Powered by Deep Web Technologies
Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS  

SciTech Connect

This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrologic properties, flow and transport. The mountain-scale THM model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The THM model focuses on evaluating the changes in UZ flow fields arising out of thermal stress and rock deformation during and after the thermal period (the period during which temperatures in the mountain are significantly higher than ambient temperatures).

Y.S. Wu

2005-08-24T23:59:59.000Z

2

Coupled Electromagnetic and Thermal Modeling of Microwave Tissue Processing  

E-Print Network (OSTI)

This study deals with 3D finite element modeling of microwave tissue processing using Comsol software 4.0. Maxwell’s equations are coupled with heat conduction equation to determine electromagnetic field distribution and temperature profile within tissue sample in a reagent inside a domestic microwave oven. The microwave power generation term is calculated. Also, temperature distribution obtained is compared with experimental point measurements recorded in the centre of the tissue using a shielded K type thermocouple. Good agreement is found between numerical and experimental data. The effect of size of both reagent and tissue as well as tissue type on microwave heating patterns within tissue sample is investigated. Studies shows that the reagent volume has greater effect than other factors. The results of the study is considered as a basic foundation for development of coupled electromagnetic thermal models of microwave heating of tissue specimens. The model assists in choosing appropriate process parameters for achieving uniform temperature distribution within tissue specimen.

Osama A Hassan; Ahmed H K; Il Ences; Ahmed M El Bialy

2013-01-01T23:59:59.000Z

3

Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal  

Science Conference Proceedings (OSTI)

As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.

Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

2010-08-31T23:59:59.000Z

4

Report on Modeling Coupled Processes in the Near Field of a Clay...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on Modeling Coupled Processes in the Near Field of a Clay Repository Clayshale has been considered as potential host rock for geological disposal of high-level...

5

Report on Modeling Coupled Processes in the Near Field of a Clay Repository  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Modeling Coupled Processes in the Near Field of a Clay on Modeling Coupled Processes in the Near Field of a Clay Repository Report on Modeling Coupled Processes in the Near Field of a Clay Repository Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world. Coupled thermal, hydrological, mechanical, and chemical (THMC) processes have a significant impact on the long-term safety of a clay repository. This report documents results from three R&D activities: (1) implementation and validation of constitutive relationships, (2) development of a discrete fracture network (DFN) model for investigating coupled processes in the excavation damaged zone, and (3) development of a THM model for the Full-Scale Emplacement Experiment tests at Mont Terri, Switzerland, for the

6

MASSIVELY PARALLEL FULLY COUPLED IMPLICIT MODELING OF COUPLED THERMAL-HYDROLOGICAL-MECHANICAL PROCESSES FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIRS  

SciTech Connect

Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing) to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid system and our ability to reliably predict how reservoirs behave under stimulation and production. In order to increase our understanding of how reservoirs behave under these conditions, we have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a continuum multiphase flow and heat transport model. In DEM simulations, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external load is applied. DEM models have been applied to a very wide range of fracturing processes from the molecular scale (where thermal fluctuations play an important role) to scales on the order of 1 km or greater. In this approach, the continuum flow and heat transport equations are solved on an underlying fixed finite element grid with evolving porosity and permeability for each grid cell that depends on the local structure of the discrete element network (such as DEM particle density). The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms and fractures. Such deformation/fracturing in turn changes the permeability, which again changes the evolution of fluid pressure, coupling the two phenomena. The intimate coupling between fracturing and fluid flow makes the meso-scale DEM simulations necessary, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be discussed.

Robert Podgorney; Hai Huang; Derek Gaston

2010-02-01T23:59:59.000Z

7

Baroclinic Adjustment in an Atmosphere–Ocean Thermally Coupled Model: The Role of the Boundary Layer Processes  

Science Conference Proceedings (OSTI)

Baroclinic eddy equilibration and the roles of different boundary layer processes in limiting the baroclinic adjustment are studied using an atmosphere–ocean thermally coupled model. Boundary layer processes not only affect the dynamical ...

Yang Zhang; Peter H. Stone

2011-11-01T23:59:59.000Z

8

Coupled modeling of groundwater flow solute transport, chemical reactions and microbial processes in the 'SP' island  

Science Conference Proceedings (OSTI)

The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behavior and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by /Banwart et al, 1995/. Later, /Banwart et al, 1999/ presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by /Molinero, 2000/ who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulfate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of /Molinero, 2000/ and extends the preliminary microbial model of /Zhang, 2001/ by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfate concentration, thus adding additional evidence for the possibility of organic matter oxidation as the main source of bicarbonate. Model results indicate that pH and Eh are relatively stable. The dissolution-precipitation trends of hematite, pyrite and calcite also coincide with those indicated by the conceptual model. A thorough sensitivity analysis has been performed for the most relevant microbial parameters as well as for initial and boundary POC and DOC concentrations. The results of such analysis indicate that computed concentrations of bicarbonate, sulfate and DOC are sensitive to most of the microbial parameters, including specific growth rates, half-saturation constants, proportionality coefficients and yield coefficients. Model results, however, are less sensitive to the yield coefficient of DOC to iron-reducer bacteria. The sensitivity analysis indicates that changes in fermentation microbial parameters affect the growth of the iron-reducer, thus confirming the interconnection of both microbial processes. Computed concentrations of bicarbonate and sulfate are found to be sensitive to changes in the initial concentration of POC and the boundary concentration of DOC, but they lack sensitivity to the initial concentration of DOC and the boundary concentration of POC. The explanation for such result is related to the fact that POC has a low mobility due to its large molecular weight. DOC, however, can migrate downwards. Although a coupled hydro-bio-geochemical 1-D model can reproduce the observed ''unexpected'' increase of concentrations of bicarbonate and sulfate at a depth of 70 m, further modeling work is required in order to obtain a similar conclusion under the more realistic two dimensional conditions of the fracture zone.

Samper, Javier; Molinero, Jorg; Changbing, Yang; Zhang, Guoxiang

2003-12-01T23:59:59.000Z

9

3D Modeling of Coupled Rock Deformation and Thermo-Poro-Mechanical Processes in Fractures  

E-Print Network (OSTI)

Problems involving coupled thermo-poro-chemo-mechanical processes are of great importance in geothermal and petroleum reservoir systems. In particular, economic power production from enhanced geothermal systems, effective water-flooding of petroleum reservoirs, and stimulation of gas shale reservoirs are significantly influenced by coupled processes. During such procedures, stress state in the reservoir is changed due to variation in pore fluid pressure and temperature. This can cause deformation and failure of weak planes of the formation with creation of new fractures, which impacts reservoir response. Incorporation of geomechanical factor into engineering analyses using fully coupled geomechanics-reservoir flow modeling exhibits computational challenges and numerical difficulties. In this study, we develop and apply efficient numerical models to solve 3D injection/extraction geomechanics problems formulated within the framework of thermo-poro-mechanical theory with reactive flow. The models rely on combining Displacement Discontinuity (DD) Boundary Element Method (BEM) and Finite Element Method (FEM) to solve the governing equations of thermo-poro-mechanical processes involving fracture/reservoir matrix. The integration of BEM and FEM is accomplished through direct and iterative procedures. In each case, the numerical algorithms are tested against a series of analytical solutions. 3D study of fluid injection and extraction into the geothermal reservoir illustrates that thermo-poro-mechanical processes change fracture aperture (fracture conductivity) significantly and influence the fluid flow. Simulations that consider joint stiffness heterogeneity show development of non-uniform flow paths within the crack. Undersaturated fluid injection causes large silica mass dissolution and increases fracture aperture while supersaturated fluid causes mineral precipitation and closes fracture aperture. Results show that for common reservoir and injection conditions, the impact of fully developed thermoelastic effect on fracture aperture tend to be greater compare to that of poroelastic effect. Poroelastic study of hydraulic fracturing demonstrates that large pore pressure increase especially during multiple hydraulic fracture creation causes effective tensile stress at the fracture surface and shear failure around the main fracture. Finally, a hybrid BEFEM model is developed to analyze stress redistribution in the overburden and within the reservoir during fluid injection and production. Numerical results show that fluid injection leads to reservoir dilation and induces vertical deformation, particularly near the injection well. However, fluid withdrawal causes reservoir to compact. The Mandel-Cryer effect is also successfully captured in numerical simulations, i.e., pore pressure increase/decrease is non-monotonic with a short time values that are above/below the background pore pressure.

Rawal, Chakra

2012-05-01T23:59:59.000Z

10

Model of the Regional Coupled Earth system (MORCE): Application to process and climate studies in vulnerable regions  

Science Conference Proceedings (OSTI)

The vulnerability of human populations and natural systems and their ability to adapt to extreme events and climate change vary with geographic regions and populations. Regional climate models (RCM), composed by an atmospheric component coupled to a ... Keywords: CORDEX, ChArMeX, Climate modeling, HyMeX, Impact studies, MORCE platform, MerMeX, Mesoscale process, Regional Earth system

Philippe Drobinski; Alesandro Anav; Cindy Lebeaupin Brossier; Guillaume Samson; Marc Stéfanon; Sophie Bastin; Mélika Baklouti; Karine Béranger; Jonathan Beuvier; Romain Bourdallé-Badie; Laure Coquart; Fabio D'Andrea; Nathalie de Noblet-Ducoudré; Frédéric Diaz; Jean-Claude Dutay; Christian Ethe; Marie-Alice Foujols; Dmitry Khvorostyanov; Gurvan Madec; Martial Mancip; Sébastien Masson; Laurent Menut; Julien Palmieri; Jan Polcher; Solène Turquety; Sophie Valcke; Nicolas Viovy

2012-07-01T23:59:59.000Z

11

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics Coupled Thermal-Hydrological-Mechanical Processes...

12

A Process-Oriented Small Lake Scheme for Coupled Climate Modeling Applications  

Science Conference Proceedings (OSTI)

A one-dimensional dynamic lake model is presented as a candidate for simulating small unresolved lakes within the land surface scheme of a regional or global climate model. This model is based largely on well-established process algorithms with ...

Murray D. MacKay

2012-12-01T23:59:59.000Z

13

Two-dimensional modeling of high plasma density inductively coupled sources for materials processing  

SciTech Connect

Inductively coupled plasma sources are being developed to address the need for high plasma density (10[sup 11]--10[sup 12] cm[sup [minus]3]), low pressure (a few to 10--20 mTorr) etching of semiconductor materials. One such device uses a flat spiral coil of rectangular cross section to generate radio-frequency (rf) electric fields in a cylindrical plasma chamber, and capacitive rf biasing on the substrate to independently control ion energies incident on the wafer. To investigate these devices we have developed a two-dimensional hybrid model consisting of electromagnetic, electron Monte Carlo, and hydrodynamic modules; and an off line plasma chemistry Monte Carlo simulation. The results from the model for plasma densities, plasma potentials, and ion fluxes for Ar, O[sub 2], Ar/CF[sub 4]/O[sub 2] gas mixtures will be presented.

Ventzek, P.L.G.; Hoekstra, R.J.; Kushner, M.J. (Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States))

1994-01-01T23:59:59.000Z

14

The Challenges to Coupling Dynamic Geospatial Models  

SciTech Connect

Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.

Goldstein, N

2006-06-23T23:59:59.000Z

15

Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs  

Science Conference Proceedings (OSTI)

The connectivity and accessible surface area of flowing fractures, whether natural or man-made, is possibly the single most important factor, after temperature, which determines the feasibility of an Enhanced Geothermal System (EGS). Rock deformation and in-situ stress changes induced by injected fluids can lead to shear failure on preexisting fractures which can generate microseismic events, and also enhance the permeability and accessible surface area of the geothermal formation. Hence, the ability to accurately model the coupled thermal-hydrologic-mechanical (THM) processes in fractured geological formations is critical in effective EGS reservoir development and management strategies. The locations of the microseismic events can serve as indicators of the zones of enhanced permeability, thus providing vital information for verification of the coupled THM models. We will describe a general purpose computational code, FEHM, developed for this purpose, that models coupled THM processes during multiphase fluid flow and transport in fractured porous media. The code incorporates several models of fracture aperture and stress behavior combined with permeability relationships. We provide field scale examples of applications to geothermal systems to demonstrate the utility of the method.

Kelkar, Sharad [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

16

An experimental study and modeling of Transformer-Coupled Toroidal Plasma processing of materials  

E-Print Network (OSTI)

The Transformer Coupled Toroidal Plasma (TCTP) source uses a high power density plasma formed in a toroidal-shaped chamber by transformer coupling using a magnetic core. The objectives of the thesis are (1) to characterize ...

Bai, Bo, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

17

Towards the Prediction of Decadal to Centennial Climate Processes in the Coupled Earth System Model  

SciTech Connect

In this proposal, we have made major advances in the understanding of decadal and long term climate variability. (a) We performed a systematic study of multidecadal climate variability in FOAM-LPJ and CCSM-T31, and are starting exploring decadal variability in the IPCC AR4 models. (b) We develop several novel methods for the assessment of climate feedbacks in the observation. (c) We also developed a new initialization scheme DAI (Dynamical Analogue Initialization) for ensemble decadal prediction. (d) We also studied climate-vegetation feedback in the observation and models. (e) Finally, we started a pilot program using Ensemble Kalman Filter in CGCM for decadal climate prediction.

Zhengyu Liu, J. E. Kutzbach, R. Jacob, C. Prentice

2011-12-05T23:59:59.000Z

18

The ECPC Coupled Prediction Model  

Science Conference Proceedings (OSTI)

This paper presents a new Experimental Climate Prediction Center (ECPC) Coupled Prediction Model (ECPM). The ECPM includes the Jet Propulsion Laboratory (JPL) version of the Massachusetts Institute of Technology (MIT) ocean model coupled to the ...

E. Yulaeva; M. Kanamitsu; J. Roads

2008-01-01T23:59:59.000Z

19

CLMT2 user's guide: A Coupled Model for Simulation of Hydraulic Processes from Canopy to Aquifer Version 1.0  

E-Print Network (OSTI)

equations  for  some  soil  hydraulic properties.  Water are capable to simulate hydraulic processes from  top of Model for Simulation of Hydraulic Processes from Canopy to 

Pan, Lehua

2006-01-01T23:59:59.000Z

20

Synthesis report on thermally driven coupled processes  

SciTech Connect

The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of material documenting the conceptual and mathematical basis for modeling coupled phenomena. The actual models and codes, and their specific empirical and theoretical bases, will be documented in a separate report to be delivered in FY99.

Hardin, E.L.

1997-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Simple Coupled Midlatitude Climate Models  

Science Conference Proceedings (OSTI)

A set of simple analytical models is presented and evaluated for interannual to decadal coupled ocean–atmosphere modes at midlatitudes. The atmosphere and ocean are each in Sverdrup balance at these long timescales. The atmosphere’s temperature ...

