National Library of Energy BETA

Sample records for modeling cycling units

  1. Steam Generator Component Model in a Combined Cycle of Power Conversion Unit for Very High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Oh, Chang H; Han, James; Barner, Robert; Sherman, Steven R

    2007-06-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP), Very High Temperature Gas-Cooled Reactor (VHTR) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. A combined cycle is considered as one of the power conversion units to be coupled to the very high-temperature gas-cooled reactor (VHTR). The combined cycle configuration consists of a Brayton top cycle coupled to a Rankine bottoming cycle by means of a steam generator. A detailed sizing and pressure drop model of a steam generator is not available in the HYSYS processes code. Therefore a four region model was developed for implementation into HYSYS. The focus of this study was the validation of a HYSYS steam generator model of two phase flow correlations. The correlations calculated the size and heat exchange of the steam generator. To assess the model, those calculations were input into a RELAP5 model and its results were compared with HYSYS results. The comparison showed many differences in parameters such as the heat transfer coefficients and revealed the different methods used by the codes. Despite differences in approach, the overall results of heat transfer were in good agreement.

  2. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  3. Full-fuel-cycle approach to vehicle emissions modeling: A case study of gasoline in the southeastern region of the United States

    SciTech Connect (OSTI)

    Bell, S.R.; Gupta, M. [Univ. of Alabama, Tuscaloosa, AL (United States); Greening, L.A. [Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    The use of full-fuel-cycle analysis as a scientific, economic, and policy tool for the evaluation of alternative sources of transportation energy has become increasingly widespread. However, consistent methods for performance of these types of analyses are only now becoming recognized and utilized. The work presented here provides a case study of full-fuel-cycle analysis methods applied to the evaluation of gasoline in the southeastern region of the United States. Results of the study demonstrate the significance of nonvehicle processes, such as fuel refining, in terms of energy expenditure and emissions production. Unique to this work is the application of the MOBILE5 mobile emissions model in the full-fuel-cycle analysis. Estimates of direct and indirect greenhouse gas production are also presented and discussed using the full-fuel-cycle analysis method.

  4. Conventional regression models Unlabelled units

    E-Print Network [OSTI]

    McCullagh, Peter

    Conventional regression models Unlabelled units Consequences Sampling bias in logistic models Peter effects #12;Conventional regression models Unlabelled units Consequences Outline 1 Conventional regression models Gaussian models Binary regression model Properties of conventional models 2 Unlabelled units Point

  5. VISION: Verifiable Fuel Cycle Simulation Model

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  6. Unit  045 - Non-Spatial Database Models

    E-Print Network [OSTI]

    045, CC in GIScience; Meyer, Thomas H.

    2000-01-01

    25 Unit 045 - Non-Spatial Database Models Core Curriculum -26 Unit 045 - Non-Spatial Database Models Core Curriculum -27 Unit 045 - Non-Spatial Database Models Core Curriculum -

  7. An Edge-based Formulation for the Combined-Cycle Units

    E-Print Network [OSTI]

    Lei Fan

    2014-10-01

    Oct 1, 2014 ... Based on various combinations of combustion turbines (CTs) and steam turbines (STs), the combined-cycle unit could work at different ...

  8. Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion 2009 DOE Hydrogen Program...

  9. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Polymer Composites Research in the LM Materials Program Overview...

  10. Conventional regression models Auto-generated units

    E-Print Network [OSTI]

    McCullagh, Peter

    Conventional regression models Auto-generated units Consequences of auto-generation Arguments pro-generated units #12;Conventional regression models Auto-generated units Consequences of auto-generation Arguments pro and con Outline 1 Conventional regression models Gaussian models Binary regression model

  11. Predicting solar cycle 24 with a solar dynamo model

    E-Print Network [OSTI]

    Arnab Rai Choudhuri; Piyali Chatterjee; Jie Jiang

    2007-01-18

    Whether the upcoming cycle 24 of solar activity will be strong or not is being hotly debated. The solar cycle is produced by a complex dynamo mechanism. We model the last few solar cycles by `feeding' observational data of the Sun's polar magnetic field into our solar dynamo model. Our results fit the observed sunspot numbers of cycles 21-23 extremely well and predict that cycle~24 will be about 35% weaker than cycle~23.

  12. Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)

    SciTech Connect (OSTI)

    Brinkman, G.; Lew, D.; Denholm, P.

    2012-09-01

    Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

  13. Conventional regression models Auto-generated units

    E-Print Network [OSTI]

    McCullagh, Peter

    Conventional regression models Auto-generated units Consequences of auto-generation Inference regression models Auto-generated units Consequences of auto-generation Inference and prediction Outline 1 Conventional regression models Gaussian models Binary regression model Properties of regression models Problems

  14. Conventional regression models Auto-generated units

    E-Print Network [OSTI]

    McCullagh, Peter

    Conventional regression models Auto-generated units Consequences of auto-generation Inference regression models Auto-generated units Consequences of auto-generation Inference and prediction Outline 1 Conventional regression models Gaussian models Binary regression model Attenuation of treatment effect Problems

  15. Conventional regression models Auto-generated units

    E-Print Network [OSTI]

    McCullagh, Peter

    Conventional regression models Auto-generated units Consequences of auto-generation Inference Royal Statistical Society Feb 6, 2008 Peter McCullagh Auto-generated units #12;Conventional regression Conventional regression models Gaussian models Binary regression model Properties of regression models Problems

  16. Bioproduct Life Cycle Analysis with the GREET Model

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproduct Life Cycle Analysis with the GREET Model Jennifer B. Dunn, Biofuel Life Cycle Analysis Team Lead, Argonne National Laboratory

  17. Surry unit 2 end of cycle 4 onsite fuel examination: reduced data and operating history

    SciTech Connect (OSTI)

    Balfour, M.G.; Schmidt, G.R.; Muenks, M.F.; Isaac, P.G.; Eng, G.H.

    1981-02-01

    Onsite nondestructive examinations were performed at the end of reactor cycle 4 on 17 x 17 demonstration assemblies irradiated in the Surry Unit 2 reactor during cycles 2, 3, and 4. Two three-cycle 17 x 17 demonstration fuel assemblies, four two-cycle 17 x 17 removable fuel rods, and eight three-cycle 17 x 17 removable fuel rods were examined. These examinations included television visual examinations and grid cell friction force measurements performed on the fuel assemblies and breakaway/withdrawal force measurements, television visual examinations, and profilometry measurements performed on the removable fuel rods. The actual reduced onsite data from the breakaway/withdrawal force measurements, the grid cell friction force measurements, and the profilometry measurements are contained in this report.

  18. Air Handling Unit Supply Air Temperature Optimization During Economizer Cycles 

    E-Print Network [OSTI]

    Xu, K.; Liu, M.; Wang, G.; Wang, Z.

    2007-01-01

    energy for fan, cooling and heating energy. In this paper a simple energy consumption model is established for AHU systems during the economizer and then a optimal supply air temperature control is developed to minimize the total cost of the mechanical...

  19. Automating Threat Modeling through the Software Development Life-Cycle

    E-Print Network [OSTI]

    Miller, Barton P.

    in the development life-cycle reduces its cost dramati- cally. Companies doing software development know this realityAutomating Threat Modeling through the Software Development Life-Cycle Guifr´e Ruiz1 , Elisa process through the development life-cycle. It does not require developers to have any security training

  20. United States and Caribbean tropical cyclone activity related to the solar cycle

    E-Print Network [OSTI]

    Elsner, James B.

    United States and Caribbean tropical cyclone activity related to the solar cycle J. B. Elsner1 related to solar activity. The relationship results from fewer intense tropical cyclones over the Caribbean and Gulf of Mexico when sunspot numbers are high. The finding is in accord with the heat- engine

  1. Application and Operation of a 2-MW Organic Rankine Cycle System on a Refinery FCC Unit 

    E-Print Network [OSTI]

    Drake, R. L.

    1985-01-01

    The nation's largest organic Rankine cycle (ORC) waste heat recovery system was started up in July 1984 at a West Coast oil refinery. The system includes two hermetically sealed turbine-generator units, each rated at 1070 kW. Each turbine...

  2. Models for steady state cycles in simple cells

    E-Print Network [OSTI]

    Bennett, Steven D.

    Models for steady state cycles in simple cells Steve Bennett April 19, 2004 Abstract Candidate simple cell models are explored, with emphasis on their potential to result in a stable cell cycle, and consequences and limitations of each model are discussed. 1 Introduction and Background Cell architecture

  3. Random Models Unit code: MATH20712

    E-Print Network [OSTI]

    Sidorov, Nikita

    MATH20712 Random Models Unit code: MATH20712 Credit Rating: 10 Unit level: Level 2 Teaching period, and renewal processes. Syllabus 1.Review of conditional probability, probability distributions, random. The probability of extinction. [6] 6.Renewal processes. The counting processes and occurrence time processes

  4. Fuel cycle assessment: A compendium of models, methodologies, and approaches

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.

  5. On Predicting the Solar Cycle using Mean-Field Models

    E-Print Network [OSTI]

    Paul J. Bushby; Steven M. Tobias

    2007-04-18

    We discuss the difficulties of predicting the solar cycle using mean-field models. Here we argue that these difficulties arise owing to the significant modulation of the solar activity cycle, and that this modulation arises owing to either stochastic or deterministic processes. We analyse the implications for predictability in both of these situations by considering two separate solar dynamo models. The first model represents a stochastically-perturbed flux transport dynamo. Here even very weak stochastic perturbations can give rise to significant modulation in the activity cycle. This modulation leads to a loss of predictability. In the second model, we neglect stochastic effects and assume that generation of magnetic field in the Sun can be described by a fully deterministic nonlinear mean-field model -- this is a best case scenario for prediction. We designate the output from this deterministic model (with parameters chosen to produce chaotically modulated cycles) as a target timeseries that subsequent deterministic mean-field models are required to predict. Long-term prediction is impossible even if a model that is correct in all details is utilised in the prediction. Furthermore, we show that even short-term prediction is impossible if there is a small discrepancy in the input parameters from the fiducial model. This is the case even if the predicting model has been tuned to reproduce the output of previous cycles. Given the inherent uncertainties in determining the transport coefficients and nonlinear responses for mean-field models, we argue that this makes predicting the solar cycle using the output from such models impossible.

  6. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01

    Framework for Life Cycle Assessments: 1991; SETAC.   [Fels BuiLCA: Building Life?cycle Assessment Tool; Unpublished Output Based Life?cycle Assessment;  Journal of Industrial 

  7. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01

    depending  on  the  drive  cycle  [CARB  2002].   While the  Orange  County  Drive  Cycle  with  an  average  speed energy  consumption,  drive  cycles  were  created  based 

  8. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01

    Framework for Life Cycle Assessments: 1991; SETAC.   [Fels for Environmental Life Cycle Assessment; Environmental and Variability in Life Cycle Assessment;  International 

  9. Solar cycle prediction using precursors and flux transport models

    E-Print Network [OSTI]

    R. Cameron; M. Schuessler

    2006-12-22

    We study the origin of the predictive skill of some methods to forecast the strength of solar activity cycles. A simple flux transport model for the azimuthally averaged radial magnetic field at the solar surface is used, which contains a source term describing the emergence of new flux based on observational sunspot data. We consider the magnetic flux diffusing over the equator as a predictor, since this quantity is directly related to the global dipole field from which a Babcock-Leighton dynamo generates the toroidal field for the next activity cycle. If the source is represented schematically by a narrow activity belt drifting with constant speed over a fixed range of latitudes between activity minima, our predictor shows considerable predictive skill with correlation coefficients up to 0.95 for past cycles. However, the predictive skill is completely lost when the actually observed emergence latitudes are used. This result originates from the fact that the precursor amplitude is determined by the sunspot activity a few years before solar minimum. Since stronger cycles tend to rise faster to their maximum activity (known as the Waldmeier effect), the temporal overlapping of cycles leads to a shift of the minimum epochs that depends on the strength of the following cycle. This information is picked up by precursor methods and also by our flux transport model with a schematic source. Therefore, their predictive skill does not require a memory, i.e., a physical connection between the surface manifestations of subsequent activity cycles.

  10. Implications of changing natural gas prices in the United States electricity sector for SO and life cycle GHG emissions

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Implications of changing natural gas prices in the United States electricity sector for SO 2 , NO X of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG to projections of low natural gas prices and increased supply. The trend of increasing natural gas use

  11. Analytical model for Stirling cycle machine design

    E-Print Network [OSTI]

    Formosa, Fabien; 10.1016/j.enconman.2010.02.010

    2013-01-01

    In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined.

  12. Thermodynamics cycle analysis and numerical modeling of thermoelastic cooling systems

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Thermodynamics cycle analysis and numerical modeling of thermoelastic cooling systems Suxin Qian level. However, a thermoelastic cooling system integrated with heat transfer fluid loops have not been;2012) (a.k.a. elastocaloric cooling). These solid-state cooling systems offer us alternatives to eliminate

  13. Full-fuel-cycle modeling for alternative transportation fuels

    SciTech Connect (OSTI)

    Bell, S.R.; Gupta, M. [Univ. of Alabama, Tuscaloosa, AL (United States); Greening, L.A. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1995-12-01

    Utilization of alternative fuels in the transportation sector has been identified as a potential method for mitigation of petroleum-based energy dependence and pollutant emissions from mobile sources. Traditionally, vehicle tailpipe emissions have served as sole data when evaluating environmental impact. However, considerable differences in extraction and processing requirements for alternative fuels makes evident the need to consider the complete fuel production and use cycle for each fuel scenario. The work presented here provides a case study applied to the southeastern region of the US for conventional gasoline, reformulated gasoline, natural gas, and methanol vehicle fueling. Results of the study demonstrate the significance of the nonvehicle processes, such as fuel refining, in terms of energy expenditure and emissions production. Unique to this work is the application of the MOBILE5 mobile emissions model in the full-fuel-cycle analysis. Estimates of direct and indirect greenhouse gas production are also presented and discussed using the full-cycle-analysis method.

  14. Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    1995-05-01

    This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

  15. Surry Unit 2 end of cycle 4 onsite fuel examination of 17 x 17 demonstration assemblies after three cycles of exposure

    SciTech Connect (OSTI)

    Balfour, M.G.; Schmidt, G.R.; Muenks, M.F.; Isaac, P.G.; Eng, G.H.

    1981-02-01

    This report presents an evaluation of the results obtained from various onsite nondestructive examinations performed during August 1979, on Surry Unit 2 fuel. The fuel consisted of 17 x 17 demonstration fuel assemblies placed in the Surry Unit 2 reactor for reactor cycles 2, 3, and 4, along with 15 x 15 fuel assemblies in the remainder of the core. Two three-cycle 17 x 17 demonstration fuel assemblies, four two-cycle 17 x 17 removable fuel rods, and eight three-cycle 17 x 17 removable fuel rods were examined. The nondestructive examinations included television visual examinations and grid cell friction force measurments performed on the demonstration assemblies and breakaway/withdrawal force measurements, television visual examinations, and profilometry measurements performed on the removable fuel rods. Summaries of the design features of the 17 x 17 demonstration assemblies, the characterization program conducted during fabrication, and previous onsite nondestructive examinations performed on them are contained within the report. A brief description of the irradiation history of the 17 x 17 demonstration assemblies and removable rods is also presented.

  16. VISION -- A Dynamic Model of the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    J. J. Jacobson; A. M. Yacout; S. J. Piet; D. E. Shropshire; G. E. Matthern

    2006-02-01

    The Advanced Fuel Cycle Initiative’s (AFCI) fundamental objective is to provide technology options that – if implemented – would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deploy¬ment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential “exit” or “off ramp” approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  17. Advances in Life-Cycle Cost Analysis and Design of Civil Infrastructure Systems LIFE CYCLE COST MODEL FOR EVALUATING THE

    E-Print Network [OSTI]

    Lepech, Michael D.

    ). Cement production accounts for 5% of all global anthropogenic carbon dioxide (CO2) emissions #12;AdvancesAdvances in Life-Cycle Cost Analysis and Design of Civil Infrastructure Systems 143 LIFE CYCLE COST and cost model was developed to evaluate infrastructure sustainability, and compare alternative materials

  18. Sensitivity of economic performance of the nuclear fuel cycle to simulation modeling assumptions

    E-Print Network [OSTI]

    Bonnet, Nicéphore

    2007-01-01

    Comparing different nuclear fuel cycles and assessing their implications require a fuel cycle simulation model as complete and realistic as possible. In this thesis, methodological implications of modeling choices are ...

  19. A general two-cycle network model of molecular motors

    E-Print Network [OSTI]

    Yunxin Zhang

    2009-04-24

    Molecular motors are single macromolecules that generate forces at the piconewton range and nanometer scale. They convert chemical energy into mechanical work by moving along filamentous structures. In this paper, we study the velocity of two-head molecular motors in the framework of a mechanochemical network theory. The network model, a generalization of the recently work of Liepelt and Lipowsky (PRL 98, 258102 (2007)), is based on the discrete mechanochemical states of a molecular motor with multiple cycles. By generalizing the mathematical method developed by Fisher and Kolomeisky for single cycle motor (PNAS(2001) 98(14) P7748-7753), we are able to obtain an explicit formula for the velocity of a molecular motor.

  20. Table 3-2. Activity and idea summary for unit 2, cycle 3: Combining Pushes and Pulls. Activity Activity Summary Benchmark Ideas

    E-Print Network [OSTI]

    Sandifer, Cody

    54 Table 3-2. Activity and idea summary for unit 2, cycle 3: Combining Pushes and Pulls. Activity, and then the teacher leads a class discussion as to which ideas best explain the cycle phenomena. All cycle ideas. A5, Power Drive: Going fishing Students use pull arrows and various motion representations to represent

  1. Two Variants of Robust Unit Commitment Model

    E-Print Network [OSTI]

    2013-06-13

    [9] L. Zhao and B. Zeng, “Robust unit commitment problem with demand response and wind energy,” in Power and. Energy Society General Meeting, 2012 IEEE.

  2. The FIT Model - Fuel-cycle Integration and Tradeoffs

    SciTech Connect (OSTI)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Meliisa C Teague; Gregory M Teske; Kurt G Vedros

    2010-09-01

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010] are an initial step by the FCR&D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. The question originally posed to the “system losses study” was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for “minimum fuel treatment” approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.

  3. A New Model for the Organizational Knowledge Life Cycle

    E-Print Network [OSTI]

    Luigi Lella; Ignazio Licata

    2007-05-08

    Actual organizations, in particular the ones which operate in evolving and distributed environments, need advanced frameworks for the management of the knowledge life cycle. These systems have to be based on the social relations which constitute the pattern of collaboration ties of the organization. We demonstrate here, with the aid of a model taken from the theory of graphs, that it is possible to provide the conditions for an effective knowledge management. A right way could be to involve the actors with the highest betweeness centrality in the generation of discussion groups. This solution allows the externalization of tacit knowledge, the preservation of knowledge and the raise of innovation processes.

  4. A New Model for the Organizational Knowledge Life Cycle

    E-Print Network [OSTI]

    Lella, Luigi

    2010-01-01

    Actual organizations, in particular the ones which operate in evolving and distributed environments, need advanced frameworks for the management of the knowledge life cycle. These systems have to be based on the social relations which constitute the pattern of collaboration ties of the organization. We demonstrate here, with the aid of a model taken from the theory of graphs, that it is possible to provide the conditions for an effective knowledge management. A right way could be to involve the actors with the highest betweeness centrality in the generation of discussion groups. This solution allows the externalization of tacit knowledge, the preservation of knowledge and the raise of innovation processes.

  5. Eric Guilyardi El Nin~omean stateseasonal cycle interactions in a multi-model

    E-Print Network [OSTI]

    Guilyardi, Eric

    state and seasonal cycle could play a key role. Indeed the mechanisms that drive the mean stateEric Guilyardi El Nin~o­mean state­seasonal cycle interactions in a multi-model ensemble Received Abstract The modelled El Nin~ o­mean state­seasonal cycle interactions in 23 coupled ocean­atmosphere GCMs

  6. Determination of the proper operating range for the CAFCA IIB fuel cycle model

    E-Print Network [OSTI]

    Warburton, Jamie (Jamie L.)

    2007-01-01

    The fuel cycle simulation tool, CAFCA II was previously modified to produce the most recent version, CAFCA IIB. The code tracks the mass distribution of transuranics in the fuel cycle in one model and also projects costs ...

  7. Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

    SciTech Connect (OSTI)

    Jehlik, Forrest; LaClair, Tim J

    2014-01-01

    Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

  8. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01

    energy  and  GHG performance of Chicago and New York is the Chicago and New York systems where energy and  emissions CO 2 e).  For New York, life?cycle energy and GHG emissions 

  9. Modeling the Q-cycle mechanism of transmembrane energy conversion

    E-Print Network [OSTI]

    Anatoly Yu. Smirnov; Franco Nori

    2011-06-29

    The Q-cycle mechanism plays an important role in the conversion of the redox energy into the energy of the proton electrochemical gradient across the biomembrane. The bifurcated electron transfer reaction, which is built into this mechanism, recycles one electron, thus, allowing to translocate two protons per one electron moving to the high-potential redox chain. We study a kinetic model of the Q-cycle mechanism in an artificial system which mimics the bf complex of plants and cyanobacteria in the regime of ferredoxin-dependent cyclic electron flow. Using methods of condensed matter physics, we derive a set of master equations and describe a time sequence of electron and proton transfer reactions in the complex. We find energetic conditions when the bifurcation of the electron pathways at the positive side of the membrane occurs naturally, without any additional gates. For reasonable parameter values, we show that this system is able to translocate more than 1.8 protons, on average, per one electron, with a thermodynamic efficiency of the order of 32% or higher.

  10. Performance of VAV Fan Powered Terminal Units: Experimental Results and Models for Parallel Units 

    E-Print Network [OSTI]

    Furr, J.; O'Neal, D.; Davis, M.; Bryant, J.; Cramlet, A.

    2008-01-01

    Empirical models of airflow output, power consumption, and primary airflow were developed for parallel fan powered variable air volume terminal units at typical operating pres- sures. Both 8 in. (203 mm) and 12 in. (304 mm) primary air inlet terminal units... from three manufacturers were evaluated. Generalized models were developed from the experimental data with coefficients varying by size and manufacturer. Fan power and airflow data were collected at down- stream static pressures over a range from 0...

  11. Performance of VAV Fan Powered Terminal Units: Experimental Results and Models for Series Units 

    E-Print Network [OSTI]

    Furr, J.; O'Neal, D.; Davis, M.; Bryant, J.; Cramlet, A.

    2008-01-01

    Empirical models of airflow output and power consump- tion were developed for series fan powered variable air volume terminal units at typical operating pressures. Terminal units with 8 in. (203 mm) and 12 in. (304 mm) primary air inlets from three different... manufacturers were evaluated. Generalized models were developed from the experimental data with coef- ficients varying by size and manufacturer. Fan power and airflow data were collected at downstream static pressures of 0.25 w.g. (63 Pa). Upstream static...

  12. Unit 11 - Spatial Objects and Database Models

    E-Print Network [OSTI]

    Unit 11, CC in GIS; Nyerges, Timothy L.

    1990-01-01

    Spatial Objects and Database Models NCGIA Core Curriculum inSpatial Objects and Database Models NCGIA Core Curriculum inSpatial Objects and Database Models NCGIA Core Curriculum in

  13. Evaluation of ocean carbon cycle models with data-based metrics K. Matsumoto,1

    E-Print Network [OSTI]

    Drange, Helge

    Evaluation of ocean carbon cycle models with data-based metrics K. Matsumoto,1 J. L. Sarmiento,2 R), Evaluation of ocean carbon cycle models with data-based metrics, Geophys. Res. Lett., 31, L07303, doi:10 of quantitative, data-based metrics of model skill. Further complications arise because models have different

  14. Integrating repositories with fuel cycles: The airport authority model

    SciTech Connect (OSTI)

    Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2012-07-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members appointed by the state governor, county governments, and city governments. This structure (1) enables state and local governments to work together to maximize job and tax benefits to local communities and the state, (2) provides a mechanism to address local concerns such as airport noise, and (3) creates an institutional structure with large incentives to maximize the value of the common asset, the runway. A repository site authority would have a similar structure and be the local interface to any national waste management authority. (authors)

  15. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect (OSTI)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  16. VHTR Prismatic Super Lattice Model for Equilibrium Fuel Cycle Analysis

    SciTech Connect (OSTI)

    G. S. Chang

    2006-09-01

    The advanced Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on innovative features and passive systems. One of the VHTRs innovative features is the reliance on ceramic-coated fuel particles to retain the fission products under extreme accident conditions. The effect of the random fuel kernel distribution in the fuel prismatic block is addressed through the use of the Dancoff correction factor in the resonance treatment. However, if the fuel kernels are not perfect black absorbers, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. An advanced Kernel-by-Kernel (K-b-K) hexagonal super lattice model can be used to address and update the burnup dependent Dancoff effect during the EqFC analysis. The developed Prismatic Super Homogeneous Lattice Model (PSHLM) is verified by comparing the calculated burnup characteristics of the double-heterogeneous Prismatic Super Kernel-by-Kernel Lattice Model (PSK-b-KLM). This paper summarizes and compares the PSHLM and PSK-b-KLM burnup analysis study and results. This paper also discusses the coupling of a Monte-Carlo code with fuel depletion and buildup code, which provides the fuel burnup analysis tool used to produce the results of the VHTR EqFC burnup analysis.

  17. Dresden Unit 2 hydrogen water chemistry: Chemical surveillance, oxide-film characterization, and recontamination during Cycle 10: Final report

    SciTech Connect (OSTI)

    Ruiz, C.P.; Peterson, J.P.; Robinson, R.N.; Sundberg, L.L.

    1989-03-01

    This document provides an Executive Summary of work performed under Project RP1930-7, BWR Hydrogen Water Chemistry - Chemical Surveillance. It describes the work performed to monitor chemical and radiological performance at Commonwealth Edison's Dresden Nuclear Power Station Unit 2 during Cycle 10, its second full fuel cycle on Hydrogen Water Chemistry. It includes the results of water chemistry measurements, shutdown gamma scan/dose rate measurements, and the results of stainless steel oxide film characterization. This experience at Dresden-2 continues to demonstrate that a plant can operate on Hydrogen Water Chemistry with only minor impact on plant parameters, compared with the beneficial effect on intergranular stress corrosion cracking (IGSCC) mitigation of sensitized stainless steel components. 4 figs., 2 tabs.

  18. MODELING AND CONTROL OF THE MECHATRONIC VIBRATIONAL UNIT

    E-Print Network [OSTI]

    MODELING AND CONTROL OF THE MECHATRONIC VIBRATIONAL UNIT I.I Blekhman-1 , Yu.A.Bortsov-2 , A.-Petersburg, Russia Abstract: The description of the multi-degree-of-freedom mechatronic vibrational unit is presented low-level control loops destruction. To study the control of vibrations the mechatronic vibrational

  19. A coupled model of the global cycles of carbonyl sulfide and CO2: A possible new window on the carbon cycle

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    A coupled model of the global cycles of carbonyl sulfide and CO2: A possible new window] Carbonyl sulfide (COS) is an atmospheric trace gas that participates in some key reactions of the carbon model of the global cycles of carbonyl sulfide and CO2: A possible new window on the carbon cycle, J

  20. Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.

    SciTech Connect (OSTI)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-12-20

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

  1. An integrated life cycle quality model for general public market software products

    E-Print Network [OSTI]

    Suryn, Witold

    An integrated life cycle quality model for general public market software products Witold Suryn1 of the software product results from its ultimate quality seen by both acquirers and end users. An integrated life cycle quality model, further called complement model for software product quality combines high level

  2. Diversity and Noise Effects in a Model of Homeostatic Regulation of the Sleep-Wake Cycle

    E-Print Network [OSTI]

    Toral, Raúl

    Diversity and Noise Effects in a Model of Homeostatic Regulation of the Sleep-Wake Cycle Marco is introduced and used to systematically study the generalized model for different levels of noise and diversity R (2012) Diversity and Noise Effects in a Model of Homeostatic Regulation of the Sleep- Wake Cycle

  3. Model Theory Unit code: MATH43051

    E-Print Network [OSTI]

    Sidorov, Nikita

    of the predicate calculus. One theme is the investigation of the class of those structures which are the models of a set of sentences from predicate calculus. Another theme is the analysis of definability in individual structures and the use of elementary extensions to produce non-standard elements (such as infinitesimals

  4. Model-Based Diagnostics for Air-Handling Units Salsbury and Diamond 1 ModelModel--Based Diagnostics for Air Handling UnitsBased Diagnostics for Air Handling Units

    E-Print Network [OSTI]

    -Based Diagnostics for Air-Handling Units ­ Salsbury and Diamond 1 ModelModel--Based Diagnostics for Air Handling UnitsBased Diagnostics for Air Handling Units Tim Salsbury and Rick Diamond Lawrence Berkeley National Laboratory Berkeley, CA 94720 Introduction In most large air-conditioned buildings, air-handling units

  5. Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

    SciTech Connect (OSTI)

    Wang, Lijuan; Duran, Adam; Gonder, Jeffrey; Kelly, Kenneth

    2015-10-13

    This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.

  6. Uncertainty in atmospheric CO? predictions from a parametric uncertainty analysis of a global carbon cycle model

    E-Print Network [OSTI]

    Holian, Gary L.; Sokolov, Andrei P.; Prinn, Ronald G.

    Key uncertainties in the global carbon cycle are explored with a 2-D model for the oceanic carbon sink. By calibrating the key parameters of this ocean carbon sink model to widely referenced values, it produces an average ...

  7. Life Cycle Modeling of Concrete Bridge Design: Comparison of Engineered Cementitious Composite Link Slabs

    E-Print Network [OSTI]

    Lepech, Michael D.

    performance: 40% less life cycle energy consumption, 50% less solid waste generation, and 38% less raw of the national highway and road system. While United States consumption is significant, glo- bal construction: Concrete infrastructure represents an enormous investment of materials, energy, and capital, and results

  8. MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE

    E-Print Network [OSTI]

    Foss, Bjarne A.

    MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland Dagfinn Snarheim and control of a semi-closed O2/CO2 gas turbine cycle for CO2 capture. In the first part the process predictive control, Gas turbines, CO2 capture 1. INTRODUCTION Gas turbines are widely used for power

  9. A Mathematical Model of RNA3 Recruitment in the Replication Cycle of Brome Mosaic Virus

    E-Print Network [OSTI]

    A Mathematical Model of RNA3 Recruitment in the Replication Cycle of Brome Mosaic Virus Tori Fabra, PRBB 08003 Barcelona, Spain October 22, 2013 Abstract Positive-strand RNA viruses, such as the brome mosaic virus (BMV) and hepatitis C virus, utilize a replication cycle which involves

  10. Combined Simple Biosphere/Carnegie-Ames-Stanford Approach terrestrial carbon cycle model

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Combined Simple Biosphere/Carnegie-Ames-Stanford Approach terrestrial carbon cycle model Kevin and physical processes to test our understanding of the terrestrial carbon cycle and to predict ecosystem biomass and carbon fluxes. We combine the photosynthesis and biophysical calculations in the Simple

  11. A Mathematical Model for Predicting the Life of PEM Fuel Cell Membranes Subjected to Hydration Cycling

    E-Print Network [OSTI]

    Burlatsky, S F; O'Neill, J; Atrazhev, V V; Varyukhin, A N; Dmitriev, D V; Erikhman, N S

    2013-01-01

    Under typical PEM fuel cell operating conditions, part of membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEM FC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane life-time. Short descriptions of the model components along with overall framework are presented in the paper. The model was used...

  12. Modelling aging effects on a thermal cycling absorption process column

    SciTech Connect (OSTI)

    Laquerbe, C.; Contreras, S.; Demoment, J.

    2008-07-15

    Palladium coated on alumina is used in hydrogen separation systems operated at CEA/Valduc, and more particularly in Thermal Cycling Absorption Process columns. With such materials, tritium decay is known to induce aging effects which have direct side effects on hydrogen isotopes absorption isotherms. Furthermore in a TCAP column, aging occurs in an heterogeneous way. The possible impacts of these intrinsic material evolutions on the separation performances are investigated here through a numerical approach. (authors)

  13. Modeling the vehicle cycle impacts of hybrid electric vehicles

    SciTech Connect (OSTI)

    Wang, M.Q.; Gaines, L.; Cuenca, R. [Argonne National Lab., IL (United States). Center for Transportation Research

    1997-03-13

    Pure and hybrid electric vehicles, considered environmentally benign, are being developed to reduce urban air pollutant emissions. The obvious emissions benefit of pure electric vehicles is that they produce no tailpipe emissions. Hybrid electric vehicles have the potential of improving fuel economy and reducing emissions. However, both electric vehicles and hybrid electric vehicles (HEVs) do have their own environmental impacts. In order to quantify the potential benefits from introducing such vehicles, it is necessary to compare their impacts with those from the conventional vehicles they would replace. These impacts include energy use and emissions from the entire energy cycle, including fuel production, vehicle and battery production and recycling, and vehicle operation. Argonne`s previous work in collaboration with other national laboratories analyzed the total energy cycle of electric vehicles; this paper compares energy use and emissions for the total energy cycles of several HEV designs with those from modern conventional vehicles. The estimates presented indicate that use of HEVs can reduce energy use and emissions of greenhouse gases, volatile organic gases, carbon monoxide, and particulate matter smaller than 10 micrometers. HEVs may, in some cases, increase emissions of nitrogen oxides and sulfur oxides. Although some of the HEV designs illustrated in this paper could run a significant proportion of annual miles in all electric operation, no calculation of the emission reductions that result from using electricity from the utility grid is presented in this paper.

  14. Update 5 to: A Dispersion Modeling Analysis of Downwash from...

    Broader source: Energy.gov (indexed) [DOE]

    Update 5 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant: Modeling Cycling Units 1, 2 plus One Baseload Unit More Documents & Publications...

  15. Thinking outside the channel: Modeling nitrogen cycling in networked river ecosystems

    SciTech Connect (OSTI)

    Helton, Ashley; Poole, Geoffrey C.; Meyer, Judy; Wollheim, Wilfred; Peterson, Bruce; Mulholland, Patrick J; Bernhardt, Emily; Stanford, Jack; Arango, Clay; Ashkenas, Linda; Cooper, Lee W; Dodds, Walter; Gregory, Stanley; Hall, Robert; Hamilton, Stephen; Johnson, Sherri; McDowell, William; Potter, Jody; Tank, Jennifer; Thomas, Suzanne; Valett, H. Maurice; Webster, Jackson; Zeglin, Lydia

    2011-01-01

    Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate biogeochemical dynamics among diverse river networks. We illustrate these limitations using a river-network model to scale up in situ measures of nitrogen cycling in eight catchments spanning various geophysical and land-use conditions. Our model results provide evidence that catchment characteristics typically excluded from models may control river-network biogeochemistry. Based on our findings, we identify important components of a revised strategy for simulating biogeochemical dynamics in river networks, including approaches to modeling terrestrial-aquatic linkages, hydrologic exchanges between the channel, floodplain/riparian complex, and subsurface waters, and interactions between coupled biogeochemical cycles.

  16. Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model

    SciTech Connect (OSTI)

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

    2005-02-17

    In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO{sub 2} emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO{sub 2} reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In our simulation, the rate of emissions peak at over 30 PgC yr{sup -1} early in the 22nd century. Even at year 2300, nearly 50% of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

  17. Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z

    E-Print Network [OSTI]

    Popov, Branko N.

    Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z Department and Newman4 made a first attempt to model the parasitic reactions in lithium-ion batteries by incorporating a solvent oxidation into a lithium-ion battery model. Spotnitz5 developed polynomial expressions

  18. Urban carbon dioxide cycles within the Salt Lake Valley: A multiplebox model validated by observations

    E-Print Network [OSTI]

    Ehleringer, Jim

    Urban carbon dioxide cycles within the Salt Lake Valley: A multiplebox model validated within Salt Lake Valley, Utah, USA. The model was forced by observed winds, soundingderived mixing depths, and ecosystem type. The model was validated using hourly CO2 mole fractions measured at five sites in the urban

  19. User Guide for VISION 3.4.7 (Verifiable Fuel Cycle Simulation) Model

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern; Steven J. Piet; Wendell D. Hintze

    2011-07-01

    The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters and options; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating 'what if' scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level. The model is not intended as a tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., 'reactor types' not individual reactors and 'separation types' not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation or disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. VISION is comprised of several Microsoft Excel input files, a Powersim Studio core, and several Microsoft Excel output files. All must be co-located in the same folder on a PC to function. You must use Powersim Studio 8 or better. We have tested VISION with the Studio 8 Expert, Executive, and Education versions. The Expert and Education versions work with the number of reactor types of 3 or less. For more reactor types, the Executive version is currently required. The input files are Excel2003 format (xls). The output files are macro-enabled Excel2007 format (xlsm). VISION 3.4 was designed with more flexibility than previous versions, which were structured for only three reactor types - LWRs that can use only uranium oxide (UOX) fuel, LWRs that can use multiple fuel types (LWR MF), and fast reactors. One could not have, for example, two types of fast reactors concurrently. The new version allows 10 reactor types and any user-defined uranium-plutonium fuel is allowed. (Thorium-based fuels can be input but several features of the model would not work.) The user identifies (by year) the primary fuel to be used for each reactor type. The user can identify for each primary fuel a contingent fuel to use if the primary fuel is not available, e.g., a reactor designated as using mixed oxide fuel (MOX) would have UOX as the contingent fuel. Another example is that a fast reactor using recycled transuranic (TRU) material can be designated as either having or not having appropriately enriched uranium oxide as a contingent fuel. Because of the need to study evolution in recycling and separation strategies, the user can now select the recycling strategy and separation technology, by year.

  20. GREET 1.0 -- Transportation fuel cycles model: Methodology and use

    SciTech Connect (OSTI)

    Wang, M.Q.

    1996-06-01

    This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, Co, NOx, SOx, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

  1. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    SciTech Connect (OSTI)

    Dunford, Gary [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, WA 99352 (United States)] [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, WA 99352 (United States); Williams, David [WIT, Inc., 11173 Oak Fern Court, San Diego, CA 92131 (United States)] [WIT, Inc., 11173 Oak Fern Court, San Diego, CA 92131 (United States); Smith, Rick [Knowledge Systems Design, Inc., 13595 Quaker Hill Cross Rd, Nevada City, CA 95959 (United States)] [Knowledge Systems Design, Inc., 13595 Quaker Hill Cross Rd, Nevada City, CA 95959 (United States)

    2013-07-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near-term programmatic decisions affect life cycle costs and commitments. (authors)

  2. Modeling long-term CO2 storage, sequestration and cycling

    SciTech Connect (OSTI)

    Bacon, Diana H.

    2013-11-11

    The application of numerical and analytical models to the problem of storage, sequestration and migration of carbon dioxide in geologic formations is discussed. A review of numerical and analytical models that have been applied to CO2 sequestration are presented, as well as a description of frameworks for risk analysis. Application of models to various issues related to carbon sequestration are discussed, including trapping mechanisms, density convection mixing, impurities in the CO2 stream, changes in formation porosity and permeability, the risk of vertical leakage, and the impacts on groundwater resources if leakage does occur. A discussion of the development and application of site-specific models first addresses the estimation of model parameters and the use of natural analogues to inform the development of CO2 sequestration models, and then surveys modeling that has been done at two commercial-scale CO2 sequestration sites, Sleipner and In Salah, along with a pilot-scale injection sites used to study CO2 sequestration in saline aquifers (Frio) and an experimental site designed to test monitoring of CO2 leakage in the vadose zone (ZERT Release Facility).

  3. Orogenic Propagating Precipitation Systems over the United States in a Global Climate Model with Embedded Explicit Convection

    E-Print Network [OSTI]

    Pritchard, Michael S; Moncrieff, Mitchell W; Somerville, Richard C. J

    2011-01-01

    with warm season precipitation epi- sodes. J. Atmos. Sci. ,2007: Con- vective precipitation variability as a tool forof the diurnal cycle of precipitation over the United States

  4. Modeling Lithium Movement over Multiple Cycles in a Lithium-Metal Battery

    SciTech Connect (OSTI)

    Ferrese, A; Newman, J

    2014-04-11

    This paper builds on the work by Ferrese et al. [J. Electrochem., 159, A1615 (2012)], where a model of a lithium-metal battery with a LiyCoO2 positive electrode was created in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. In this paper, the model is expanded to study the movement of lithium along the lithium-metal anode over multiple cycles. From this model, it is found that when a low percentage of lithium at the negative electrode is utilized, the movement of lithium along the negative electrode/separator interface reaches a quasi steady state after multiple cycles. This steady state is affected by the slope of the open-circuit-potential function in the positive electrode, the rate of charge and discharge, the depth of discharge, and the length of the rest periods. However, when a high percent of the lithium at the negative electrode is utilized during cycling, the movement does not reach a steady state and pinching can occur, where the lithium nearest the negative tab becomes progressively thinner after cycling. This is another nonlinearity that leads to a progression of the movement of lithium over multiple cycles. (C) 2014 The Electrochemical Society.

  5. Assessing uncertainty in models of the ocean carbon cycle 

    E-Print Network [OSTI]

    Scott, Vivian

    2010-01-01

    In this thesis I explore the effect of parameter uncertainty in ocean biogeochemical models on the calculation of carbon uptake by the ocean. The ocean currently absorbs around a quarter of the annual anthropogenic CO2 ...

  6. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations

    SciTech Connect (OSTI)

    Qian, Yun; Gustafson, William I.; Leung, Lai-Yung R.; Ghan, Steven J.

    2009-02-14

    Radiative forcing induced by soot on snow is a major anthropogenic forcing affecting the global climate. However, it is uncertain how the soot-induced snow albedo perturbation affects regional snowpack and the hydrological cycle. In this study we simulated the deposition of soot aerosol on snow and investigated the resulting impact on snowpack and the surface water budget in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine an annual budget of soot deposition, followed by two regional climate simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the net solar radiation flux at the surface during late winter to early spring, increase the surface air temperature, reduce snow water equivalent amount, and lead to reduced snow accumulation and less spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. Our simulations indicate that the change of maximum snow albedo induced by soot on snow contributes to 60% of the net albedo reduction over the central Rockies. Snowpack reduction accounts for the additional 40%.

  7. Modeling circulation and thermal structure in Lake Michigan: Annual cycle and interannual variability

    E-Print Network [OSTI]

    structure in Lake Michigan: spring thermal bar, full stratification, deepening of the thermocline duringModeling circulation and thermal structure in Lake Michigan: Annual cycle and interannual and thermal structure in the lake. The model was able to reproduce all of the basic features of the thermal

  8. Simulation of glacial Cycles with an Earth System Model of intermediate

    E-Print Network [OSTI]

    Calov, Reinhard

    Statistical-Dynamical Atmosphere Model (POTSDAM) Surface Energy and Mass balance Interface (SEMI) annual mass circulation ·Conclusions and outlook #12;·Earth system model of intermediate complexity CLIMBER-2 Petoukhov et of THC are important to fully complete the glacial terminations. #12;Outlook ·Close the carbon cycle

  9. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozonemore »(O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.« less

  10. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    SciTech Connect (OSTI)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.

  11. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    SciTech Connect (OSTI)

    Ames, David E.

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  12. Bifurcations and strange nonchaotic attractors in a phase oscillator model of glacial-interglacial cycles

    E-Print Network [OSTI]

    Takahito Mitsui; Michel Crucifix; Kazuyuki Aihara

    2015-06-15

    Glacial-interglacial cycles are large variations in continental ice mass and greenhouse gases, which have dominated climate variability over the Quaternary. The dominant periodicity of the cycles is $\\sim $40 kyr before the so-called middle Pleistocene transition between $\\sim$1.2 and $\\sim$0.7 Myr ago, and it is $\\sim $100 kyr after the transition. In this paper, the dynamics of glacial-interglacial cycles are investigated using a phase oscillator model forced by the time-varying incoming solar radiation (insolation). We analyze the bifurcations of the system and show that strange nonchaotic attractors appear through nonsmooth saddle-node bifurcations of tori. The bifurcation analysis indicates that mode-locking is likely to occur for the 41 kyr glacial cycles but not likely for the 100 kyr glacial cycles. The sequence of mode-locked 41 kyr cycles is robust to small parameter changes. However, the sequence of 100 kyr glacial cycles can be sensitive to parameter changes when the system has a strange nonchaotic attractor.

  13. The FIT 2.0 Model - Fuel-cycle Integration and Tradeoffs

    SciTech Connect (OSTI)

    Steven J. Piet; Nick R. Soelberg; Layne F. Pincock; Eric L. Shaber; Gregory M Teske

    2011-06-01

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010b] are steps by the Fuel Cycle Technology program toward an analysis that accounts for the requirements and capabilities of each fuel cycle component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. This report describes FIT 2, an update of the original FIT model.[Piet2010c] FIT is a method to analyze different fuel cycles; in particular, to determine how changes in one part of a fuel cycle (say, fuel burnup, cooling, or separation efficiencies) chemically affect other parts of the fuel cycle. FIT provides the following: Rough estimate of physics and mass balance feasibility of combinations of technologies. If feasibility is an issue, it provides an estimate of how performance would have to change to achieve feasibility. Estimate of impurities in fuel and impurities in waste as function of separation performance, fuel fabrication, reactor, uranium source, etc.

  14. National Energy Modeling System (United States) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsourceEnergyTexas:NGEN8Modeling System (United

  15. A dynamic process model of a natural gas combined cycle -- Model development with startup and shutdown simulations

    SciTech Connect (OSTI)

    Liese, Eric [U.S. DOE; Zitney, Stephen E. [U.S. DOE

    2013-01-01

    Research in dynamic process simulation for integrated gasification combined cycles (IGCC) with carbon capture has been ongoing at the National Energy Technology Laboratory (NETL), culminating in a full operator training simulator (OTS) and immersive training simulator (ITS) for use in both operator training and research. A derivative work of the IGCC dynamic simulator has been a modification of the combined cycle section to more closely represent a typical natural gas fired combined cycle (NGCC). This paper describes the NGCC dynamic process model and highlights some of the simulator’s current capabilities through a particular startup and shutdown scenario.

  16. Alternative water sources: Desalination model provides life-cycle costs of facility 

    E-Print Network [OSTI]

    Supercinski, Danielle

    2009-01-01

    -1 Story by Danielle Supercinski tx H2O | pg. 8 Alternative water sourcees Desalination model provides life-cycle costs of facility platform and design standards as DESAL ECONOMICS?, but created to analyze con- ventional surface water treatment... facilities. The models allow experts to analyze which technology and/or facility design and asset configuration provides the lowest long-term cost of potable water supplies. Using these newly developed models, the team conducted case studies...

  17. Modeling nitrogen cycling in forested watersheds of Chesapeake Bay

    SciTech Connect (OSTI)

    Hunsaker, C.T.; Garten, C.T.; Mulholland, P.J.

    1995-03-01

    The Chesapeake Bay Agreement calls for a 40% reduction of controllable phosphorus and nitrogen to the tidal Bay by the year 2000. To accomplish this goal the Chesapeake Bay Program needs accurate estimates of nutrient loadings, including atmospheric deposition, from various land uses. The literature was reviewed on forest nitrogen pools and fluxes, and nitrogen data from research catchments in the Chesapeake Basin were identified. The structure of a nitrogen module for forests is recommended for the Chesapeake Bay Watershed Model along with the possible functional forms for fluxes.

  18. A Mathematical Model for Predicting the Life of PEM Fuel Cell Membranes Subjected to Hydration Cycling

    E-Print Network [OSTI]

    S. F. Burlatsky; M. Gummalla; J. O'Neill; V. V. Atrazhev; A. N. Varyukhin; D. V. Dmitriev; N. S. Erikhman

    2013-06-19

    Under typical PEM fuel cell operating conditions, part of membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEM FC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane life-time. Short descriptions of the model components along with overall framework are presented in the paper. The model was used for lifetime prediction of a GORE-SELECT membrane.

  19. How noise statistics impact models of enzyme cycles Aryeh Warmflash, David N. Adamson, and Aaron R. Dinnera

    E-Print Network [OSTI]

    Dinner, Aaron

    How noise statistics impact models of enzyme cycles Aryeh Warmflash, David N. Adamson, and Aaron R that it is justified in each situation. Here, we examine a model of an enzyme cycle for which noise qualitatively that the fluctuations are uncorrelated in time "white" noise ,2,14 although models with finite correlation times

  20. Thesis: Transient Modeling and Construc3on of a Fluid Based Electrocaloric Effect (ECE) Refrigera3on Cycle

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Thesis: Transient Modeling and Construc3on of a Fluid Based Electrocaloric:on Cycle. (Master's Thesis). University of Wisconsin ­ Madison. #12;

  1. Global Biogeochemistry Models and Global Carbon Cycle Research at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Covey, C; Caldeira, K; Guilderson, T; Cameron-Smith, P; Govindasamy, B; Swanston, C; Wickett, M; Mirin, A; Bader, D

    2005-05-27

    The climate modeling community has long envisioned an evolution from physical climate models to ''earth system'' models that include the effects of biology and chemistry, particularly those processes related to the global carbon cycle. The widely reproduced Box 3, Figure 1 from the 2001 IPCC Scientific Assessment schematically describes that evolution. The community generally accepts the premise that understanding and predicting global and regional climate change requires the inclusion of carbon cycle processes in models to fully simulate the feedbacks between the climate system and the carbon cycle. Moreover, models will ultimately be employed to predict atmospheric concentrations of CO{sub 2} and other greenhouse gases as a function of anthropogenic and natural processes, such as industrial emissions, terrestrial carbon fixation, sequestration, land use patterns, etc. Nevertheless, the development of coupled climate-carbon models with demonstrable quantitative skill will require a significant amount of effort and time to understand and validate their behavior at both the process level and as integrated systems. It is important to consider objectively whether the currently proposed strategies to develop and validate earth system models are optimal, or even sufficient, and whether alternative strategies should be pursued. Carbon-climate models are going to be complex, with the carbon cycle strongly interacting with many other components. Off-line process validation will be insufficient. As was found in coupled atmosphere-ocean GCMs, feedbacks between model components can amplify small errors and uncertainties in one process to produce large biases in the simulated climate. The persistent tropical western Pacific Ocean ''double ITCZ'' and upper troposphere ''cold pole'' problems are examples. Finding and fixing similar types of problems in coupled carbon-climate models especially will be difficult, given the lack of observations required for diagnosis and validation of biogeochemical processes.

  2. Modeling Endocrine Regulation of the Menstrual Cycle Using Delay Differential Equations

    E-Print Network [OSTI]

    endocrine signaling between the ovaries and the hypothalamus and pituitary glands is crucial for regulating and hormonal treatments on the reproductive endocrine system. That the hypothalamus and pituitary glands at the level of the hypothalamus and pituitary. Modeling various aspects of menstrual and estrous cycle

  3. Propagating Uncertainty in Solar Panel Performance for Life Cycle Modeling in Early Stage Design

    E-Print Network [OSTI]

    Yang, Maria

    Propagating Uncertainty in Solar Panel Performance for Life Cycle Modeling in Early Stage Design. This work is conducted in the context of an amorphous photovoltaic (PV) panel, using data gathered from the National Solar Radiation Database, as well as realistic data collected from an experimental hardware setup

  4. Air pollution modelling using a graphics processing unit with CUDA

    E-Print Network [OSTI]

    Molnar, Ferenc; Meszaros, Robert; Lagzi, Istvan; 10.1016/j.cpc.2009.09.008

    2010-01-01

    The Graphics Processing Unit (GPU) is a powerful tool for parallel computing. In the past years the performance and capabilities of GPUs have increased, and the Compute Unified Device Architecture (CUDA) - a parallel computing architecture - has been developed by NVIDIA to utilize this performance in general purpose computations. Here we show for the first time a possible application of GPU for environmental studies serving as a basement for decision making strategies. A stochastic Lagrangian particle model has been developed on CUDA to estimate the transport and the transformation of the radionuclides from a single point source during an accidental release. Our results show that parallel implementation achieves typical acceleration values in the order of 80-120 times compared to CPU using a single-threaded implementation on a 2.33 GHz desktop computer. Only very small differences have been found between the results obtained from GPU and CPU simulations, which are comparable with the effect of stochastic tran...

  5. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2015-01-12

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a fact that is often omitted from biogeochemical ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observationalmore »data coverage and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C : N : P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model (CESM) and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1, 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively, with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. Dissolved organic carbon (DOC) export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  6. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2014-06-16

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a~fact that is often omitted from biogeochemical-ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observational data coveragemore »and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C / N / P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1), 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. DOC export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  7. Performance of VAV Parallel Fan Powered Terminal Units: Experimental Results and Models 

    E-Print Network [OSTI]

    Furr, J.; O'Neal, D.; Davis, M.; Bryant, J.; Cramlet, A.

    2008-01-01

    to develop empirical models of airflow, power, and leakage of both parallel and series fan power terminal units. These models are suitable for use in annual energy use models of variable air volume systems in commer- cial buildings. This paper provides a... was the development of empirical models of power and airflow output for parallel and series fan powered terminal units at typical operating pres- sures. An experimental setup was developed and used to test fan powered terminal units from three manufacturers...

  8. Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: Implications for terrestrial vegetation uptake

    E-Print Network [OSTI]

    Jacob, Daniel J.

    Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: Implications of atmospheric carbonyl sulfide (COS) to interpret observations at a network of surface sites. We aim to identify, and D. J. Jacob (2008), Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide

  9. Coupled Oscillator Model of the Business Cycle with Fluctuating Goods Markets

    E-Print Network [OSTI]

    Ikeda, Y; Fujiwara, Y; Iyetomi, H; Ogimoto, K; Souma, W; Yoshikawa, H

    2011-01-01

    The sectoral synchronization observed for the Japanese business cycle in the Indices of Industrial Production data is an example of synchronization. The stability of this synchronization under a shock, e.g., fluctuation of supply or demand, is a matter of interest in physics and economics. We consider an economic system made up of industry sectors and goods markets in order to analyze the sectoral synchronization observed for the Japanese business cycle. A coupled oscillator model that exhibits synchronization is developed based on the Kuramoto model with inertia by adding goods markets, and analytic solutions of the stationary state and the coupling strength are obtained. We simulate the effects on synchronization of a sectoral shock for systems with different price elasticities and the coupling strengths. Synchronization is reproduced as an equilibrium solution in a nearest neighbor graph. Analysis of the order parameters shows that the synchronization is stable for a finite elasticity, whereas the synchron...

  10. SOLAR MAGNETIC ACTIVITY CYCLES, CORONAL POTENTIAL FIELD MODELS AND ERUPTION RATES

    SciTech Connect (OSTI)

    Petrie, G. J. D.

    2013-05-10

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  11. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Archer, D.

    2014-06-03

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore »(Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales, decreasing the efficiency of bubble transit through the water column. The methane cycle on the shelf responds to climate change on a long time constant of thousands of years, because hydrate is excluded thermodynamically from the permafrost zone by water limitation, leaving the hydrate stability zone at least 300 m below the sediment surface.« less

  12. Attachment A: Modeling in Support of Additional Two-Unit Operating...

    Broader source: Energy.gov (indexed) [DOE]

    Plan of Mirant Potomac River, LLC Attachment A: Modeling in Support of Additional Two-Unit Operating Configurations More Documents & Publications Mirant Potomac, Alexandria,...

  13. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect (OSTI)

    Li, J.; McNelis, D. [Institute for the Environment, University of North Carolina, Chapel Hill (United States); Yim, M.S. [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-07-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  14. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    SciTech Connect (OSTI)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  15. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413

    SciTech Connect (OSTI)

    Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

  16. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    SciTech Connect (OSTI)

    Dai, Qiang; Kelly, Jarod C.; Burnham, Andrew; Elgowainy, Amgad

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  17. Modeling of ECM Controlled Series Fan-powered VAV Terminal Units 

    E-Print Network [OSTI]

    Yin, Peng

    2011-10-21

    Semi-empirical models for series fan-powered variable air volume terminal units (FPTUs) were developed based on models of the primary, plenum, fan airflow and the fan power consumption. The experimental setups and test procedures were developed...

  18. Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC)

    E-Print Network [OSTI]

    Hoffman, Forrest M.

    Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model 31 July 2012, in final form 25 July 2014) ABSTRACT Version 1 of the Community Earth System Model to as Earth system models. While this term does not have a uniformly accepted definition, models that couple

  19. A Comparative Study of Software Model Checkers as Unit Testing Tools

    E-Print Network [OSTI]

    A Comparative Study of Software Model Checkers as Unit Testing Tools: An Industrial Case Study, and can be utilized as unit testing tools. However, since software model checkers are not fully mature yet and CBMC to testing the components of a storage platform software for flash memory. Through this project

  20. A Three-Dimensional Ocean-Seaice-Carbon Cycle Model and its Coupling to a Two-Dimensional Atmospheric Model: Uses in Climate Change Studies

    E-Print Network [OSTI]

    Dutkiewicz, Stephanie.

    We describe the coupling of a three-dimensional ocean circulation model, with explicit thermodynamic seaice and ocean carbon cycle representations, to a two-dimensional atmospheric/land model. This coupled system has been ...

  1. Framework for Modeling the Uncertainty of Future Events in Life Cycle Assessment

    E-Print Network [OSTI]

    Chen, Yi-Fen; Simon, Rachel; Dornfeld, David

    2013-01-01

    Recent developments in Life Cycle Assessment, Journal ofThe uncertainty of Life Cycle Assessment is a very importantFuture Events in Life Cycle Assessment Yi-Fen Chen, Rachel

  2. Dose-Response Modeling for Life Cycle Impact Assessment: Findings of the Portland Review Workshop

    E-Print Network [OSTI]

    McKone, Thomas E.; Kyle, Amy D.; Jolliet, Olivier; Olsen, Stig Irving; Hauschild, Michael

    2006-01-01

    Key References Life cycle assessment (LCA) is a frameworkmeasure of impact in life- cycle assessment? When combiningHealth Response in Life Cycle Assessment Using ED10s and

  3. Framework for Modeling the Uncertainty of Future Events in Life Cycle Assessment

    E-Print Network [OSTI]

    Chen, Yi-Fen; Simon, Rachel; Dornfeld, David

    2013-01-01

    Recent developments in Life Cycle Assessment, Journal ofFuture Events in Life Cycle Assessment Yi-Fen Chen, RachelOne limitation of Life Cycle Assessment is that it relies on

  4. Validation of a Model and a Simulator for Road Cycling on Real Tracks Thorsten Dahmen Roman Byshko Dietmar Saupe Martin Roder Stephan

    E-Print Network [OSTI]

    Deussen, Oliver

    from the law of conservation of energy. The state-of-the art mathematical model for road cycling powerValidation of a Model and a Simulator for Road Cycling on Real Tracks Thorsten Dahmen · Roman acquisition, analy- sis, modelling, and simulation of performance parameters in road cycling on real tracks

  5. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

    E-Print Network [OSTI]

    Thornton, P. E.; Doney, S. C.; Lindsay, Keith; Moore, J. K.; Mahowald, N. M.; Randerson, J. T.; Fung, I.; Lamarque, J. F.; Feddema, Johannes J.

    2009-01-01

    Abstract. Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated ...

  6. 1D Transient Model for Frost Heave in PEFCs III. Heat Transfer, Microporous Layer, and Cycling Effects

    E-Print Network [OSTI]

    Mench, Matthew M.

    1D Transient Model for Frost Heave in PEFCs III. Heat Transfer, Microporous Layer, and Cycling of a polymer electric fuel cell PEFC have become a hot topic.1-16 The freeze/thaw induced damage observed

  7. Unit 10 - Spatial Databases as Models of Reality

    E-Print Network [OSTI]

    Unit 10, CC in GIS; Nyerges, Timothy L.

    1990-01-01

    data. 4. What is a database model, and why is it importantAttributes Attribute value Database model Layers D. DATABASEnot an official DCDSTF term Database model is a conceptual

  8. Modeling California's high-elevation hydropower systems in energy units

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    conditions, hydropower provides 5­10% of the electricity used in the United States [National Energy Education it a valuable renewable energy source. In the mid-1990s, hydropower was about 19% of world's total electricity Development Project, 2007] and almost 75% of the nation's electricity from all renew- able sources [Energy

  9. Life Cycle Environmental Impacts Resulting from the Manufacture of the Heliostat Field for a Reference Power Tower Design in the United States: Preprint

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.

