyze small-break loss-of-coolant accidents (LOCAs).

Mahaffy, J.H.; Liles, D.R.; Bott, T.F.

1981-01-01T23:59:59.000Z

489

A holographic composite Higgs model  

E-Print Network [OSTI]

If the Higgs boson has a composite nature, it might be the 4-dimensional hologram of a gauge field living in a warped extra dimension. In this talk I discuss a minimal, calculable model that passes all electroweak precision tests, included that from Z->bb, and gives a natural account of the electroweak symmetry breaking.

Roberto Contino

2006-09-15T23:59:59.000Z

490

Model Predictive Control Wind Turbines  

E-Print Network [OSTI]

Model Predictive Control of Wind Turbines Martin Klauco Kongens Lyngby 2012 IMM-MSc-2012-65 #12;Summary Wind turbines are the biggest part of the green energy industry. Increasing interest control strategies. Control strategy has a significant impact on the wind turbine operation on many levels

491

The Spiral Model Dror Feitelson  

E-Print Network [OSTI]

sequence of coding, testing, and integration #12;The Spiral Model Several rounds development: System rigid and sequential But there are three really important ones: Life-cycle objectives Life-cycle important ones: Life-cycle objectives Life-cycle architecture Initial operational capability (these

Feitelson, Dror

492

Cosmological models with isotropic singularities  

E-Print Network [OSTI]

In 1985 Goode and Wainwright devised the concept of an isotropic singularity. Since that time, numerous authors have explored the interesting consequences, in mathematical cosmology, of assuming the existence of this type of singularity. In this paper, we collate all examples of cosmological models which are known to admit an isotropic singularity, and make a number of observations regarding their general characteristics.

Susan M. Scott; Geoffery Ericksson

1998-12-07T23:59:59.000Z

493

A relativistic constituent quark model  

SciTech Connect (OSTI)

We investigate the predictive power of a relativistic quark model formulated on the light-front. The nucleon electromagnetic form factors, the semileptonic weak decays of the hyperons and the magnetic moments of both baryon octet and decuplet are calculated and found to be in excellent agreement with experiment.

Schlumpf, F.

1993-08-01T23:59:59.000Z

494

User's Guide Model RPM10  

E-Print Network [OSTI]

, will provide years of safe reliable service. Meter Description 1. Photo Tachometer sensor, IR ThermometerUser's Guide Model RPM10 Laser Photo / Contact Tachometer with IR Thermometer Patented #12;RPM10 V1.4 8/072 1 2 3 4 5 6 7 Introduction Congratulations on your purchase of Extech's Laser Photo

Haller, Gary L.

495

Elastic model of dry friction  

SciTech Connect (OSTI)

Friction of elastic bodies is connected with the passing through the metastable states that arise at the contact of surfaces rubbing against each other. Three models are considered that give rise to the metastable states. Friction forces and their dependence on the pressure are calculated. In Appendix A, the contact problem of elasticity theory is solved with adhesion taken into account.

Larkin, A. I.; Khmelnitskii, D. E., E-mail: dekl2@cam.ac.uk [Landau Institute for Theoretical Physics (Russian Federation)

2013-09-15T23:59:59.000Z

496

OSPREY Model Development Status Update  

SciTech Connect (OSTI)

During the processing of used nuclear fuel, volatile radionuclides will be discharged to the atmosphere if no recovery processes are in place to limit their release. The volatile radionuclides of concern are 3H, 14C, 85Kr, and 129I. Methods are being developed, via adsorption and absorption unit operations, to capture these radionuclides. It is necessary to model these unit operations to aid in the evaluation of technologies and in the future development of an advanced used nuclear fuel processing plant. A collaboration between Fuel Cycle Research and Development Offgas Sigma Team member INL and a NEUP grant including ORNL, Syracuse University, and Georgia Institute of Technology has been formed to develop off gas models and support off gas research. Georgia Institute of Technology is developing fundamental level model to describe the equilibrium and kinetics of the adsorption process, which are to be integrated with OSPREY. This report discusses the progress made on expanding OSPREY to be multiple component and the integration of macroscale and microscale level models. Also included in this report is a brief OSPREY user guide.

Veronica J Rutledge

2014-04-01T23:59:59.000Z

497

Modeling Techniques Towards Christian Engelmann  

E-Print Network [OSTI]

of system behavior · Failure mode, root cause, impact and probability · Resilience mechanism type, capabilities and impact ­ Optimization towards "resilience computing" 2009 National HPC Workshop on Resilience in Checkpoint Scheduling Models · Some need better checkpoint overhead accuracy ­ Constant vs. non

Engelmann, Christian

498

Primer on nuclear exchange models  

SciTech Connect (OSTI)

Basic physics is applied to nuclear force exchange models between two nations. Ultimately, this scenario approach can be used to try and answer the age old question of 'how much is enough?' This work is based on Chapter 2 of Physics of Societal Issues: Calculations on National Security, Environment and Energy (Springer, 2007 and 2014)

Hafemeister, David [Physics Department, Cal Poly University, San Luis Obispo, California (United States)

2014-05-09T23:59:59.000Z

499

Generalised Bayesian matrix factorisation models  

E-Print Network [OSTI]

in this setting uses a zero-inflated Poisson distribution (Lambert, 1992) to account for the higher The Ubiquitous Latent Variable 3 Latent Variable Models Data Types [chp 2,3] Latent Structure [chp 3, 4] Data Modes [chp 5] Figure 1.1: Diagrammatic thesis...

Mohamed, Shakir

2011-03-15T23:59:59.000Z

500

5, 12271265, 2008 LISFLOOD modelled  

E-Print Network [OSTI]

models (see Ferranti and Viterbo, 2006), and it exerts a feedback effect on rainfall especially Printer-friendly Version Interactive Discussion key variable for drought monitoring (see McVicar and Jupp et al., 2005), and in agriculture the soil moisture distribution determines irrigation practices

Paris-Sud XI, Universit de