Lynne D. Talley

1999-08-01T23:59:59.000Z

22

Coupling Aerosol-Cloud-Radiative Processes in the WRF-Chem Model: Investigating the Radiative Impact of Elevated Point Sources  

Science Conference Proceedings (OSTI)

The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number) to an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs) and produced clouds of comparable thickness to observations at approximately the proper times and places. The model slightly overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest resolution model domain (the extent of which corresponds to the typical size of a single GCM grid cell) and temporally over a three day analysis period, total rainfall in the sensitivity simulation increased by 31% over that in the baseline simulation. Fewer optically thin clouds, arbitrarily defined as a cloud exhibiting an optical depth less than 1, formed in the sensitivity simulation. Domain-averaged AODs dropped from 0.46 in the baseline simulation to 0.38 in the sensitivity simulation. The overall net effect of additional aerosols attributable to primary particulates and aerosol precursors from point source emissions above the surface was a domain-averaged reduction of 5 W m-2 in mean daytime downwelling shortwave radiation.

Chapman, Elaine G.; Gustafson, William I.; Easter, Richard C.; Barnard, James C.; Ghan, Steven J.; Pekour, Mikhail S.; Fast, Jerome D.

2009-02-01T23:59:59.000Z

23

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics The report addresses granular salt reconsolidation from three vantage points: laboratory testing, modeling, and petrofabrics. The experimental data 1) provide greater insight and understanding into the role of elevated temperature and pressure regimes on physical properties of reconsolidated crushed salt, 2) can supplement an existing database used to develop a reconsolidation constitutive model and 3) provide data for model evaluation. The constitutive model accounts for the effects of moisture through pressure solution and dislocation creep, with both terms dependent

24

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics The report addresses granular salt reconsolidation from three vantage points: laboratory testing, modeling, and petrofabrics. The experimental data 1) provide greater insight and understanding into the role of elevated temperature and pressure regimes on physical properties of reconsolidated crushed salt, 2) can supplement an existing database used to develop a reconsolidation constitutive model and 3) provide data for model evaluation. The constitutive model accounts for the effects of moisture through pressure solution and dislocation creep, with both terms dependent

25

MCT: Model Coupling Toolkit | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

MCT: Model Coupling Toolkit MCT: Model Coupling Toolkit MCT: Model Coupling Toolkit MCT is a set of open-source software tools for creating coupled models. MCT is fully parallel and can be used to couple message-passing parallel models to create a parallel coupled model. MCT is available as a small library and a set of Fortran90 modules. MCT provides model interoperability through a simple API. Two models that declare and use MCT datatypes can be coupled with a minimum of effort. MCT provides the following core coupling services: A component model registry Domain decomposition descriptors Communications schedulers for parallel MxN intercomponent data transfer and MxM intracomponent data redistribution A flexible and indexible (i.e., random-access) field data storage datatype A time averaging and accumulation buffer datatype

26

Coupled transport processes in semipermeable media  

DOE Green Energy (OSTI)

A numerical simulator has been developed to investigate the effects of coupled processes on heat and mass transport in semipermeable media. The governing equations on which the simulator is based were derived using the thermodynamics of irreversible processes. The equations are nonlinear and have been solved numerically using the n-dimensional Newton's method. As an example of an application, the numerical simulator has been used to investigate heat and solute transport in the vicinity of a heat source buried in a saturated clay-like medium, in part to study solute transport in bentonite packing material surrounding a nuclear waste canister. The coupled processes considered were thermal filtration, thermal osmosis, chemical osmosis and ultrafiltration. In the simulations, heat transport by coupled processes was negligible compared to heat conduction, but pressure and solute migration were affected. Solute migration was retarded relative to the uncoupled case when only chemical osmosis was considered. When both chemical osmosis and thermal osmosis were included, solute migration was enhanced. 18 refs., 20 figs.

Jacobsen, J.S.; Carnahan, C.L.

1990-04-01T23:59:59.000Z

27

A 3D partial-equilibrium model to simulate coupled hydrogeological, microbiological, and geochemical processes in subsurface systems  

E-Print Network (OSTI)

of models following either the equilibrium [e.g., Walter et al., 1994; Yeh and Tripathi, 1989; Steefel, vi is the pore water velocity in the i-th direction, f denotes the porosity, qsk is the volumetric flux of water per unit volume of the aquifer (source/sink) and Csk is the concentration of the source

28

Coupled transport processes in semipermeable media  

DOE Green Energy (OSTI)

The thermodynamics of irreversible processes (TTIP) is used to derive governing equations and phenomenological equations for transport processes and chemical reactions in water-saturated semipermeable media. TTIP is based on three fundamental postulates. The first postulate, the assumption of local equilibrium, allows the formulation of balance equations for entropy. These equations are the bases for the derivation of governing equations for the thermodynamic variables, temperature, pressure, and composition. The governing equations involve vector fluxes of heat and mass and scalar rates of chemical reactions; in accordance with the second postulate of TTIP, these fluxes and rates are related, respectively, to all scalar driving forces (gradients of thermodynamic variables) acting within the system. The third postulate of TTIP states equality (the Onsager reciprocal relations) between certain of the phenomenological coefficients relating forces and fluxes. The description by TTIP of a system undergoing irreversible processes allows consideration of coupled transport processes such as thermal osmosis, chemical osmosis, and ultrafiltration. The coupled processes can make significant contributions to flows of mass and energy in slightly permeable, permselective geological materials such as clays and shales.

Carnahan, C.L.; Jacobsen, J.S.

1990-04-01T23:59:59.000Z

29

MCT--The Model Coupling Toolkit  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Coupling Toolkit Model Coupling Toolkit MCT is a set of open-source software tools for creating coupled models. MCT is fully parallel and can be used to couple message-passing parallel models to create a parallel coupled model. MCT is available as a small library and a set of Fortran90 modules. MCT provides model interoperability through a simple API. Two models that declare and use MCT datatypes can be coupled with a minimum of effort. MCT provides the following core coupling services: a component model registry domain decomposition descriptors communications schedulers for parallel MxN intercomponent data transfer and MxM intracomponent data redistribution a flexible and indexible (i.e., random-access) field data storage datatype a time averaging and accumulation buffer datatype

30

Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues  

SciTech Connect

Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm{sup 2} with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals. The main advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Although significant work from the experimental side has been contributed to explore the optimum conditions of application of the treatments and to assess their ultimate capability to provide enhanced mechanical behaviour to work-pieces of typical materials, only limited attempts have been developed in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, a review on the physical issues dominating the development of LSP processes from a high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and practical results at laboratory scale on the application of the technique to different materials.

Ocana, J. L.; Morales, M.; Molpeceres, C.; Porro, J. A. [Centro Laser UPM. Universidad Politecnica de Madrid, Campus Sur UPM. Edificio La Arboleda. Ctra. de Valencia, km. 7.3. 28031 Madrid (Spain)

2010-10-08T23:59:59.000Z

31

Weak coupling limits in a stochastic model of heat conduction  

E-Print Network (OSTI)

We study the Brownian momentum process, a model of heat conduction, weakly coupled to heat baths. In two different settings of weak coupling to the heat baths, we study the non-equilibrium steady state and its proximity to the local equilibrium measure in terms of the strength of coupling. For three and four site systems, we obtain the two-point correlation function and show it is generically not multilinear.

Redig, Frank

2011-01-01T23:59:59.000Z

32

OVERVIEW OF THE COUPLED MODEL INTERCOMPARISON PROJECT  

Science Conference Proceedings (OSTI)

The Coupled Model Intercomparison Project (CMIP) involves study and intercomparison of multi-model simulations of present and future climate. The simulations of the future use idealized forcing in increase is compounded which CO2 1% yr?1 until it ...

Gerald A. Meehl; Curt Covey; Bryant McAvaney; Mojib Latif; Ronald J. Stouffer

2005-01-01T23:59:59.000Z

33

Modeling resource-coupled computations  

Science Conference Proceedings (OSTI)

Increasingly massive datasets produced by simulations beg the question How will we connect this data to the computational and display resources that support visualization and analysis? This question is driving research into new approaches to allocating ... Keywords: coupled computations, data intensive computing, high-performance computing, simulation

Mark Hereld; Joseph A. Insley; Eric C. Olson; Michael E. Papka; Thomas D. Uram; Venkatram Vishwanath

2009-11-01T23:59:59.000Z

34

Coupled Mesh Lagrangian/ALE Modeling:  

National Nuclear Security Administration (NNSA)

Coupled Mesh Lagrangian/ALE Modeling: Coupled Mesh Lagrangian/ALE Modeling: Opportunities and Challenges A. C. Robinson, * J. E. Bishop*, D. M. Hensinger, * T. E. Voth * M. K. Wong * * Sandia National Laboratories, New Mexico, 87185 We describe two methods for coupled mesh Lagrangian/ALE modeling where one mesh is treated as a Lagrangian mesh while the other is ALE. Lagrangian contact modeling is implemented in the first method to couple the two meshes. In the second method an overlapping grid algorithm that requires mapping of the information from one grid to another has been implemented. We review current experience with these two technologies. Introduction Lagrangian modeling is often preferred whenever the kinematics of the continuum flow permit because of its ability to precisely model discrete features which may be

35

Analysis of the adsorption process and of desiccant cooling systems: a pseudo- steady-state model for coupled heat and mass transfer. [DESSIM, DESSIM2, DESSIM4  

DOE Green Energy (OSTI)

A computer model to simulate the adiabatic adsorption/desorption process is documented. Developed to predict the performance of desiccant cooling systems, the model has been validated through comparison with experimental data for single-blow adsorption and desorption. A literature review on adsorption analysis, detailed discussions of the adsorption process, and an initial assessment of the potential for performance improvement through advanced component development are included.

Barlow, R.S.

1982-12-01T23:59:59.000Z

36

Decadal Oscillations in a Simple Coupled Model  

Science Conference Proceedings (OSTI)

To study the dynamics that may lead to decadal oscillations in the North Pacific a simple coupled model is developed. The ocean is based on the linear, potential vorticity equation for baroclinic planetary waves. The atmosphere is reduced to a ...

Matthias Münnich; Mojib Latif; Stephan Venzke; Ernst Maier-Reimer

1998-12-01T23:59:59.000Z

37

Modeling the steady-state ISV (in situ vitrification) process: A 3-D finite element analysis of coupled thermal-electric fields  

Science Conference Proceedings (OSTI)

Steady-state modeling considerations for simulating the in situ vitrification (ISV) process are documented based upon the finite element numerical approach. Recommendations regarding boundary condition specifications and mesh discretization are presented. The effects of several parameters on the ISV process response are calculated and the results discussed. The parameters investigated include: (1) electrode depth, (2) ambient temperature, (3) supplied current, (4) electrical conductivity, (5) electrode separation, and (6) soil/waste characterization. 13 refs., 29 figs., 1 tab.

Langerman, M.A.

1990-09-01T23:59:59.000Z

38

Near Field Environment Process Model Report  

SciTech Connect

Although there are uncertainties and issues of heterogeneities in properties, the overall binary coupling between thermal, hydrological, chemical, and mechanical processes in the near-field environment is understood, as discussed above. Ternary coupling among these processes has been investigated experimentally and computationally with good agreement. Simultaneous coupling of all four types of processes has not yet been addressed, but multiple combinations of ternary couplings have been investigated. Based on these considerations, THCM processes are not inconsistent with the treatment of repository performance in TSPA. Ranges of parameters are used in TSPA to account for uncertainty and investigate the sensitivity to specific processes and events. Ongoing work will further reduce these uncertainties and increase confidence in coupled-process models that must predict responses over geologic time scales.

2001-01-05T23:59:59.000Z

39

Numerical Simulation of Thermomechanical Processes Coupled ...  

Science Conference Proceedings (OSTI)

Atomistic Simulation Studies of Materials Interfaces: Recent Insights and .... Thermochemical Models and Phase Equilibria of Urania Rare Earth Fluorite Phases.

40

Solar information process model  

DOE Green Energy (OSTI)

The MITRE Solar Information Process Model (SIP) is a computerized model that simulates information processes in solar markets. As such, it represents a useful tool in the formulation of solar information outreach programs. For each market investigated, SIP model outputs include prioritized listings of the information needs of key decision makers and other strategically important market participants, and related information flow paths. This report provides macro-descriptions of the model and its logic together with a detailed illustrative example of its application. It also presents the findings and conclusions resulting from utilization of the model in the analysis of information processes in eight solar markets within the residential, commercial and agricultural sectors.

Hewett, R.; Spewak, P.

1978-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

An Analysis of Convectively Coupled Kelvin Waves in 20 WCRP CMIP3 Global Coupled Climate Models  

Science Conference Proceedings (OSTI)

Output from 20 coupled global climate models is analyzed to determine whether convectively coupled Kelvin waves exist in the models, and, if so, how their horizontal and vertical structures compare to observations. Model data are obtained from ...

Katherine H. Straub; Patrick T. Haertel; George N. Kiladis

2010-06-01T23:59:59.000Z

42

Decision Superiority Process Model  

Science Conference Proceedings (OSTI)

Decision superiority is achieved not just by acquiring and assessing the right information, but by translating it into actionable knowledge that can be exploited in the decision making process. Achieving decision superiority is necessary, because the ... Keywords: context-goal alternatives, decision making process, decision superiority, process model

Barbara Sorensen; Azad M. Madni; Carla C. Madni

2008-12-01T23:59:59.000Z

43

A Hybrid Coupled General Circulation Model for El Niño Studies  

Science Conference Proceedings (OSTI)

A model is developed for tropical air–sea interaction studies, which is intermediate in complexity between the large coupled general circulation models (coupled GCMs) coming into use and the simple two-level models with which pioneering El Niño–...

J. David Neelin

1990-03-01T23:59:59.000Z

44

Coupled hydro-mechanical processes in crytalline rock and in induratedand plastic clays: A comparative discussion  

E-Print Network (OSTI)

at Grimsel. In Coupled Thermo-Hydro- Mechanical-ChemicalCOUPLED HYDRO-MECHANICAL PROCESSES IN CRYTALLINE ROCK AND IN

Tsang, Chin-Fu; Blumling, Peter; Bernier, Frederic

2008-01-01T23:59:59.000Z

45

Biosphere Process Model Report  

Science Conference Proceedings (OSTI)

To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor. Collectively, the potential human receptor and exposure pathways form the biosphere model. More detailed technical information and data about potential human receptor groups and the characteristics of exposure pathways have been developed in a series of AMRs and Calculation Reports.