    2012-10-01

    Life cycle assessment (LCA) is recognized as a useful analytical approach for quantifying environmental impacts of renewable energy technologies, including concentrating solar power (CSP). An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory is conducting a series of LCA studies for various CSP technologies. This paper contributes to a thorough LCA of a 100 MWnet molten salt power tower CSP plant by estimating the environmental impacts resulting from the manufacture of heliostats. Three life cycle metrics are evaluated: greenhouse gas emissions, water consumption, and cumulative energy demand. The heliostat under consideration (the 148 m2 Advanced Thermal Systems heliostat) emits 5,300 kg CO2eq, consumes 274 m3 of water, and requires 159,000 MJeq during its manufacture. Future work will incorporate the results from this study into the LCA model used to estimate the life cycle impacts of the entire 100 MWnet power tower CSP plant.

  10. Development of models for series and parallel fan variable air volume terminal units 

    E-Print Network [OSTI]

    Furr, James C., Jr

    2007-09-17

    Empirical models of airflow output and power consumption were developed for series and parallel fan powered variable air volume terminal units at typical design pressure conditions. A testing procedure and experimental setup were developed to test...

  11. Modeling land surface processes of the midwestern United States : predicting soil moisture under a warmer climate

    E-Print Network [OSTI]

    Winter, Jonathan (Jonathan Mark)

    2010-01-01

    This dissertation seeks to quantify the response of soil moisture to climate change in the midwestern United States. To assess this response, a dynamic global vegetation model, Integrated Biosphere Simulator, was coupled ...

  12. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Archer, D.

    2015-05-21

    A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial–interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere.more »There is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial–interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression (soil-freezing) part of the cycle rather than during deglacial transgression (warming and thawing). The atmospheric flux response to a warming climate is small, relative to the rest of the methane sources to the atmosphere in the global budget, because of the ongoing flooding of the continental shelf. The increased methane flux due to ocean warming could be completely counteracted by a sea level rise of tens of meters on millennial timescales due to the loss of ice sheets, decreasing the efficiency of bubble transit through the water column. The model results give no indication of a mechanism by which methane emissions from the Siberian continental shelf could have a significant impact on the near-term evolution of Earth's climate, but on millennial timescales the release of carbon from hydrate and permafrost could contribute significantly to the fossil fuel carbon burden in the atmosphere–ocean–terrestrial carbon cycle.« less

  13. Moisture Flux Convergence in Regional and Global Climate Models: Implications for Droughts in the Southwestern United States Under Climate Change

    SciTech Connect (OSTI)

    Gao, Yanhong; Leung, Lai-Yung R.; Salathe, E.; Dominguez, Francina; Nijssen, Bart; Lettenmaier, D. P.

    2012-05-10

    The water cycle of the southwestern United States (SW) is dominated by winter storms that maintain a positive annual net precipitation. Analysis of the control and future climate from four pairs of regional and global climate models (RCMs and GCMs) shows that the RCMs simulate a higher fraction of transient eddy moisture fluxes because the hydrodynamic instabilities associated with flow over complex terrain are better resolved. Under global warming, this enables the RCMs to capture the response of transient eddies to increased atmospheric stability that allows more moisture to converge on the windward side of the mountains by blocking. As a result, RCMs simulate enhanced transient eddy moisture convergence in the SW compared to GCMs, although both robustly simulate drying due to enhanced moisture divergence by the divergent mean flow in a warmer climate. This enhanced convergence leads to reduced susceptibility to hydrological change in the RCMs compared to GCMs.

  14. MODELING THE DEMAND FOR E85 IN THE UNITED STATES

    SciTech Connect (OSTI)

    Liu, Changzheng; Greene, David L

    2013-10-01

    How demand for E85 might evolve in the future in response to changing economics and policies is an important subject to include in the National Energy Modeling System (NEMS). This report summarizes a study to develop an E85 choice model for NEMS. Using the most recent data from the states of Minnesota, North Dakota, and Iowa, this study estimates a logit model that represents E85 choice as a function of prices of E10 and E85, as well as fuel availability of E85 relative to gasoline. Using more recent data than previous studies allows a better estimation of non-fleet demand and indicates that the price elasticity of E85 choice appears to be higher than previously estimated. Based on the results of the econometric analysis, a model for projecting E85 demand at the regional level is specified. In testing, the model produced plausible predictions of US E85 demand to 2040.

  15. Model predictive control system and method for integrated gasification combined cycle power generation

    DOE Patents [OSTI]

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  16. Modeling of Electronically Commutated Motor Controlled Fan-powered Terminal Units 

    E-Print Network [OSTI]

    Edmondson, Jacob Lee

    2011-02-22

    : Dr. Dennis O?Neal Empirical models of airflow and power consumption were developed for series and parallel variable air volume fan powered terminal units (FPTUs). An experimental setup and test procedure were developed to test the terminal... (THD) was also recorded and presented. For the series terminal units, models were developed for fan airflow, fan power, and primary airflow. The models for fan airflow all had R2 values above 0.987. The iv models for fan power all had R2 values...

  17. World nuclear fuel cycle requirements 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  18. Computational Model of Population Dynamics Based on the Cell Cycle and Local Interactions

    SciTech Connect (OSTI)

    Oprisan, Sorinel Adrian; Oprisan, Ana

    2005-03-31

    Our study bridges cellular (mesoscopic) level interactions and global population (macroscopic) dynamics of carcinoma. The morphological differences and transitions between well and smooth defined benign tumors and tentacular malignat tumors suggest a theoretical analysis of tumor invasion based on the development of mathematical models exhibiting bifurcations of spatial patterns in the density of tumor cells. Our computational model views the most representative and clinically relevant features of oncogenesis as a fight between two distinct sub-systems: the immune system of the host and the neoplastic system. We implemented the neoplastic sub-system using a three-stage cell cycle: active, dormant, and necrosis. The second considered sub-system consists of cytotoxic active (effector) cells -- EC, with a very broad phenotype ranging from NK cells to CTL cells, macrophages, etc. Based on extensive numerical simulations, we correlated the fractal dimensions for carcinoma, which could be obtained from tumor imaging, with the malignat stage. Our computational model was able to also simulate the effects of surgical, chemotherapeutical, and radiotherapeutical treatments.

  19. Market disruption, cascading effects, and economic recovery:a life-cycle hypothesis model.

    SciTech Connect (OSTI)

    Sprigg, James A.

    2004-11-01

    This paper builds upon previous work [Sprigg and Ehlen, 2004] by introducing a bond market into a model of production and employment. The previous paper described an economy in which households choose whether to enter the labor and product markets based on wages and prices. Firms experiment with prices and employment levels to maximize their profits. We developed agent-based simulations using Aspen, a powerful economic modeling tool developed at Sandia, to demonstrate that multiple-firm economies converge toward the competitive equilibria typified by lower prices and higher output and employment, but also suffer from market noise stemming from consumer churn. In this paper we introduce a bond market as a mechanism for household savings. We simulate an economy of continuous overlapping generations in which each household grows older in the course of the simulation and continually revises its target level of savings according to a life-cycle hypothesis. Households can seek employment, earn income, purchase goods, and contribute to savings until they reach the mandatory retirement age; upon retirement households must draw from savings in order to purchase goods. This paper demonstrates the simultaneous convergence of product, labor, and savings markets to their calculated equilibria, and simulates how a disruption to a productive sector will create cascading effects in all markets. Subsequent work will use similar models to simulate how disruptions, such as terrorist attacks, would interplay with consumer confidence to affect financial markets and the broader economy.

  20. Modeling Water Withdrawal and Consumption for Electricity Generation in the United States

    E-Print Network [OSTI]

    Modeling Water Withdrawal and Consumption for Electricity Generation in the United States Kenneth://globalchange.mit.edu/ Printed on recycled paper #12;1 Modeling Water Withdrawal and Consumption for Electricity Generation of Withdrawal and Consumption for Thermo-electric Systems (WiCTS) is formalized. This empirically

  1. From Modelica Models to Fault Diagnosis in Air Handling Units Raymond Sterling1

    E-Print Network [OSTI]

    Cengarle, María Victoria

    From Modelica Models to Fault Diagnosis in Air Handling Units Raymond Sterling1 , Peter Struss2 Engineering, Ryan Institute, NUI Galway, Ireland 2 Computer Science Department, Technische Universität München raymond.sterling@nuigalway.ie, struss@in.tum.de Abstract This paper presents a methodology for model

  2. Curriculum materials. The curriculum materials used in Cycles 3-5 of the Interactions and Motion unit are provided in Appendix 1.

    E-Print Network [OSTI]

    Sandifer, Cody

    57 Curriculum materials. The curriculum materials used in Cycles 3-5 of the Interactions and Motion ideas in the three curriculum cycles of interest, as measured by ranking students' initial and final-section, and curriculum cycle 4. Calculate the average percentage of time dedicated to sense- making discussion for each

  3. Using Product Specific Simulation Models in a Tool for Manual Commissioning of Air Handling Units 

    E-Print Network [OSTI]

    Eriksson, J.

    2003-01-01

    . Cetetherm IQHeat. Cetetherm. Ronneby. Sweden. 3. Portland Energy Conservation Inc. Methods for automated and continuous commissioning of build- ings. Air-Conditioning and refrigeraration technol- ogy institute, Arlington, Virginia. 4. T. Haasl, D... SPECIFIC SIMULATION MODELS IN A TOOL FOR MANUAL COMMISSIONING OF AIR HANDLING UNITS JÖRGEN ERIKSSON ÅF-INSTALLATION AB GOTHENBURG, SWEDEN ABSTRACT This short paper describes an outline of a tool for manual commissioning of air handling units...

  4. Framework for Modeling the Uncertainty of Future Events in Life Cycle Assessment

    E-Print Network [OSTI]

    Chen, Yi-Fen; Simon, Rachel; Dornfeld, David

    2013-01-01

    event scenarios could alter LCA result. REFERENCES SchweimerEconomic- balance hybrid LCA extended with uncertaintyLife Cycle Assessment (LCA) is a leading technique used to

  5. Real Estate Income and Value Cycles: A Model of Market Dynamics

    E-Print Network [OSTI]

    Dokko, Yoon; Edelstein, Robert H.; Lacayo, Allan J.; Lee, Daniel C.

    1999-01-01

    downturn in residential real estate markets during the latemodel explains observed real estate NOI cycles (and thusBerkeley FISHER CENTER FOR REAL ESTATE AND URBAN ECONOMICS

  6. Long-Term Climate Commitments Projected with ClimateCarbon Cycle Models G.-K. PLATTNER,a,n

    E-Print Network [OSTI]

    Stocker, Thomas

    Long-Term Climate Commitments Projected with Climate­Carbon Cycle Models G.-K. PLATTNER,a,n R IAC, ETH Zürich, Zürich, Switzerland c Potsdam Institute for Climate Impact Research, Potsdam, Germany of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada h The Open

  7. Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications

    E-Print Network [OSTI]

    Bahrami, Majid

    -duty vehicle air conditioning applications Amir Sharafian, Majid Bahrami n Laboratory for Alternative Energy Keywords: Adsorption cooling system Vehicle air conditioning Thermodynamic cycle Fully dynamic modeling a b different operating conditions for light-duty vehicles air conditioning applications. Available ACS

  8. Edgeworth cycles revisited

    E-Print Network [OSTI]

    Doyle, Joseph J.

    Some gasoline markets exhibit remarkable price cycles, where price spikes are followed by a series of small price declines: a pattern consistent with a model of Edgeworth cycles described by Maskin and Tirole. We extend ...

  9. Sustainability Features of Nuclear Fuel Cycle Options

    E-Print Network [OSTI]

    Passerini, Stefano

    The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC) is the current fuel cycle implemented in the United States; in which an ...

  10. The human toxicity potential and a strategy for evaluating model performance in life-cycle impact assessment

    E-Print Network [OSTI]

    McKone, Thomas E.; Hertwich, Edgar G.

    2001-01-01

    within the framework of life cycle assessment of products.in the Journal of Life Cycle Assessment Research SupportedIntroduction Life cycle assessment (LCA) requires

  11. Cycles and cycle modulations

    E-Print Network [OSTI]

    Brandenburg, Axel

    2011-01-01

    Some selected concepts for the solar activity cycle are briefly reviewed. Cycle modulations through a stochastic alpha effect are being identified with limited scale separation ratios. Three-dimensional turbulence simulations with helicity and shear are compared at two different scale separation ratios. In both cases the level of fluctuations shows relatively little variation with the dynamo cycle. Prospects for a shallow origin of sunspots are discussed in terms of the negative effective magnetic pressure instability. Tilt angles of bipolar active regions are discussed as a consequence of shear rather than the Coriolis force.

  12. The need for a characteristics-based approach to radioactive waste classification as informed by advanced nuclear fuel cycles using the fuel-cycle integration and tradeoffs (FIT) model

    SciTech Connect (OSTI)

    Djokic, D. [Department of Nuclear Engineering, University of California, Berkeley, 3115B Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, S.; Pincock, L.; Soelberg, N. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. Because heat generation is generally the most important factor limiting geological repository areal loading, this analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. Waste streams generated in different fuel cycles and their possible classification based on the current U.S. framework and international standards are discussed. It is shown that the effects of separating waste streams are neglected under a source-based radioactive waste classification system. (authors)

  13. Development and application of the EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Mcgill, William B.; Williams, J.R.

    2012-06-01

    This chapter provides a comprehensive review of the EPIC model in relation to carbon cycle, greenhouse-gas mitigation, and biofuel applications. From its original capabilities and purpose (i.e., quantify the impacts or erosion on soil productivity), the EPIC model has evolved into a comprehensive terrestrial ecosystem model for simulating with more or less process-level detail many ecosystem processes such as weather, hydrology, plant growth and development, carbon cycle (including erosion), nutrient cycling, greenhouse-gas emissions, and the most complete set of manipulations that can be implemented on a parcel of land (e.g. tillage, harvest, fertilization, irrigation, drainage, liming, burning, pesticide application). The chapter also provides details and examples of the latest efforts in model development such as the coupled carbon-nitrogen model, a microbial denitrification model with feedback to the carbon decomposition model, updates on calculation of ecosystem carbon balances, and carbon emissions from fossil fuels. The chapter has included examples of applications of the EPIC model in soil carbon sequestration, net ecosystem carbon balance, and biofuel studies. Finally, the chapter provides the reader with an update on upcoming improvements in EPIC such as the additions of modules for simulating biochar amendments, sorption of soluble C in subsoil horizons, nitrification including the release of N2O, and the formation and consumption of methane in soils. Completion of these model development activities will render an EPIC model with one of the most complete representation of biogeochemical processes and capable of simulating the dynamic feedback of soils to climate and management in terms not only of transient processes (e.g., soil water content, heterotrophic respiration, N2O emissions) but also of fundamental soil properties (e.g. soil depth, soil organic matter, soil bulk density, water limits).

  14. Vortex life cycles in two-and three-layer quasi-geostrophic models 

    E-Print Network [OSTI]

    Fox, Amanda Katherine

    2000-01-01

    regimes with jets has occurred. This research attempted to first determine the typical lifetime of a vortex, with considerations of its birth, evolution, and cessation. A vortex census was also performed in an attempt to describe the life cycle...

  15. INTEGRATED PERMEABILITY MODELING OF THE MORROW A SANDSTONE, HOVEY MORROW UNIT POSTLE FIELD, TEXAS COUNTY, OKLAHOMA

    E-Print Network [OSTI]

    of 6000 ft. The Reservoir Characterization Project (RCP) study area is within the Hovey Morrow Unit (HMU sweep efficiency. Postle Field is located in Texas County, Oklahoma. The oil reservoir produces from distributions to characterize the Morrow A sandstone produced a more reliable reservoir model to simulate CO2

  16. Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates

    E-Print Network [OSTI]

    Ali, Mohammed

    Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates Mohammed Y is required to optimize hydrocarbon production. A rock containing parallel fractures can be seismically to the seismic wavelength. Seismic anisotropy may be detectable from attributes of pre-stack 3-D seismic data

  17. Glass Composition Constraint Recommendations for Use in Life-Cycle Mission Modeling

    SciTech Connect (OSTI)

    McCloy, John S.; Vienna, John D.

    2010-05-03

    The component concentration limits that most influence the predicted Hanford life-cycle HLW glass volume by HTWOS were re-evaluated. It was assumed that additional research and development work in glass formulation and melter testing would be performed to improve the understanding of component effects on the processability and product quality of these HLW glasses. Recommendations were made to better estimate the potential component concentration limits that could be applied today while technology development is underway to best estimate the volume of HLW glass that will eventually be produced at Hanford. The limits for concentrations of P2O5, Bi2O3, and SO3 were evaluated along with the constraint used to avoid nepheline formation in glass. Recommended concentration limits were made based on the current HLW glass property models being used by HTWOS (Vienna et al. 2009). These revised limits are: 1) The current ND should be augmented by the OB limit of OB ? 0.575 so that either the normalized silica (NSi) is less that the 62% limit or the OB is below the 0.575 limit. 2) The mass fraction of P2O5 limit should be revised to allow for up to 4.5 wt%, depending on CaO concentrations. 3) A Bi2O3 concentration limit of 7 wt% should be used. 4) The salt accumulation limit of 0.5 wt% SO3 may be increased to 0.6 wt%. Again, these revised limits do not obviate the need for further testing, but make it possible to more accurately predict the impact of that testing on ultimate HLW glass volumes.

  18. A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Geotechnical Sciences Group

    2007-03-01

    The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive confining units. The underlying pre-Tertiary rocks are divided into six hydrostratigraphic units, including three aquifers and three confining units. Other units include an alluvial aquifer and a Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units ('layers' in the model). The model also incorporates 56 Tertiary normal faults and 4 Mesozoic thrust faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Four of these alternatives were developed so they can be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area Subproject of the Environmental Restoration Project.

  19. Depositional sequences and integrated recovery efficiency forecast models for San Andres and Clearfork Units in the Central Basin Platform and the Northern Shelf, west Texas 

    E-Print Network [OSTI]

    Shao, Hongbin

    1994-01-01

    This paper develops depositional sequences of the carbonate ramp and the carbonate shelf models for an idealized cycle and multiple cycles of depositions. Based on the developed depositional sequences, the integrated recovery efficiency forecast...

  20. Modeling and experimental results for condensing supercritical CO2 power cycles.

    SciTech Connect (OSTI)

    Wright, Steven Alan; Conboy, Thomas M.; Radel, Ross F.; Rochau, Gary Eugene

    2011-01-01

    This Sandia supported research project evaluated the potential improvement that 'condensing' supercritical carbon dioxide (S-CO{sub 2}) power cycles can have on the efficiency of Light Water Reactors (LWR). The analytical portion of research project identified that a S-CO{sub 2} 'condensing' re-compression power cycle with multiple stages of reheat can increase LWR power conversion efficiency from 33-34% to 37-39%. The experimental portion of the project used Sandia's S-CO{sub 2} research loop to show that the as designed radial compressor could 'pump' liquid CO{sub 2} and that the gas-cooler's could 'condense' CO{sub 2} even though both of these S-CO{sub 2} components were designed to operate on vapor phase S-CO{sub 2} near the critical point. There is potentially very high value to this research as it opens the possibility of increasing LWR power cycle efficiency, above the 33-34% range, while lowering the capital cost of the power plant because of the small size of the S-CO{sub 2} power system. In addition it provides a way to incrementally build advanced LWRs that are optimally designed to couple to S-CO{sub 2} power conversion systems to increase the power cycle efficiency to near 40%.

  1. A light-driven, one-dimensional dimethylsulfide biogeochemical cycling model for the Sargasso Sea

    E-Print Network [OSTI]

    Siegel, David A.

    evidence for the significant impacts of solar ultraviolet radiation (UVR) on the marine organic sulfur parameterize the seasonal changes in the flux and attenuation of solar radiation in the upper water column cycle. Using the Dacey et al. (1998) 1992­1994 Sargasso Sea DMS data set, in conjunction with an offline

  2. The Modeling of a Standalone Solid-Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect (OSTI)

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2006-10-27

    In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module; two heat exchanger modules; and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will benefit design engineers to adjust design parameters to optimize the performance. The modeling results of the heat-up stage of an SOFC APU and the output voltage response to a sudden load change are presented in the paper. The fuel flow regulation based on fuel utilization is also briefly discussed.

  3. A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln and Nye Counties, Nevada

    SciTech Connect (OSTI)

    Geotechnical Sciences Group Bechtel Nevada

    2006-01-01

    A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive was emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Five of these alternatives were developed so they could be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area subproject of the Environmental Restoration Project.

  4. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01

    Life-cycle assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .life-cycle assessment . . . . . . . . . . . . . . . . . . . . . . . . . .28 Exergetic life-cycle assessment . . . . . . . .

  5. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01

    Life-cycle assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Methodology iii Life-Cycle Assessment (LCA) . . . . . . .life-cycle assessment . . . . . . . . . . . . . . . . . . . . . . . . . .

  6. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria

    SciTech Connect (OSTI)

    Thomas, Dennis G.; Jaramillo Riveri, Sebastian I.; Baxter, Douglas J.; Cannon, William R.

    2014-12-15

    We have applied a new stochastic simulation approach to predict the metabolite levels, energy flow, and material flux in the different oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on equations of state and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the selforganization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals, such as biofuels.

  7. CBE UFAD cost analysis tool: Life cycle cost model, issues and assumptions

    E-Print Network [OSTI]

    Webster, Tom; Benedek, Corinne; Bauman, Fred

    2008-01-01

    floor terminal unit Wall outlets, power and voice/data PowerWall PP NA Move Powered Workstation n/a n/a All move types: Furniture, minor, major Power,Wall All NA NA NA NA All NA NA All NA Open Plan Private Office Comments OH: Power

  8. Spinor-Unit Field Representation of Electromagnetism Applied to a Model Inflationary Cosmology

    E-Print Network [OSTI]

    Patrick L. Nash

    2015-04-14

    The new spinor-unit field representation of the electromagnetism \\cite{Nash2010} (with quark and lepton sources) is integrated via minimal coupling with standard Einstein gravitation, to formulate a Lagrangian model of the very early universe. The solution of the coupled Euler-Lagrange field equations yields a scale factor $a(t)$ (comoving coordinates) that initially exponentially increases $N$ e-folds from $a(0) \\approx 0$ to $a_{1} = a(0) {e}^{N} $ ($N$ = 60 is illustrated), then exponentially decreases, then exponentially increases to $a_{1}$, and so on almost periodically. (Oscillatory cosmological models are not knew, and have been derived from string theory and loop quantum gravity.) It is not known if the scale factor escapes this periodic trap. This model is noteworthy in several respects: $\\{1\\}$ All fundamental fields other than gravity are realized by spinor fields. $\\{2\\}$ A plausible connection between the \\emph{unit} field $\\mathbf{u}$ and the generalization of the photon wave function with a form of Dark Energy is described, and a simple natural scenario is outlined that allocates a fraction of the total energy of the Universe to this form of Dark Energy. $\\{3\\}$ A solution of an analog of the pure Einstein-Maxwell equations is found. This approach is in contrast with the method followed to obtain a solution of the well known Friedmann model of a radiation-dominated universe.

  9. Direct-contact condensers for open-cycle OTEC applications: Model validation with fresh water experiments for structured packings

    SciTech Connect (OSTI)

    Bharathan, D.; Parsons, B.K.; Althof, J.A.

    1988-10-01

    The objective of the reported work was to develop analytical methods for evaluating the design and performance of advanced high-performance heat exchangers for use in open-cycle thermal energy conversion (OC-OTEC) systems. This report describes the progress made on validating a one-dimensional, steady-state analytical computer of fresh water experiments. The condenser model represents the state of the art in direct-contact heat exchange for condensation for OC-OTEC applications. This is expected to provide a basis for optimizing OC-OTEC plant configurations. Using the model, we examined two condenser geometries, a cocurrent and a countercurrent configuration. This report provides detailed validation results for important condenser parameters for cocurrent and countercurrent flows. Based on the comparisons and uncertainty overlap between the experimental data and predictions, the model is shown to predict critical condenser performance parameters with an uncertainty acceptable for general engineering design and performance evaluations. 33 refs., 69 figs., 38 tabs.

  10. Ocean Carbon Cycle Models from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    •\tPacific data-model intercomparison from Patrick Wetzel (Max Planck Institute for Meteorology, Germany)

  11. Measurements and Units A large part of science is based upon the creation of mathematical models that

    E-Print Network [OSTI]

    Robertson, William

    Measurements and Units A large part of science is based upon the creation of mathematical models, Second which measure length, mass, and time respectively. UNIT SYMBOL DESCRIPTION Meter m Measures length the mathematical description to the real world requires that there is a mutually agreed upon measurement system so

  12. Update 1 to: A Dispersion Modeling Analysis of Downwash from...

    Office of Environmental Management (EM)

    1 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant, Modeling Unit 1 Emissions in a Cycling Mode Update 1 to: A Dispersion Modeling Analysis of...

  13. Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels

    SciTech Connect (OSTI)

    Wang, M.Q.

    1996-03-01

    This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

  14. Structural analysis of three global land models on carbon cycle simulations using a traceability framework

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rafique, R.; Xia, J.; Hararuk, O.; Luo, Y.

    2014-06-27

    Modeled carbon (C) storage capacity is largely determined by the C residence time and net primary productivity (NPP). Extensive research has been done on NPP dynamics but the residence time and their relationships with C storage are much less studied. In this study, we implemented a traceability analysis to understand the modeled C storage and residence time in three land surface models: CSIRO's Atmosphere Biosphere Land Exchange (CABLE) with 9 C pools, Community Land Model (version 3.5) combined with Carnegie-Ames-Stanford Approach (CLM3.5-CASA) with 12 C pools and Community Land Model (version 4) (CLM4) with 26 C pools. The globally averagedmore »C storage and residence time was computed at both individual pool and total ecosystem levels. The spatial distribution of total ecosystem C storage and residence time differ greatly among the three models. The CABLE model showed a closer agreement with measured C storage and residence time in plant and soil pools than CLM3.5-CASA and CLM4. However, CLM3.5-CASA and CLM4 were close to each other in modeled C storage but not with measured data. CABLE stores more C in root whereas CLM3.5-CASA and CLM4 store more C in woody pools, partly due to differential NPP allocation in respective pools. The C residence time in individual C pools is greatly different among models, largely because of different transfer coefficient values among pools. CABLE had higher bulk residence time for soil C pools than the other two models. Overall, the traceability analysis used in this study can help fully characterizes the behavior of complex land models.« less

  15. Quantum Chemistry for Solvated Molecules on Graphical Processing Units (GPUs)using Polarizable Continuum Models

    E-Print Network [OSTI]

    Liu, Fang; Kulik, Heather J; Martínez, Todd J

    2015-01-01

    The conductor-like polarization model (C-PCM) with switching/Gaussian smooth discretization is a widely used implicit solvation model in chemical simulations. However, its application in quantum mechanical calculations of large-scale biomolecular systems can be limited by computational expense of both the gas phase electronic structure and the solvation interaction. We have previously used graphical processing units (GPUs) to accelerate the first of these steps. Here, we extend the use of GPUs to accelerate electronic structure calculations including C-PCM solvation. Implementation on the GPU leads to significant acceleration of the generation of the required integrals for C-PCM. We further propose two strategies to improve the solution of the required linear equations: a dynamic convergence threshold and a randomized block-Jacobi preconditioner. These strategies are not specific to GPUs and are expected to be beneficial for both CPU and GPU implementations. We benchmark the performance of the new implementat...

  16. PORFLOW MODELING FOR A PRELIMINARY ASSESSMENT OF THE PERFORMANCE OF NEW SALTSTONE DISPOSAL UNIT DESIGNS

    SciTech Connect (OSTI)

    Smith, F.

    2012-08-06

    At the request of Savannah River Remediation (SRR), SRNL has analyzed the expected performance obtained from using seven 32 million gallon Saltstone Disposal Units (SDUs) in the Z-Area Saltstone Disposal Facility (SDF) to store future saltstone grout. The analysis was based on preliminary SDU final design specifications. The analysis used PORFLOW modeling to calculate the release of 20 radionuclides from an SDU and transport of the radionuclides and daughters through the vadose zone. Results from this vadose zone analysis were combined with previously calculated releases from existing saltstone vaults and FDCs and a second PORFLOW model run to calculate aquifer transport to assessment points located along a boundary 100 m from the nearest edge of the SDF sources. Peak concentrations within 12 sectors spaced along the 100 m boundary were determined over a period of evaluation extending 20,000 years after SDF closure cap placement. These peak concentrations were provided to SRR to use as input for dose calculations.

  17. Financing Strategies for Nuclear Fuel Cycle Facility

    SciTech Connect (OSTI)

    David Shropshire; Sharon Chandler

    2005-12-01

    To help meet our nation’s energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy.

  18. Use of a dynamic simulation model to understand nitrogen cycling in the middle Rio Grande, NM.

    SciTech Connect (OSTI)

    Meixner, Tom (University of Arizona, Tucson, AZ); Tidwell, Vincent Carroll; Oelsner, Gretchen (University of Arizona, Tucson, AZ); Brooks, Paul (University of Arizona, Tucson, AZ); Roach, Jesse D.

    2008-08-01

    Water quality often limits the potential uses of scarce water resources in semiarid and arid regions. To best manage water quality one must understand the sources and sinks of both solutes and water to the river system. Nutrient concentration patterns can identify source and sink locations, but cannot always determine biotic processes that affect nutrient concentrations. Modeling tools can provide insight into these large-scale processes. To address questions about large-scale nitrogen removal in the Middle Rio Grande, NM, we created a system dynamics nitrate model using an existing integrated surface water--groundwater model of the region to evaluate our conceptual models of uptake and denitrification as potential nitrate removal mechanisms. We modeled denitrification in groundwater as a first-order process dependent only on concentration and used a 5% denitrification rate. Uptake was assumed to be proportional to transpiration and was modeled as a percentage of the evapotranspiration calculated within the model multiplied by the nitrate concentration in the water being transpired. We modeled riparian uptake as 90% and agricultural uptake as 50% of the respective evapotranspiration rates. Using these removal rates, our model results suggest that riparian uptake, agricultural uptake and denitrification in groundwater are all needed to produce the observed nitrate concentrations in the groundwater, conveyance channels, and river as well as the seasonal concentration patterns. The model results indicate that a total of 497 metric tons of nitrate-N are removed from the Middle Rio Grande annually. Where river nitrate concentrations are low and there are no large nitrate sources, nitrate behaves nearly conservatively and riparian and agricultural uptake are the most important removal mechanisms. Downstream of a large wastewater nitrate source, denitrification and agricultural uptake were responsible for approximately 90% of the nitrogen removal.