J. Schmitt

2000-05-25T23:59:59.000Z

46

Anomalous diffusion and scaling in coupled stochastic processes  

SciTech Connect

Inspired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin processes with the friction coefficient depending on the state of a similar, unobserved, process. Integrating out the latter, we derive the Pocker-Planck the friction coefficient of the first depends on the state of the second. Integrating out the latter, we derive the Focker-Planck equation for the probability distribution of the former. This has the fonn of diffusion equation with time-dependent diffusion coefficient, resulting in an anomalous diffusion. The diffusion exponent can not be predicted using a simple scaling argument, and anomalous scaling appears as well. The diffusion exponent of the Weiss-Havlin comb model is derived as a special case, and the same exponent holds even for weakly coupled processes. We compare our theoretical predictions with numerical simulations and find an excellent agreement. The findings caution against treating biochemical systems with unobserved dynamical degrees of freedom by means of standandard, diffusive Langevin descritpion.

Bel, Golan [Los Alamos National Laboratory; Nemenman, Ilya [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

47

Foam process models.  

Science Conference Proceedings (OSTI)

In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

Moffat, Harry K.; Noble, David R.; Baer, Thomas A. (Procter & Gamble Co., West Chester, OH); Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

2008-09-01T23:59:59.000Z

48

Final Project Report - Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloriethylene Co-Metabolism: Co-Metabolic Enzyme Activity Probes and Modeling Co-Metabolism and Attenuation  

Science Conference Proceedings (OSTI)

Trichloroethene (TCE) (also known as trichloroethylene) is a common contaminant in groundwater. TCE is regulated in drinking water at a concentration of 5 µg/L, and a small mass of TCE has the potential to contaminant large volumes of water. The physical and chemical characteristics of TCE allow it to migrate quickly in most subsurface environments, and thus large plumes of contaminated groundwater can form from a single release. The migration and persistence of TCE in groundwater can be limited by biodegradation. TCE can be biodegraded via different processes under either anaerobic or aerobic conditions. Anaerobic biodegradation is widely recognized, but aerobic degradation is less well recognized. Under aerobic conditions, TCE can be oxidized to non hazardous conditions via cometabolic pathways. This study applied enzyme activity probes to demonstrate that cometabolic degradation of TCE occurs in aerobic groundwater at several locations, used laboratory microcosm studies to determine aerobic degradation rates, and extrapolated lab-measured rates to in situ rates based on concentrations of microorganisms with active enzymes involved in cometabolic TCE degradation. Microcosms were constructed using basalt chips that were inoculated with microorganisms to groundwater at the Idaho National Laboratory Test Area North TCE plume by filling a set of Flow-Through In Situ Reactors (FTISRs) with chips and placing the FTISRs into the open interval of a well for several months. A parametric study was performed to evaluate predicted degradation rates and concentration trends using a competitive inhibition kinetic model, which accounts for competition for enzyme active sites by both a growth substrate and a cometabolic substrate. The competitive inhibition kinetic expression was programmed for use in the RT3D reactive transport package. Simulations of TCE plume evolution using both competitive inhibition kinetics and first order decay were performed.

Starr, Robert C; Orr, Brennon R; Lee, M Hope; Delwiche, Mark

2010-02-26T23:59:59.000Z

49

Coupled Model Simulation of Snowfall Events over the Black Hills  

Science Conference Proceedings (OSTI)

Numerical simulations of two snowfall events over the Black Hills of South Dakota are made to demonstrate the use and potential of a coupled atmospheric and land surface model. The Coupled Atmospheric–Hydrologic Model System was used to simulate ...

J. Wang; M. R. Hjelmfelt; W. J. Capehart; R. D. Farley

2003-06-01T23:59:59.000Z

50

Surface Energy Fluxes and Coupled Variability in the Tropics of a Coupled General Circulation Model  

Science Conference Proceedings (OSTI)

The effect of wind-evaporative feedbacks upon ENSO, and the coupling of Pacific and Indian Ocean variability, is considered based upon a 110-yr simulation from a coupled ocean and atmosphere general circulation model.

R. L. Miller; X. Jiang

1996-07-01T23:59:59.000Z

51

Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevad a  

E-Print Network (OSTI)

Fractured Rock of Yucca Mountain, Nevada: Heterogeneity andfractured rocks of Yucca Mountain have been extensivelyHydrothermal Flow at Yucca Mountain, Part I: Modeling and

Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

2008-01-01T23:59:59.000Z

52

Dynamics and Thermodynamics of a Warming Event in a Coupled Tropical Atmosphere–Ocean Model  

Science Conference Proceedings (OSTI)

A simple coupled ocean–atmosphere model, similar to that of Zebiak and Cane, is used to examine the dynamic and thermodynamic processes associated with El Niño/Southern Oscillation (ENSO). The model is run for 300 years. The interannual ...

David S. Battisti

1988-10-01T23:59:59.000Z

53

Examining the Interaction of Growing Crops with Local Climate Using a Coupled Crop–Climate Model  

Science Conference Proceedings (OSTI)

This paper examines to what extent crops and their environment should be viewed as a coupled system. Crop impact assessments currently use climate model output offline to drive process-based crop models. However, in regions where local climate is ...

Tom Osborne; Julia Slingo; David Lawrence; Tim Wheeler

2009-03-01T23:59:59.000Z

54

Gas network model allows full reservoir coupling  

Science Conference Proceedings (OSTI)

The gas-network flow model (Gasnet) developed for and added to an existing Qatar General Petroleum Corp. (OGPC) in-house reservoir simulator, allows improved modeling of the interaction among the reservoir, wells, and pipeline networks. Gasnet is a three-phase model that is modified to handle gas-condensate systems. The numerical solution is based on a control volume scheme that uses the concept of cells and junctions, whereby pressure and phase densities are defined in cells, while phase flows are defined at junction links. The model features common numerical equations for the reservoir, the well, and the pipeline components and an efficient state-variable solution method in which all primary variables including phase flows are solved directly. Both steady-state and transient flow events can be simulated with the same tool. Three test cases show how the model runs. One case simulates flow redistribution in a simple two-branch gas network. The second simulates a horizontal gas well in a waterflooded gas reservoir. The third involves an export gas pipeline coupled to a producing reservoir.

Methnani, M.M. [Qatar General Petroleum Corp., Doha (Qatar)

1998-02-23T23:59:59.000Z

55

Coupled Atmosphere–Biophysics–Hydrology Models for Environmental Modeling  

Science Conference Proceedings (OSTI)

The formulation and implementation of LEAF-2, the Land Ecosystem–Atmosphere Feedback model, which comprises the representation of land–surface processes in the Regional Atmospheric Modeling System (RAMS), is described. LEAF-2 is a prognostic ...

Robert L. Walko; Larry E. Band; Jill Baron; Timothy G. F. Kittel; Richard Lammers; Tsengdar J. Lee; Dennis Ojima; Roger A. Pielke Sr.; Chris Taylor; Christina Tague; Craig J. Tremback; Pier Luigi Vidale

2000-06-01T23:59:59.000Z

56

Coupled Model for Heat and Water Transport in a High Level Waste Repository  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coupled Model for Heat and Water Transport in a High Level Waste Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt This report summarizes efforts to simulate coupled thermal-hydrological-chemical (THC) processes occurring within a generic hypothetical high-level waste (HLW) repository in bedded salt; chemical processes of the system allow precipitation and dissolution of salt with elevated temperatures that drive water and water vapor flow around hot waste packages. Characterizing salt backfill processes is an important objective of the exercise. An evidence-based algorithm for mineral dehydration is also applied in the modeling. The Finite Element Heat and Mass transfer code (FEHM) is used to simulate coupled thermal,

57

Method of processing materials using an inductively coupled plasma  

DOE Patents (OSTI)

A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

Hull, D.E.; Bieniewski, T.M.

1987-04-13T23:59:59.000Z

58

A Quasi-Geostrophic Coupled Model (Q-GCM)  

Science Conference Proceedings (OSTI)

The design and implementation of a midlatitude basin-scale coupled climate model are described. The development of the model is motivated by the clear indications of important low-frequency midlatitude ocean variability in ocean-only models and ...

Andrew Mc C. Hogg; William K. Dewar; Peter D. Killworth; Jeffrey R. Blundell

2003-10-01T23:59:59.000Z

59

Vacillations in a Coupled Ocean–Atmosphere Model  

Science Conference Proceedings (OSTI)

Results are presented from a 35-year integration of a coupled ocean-atmosphere model. Both ocean and atmosphere are two-level, nonlinear primitive equations models. The global atmospheric model is forced by a steady, zonally symmetric Newtonian ...

Paul S. Schopf; Max J. Suarez

1988-02-01T23:59:59.000Z

60

NETL: Methane Hydrates - DOE/NETL Projects - THCM Coupled Model...  

NLE Websites -- All DOE Office Websites (Extended Search)

effort are to develop a truly coupled numerical model that addresses the complex thermo-hydro-chemo-mechanical (THCM) phenomena in hydrate-bearing sediments through incorporation...

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Atomic Scale Modeling of Point Defects in Materials: Coupling Ab ...  

Science Conference Proceedings (OSTI)

Presentation Title, Atomic Scale Modeling of Point Defects in Materials: Coupling Ab Initio and Elasticity ... Electrochemical Shock of Lithium Battery Materials.

62

Empirical Correction of a Coupled Land–Atmosphere Model  

Science Conference Proceedings (OSTI)

This paper investigates empirical strategies for correcting the bias of a coupled land–atmosphere model and tests the hypothesis that a bias correction can improve the skill of such models. The correction strategies investigated include 1) ...

Timothy DelSole; Mei Zhao; Paul A. Dirmeyer; Ben P. Kirtman

2008-11-01T23:59:59.000Z

63

Development of a Coupled Groundwater–Atmosphere Model  

Science Conference Proceedings (OSTI)

Complete models of the hydrologic cycle have gained recent attention as research has shown interdependence between the coupled land and energy balance of the subsurface, land surface, and lower atmosphere. PF.WRF is a new model that is a ...

Reed M. Maxwell; Julie K. Lundquist; Jeffrey D. Mirocha; Steven G. Smith; Carol S. Woodward; Andrew F. B. Tompson

2011-01-01T23:59:59.000Z

64

Antarctic Bottom Water Variability in a Coupled Climate Model  

Science Conference Proceedings (OSTI)

The natural variability of the Weddell Sea variety of Antarctic Bottom Water (AABW) is examined in a long-term integration of a coupled climate model. Examination of passive tracer concentrations suggests that the model AABW is predominantly ...

Agus Santoso; Matthew H. England

2008-09-01T23:59:59.000Z

65

Ocean Eddy Dynamics in a Coupled Ocean–Atmosphere Model  

Science Conference Proceedings (OSTI)

The role of mesoscale oceanic eddies is analyzed in a quasigeostrophic coupled ocean–atmosphere model operating at a large Reynolds number. The model dynamics are characterized by decadal variability that involves nonlinear adjustment of the ...

P. Berloff; W. Dewar; S. Kravtsov; J. McWilliams

2007-05-01T23:59:59.000Z

66

Strength of the Trilinear Higgs Boson Coupling in Technicolor Models  

E-Print Network (OSTI)

We discuss the strength of the trilinear Higgs boson coupling in technicolor (or composite) models in a model independent way. The coupling is determined as a function of a very general ansatz for the technicolor self-energy, and turns out to be equal or smaller than the one of the standard model Higgs boson depending on the dynamics of the theory. With this trilinear coupling we estimate the cross section for Higgs boson pair production at the LHC. This measurement is quite improbable in the case of a heavy standard model Higgs boson, but it will be even worse when this boson is dynamically generated. Typeset using REVTEX 1 I.

A. Doff; A. A. Natale

2005-01-01T23:59:59.000Z

67

Measuring extended Higgs sectors as a consistent free couplings model  

E-Print Network (OSTI)

Extended Higgs sectors appear in many models for physics beyond the Standard Model. Current Higgs measurements at the LHC are starting to significantly constrain them. We study their Higgs coupling patterns at tree level as well as including quantum corrections. Our benchmarks include a dark singlet-doublet extension and several two-doublet setups. Using SFitter we translate the current Higgs coupling measurements for one light Higgs state into their respective parameter spaces. Finally, we show how two-Higgs-doublet models can serve as a consistent ultraviolet completion of an assumed single Standard-Model-like Higgs boson with free couplings.

David Lopez-Val; Tilman Plehn; Michael Rauch

2013-08-08T23:59:59.000Z

68

Performance Analysis of a Multiprocessor Coupled Ice–Ocean Model for the Baltic Sea  

Science Conference Proceedings (OSTI)

Within the Swedish Regional Climate Modelling Programme (SWECLIM) a 3D coupled ice–ocean model for the Baltic Sea has been developed to simulate physical processes on timescales of hours to decades. The model code is based on the global ocean GCM ...

H. E. Markus Meier; Torgny Faxén

2002-01-01T23:59:59.000Z

69

Modeling coupled physics and biology in ocean straits  

E-Print Network (OSTI)

In this thesis, we conduct research toward understanding coupled physics-biology processes in ocean straits. Our focus is on new analytical studies and higher-order simulations of idealized dynamics that are relevant to ...

Burton, Lisa Janelle

2009-01-01T23:59:59.000Z

70

A Real Application of the Model Coupling Toolkit  

Science Conference Proceedings (OSTI)

The high degree of computational complexity of atmosphere and ocean general circulation models, land-surface models, and dynamical sea-ice models makes coupled climate modeling a grand-challenge problem in high-performance computing. On distributed-memory ...

Everest T. Ong; Jay Walter Larson; Robert L. Jacob

2002-04-01T23:59:59.000Z

71

Coupled Thermal-Chemical-Mechanical Modeling of Validation Cookoff Experiments  

DOE Green Energy (OSTI)

The cookoff of energetic materials involves the combined effects of several physical and chemical processes. These processes include heat transfer, chemical decomposition, and mechanical response. The interaction and coupling between these processes influence both the time-to-event and the violence of reaction. The prediction of the behavior of explosives during cookoff, particularly with respect to reaction violence, is a challenging task. To this end, a joint DoD/DOE program has been initiated to develop models for cookoff, and to perform experiments to validate those models. In this paper, a series of cookoff analyses are presented and compared with data from a number of experiments for the aluminized, RDX-based, Navy explosive PBXN-109. The traditional thermal-chemical analysis is used to calculate time-to-event and characterize the heat transfer and boundary conditions. A reaction mechanism based on Tarver and McGuire's work on RDX{sup 2} was adjusted to match the spherical one-dimensional time-to-explosion data. The predicted time-to-event using this reaction mechanism compares favorably with the validation tests. Coupled thermal-chemical-mechanical analysis is used to calculate the mechanical response of the confinement and the energetic material state prior to ignition. The predicted state of the material includes the temperature, stress-field, porosity, and extent of reaction. There is little experimental data for comparison to these calculations. The hoop strain in the confining steel tube gives an estimation of the radial stress in the explosive. The inferred pressure from the measured hoop strain and calculated radial stress agree qualitatively. However, validation of the mechanical response model and the chemical reaction mechanism requires more data. A post-ignition burn dynamics model was applied to calculate the confinement dynamics. The burn dynamics calculations suffer from a lack of characterization of the confinement for the flaw-dominated failure mode experienced in the tests. High-pressure burning rates are needed for more detailed post-ignition studies. Sub-models for chemistry, mechanical response and burn dynamics need to be validated against data from less complex experiments. The sub-models can then be used in integrated analysis for comparison with experimental data taken during integrated tests.

ERIKSON,WILLIAM W.; SCHMITT,ROBERT G.; ATWOOD,A.I.; CURRAN,P.D.

2000-11-27T23:59:59.000Z

72

Modelling of Slag Foaming Coupled with Decarburisation  

Science Conference Proceedings (OSTI)

ChemSheet as a Simulation Platform for Pyrometallurgical Processes ... Recent Developments in FactSage Thermochemical Software and Databases.

73

Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes  

DOE Green Energy (OSTI)

High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered.

Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

2007-04-01T23:59:59.000Z

74

How Well Do Coupled Models Simulate Today's Climate?  

Science Conference Proceedings (OSTI)

Information about climate and how it responds to increased greenhouse gas concentrations depends heavily on insight gained from numerical simulations by coupled climate models. The confidence placed in quantitative estimates of the rate and ...

Thomas Reichler; Junsu Kim

2008-03-01T23:59:59.000Z

75

Second Workshop on Coupling Technologies for Earth System Models  

Science Conference Proceedings (OSTI)

The Second Workshop on Coupling Technologies for Earth System Models (CW2013) was recently held at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. The goals of the workshop were to update participants on recent developments in ...

Rocky Dunlap; Mariana Vertenstein; Sophie Valcke; Tony Craig

76

Amazon Deforestation and Climate Change in a Coupled Model Simulation  

Science Conference Proceedings (OSTI)

The effects of Amazon deforestation on climate change are investigated using twin numerical experiments of an atmospheric general circulation model (AGCM) with prescribed global sea surface temperature and the same AGCM coupled to an ocean GCM (...

Paulo Nobre; Marta Malagutti; Domingos F. Urbano; Roberto A. F. de Almeida; Emanuel Giarolla

2009-11-01T23:59:59.000Z

77

Climate Drift in a Coupled Land–Atmosphere Model  

Science Conference Proceedings (OSTI)

A coupled land–atmosphere climate model is examined for evidence of climate drift in the land surface state variable of soil moisture. The drift is characterized as pathological error growth in two different ways. First is the systematic error ...

Paul A. Dirmeyer

2001-02-01T23:59:59.000Z

78

Optimal Forcing Patterns for Coupled Models of ENSO  

Science Conference Proceedings (OSTI)

The optimal forcing patterns for El Niño–Southern Oscillation (ENSO) are examined for a hierarchy of hybrid coupled models using generalized stability theory. Specifically two cases are considered: one where the forcing is stochastic in time, and ...

Andrew M. Moore; Javier Zavala-Garay; Youmin Tang; Richard Kleeman; Anthony T. Weaver; Jérôme Vialard; Kamran Sahami; David L. T. Anderson; Michael Fisher

2006-09-01T23:59:59.000Z

79

Radiolysis Process Model  

SciTech Connect

Assessing the performance of spent (used) nuclear fuel in geological repository requires quantification of time-dependent phenomena that may influence its behavior on a time-scale up to millions of years. A high-level waste repository environment will be a dynamic redox system because of the time-dependent generation of radiolytic oxidants and reductants and the corrosion of Fe-bearing canister materials. One major difference between used fuel and natural analogues, including unirradiated UO2, is the intense radiolytic field. The radiation emitted by used fuel can produce radiolysis products in the presence of water vapor or a thin-film of water (including OH• and H• radicals, O2-, eaq, H2O2, H2, and O2) that may increase the waste form degradation rate and change radionuclide behavior. H2O2 is the dominant oxidant for spent nuclear fuel in an O2 depleted water environment, the most sensitive parameters have been identified with respect to predictions of a radiolysis model under typical conditions. As compared with the full model with about 100 reactions it was found that only 30-40 of the reactions are required to determine [H2O2] to one part in 10–5 and to preserve most of the predictions for major species. This allows a systematic approach for model simplification and offers guidance in designing experiments for validation.

Buck, Edgar C.; Wittman, Richard S.; Skomurski, Frances N.; Cantrell, Kirk J.; McNamara, Bruce K.; Soderquist, Chuck Z.

2012-07-17T23:59:59.000Z

80

Fully Coupled Well Models for Fluid Injection and Production  

SciTech Connect

Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving these equations varies from zero coupling to full coupling. In this paper we describe a fully coupled solution approach for well model that allows for a flexible well trajectory and screened interval within a structured hexahedral computational grid. In this scheme the nonlinear well equations have been fully integrated into the Jacobian matrix for the reservoir conservation equations, minimizing the matrix bandwidth.

White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

2013-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A Coupled Atmosphere–Wave–Ocean Modeling System: Simulation of the Intensity of an Idealized Tropical Cyclone  

Science Conference Proceedings (OSTI)

A coupled atmosphere–wave–ocean modeling system (CAWOMS) based on the integration of atmosphere–wave, atmosphere–ocean, and wave–current interaction processes is developed. The component models consist of the Weather Research and Forecasting (WRF)...

Bin Liu; Huiqing Liu; Lian Xie; Changlong Guan; Dongliang Zhao

2011-01-01T23:59:59.000Z

82

Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities  

SciTech Connect

The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

2012-09-01T23:59:59.000Z

83

Magnetohydrodynamic Model Coupling Multiphase Flow in ...  

Science Conference Proceedings (OSTI)

Compact Filter Design for Gas Treatment Centers ... Gas-Solid Flow Applications for Powder Handling in Aluminum Smelters Processes ... Replacement of Damaged Electrical Insulators on Live Cross-Over Busbars inside a Tunnel: A ...

84

The Role of the Western Boundary in the ENSO Cycle: Experiments with Coupled Models  

Science Conference Proceedings (OSTI)

Coupled models of the Pacific ocean–atmosphere system have been shown to produce oscillations in the model coupled system that resemble the observed El Niño–Southern Oscillation (ENSO) cycle in many respects. The tendency for the coupled models ...

Nicholas E. Graham; Warren B. White

1990-12-01T23:59:59.000Z

85

Kinetic Modeling of Microbiological Processes  

Science Conference Proceedings (OSTI)

Kinetic description of microbiological processes is vital for the design and control of microbe-based biotechnologies such as waste water treatment, petroleum oil recovery, and contaminant attenuation and remediation. Various models have been proposed to describe microbiological processes. This editorial article discusses the advantages and limiation of these modeling approaches in cluding tranditional, Monod-type models and derivatives, and recently developed constraint-based approaches. The article also offers the future direction of modeling researches that best suit for petroleum and environmental biotechnologies.

Liu, Chongxuan; Fang, Yilin

2012-09-17T23:59:59.000Z

86

Conservation Laws for Coupled Hydro-mechanical Processes in Unsaturated Porous Media: Theory and Implementation  

Science Conference Proceedings (OSTI)

We develop conservation laws for coupled hydro-mechanical processes in unsaturated porous media using three-phase continuum mixture theory. From the first law of thermodynamics, we identify energy-conjugate variables for constitutive modeling at macroscopic scale. Energy conjugate expressions identified relate a certain measure of effective stress to the deformation of the solid matrix, the degree of saturation to the matrix suction, the pressure in each constituent phase to the corresponding intrinsic volume change of this phase, and the seepage forces to the corresponding pressure gradients. We then develop strong and weak forms of boundary-value problems relevant for 3D finite element modeling of coupled hydro-mechanical processes in unsaturated porous media. The paper highlights a 3D numerical example illustrating the advances in the solution of large-scale coupled finite element systems, as well as the challenges in developing more predictive tools satisfying the basic conservation laws and the observed constitutive responses for unsaturated porous materials.

Borja, R I; White, J A

2010-02-19T23:59:59.000Z

87

Method of processing materials using an inductively coupled plasma  

DOE Patents (OSTI)

A method for making fine power using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The starting material used in the method is in solid form.

Hull, Donald E. (Los Alamos, NM); Bieniewski, Thomas M. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

88

Progress in coupling models of coastline and fluvial dynamics  

Science Conference Proceedings (OSTI)

The morphology and depositional history of wave-influenced deltas reflects the interplay between the fluvial and coastal domains. Here we present initial results of the coupling of stand-alone coastal and terrestrial models within the Community Surface ... Keywords: CSDMS, Coastal morphodynamics, Component Modeling Tool (CMT), Sediment variability, Wave-influenced deltas

Andrew D. Ashton; Eric W. H. Hutton; Albert J. Kettner; Fei Xing; Jisamma Kallumadikal; Jaap Nienhuis; Liviu Giosan

2013-04-01T23:59:59.000Z

89

Linking the Pacific Meridional Mode to ENSO: Coupled Model Analysis  

Science Conference Proceedings (OSTI)

The occurrence of a boreal spring phenomenon referred to as the Pacific meridional model (MM) is shown to be intimately linked to the development of El Niño–Southern Oscillation (ENSO) in a long simulation of a coupled model. The MM, ...

Li Zhang; Ping Chang; Link Ji

2009-06-01T23:59:59.000Z

90

Introduction of Materials Modelling into Processing Simulation  

Science Conference Proceedings (OSTI)

PI-10: Coupled Composition-Microstructure Modeling of a U-Pu-Zr Fuel · PI-11: Creating an Integrated, Community-Sourced, First-Principles Data Repository.

91

CFD Modeling and Simulation in Materials Processing  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... A Coupled CFD-Thermodynamic-Kinetic Model to Simulate a Gas Stirred ... on Thermal and Thermosolutal Natural Convection in Liquid Alloys.

92

COUPLING  

DOE Patents (OSTI)

This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)

Hawke, B.C.

1963-02-26T23:59:59.000Z

93

A Coupled Air–Sea Mesoscale Model: Experiments in Atmospheric Sensitivity to Marine Roughness  

Science Conference Proceedings (OSTI)

A coupled air–sea numerical model comprising a mesoscale atmospheric model, a marine circulation model, and a surface wave model is presented. The coupled model is tested through simulations of an event of frontal passage through the Lake Erie ...

Jordan G. Powers; Mark T. Stoelinga

2000-01-01T23:59:59.000Z

94

Gravity Couplings in the Standard-Model Extension  

E-Print Network (OSTI)

The Standard-Model Extension (SME) is an action-based expansion describing general Lorentz violation for known matter and fields, including gravity. In this talk, I will discuss the Lorentz-violating gravity couplings in the SME. Toy models that match the SME expansion, including vector and two-tensor models, are reviewed. Finally I discuss the status of experiments and observations probing gravity coefficients for Lorentz violation.

Bailey, Quentin G

2010-01-01T23:59:59.000Z

95

A Coupled Model Study on the Formation and Dissipation of Sea Fogs  

Science Conference Proceedings (OSTI)

This study examined the impact of air–sea coupling using a coupled atmosphere–ocean modeling system consisting of the Coupled Ocean–Atmosphere Mesoscale Prediction System as the atmospheric component and the Regional Ocean Modeling System as the ...

Ki-Young Heo; Kyung-Ja Ha

2010-04-01T23:59:59.000Z

96

Method of processing materials using an inductively coupled plasma  

SciTech Connect

A method for coating surfaces or implanting ions in an object using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The coating material or implantation material is intitially in solid form.

Hull, Donald E. (Los Alamos, NM); Bieniewski, Thomas M. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

97

High ethylene to ethane processes for oxidative coupling  

DOE Patents (OSTI)

Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

Chafin, R.B.; Warren, B.K.

1991-12-17T23:59:59.000Z

98

Coupling of the Common Land Model to the NCAR Community Climate Model  

Science Conference Proceedings (OSTI)

The Common Land Model (CLM), which results from a 3-yr joint effort among seven land modeling groups, has been coupled with the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3). Two 15-yr simulations of CCM3 coupled ...

Xubin Zeng; Muhammad Shaikh; Yongjiu Dai; Robert E. Dickinson; Ranga Myneni

2002-07-01T23:59:59.000Z

99

Bond Graph Model of a Vertical U-Tube Steam Condenser Coupled with a Heat Exchanger  

E-Print Network (OSTI)

Bond Graph Model of a Vertical U-Tube Steam Condenser Coupled with a Heat Exchanger K. Medjaher1+ A and thus the bottom well acts as a heat exchanger. The storage of hydraulic and thermal energies steam condenser; Heat exchanger; Bond graph 1. Introduction Modern process engineering plants

Paris-Sud XI, Université de

100

Thesis A Numerical Model of Hydro-Thermo- Mechanical Coupling...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 31 53-T Thesis A Numerical Model of Hydro-Thermo- Mechanical Coupling in a Fractured Rock Mass ECEIVED Los Alamos N A T I O N A L L A B O R A T O R Y Los Alamos National...

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Design, optimization and predictions of a coupled model of the cell cycle, circadian clock, DNA repair system, irinotecan metabolism and exposure control under temporal logic constraints  

Science Conference Proceedings (OSTI)

In systems biology, the number of available models of cellular processes has increased rapidly, but re-using models in different contexts or for different questions remains a challenging issue. In this paper, we study the coupling of different models ... Keywords: Cell cycle, Constraint solving, DNA damage, Irinotecan, Model checking, Model coupling, Parameter learning, Temporal logic

Elisabetta De Maria; François Fages; Aurélien Rizk; Sylvain Soliman

2011-05-01T23:59:59.000Z

102

Development and feasibility of a waste package coupled reactive transport model (AREST-CT)  

Science Conference Proceedings (OSTI)

Most models that analyze the waste package and engineered barrier system (near-field) of an underground geologic repository assume constant boundary conditions at the waste form surface and constant chemical properties of the groundwater. These models are useful for preliminary modeling, iterative modeling to estimate uncertainties, and as a source for a total systems analysis. However, the chemical behavior of the system is a very important factor in the containment and release of radionuclides, and one needs to understand the underlying processes involved. Therefore, the authors are developing a model to couple the calculation of the chemical properties with the reactive transport which can be used to assess the near-field. This report describes the models being implemented and presents some simple analyses demonstrating the feasibility of the chemical and coupled transport models.

Engel, D.W.; McGrail, B.P.; Fort, J.A.; Roberts, J.S.

1994-05-01T23:59:59.000Z

103

A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling  

SciTech Connect

In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFD) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the Modified Newton’s Method with nonlinear Krylov accelerator developed by Carlson and Miller [1, 2, 3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple sets of ODEs. In both the simplified geometry and in the imaging-based geometry, the performance of the method was comparable to that of monolithic schemes, in most cases requiring only a single CFD evaluation per time step. Thus, this new accelerator allows us to begin combining pulmonary CFD models with lower-dimensional models of pulmonary mechanics with little computational overhead. Moreover, because the CFD and lower-dimensional models are totally separate, this framework affords great flexibility in terms of the type and breadth of the adopted lower-dimensional model, allowing the biomedical researcher to appropriately focus on model design. Research funded by the National Heart Lung and Blood Institute Award 1RO1HL073598.