  19. A metabolic model of the mitochondrion and its use in modelling diseases of the tricarboxylic acid cycle.

    E-Print Network [OSTI]

    Smith, Anthony C; Robinson, Alan J

    2011-06-29

    , the next step is to use this model with further development to simulate and understand these conditions. We believe that our model can be used as framework for integrating genomics, proteomics, meta- bolomics and clinical data and so contribute...

  20. CBE UFAD cost analysis tool: Life cycle cost model, issues and assumptions

    E-Print Network [OSTI]

    Webster, Tom; Benedek, Corinne; Bauman, Fred

    2008-01-01

    Building Maintenance and Repair Cost Reference. ” WhitestoneJ. Wallis and H. Lin. 2008. “CBE UFAD Cost Analysis Tool:UFAD First Cost Model, Issues and Assumptions. ” Center for

  1. Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results

    E-Print Network [OSTI]

    Panday, Arnico K.

    After completing a 9-month field experiment studying air pollution and meteorology in the Kathmandu Valley, Nepal, we set up the mesoscale meteorological model MM5 to simulate the Kathmandu Valley's meteorology with a ...

  2. Accelerating the spin-up of the coupled carbon and nitrogen cycle model in CLM4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fang, Yilin; Liu, Chongxuan; Leung, Lai-Yung R.

    2015-03-24

    The commonly adopted biogeochemistry spin-up process in an Earth system model (ESM) is to run the model for hundreds to thousands of years subject to periodic atmospheric forcing to reach dynamic steady state of the carbon–nitrogen (CN) models. A variety of approaches have been proposed to reduce the computation time of the spin-up process. Significant improvement in computational efficiency has been made recently. However, a long simulation time is still required to reach the common convergence criteria of the coupled carbon–nitrogen model. A gradient projection method was proposed and used to further reduce the computation time after examining the trendmore »of the dominant carbon pools. The Community Land Model version 4 (CLM4) with a carbon and nitrogen component was used in this study. From point-scale simulations, we found that the method can reduce the computation time by 20–69% compared to one of the fastest approaches in the literature. We also found that the cyclic stability of total carbon for some cases differs from that of the periodic atmospheric forcing, and some cases even showed instability. Close examination showed that one case has a carbon periodicity much longer than that of the atmospheric forcing due to the annual fire disturbance that is longer than half a year. The rest was caused by the instability of water table calculation in the hydrology model of CLM4. The instability issue is resolved after we replaced the hydrology scheme in CLM4 with a flow model for variably saturated porous media.« less

  3. Accelerating the spin-up of the coupled carbon and nitrogen cycle model in CLM4

    SciTech Connect (OSTI)

    Fang, Yilin; Liu, Chongxuan; Leung, Lai-Yung R.

    2015-01-01

    The commonly adopted biogeochemistry spin-up process in an Earth system model (ESM) is to run the model for hundreds to thousands of years subject to periodic atmospheric forcing to reach dynamic steady state of the carbon–nitrogen (CN) models. A variety of approaches have been proposed to reduce the computation time of the spin-up process. Significant improvement in computational efficiency has been made recently. However, a long simulation time is still required to reach the common convergence criteria of the coupled carbon–nitrogen model. A gradient projection method was proposed and used to further reduce the computation time after examining the trend of the dominant carbon pools. The Community Land Model version 4 (CLM4) with a carbon and nitrogen component was used in this study. From point-scale simulations, we found that the method can reduce the computation time by 20–69% compared to one of the fastest approaches in the literature. We also found that the cyclic stability of total carbon for some cases differs from that of the periodic atmospheric forcing, and some cases even showed instability. Close examination showed that one case has a carbon periodicity much longer than that of the atmospheric forcing due to the annual fire disturbance that is longer than half a year. The rest was caused by the instability of water table calculation in the hydrology model of CLM4. The instability issue is resolved after we replaced the hydrology scheme in CLM4 with a flow model for variably saturated porous media.

  4. To appear in EPTCS. Hybrid models of the cell cycle molecular machinery

    E-Print Network [OSTI]

    Radulescu, Ovidiu

    , or stochastic Petri nets provide equivalent descriptions of the dynamics and were also used in this context [7 of cell regulatory networks. Furthermore, hybrid modelling offers a good compromise between realistic and temporal logics [12, 14]. Threshold dynamics of gene regulatory networks [2, 20] or of excitable signaling

  5. Independent Scientific Advisory Board Review of NOAA Fisheries' Life-Cycle Models of Salmonid Populations in

    E-Print Network [OSTI]

    .......................................................................................................31 3.1: Snake River basin fall Chinook salmon run reconstruction as a basis for multistage stock Populations in the Interior Columbia River Basin (June 28, 2013 draft) Appendix - Answers to Questions ............................................................................7 2.2: ISEMP Watershed Model for spring/summer Chinook salmon and steelhead in the Salmon River

  6. Associative list processing unit

    DOE Patents [OSTI]

    Hemmert, Karl Scott; Underwood, Keith D

    2014-04-01

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full.

  7. Economic Consequences of Alternative Solution Methods for Centralized Unit Commitment in Day-Ahead Electricity Markets

    E-Print Network [OSTI]

    Sioshansi, Ramteen; O'Neill, Richard; Oren, Shmuel S

    2008-01-01

    Short-term scheduling of combined cycle units,” IEEE Trans.complex units such as combined-cycle com- bustion turbines (

  8. UGE Scheduler Cycle Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UGE Scheduler Cycle Time UGE Scheduler Cycle Time Genepool Cycle Time Genepool Daily Genepool Weekly Phoebe Cycle Time Phoebe Daily Phoebe Weekly What is the Scheduler Cycle? The...

  9. A Unit Commitment Model with Demand Response for the Integration of Renewable Energies

    E-Print Network [OSTI]

    Ikeda, Yuichi; Kataoka, Kazuto; Ogimoto, Kazuhiko

    2011-01-01

    The output of renewable energy fluctuates significantly depending on weather conditions. We develop a unit commitment model to analyze requirements of the forecast output and its error for renewable energies. Our model obtains the time series for the operational state of thermal power plants that would maximize the profits of an electric power utility by taking into account both the forecast of output its error for renewable energies and the demand response of consumers. We consider a power system consisting of thermal power plants, photovoltaic systems (PV), and wind farms and analyze the effect of the forecast error on the operation cost and reserves. We confirm that the operation cost was increases with the forecast error. The effect of a sudden decrease in wind power is also analyzed. More thermal power plants need to be operated to generate power to absorb this sudden decrease in wind power. The increase in the number of operating thermal power plants within a short period does not affect the total opera...

  10. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

    E-Print Network [OSTI]

    2009-01-01

    2009 P. E. Thornton et al. : Carbon-nitrogen interactionsregulate climate-carbon cycle feedbacks Monfray, P. ,T. H. : A global ocean carbon climatology: Results from

  11. Completion Report for Model Evaluation Well ER-11-2: Corrective Action Unit 98: Frenchman Flat

    SciTech Connect (OSTI)

    NSTec Underground Test Area and Boreholes Programs and Operations

    2013-01-22

    Model Evaluation Well ER-11-2 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of Nevada Environmental Management Operations at the Nevada National Security Site (formerly known as the Nevada Test Site). The well was drilled in August 2012 as part of a model evaluation program in the Frenchman Flat area of Nye County, Nevada. The primary purpose of the well was to provide detailed geologic, hydrogeologic, chemical, and radionuclide data that can be used to test and build confidence in the applicability of the Frenchman Flat Corrective Action Unit flow and transport models for their intended purpose. In particular, this well was designed to provide data to evaluate the uncertainty in model forecasts of contaminant migration from the upgradient underground nuclear test PIN STRIPE, conducted in borehole U-11b in 1966. Well ER-11-2 will provide information that can be used to refine the Phase II Frenchman Flat hydrostratigraphic framework model if necessary, as well as to support future groundwater flow and transport modeling. The main 31.1-centimeter (cm) hole was drilled to a total depth of 399.6 meters (m). A completion casing string was not set in Well ER-11-2. However, a piezometer string was installed in the 31.1-cm open hole. The piezometer is composed of 7.3-cm stainless-steel tubing hung on 6.0-cm carbon-steel tubing via a crossover sub. The piezometer string was landed at 394.5 m, for monitoring the lower tuff confining unit. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, water quality (including tritium and other test-related radionuclides) measurements, and water level measurements. The well penetrated 42.7 m of Quaternary and Tertiary alluvium and 356.9 m of Tertiary volcanic rock. The water-level measured in the piezometer string on September 25, 2012, was 353.8 m below ground surface. No tritium above levels detectable by field methods were encountered in this hole. No well development or hydrologic testing was conducted in this well immediately after completion, and future well development, sampling, and hydrologic testing planned for this well will be limited due to the diameter of the piezometer string. The stratigraphy, general lithology, and the water level are as expected, but the section of geology encountered is higher than expected due to faulting. No tritium above the minimum detection limit of the field equipment was detected because the target aquifer (the Topopah Spring aquifer) at Well ER-11-2 is structurally higher than expected and thus unsaturated.

  12. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stands to improve climate modeling Environmental microbiology In 2009, the Department of Energy established the Los Alamos Science Focus Area in Soil Metagenomics & Carbon Cycling...

  13. An Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios

    E-Print Network [OSTI]

    on the environmental impacts associated with electricity consumption, and that interstate trading tends to makeAn Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios Joe Marriott Submitted in Partial Fulfillment of the Requirements

  14. Terrestrial carbon cycle & introduction to box modeling.2/15 & 2/17 Chemistry of Earth's oceans II2/10

    E-Print Network [OSTI]

    Terrestrial carbon cycle & introduction to box modeling.2/15 & 2/17 Chemistry of Earth's oceans II2 - stratospheric chemistry2/1 Chemistry of Earth's atmosphere I - review of chemical kinetics. HW #1 handed out to be discussed include chemistry of the solar nebula, accretion of the Earth and terrestrial planets, estimates

  15. Developing Model Constraints on Northern Extra-Tropical Carbon Cycling Based on measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    SciTech Connect (OSTI)

    Keeling, Ralph

    2014-12-12

    The objective of this project was to perform CO2 data syntheses and modeling activities to address two central questions: 1) how much has the seasonal cycle in atmospheric CO2 at northern high latitudes changed since the 1960s, and 2) how well do prognostic biospheric models represent these changes. This project also supported the continuation of the Scripps time series of CO2 isotopes and concentration at ten baseline stations distributed globally.

  16. Development and Integration of Genome-Enabled Techniques to Track and Predict the Cycling of Carbon in Model Microbial Communities

    SciTech Connect (OSTI)

    Banfield, Jillian

    2014-11-26

    The primary objective of this project was to establish widely applicable, high-throughput “omics” methods for tracking carbon flow in microbial communities at a strain-resolved molecular level. We developed and applied these methods to study a well-established microbial community model system with a long history of “omics” innovation: chemoautotrophic biofilms grown in an acid mine drainage (AMD) environment. The methods are now being transitioned (in a new project) to study soil. Using metagenomics, stable-isotope proteomics, stable-isotope metabolomics, transcriptomics, and microscopy, we tracked carbon flow during initial biofilm growth involving CO2 fixation, through the maturing biofilm community consisting of multiple trophic levels, and during an anaerobic degradative phase after biofilms sink. This work included explicit consideration of the often overlooked roles of archaea and microbial eukaryotes (fungi) in carbon turnover. We also analyzed where the eosystem begins to fail in response to thermal perturbation, and how perturbation propagates through a carbon cycle. We investigated the form of strain variation in microbial communities, the importance of strain variants, and the rate and form of strain evolution. Overall, the project generated an array of new, integrated ‘omics’ approaches and provided unprecedented insight into the functioning of a natural ecosystem. This project supported graduate training for five Ph.D. students and three post doctoral fellows and contributed directly to at least 26 publications (two in Science).

  17. Associative list processing unit

    DOE Patents [OSTI]

    Hemmert, Karl Scott; Underwood, Keith D.

    2013-01-29

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full. Also, an associative list processing unit and method comprising employing a plurality of prioritized cell blocks and using a tree of prioritized multiplexers descending from the plurality of cell blocks.

  18. Completion Report for Model Evaluation Well ER-5-5: Corrective Action Unit 98: Frenchman Flat

    SciTech Connect (OSTI)

    NSTec Underground Test Area and Boreholes Programs and Operations

    2013-01-18

    Model Evaluation Well ER-5-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of Nevada Environmental Management Operations at the Nevada National Security Site (formerly known as the Nevada Test Site). The well was drilled in July and August 2012 as part of a model evaluation well program in the Frenchman Flat area of Nye County, Nevada. The primary purpose of the well was to provide detailed geologic, hydrogeologic, chemical, and radiological data that can be used to test and build confidence in the applicability of the Frenchman Flat Corrective Action Unit flow and transport models for their intended purpose. In particular, this well was designed to obtain data to evaluate the uncertainty in model forecasts of contaminant migration from the upgradient underground nuclear test MILK SHAKE, conducted in Emplacement Hole U-5k in 1968, which were considered to be uncertain due to the unknown extent of a basalt lava-flow aquifer present in this area. Well ER-5-5 is expected to provide information to refine the Phase II Frenchman Flat hydrostratigraphic framework model, if necessary, as well as to support future groundwater flow and transport modeling. The 31.1-centimeter (cm) diameter hole was drilled to a total depth of 331.3 meters (m). The completion string, set at the depth of 317.2 m, consists of 16.8-cm stainless-steel casing hanging from 19.4-cm carbon-steel casing. The 16.8-cm stainless-steel casing has one slotted interval open to the basalt lava-flow aquifer and limited intervals of the overlying and underlying alluvial aquifer. A piezometer string was also installed in the annulus between the completion string and the borehole wall. The piezometer is composed of 7.3-cm stainless-steel tubing suspended from 6.0-cm carbon-steel tubing. The piezometer string was landed at 319.2 m, to monitor the basalt lava-flow aquifer. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, preliminary water quality measurements, and water-level measurements. The well penetrated 331.3 m of Quaternary–Tertiary alluvium, including an intercalated layer of saturated basalt lava rubble. No well development or hydrologic testing was conducted in this well immediately after completion; however, a preliminary water level was measured in the piezometer string at the depth of 283.4 m on September 25, 2012. No tritium above the minimum detection limit of the field instruments was detected in this hole. Future well development, sampling, and hydrologic testing planned for this well will provide more accurate hydrologic information for this site. The stratigraphy, general lithology, and water level were as expected, though the expected basalt lava-flow aquifer is basalt rubble and not the dense, fractured lava as modeled. The lack of tritium transport is likely due to the difference in hydraulic properties of the basalt lava-flow rubble encountered in the well, compared to those of the fractured aquifer used in the flow and transport models.

  19. GREET Development and Applications for Life-Cycle Analysis of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Fuel-Cycle Energy and Emissions Analysis with the GREET Model Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET Life Cycle...

  20. USEtox - The UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in Life Cycle Impact Assessment

    E-Print Network [OSTI]

    Rosenbaum, Ralph K.

    2010-01-01

    International Journal of Life Cycle Assessment, 13(7):532-toxic impacts in Life Cycle Assessment. Recommendations andof toxic impacts in Life Cycle Assessment. USEtox therefore

  1. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  2. Emergence of Fusion/Fission Cycling and Self-Organized Criticality from a Simulation Model of Early Complex Polities

    E-Print Network [OSTI]

    Griffin, Arthur F

    2011-01-01

    H. 1999, Chiefdoms and the Fission-Fusion Process, AmericanEmergence of Fusion/Fission Cycling and Self-Organizedliterature to describe the fusion and subsequent fission of

  3. Dynamic modeling and control strategies for a micro-CSP plant with thermal storage powered by the Organic Rankine cycle

    E-Print Network [OSTI]

    Ireland, Melissa Kara

    2014-01-01

    Organic Rankine cycle (ORC) systems are gaining ground as a means of effectively providing sustainable energy. Coupling small-scale ORCs powered by scroll expander- generators with solar thermal collectors and storage can ...

  4. Studentnumber:Name:Degree: Unit:Unit:Unit:Unit

    E-Print Network [OSTI]

    Tobar, Michael

    Studentnumber:Name:Degree: Semester: Semester: Unit:Unit:Unit:Unit: Unit:Unit:Unit:Unit: Year the Undergraduate Degree Course Rules. Have you included units that will lead to at least one degree-specific major that the units you choose in first year will lead to at least one degree-specific major. It is a requirement

  5. Modeling Water Withdrawal and Consumption for Electricity Generation in the United States

    E-Print Network [OSTI]

    Strzepek, Kenneth M.

    2012-06-15

    Water withdrawals for thermoelectric cooling account for a significant portion of total water use in the United States. Any change in electrical energy generation policy and technologies has the potential to have a major ...

  6. United States Air Force fighter jet maintenance Models : effectiveness of index policies

    E-Print Network [OSTI]

    Kessler, John M. (John Michael)

    2013-01-01

    As some of the most technically complex systems in the world, United States fighter aircraft require a complex logistics system to sustain their reliable operation and ensure that the day-to-day Air Force missions can be ...

  7. Development and Use of Baseline Monthly Utility Models for Eight Army Installations Around the United States 

    E-Print Network [OSTI]

    Reddy, T. A.; Saman, N. F.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.

    1996-01-01

    This report has been prepared for the United States Army Construction Engineering Research Laboratories (USACERL) located in Champaign, IL by the Energy Systems Laboratory (ESL) of Texas A&M University. The first phase of ...

  8. The Macroscopic Cortical Unit

    E-Print Network [OSTI]

    Penny, Will

    The Macroscopic Brain Will Penny Cortical Unit Neural Mass Model Cell Populations Differential Will Penny 21st April 2011 #12;The Macroscopic Brain Will Penny Cortical Unit Neural Mass Model Cell as formulated in David et al. (2006). #12;The Macroscopic Brain Will Penny Cortical Unit Neural Mass Model Cell

  9. A System Dynamics Study of Carbon Cycling and Electricity Generation from Energy Crops

    E-Print Network [OSTI]

    Ford, Andrew

    Energy Information Administration GHG Green House Gasses GORCAM Graz-Oak Ridge Carbon Accounting Model1 A System Dynamics Study of Carbon Cycling and Electricity Generation from Energy Crops Hilary calling for a cap-and- trade program, was reintroduced in the United States Senate this year. The Energy

  10. Preindustrial-control and twentieth-century carbon cycle experiments with the Earth system model CESM1(BGC)

    E-Print Network [OSTI]

    2014-01-01

    feedbacks in CMIP5 Earth system models. J. Climate, 26,dioxide biases in Earth system models. J. Geophys. Res.2013: The Community Earth System Model: A framework for

  11. Carbon cycle extremes during the 21st century in CMIP5 models: Future evolution and attribution to climatic drivers

    E-Print Network [OSTI]

    Zscheischler, J; Reichstein, M; Von Buttlar, J; Mu, M; Randerson, JT; Mahecha, MD

    2014-01-01

    dioxide biases in Earth System Models, J. Geophys. Res.by CMIP5 Earth System Models under 4 Representativeyet integrated within Earth system models. 1. Introduction

  12. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Northeastern Research Station Research Paper NE-722 James E. Smith Linda S. Heath A Model of Forest Floor Carbon Mass for United States Forest contiguous United States. Manuscript received for publication 22 April 2002 #12;A Model of Forest Floor

  13. Ecological Niche Modeling of Francisella tularensis Subspecies and Clades in the United States

    E-Print Network [OSTI]

    Nakazawa, Yoshinori; Williams, Richard A.J.; Peterson, A. Townsend; Mead, Paul S.; Kugeler, Kiersten J.; Petersen, Jeannine M.

    2010-05-01

    subspecies are recognized as principal causes of human tularemia: F. tular- ensis subspecies tularensis (herein referred to as type A) and F. tularensis subspecies holarctica (herein referred to as type B). 1 Molecular typing methods have been used... , Mead PS , Petersen JM , 2006 . Epidemiologic and molecular analysis of human tulare- mia, United States, 1964–2004 . Emerg Infect Dis 12 : 1113 – 1118 . 5. Farlow J , Wagner DM , Dukerich M , Stanley M , Chu M , Kubota K...

  14. GREET Life-Cycle Analysis of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J Han, MQ Wang. "Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States." 2013. Biotechnology for Biofuels, 6:141. * Z...

  15. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Northeastern Research Station Research Paper-Central United States (Monserud and Ek 1977; Monserud 1987). This model was used within the framework of FOREST

  16. Department of Energy Awards $15 Million for Nuclear Fuel Cycle...

    Broader source: Energy.gov (indexed) [DOE]

    meet the need for advanced nuclear energy production and help to close the nuclear fuel cycle in the United States. "Today's awards accelerate our nation's drive towards diverse...

  17. Truck Duty Cycle and Performance Data Collection and Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duty Cycle and Performance Data Collection and Analysis Program Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion Roadmap and Technical White Papers for...

  18. Development of a Laboratory Verified Single-Duct VAV System Model with Fan Powered Terminal Units Optimized Using Computational Fluid Dynamics 

    E-Print Network [OSTI]

    Davis, Michael A.

    2011-10-21

    Single Duct Variable Air Volume (SDVAV) systems use series and parallel Fan Powered Terminal Units to control the air flow in conditioned spaces. This research developed a laboratory verified model of SDVAV systems that ...

  19. Model for the low-latitude ionosphere with coefficients for different seasonal and solar cycle conditions. Final report, 1 October 1981-30 June 1986

    SciTech Connect (OSTI)

    Mendillo, M.; Herniter, B.

    1986-11-01

    A new ionospheric model for the low-latitude ionosphere was constructed to provide easy access to electron density profiles (Ne(h)), total electron content (TEC) and 6300A airglow under a variety of conditions. Results from the rigorous theoretical calculations for ionospheric structure at a given time and a site were parameterized to a set of six coefficients that reproduce the individual Ne(h) profiles using a simple algebraic formula. This report summarizes the rationale for such a model, describes the input parameters and methods used to generate the coefficients, and provides a comprehensive set of coefficients. The model covers the low-latitude ionosphere (24 N to 24 S every 4 deg of dip latitude), over the altitude range 180 to 1000km, for every hour of local time. The tabulated coefficients, TEC and 6300 airglow are presented for three seasons (Equinox, June solstice, and December solstice) and two solar cycles (solar maximum and solar minimum).

  20. Life cycle evolution and systematics of Campanulariid hydrozoans

    E-Print Network [OSTI]

    Govindarajan, Annette Frese, 1970-

    2004-01-01

    The purpose of this thesis is to study campanulariid life cycle evolution and systematics. The Campanulariidae is a hydrozoan family with many life cycle variations, and provide an excellent model system to study life cycle ...

  1. Prediction of future fifteen solar cycles

    E-Print Network [OSTI]

    K. M. Hiremath

    2007-04-11

    In the previous study (Hiremath 2006a), the solar cycle is modeled as a forced and damped harmonic oscillator and from all the 22 cycles (1755-1996), long-term amplitudes, frequencies, phases and decay factor are obtained. Using these physical parameters of the previous 22 solar cycles and by an {\\em autoregressive model}, we predict the amplitude and period of the future fifteen solar cycles. Predicted amplitude of the present solar cycle (23) matches very well with the observations. The period of the present cycle is found to be 11.73 years. With these encouraging results, we also predict the profiles of future 15 solar cycles. Important predictions are : (i) the period and amplitude of the cycle 24 are 9.34 years and 110 ($\\pm 11$), (ii) the period and amplitude of the cycle 25 are 12.49 years and 110 ($\\pm$ 11), (iii) during the cycles 26 (2030-2042 AD), 27 (2042-2054 AD), 34 (2118-2127 AD), 37 (2152-2163 AD) and 38 (2163-2176 AD), the sun might experience a very high sunspot activity, (iv) the sun might also experience a very low (around 60) sunspot activity during cycle 31 (2089-2100 AD) and, (v) length of the solar cycles vary from 8.65 yrs for the cycle 33 to maximum of 13.07 yrs for the cycle 35.

  2. Generation of Collapsed Cross Sections for Hatch 1 Cycles 1-3

    SciTech Connect (OSTI)

    Ade, Brian J

    2012-11-01

    Under NRC JCN V6361, Oak Ridge National Laboratory (ORNL) was tasked to develop and run SCALE/TRITON models for generation of collapsed few-group cross sections and to convert the cross sections to PMAXS format using the GENPMAXS conversion utility for use in PARCS/PATHS simulations of Hatch Unit 1, cycles 1-3. This letter report documents the final models used to produce the Hatch collapsed cross sections.

  3. AN AGGREGATED VECTORIAL MODEL OF PETROLEUM FLOW IN THE UNITED STATES

    E-Print Network [OSTI]

    Krishnan, V. V.

    2011-01-01

    I I I I I DOMESTIC CRUDE OIL PRODUCTION CRUDE OIL i SUPPLY IDatabase 71. Crude Oil and Natural Gas Production Model 72.Domestic Crude Production SYSTEM: Crude Oil First Purchaser

  4. Modeling Water Withdrawal and Consumption for Electricity Generation in the United States

    E-Print Network [OSTI]

    Reuter, Martin

    and ecosystem impacts, and analysis of mitigation strategies, need to be based on realistic evaluation Geological Survey (USGS) inventories and a recent NREL report. To illustrate the model capabilities, we the Renewable Energy Futures (REF) calculations performed by

  5. The 6th International Conference on Life Cycle Management in Gothenburg 2013 FROM DETAILED LCA TO SIMPLIFIED MODEL: AN ORIENTED

    E-Print Network [OSTI]

    Boyer, Edmond

    of energy pathways have shown a large variability of the environmental impacts over their systems to assess environmental impacts of energy pathways through a simplified model: a parametric model elaborated of a reference model enabling to calculate environmental impacts of a large sample of representative systems

  6. Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic Earth system model

    E-Print Network [OSTI]

    Winguth, Arne

    a dynamic Earth system model A. Winguth Center for Climatic Research, Department of Atmospheric and Oceanic; accepted 26 October 2005; published 15 December 2005. [1] A complex Earth system model including atmosphere and anthropogenic climate change using a dynamic Earth system model, Geophys. Res. Lett., 32, L23714, doi:10

  7. Development and Testing of a Life Cycle Model and a Parameterization of Thin Mid-level Stratiform Clouds

    SciTech Connect (OSTI)

    Krueger, Steven K.

    2008-03-03

    We used a cloud-resolving model (a detailed computer model of cloud systems) to evaluate and improve the representation of clouds in global atmospheric models used for numerical weather prediction and climate modeling. We also used observations of the atmospheric state, including clouds, made at DOE's Atmospheric Radiation Measurement (ARM) Program's Climate Research Facility located in the Southern Great Plains (Kansas and Oklahoma) during Intensive Observation Periods to evaluate our detailed computer model as well as a single-column version of a global atmospheric model used for numerical weather prediction (the Global Forecast System of the NOAA National Centers for Environmental Prediction). This so-called Single-Column Modeling approach has proved to be a very effective method for testing the representation of clouds in global atmospheric models. The method relies on detailed observations of the atmospheric state, including clouds, in an atmospheric column comparable in size to a grid column used in a global atmospheric model. The required observations are made by a combination of in situ and remote sensing instruments. One of the greatest problems facing mankind at the present is climate change. Part of the problem is our limited ability to predict the regional patterns of climate change. In order to increase this ability, uncertainties in climate models must be reduced. One of the greatest of these uncertainties is the representation of clouds and cloud processes. This project, and ARM taken as a whole, has helped to improve the representation of clouds in global atmospheric models.

  8. Existing Whole-House Solutions Case Study: Community-Scale Energy Modeling - Southeastern United States

    SciTech Connect (OSTI)

    2014-12-01

    Community-scale energy modeling and testing are useful for determining energy conservation measures that will effectively reduce energy use. To that end, IBACOS analyzed pre-retrofit daily utility data to sort homes by energy consumption, allowing for better targeting of homes for physical audits. Following ASHRAE Guideline 14 normalization procedures, electricity consumption of 1,166 all-electric, production-built homes was modeled. The homes were in two communities: one built in the 1970s and the other in the mid-2000s.

  9. Emergence of Fusion/Fission Cycling and Self-Organized Criticality from a Simulation Model of Early Complex Polities

    E-Print Network [OSTI]

    Griffin, Arthur F

    2011-01-01

    Critical behavior of a forest fire model with immune trees.such as earthquakes and forest fires. Social scientists arelandslides, and forest fires (Turcotte 1999). Social

  10. Advanced Fuel Cycle Economic Sensitivity Analysis

    SciTech Connect (OSTI)

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  11. Dynamic Modelling and Control Design of Pre-combustion Power

    E-Print Network [OSTI]

    Foss, Bjarne A.

    principles. The pre- combustion gas power cycle plants consist of reformers and separation units, com and control design of two pre-combustion power cycles, i.e., a hydro- gen membrane reformer (HMR) based power- pressors, gas and steam turbines and a heat recovery system. Analysis of dynamic models at an early stage

  12. Renewable Energy Cost Modeling. A Toolkit for Establishing Cost-Based Incentives in the United States

    SciTech Connect (OSTI)

    Gifford, Jason S.; Grace, Robert C.; Rickerson, Wilson H.

    2011-05-01

    This report serves as a resource for policymakers who wish to learn more about levelized cost of energy (LCOE) calculations, including cost-based incentives. The report identifies key renewable energy cost modeling options, highlights the policy implications of choosing one approach over the other, and presents recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, FITs, or similar policies. These recommendations shaped the design of NREL's Cost of Renewable Energy Spreadsheet Tool (CREST), which is used by state policymakers, regulators, utilities, developers, and other stakeholders to assist with analyses of policy and renewable energy incentive payment structures. Authored by Jason S. Gifford and Robert C. Grace of Sustainable Energy Advantage LLC and Wilson H. Rickerson of Meister Consultants Group, Inc.

  13. Controlling cycle-by-cycle variation in a pulse combustor

    SciTech Connect (OSTI)

    Daw, C.S.; Thomas, J.F. [Oak Ridge National Lab., TN (United States); Rhode, M.A.; Rollins, R.W. [Ohio Univ., Athens, OH (United States); Markworth, A.J. [Battelle Memorial Inst., Columbus, OH (United States)

    1995-06-01

    We describe a method for controlling chaos-generated cyclic variations in a pulse combustor. The method is applied to a recently developed thermal pulse combustor model and utilizes a map-based, adaptive proportional feedback algorithm. With this technique we show that it is possible to greatly reduce cycle-by-cycle pulse variation. We further show that minimizing cyclic variation allows combustor operation at conditions well beyond the normal flameout limit.