Kuprat, Andrew P.; Kabilan, Senthil; Carson, James P.; Corley, Richard A.; Einstein, Daniel R.

2013-07-01T23:59:59.000Z

104

Thin film coating process using an inductively coupled plasma  

DOE Patents (OSTI)

Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

Kniseley, Richard N. (Ames, IA); Schmidt, Frederick A. (Ames, IA); Merkle, Brian D. (Ames, IA)

1990-01-30T23:59:59.000Z

105

Data support in process model abstraction  

Science Conference Proceedings (OSTI)

Process model abstraction is an effective approach to reduce the complexity and increase the understandability of process models. Several techniques provide process model abstraction capabilities, but none of them includes data in the abstraction procedure. ... Keywords: business process management, data, data abstraction framework, process model abstraction

Andreas Meyer; Mathias Weske

2012-10-01T23:59:59.000Z

106

Configurable multi-perspective business process models  

Science Conference Proceedings (OSTI)

A configurable process model provides a consolidated view of a family of business processes. It promotes the reuse of proven practices by providing analysts with a generic modeling artifact from which to derive individual process models. Unfortunately, ... Keywords: Business process, Configurable process model, EPC

Marcello La Rosa; Marlon Dumas; Arthur H. M. ter Hofstede; Jan Mendling

2011-04-01T23:59:59.000Z

107

Thermohaline Circulation Stability: A Box Model Study. Part II: Coupled Atmosphere–Ocean Model  

Science Conference Proceedings (OSTI)

A thorough analysis of the stability of a coupled version of an interhemispheric three-box model of thermohaline circulation (THC) is presented. This study follows a similarly structured analysis of an uncoupled version of the same model ...

Valerio Lucarini; Peter H. Stone

2005-02-01T23:59:59.000Z

108

A Thermodynamic Coupled Ice-Ocean Model of the Marginal Ice Zone  

Science Conference Proceedings (OSTI)

A coupled ice-ocean model for thermodynamic growth of sea ice suitable for coupling with a similar dynamic model is considered. The model is balanced locally in that no horizontal (or vertical) advection or diffusion of properties are considered. ...

Lars Petter Røed

1984-12-01T23:59:59.000Z

109

Validation of a Receptor–Dispersion Model Coupled with a Genetic Algorithm Using Synthetic Data  

Science Conference Proceedings (OSTI)

A methodology for characterizing emission sources is presented that couples a dispersion and transport model with a pollution receptor model. This coupling allows the use of the backward (receptor) model to calibrate the forward (dispersion) ...

Sue Ellen Haupt; George S. Young; Christopher T. Allen

2006-03-01T23:59:59.000Z

110

Oceanic Rossby Wave Dynamics and the ENSO Period in a Coupled Model  

Science Conference Proceedings (OSTI)

Tropical ocean wave dynamics associated with the El Niño–Southern Oscillation cycle in a coupled model are examined. The ocean–atmosphere model consists of statistical atmosphere coupled to a simple reduced gravity model of the tropical Pacific ...

Ben P. Kirtman

1997-07-01T23:59:59.000Z

111

Coupling Air Flow Models to Load/Energy Models and Implications for  

NLE Websites -- All DOE Office Websites (Extended Search)

Coupling Air Flow Models to Load/Energy Models and Implications for Coupling Air Flow Models to Load/Energy Models and Implications for Envelope Component Testing and Modeling Speaker(s): Brent Griffith Date: July 30, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Dariush Arasteh Air models allow accounting for air temperature variations within a thermal zone or along the surface of an envelope component. A recently completed ASHRAE research project (RP-1222) produced a source code toolkit focused on coupling airflow models to load routines typical of whole building energy simulation. The two modeling domains are computed separately (and iteratively) with relevant temperature boundary conditions passed back and forth. One of the air models in the toolkit is a new contribution to crude/fast airflow modeling that is based on solving the Euler equation

112

Coupling of Moist-Convective and Stratiform Precipitation Processes for Variational Data Assimilation  

Science Conference Proceedings (OSTI)

Some problems posed by the coupling of moist-convective and stratiform precipitation processes for variational assimilation of precipitation-rate data are examined in a 1D-Var framework. Background-error statistics and vertical resolution are ...

Luc Fillion; Jean-François Mahfouf

2000-01-01T23:59:59.000Z

113

Coherent control of hyperfine-coupled electron and nuclear spins for quantum information processing  

E-Print Network (OSTI)

Coupled electron-nuclear spins are promising physical systems for quantum information processing: By combining the long coherence times of the nuclear spins with the ability to initialize, control, and measure the electron ...

Yang, Jamie Chiaming

2008-01-01T23:59:59.000Z

114

Mixed Boundary Conditions versus Coupling with an Energy–Moisture Balance Model for a Zonally Averaged Ocean Climate Model  

Science Conference Proceedings (OSTI)

The Wright and Stocker oceanic thermohaline circulation model is coupled to a recently developed zonally averaged energy moisture balance model for the atmosphere. The results obtained with this coupled model are compared with those from an ocean-...

H. Bjornsson; L. A. Mysak; G. A. Schmidt

1997-10-01T23:59:59.000Z

115

A coupled model of fluid flow in jointed rock  

SciTech Connect

We present a fully coupled model of fluid flow in jointed rock, where the fluid flow depends on the joint openings and the joint openings depend on the fluid pressure. The joints and rock blocks are modeled discretely using the finite element method. Solutions for the fluid and rock are obtained and iteration is performed until both solutions converge. Example applications include an examination of the effects of back-pressure on flow in a geothermal reservoir and transient fluid injection into a reservoir.

Swenson, Daniel; Martineau, Rick; James, Mark; Brown, Don

1991-01-01T23:59:59.000Z

116

On efficiently processing nearest neighbor queries in a loosely coupled set of data sources  

Science Conference Proceedings (OSTI)

We propose a family of algorithms for processing nearest neighbor (NN) queries in an integration middleware that provides federated access to numerous loosely coupled, autonomous data sources connected through the internet. Previous approaches for parallel ... Keywords: data integration, distributed query processing, federated database system, kNN, nearest neighbors, parallel query processing

Thomas Schwarz; Markus Iofcea; Matthias Grossmann; Nicola Hönle; Daniela Nicklas; Bernhard Mitschang

2004-11-01T23:59:59.000Z

117

Coupled MHD-Monte Carlo transport model for dense plasmas  

SciTech Connect

A two-dimensional, two fluid model of the MHD equations has been coupled to a Monte Carlo transport model of high energy, non-Maxwellian ions. The MHD part of the model assumes complete ionization and includes a perfect gas law for a scalar pressure, a tensor artificial viscosity, electron and ion thermal conduction, electron-ion coupling, and a radiation loss term. A simple Ohm's Law is used with a B/sub theta/ magnetic field. The MHD equations were solved in Lagrangian coordinates. The conservation equations were differenced explicitly and the diffusion-type equations implicitly using the splitting technique. The Monte Carlo model solves the equation of motion for high energy ions, moving through and suffering small and large angle collisions with the fluid Maxwellian plasma. The source of high energy ions is the thermonuclear reactions of the hydrogen isotopes, or it may be an externally injected beam of neutralized ions. In addition to using the usual Maxwell averaged thermonuclear cross sections for calculating the number of reactions taking place within the Maxwellian plasma, the high energy ions may suffer collisions resulting in a reaction. In the Monte Carlo model all neutrons are assumed to escape, and all energetic ions of Z less than or equal to 2 are followed. (auth)

Chandler, W.P.

1975-06-01T23:59:59.000Z

118

Spatial process and data models : toward integration of agent-based models and GIS.  

Science Conference Proceedings (OSTI)

The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, we identify four key relationships affecting how geographic data (fields and objects) and agent-based process models can interact: identity, causal, temporal and topological. We discuss approaches to implementing tight integration, focusing on a middleware approach that links existing GIS and ABM development platforms, and illustrate the need and approaches with example agent-based models.

Brown, D. G.; North, M. J.; Robinson, D. T.; Riolo, R.; Rand, W.; Decision and Information Sciences; Univ. of Michigan

2007-10-01T23:59:59.000Z

119

Granger Causality of Coupled Climate Processes: Ocean Feedback on the North Atlantic Oscillation  

Science Conference Proceedings (OSTI)

This study uses a Granger causality time series modeling approach to quantitatively diagnose the feedback of daily sea surface temperatures (SSTs) on daily values of the North Atlantic Oscillation (NAO) as simulated by a realistic coupled general ...

Timothy J. Mosedale; David B. Stephenson; Matthew Collins; Terence C. Mills

2006-04-01T23:59:59.000Z

120

Melting of Snow Cover in a Tropical Mountain Environment in Bolivia: Processes and Modeling  

Science Conference Proceedings (OSTI)

To determine the physical processes involved in the melting and disappearance of transient snow cover in nonglacierized tropical areas, the CROCUS snow model, interactions between Soil–Biosphere–Atmosphere (ISBA) land surface model, and coupled ...

Yves Lejeune; Ludovic Bouilloud; Pierre Etchevers; Patrick Wagnon; Pierre Chevallier; Jean-Emmanuel Sicart; Eric Martin; Florence Habets

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain  

SciTech Connect

A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

1993-07-01T23:59:59.000Z

122

Effects of diurnal variation on a tropical coupling system: a 2-dimensional coupled ocean-cloud resolving atmosphere modeling study  

Science Conference Proceedings (OSTI)

The effects of diurnal variation on tropical atmospheric and oceanic variability are investigated with a two-dimensional coupled ocean-cloud resolving atmosphere model. The experiment with a time-invariant solar zenith angle is compared to the control ... Keywords: diurnal variation, tropical coupling system

Shouting Gao; Yushu Zhou

2008-05-01T23:59:59.000Z

123

Development of a Coupled Land Surface and Groundwater Model  

Science Conference Proceedings (OSTI)

Traditional land surface models (LSMs) used for numerical weather simulation, climate projection, and as inputs to water management decision support systems, do not treat the LSM lower boundary in a fully process-based fashion. LSMs have evolved ...

Reed M. Maxwell; Norman L. Miller

2005-06-01T23:59:59.000Z

124

The Global Monsoon Variability Simulated by CMIP3 Coupled Climate Models  

Science Conference Proceedings (OSTI)

The global monsoon climate variability during the second half of the twentieth century simulated by 21 coupled global climate models (CGCMs) that participated in the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3 ...

Hyung-Jin Kim; Bin Wang; Qinghua Ding

2008-10-01T23:59:59.000Z

125

Southern Africa Summer Drought and Heat Waves: Observations and Coupled Model Behavior  

Science Conference Proceedings (OSTI)

Observations of daily maximum temperature (Tx) and monthly precipitation and their counterpart fields from three coupled models from the Coupled Model Intercomparison Project Phase 3 (CMIP3) archive have been used for exploratory research into ...

Bradfield Lyon

2009-11-01T23:59:59.000Z

126

MJO and Convectively Coupled Equatorial Waves Simulated by CMIP5 Climate Models  

Science Conference Proceedings (OSTI)

This study evaluates the simulation of Madden-Julian Oscillation (MJO) and convectively coupled equatorial waves (CCEWs) in 20 Coupled Model Intercomparsion Project Phase 5 (CMIP5) models in the Inter-governmental Panel on Climate Change (IPCC) ...

Meng-Pai Hung; Jia-Lin Lin; Wanqiu Wang; Daehyun Kim; Toshiaki Shinoda; Scott J. Weaver

127

Improving Ocean Model Initialization for Coupled Tropical Cyclone Forecast Models Using GODAE Nowcasts  

Science Conference Proceedings (OSTI)

To simulate tropical cyclone (TC) intensification, coupled ocean–atmosphere prediction models must realistically reproduce the magnitude and pattern of storm-forced sea surface temperature (SST) cooling. The potential for the ocean to support ...

G. R. Halliwell Jr.; L. K. Shay; S. D. Jacob; O. M. Smedstad; E. W. Uhlhorn

2008-07-01T23:59:59.000Z

128

A hierarchical framework for coupling surface fluxes to atompsheric general circulation models: The homogeneity test  

SciTech Connect

The atmosphere and the biosphere are inherently coupled to one another. Atmospheric surface state variables such as temperature, winds, water vapor, precipitation, and radiation control biophysical, biogeochemical, and ecological processes at the surface and subsurface. At the same time, surface fluxes of momentum, moisture, heat, and trace gases act as time-dependent boundary conditions providing feedback on atmospheric processes. To understand such phenomena, a coupled set of interactive models is required. Costs are still prohibitive for computing surface/subsurface fluxes directly for medium-resolution atmospheric general circulation models (AGCMs), but a technique has been developed for testing large-scale homogeneity and accessing surface parameterizations and models to reduce this computational cost and maintain accuracy. This modeling system potentially bridges the observed spatial and temporal ranges yet allows the incorporation of necessary details about individual ecological community types or biomes and simulates the net momentum, heat, moisture, and trace gas fluxes. This suite of coupled models is defined here as the hierarchical systems flux scheme (HSFS).

Miller, N.L.

1993-01-01T23:59:59.000Z

129

The Influence of Seasonal and Decadal Trends in Coastal Ocean Processes on the Population Biology of the krill species Euphausia pacifica: Results of a coupled ecosystem and individual based modeling study  

E-Print Network (OSTI)

aleuticus responses to ocean climate, 2005: Unusualand the Climate of the Ocean, Phase II (ECCO2) model (assessment of the Regional Ocean Modeling System. J Comp

Dorman, Jeffrey

2011-01-01T23:59:59.000Z

130

The Influence of Seasonal and Decadal Trends in Coastal Ocean Processes on the Population Biology of the Krill Species Euphausia pacifica: Results of a Coupled Ecosystem and Individual Based Modeling Study  

E-Print Network (OSTI)

aleuticus responses to ocean climate, 2005: Unusualand the Climate of the Ocean, Phase II (ECCO2) model (assessment of the Regional Ocean Modeling System. J Comp

Dorman, Jeffrey G.