  14. Thesis proposal CSF Brazil 2014 Modelling of ecological services for the rivers quality from the hydro-morphological unit to the

    E-Print Network [OSTI]

    Bordenave, Charles

    the hydro-morphological unit to the scale of a watershed. Thesis supervisor: Sabine Sauvage E-mail address will consist of improving hydro-agro-environmental models that are used all over the world (the SWAT model-purification processes involved in Carbon and Nitrate transfer by integrating controlling factors such as hydro

  15. United: How one computer model makes Texas surface water management possible 

    E-Print Network [OSTI]

    Lee, Leslie

    2013-01-01

    . A?er a major drought in the ????s, the Texas Legislature passed Senate Bill ? in ????, which called for a comprehensive water management planning process and a water availability modeling system to make e?ective management of the surface water... as any possible impacts it might have on existing water rights in the basin. ?If someone applies for a new water right, we have many requirements, one of which is that we have to ?nd that the water is available, a?er we look at all existing water...

  16. Modeling the Long-Term Market Penetration of Wind in the United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMission MissionModeling distributed generation in

  17. Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Gregg Ruskuaff

    2010-01-01

    This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) and National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the “Corrective Action Strategy” in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).

  18. A modeling software linking approach for the analysis of an integrated reforming combined cycle with hot potassium carbonate CO[subscript 2] capture

    E-Print Network [OSTI]

    Nord, Lars Olof

    The focus of this study is the analysis of an integrated reforming combined cycle (IRCC) with natural gas as fuel input. This IRCC consisted of a hydrogen-fired gas turbine (GT) with a single-pressure steam bottoming cycle ...

  19. A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): Equinox solar cycle minimum simulations (30-500 km)

    SciTech Connect (OSTI)

    Roble, R.G.; Ridley, E.C.

    1994-03-15

    A new simulation model of the mesosphere, thermosphere, and ionosphere with coupled electrodynamics has been developed and used to calculate the global circulation, temperature and compositional structure between 30-500 km for equinox, solar cycle minimum, geomagnetic quiet conditions. The model incorporates all of the features of the NCAR thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM) but the lower boundary has been extended downward from 97 to 30 km (10 mb) and it includes the physical and chemical processes appropriate for the mesosphere and upper stratosphere. The first simulation used Rayleigh friction to represent gravity wave drag in the middle atmosphere and although it was able to close the mesospheric jets it severely damped the diurnal tide. Reduced Rayleigh friction allowed the tide to penetrate to thermospheric heights but did not close the jets. A gravity wave parameterization developed by Fritts and Lu allows both features to exist simultaneously with the structure of tides and mean flow dependent upon the strength of the gravity wave source. The model calculates a changing dynamic structure with the mean flow and diurnal tide dominant in the mesosphere, the in-situ generated semi-diurnal tide dominating the lower thermosphere and an in-situ generated diurnal tide in the upper thermosphere. The results also show considerable interaction between dynamics and composition, especially atomic oxygen between 85 and 120 km. 31 refs., 3 figs.

  20. Testing the Cultural Boundaries of a Model of Trust: Subordinate-Manager Relationships in China, Norway and the United States

    E-Print Network [OSTI]

    Whitener, Ellen M.; Maznevski, Martha L.; Hua, Wei; Saebo, Snorre R.; Ekelund, Bjorn Z.

    2000-01-01

    Key Variables for China, Norway, and United States Variablein-Supervisor—China, Norway and US Independent VariableCommunication N China B p R Norway B p R United States B p

  1. Modeling the Effects of Irrigation on Land Surface Fluxes and States over the Conterminous United States: Sensitivity to Input Data and Model Parameters

    SciTech Connect (OSTI)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; Sacks, William J.; Lei, Huimin; Leung, Lai-Yung R.

    2013-09-16

    Previous studies on irrigation impacts on land surface fluxes/states were mainly conducted as sensitivity experiments, with limited analysis of uncertainties from the input data and model irrigation schemes used. In this study, we calibrated and evaluated the performance of irrigation water use simulated by the Community Land Model version 4 (CLM4) against observations from agriculture census. We investigated the impacts of irrigation on land surface fluxes and states over the conterminous United States (CONUS) and explored possible directions of improvement. Specifically, we found large uncertainty in the irrigation area data from two widely used sources and CLM4 tended to produce unrealistically large temporal variations of irrigation demand for applications at the water resources region scale over CONUS. At seasonal to interannual time scales, the effects of irrigation on surface energy partitioning appeared to be large and persistent, and more pronounced in dry than wet years. Even with model calibration to yield overall good agreement with the irrigation amounts from the National Agricultural Statistics Service (NASS), differences between the two irrigation area datasets still dominate the differences in the interannual variability of land surface response to irrigation. Our results suggest that irrigation amount simulated by CLM4 can be improved by (1) calibrating model parameter values to account for regional differences in irrigation demand and (2) accurate representation of the spatial distribution and intensity of irrigated areas.

  2. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    SciTech Connect (OSTI)

    Stadel, Alexander; Gursel, Petek; Masanet, Eric

    2012-01-18

    Structural materials in commercial buildings in the United States account for a significant fraction of national energy use, resource consumption, and greenhouse gas (GHG) emissions. Robust decisions for balancing and minimizing these various environmental effects require that structural materials selections follow a life-cycle, systems modeling approach. This report provides a concise overview of the development and use of a new life-cycle assessment (LCA) model for structural materials in U.S. commercial buildings?the Berkeley Lab Building Materials Pathways (B-PATH) model. B-PATH aims to enhance environmental decision-making in the commercial building LCA, design, and planning communities through the following key features: (1) Modeling of discrete technology options in the production, transportation, construction, and end of life processes associated U.S. structural building materials; (2) Modeling of energy supply options for electricity provision and directly combusted fuels across the building life cycle; (3) Comprehensiveness of relevant building mass and energy flows and environmental indicators; (4) Ability to estimate modeling uncertainties through easy creation of different life-cycle technology and energy supply pathways for structural materials; and (5) Encapsulation of the above features in a transparent public use model. The report summarizes literature review findings, methods development, model use, and recommendations for future work in the area of LCA for commercial buildings.

  3. Differences in carbon cycle and temperature projections from emission- and concentration-driven earth system model simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, P.; Zeng, X.; Zeng, X.

    2014-08-29

    The influence of prognostic and prescribed atmospheric CO2 concentrations ([CO2]) on the carbon uptake and temperature is investigated using all eight Earth System Models (ESMs) with relevant output variables from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Under the RCP8.5 scenario, the projected [CO2] differences in 2100 vary from -19.7 to +207.3 ppm in emission-driven ESMs. Incorporation of the interactive concentrations also increases the range of global warming, computed as the 20 year average difference between 2081–2100 and 1850–1869/1861–1880, by 49% from 2.36 K (i.e. ranging from 3.11 to 5.47 K) in the concentration-driven simulations to 3.51 K inmore »the emission-driven simulations. The observed seasonal amplitude of global [CO2] from 1980–2011 is about 1.2–5.3 times as large as those from the eight emission-driven ESMs, while the [CO2] seasonality is simply neglected in concentration-driven ESMs, suggesting the urgent need of ESM improvements in this area. The temperature-concentration feedback parameter ? is more sensitive to [CO2] (e.g. during 1980–2005 versus 2075–2100) than how [CO2] is handled (i.e. prognostic versus prescribed). This sensitivity can be substantially reduced by using a more appropriate parameter ?' computed from the linear regression of temperature change versus that of the logarithm of [CO2]. However, the inter-model relative variations of both ? and ?' remain large, suggesting the need of more detailed studies to understand and hopefully reduce these discrepancies.« less

  4. Ozone effects on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model

    E-Print Network [OSTI]

    Felzer, Benjamin Seth.; Kicklighter, David W.; Melillo, Jerry M.; Wang, Chien.; Zhuang, Qianlai.; Prinn, Ronald G.

    The effects of air pollution on vegetation may provide an important control on the carbon cycle that has not yet been widely considered. Prolonged exposure to high levels of ozone, in particular, has been observed to inhibit ...

  5. Phase II Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    DeNovio, Nicole M.; Bryant, Nathan; King, Chrissi B.; Bhark, Eric; Drellack, Sigmund L.; Pickens, John F.; Farnham, Irene; Brooks, Keely M.; Reimus, Paul; Aly, Alaa

    2005-04-01

    This report documents pertinent transport data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU) 98. The purpose of this data compilation and related analyses is to provide the primary reference to support parameterization of the Phase II FF CAU transport model.

  6. Phase II Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    John McCord

    2004-12-01

    This report documents pertinent hydrologic data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU): CAU 98. The purpose of this data compilation and related analyses is to provide the primary reference to support the development of the Phase II FF CAU groundwater flow model.

  7. Investment in Corn-Ethanol Plants in the Midwestern United States: An Analysis Using Reduced-Form and Structural Models1

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    1 Investment in Corn-Ethanol Plants in the Midwestern United States: An Analysis Using Reduced-Form and Structural Models1 C.-Y. Cynthia Lin and Karen E. Thome Abstract Ethanol has attracted considerable policy policy and strategic interactions affect decisions about when and where to invest in building new ethanol

  8. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01

    Methodology iii Life-Cycle Assessment (LCA) . . . . . . .Values altered in LCA sensitivity1 xi ISO IT KE LCA LCEA MIPS PDU PG&E SCOPE UPS

  9. A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada

    SciTech Connect (OSTI)

    Prothro, Lance; Drellack Jr., Sigmund; Mercadante, Jennifer

    2009-01-31

    Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rock’s ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rock’s primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of stratigraphic information in the development of HSUs is important to assure individual HSUs are internally consistent, correlatable, and mappable throughout all the model areas.

  10. Simulation of annual biogeochemical cycles of nutrient balance, phytoplankton bloom(s), and DO in Puget Sound using an unstructured grid model

    SciTech Connect (OSTI)

    Khangaonkar, Tarang; Sackmann, Brandon S.; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-08-14

    Nutrient pollution from rivers, nonpoint source runoff, and nearly 100 wastewater discharges is a potential threat to the ecological health of Puget Sound with evidence of hypoxia in some basins. However, the relative contributions of loads entering Puget Sound from natural and anthropogenic sources, and the effects of exchange flow from the Pacific Ocean are not well understood. Development of a quantitative model of Puget Sound is thus presented to help improve our understanding of the annual biogeochemical cycles in this system using the unstructured grid Finite Volume Coastal Ocean Model (FVCOM) framework and the Integrated Compartment Model (CE QUAL-ICM) water quality kinetics. Results based on 2006 data show that phytoplankton growth and die-off, succession between two species of algae, nutrient dynamics, and dissolved oxygen in Puget Sound are strongly tied to seasonal variation of temperature, solar radiation, and the annual exchange and flushing induced by upwelled Pacific Ocean waters. Concentrations in the mixed outflow surface layer occupying approximately 5?20 m of the upper water column show strong effects of eutrophication from natural and anthropogenic sources, spring and summer algae blooms, accompanied by depleted nutrients but high dissolved oxygen levels. The bottom layer reflects dissolved oxygen and nutrient concentrations of upwelled Pacific Ocean water modulated by mixing with biologically active surface outflow in the Strait of Juan De Fuca prior to entering Puget Sound over the Admiralty Inlet. The effect of reflux mixing at the Admiralty Inlet sill resulting in lower nutrient and higher dissolved oxygen levels in bottom waters of Puget Sound than the incoming upwelled Pacific Ocean water is reproduced. By late winter, with the reduction in algal activity, water column constituents of interest, were renewed and the system appeared to reset with cooler temperature, higher nutrient, and higher dissolved oxygen waters from the Pacific Ocean.

  11. A Model for Evaluation of Life-Cycle Energy Savings of Occupancy Sensors for Control of Lighting and Ventilation in Office Buildings 

    E-Print Network [OSTI]

    Degelman, L. O.

    2000-01-01

    and life-cycle costs of the building. When comparing to actual use patterns, the Monte Carlo process was shown to represent an adequate way to represent the on-off patterns. Computer simulations further demonstrate the potential life cycle cost savings from...

  12. UNITED STATES DEPARTMENT OF COMMERCE

    E-Print Network [OSTI]

    Tolkova, Elena

    UNITED STATES DEPARTMENT OF COMMERCE Carlos M. Gutierrez Secretary NATIONAL OCEANIC AND ATMOSPHERIC in a modeled tsunami caused by each of 804 unit earthquakes (tsunami sources) in the Pacific and 194

  13. Are solar cycles predictable?

    E-Print Network [OSTI]

    Manfred Schuessler

    2007-12-12

    Various methods (or recipes) have been proposed to predict future solar activity levels - with mixed success. Among these, some precursor methods based upon quantities determined around or a few years before solar minimum have provided rather high correlations with the strength of the following cycles. Recently, data assimilation with an advection-dominated (flux-transport) dynamo model has been proposed as a predictive tool, yielding remarkably high correlation coefficients. After discussing the potential implications of these results and the criticism that has been raised, we study the possible physical origin(s) of the predictive skill provided by precursor and other methods. It is found that the combination of the overlap of solar cycles and their amplitude-dependent rise time (Waldmeier's rule) introduces correlations in the sunspot number (or area) record, which account for the predictive skill of many precursor methods. This explanation requires no direct physical relation between the precursor quantity and the dynamo mechanism (in the sense of the Babcock-Leighton scheme or otherwise).

  14. CyclePad Help System CyclePad License

    E-Print Network [OSTI]

    Forbus, Kenneth D.

    of Library Examples of Cycles Simple Steam Rankine Cycle Simple Refrigerator Cycle Basic Gas Turbine Cycle Steam Cycle with Reheat Combined Gas Turbine & Rankine Cycle Basic Engineering Thermodynamics Tables Turbine Compressor Pump Heater Cooler Heat Exchanger Throttle #12;CyclePad Help System 4 Splitter

  15. A quantative evaluation of the reformulated 1996 path-goal theory of work unit leadership via structural equation modelling 

    E-Print Network [OSTI]

    Howieson, William B

    2008-01-01

    In 1996, Professor Robert J House published a reformulated Path-Goal Theory of Work Unit Leadership, based on his earlier 1971 and 1974 theories. Path-goal leadership attempts to explain the impact that leader behaviour ...

  16. Photovoltaics Life Cycle Analysis

    E-Print Network [OSTI]

    1 Photovoltaics Life Cycle Analysis Vasilis Fthenakis Center of Life Cycle Analysis Earth & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters

  17. Predictive usage mining for life cycle assessment Jungmok Ma a

    E-Print Network [OSTI]

    Kim, Harrison

    Predictive usage mining for life cycle assessment Jungmok Ma a , Harrison M. Kim b, a Department e i n f o Article history: Keywords: Life cycle assessment Usage modeling Time series segmentation Time series analysis a b s t r a c t The usage modeling in life cycle assessment (LCA) is rarely

  18. Nonlinearity of Carbon Cycle Feedbacks KIRSTEN ZICKFELD

    E-Print Network [OSTI]

    Schmittner, Andreas

    properties and anthropogenic CO2. These findings suggest that metrics of carbon cycle feedback that pos, human activities have emitted large amounts of carbon dioxide (CO2) into the atmosphere (490 PgC fromNonlinearity of Carbon Cycle Feedbacks KIRSTEN ZICKFELD Canadian Centre for Climate Modelling

  19. mathematics single cycle

    E-Print Network [OSTI]

    ?umer, Slobodan

    47 mathematics education single cycle master's study programme #12;48 single cycle master's study program in Mathematics Education #12;49 single cycle master's study program in Mathematics Education MATHEMATICS EDUCATION The program is in tune with the principles of the Bologna Declaration. · Academic title

  20. Algebraic cycle complexes Marc Levine

    E-Print Network [OSTI]

    Levine, Marc

    Algebraic cycle complexes Marc Levine June 2, 2008 Marc Levine Cycle complexes #12;Outline's cycle complexes Marc Levine Cycle complexes #12;Algebraic cycles and algebraic K-theory Marc Levine on X. zq(X) := the group of dimenison q algebraic cycles on X. Marc Levine Cycle complexes #12

  1. Intrinsic chirp of single-cycle pulses

    SciTech Connect (OSTI)

    Lin Qiang; Zheng Jian [Institute of Optics, Department of Physics, Zhejiang University, Hangzhou 310027 (China); Dai Jianming; Ho, I-Chen; Zhang, X.-C. [Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2010-04-15

    The Fourier transform-limited electromagnetic pulse has been regarded to be free of chirps for a long time. This is no longer true if the pulse duration goes down to or less than one optical cycle. We report the experimental observation of intrinsic chirps in such pulses with the sub-single-cycle terahertz (THz) waveforms obtained with a standard THz time-domain spectroscopy system. The results confirm the break down of the carrier-envelope (CE) expression for single-cycle optical pulses, and may influence the experimental measurements and theoretical modeling with single-cycle pulses.

  2. Organic Rankine Cycle for Light Duty Passenger Vehicles

    Broader source: Energy.gov [DOE]

    Dynamic model of organic Rankine cycle with R245fa working fluid and conservative component efficiencies predict power generation in excess of electrical accessory load demand under highway drive cycle

  3. Truck Duty Cycle and Performance Data Collection and Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. vss002knee2010o.pdf More Documents & Publications Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion Truck Duty Cycle and Performance Data...

  4. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...

    Broader source: Energy.gov (indexed) [DOE]

    Cell Comparison of Distributed Power Generation Technologies Fuel-Cycle Energy and Emissions Analysis with the GREET Model Full Fuel-Cycle Comparison of Forklift Propulsion Systems...

  5. OSPREY Model

    SciTech Connect (OSTI)

    Veronica J. Rutledge

    2013-01-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of off-gas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data is obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data and parameters were input into the adsorption model to develop models specific for krypton adsorption. The same can be done for iodine, xenon, and tritium. The model will be validated with experimental breakthrough curves. Customers will be given access to OSPREY to used and evaluate the model.

  6. Pipeline bottoming cycle study. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle working fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.

  7. An Indigenous Application for Estimating Carbon footprint of academia library systems based on life cycle assessment

    E-Print Network [OSTI]

    Garg, Saurabh; David Dornfeld

    2008-01-01

    Input-Output Life Cycle Assessment (EIO-LCA) model”, http://SYSTEMS BASED ON LIFE CYCLE ASSESSMENT Garg S. , Dornfeld D.based on a thorough Life Cycle Assessment (LCA) of all the

  8. An Indigenous Application for Estimating Carbon footprint of academia library systems based on life cycle assessment

    E-Print Network [OSTI]

    Garg, Saurabh; David Dornfeld

    2008-01-01

    Cycle Assessment (EIO-LCA) model”, http://www.eiolca.net/,Life Cycle Assessment (LCA) of all the components of aLife Cycle Assessment (LCA), Carbon Footprint, Embodied

  9. Adaptation of the Generalized Carnot Cycle to Describe Thermodynamics of Cerebral Cortex

    E-Print Network [OSTI]

    Freeman, Walter J.

    Adaptation of the Generalized Carnot Cycle to Describe Thermodynamics of Cerebral Cortex Freeman WJ, Kozma R, Vitiello G (2012) Adaptation of the generalized Carnot cycle theory. Our new result is modeling cortical macroscopic thermodynamics with the generalized Carnot cycle

  10. Adaptation of the Generalized Carnot Cycle to Describe Thermodynamics of Cerebral Cortex

    E-Print Network [OSTI]

    Freeman, Walter J.

    Adaptation of the Generalized Carnot Cycle to Describe Thermodynamics of Cerebral Cortex theory. Our new result is modeling cortical macroscopic thermodynamics with the generalized Carnot cycle comprises minimally three consecutive Carnot cycles required for basic perception, assimilation

  11. ThiireportwupreparedaianaccountofworksponsoredbyanagencyoftheUnitedStitet Government.NeithertheUnitedStatecGovernmentfloranyagencythereof,noranyoftheir

    E-Print Network [OSTI]

    Harilal, S. S.

    .0 m 5 2 Low-speed current drive for various Y^l ) 6 3 Schematic OH cycle 9 4 Schematic internal wa o oa #12;TABLE OF CONTENTS Page ABSTRACT , 1 1. INTRODUCTION , ,, 2 2. MODELS FOR BURN CYCLE ANALYSIS 3 2.1 Reference Reactor Systems 3 2.2 Reference Burn Cycle 7 2.3 Subsystem Models and Performance

  12. Investigation of the Summer Climate of the Contiguous United States and Mexico Using the Regional Atmospheric Modeling System (RAMS).

    E-Print Network [OSTI]

    Castro, Christopher L.

    to observations. The Great Plains low-level jet (LLJ) is also well represented in both RAMS and NARR, but the Baja Atmospheric Modeling System (RAMS). Part I: Model Climatology (1950­2002) CHRISTOPHER L. CASTRO* Department downscaled using the Regional Atmospheric Modeling System (RAMS) to generate a regional climate model (RCM

  13. Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    John McCord

    2006-05-01

    The Phase II Frenchman Flat groundwater flow model is a key element in the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) corrective action strategy for the Underground Test Area (UGTA) Frenchman Flat corrective action unit (CAU). The objective of this integrated process is to provide an estimate of the vertical and horizontal extent of contaminant migration for each CAU to predict contaminant boundaries. A contaminant boundary is the model-predicted perimeter that defines the extent of radionuclide-contaminated groundwater from underground testing above background conditions exceeding the ''Safe Drinking Water Act'' (SDWA) standards. The contaminant boundary will be composed of both a perimeter boundary and a lower hydrostratigraphic unit (HSU) boundary. The computer model will predict the location of this boundary within 1,000 years and must do so at a 95 percent level of confidence. Additional results showing contaminant concentrations and the location of the contaminant boundary at selected times will also be presented. These times may include the verification period, the end of the five-year proof-of-concept period, as well as other times that are of specific interest. This report documents the development and implementation of the groundwater flow model for the Frenchman Flat CAU. Specific objectives of the Phase II Frenchman Flat flow model are to: (1) Incorporate pertinent information and lessons learned from the Phase I Frenchman Flat CAU models. (2) Develop a three-dimensional (3-D), mathematical flow model that incorporates the important physical features of the flow system and honors CAU-specific data and information. (3) Simulate the steady-state groundwater flow system to determine the direction and magnitude of groundwater fluxes based on calibration to Frenchman Flat hydrogeologic data. (4) Quantify the uncertainty in the direction and magnitude of groundwater flow due to uncertainty in parameter values and alternative component conceptual models (e.g., geology, boundary flux, and recharge).

  14. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Jones, R.; Carter, J.

    2010-10-13

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  15. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Carter, J.

    2011-01-03

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  16. MODELING, IDENTIFICATION AND CONTROL, 2006, VOL. 00, NO. 0, 000000 Control Design for a Gas Turbine Cycle with CO2 Capture

    E-Print Network [OSTI]

    Foss, Bjarne A.

    capture The semi-closed oxy-fuel gas turbine cycle has been suggested in (Ulizar and Pilidis, 1997 in Section 2), is based on concept (c) above. The exhaust gas from a gas turbine with CO2 as working fluid is removed and the CO2 is recycled as working fluid in the gas turbine. The purpose of this paper

  17. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  18. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  19. Life-Cycle Civil Engineering Biondini & Frangopol (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-46857-2

    E-Print Network [OSTI]

    Lepech, Michael D.

    , ISBN 978-0-415-46857-2 An integrated life cycle assessment and life cycle analysis model for pavement cycle assessment and life cycle cost analysis model was developed to calculate the environmental impacts adopted as a framework for designing and constructing pave- ment systems. Life cycle assessment (LCA

  20. Comprehensive Energy Assessment: EE and RE Project Optimization Modeling for United States Pacific Command (USPACOM) American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance

    SciTech Connect (OSTI)

    Brigantic, Robert T.; Papatyi, Anthony F.; Perkins, Casey J.

    2010-09-30

    This report summarizes a study and corresponding model development conducted in support of the United States Pacific Command (USPACOM) as part of the Federal Energy Management Program (FEMP) American Reinvestment and Recovery Act (ARRA). This research was aimed at developing a mathematical programming framework and accompanying optimization methodology in order to simultaneously evaluate energy efficiency (EE) and renewable energy (RE) opportunities. Once developed, this research then demonstrated this methodology at a USPACOM installation - Camp H.M. Smith, Hawaii. We believe this is the first time such an integrated, joint EE and RE optimization methodology has been constructed and demonstrated.

  1. Assessment for advanced fuel cycle options in CANDU

    SciTech Connect (OSTI)

    Morreale, A.C.; Luxat, J.C. [McMaster University, 1280 Main St. W. Hamilton, Ontario, L8S 4L7 (Canada); Friedlander, Y. [AMEC-NSS Ltd., 700 University Ave. 4th Floor, Toronto, Ontario, M5G 1X6 (Canada)

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a driver fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.

  2. Localized customized mortality prediction modeling for patients with acute kidney injury admitted to the intensive care unit

    E-Print Network [OSTI]

    Celi, Leo Anthony G

    2009-01-01

    Introduction. Models for mortality prediction are traditionally developed from prospective multi-center observational studies involving a heterogeneous group of patients to optimize external validity. We hypothesize that ...

  3. Seasonal cycle of Precipitation over Major River Basins in South and Southeast Asia: A Review of the CMIP5 climate models data for present climate and future climate projections

    E-Print Network [OSTI]

    Hasson, Shabeh ul; Lucarini, Valerio; Böhner, Jürgen

    2015-01-01

    We review the skill of thirty coupled climate models participating in Coupled Model Intercomparison Project 5 in terms of reproducing properties of the seasonal cycle of precipitation over the major river basins of South and Southeast Asia (Indus, Ganges, Brahmaputra and Mekong) for historical period (1961-2000). We also present projected changes by these models by end of century (2061-2100) under extreme scenario RCP8.5. First, we assess their ability to reproduce observed timings of the monsoon onset and the rate of rapid fractional accumulation (RFA slope) - a measure of seasonality within active monsoon period. Secondly, we apply a threshold-independent seasonality index (SI) - a multiplicative measure of precipitation and extent of its concentration relative to the uniform distribution (relative entropy - RE). We apply SI distinctly for monsoonal precipitation regime (MPR), westerly precipitation regime (WPR) and annual precipitation regime. For present climate, neither any single model nor the multi-mod...

  4. The Anderson Quin Cycle

    SciTech Connect (OSTI)

    Anderson, J.H.; Bilbow, W.M.

    1993-03-18

    The objective of this study was to make a more refined evaluation of the Anderson Quin Cycle based on most recent information on the performance of various elements that will be used in the Anderson Quin Cycle. My original estimate of the work plan for evaluating and optimizing the Anderson Quin Cycle called for 7000 man hours of work. Since this grant was limited to 2150 man hours, we could not expect to achieve all the objectives within the allotted period of work. However, the most relevant program objectives have been completed as reported here. The analysis generally confirms the results originally estimated in my paper on the subject. (Ref. 2) Further optimizations should show even higher efficiencies. The Anderson Quin Cycle (US Patent applied for) basically consists of 5 elements in the power cycle: A refrigeration system to cool and clean the inlet air before it enters the compressor that supplies air for the gas turbine; a gas turbine consisting of a compressor, combustor, and turbine; a steam boiler and steam turbine system using the heat from the exhaust gas out of the gas turbine; a vapor turbine cycle, which utilizes the condensed heat from the exhaust of the steam turbine and the exhaust gas heat leaving the steam boiler to operate a vapor turbine cycle which utilizes another fluid than water, in this case isobutane; and the fifth element consists of a gas cooler and heat pump system, which removes the heat from the exhaust gas to lower its temperature essentially to atmospheric temperature, and at the same time permits treatment of the exhaust gas to remove acid components such as sulfur dioxide and nitrogen oxides. Current industry accepted component characteristics were incorporated in the performance analysis of the overall cycle, ensuring accurate and meaningful operating predictions. The characteristics and performance of each of the elements are described. The thermal efficiency of the optimized calculated Anderson Quin Cycle is 62 percent.

  5. Overview of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Leuze, R.E.

    1981-01-01

    The use of nuclear reactors to provide electrical energy has shown considerable growth since the first nuclear plant started commercial operation in the mid 1950s. Although the main purpose of this paper is to review the fuel cycle capabilities in the United States, the introduction is a brief review of the types of nuclear reactors in use and the world-wide nuclear capacity.

  6. Quantification of Terrestrial Ecosystem Carbon Dynamics in the Conterminous United States Combining a Process-Based Biogeochemical Model and MODIS and AmeriFlux data

    SciTech Connect (OSTI)

    Chen, Min; Zhuang, Qianlai; Cook, David R.; Coulter, Richard L.; Pekour, Mikhail S.; Scott, Russell L.; Munger, J. W.; Bible, Ken

    2011-09-21

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial 24 ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical 25 models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate 26 quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution 27 Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index 28 (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary 29 production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the 30 changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and 31 verify the new version of TEM with eddy flux data. We then apply the model to the conterminous 32 United States over the period 2000-2005 at a 0.05o ×0.05o spatial resolution. We find that the new 33 version of TEM generally captured the expected temporal and spatial patterns of regional carbon 34 dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr-1 and net primary 35 production (NPP) ranges from 3.81 to 4.38 Pg C yr-1 and net ecosystem production (NEP) varies 36 within 0.08-0.73 Pg C yr-1 over the period 2000-2005 for the conterminous United States. The 37 uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr-1 for the regional estimates of GPP, 38 NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 39 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a 40 new independent and more adequate measure of carbon fluxes for the conterminous United States, 41 which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon 42 management and climate.

  7. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    SciTech Connect (OSTI)

    Chen, Min; Zhuang, Qianlai; Cook, D.; Coulter, Richard L.; Pekour, Mikhail S.; Scott, Russell L.; Munger, J. W.; Bible, Ken

    2011-08-31

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000-2005 at a 0.05-0.05 spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 PgC yr{sup -1} and net primary production (NPP) ranges from 3.81 to 4.38 Pg Cyr{sup -1} and net ecosystem production (NEP) varies within 0.08- 0.73 PgC yr{sup -1} over the period 2000-2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 PgC yr{sup -1} for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  8. Optimal Outside Air Control for Air Handling Units with Humidity Control 

    E-Print Network [OSTI]

    Wang, G.; Liu, M.

    2006-01-01

    Most air handling units (AHUs) in commercial buildings have the (air) economizer cycle to use outside air for free cooling under certain outside air conditions. Ideally the economizer cycle is enabled if outside air enthalpy is less than return air...

  9. A comparison of geospatially modeled fire behavior and fire management utility of three data sources in the southeastern United States.

    SciTech Connect (OSTI)

    Hollingsworth, LaWen T.; Kurth, Laurie,; Parresol, Bernard, R.; Ottmar, Roger, D.; Prichard, Susan J.

    2012-01-01

    Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation System. The fundamental fire intensity algorithms in these systems require surface fire behavior fuel models and canopy cover to model surface fire behavior. Canopy base height, stand height, and canopy bulk density are required in addition to surface fire behavior fuel models and canopy cover to model crown fire activity. Several surface fuel and canopy classification efforts have used various remote sensing and ecological relationships as core methods to develop the spatial layers. All of these methods depend upon consistent and temporally constant interpretations of crown attributes and their ecological conditions to estimate surface fuel conditions. This study evaluates modeled fire behavior for an 80,000 ha tract of land in the Atlantic Coastal Plain of the southeastern US using three different data sources. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the US using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern US using satellite imagery. Differences in modeled fire behavior, data development, and data utility are summarized to assist in determining which data source may be most applicable for various land management activities and required analyses. Characterizing fire behavior under different fuel relationships provides insights for natural ecological processes, management strategies for fire mitigation, and positive and negative features of different modeling systems. A comparison of flame length, rate of spread, crown fire activity, and burn probabilities modeled with FlamMap shows some similar patterns across the landscape from all three data sources, but there are potentially important differences. All data sources showed an expected range of fire behavior. Average flame lengths ranged between 1 and 1.4 m. Rate of spread varied the greatest with a range of 2.4-5.7 m min{sup -1}. Passive crown fire was predicted for 5% of the study area using FCCS and LANDFIRE while passive crown fire was not predicted using SWRA data. No active crown fire was predicted regardless of the data source. Burn probability patterns across the landscape were similar but probability was highest using SWRA and lowest using FCCS.

  10. An Analogue Approach to Identify Heavy Precipitation Events: Evaluation and Application to CMIP5 Climate Models in the United States

    E-Print Network [OSTI]

    Gao, Xiang

    An analogue method is presented to detect the occurrence of heavy precipitation events without relying on modeled precipitation. The approach is based on using composites to identify distinct large-scale atmospheric ...

  11. Renewable Energy Cost Modeling: A Toolkit for Establishing Cost-Based Incentives in the United States; March 2010 -- March 2011

    SciTech Connect (OSTI)

    Gifford, J. S.; Grace, R. C.; Rickerson, W. H.

    2011-05-01

    This report is intended to serve as a resource for policymakers who wish to learn more about establishing cost-based incentives. The report will identify key renewable energy cost modeling options, highlight the policy implications of choosing one approach over the other, and present recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, feed-in tariffs (FITs), or similar policies. These recommendations will be utilized in designing the Cost of Renewable Energy Spreadsheet Tool (CREST). Three CREST models will be publicly available and capable of analyzing the cost of energy associated with solar, wind, and geothermal electricity generators. The CREST models will be developed for use by state policymakers, regulators, utilities, developers, and other stakeholders to assist them in current and future rate-setting processes for both FIT and other renewable energy incentive payment structures and policy analyses.

  12. An Analogue Approach to Identify Extreme Precipitation Events: Evaluation and Application to CMIP5 Climate Models in the United States

    E-Print Network [OSTI]

    Gao, Xiang

    Global warming is expected to alter the frequency, intensity, and risk of extreme precipitation events. However, global climate models in general do not correctly reproduce the frequency and intensity distribution of ...

  13. A Classic Model in a Low Fertility Context: The Proximate Determinants of Fertility in South Korea and the United States 

    E-Print Network [OSTI]

    Guarneri, Christine E.

    2011-08-08

    the globe have raised questions regarding whether this model could be applied to exclusively below-replacement nations. This study follows Knodel, Chamratrithirong, and Debavalya's 1987 analysis of fertility decline in Thailand by conducting in-depth case...

  14. Cycle isolation monitoring

    SciTech Connect (OSTI)

    Svensen, L.M. III; Zeigler, J.R.; Todd, F.D.; Alder, G.C. [Santee Copper, Moncks Corner, SC (United States)

    2009-07-15

    There are many factors to monitor in power plants, but one that is frequently overlooked is cycle isolation. Often this is an area where plant personnel can find 'low hanging fruit' with great return on investment, especially high energy valve leakage. This type of leakage leads to increased heat rate, potential valve damage and lost generation. The fundamental question to ask is 'What is 100 Btu/kW-hr of heat rate worth to your plant? On a 600 MW coal-fired power plant, a 1% leakage can lead to an 81 Btu/kW-hr impact on the main steam cycle and a 64 Btu/kW-hr impact on the hot reheat cycle. The article gives advice on methods to assist in detecting leaking valves and to monitor cycle isolation. A software product, TP. Plus-CIM was designed to estimate flow rates of potentially leaking valves.

  15. The Energy Strategy Cycle 

    E-Print Network [OSTI]

    Korich, R. D.

    1983-01-01

    an interrelated 'cycle' that once started and controlled in the proper direction is almost self-building in improvement. Energy conservation is the driving force to create additive progress involving system flexibility, process integration, and less energy...

  16. IFR fuel cycle

    SciTech Connect (OSTI)

    Battles, J.E.; Miller, W.E. [Argonne National Lab., IL (United States); Lineberry, M.J.; Phipps, R.D. [Argonne National Lab., Idaho Falls, ID (United States)

    1992-04-01

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation.

  17. IFR fuel cycle

    SciTech Connect (OSTI)

    Battles, J.E.; Miller, W.E. (Argonne National Lab., IL (United States)); Lineberry, M.J.; Phipps, R.D. (Argonne National Lab., Idaho Falls, ID (United States))

    1992-01-01

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation.

  18. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States: Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, Laura J.; Bush, Brian W.; Peterson, Steven O.

    2015-09-03

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  19. The Life Cycle Analysis Toolbox

    SciTech Connect (OSTI)

    Bishop, L.; Tonn, B.E.; Williams, K.A.; Yerace, P.; Yuracko, K.L.

    1999-02-28

    The life cycle analysis toolbox is a valuable integration of decision-making tools and supporting materials developed by Oak Ridge National Laboratory (ORNL) to help Department of Energy managers improve environmental quality, reduce costs, and minimize risk. The toolbox provides decision-makers access to a wide variety of proven tools for pollution prevention (P2) and waste minimization (WMin), as well as ORNL expertise to select from this toolbox exactly the right tool to solve any given P2/WMin problem. The central element of the toolbox is a multiple criteria approach to life cycle analysis developed specifically to aid P2/WMin decision-making. ORNL has developed numerous tools that support this life cycle analysis approach. Tools are available to help model P2/WMin processes, estimate human health risks, estimate costs, and represent and manipulate uncertainties. Tools are available to help document P2/WMin decision-making and implement programs. Tools are also available to help track potential future environmental regulations that could impact P2/WMin programs and current regulations that must be followed. An Internet-site will provide broad access to the tools.

  20. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  1. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  2. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  3. Unit and student details Unit code Unit title

    E-Print Network [OSTI]

    Sekercioglu, Y. Ahmet

    Unit and student details Unit code Unit title If this is a group assignment, each student must submitted Has any part of this assessment been previously submitted as part of another unit/course? Yes not be copied. No part of this assignment has been previously submitted as part of another unit/course. I

  4. Development and application of performance and cost models for the externally-fired combined cycle. Task 1, Volume 2. Topical report, June 1995

    SciTech Connect (OSTI)

    Agarwal, P.; Frey, H. [North Carolina State Univ., Raleigh, NC (United States); Rubin, E.S. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-07-01

    Increasing restrictions on emission of pollutants from conventional pulverized coal fired steam (PCFS) plant generating electrical power is raising capital and operating cost of these plants and at the same time lowering plant efficiency. This is creating a need for alternative technologies which result in lower emissions of regulated pollutants and which are thermally more efficient. Natural gas-fired combined cycle power generation systems have lower capital cost and higher efficiencies than conventional coal fired steam plants, and at this time they are the leading contender for new power plant construction in the U.S. But the intermediate and long term cost of these fuels is high and there is uncertainty regarding their long-term price and availability. Coal is a relatively low cost fuel which will be abundantly available in the long term. This has motivated the development of advanced technologies for power production from coal which will have advantages of other fuels. The Externally Fired Combined Cycle (EFCC) is one such technology. Air pollution control/hot gas cleanup issues associated with this technology are described.

  5. Water Resources Development, Vol. 14, No. 3, 315 325, 1998 Hydrologic Modelling of the United States with the

    E-Print Network [OSTI]

    , water demands, point- sources of pollution, and land management affecting non-point pollution planning related to water and land management issues. Models are often required to assess the impacts and risks of management alternatives on the availability and quality of water in large and complex river

  6. Model Evaluation Report for Corrective Action Unit 98: Frenchman Flat, Nevada National Security Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Ruskauff, Greg; Marutzky, Sam

    2014-09-01

    Model evaluation focused solely on the PIN STRIPE and MILK SHAKE underground nuclear tests’ contaminant boundaries (CBs) because they had the largest extent, uncertainty, and potential consequences. The CAMBRIC radionuclide migration experiment also had a relatively large CB, but because it was constrained by transport data (notably Well UE-5n), there was little uncertainty, and radioactive decay reduced concentrations before much migration could occur. Each evaluation target and the associated data-collection activity were assessed in turn to determine whether the new data support, or demonstrate conservatism of, the CB forecasts. The modeling team—in this case, the same team that developed the Frenchman Flat geologic, source term, and groundwater flow and transport models—analyzed the new data and presented the results to a PER committee. Existing site understanding and its representation in numerical groundwater flow and transport models was evaluated in light of the new data and the ability to proceed to the CR stage of long-term monitoring and institutional control.

  7. Comparison of Software Models for Energy Savings from Cool Roofs Joshua New, Oak Ridge National Laboratory (United States)

    E-Print Network [OSTI]

    Tennessee, University of

    , multiple substrate types, and insulation levels. A base case and energy-efficient alternative canComparison of Software Models for Energy Savings from Cool Roofs Joshua New, Oak Ridge National Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors

  8. Fluid transport properties by equilibrium molecular dynamics. III. Evaluation of united atom interaction potential models for pure alkanes

    E-Print Network [OSTI]

    Dysthe, Dag Kristian

    Received 2 August 1999; accepted 9 February 2000 Results of new simulations for n-butane, n-decane, n and density of transport property studies by MD of n-butane, n-decane, and n-hexadecane using flexible, mul- tisite molecular models. In the case of n-butane there have been performed at least 14 transport

  9. Sandia Energy - Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Fuel Cycle Options Catalog Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops Nuclear Fuel Cycle Options Catalog Nuclear Fuel Cycle Options CatalogAshley...

  10. Sandia Energy - Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cycle Options Catalog Home Stationary Power Nuclear Fuel Cycle Advanced Nuclear Energy Nuclear Fuel Cycle Options Catalog Nuclear Fuel Cycle Options CatalogAshley...

  11. Quantum Thermodynamic Cycles and Quantum Heat Engines (II)

    E-Print Network [OSTI]

    H. T. Quan

    2009-03-09

    We study the quantum mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric process, such as quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in 1D box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum mechanical) foundation for Szilard-Zurek single molecule engine.

  12. Exogenous Versus Endogenous for Chaotic Business Cycles

    E-Print Network [OSTI]

    Marat Akhmet; Zhanar Akhmetova; Mehmet Onur Fen

    2015-09-03

    We propose a novel approach to generate chaotic business cycles in a deterministic setting. Rather than producing chaos endogenously, we consider aggregate economic models with limit cycles and equilibriums, subject them to chaotic exogenous shocks and obtain chaotic cyclical motions. Thus, we emphasize that chaotic cycles, which are inevitable in economics, are not only interior properties of economic models, but also can be considered as a result of interaction of several economical systems. This provides a comprehension of chaos (unpredictability, lack of forecasting) and control of chaos as a global economic phenomenon from the deterministic point of view. We suppose that the results of our paper are contribution to the mixed exogenous-endogenous theories of business cycles in classification by P.A. Samuelson [76]. Moreover, they demonstrate that the irregularity of the extended chaos can be structured, and this distinguishes them from the generalized synchronization. The advantage of the knowledge of the structure is that by applying instruments, which already have been developed for deterministic chaos one can control the chaos, emphasizing a parameter or a type of motion. For the globalization of cyclic chaos phenomenon we utilize new mechanisms such that entrainment by chaos, attraction of chaotic cycles by equilibriums and bifurcation of chaotic cycles developed in our earlier papers.

  13. Unit Unit Desc Unit Unit Desc Program Program Desc OLD ACCOUNT FORMAT NEW ACCOUNT FORMAT

    E-Print Network [OSTI]

    Unit Unit Desc Unit Unit Desc Program Program Desc OLD ACCOUNT FORMAT NEW ACCOUNT FORMAT 001113 AP Old O/S A/P NonResCk 0000 General 000000 General #12;Unit Unit Desc Unit Unit Desc Program Program

  14. Study of Possible Applications of Currently Available Building Information Modeling Tools for the Analysis of Initial Costs and Energy Costs for Performing Life Cycle Cost Analysis 

    E-Print Network [OSTI]

    Mukherji, Payal Tapandev

    2011-02-22

    forms the core, it has become necessary to use computer building models for examining these changes. The building modeling softwares are enumerated. The case studies have highlighted that the evaluation of the alternatives are primarily to achieve energy...

  15. Helium process cycle

    DOE Patents [OSTI]

    Ganni, Venkatarao (Yorktown, VA)

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  16. Helium process cycle

    DOE Patents [OSTI]

    Ganni, Venkatarao (Yorktown, VA)

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  17. Life-Cycle Assessment of Pyrolysis Bio-Oil Production

    SciTech Connect (OSTI)

    Steele, Philp; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-02-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  18. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  19. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, Gregory W. (Santa Fe, NM); Kotsubo, Vincent Y. (La Canada, CA)

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  20. Modeling analyses of the effects of changes in nitrogen oxides emissions from the electric power sector on ozone levels in the eastern United States

    SciTech Connect (OSTI)

    Edith Gego; Alice Gilliland; James Godowitch

    2008-04-15

    In this paper, we examine the changes in ambient ozone concentrations simulated by the Community Multiscale Air Quality (CMAQ) model for summer 2002 under three different nitrogen oxides (NOx) emission scenarios. Two emission scenarios represent best estimates of 2002 and 2004 emissions; they allow assessment of the impact of the NOx emissions reductions imposed on the utility sector by the NOx State Implementation Plan (SIP) Call. The third scenario represents a hypothetical rendering of what NOx emissions would have been in 2002 if no emission controls had been imposed on the utility sector. Examination of the modeled median and 95th percentile daily maximum 8-hr average ozone concentrations reveals that median ozone levels estimated for the 2004 emission scenario were less than those modeled for 2002 in the region most affected by the NOx SIP Call. Comparison of the 'no-control' with the '2002' scenario revealed that ozone concentrations would have been much higher in much of the eastern United States if the utility sector had not implemented NOx emission controls; exceptions occurred in the immediate vicinity of major point sources where increased NO titration tends to lower ozone levels. 13 refs., 8 figs., 2 tabs.

  1. UNITED STEELWORKERS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPP UPDATE:Administrationfollowing tableUNITED FERC

  2. United States

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedof EnergyMeeting - MarchUSPS:1 United States

  3. United States

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedof EnergyMeeting - MarchUSPS:1 United States7

  4. United States

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedof EnergyMeeting - MarchUSPS:1 United States78

  5. United States

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedof EnergyMeeting - MarchUSPS:1 United

  6. United States

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedof EnergyMeeting - MarchUSPS:1 UnitedDuke-4-E

  7. A Hydrostratigraphic Framework Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Clark, Lincoln and Nye Counties, Nevada

    SciTech Connect (OSTI)

    Bechtel Nevada

    2005-09-01

    A new, revised three-dimensional (3-D) hydrostratigraphic framework model for Frenchman Flat was completed in 2004. The area of interest includes Frenchman Flat, a former nuclear testing area at the Nevada Test Site, and proximal areas. Internal and external reviews of an earlier (Phase I) Frenchman Flat model recommended additional data collection to address uncertainties. Subsequently, additional data were collected for this Phase II initiative, including five new drill holes and a 3-D seismic survey.

  8. The Air or Brayton Cycle Solvent Recovery System 

    E-Print Network [OSTI]

    Fox, B. J.

    1986-01-01

    it suitable for solvent recovery. Thi s unit util i zes ai r foil beari ngs. to recover the heat for useful purposes. It is easy Over the past several years they have sold. these for the air cycle system to return the solvent lean uni ts to condense... CYCLE SOLVENT RECOVERY SYSTEM Bryce J. Fox 3M Company St. Paul, ABSTRACT The required temperature and technique for condensing common industrial solvents from the exhaust air of drying ovens is explained. ?:The benefits of the Air Cycle...

  9. The Comparative Effects of a Computer-Based Interactive Simulation during Structured, Guided, and Student-Directed Inquiry on Students' Mental Models of the Day/Night Cycle 

    E-Print Network [OSTI]

    Baldwin, Moira Jenkins

    2012-11-09

    ? conceptual understandings, few studies have studied changing students? initial and synthetic mental models into scientific ones (Diakidoy & Kendeou, 2001; Hayes, Goodhew, Heit, & Gillan, 2003; Sharp & Kuerbis, 2006). 3 Since inquiry-based learning... Mental Models Several researchers have studied how classroom instruction changes students? mental models (Diakidoy & Kendeou, 2001; Hayes, Goodhew, Heit, & Gillan, 2003; Kangassalo, 1993, 1994, 1997, 1999; Taylor, Barker, and Jones, 2003). Diakidoy...

  10. USEtox - The UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in Life Cycle Impact Assessment

    E-Print Network [OSTI]

    Rosenbaum, Ralph K.

    2010-01-01

    characterisation factors (CFs) is within a factor of 100-variation between the CFs of each model respectively. Thebeen used to calculate CFs for several thousand substances

  11. Analysis of Cycling Costs in Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Jordan, G.; Venkataraman, S.

    2012-06-01

    The Western Wind and Solar Integration Study (WWSIS) examined the impact of up to 30% penetration of variable renewable generation on the Western Electricity Coordinating Council system. Although start-up costs and higher operating costs because of part-load operation of thermal generators were included in the analysis, further investigation of additional costs associated with thermal unit cycling was deemed worthwhile. These additional cycling costs can be attributed to increases in capital as well as operations and maintenance costs because of wear and tear associated with increased unit cycling. This analysis examines the additional cycling costs of the thermal fleet by leveraging the results of WWSIS Phase 1 study.

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    " 1Total U.S. includes all primary occupied housing units in the 50 States and the District of Columbia. Vacant housing units, seasonal units, second homes, military...

  13. United States Environmental

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    Protect Your Family From Lead in Your Home United States Environmental Protection Agency United States Consumer Product Safety Commission United States Department of Housing and Urban Development

  14. World nuclear fuel cycle requirements 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-26

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management.

  15. Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

  16. The signature of ozone depletion on tropical temperature trends, as revealed by their seasonal cycle in model integrations with single forcings

    E-Print Network [OSTI]

    Polvani, Lorenzo M.

    [1] The effect of ozone depletion on temperature trends in the tropical lower stratosphere is explored with an atmospheric general circulation model, and directly contrasted to the effect of increased greenhouse gases and ...

  17. (12) United States Patent Baker et al.

    E-Print Network [OSTI]

    Baker, R. Jacob

    (12) United States Patent Baker et al. US007271635B2 US 7,271,635 B2 Sep. 18,2007 (10) Patent N0.: (45) Date of Patent: (54) METHOD AND APPARATUS FOR REDUCING DUTY CYCLE DISTORTION OF AN OUTPUT SIGNAL: Micron Technology, Boise, ID (US) ( * ) Notice: Subject to any disclaimer, the term of this patent

  18. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect (OSTI)

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  19. Economic Life Cycle Assessment as element of sustainability certification – a key success factor moving beyond Life Cycle Costing 

    E-Print Network [OSTI]

    Trinius, W.; Hirsch, H.

    2009-01-01

    Lakenbrink, DU Diederichs Project Management, Munich, Germany Title Economic Life Cycle Assessment as element of sustainability certification ? a key success factor moving beyond Life Cycle Costing The move from considering environmental impacts... on sustainability of construction works, and relating to the emerging European standards in this field, the recently established German Sustainable Building Council (GeSBC / DGNB) presented a certification scheme applying a holistic life cycle model. While...

  20. Entanglement Storage Units

    E-Print Network [OSTI]

    T. Caneva; T. Calarco; S. Montangero

    2012-09-27

    We introduce a protocol based on optimal control to drive many body quantum systems into long-lived entangled states, protected from decoherence by big energy gaps, without requiring any apriori knowledge of the system. With this approach it is possible to implement scalable entanglement-storage units. We test the protocol in the Lipkin-Meshkov-Glick model, a prototype many-body quantum system that describes different experimental setups, and in the ordered Ising chain, a model representing a possible implementation of a quantum bus.

  1. Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Dale, Deborah J.

    2014-10-28

    These slides will be presented at the training course “International Training Course on Implementing State Systems of Accounting for and Control (SSAC) of Nuclear Material for States with Small Quantity Protocols (SQP),” on November 3-7, 2014 in Santa Fe, New Mexico. The slides provide a basic overview of the Nuclear Fuel Cycle. This is a joint training course provided by NNSA and IAEA.

  2. Stirling cycle engine

    SciTech Connect (OSTI)

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  3. Technology development life cycle processes.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  4. Closed Brayton cycle power conversion systems for nuclear reactors :

    SciTech Connect (OSTI)

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.

  5. Investigations of supercritical CO2 Rankine cycles for geothermal power plants

    SciTech Connect (OSTI)

    Sabau, Adrian S [ORNL; Yin, Hebi [ORNL; Qualls, A L [ORNL; McFarlane, Joanna [ORNL

    2011-01-01

    Supercritical CO2 Rankine cycles are investigated for geothermal power plants. The system of equations that describe the thermodynamic cycle is solved using a Newton-Rhapson method. This approach allows a high computational efficiency of the model when thermophysical properties of the working fluid depend strongly on the temperature and pressure. Numerical simulation results are presented for different cycle configurations in order to assess the influences of heat source temperature, waste heat rejection temperatures and internal heat exchanger design on cycle efficiency. The results show that thermodynamic cycle efficiencies above 10% can be attained with the supercritical brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle.

  6. Termination unit

    DOE Patents [OSTI]

    Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

    2014-01-07

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  7. Green Building- Efficient Life Cycle 

    E-Print Network [OSTI]

    Kohns, R.

    2008-01-01

    the components “Sustainable Building Design”, “Life Cycle Cost Analysis”, “Green Building Certification” and “Natural Resources Management”. These components are deliberately arranged around the life cycle of the real estate concerned. This allows a different...

  8. Origin and diversification of a metabolic cycle in oligomer world

    E-Print Network [OSTI]

    Tomoaki Nishio; Osamu Narikiyo

    2012-09-20

    Based on the oligomer-world hypothesis we propose an abstract model where the molecular recognition among oligomers is described in the shape space. The origin of life in the oligomer world is regarded as the establishment of a metabolic cycle in a primitive cell. The cycle is sustained by the molecular recognition. If an original cell acquires the ability of the replication of oligomers, the relationship among oligomers changes due to the poor fidelity of the replication. This change leads to the diversification of metabolic cycles. The selection among diverse cycles is the basis of the evolution. The evolvability is one of the essential characters of life. We demonstrate the origin and diversification of the metabolic cycle by the computer simulation of our model. Such a simulation is expected to be the simplified demonstration of what actually occurred in the primordial soup. Our model describes an analog era preceding the digital era based on the genetic code.

  9. New Regenerative Cycle for Vapor Compression Refrigeration

    SciTech Connect (OSTI)

    Bergander, Mark J [Magnetic Development, Inc.; Butrymowicz, Dariusz [Polish Academy of Scinces

    2010-01-26

    This project was a continuation of Category 1 project, completed in August 2005. Following the successful bench model demonstration of the technical feasibility and economic viability, the main objective in this stage was to fabricate the prototype of the heat pump, working on the new thermodynamic cycle. This required further research to increase the system efficiency to the level consistent with theoretical analysis of the cycle. Another group of objectives was to provide the foundation for commercialization and included documentation of the manufacturing process, preparing the business plan, organizing sales network and raising the private capital necessary to acquire production facilities.

  10. Small Units inside Large Units 8.1 Experimental units bigger than observational units

    E-Print Network [OSTI]

    Bailey, R. A.

    Chapter 8 Small Units inside Large Units 8.1 Experimental units bigger than observational units 8, but it is individual people that are measured. In general, suppose that there are m experimental units, each of which consists of k observational units, and that there are t treatments, each of which is applied

  11. THE MEAN ANNUAL CYCLE OF COASTAL UPWELLING OFF WESTERN

    E-Print Network [OSTI]

    and northern Mexico. This paper summarizes marine surface observations to describe the normal yearly cycle to the stress of the wind on the sea surface and is replaced by water upwelled from depth. Wooster and Reid the west coast of the United States and the immediately adjacent regions of Canada and Mexico

  12. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01

    Williams, E. Life Cycle Water Use of Low-Carbon TransportSuh, S. ; Hellweg, S. In Water Use Impacts from Corn- BasedMaupin, M. A. Estimated Use of Water in the United States in

  13. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    SciTech Connect (OSTI)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  14. Business cycles in oil economies

    SciTech Connect (OSTI)

    Al-Mutairi, N.H.

    1991-01-01

    This study examines the impact of oil price shocks on output fluctuations of several oil-exporting economies. In most studies of business cycles, the role of oil price is ignored; the few studies that use oil price as one of the variables in the system focus on modeling oil-importing economies. The vector autoregression (VAR) technique is used to consider the cases of Norway, Nigeria, and Mexico. Both atheoretical and structural' VARs are estimated to determine the importance of oil price impulses on output variations. The study reports two types of results: variance decomposition and impulse response functions, with particular emphasis on the issues of stationarity and co-integration among the series. The empirical results suggest that shocks to oil price are important in explaining output variations. In most cases, shocks to oil price are shown to explain more than 20% of the forecast variance of output over a 40-quarter horizon.

  15. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  16. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  17. Life-Cycle Impacts From Novel Thorium–Uranium-Fuelled Nuclear Energy Systems

    E-Print Network [OSTI]

    Ashley, S. F.; Fenner, R. A.; Nuttall, W. J.; Parks, Geoffrey T.

    2015-06-02

    is performed that considers the con- struction, operation, and decommissioning of each of the reactor technologies and all of the other associated facilities in the open nuclear fuel cycle. This includes the development of life-cycle analysis models...

  18. Budding yeast cell cycle analysis and morphological characterization by automated image analysis

    E-Print Network [OSTI]

    Perley, Elizabeth (Elizabeth Bacher)

    2011-01-01

    Budding yeast Saccharomyces cerevisiae is a standard model system for analyzing cellular response as it is related to the cell cycle. The analysis of yeast cell cycle is typically done visually or by using flow cytometry. ...

  19. Aspen Process Flowsheet Simulation Model of a Battelle Biomass-Based Gasification, Fischer-Tropsch Liquefaction and Combined-Cycle Power Plant

    SciTech Connect (OSTI)

    None

    1998-10-30

    This study was done to support the research and development program of the National Renewable Energy Laboratory (NREL) in the thermochemical conversion of biomass to liquid transportation fuels using current state-of-the-art technology. The Mitretek study investigated the use of two biomass gasifiers; the RENUGAS gasifier being developed by the Institute of Gas Technology, and the indirectly heated gasifier being developed by Battelle Columbus. The Battelle Memorial Institute of Columbus, Ohio indirectly heated biomass gasifier was selected for this model development because the syngas produced by it is better suited for Fischer-Tropsch synthesis with an iron-based catalyst for which a large amount of experimental data are available. Bechtel with Amoco as a subcontractor developed a conceptual baseline design and several alternative designs for indirect coal liquefaction facilities. In addition, ASPEN Plus process flowsheet simulation models were developed for each of designs. These models were used to perform several parametric studies to investigate various alternatives for improving the economics of indirect coal liquefaction.

  20. Addendum for the Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, NevadaTest Site, Nye County, Nevada, Revision 0 (page changes)

    SciTech Connect (OSTI)

    John McCord

    2007-05-01

    This document, which makes changes to Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, S-N/99205--074, Revision 0 (May 2006) was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated June 20, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made: • Section 6.0 Conceptual Model Uncertainty Analyses. Please note that in this section figures showing the observed versus simulated well head (Figures 6-1, 6-5, 6-7, 6-16, 6-28, 6-30, 6-32, 6-34, 6-37, 6-42, 6-47, 6-52, 6-57, 6-62, 6-71, and 6-86) have a vertical break in scale on the y axis. • Section 7.0 Parameter Sensitivity Analysis. In Section 7.2, the parameter perturbation analysis defines two components of the objective function PHI. These two components include the WELL component that represents the head portion of the objective function as measured in wells and the FLUX component that represents the lateral boundary flux portion of the objective function. In the text and figures in Section 7.2, the phrases “well portion of the objective function” and “head portion of the objective function” are used interchangeably in discussions of the WELL component of the objective function.

  1. Cromer Cycle Air Conditioner: A Unique Air-Conditioner Desiccant Cycle to Enhance Dehumidification and Save Energy 

    E-Print Network [OSTI]

    Cromer, C. J.

    2000-01-01

    The Cromer cycle uses a desiccant to move moisture from the saturated air leaving an air conditioning (AC) cooling coil to the air returning to the AC unit from the conditioned space. This has the thermodynamic effect of reducing the overall energy...

  2. THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE

    E-Print Network [OSTI]

    Pope, William L.

    2012-01-01

    and Optimize Geothermal Power Cycles," presented at the 1lthbinary) Rankine power cycle based on our observations on ageothermal binary Rankine power cycles for the isobutane/

  3. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01

    4 Life-cycle Assessment of CMOS Logic5 Life-cycle Assessment of Flash Memory6 Life-cycle Assessment of Dynamic Random Access Memory

  4. Life Cycle Inventory of a CMOS Chip

    E-Print Network [OSTI]

    Boyd, Sarah; Dornfeld, David; Krishnan, Nikhil

    2006-01-01

    E. ; Zappa, S. ; “Life cycle assessment of an integratedare shown. Keywords- Life Cycle Assessment (LCA); Life Cycleindustry, and Life Cycle Assessment (LCA) is emerging as a

  5. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  6. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  7. Regression Model Predicting Appraised Unit Value of Land in San Francisco County from Number of and Distance to Public Transit Stops using GIS 

    E-Print Network [OSTI]

    Son, Kiyoung

    2012-07-16

    as the distance to LEED qualified bus stops light rail stops decreases. For residential zone, the appraised unit value increases as the number of LEED qualified bus and light rail stations increases. Furthermore, the appraised unit value increases as the distance...