2011-01-01T23:59:59.000Z

131

Model for a transformer-coupled toroidal plasma source  

Science Conference Proceedings (OSTI)

A two-dimensional fluid plasma model for a transformer-coupled toroidal plasma source is described. Ferrites are used in this device to improve the electromagnetic coupling between the primary coils carrying radio frequency (rf) current and a secondary plasma loop. Appropriate components of the Maxwell equations are solved to determine the electromagnetic fields and electron power deposition in the model. The effect of gas flow on species transport is also considered. The model is applied to 1 Torr Ar/NH{sub 3} plasma in this article. Rf electric field lines form a loop in the vacuum chamber and generate a plasma ring. Due to rapid dissociation of NH{sub 3}, NH{sub x}{sup +} ions are more prevalent near the gas inlet and Ar{sup +} ions are the dominant ions farther downstream. NH{sub 3} and its by-products rapidly dissociate into small fragments as the gas flows through the plasma. With increasing source power, NH{sub 3} dissociates more readily and NH{sub x}{sup +} ions are more tightly confined near the gas inlet. Gas flow rate significantly influences the plasma characteristics. With increasing gas flow rate, NH{sub 3} dissociation occurs farther from the gas inlet in regions with higher electron density. Consequently, more NH{sub 4}{sup +} ions are produced and dissociation by-products have higher concentrations near the outlet.

Rauf, Shahid; Balakrishna, Ajit; Chen Zhigang; Collins, Ken [Applied Materials, Inc., 974 E. Arques Avenue, Sunnyvale, California 94085 (United States)

2012-01-15T23:59:59.000Z

132

A Research on Production Optimization of Coupled Surface and Subsurface Model  

E-Print Network (OSTI)

One of the main objectives in the Oil & Gas Industry is to constantly improve the reservoir management capabilities by using production optimization strategies that can positively impact the so-called net-present value (NPV) of a given project. In order to achieve this goal the industry is faced with the difficult task of maximizing hydrocarbon production and minimizing unwanted fluids, such as water, while sustaining or even enhancing the reservoir recovery factor by handling properly the fluids at surface facilities. A key element in this process is the understanding of the interactions between subsurface and subsurface dynamics in order to provide insightful production strategies which honor reservoir management surface facility constraints. The implementation of the ideal situation of fully coupling surface/subsurface has been hindered by the required computational efforts involved in the process. Consequently, various types of partially coupling that require less computational efforts are practically implemented. Due to importance of coupling surface and subsurface model on production optimization and taking the advantage of advancing computational performance, this research explores the concept of surface and subsurface model couplings and production optimization. The research aims at demonstrating the role of coupling of surface and subsurface model on production optimization under simple production constraint (i.e. production and injection pressure limit). The normal production prediction runs with various reservoir description (homogeneous-low permeability, homogeneous-high permeability, and heterogeneous permeability) and different fluid properties (dead-oil PVT and lived-oil PVT) were performed in order to understand the effect of coupling level, and coupling scheme with different reservoir descriptions and fluid properties on production and injection rate prediction. The result shows that for dead-oil PVT, the production rate from different coupling schemes in homogeneous and heterogeneous reservoir is less sensitive than lived-oil PVT cases. For lived-oil PVT, the production rate from different coupling schemes in homogeneous high permeability and heterogeneous permeability are more sensitive than homogeneous low permeability. The production optimization on water flooding under production and injection constraint cases is considered here also.

Iemcholvilert, Sevaphol

2013-08-01T23:59:59.000Z

133

Local Coupled Equatorial Variability versus Remote ENSO Forcing in an Intermediate Coupled Model of the Tropical Atlantic  

Science Conference Proceedings (OSTI)

The relative roles played by the remote El Niño–Southern Oscillation (ENSO) forcing and the local air–sea interactions in the tropical Atlantic are investigated using an intermediate coupled model (ICM) of the tropical Atlantic. The oceanic ...

Serena Illig; Boris Dewitte

2006-10-01T23:59:59.000Z

134

Eliciting information for product modeling using process modeling  

Science Conference Proceedings (OSTI)

A product model is a formal and structured definition of product information. The most common procedure for defining a product data model is to first describe the business and/or engineering process in a formal process model, then to create a product ... Keywords: CASE, GTPPM, Information flow, Process model, Product model, STEP

Ghang Lee; Charles M. Eastman; Rafael Sacks

2007-08-01T23:59:59.000Z

135

Models of radiofrequency coupling for negative ion sources  

SciTech Connect

Radiofrequency heating for ICP (inductively coupled plasma) ion sources depends on the source operating pressure, the presence or absence of a Faraday shield, the driver coil geometry, the frequency used, and the magnetic field configuration: in negative ion source a magnetic filter seems necessary for H{sup -} survival. The result of single particle simulations showing the possibility of electron acceleration in the preglow regime and for reasonable driver chamber radius (15 cm) is reported, also as a function of the static external magnetic field. An effective plasma conductivity, depending not only from electron density, temperature, and rf field but also on static magnetic field is here presented and compared to previous models. Use of this conductivity and of multiphysics tools for a plasma transport and heating model is shown and discussed for a small source.

Cavenago, M.; Petrenko, S. [INFN-LNL, viale dell'Universita n.2, 35020 Legnaro (Italy)

2012-02-15T23:59:59.000Z

136

Cupola Furnace Computer Process Model  

Science Conference Proceedings (OSTI)

The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

Seymour Katz

2004-12-31T23:59:59.000Z

137

Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances  

SciTech Connect

Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5 20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,g)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,g)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.

Thompson, I J [Lawrence Livermore National Laboratory (LLNL); Escher, Jutta E [ORNL; Arbanas, Goran [ORNL

2013-01-01T23:59:59.000Z

138

Transforming object-oriented models to process-oriented models  

Science Conference Proceedings (OSTI)

Object-oriented modelling is an established approach to document the information systems. In an object model, a system is captured in terms of object types and associations, state machines, collaboration diagrams, etc. Process modeling on the other hand, ... Keywords: model transformation, object model, process model

Guy Redding; Marlon Dumas; Arthur H. M. Ter Hofstede; Adrian Iordachescu

2007-09-01T23:59:59.000Z

139

Projected changes in late 21st century tropical cyclone frequency in thirteen coupled climate models from the Coupled Model Intercomparison Project Phase 5  

Science Conference Proceedings (OSTI)

Changes in tropical cyclone (TC) frequency under anthropogenic climate change are examined for thirteen global models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), using the OWZP TC detection method developed by the authors in ...

K. J. Tory; S. S. Chand; J. L. McBride; H. Ye; R. A. Dare

140

WRF-Fire: Coupled Weather–Wildland Fire Modeling with the Weather Research and Forecasting Model  

Science Conference Proceedings (OSTI)

A wildland fire-behavior module, named WRF-Fire, was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire-behavior model that is two-way coupled with the ...

Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Error Covariance Estimation for Coupled Data Assimilation Using a Lorenz Atmosphere and a Simple Pycnocline Ocean Model  

Science Conference Proceedings (OSTI)

Coupled data assimilation uses a coupled model consisting of multiple time scale media to extract information from observations that are available in one or more media. Due to instantaneous exchanges of information among the coupled media, coupled ...

Guijun Han; Xinrong Wu; Shaoqing Zhang; Zhengyu Liu; Wei Li

142

Source Characterization with a Genetic Algorithm–Coupled Dispersion–Backward Model Incorporating SCIPUFF  

Science Conference Proceedings (OSTI)

This paper extends the approach of coupling a forward-looking dispersion model with a backward model using a genetic algorithm (GA) by incorporating a more sophisticated dispersion model [the Second-Order Closure Integrated Puff (SCIPUFF) model] ...

Christopher T. Allen; Sue Ellen Haupt; George S. Young

2007-03-01T23:59:59.000Z

143

Distributed Ocean–Atmosphere Modeling and Sensitivity to the Coupling Flux Precision: The CATHODe Project  

Science Conference Proceedings (OSTI)

The authors present the distribution of a coupled ocean–atmosphere global circulation model. The atmospheric (ARPEGE) and the oceanic (OPA) components run separately at different sites; the coupling is achieved through the exchanges of fluxes via ...

C. Cassou; P. Noyret; E. Sevault; O. Thual; L. Terray; D. Beaucourt; M. Imbard

1998-04-01T23:59:59.000Z

144

Interannual to Decadal Predictability in a Coupled Ocean–Atmosphere General Circulation Model  

Science Conference Proceedings (OSTI)

The predictability of the coupled ocean–atmosphere climate system on interannual to decadal timescales has been studied by means of ensemble forecast experiments with a global coupled ocean–atmosphere general circulation model. Over most parts of ...

A. Grötzner; M. Latif; A. Timmermann; R. Voss

1999-08-01T23:59:59.000Z

145

Dynamical Origin of Low-Frequency Variability in a Highly Nonlinear Midlatitude Coupled Model  

Science Conference Proceedings (OSTI)

A novel mechanism of decadal midlatitude coupled variability, which crucially depends on the nonlinear dynamics of both the atmosphere and the ocean, is presented. The coupled model studied involves quasigeostrophic atmospheric and oceanic ...

S. Kravtsov; P. Berloff; W. K. Dewar; M. Ghil; J. C. McWilliams

2006-12-01T23:59:59.000Z

146

Workflow Patterns in Process Modeling  

E-Print Network (OSTI)

This paper proposes an introduction to one of the newest modelling methods, an executable model based on workflows. We present the terminology for some basic workflow patterns, as described in the Workflow Management Coalition Terminology and Glossary.

Fortis, Alexandra

2009-01-01T23:59:59.000Z

147

TMS 2010 Process Modeling Course  

Science Conference Proceedings (OSTI)

TMS Home .... the best approach to minimize energy usage while analyzing waste minimization and treatment, as well as process efficiency in metals extraction.

148

Two-dimensional fluid model simulation of bell jar top inductively coupled plasma  

SciTech Connect

In the present paper, argon (Ar) plasmas in a bell jar inductively coupled plasma (ICP) source are systematically studied over pressures from 5 to 20 mtorr and power inputs from 0.2 to 0.5 kW. In this study, both a two-dimensional (2-D) fluid model simulation and global model calculation are compared. The 2-D fluid model simulation with a self-consistent power deposition is developed to describe the Ar plasma behavior as well as predict the plasma parameter distributions. Finally, a quantitative comparison between the global model and the fluid model is made to test their validity. Low-pressure ICP has been employed for etching processing for the last few years.

Wu, H.M.; Yu, B.W. [CFD Research Corp., Huntsville, AL (United States); Li, M. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering; Yang, Y. [Chinese Academy of Sciences, Beijing (China). Inst. of Mechanics

1997-02-01T23:59:59.000Z

149

Development of a Coupled Leaf and Canopy Model for the Simulation of Plant-Atmosphere Interaction  

Science Conference Proceedings (OSTI)

A numerical scheme was developed to couple a multilayer canopy radiation model, a photosynthesis model for C3 species, and a leaf stomatal conductance model with a single-leaf energy balance equation. This coupled leaf and canopy model was used ...

Hong-Bing Su; Kyaw Tua Paw U; Roger H. Shaw

1996-05-01T23:59:59.000Z

150

A Zonally Averaged, Coupled Ocean-Atmosphere Model for Paleoclimate Studies  

Science Conference Proceedings (OSTI)

A zonally averaged ocean model for the thermohaline circulation is coupled to a zonally averaged, one-layer energy balance model of the atmosphere to form a climate model for paleoclimate studies. The emphasis of the coupled model is on the ocean'...

Thomas F. Stocker; Lawrence A. Mysak; Daniel G. Wright

1992-08-01T23:59:59.000Z

151

Coupling of Advanced Oxidation and Adsorption Processes onto Silica-Titania Composites for Low Level  

E-Print Network (OSTI)

was mercury adsorption onto calcium sulfate (CaSO4), a byproduct of the flue gas desulfurization (FGD) wet., Powers K.W., and Pitoniak E.R. (2004) Method for Purifying Flue Gases from Combustion Sources. PatentCoupling of Advanced Oxidation and Adsorption Processes onto Silica-Titania Composites for Low

Choate, Paul M.

152

Pyrometallurgical Process Modeling, Control & Instrumentation  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... In the current paper, comparisons are drawn between data from spent ... The model integrates submerged coal combustion and chemical ...

153

Modeling Stem Cell Induction Processes  

E-Print Network (OSTI)

Technology for converting human cells to pluripotent stem cell using induction processes has the potential to revolutionize regenerative medicine. However, the production of these so called iPS cells is still quite inefficient ...

Grácio, Filipe

154

Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube  

SciTech Connect

A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)

Tao, Y.B.; He, Y.L. [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China)

2010-10-15T23:59:59.000Z

155

Modeling Coupled Evaporation and Seepage in Ventilated Cavities  

SciTech Connect

Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small.

T. Ghezzehei; R. Trautz; S. Finsterle; P. Cook; C. Ahlers

2004-07-01T23:59:59.000Z

156

Friction-Stir Processing (Models)  

Science Conference Proceedings (OSTI)

Oct 29, 2009... investigating the dynamic stress strain response of HSLA-65 under conditions ... Survey of Current Modeling Techniques for Friction Stir Welding: Dave ... friction stir welding (FSW) demands an appropriate level of accuracy, ...

157

Supporting design planning through process model simulation  

E-Print Network (OSTI)

..... ............................................ ...... ...... 154 7.2 VARIATIONS DUE TO SCALE AND CONNECTIVITy .. .. .... .... ... ................. ....... .................. ... ... 154 7.2.1 Process model variations due to scale...

Flanagan, Tomás Leo

2007-02-13T23:59:59.000Z

158

Coupling a Transient Solvent Extraction Module with the Separations and Safeguards Performance Model  

Science Conference Proceedings (OSTI)

A past difficulty in safeguards design for reprocessing plants is that no code existed for analysis and evaluation of the design. A number of codes have been developed in the past, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the SSPM Separations and Safeguards Performance Model, developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a much more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and the initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.

de Almeida, Valmor F [ORNL; Birdwell Jr, Joseph F [ORNL; DePaoli, David W [ORNL; Gauld, Ian C [ORNL

2009-10-01T23:59:59.000Z

159

Coupling a transient solvent extraction module with the separations and safeguards performance model.  

Science Conference Proceedings (OSTI)

A number of codes have been developed in the past for safeguards analysis, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM), developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.

DePaoli, David W. (Oak Ridge National Laboratory, Oak Ridge, TN); Birdwell, Joseph F. (Oak Ridge National Laboratory, Oak Ridge, TN); Gauld, Ian C. (Oak Ridge National Laboratory, Oak Ridge, TN); Cipiti, Benjamin B.; de Almeida, Valmor F. (Oak Ridge National Laboratory, Oak Ridge, TN)

2009-10-01T23:59:59.000Z

160

Transient Climate Change in the CSIRO Coupled Model with Dynamic Sea Ice  

Science Conference Proceedings (OSTI)

The CSIRO coupled model has been used in a “transient” greenhouse experiment. This model contains atmospheric, oceanic, comprehensive sea-ice (dynamic/thermodynamic plus leads), and biospheric submodels. The model control run (over 100 years long)...