  8. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    SciTech Connect (OSTI)

    Neises, T.; Turchi, C.

    2013-09-01

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

  9. Battery Wear from Disparate Duty-Cycles: Opportunities for Electric-Drive Vehicle Battery Health Management; Preprint

    SciTech Connect (OSTI)

    Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

    2012-10-01

    Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed.

  10. Life-cycle assessment of wastewater treatment plants

    E-Print Network [OSTI]

    Dong, Bo, M. Eng. Massachusetts Institute of Technology

    2012-01-01

    This thesis presents a general model for the carbon footprints analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous research, the issue of global warming is often related ...

  11. Predicting the life cycle of rice varieties in Texas 

    E-Print Network [OSTI]

    Gambrell, Stefphanie Michelle

    2006-04-12

    once it reaches the market. This study develops a regression model, which includes competition and the characteristics of a specific variety, to estimate the life cycle of new varieties and hybrids. In addition, simulation techniques are utilized...

  12. United Nations Programme on

    E-Print Network [OSTI]

    Schrijver, Karel

    United Nations Programme on Space Applications UNITED NATIONS UNITED NATIONS OFFICE FOR OUTER SPACE, Sputnik 1. Soon after that event, the Member States of the United Nations declared that space should and natural resources management. At the first United Nations Conference on the Exploration and Peaceful Uses

  13. Sandia Energy - Phenomenological Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phenomenological Modeling Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Phenomenological Modeling Phenomenological ModelingTara Camacho-Lopez2015-05-1...

  14. D-Cycle- 4-Differential-Stroke Cycle

    Broader source: Energy.gov [DOE]

    The D-Cycle offers the opportunity to use less fuel and gain more power while being able to be retrofit to an OEM and aftermarket engines

  15. Summary of the development of open-cycle gas turbine-steam cycles

    SciTech Connect (OSTI)

    Lackey, M.E.; Thompson, A.S.

    1980-09-01

    Combined-cycle plants employing gas turbine cycles superimposed on conventional steam plants are well developed. Nearly 200 units are operating in the US on clean fuels (natural gas or distillate fuel oils) and giving overall thermal efficiencies as high as 42%. Future plants will have to use coal or coal-derived fuels, and this presents problems because gas turbines are very sensitive to particulates and contaminants in the fuel such as sulfur, potassium, lead, etc. If clean liquid or high-Btu gaseous fuels are made from coal, it appears that the conversion efficiency will be no more than 67%. Thus, the overall efficiency of utilization of coal would be less than if it were burned in a conventional steam plant unless the permissible gas turbine inlet temperature can be increased to approx. 1500/sup 0/C (2732/sup 0/F). Coupling a combined-cycle power plant directly to a low-Btu coal gasifier increases the fuel conversion efficiency and permits salvaging waste heat from the gasifier for feedwater heating in the steam cycle. By using a gas turbine inlet temperature of 1315/sup 0/C (2400/sup 0/F), well above the current maximum of approx. 1040/sup 0/C (1904/sup 0/F), an overall efficiency of approx. 40% has been estimated for the integrated plant. However, as discussed in companion reports, it is doubtful that operation with gas turbine inlet temperatures above 1100/sup 0/C (2012/sup 0/F) will prove practicable in base-load plants.

  16. Open cycle thermoacoustics

    SciTech Connect (OSTI)

    Reid, Robert Stowers

    2000-01-01

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  17. Stirling cycle rotary engine

    SciTech Connect (OSTI)

    Chandler, J.A.

    1988-06-28

    A Stirling cycle rotary engine for producing mechanical energy from heat generated by a heat source external to the engine, the engine including: an engine housing having an interior toroidal cavity with a central housing axis for receiving a working gas, the engine housing further having a cool as inlet port, a compressed gas outlet port, a heated compressed gas inlet port, and a hot exhaust gas outlet port at least three rotors each fixedly mounted to a respective rotor shaft and independently rotatable within the toroidal cavity about the central axis; each of the rotors including a pair of rotor blocks spaced radially on diametrically opposing sides of the respective rotor shaft, each rotor block having a radially fixed curva-linear outer surface for sealed rotational engagement with the engine housing.

  18. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Water Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With"...

  19. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Forest and Range symposium dealing with this subject in the western United States, the papers presented address current ........................................................................................................................................ 1 Annosus Root Disease in Europe and the Southeastern United States: Occurrence, Research

  20. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Northeastern Forest Experiment Station research unit in New Hampshirein 1957, where he studied problemsof regenerationandthinning research unit at Warren, Pennsylvania, where he headed a program of research on problems related

  1. Unit 35 - Raster Storage

    E-Print Network [OSTI]

    Unit 35, CC in GIS; Peuquet, Donna

    1990-01-01

    in GIS - 1990 Page 8 Unit 35 - Raster Storage GIS to whichNCGIA Core Curriculum in GIS - 1990 Page 9 Unit 35 - RasterStorage UNIT 35 IMAGES NCGIA Core Curriculum in GIS - 1990

  2. Economics of Organic Rankine Cycle 

    E-Print Network [OSTI]

    O'Brien, W. J.

    1988-01-01

    RANKINE CYCLE WILLIAM J. O'BRIEN Energy Ccnsultant Encon Associates 231 Torrey Pines Drive Toms River, New Jersey ABSTRACT This report determines the conditions needed for an Organic Rankine Cycle to be economically attractive to recover heat... going to air fins or cooling water. It includes discussion of some installations, and the impact of pinch technology on the analysis of Rankine Cycle opportunities. Some graphs to assist in deciding whether a poten tial application is economic...

  3. Advanced regenerative absorption refrigeration cycles

    DOE Patents [OSTI]

    Dao, Kim (14 Nace Ave., Piedmont, CA 94611)

    1990-01-01

    Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

  4. M. Bahrami ENSC 461 (S 11) Vapor Power Cycles 1 Vapor Power Cycles

    E-Print Network [OSTI]

    Bahrami, Majid

    is not a suitable model for steam power cycle since: The turbine has to handle steam with low quality which will cause erosion and wear in turbine blades. It is impractical to design a compressor that handles two vapor expands isentropically in turbine and produces work. 4-1: Const P heat rejection High quality

  5. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    SciTech Connect (OSTI)

    Jain, Atul; Yang, Xiaojuan; Kheshgi, Haroon; Mcguire, David; Post, Wilfred M

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and sinks.

  6. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Research Station General assigned to the Station's research unit studying the regeneration of California forests

  7. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture MIX: A Computer Program to Evaluate Forest Service, a research entomologist, is in charge of the unit developing improved technology for integrated management

  8. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Research Station General Programs: A Review of Cognitive and Behavioral Studies Introduction Recent wildfires in the Western United

  9. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Forest and Range to the Chaparral Prescribed Fire Research Unit, headquartered at Riverside, California. Publisher: Pacific

  10. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Research Station General is a Research Ecologist at the Station's Timber Management/Wildlife Habitat Interactions Unit, Redwood Sciences

  11. United States of Agriculture

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Research Station General scientist with the Station's Wildland Recreation and Urban Cultures Research Unit, 4955 Canyon Crest Drive

  12. United States Department of

    E-Print Network [OSTI]

    Kurapov, Alexander

    A United States Department of Agriculture Forest Service Pacific Northwest Research Station General, land management, carbon sequestration, carbon markets, United States. #12;ii Executive Summary

  13. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Intermountain Research Station General acrossthe United States provide estimates of the amount of erosion reductionon forest roadsfrom

  14. United States Department of

    E-Print Network [OSTI]

    94701 United States Department of Agriculture Forest Service Pacific Southwest Forest and Range of California, Berkeley, and a cooperator with the Research Unit. #12;Acknowledgments We especially acknowledge

  15. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Forest and Range to the Station's chaparral and related ecosystems research unit, with headquarters at Riverside, California. He

  16. United States Department of

    E-Print Network [OSTI]

    United States Department of California Oaks: A Bibliography Agriculture Forest Service Pacific forester in the Station's Forest Regeneration Research Unit, at Redding, California. He holds bachelor

  17. United States Department of

    E-Print Network [OSTI]

    Wang, Changlu

    United States Department of Agriculture Rural Business- Cooperative Service Research Report 157, concentration, globalization, agency theory Cooperatives in a Changing Global Food System United States

  18. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Research Station General is a supervisory research entomologist in the Station's Regeneration Insect Research Unit in Berkeley. W. WAYNE

  19. Hazard/Risk Assessment MULTIPLE STRESSORS AND COMPLEX LIFE CYCLES: INSIGHTS FROM A

    E-Print Network [OSTI]

    Hopkins, William A.

    Hazard/Risk Assessment MULTIPLE STRESSORS AND COMPLEX LIFE CYCLES: INSIGHTS FROM A POPULATION with complex life cycles, population models may be useful in understanding impacts of stressors that are unique to the habitat type (aquatic, terrestrial) and that operate at different times in the life cycle. We investigated

  20. 1 Copyright 2003 by ASME IMPROVING LIFE CYCLE ASSESSMENT BY INCLUDING SPATIAL, DYNAMIC AND PLACE-

    E-Print Network [OSTI]

    1 Copyright © 2003 by ASME IMPROVING LIFE CYCLE ASSESSMENT BY INCLUDING SPATIAL, DYNAMIC AND PLACE Drawing from the substantial body of literature on life cycle assessment / analysis (LCA), the article models is suggested as a means of improving the impact assessment phase of LCA. Keywords: Life Cycle

  1. The dynamics of interfirm networks along the industry life cycle: The case of the global video

    E-Print Network [OSTI]

    Balland, Pierre-Alexandre

    firms along the life cycle of a creative industry. We focus on three mechanisms that drive networkThe dynamics of interfirm networks along the industry life cycle: The case of the global video game, industry life cycle, proximity, creative industry, video game industry, stochastic actor-oriented model JEL

  2. Performance Comparison of Hybrid Vehicle Energy Management Controllers on Real-World Drive Cycle Data

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Performance Comparison of Hybrid Vehicle Energy Management Controllers on Real-World Drive Cycle's highly accurate proprietary vehicle model over large numbers of real- world drive cycles, and compared of Michigan Transportation Research Institute (UMTRI) for providing drive cycle data. of this work focuses

  3. Systems Analyses of Advanced Brayton Cycles

    SciTech Connect (OSTI)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study how alternative process schemes and power cycles might be used and integrated to achieve higher systems efficiency. To achieve these design results, the total systems approach is taken requiring creative integration of the various process units within the plant. Advanced gas turbine based cycles for Integrated gasification Combined cycle (IGCC) applications are identified by a screening analysis and the more promising cycles recommended for detailed systems analysis. In the case of the IGFC task, the main objective is met by developing a steady-state simulation of the entire plant and then using dynamic simulations of the hybrid Solid Oxide Fuel Cell (SOFC)/Gas Turbine sub-system to investigate the turbo-machinery performance. From these investigations the desired performance characteristics and a basis for design of turbo-machinery for use in a fuel cell gas turbine power block is developed.

  4. Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856

    SciTech Connect (OSTI)

    McDonald, Dale Edward

    2013-02-12

    This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  5. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

  6. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-10-14

    (The following directives are deleted or consolidated into this Order and shall be phased out as noted in Paragraph 2: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B; DOE 4320.2A; DOE 4330.4B; DOE 4330.5; DOE 4540.1C; DOE 4700.1). This Order supersedes specific project management provisions within DOE O 430.1A, LIFE CYCLE ASSET MANAGEMENT. The specific paragraphs canceled by this Order are 6e(7); 7a(3); 7b(11) and (14); 7c(4),(6),(7),(11), and (16); 7d(4) and (8); 7e(3),(10), and (17); Attachment 1, Definitions (item 30 - Line Item Project, item 42 - Project, item 48 - Strategic System); and Attachment 2, Contractor Requirements Document (paragraph 1d regarding a project management system). The remainder of DOE O 430.1A remains in effect. Cancels DOE O 430.1. Canceled by DOE O 413.3.

  7. Organic rankine cycle fluid

    DOE Patents [OSTI]

    Brasz, Joost J.; Jonsson, Ulf J.

    2006-09-05

    A method of operating an organic rankine cycle system wherein a liquid refrigerant is circulated to an evaporator where heat is introduced to the refrigerant to convert it to vapor. The vapor is then passed through a turbine, with the resulting cooled vapor then passing through a condenser for condensing the vapor to a liquid. The refrigerant is one of CF.sub.3CF.sub.2C(O)CF(CF.sub.3).sub.2, (CF.sub.3).sub.2 CFC(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.2C(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.3C(O)CF(CG.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.5C(O)CF.sub.3, CF.sub.3CF.sub.2C(O)CF.sub.2CF.sub.2CF.sub.3, CF.sub.3C(O)CF(CF.sub.3).sub.2.

  8. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect (OSTI)

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  9. Phase I Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada Test Site, Nye County, Nevada with Errata Sheet 1, 2, 3, Revision 1

    SciTech Connect (OSTI)

    Greg Ruskauff

    2009-02-01

    As prescribed in the Pahute Mesa Corrective Action Investigation Plan (CAIP) (DOE/NV, 1999) and Appendix VI of the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008), the ultimate goal of transport analysis is to develop stochastic predictions of a contaminant boundary at a specified level of uncertainty. However, because of the significant uncertainty of the model results, the primary goal of this report was modified through mutual agreement between the DOE and the State of Nevada to assess the primary model components that contribute to this uncertainty and to postpone defining the contaminant boundary until additional model refinement is completed. Therefore, the role of this analysis has been to understand the behavior of radionuclide migration in the Pahute Mesa (PM) Corrective Action Unit (CAU) model and to define, both qualitatively and quantitatively, the sensitivity of such behavior to (flow) model conceptualization and (flow and transport) parameterization.

  10. Power Converters for Cycling Machines

    E-Print Network [OSTI]

    Bouteille, J F

    2015-01-01

    Cycling accelerators require power converters that are capable of storing the energy that oscillates between lattice magnets and the converter during the acceleration process. This paper presents the basic requirements for such systems and reviews the various electrical circuits that have been used for a variety of differing applications. The designs currently used for fast-, medium- and slow-cycling accelerators are presented.

  11. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01

    300 vehicles and three drive cycles. The model framework wasover a 1000 second drive cycle with two apparent drivingrepresenting individual drive cycles, characterized by their

  12. SWITCH Model Capability Overview Renewable and Appropriate Energy Laboratory http://rael.berkeley.edu/switch November 2012

    E-Print Network [OSTI]

    Kammen, Daniel M.

    to the electric power system of the entire continental United States and Canada Model 50 load areas or "zones market structures Maintain spinning and non-spinning reserves in each balancing area in each hour margin in each load area in each hour Operations Cycle baseload coal and biomass generation on a daily

  13. SWITCH Model Capability Overview Renewable and Appropriate Energy Laboratory http://rael.berkeley.edu/switch November 2012

    E-Print Network [OSTI]

    Kammen, Daniel M.

    startup costs and part-load heat-rate penalties for intermediate generation such as combined cycle gas to the electric power system of the entire continental United States and Canada Model 50 load areas or "zones" in the WECC within which demand must be met and between which power is sent Perform bus or substation level

  14. International Nuclear Fuel Cycle Fact Book. Revision 5

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  15. International nuclear fuel cycle fact book. Revision 4

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  16. Benefits and concerns of a closed nuclear fuel cycle

    SciTech Connect (OSTI)

    Widder, Sarah H.

    2010-11-17

    Nuclear power can play an important role in our energy future, contributing to increasing electricity demand while at the same time decreasing carbon dioxide emissions. However, the nuclear fuel cycle in the United States today is unsustainable. As stated in the 1982 Nuclear Waste Policy Act, the U.S. Department of Energy is responsible for disposing of spent nuclear fuel generated by commercial nuclear power plants operating in a “once-through” fuel cycle in the deep geologic repository located at Yucca Mountain. However, unyielding political opposition to the site has hindered the commissioning process to the extant that the current administration has recently declared the unsuitability of the Yucca Mountain site. In light of this the DOE is exploring other options, including closing the fuel cycle through recycling and reprocessing of spent nuclear fuel. The possibility of closing the fuel cycle is receiving special attention because of its ability to minimize the final high level waste (HLW) package as well as recover additional energy value from the original fuel. The technology is, however, still very controversial because of the increased cost and proliferation risk it can present. To lend perspective on the closed fuel cycle alternative, this presents the arguments for and against closing the fuel cycle with respect to sustainability, proliferation risk, commercial viability, waste management, and energy security.

  17. Development and proof-testing of advanced absorption refrigeration cycle concepts

    SciTech Connect (OSTI)

    Modahl, R.J.; Hayes, F.C. (Trane Co., La Crosse, WI (United States). Applied Unitary/Refrigeration Systems Div.)

    1992-03-01

    The overall objectives of this project are to evaluate, develop, and proof-test advanced absorption refrigeration cycles that are applicable to residential and commercial heat pumps for space conditioning. The heat pump system is to be direct-fired with natural gas and is to use absorption working fluids whose properties are known. Target coefficients of performance (COPs) are 1.6 at 47{degrees}F and 1.2 at 17{degrees} in the heating mode, and 0.7 at 95{degree}F in the cooling mode, including the effect of flue losses. The project is divided into three phases. Phase I entailed the analytical evaluation of advanced cycles and included the selection of preferred concepts for further development. Phase II involves the development and testing of critical components and of a complete laboratory breadboard version of the selected system. Phase III calls for the development of a prototype unit and is contingent on the successful completion of Phase II. This report covers Phase I work on the project. In Phase 1, 24 advanced absorption cycle/fluid combinations were evaluated, and computer models were developed to predict system performance. COP, theoretical pump power, and internal heat exchange were calculated for each system, and these calculations were used as indicators of operating and installed costs in order to rank the relative promise of each system. The highest ranking systems involve the cycle concept of absorber/generator heat exchange, generator heat exchanger/absorber heat exchange, regeneration, and resorption/desorption, in combination with the NH{sub 3}/H{sub 2}O/LiBr ternary absorption fluid mixture or with the NH{sub 3}/H{sub 2}O binary solution. Based upon these conclusions, the recommendation was made to proceed to Phase II, the laboratory breadboard proof-of- concept.

  18. Emissions Modeling: GREET Life Cycle Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilofEnergy 1EmergingTherese Cloyd About

  19. CLIMATIC CYCLES AS SEDIMENTARY CONTROLS OF RIFT-BASIN LACUSTRINE DEPOSITS IN THE

    E-Print Network [OSTI]

    Olsen, Paul E.

    and rounded breccias, reflecting deflated, salt-encrusted mudflats. 2. Cycles similar to the previous of climatic patterns and tectonic settingcan provide important information toward modeling source

  20. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01

    of Freshwater Consumption in LCA. Environmental Science &of Freshwater Consumption in LCA. Environmental Science &Cycle Assessment (EIO-LCA) US 2002 (428) model. Carnegie

  1. The fuel cycle economics of improved uranium utilization in light water reactors

    E-Print Network [OSTI]

    Abbaspour, Ali Tehrani

    A simple fuel cycle cost model has been formulated, tested satisfactorily (within better than 3% for a wide range of cases)

  2. ORC Closed Loop Control Systems for Transient and Steady State Duty Cycles

    Broader source: Energy.gov [DOE]

    System-level models using iterative concept analysis are being used on a closed loop controlled, waste heat recovery system running automatically over various drive cycles.

  3. Computer System Science Model Schedule -(with CS 1121) example only; actual schedule may vary; see your academic dept. Includes 3 units of co-curricular activities.

    E-Print Network [OSTI]

    ) Total 15 Total 14 Total 14 Total 16 3rd Year 4th Year FALL SPRING FALL SPRING CS 3311 3 CS 4411 4 CS your academic dept. Includes 3 units of co-curricular activities. Effective Fall 2010 1st Year 2nd Year

  4. Software Engineering Model Schedule -(with CS 1131) example only; actual schedule may vary; see your academic dept. Includes 3 units of co-curricular activities.

    E-Print Network [OSTI]

    Activity (1) Total 17 Total 15 Total 14-15 Total 16-17 3rd Year 4th Year FALL SPRING FALL SPRING CS 3311 3 your academic dept. Includes 3 units of co-curricular activities. Effective Fall 2010 1st Year 2nd Year

  5. The Smart Engineering Apprentice (SEA) Project is an advanced artificial intelligence model that aims to predict the future failure of rod pump units. Innovative and modern, this

    E-Print Network [OSTI]

    Shahabi, Cyrus

    that aims to predict the future failure of rod pump units. Innovative and modern, this novel technology provides a new approach to the maintenance of rod pumps through a system that increases efficiency while technology to predict the future failure of rod pumps. The predictions are based on the past experiences

  6. Rapid pressure cycle effects on flexible pipe

    SciTech Connect (OSTI)

    Hill, R.T.; Upchurch, J.L.; McMahan, J.M. Jr.

    1995-12-01

    The use of subsea satellite wells tied back to a central manifold unit is a field development concept currently being used by operating companies for staged production of either commingled oil or gas. Remote platform operated control systems that couple the satellite wells and manifold require that safe operating pressure cycle parameters be established for all subsea components. Because of start-up and shut-in procedures, extreme pressure variations in the form of rapid pressurization and depressurization must be considered. This paper describes the test procedures, equipment and results specific to the evaluation of high pressure non-bonded flexible pipe used for subsea production jumpers between satellite wells and manifold system. Recommendation of safe rates of pressurization and depressurization are included.

  7. Life cycle test of the NOXSO process

    SciTech Connect (OSTI)

    Ma, W.T.; Haslbeck, J.L.; Neal, L.G.

    1990-05-01

    This paper summarizes the data generated by the NOXSO Life Cycle Test Unit (LCTU). The NOXSO process is a dry flue gas treatment system that employs a reusable sorbent. The sorbent consists of sodium carbonate impregnated on a high-surface-area gamma alumina. A fluidized bed of sorbent simultaneously removes SO{sub 2} and NO{sub x} from flue gas at a temperature of 250{degrees}F. The spent sorbent is regenerated for reuse by treatment at high temperature with a reducing gas. This regeneration reduces sorbed sulfur compounds to SO{sub 2}, H{sub 2}S, and elemental sulfur. The SO{sub 2} and H{sub 2}S are then converted to elemental sulfur in a Claus-type reactor. The sulfur produced is a marketable by-product of the process. Absorbed nitrogen oxides are decomposed and evolved on heating the sorbent to regeneration temperature.

  8. Coherent regulation in yeast cell cycle network

    E-Print Network [OSTI]

    Nese Aral; Alkan Kabakcioglu

    2014-12-14

    We define a measure of coherent activity for gene regulatory networks, a property that reflects the unity of purpose between the regulatory agents with a common target. We propose that such harmonious regulatory action is desirable under a demand for energy efficiency and may be selected for under evolutionary pressures. We consider two recent models of the cell-cycle regulatory network of the budding yeast, Saccharomyces cerevisiae, as a case study and calculate their degree of coherence. A comparison with random networks of similar size and composition reveals that the yeast's cell-cycle regulation is wired to yield and exceptionally high level of coherent regulatory activity. We also investigate the mean degree of coherence as a function of the network size, connectivity and the fraction of repressory/activatory interactions.

  9. International nuclear fuel cycle fact book: Revision 9

    SciTech Connect (OSTI)

    Leigh, I.W.

    1989-01-01

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. The Fact Book contains: national summaries in which a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; and international agencies in which a section for each of the international agencies which has significant fuel cycle involvement, and a listing of nuclear societies. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter is presented from the perspective of the Fact Book user in the United States.

  10. Vehicle Technologies Office Merit Review 2014: Emissions Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Modeling: GREET Life Cycle Analysis Vehicle Technologies Office Merit Review 2014: Emissions Modeling: GREET Life Cycle Analysis Presentation given by Argonne National...

  11. Vehicle Technologies Office Merit Review 2015: Emissions Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Modeling: GREET Life Cycle Analysis Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET Life Cycle Analysis Presentation given by Argonne National...

  12. Integrated gasification combined-cycle research development and demonstration activities

    SciTech Connect (OSTI)

    Ness, H.M.; Reuther, R.B.

    1995-12-01

    The United States Department of Energy (DOE) has selected six integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  13. Prices stabilization for inexact unit-commitment Sofia Zaourar Jerome Malick

    E-Print Network [OSTI]

    Prices stabilization for inexact unit-commitment problems Sofia Zaourar Jerome Malick Inria - Grenoble August 21, 2012 ISMP 2012 #12;Modeling and solving unit-commitment problem Unit-commitment problem August 21, 2012 2 / 21 #12;Modeling and solving unit-commitment problem Unit-commitment problem Data

  14. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    SciTech Connect (OSTI)

    Edwin A. Harvego; Michael G. McKellar

    2011-05-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.

  15. Optimization of Air Conditioning Cycling 

    E-Print Network [OSTI]

    Seshadri, Swarooph

    2012-10-19

    Systems based on the vapor compression cycle are the most widely used in a variety of air conditioning applications. Despite the vast growth of modern control systems in the field of air conditioning systems, industry standard control is still...

  16. American business cycles and innovation 

    E-Print Network [OSTI]

    Hood, Michael

    2013-02-22

    Economists have long studied innovation and its effects on business cycles. Economist Joseph Alois Schumpeter (1883-1950) was the first economist to thoroughly discuss these ideas in his Theorie der wirtschaftlichen Entwicklung, published in 1911...

  17. The DOE Water Cycle Pilot Study

    E-Print Network [OSTI]

    2003-01-01

    The DOE Water Cycle Pilot Study N.L. Miller 1 *, A.W. KingCycle Research Strategy, DOE SC-0043, Office of BiologicalLBNL Report LBNL-53826. The DOE Water Cycle Pilot Study is

  18. M. Bahrami ENSC 461 (S 11) Stirling Cycle 1 Stirling Cycle

    E-Print Network [OSTI]

    Bahrami, Majid

    internal combustion engines, a Stirling cycle does not exchange the working gas in each cycle, the gas energy, nuclear power, etc. Stirling engine can reach higher thermal efficiencies than Otto and DieselM. Bahrami ENSC 461 (S 11) Stirling Cycle 1 Stirling Cycle In Stirling cycle, Carnot cycle

  19. United States of Agriculture

    E-Print Network [OSTI]

    United States Department of Agriculture DESIGN: A Program to Create Data Forest Service Entry Research Work Unit at the Station's Forest Fire Laboratory, 4955 Canyon Crest Drive, Riverside, CA 92507

  20. United Sates Environmental Protection

    E-Print Network [OSTI]

    Bowen, James D.

    United Sates Environmental Protection Agency Office of Water (4305) EPA/823/B/95/003 August 1995 QUAL2E Windows Interface User's Guide #12;QUAL2E Windows Interface User's Guide United States

  1. United States of Agriculture

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Research Station General Observatory in Stinson Beach, Calif. Thomas E. Martin is Assistant Unit Leader--Wildlife at the U.S. Fish

  2. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Forest and Range, objectives, and targets and specific work plans for the field units--the National Forests and their Ranger

  3. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Northwest Research Station Research, and export from 1997 to 2010, for main world regions and the United States. Detailed tables by country

  4. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Peelflc Southwest Forest and Range that are expressed in tems familim to the user. Theboard footand cubic footare mdiriond units of measure, altlnough

  5. United States Department of

    E-Print Network [OSTI]

    #12;United States Department of Agriculture Forest Service Pacific Southwest Research Station for the Station's Wildland Recreation and the Urban Culture Research Work Unit, located at the Forest Fire

  6. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Usual Planting and Harvesting Dates for U.S. Field Crops million acres of barley were harvested in the United States (U.S.) during 1996. After reaching a peak

  7. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Northwest Research Station Research, import, and export from 1997 to 2010, for main world regions and the United States. Detailed tables

  8. Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design

    SciTech Connect (OSTI)

    Forsberg, C.; Miller, W.F.

    2013-07-01

    The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that states will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state.

  9. THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE

    E-Print Network [OSTI]

    Pope, William L.

    2012-01-01

    al. , "Combined Diesel-Organic Rankine Cycle Power Plant",now. applications - Organic Rankine bottoming cycles canand in supercritical organic Rankine heat recovery bottoming

  10. Geodetic Imaging of the Earthquake Cycle

    E-Print Network [OSTI]

    Tong, Xiaopeng

    5.3 3-dimensional earthquake cycle2 1.2 Earthquake cycle study . . . . . . . .thrust - Mw 7.9 Wenchuan earthquake . . . 3 1.2.2 Subduction

  11. Policy Implications of Stochastic Learning Using a Modified PAGE2002 Model

    E-Print Network [OSTI]

    Alberth, Stephan; Hope, Chris

    with incomplete regional spill-over effects. In the standard model, three uncertain parameters are used to model abatement costs, the unit cost of the cheapest control measures, the maximum cutback proportion that can be achieved by the cheap control measures... ’. Due to superior performance both in terms of green house gases and economics, huge investments have been made into Combined Cycle Gas Turbine (CCGT) technology and its dispersion as a fraction of total electricity produced rose almost 40% over a ten...