Hal B. Gordon; Siobhan P. O’Farrell

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A Coupled Hydrodynamic–Bottom Boundary Layer Model of Ekman Flow on Stratified Continental Shelves  

Science Conference Proceedings (OSTI)

This paper describes a hydrodynamic model with turbulent energy closure that uses a simplified wave-current interaction model of the bottom boundary layer to compute bed drag coefficients. The coupled model is used to investigate the interaction ...

Timothy R. Keen; Scott M. Glenn

1994-08-01T23:59:59.000Z

162

Effect of Atlantic Meridional Overturning Circulation on Tropical Atlantic Variability: A Regional Coupled Model Study  

Science Conference Proceedings (OSTI)

A simplified coupled ocean–atmosphere model, where an atmospheric general circulation model (AGCM) is fully coupled to a 2½-layer reduced-gravity ocean model (RGO) over the tropical Atlantic basin, is presented in the context of studying the role ...

Caihong Wen; Ping Chang; Ramalingam Saravanan

2011-07-01T23:59:59.000Z

163

The Sensitivity of a Coupled Climate Model to Its Ocean Component  

Science Conference Proceedings (OSTI)

The control climates of two coupled climate models are intercompared. The first is the third climate configuration of the Met Office Unified Model (HadCM3), while the second, the Coupled Hadley–Isopycnic Model Experiment (CHIME), is identical to ...

A. P. Megann; A. L. New; A. T. Blaker; B. Sinha

2010-10-01T23:59:59.000Z

164

Sea Surface Temperature Biases under the Stratus Cloud Deck in the Southeast Pacific Ocean in 19 IPCC AR4 Coupled General Circulation Models  

Science Conference Proceedings (OSTI)

This study examines systematic biases in sea surface temperature (SST) under the stratus cloud deck in the southeast Pacific Ocean and upper-ocean processes relevant to the SST biases in 19 coupled general circulation models (CGCMs) participating ...

Yangxing Zheng; Toshiaki Shinoda; Jia-Lin Lin; George N. Kiladis

2011-08-01T23:59:59.000Z

165

Mathematical Formulation Requirements and Specifications for the Process Models  

Science Conference Proceedings (OSTI)

The Advanced Simulation Capability for Environmental Management (ASCEM) is intended to be a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM program is aimed at addressing critical EM program needs to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in nuclear waste disposal facilities, in order to reduce uncertainties and risks associated with DOE EM's environmental cleanup and closure activities. Building upon national capabilities developed from decades of Research and Development in subsurface geosciences, computational and computer science, modeling and applied mathematics, and environmental remediation, the ASCEM initiative will develop an integrated, open-source, high-performance computer modeling system for multiphase, multicomponent, multiscale subsurface flow and contaminant transport. This integrated modeling system will incorporate capabilities for predicting releases from various waste forms, identifying exposure pathways and performing dose calculations, and conducting systematic uncertainty quantification. The ASCEM approach will be demonstrated on selected sites, and then applied to support the next generation of performance assessments of nuclear waste disposal and facility decommissioning across the EM complex. The Multi-Process High Performance Computing (HPC) Simulator is one of three thrust areas in ASCEM. The other two are the Platform and Integrated Toolsets (dubbed the Platform) and Site Applications. The primary objective of the HPC Simulator is to provide a flexible and extensible computational engine to simulate the coupled processes and flow scenarios described by the conceptual models developed using the ASCEM Platform. The graded and iterative approach to assessments naturally generates a suite of conceptual models that span a range of process complexity, potentially coupling hydrological, biogeochemical, geomechanical, and thermal processes. The Platform will use ensembles of these simulations to quantify the associated uncertainty, sensitivity, and risk. The Process Models task within the HPC Simulator focuses on the mathematical descriptions of the relevant physical processes.

Steefel, C.; Moulton, D.; Pau, G.; Lipnikov, K.; Meza, J.; Lichtner, P.; Wolery, T.; Bacon, D.; Spycher, N.; Bell, J.; Moridis, G.; Yabusaki, S.; Sonnenthal, E.; Zyvoloski, G.; Andre, B.; Zheng, L.; Davis, J.

2010-11-01T23:59:59.000Z

166

A GENERALIZED MODEL OF NONLINEAR DIFFUSIVE SHOCK ACCELERATION COUPLED TO AN EVOLVING SUPERNOVA REMNANT  

Science Conference Proceedings (OSTI)

To better model the efficient production of cosmic rays (CRs) in supernova remnants (SNRs) with the associated coupling between CR production and SNR dynamics, we have generalized an existing cr-hydro-NEI code to include the following processes: (1) an explicit calculation of the upstream precursor structure including the position-dependent flow speed, density, temperature, and magnetic field strength; (2) a momentum- and space-dependent CR diffusion coefficient; (3) an explicit calculation of magnetic field amplification; (4) calculation of the maximum CR momentum using the amplified magnetic field; (5) a finite Alfven speed for the particle scattering centers; and (6) the ability to accelerate a superthermal seed population of CRs, as well as the ambient thermal plasma. While a great deal of work has been done modeling SNRs, most work has concentrated on either the continuum emission from relativistic electrons or ions or the thermal emission from the shock heated plasma. Our generalized code combines these elements and describes the interplay between CR production and SNR evolution, including the nonlinear coupling of efficient diffusive shock acceleration, based mainly on the work of P. Blasi and coworkers, and a non-equilibrium ionization (NEI) calculation of thermal X-ray line emission. We believe that our generalized model will provide a consistent modeling platform for SNRs, including those interacting with molecular clouds, and improve the interpretation of current and future observations, including the high-quality spectra expected from Astro-H. SNR RX J1713.7-3946 is modeled as an example.

Lee, Shiu-Hang; Nagataki, Shigehiro [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Ellison, Donald C., E-mail: lee@yukawa.kyoto-u.ac.jp, E-mail: nagataki@yukawa.kyoto-u.ac.jp, E-mail: don_ellison@ncsu.edu [Physics Department, North Carolina State University, Box 8202, Raleigh, NC 27695 (United States)

2012-05-10T23:59:59.000Z

167

Modeling biofilm processes using the immersed boundary method  

SciTech Connect

Biofilm processes are of interest to researchers in a variety of fields including bioremediation, oil recovery, waste water treatment, medicine, and dentistry. In this paper we describe how this complex, dynamic, fluid-structure interaction can be modeled successfully using the immersed boundary method. The model presented here includes the coupling of hydrodynamics; substrate reaction, diffusion, and convection; as well as the chemotactic response of swimming microbes. Cell-cell aggregation and cell-substratum adhesion are modeled by generating appropriate binding forces between discrete representations of organisms that may hold them together, or if fluid stresses are large, may yield and release the organisms. In this paper, we show two-dimensional numerical simulations to demonstrate several different types of scenarios that may be modeled using immersed boundary methods. These simulations indicate the variety of different phenomena one might expect in biofilm processes. 24 refs., 8 figs., 2 tabs.

Dillon, R.; Fauci, L. [Tulane Univ., New Orleans, LA (United States); Fogelson, A. [Univ. of Utah, Salt Lake City, UT (United States)] [and others

1996-11-01T23:59:59.000Z

168

Multiscale/Multiphysics Modeling of Biomass Thermochemical Processes  

SciTech Connect

Computational problems in simulating biomass thermochemical processes involve coupling processes that span several orders of magnitude in space and time. Computational difficulties arise from the multitude of the problem governing equations, each typically applying over a narrow range of spatiotemporal scales, thus making it necessary to represent the processes as the result of the interaction of multiple physics modules, termed here as multiscale/multiphysics (MSMP) coupling. Predictive simulations for such processes require algorithms that can efficiently integrate the underlying MSMP methods across the scales in order to achieve prescribed accuracy and control the computational cost. In addition, MSMP algorithms must scale to one hundred thousand processors or more in order to effectively harness the new computational resources and accelerate the scientific advances. In this chapter, we discuss the state-of-the-art in modeling the macro-scale phenomena in a biomass pyrolysis reactor along with details of the shortcomings and prospects in improving predictability. We also introduce the various multiphysics modules needed to model thermochemical conversion at lower spatiotemporal scales. Furthermore, we illustrate the need for MSMP coupling for thermochemical processes in biomass and provide an overview of the wavelet-based coupling techniques we have developed recently. In particular, we provide details about the compound wavelet matrix (CWM) and the dynamic CWM (dCWM) methods and show they are highly efficient in transferring information among multiphysics models across multiple temporal and spatial scales. The algorithmic gain is in addition to the parallel spatial scalability from traditional domain decomposition methods. The CWM algorithms are serial in time and limited by the smallest-system time-scales. In order to relax this algorithmic constraint, we have recently coupled time parallel (TP) algorithms to CWM, thus yielding a novel approach termed tpCWM. We present preliminary results from the tpCWM technique, indicating that we can accelerate time-to-solution by 2 to 3-orders of magnitude even on 20-processors and this can potentially constitute a new paradigm for MSMP simulations. If such improvements in simulation capability can be generalized, the tpCWM approach can lead the way to predictive simulations of biomass thermochemical processes.

Pannala, Sreekanth [ORNL; Simunovic, Srdjan [ORNL; Frantziskonis, G. [University of Arizona

2010-01-01T23:59:59.000Z

169

INTEGRATED FISCHER TROPSCH MODULAR PROCESS MODEL  

Science Conference Proceedings (OSTI)

With declining petroleum reserves, increased world demand, and unstable politics in some of the world’s richest oil producing regions, the capability for the U.S. to produce synthetic liquid fuels from domestic resources is critical to national security and economic stability. Coal, biomass and other carbonaceous materials can be converted to liquid fuels using several conversion processes. The leading candidate for large-scale conversion of coal to liquid fuels is the Fischer Tropsch (FT) process. Process configuration, component selection, and performance are interrelated and dependent on feed characteristics. This paper outlines a flexible modular approach to model an integrated FT process that utilizes a library of key component models, supporting kinetic data and materials and transport properties allowing rapid development of custom integrated plant models. The modular construction will permit rapid assessment of alternative designs and feed stocks. The modeling approach consists of three thrust areas, or “strands” – model/module development, integration of the model elements into an end to end integrated system model, and utilization of the model for plant design. Strand 1, model/module development, entails identifying, developing, and assembling a library of codes, user blocks, and data for FT process unit operations for a custom feedstock and plant description. Strand 2, integration development, provides the framework for linking these component and subsystem models to form an integrated FT plant simulation. Strand 3, plant design, includes testing and validation of the comprehensive model and performing design evaluation analyses.

Donna Post Guillen; Richard Boardman; Anastasia M. Gribik; Rick A. Wood; Robert A. Carrington

2007-12-01T23:59:59.000Z

170

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network (OSTI)

Modeling of Coupled Thermodynamic and Geomechanicalto study the coupled thermodynamic and geomechanicalCAES system, the thermodynamic analysis showed that 96.7% of

Rutqvist, J.

2013-01-01T23:59:59.000Z

171

Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal  

E-Print Network (OSTI)

ionic transport in porous shales, J. Geophys. Res. 109 , p.During the Early Compaction of Shales, from Fluid Flow andand Rupture of Heterogeneous Shale Samples by Using a Non-

Liu, Hui-Hai

2010-01-01T23:59:59.000Z

172

Coupling of Integrated Biosphere Simulator to Regional Climate Model version 3  

E-Print Network (OSTI)

Presented in this thesis is a description of the coupling of Integrated Biosphere Simulator (IBIS) to Regional Climate Model version 3 (RegCM3), and an assessment of the coupled model (RegCM3-IBIS). RegCM3 is a 3-dimensional, ...

Winter, Jonathan (Jonathan Mark)

2006-01-01T23:59:59.000Z

173

Climate Simulations for 1951–2050 with a Coupled Atmosphere–Ocean Model  

Science Conference Proceedings (OSTI)

The authors simulate climate change for 1951–2050 using the GISS SI2000 atmospheric model coupled to HYCOM, a quasi-isopycnal ocean model (“ocean E”), and contrast the results with those obtained using the same atmosphere coupled to a passive Q-...

Shan Sun; James E. Hansen

2003-09-01T23:59:59.000Z

174

Model order reduction methods for coupled systems in the time domain using Laguerre polynomials  

Science Conference Proceedings (OSTI)

In this paper, based on Laguerre polynomials, we present new methods for model reduction of coupled systems in the time domain. By appropriately selected projection matrices, a reduced order system is produced to retain the topology structure of the ... Keywords: Coupled systems, Function approximation, Laguerre polynomials, Model reduction, Structure preservation

Xiao-Long Wang; Yao-Lin Jiang

2011-10-01T23:59:59.000Z

175

Modeling and simulation of film blowing process  

E-Print Network (OSTI)

Film blowing process is a flexible mass production technology used for manufacturing thin polymeric films. Its flexibility in using an existing die to produce films of different width and thickness, just by controlling process conditions such as, extrudate velocity, excess pressure, and line speed, makes it an attractive process with less capital investment. Controlling the process conditions to obtain a stable bubble, however, is not a trivial task. It is a costly trial and error procedure, which could result is a large wastage of material and other resources. Hence, it is necessary to develop methods to simulate the process and design it using numerical experiments. This important need of the industry defines the objective of this work. In this dissertation, a transient, axisymmetric, nonisothermal, viscoelastic model is developed to simulate the process, and it is solved using finite element method. Material behavior of polymer melt is described using a modified Phan-Thien-Tanner model in the liquid??like region, and anisotropic Kelvin??Voight model in the solid zone, and the transition is modeled using a simple mixture theory. Crystallization kinetics is described using a modified Avrami model with factors to account for the influence of temperature and strain. Results obtained are compared with available experimental results and the model is used to explore stability issues and the role of different parameters. Software developed using this model comes with a GUI based pre- and post-processor, and it can be easily adapted to use other constitutive models.

Mayavaram, Ravisankar S.

2006-05-01T23:59:59.000Z

176

Study of Higgs self couplings of a supersymmetric $E_6$ model at the International Linear Collider  

E-Print Network (OSTI)

We study the Higgs self couplings of a supersymmetric $E_6$ model that has two Higgs doublets and two Higgs singlets. The lightest scalar Higgs boson in the model may be heavier than 112 GeV, at the one-loop level, where the negative results for the Higgs search at the LEP2 experiments are taken into account. The contributions from the top and scalar top quark loops are included in the radiative corrections to the one-loop mass of the lightest scalar Higgs boson, in the effective potential approximation. The effect of the Higgs self couplings may be observed in the production of the lightest scalar Higgs bosons in $e^+e^-$ collisions at the International Linear Collider (ILC) via double Higgs-strahlung process. For the center of mass energy of 500 GeV with the integrated luminosity of 500 fb$^{-1}$ and the efficiency of 20 %, we expect that at least 5 events of the lightest scalar Higgs boson may be produced at the ILC via double Higgs-strahlung process.