  12. United States Department of

    E-Print Network [OSTI]

    Estimated UseofWaterintheUnitedStatesin2005 Trends in estimated water use in the United States.L., Hutson, S.S., Linsey, K.S., Lovelace, J.K., and Maupin, M.A., 2009, Estimated use of water in the United

  13. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Forest and Range unit investigating measurement and analysis techniques for management planning, with headquarters in Berkeley, Calif. ELLIOT L. AMIDON is now assigned to the Station's unit at Arcata, Calif., that is studying

  14. United States of Agriculture

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Intermountain Research Station Research Research Station's Riparian-Stream Ecology and Management Research Work Unit at Boise, ID. He re- ceived with the Intermountain Research Station's Riparian-Stream Ecology and Man- agement Research Work Unit at the Forestry

  15. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Northeastern Research Station General Estimates for Forest Types of the United States James E. Smith Linda S. Heath Kenneth E. Skog Richard A forest types within 10 regions of the United States. Separate tables were developed for afforestation

  16. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service General Technical #12;- TH ,a geneticist, is assigned to the Station's research unit dyin etics of western forest trees, with headquarters in Berkeley, Berkeley. PAUL D. cal technician with the genetics research unit, isa forestry gra California, Berkeley

  17. United States Department of

    E-Print Network [OSTI]

    Clements, Craig

    United States Department of Agriculture Forest Service Intermountain Research Station Ogden, UT. He was project leader of the fire fundamentals research work unit from 1966 until 1979 and is currently project leader of the fire behavior research work unit at the fire sciences laboratory. RALPH A

  18. United States Department of

    E-Print Network [OSTI]

    Liebhold, Andrew

    United States Department of Agriculture Forest Service Northeastern Research Station Research Paper of the Eastern United States have been devastated by invasive pests. We used existing data to predict-quarter in total host density. Gypsy moth occupies only 23 percent of its potential range in the Eastern United

  19. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Forest and Range Thomas J. Mills Frederick W. Bratten #12;The Authors: are with the Station's research unit studying fire J. MILLS, a forest economist, is in charge of the unit. He earned degrees at Michigan State

  20. United States of Agriculture

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Research Station General,000 xylem resin samples of pine (Pinus) species and hybrids--largely from the western United States locations in the eastern and southern United States. Cover Image: Chapter 6, Figure 6-2. #12;Xylem

  1. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Forest and Range ecosystemsresearch unit located in Riverside. California. PAUL H. DUNN was project leader at that time and is now project leader of the atmospheric deposition research unit in Riverside. Calif. SUSAN C. BARRO

  2. United States Department of

    E-Print Network [OSTI]

    United States Department of Proceedings of the Agriculture Pacific Southwest Symposium on Social of Agriculture; 96 p. The growing demand for recreation at the wildland-urban interface throughout the United and the Urban Culture Research Unit headquartered at the Forest Fire Laboratory, 4955 Canyon Crest Dr

  3. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Pacific Southwest Research Station http. Arbaugh is a statistician with the Station's Atmospheric Deposition Effects Research Unit at Riverside and associate professor with the National Park Service Cooperative Park Studies Unit, College of Forest

  4. United States Department of

    E-Print Network [OSTI]

    Holberton, Rebecca L.

    United States Department of Agriculture Forest Service Northeastern Research Station General Technical Report NE-318 Atlas of Climate Change Effects in 150 Bird Species of the Eastern United States Service 359 Main Road Delaware, OH 43015 USA #12;United States Department of Agriculture Forest Service

  5. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Southern Research Station General Technical United States. In: Rauscher, H. Michael, and Kurt Johnsen, eds. Southern forest science: past, present Trends in the Southern United States Robert A. Mickler, James E. Smith, and Linda S. Heath1 Abstract

  6. UNITED STATES PARTMENT OF

    E-Print Network [OSTI]

    UNITED STATES PARTMENT OF lMMERCE J8l1CATION SEATTLE, WA IOVEMBER 1973 FISHERY FACTS-6 U. S of foreign fishing off United States coastal waters, and the aevelopment and enforce- ment of international;ABSTRACT Dungeness crabs, Cancer magister, occur in the inshore waters of t he west coast of the United

  7. United States Department of

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Northeastern Research Station General reported in USDA Forest Service surveys for forests of the conterminous United States. Developed for use estimates are provided for regional tree-mass totals using summary forest statistics for the United States

  8. United States Nuclear Regulatory

    E-Print Network [OSTI]

    United States Nuclear Regulatory Commission United States Department of Energy United States.S. Nuclear Regulatory Commission Washington, DC 20555-0001 E-mail: DISTRIBUTION@nrc.gov Facsimile: 301; and Commission papers and their attachments. NRC publications in the NUREG series, NRC regulations, and Title 10

  9. Unit Testing Discussion C

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Unit Testing Discussion C #12;Unit Test public Method is smallest unit of code Input/output transformation Test if the method does what it claims Not exactly black box testing #12;Test if (actual result Expected Computed Input #12;Functionality Computation ­ Easy to test Time based Asynchronous interaction

  10. Sandia Energy - Brayton Cycle Workshop and Industry Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brayton Cycle Workshop and Industry Day Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops Brayton Cycle Workshop and Industry Day Brayton Cycle Workshop and...

  11. Control system options and strategies for supercritical CO2 cycles.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Kulesza, K. P.; Sienicki, J. J.; Nuclear Engineering Division; Oregon State Univ.

    2009-06-18

    The Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton Cycle is a promising alternative to Rankine steam cycle and recuperated gas Brayton cycle energy converters for use with Sodium-Cooled Fast Reactors (SFRs), Lead-Cooled Fast Reactors (LFRs), as well as other advanced reactor concepts. The S-CO{sub 2} Brayton Cycle offers higher plant efficiencies than Rankine or recuperated gas Brayton cycles operating at the same liquid metal reactor core outlet temperatures as well as reduced costs or size of key components especially the turbomachinery. A new Plant Dynamics Computer Code has been developed at Argonne National Laboratory for simulation of a S-CO{sub 2} Brayton Cycle energy converter coupled to an autonomous load following liquid metal-cooled fast reactor. The Plant Dynamics code has been applied to investigate the effectiveness of a control strategy for the S-CO{sub 2} Brayton Cycle for the STAR-LM 181 MWe (400 MWt) Lead-Cooled Fast Reactor. The strategy, which involves a combination of control mechanisms, is found to be effective for controlling the S-CO{sub 2} Brayton Cycle over the complete operating range from 0 to 100 % load for a representative set of transient load changes. While the system dynamic analysis of control strategy performance for STARLM is carried out for a S-CO{sub 2} Brayton Cycle energy converter incorporating an axial flow turbine and compressors, investigations of the S-CO{sub 2} Brayton Cycle have identified benefits from the use of centrifugal compressors which offer a wider operating range, greater stability near the critical point, and potentially further cost reductions due to fewer stages than axial flow compressors. Models have been developed at Argonne for the conceptual design and performance analysis of centrifugal compressors for use in the SCO{sub 2} Brayton Cycle. Steady state calculations demonstrate the wider operating range of centrifugal compressors versus axial compressors installed in a S-CO{sub 2} Brayton Cycle as well as the benefits in expanding the range over which individual control mechanisms are effective for cycle control. However, a combination of mechanisms is still required for control of the S-CO{sub 2} Brayton Cycle between 0 and 100 % load. An effort is underway to partially validate the Argonne models and codes by means of comparison with data from tests carried out using the small-scale Sandia Brayton Loop (SBL) recuperated gas closed Brayton cycle facility. The centrifugal compressor model has been compared with data from the SBL operating with nitrogen gas and good agreement is obtained between calculations and the measured data for the compressor outlet pressure versus flow rate, although it is necessary to assume values for certain model parameters which require information about the configuration or dimensions of the compressor components that is unavailable. Unfortunately, the compressor efficiency cannot be compared with experiment data due to the lack of outlet temperature data. A radial inflow turbine model has been developed to enable further comparison of calculations with data from the SBL which incorporates both a radial inflow turbine as well as a radial compressor. Preliminary calculations of pressure ratio and efficiency versus flow rate have been carried out using the radial inflow turbine model.

  12. The Use of Water Vapor as a Refrigerant: Impact of Cycle Modifications on Commercial Viability

    SciTech Connect (OSTI)

    Brandon F. Lachner, Jr.; Gregory F. Nellis; Douglas T. Reindl

    2004-08-30

    This project investigated the economic viability of using water as the refrigerant in a 1000-ton chiller application. The most attractive water cycle configuration was found to be a flash-intercooled, two-stage cycle using centrifugal compressors and direct contact heat exchangers. Component level models were developed that could be used to predict the size and performance of the compressors and heat exchangers in this cycle as well as in a baseline, R-134a refrigeration cycle consistent with chillers in use today. A survey of several chiller manufacturers provided information that was used to validate and refine these component models. The component models were integrated into cycle models that were subsequently used to investigate the life-cycle costs of both an R-134a and water refrigeration cycle. It was found that the first cost associated with the water as a refrigerant cycle greatly exceeded the savings in operating costs associated with its somewhat higher COP. Therefore, the water refrigeration cycle is not an economically attractive option to today's R-134a refrigeration system. There are a number of other issues, most notably the requirements associated with purging non-condensable gases that accumulate in a direct contact heat exchanger, which will further reduce the economic viability of the water cycle.

  13. Operation and analysis of a supercritical CO2 Brayton cycle.

    SciTech Connect (OSTI)

    Wright, Steven Alan; Radel, Ross F.; Vernon, Milton E.; Pickard, Paul S.; Rochau, Gary Eugene

    2010-09-01

    Sandia National Laboratories is investigating advanced Brayton cycles using supercritical working fluids for use with solar, nuclear or fossil heat sources. The focus of this work has been on the supercritical CO{sub 2} cycle (S-CO2) which has the potential for high efficiency in the temperature range of interest for these heat sources, and is also very compact, with the potential for lower capital costs. The first step in the development of these advanced cycles was the construction of a small scale Brayton cycle loop, funded by the Laboratory Directed Research & Development program, to study the key issue of compression near the critical point of CO{sub 2}. This document outlines the design of the small scale loop, describes the major components, presents models of system performance, including losses, leakage, windage, compressor performance, and flow map predictions, and finally describes the experimental results that have been generated.

  14. Limit Cycles Sparked by Mutation in the Repeated Prisoner's Dilemma

    E-Print Network [OSTI]

    Toupo, Danielle F P; Strogatz, Steven H

    2015-01-01

    We explore a replicator-mutator model of the repeated Prisoner's Dilemma involving three strategies: always cooperate (ALLC), always defect (ALLD), and tit-for-tat (TFT). The dynamics resulting from single unidirectional mutations are considered, with detailed results presented for the mutations TFT $\\rightarrow$ ALLC and ALLD $\\rightarrow$ ALLC. For certain combinations of parameters, given by the mutation rate $\\mu$ and the complexity cost $c$ of playing tit-for-tat, we find that the population settles into limit cycle oscillations, with the relative abundance of ALLC, ALLD, and TFT cycling periodically. Surprisingly, these oscillations can occur for unidirectional mutations between any two strategies. In each case, the limit cycles are created and destroyed by supercritical Hopf and homoclinic bifurcations, organized by a Bogdanov-Takens bifurcation. Our results suggest that stable oscillations are a robust aspect of a world of ALLC, ALLD, and costly TFT; the existence of cycles does not depend on the deta...

  15. Summary of non-US national and international fuel cycle and radioactive waste management programs 1982

    SciTech Connect (OSTI)

    Harmon, K.M.; Kelman, J.A.

    1982-08-01

    Brief program overviews of fuel cycle, spent fuel, and waste management activities in the following countries are provided: Argentina, Australia, Austria, Belgium, Brazil, Canada, China, Denmark, Finland, France, German Federal Republic, India, Italy, Japan, Republic of Korea, Mexico, Netherlands, Pakistan, South Africa, Spain, Sweden, Switzerland, Taiwan, USSR, and the United Kingdom. International nonproliferation activities, multilateral agreements and projects, and the international agencies specifically involved in the nuclear fuel cycle are also described.

  16. Unit 51 - GIS Application Areas

    E-Print Network [OSTI]

    Unit 51, CC in GIS; Cowen, David; Ferguson, Warren

    1990-01-01

    51 - GIS APPLICATION AREAS UNIT 51 - GIS APPLICATION AREAS1990 Page 1 Unit 51 - GIS Application Areas Computers inyour students. UNIT 51 - GIS APPLICATION AREAS Compiled with

  17. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01

    Environmental Impacts . . . . . . . . . . . . . . . . . . . . . .Abatement Environmental impactLife-cycle Environmental Impacts . . . . . . . LCA of

  18. Assessment of Possible Cycle Lengths for Fully Encapsulated Microstructure fueled light water reactor Concepts

    SciTech Connect (OSTI)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

    2013-02-01

    The use of TRISO-particle-based dispersion fuel within SiC matrix and cladding materials has the potential to allow the design of extremely safe LWRs with failure-proof fuel. This paper examines the feasibility of LWR-like cycle length for such fuel with the imposed constraint of strictly retaining the original geometry of the fuel pins and assemblies. The motivation for retaining the original geometry is to provide the ability to incorporate the fuel “as-is” into existing LWRs while retaining their thermal–hydraulic characteristics. Another mandatory constraint is use of low enriched uranium (at or below 20 w/o). The feasibility of using this fuel is assessed by looking at two factors: cycle lengths and fuel material failure rates. Other considerations (e.g., safety parameters such as reactivity coefficients, feedback, etc.) were not considered at this stage of the study. The study includes the examination of increases in the TRISO kernel sizes without changing the thickness of any of the coating layers. In addition, cases where the buffer layer thickness is allowed to vary are also considered. The study shows that a naïve use of UO2 (even up to 20 w/o enrichment) results in cycle lengths too short to be practical for existing LWR designs and operational demands. Increasing fissile inventory within the fuel compacts shows that acceptable cycle lengths can be achieved. The increase of fissile inventory can be accomplished through multiple means, including higher particle packing fraction, higher enrichment, larger fuel kernel sizes, and the use of higher density fuels (that contain a higher number of U atoms per unit volume). In this study, starting with the recognized highest packing fraction practically achievable (44%), combinations of the other means have been evaluated. The models demonstrate cycle lengths comparable to those of ordinary LWRs. As expected, TRISO particles with extremely large kernels are shown to fail under all considered scenarios. In contrast, the designs that do not depart too drastically from those of the nominal NGNP HTR fuel TRISO particles are shown to perform satisfactorily and display a high rates of survival under all considered scenarios.

  19. SNMR pulse sequence phase cycling

    DOE Patents [OSTI]

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  20. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  1. Marine Ecosystem Dynamics and Biogeochemical Cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 Scenarios

    E-Print Network [OSTI]

    Moore, J. Keith; Lindsay, Keith; Doney, Scott C; Long, Matthew C; Misumi, Kazuhiro

    2013-01-01

    2013: The Community Earth System Model: A Framework forcurrent system in an earth system model. Geophys. Res.global warming in an Earth System Model. Bio- geosciences,

  2. SUMO Protease Cat. No. 12588-018 Size: 250 units

    E-Print Network [OSTI]

    Lebendiker, Mario

    SUMO Protease Cat. No. 12588-018 Size: 250 units Description SUMO Protease, a highly active can be used to cleave SUMO from recombinant fusion proteins. The optimal temperature for cleavage-term storage. Avoid multiple freeze/thaw cycles at -80°C. Store 10X SUMO Protease Buffers at 4°C or -20°C. Part

  3. Models for evaluation of energy technology and policy options to maximize low carbon source penetration in the United States energy supply.

    SciTech Connect (OSTI)

    Pickard, Paul S.; Kataoka, Dawn; Reno, Marissa Devan; Malczynski, Leonard A.; Peplinski, William J.; Roach, Jesse D.; Brainard, James Robert; West, Todd H.; Schoenwald, David Alan

    2009-12-01

    An initial version of a Systems Dynamics (SD) modeling framework was developed for the analysis of a broad range of energy technology and policy questions. The specific question selected to demonstrate this process was 'what would be the carbon and import implications of expanding nuclear electric capacity to provide power for plug in hybrid vehicles?' Fifteen SNL SD energy models were reviewed and the US Energy and Greenhouse gas model (USEGM) and the Global Nuclear Futures model (GEFM) were identified as the basis for an initial modeling framework. A basic U.S. Transportation model was created to model U.S. fleet changes. The results of the rapid adoption scenario result in almost 40% of light duty vehicles being PHEV by 2040 which requires about 37 GWy/y of additional electricity demand, equivalent to about 25 new 1.4 GWe nuclear plants. The adoption rate of PHEVs would likely be the controlling factor in achieving the associated reduction in carbon emissions and imports.

  4. Conceptual Model Summary Report Simulation Framework for Regional Geologic CO{sub 2} Storage Along Arches Province of Midwestern United States

    SciTech Connect (OSTI)

    None

    2011-06-30

    A conceptual model was developed for the Arches Province that integrates geologic and hydrologic information on the Eau Claire and Mt. Simon formations into a geocellular model. The conceptual model describes the geologic setting, stratigraphy, geologic structures, hydrologic features, and distribution of key hydraulic parameters. The conceptual model is focused on the Mt. Simon sandstone and Eau Claire formations. The geocellular model depicts the parameters and conditions in a numerical array that may be imported into the numerical simulations of carbon dioxide (CO{sub 2}) storage. Geophysical well logs, rock samples, drilling logs, geotechnical test results, and reservoir tests were evaluated for a 500,000 km{sup 2} study area centered on the Arches Province. The geologic and hydraulic data were integrated into a three-dimensional (3D) grid of porosity and permeability, which are key parameters regarding fluid flow and pressure buildup due to CO{sub 2} injection. Permeability data were corrected in locations where reservoir tests have been performed in Mt. Simon injection wells. The final geocellular model covers an area of 600 km by 600 km centered on the Arches Province. The geocellular model includes a total of 24,500,000 cells representing estimated porosity and permeability distribution. CO{sub 2} injection scenarios were developed for on-site and regional injection fields at rates of 70 to 140 million metric tons per year.

  5. Phase I Flow and Transport Model Document for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada, Revision 1 with ROTCs 1 and 2

    SciTech Connect (OSTI)

    Andrews, Robert

    2013-09-01

    The Underground Test Area (UGTA) Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, in the northeast part of the Nevada National Security Site (NNSS) requires environmental corrective action activities to assess contamination resulting from underground nuclear testing. These activities are necessary to comply with the UGTA corrective action strategy (referred to as the UGTA strategy). The corrective action investigation phase of the UGTA strategy requires the development of groundwater flow and contaminant transport models whose purpose is to identify the lateral and vertical extent of contaminant migration over the next 1,000 years. In particular, the goal is to calculate the contaminant boundary, which is defined as a probabilistic model-forecast perimeter and a lower hydrostratigraphic unit (HSU) boundary that delineate the possible extent of radionuclide-contaminated groundwater from underground nuclear testing. Because of structural uncertainty in the contaminant boundary, a range of potential contaminant boundaries was forecast, resulting in an ensemble of contaminant boundaries. The contaminant boundary extent is determined by the volume of groundwater that has at least a 5 percent chance of exceeding the radiological standards of the Safe Drinking Water Act (SDWA) (CFR, 2012).

  6. Long-run Implications of a Forest-based Carbon Sequestration Policy on the United States Economy: A Computable General Equilibrium (CGE) Modeling Approach 

    E-Print Network [OSTI]

    Monge, Juan

    2012-10-19

    The economic impacts of a government-funded, forest-based sequestration program were analyzed under two different payment schemes. The impacts were obtained by developing a regional, static CGE model built to accommodate a modified IMPLAN SAM for a...

  7. Economic Model For a Return on Investment Analysis of United States Government High Performance Computing (HPC) Research and Development (R & D) Investment

    SciTech Connect (OSTI)

    Joseph, Earl C.; Conway, Steve; Dekate, Chirag

    2013-09-30

    This study investigated how high-performance computing (HPC) investments can improve economic success and increase scientific innovation. This research focused on the common good and provided uses for DOE, other government agencies, industry, and academia. The study created two unique economic models and an innovation index: 1 A macroeconomic model that depicts the way HPC investments result in economic advancements in the form of ROI in revenue (GDP), profits (and cost savings), and jobs. 2 A macroeconomic model that depicts the way HPC investments result in basic and applied innovations, looking at variations by sector, industry, country, and organization size. ? A new innovation index that provides a means of measuring and comparing innovation levels. Key findings of the pilot study include: IDC collected the required data across a broad set of organizations, with enough detail to create these models and the innovation index. The research also developed an expansive list of HPC success stories.

  8. Single-cycle nonlinear optics

    E-Print Network [OSTI]

    Goulielmakis, E.; Max-Planck-Institut fur Quantenoptik

    2008-01-01

    g l e - C y c l e Nonlinear Optics E. G o u l i e l m a k iSingle-Cycle Nonlinear Optics E. Goulielmakis *, M.D-85748 Garching. Center for X-Ray Optics, Lawrence Berkeley

  9. M. Bahrami ENSC 461 (S 11) Refrigeration Cycle 1 Refrigeration Cycle

    E-Print Network [OSTI]

    Bahrami, Majid

    COP W Q COP , , The Reversed Carnot Cycle Reversing the Carnot cycle does reverse the directions of heat and work interactions. A refrigerator or heat pump that operates on the reversed Carnot cycle refrigerator. The reversed Carnot cycle is the most efficient refrigeration cycle operating between two

  10. M. Bahrami ENSC 461 (S 11) Jet Propulsion Cycle 1 Ideal JetPropulsion Cycle

    E-Print Network [OSTI]

    Bahrami, Majid

    M. Bahrami ENSC 461 (S 11) Jet Propulsion Cycle 1 Ideal JetPropulsion Cycle Gas-turbine engines. Aircraft gas turbines operate on an open cycle called jet-propulsion cycle. Some of the major differences between the gas-turbine and jet-propulsion cycles are: gases are expanded in the turbine to a pressure

  11. United States Department of

    E-Print Network [OSTI]

    ..............................................................................2 Solid Waste Management .........................................................................3 ....................................................................................4 Solid Waste ManagementUnited States Department of Returns on InvestmentsAgriculture Forest Service in Management Sciences

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Structural and Geographic Characteristics of U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)"...

  13. Sandia Energy - Phasor Measurement Units

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Units Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure Phasor Measurement Units...

  14. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    SciTech Connect (OSTI)

    Anderson, Mark; Sienicki, James; Moisseytsev, Anton; Nellis, Gregory; Klein, Sanford

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO2 (S-CO2) or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see-through labyrinth seals was proposed. A stepped labyrinth seal, which mimics the behavior of the labyrinth seal used in the Sandia National Laboratory (SNL) S-CO2 Brayton cycle, was also tested in the experiment along with simulations performed. The rest of this study demonstrates the difference of valves' behavior under supercritical fluid and normal fluid conditions. A small-scale valve was tested in the experiment facility using S-CO2. Different percentages of opening valves were tested, and the measured mass flow rate agreed with simulation predictions. Two transients from a real S-CO2 Brayton cycle design provided the data for valve selection. The selected valve was studied using numerical simulation, as experimental data is not available.

  15. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect (OSTI)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  16. An ideal sealed source life-cycle

    SciTech Connect (OSTI)

    Tompkins, Joseph Andrew [Los Alamos National Laboratory

    2009-01-01

    In the last 40 years, barriers to compliant and timely disposition of radioactive sealed sources have become apparent. The story starts with the explosive growth of nuclear gauging technologies in the 1960s. Dozens of companies in the US manufactured sources and many more created nuclear solutions to industrial gauging problems. Today they do not yet know how many Cat 1, 2, or 3 sources there are in the US. There are, at minimum, tens of thousands of sources, perhaps hundreds of thousands of sources. Affordable transportation solutions to consolidate all of these sources and disposition pathways for these sources do not exist. The root problem seems to be a lack of necessary regulatory framework that has allowed all of these problems to accumulate with no national plan for solving the problem. In the 1960s, Pu-238 displaced Pu-239 for most neutron and alpha source applications. In the 1970s, the availability of inexpensive Am-241 resulted in a proliferation of low energy gamma sources used in nuclear gauging, well logging, pacemakers, and X-ray fluorescence applications for example. In the 1980s, rapid expansion of worldwide petroleum exploration resulted in the expansion of Am-241 sources into international locations. Improvements of technology and regulation resulted in a change in isotopic distribution as Am-241 made Pu-239 and Pu-238 obsolete. Many early nuclear gauge technologies have been made obsolete as they were replaced by non-nuclear technoogies. With uncertainties in source end of life disposition and increased requirements for sealed source security, nuclear gauging technology is the last choice for modern process engineering gauging solutions. Over the same period, much was learned about licensing LLW disposition facilities as evident by the closure of early disposition facilities like Maxey Flats. The current difficulties in sealed source disposition start with adoption of the NLLW policy act of 1985, which created the state LLW compact system they we have today. This regulation created a new regulatory framework seen as promising at the time. However, now they recognize that, despite the good intentions, the NIJWP/85 has not solved any source disposition problems. The answer to these sealed source disposition problems is to adopt a philosophy to correct these regulatory issues, determine an interim solution, execute that solution until there is a minimal backlog of sources to deal with, and then let the mechanisms they have created solve this problem into the foreseeable future. The primary philosophical tenet of the ideal sealed source life cycle follows. You do not allow the creation (or importation) of any source whose use cannot be justified, which cannot be affordably shipped, or that does not have a well-delinated and affordable disposition pathway. The path forward dictates that we fix the problem by embracing the Ideal Source Life cycle. In figure 1, we can see some of the elements of the ideal source life cycle. The life cycle is broken down into four portions, manufacture, use, consolidation, and disposition. These four arbitrary elements allow them to focus on the ideal life cycle phases that every source should go through between manufacture and final disposition. As we examine the various phases of the sealed source life cycle, they pick specific examples and explore the adoption of the ideal life cycle model.

  17. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Peterson, Steve; Bush, Brian; Vimmerstedt, Laura

    2015-07-19

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  18. Heat rate and maximum load capability improvements through cycle isolation

    SciTech Connect (OSTI)

    Coons, K. [Coronado Generating Station, Saint Johns, AZ (United States); Dimmick, J.G. [Leak Detection Services, Inc., Annapolis, MD (United States)

    1995-06-01

    Major improvements in maximum load capability and gross turbine heat rate were obtained at Salt River Project`s Coronado Unit 1, resulting from work done during the Spring 1993 overhaul. Corrected maximum load increased by 13.1 MW -- from 403.8 MW prior to the overhaul compared to 416.9 MW after the overhaul. Corrected gross turbine heat rate was reduced 270 BTU/kWH -- from 7,920 BTU/kWH before the overhaul to 7,650 BTU/kWH after the overhaul. Of the work done, the repair of leaking valves had the largest impact on cycle performance. The reduction of cycle leakage accounted for an increase of 9.9 MW in maximum load capability and a reduction to gross turbine heat rate of 190 BTU. Weekly maximum load tests, which started in August 1992 with the installation of an on-line monitoring system, show that maximum load had decreased approximately 4 MW during the six months prior to the overhaul. During this time there were no significant changes in HP or IP efficiencies, or any other directly-measured cycle parameters. Therefore, this degradation was attributed to cycle isolation valve leakage. Acoustic emission leak detection methods were used to identify leaking valves prior to the outage. Of the 138 valves tested for leakage, 31 valves had medium to very large leaks. Of these 31 leaking valves identified, 30 were repaired or replaced.

  19. Current Comparison of Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Steven J. Piet; B. W. Dixon; A. Goldmann; R. N. Hill; J. J. Jacobson; G. E. Matthern; J. D. Smith; A. M. Yacout

    2006-03-01

    The nuclear fuel cycle includes mining, enrichment, nuclear power plants, recycling (if done), and residual waste disposition. The U.S. Advanced Fuel Cycle Initiative (AFCI) has four program objectives to guide research on how best to glue these pieces together, as follows: waste management, proliferation resistance, energy recovery, and systematic management/economics/safety. We have developed a comprehensive set of metrics to evaluate fuel cycle options against the four program objectives. The current list of metrics is long-term heat, long-term dose, radiotoxicity and weapons usable material. This paper describes the current metrics and initial results from comparisons made using these metrics. The data presented were developed using a combination of “static” calculations and a system dynamic model, DYMOND. In many cases, we examine the same issue both dynamically and statically to determine the robustness of the observations. All analyses are for the U.S. reactor fleet. This work aims to clarify many of the issues being discussed within the AFCI program, including Inert Matrix Fuel (IMF) versus Mixed Oxide (MOX) fuel, single-pass versus multi-pass recycling, thermal versus fast reactors, and the value of separating cesium and strontium. The results from a series of dynamic simulations evaluating these options are included in this report. The model interface includes a few “control knobs” for flying or piloting the fuel cycle system into the future. The results from the simulations show that the future is dark (uncertain) and that the system is sluggish with slow time response times to changes (i.e., what types of reactors are built, what types of fuels are used, and the capacity of separation and fabrication plants). Piloting responsibilities are distributed among utilities, government, and regulators, compounding the challenge of making the entire system work and respond to changing circumstances. We identify four approaches that would increase our chances of a sustainable fuel cycle system: (1) have a recycle strategy that could be implemented before the 2030-2050 approximate period when current reactors retire so that replacement reactors fit into the strategy, (2) establish an option such as multi-pass blended-core IMF as a downward Pu control knob and accumulate waste management benefits early, (3) establish fast reactors with flexible conversion ratio as a future control knob that slowly becomes available if/when fast reactors are added to the fleet, and (4) expand exploration of heterogeneous assemblies and cores, which appear to have advantages such as increased agility. Initial results suggest multi-pass full-core MOX appears to be a less effective way than multi-pass blended core IMF to manage the fuel cycle system because it requires higher TRU throughput while accruing waste management benefits at a slower rate. Single-pass recycle approaches for LWRs do not meet AFCI program objectives and could be considered a “dead end.” We did not study the Very High Temperature Reactor (VHTR). Fast reactors appear to be effective options but a significant number of fast reactors must be deployed before the benefit of such strategies can be observed.

  20. Development and proof-testing of advanced absorption refrigeration cycle concepts. Report on Phases 1 and 1A

    SciTech Connect (OSTI)

    Modahl, R.J.; Hayes, F.C. [Trane Co., La Crosse, WI (United States). Applied Unitary/Refrigeration Systems Div.

    1992-03-01

    The overall objectives of this project are to evaluate, develop, and proof-test advanced absorption refrigeration cycles that are applicable to residential and commercial heat pumps for space conditioning. The heat pump system is to be direct-fired with natural gas and is to use absorption working fluids whose properties are known. Target coefficients of performance (COPs) are 1.6 at 47{degrees}F and 1.2 at 17{degrees} in the heating mode, and 0.7 at 95{degree}F in the cooling mode, including the effect of flue losses. The project is divided into three phases. Phase I entailed the analytical evaluation of advanced cycles and included the selection of preferred concepts for further development. Phase II involves the development and testing of critical components and of a complete laboratory breadboard version of the selected system. Phase III calls for the development of a prototype unit and is contingent on the successful completion of Phase II. This report covers Phase I work on the project. In Phase 1, 24 advanced absorption cycle/fluid combinations were evaluated, and computer models were developed to predict system performance. COP, theoretical pump power, and internal heat exchange were calculated for each system, and these calculations were used as indicators of operating and installed costs in order to rank the relative promise of each system. The highest ranking systems involve the cycle concept of absorber/generator heat exchange, generator heat exchanger/absorber heat exchange, regeneration, and resorption/desorption, in combination with the NH{sub 3}/H{sub 2}O/LiBr ternary absorption fluid mixture or with the NH{sub 3}/H{sub 2}O binary solution. Based upon these conclusions, the recommendation was made to proceed to Phase II, the laboratory breadboard proof-of- concept.