S. W. Ham; Kideok Han; Jungil Lee; S. K. Oh

2009-11-30T23:59:59.000Z

177

Coupled Environmental Processes and Long-term Performance of Landfill Covers in the northern Mojave Desert  

SciTech Connect

Evapotransiration (ET) covers have gained widespread acceptance as a closure feature for waste disposal sites, particularly in the arid and semi-arid regions of the southwestern U.S. But as landforms, ET covers are subject to change over time because of processes such as pedogenesis, hydrologic processes, vegetation establishment and change, and biological processes. To better understand the effects of coupled process changes to ET covers, a series of four primary analog sites in Yucca Flat on the Nevada Test Site, along with measurements and observations from other locations in the Mojave Desert, were selected to evaluate changes in ET covers over time. The analog sites, of varying ages, were selected to address changes in the early post-institutional control period, the 1,000-year compliance period for disposal of low-level and mixed low-level waste, and the 10,000-year compliance period for transuranic waste sites.

David Shafer; Michael Young; Stephen Zitzer; Eric McDonald; Todd Caldwell

2004-05-12T23:59:59.000Z

178

Seasonal Surface Air Temperature and Precipitation in the FSU Climate Model Coupled to the CLM2  

Science Conference Proceedings (OSTI)

The current Florida State University (FSU) climate model is upgraded by coupling the National Center for Atmospheric Research (NCAR) Community Land Model Version 2 (CLM2) as its land component in order to make a better simulation of surface air ...

D. W. Shin; S. Cocke; T. E. LaRow; James J. O’Brien

2005-08-01T23:59:59.000Z

179

Interdecadal Change in Properties of El Niño–Southern Oscillation in an Intermediate Coupled Model  

Science Conference Proceedings (OSTI)

The role of subsurface temperature variability in modulating El Niño–Southern Oscillation (ENSO) properties is examined using an intermediate coupled model (ICM), consisting of an intermediate dynamic ocean model and a sea surface temperature (...

Rong-Hua Zhang; Antonio J. Busalacchi

2005-05-01T23:59:59.000Z

180

Boundary Layer Dynamics in a Simple Model for Convectively Coupled Gravity Waves  

Science Conference Proceedings (OSTI)

A simplified model of intermediate complexity for convectively coupled gravity waves that incorporates the bulk dynamics of the atmospheric boundary layer is developed and analyzed. The model comprises equations for velocity, potential ...

Michael L. Waite; Boualem Khouider

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Ensemble Simulations with Coupled Atmospheric Dynamic and Dispersion Models: Illustrating Uncertainties in Dosage Simulations  

Science Conference Proceedings (OSTI)

Ensemble simulations made using a coupled atmospheric dynamic model and a probabilistic Lagrangian puff dispersion model were employed in a forensic analysis of the transport and dispersion of a toxic gas that may have been released near Al ...

Thomas T. Warner; Rong-Shyang Sheu; James F. Bowers; R. Ian Sykes; Gregory C. Dodd; Douglas S. Henn

2002-05-01T23:59:59.000Z

182

A Numerical Study of Climatic Oscillations Using a Coupled Atmosphere–Ocean Primitive Equation Model  

Science Conference Proceedings (OSTI)

A coupled atmosphere-ocean primitive equation model is developed. It is a free-dimensional general circulation model, with two layers in the atmosphere and two layers in the ocean and includes solar radiation, longwave radiation, sensible heating,...

Xiong-Shan Chen

1984-03-01T23:59:59.000Z

183

A Coupled Dynamical Ocean–Energy Balance Atmosphere Model for Paleoclimate Studies  

Science Conference Proceedings (OSTI)

The Bern3D coupled three-dimensional dynamical ocean–energy balance atmosphere model is introduced and the atmospheric component is discussed in detail. The model is of reduced complexity, developed to perform extensive sensitivity studies and ...

Stefan P. Ritz; Thomas F. Stocker; Fortunat Joos

2011-01-01T23:59:59.000Z

184

Freshwater Flux (FWF)-Induced Oceanic Feedback in a Hybrid Coupled Model of the Tropical Pacific  

Science Conference Proceedings (OSTI)

The impacts of freshwater flux (FWF) forcing on interannual variability in the tropical Pacific climate system are investigated using a hybrid coupled model (HCM), constructed from an oceanic general circulation model (OGCM) and a simplified ...

Rong-Hua Zhang; Antonio J. Busalacchi

2009-02-01T23:59:59.000Z

185

El Niño–La Niña Asymmetry in the Coupled Model Intercomparison Project Simulations  

Science Conference Proceedings (OSTI)

The El Niño–La Niña asymmetry was estimated in the 10 different models participating in the Coupled Model Intercomparison Project (CMIP). Large differences in the “asymmetricity” (a variance-weighted skewness) of SST anomalies are found between ...

Soon-Il An; Yoo-Geun Ham; Jong-Seong Kug; Fei-Fei Jin; In-Sik Kang

2005-07-01T23:59:59.000Z

186

Source of Seasonality and Scale Dependence of Predictability in a Coupled Ocean–Atmosphere Model  

Science Conference Proceedings (OSTI)

The seasonality of predictability of ENSO (related to the so-called spring predictability barrier) is investigated using the Cane–Zebiak coupled model. Observed winds are used to force the ocean component of the model to generate analyzed initial ...

B. N. Goswami; K. Rajendran; D. Sengupta

1997-05-01T23:59:59.000Z

187

Toward the Use of Coupled Atmospheric and Hydrologic Models at Regional Scale  

Science Conference Proceedings (OSTI)

The purpose of this study is to present the possibilities offered by coupled atmospheric and hydrologic models as a new tool to validate and interpret results produced by atmospheric models. The advantages offered by streamflow observations are ...

Robert Benoit; Pierre Pellerin; Nick Kouwen; Harold Ritchie; Norman Donaldson; Paul Joe; E. D. Soulis

2000-06-01T23:59:59.000Z

188

The GFDL CM3 Coupled Climate Model: Characteristics of the Ocean and Sea Ice Simulations  

Science Conference Proceedings (OSTI)

This paper documents time mean simulation characteristics from the ocean and sea ice components in a new coupled climate model developed at the NOAA Geophysical Fluid Dynamics Laboratory (GFDL). The GFDL Climate Model version 3 (CM3) is formulated ...

Stephen M. Griffies; Michael Winton; Leo J. Donner; Larry W. Horowitz; Stephanie M. Downes; Riccardo Farneti; Anand Gnanadesikan; William J. Hurlin; Hyun-Chul Lee; Zhi Liang; Jaime B. Palter; Bonita L. Samuels; Andrew T. Wittenberg; Bruce L. Wyman; Jianjun Yin; Niki Zadeh

2011-07-01T23:59:59.000Z

189

Coupling GIS and LCA for biodiversity assessments of land use: Part 1: Inventory modeling  

E-Print Network (OSTI)

scenarios were developed with GIS modeling. Current land use0170-9 LAND USE IN LCA Coupling GIS and LCA for biodiversityGeographic information systems (GIS) are adept at modeling

Geyer, Roland; Stoms, David M.; Lindner, Jan P.; Davis, Frank W.; Wittstock, Bastian

2010-01-01T23:59:59.000Z

190

A Coupled Atmosphere?Fire Model: Convective Feedback on Fire-Line Dynamics  

Science Conference Proceedings (OSTI)

The object of this paper is to describe and demonstrate the necessity and utility of a coupled atmosphere-fire model: a three-dimensional, time-dependent wildfire simulation model, based on the primitive equations of motion and thermodynamics, ...

Terry L. Clark; Mary Ann Jenkins; Janice Coen; David Packham

1996-06-01T23:59:59.000Z

191

Variability of Upper Pacific Ocean Overturning in a Coupled Climate Model  

Science Conference Proceedings (OSTI)

Variability of subtropical cell (STC) overturning in the upper Pacific Ocean is examined in a coupled climate model in light of large observed changes in STC transport. In a 1000-yr control run, modeled STC variations are smaller than observed, ...

William J. Merryfield; George J. Boer

2005-03-01T23:59:59.000Z

192

Twentieth-Century Surface Air Temperature over China and the Globe Simulated by Coupled Climate Models  

Science Conference Proceedings (OSTI)

This paper examines variations of the surface air temperature (SAT) over China and the globe in the twentieth century simulated by 19 coupled climate models driven by historical natural and anthropogenic forcings. Most models perform well in ...

Tianjun Zhou; Rucong Yu

2006-11-01T23:59:59.000Z

193

Impacts of a Parameterization Deficiency on Offline and Coupled Land Surface Model Simulations  

Science Conference Proceedings (OSTI)

Surface water and energy balance plays an important role in land surface models, especially in coupled land surface–atmospheric models due to the complicated interactions between land surfaces and the overlying atmosphere. The primary purpose of ...

Yuqiong Liu; Luis A. Bastidas; Hoshin V. Gupta; Soroosh Sorooshian

2003-10-01T23:59:59.000Z

194

Adjustment to Radiative Forcing in a Simple Coupled Ocean–Atmosphere Model  

Science Conference Proceedings (OSTI)

This study calculates the adjustment to radiative forcing in a simple model of a mixed layer ocean coupled to the overlying atmosphere. One application of the model is to calculate how dust aerosols perturb the temperature of the atmosphere and ...

R. L. Miller

2012-11-01T23:59:59.000Z

195

Interdecadal Variability in a Hybrid Coupled Ocean–Atmosphere–Sea Ice Model  

Science Conference Proceedings (OSTI)

Interdecadal climate variability in an idealized coupled ocean–atmosphere–sea-ice model is studied. The ocean component is a fully three-dimensional primitive equation model and the atmospheric component is a two-dimensional (2D) energy balance ...

S. Kravtsov; M. Ghil

2004-07-01T23:59:59.000Z

196

North Atlantic Interannual Variability in a Coupled Ocean–Atmosphere Model  

Science Conference Proceedings (OSTI)

The primary mode of sea surface temperature variability in the North Atlantic on interannual timescales during winter is examined in a coupled ocean–atmosphere model. The model, developed at die Geophysical Fluid Dynamics Laboratory, is global in ...

Thomas L. Delworth

1996-10-01T23:59:59.000Z

197

Spatial Superposition Method via Model Coupling for Urban Heat Island Albedo Mitigation Strategies  

Science Conference Proceedings (OSTI)

A spatial superposition design is presented that couples the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) with the National Center of Excellence (NCE) lumped urban thermal model for ...

Humberto Silva III; Jay S. Golden

2012-11-01T23:59:59.000Z

198

GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics  

Science Conference Proceedings (OSTI)

The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and ...

Thomas L. Delworth; Anthony J. Broccoli; Anthony Rosati; Ronald J. Stouffer; V. Balaji; John A. Beesley; William F. Cooke; Keith W. Dixon; John Dunne; K. A. Dunne; Jeffrey W. Durachta; Kirsten L. Findell; Paul Ginoux; Anand Gnanadesikan; C. T. Gordon; Stephen M. Griffies; Rich Gudgel; Matthew J. Harrison; Isaac M. Held; Richard S. Hemler; Larry W. Horowitz; Stephen A. Klein; Thomas R. Knutson; Paul J. Kushner; Amy R. Langenhorst; Hyun-Chul Lee; Shian-Jiann Lin; Jian Lu; Sergey L. Malyshev; P. C. D. Milly; V. Ramaswamy; Joellen Russell; M. Daniel Schwarzkopf; Elena Shevliakova; Joseph J. Sirutis; Michael J. Spelman; William F. Stern; Michael Winton; Andrew T. Wittenberg; Bruce Wyman; Fanrong Zeng; Rong Zhang

2006-03-01T23:59:59.000Z

199

MODEL OF DIFFUSERS / PERMEATORS FOR HYDROGEN PROCESSING  

DOE Green Energy (OSTI)

Palladium-silver (Pd-Ag) diffusers are mainstays of hydrogen processing. Diffusers separate hydrogen from inert species such as nitrogen, argon or helium. The tubing becomes permeable to hydrogen when heated to more than 250 C and a differential pressure is created across the membrane. The hydrogen diffuses better at higher temperatures. Experimental or experiential results have been the basis for determining or predicting a diffuser's performance. However, the process can be mathematically modeled, and comparison to experimental or other operating data can be utilized to improve the fit of the model. A reliable model-based diffuser system design is the goal which will have impacts on tritium and hydrogen processing. A computer model has been developed to solve the differential equations for diffusion given the operating boundary conditions. The model was compared to operating data for a low pressure diffuser system. The modeling approach and the results are presented in this paper.

Hang, T; William Jacobs, W

2007-08-27T23:59:59.000Z

200

Error Covariance Estimation for Coupled Data Assimilation Using a Lorenz Atmosphere and a Simple Pycnocline Ocean Model  

Science Conference Proceedings (OSTI)

Coupled data assimilation uses a coupled model consisting of multiple time-scale media to extract information from observations that are available in one or more media. Because of the instantaneous exchanges of information among the coupled media, ...

Guijun Han; Xinrong Wu; Shaoqing Zhang; Zhengyu Liu; Wei Li

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fuel Conditioning Facility Electrorefiner Process Model  

SciTech Connect

The Fuel Conditioning Facility at the Idaho National Laboratory processes spent nuclear fuel from the Experimental Breeder Reactor II using electro-metallurgical treatment. To process fuel without waiting for periodic sample analyses to assess process conditions, an electrorefiner process model predicts the composition of the electrorefiner inventory and effluent streams. For the chemical equilibrium portion of the model, the two common methods for solving chemical equilibrium problems, stoichiometric and non stoichiometric, were investigated. In conclusion, the stoichiometric method produced equilibrium compositions close to the measured results whereas the non stoichiometric method did not.

DeeEarl Vaden

2005-10-01T23:59:59.000Z

202

An integrated media, integrated processes watershed model Gour-Tsyh Yeh a,  

E-Print Network (OSTI)

An integrated media, integrated processes watershed model Gour-Tsyh Yeh a, , Don-Sin Shih b , Jing modelling Groundwater and surface water coupling High performance parallel computing River hydraulics of a numerical model simulating fluid flow in WAterSHed Systems of 1D Stream-River Networks, 2D Overland Regime

Central Florida, University of

203

Coupled Atmosphere-Ocean Model Simulations of El Niño/Southern Oscillation with and without an Active Indian Ocean  

Science Conference Proceedings (OSTI)

An atmospheric general circulation model (GCM) was coupled with an ocean GCM covering the Pacific. This coupled model (PAC) was integrated over a 30-years period. The PAC model stimulates well the mean seasonally varying atmospheric and ocean ...

T. Nagai; Y. Kitamura; M. Endoh; T. Tokioka

1995-01-01T23:59:59.000Z

204

Numerical Simulations of Air–Sea Interaction under High Wind Conditions Using a Coupled Model: A Study of Hurricane Development  

Science Conference Proceedings (OSTI)

In this study, a coupled atmosphere–ocean wave modeling system is used to simulate air–sea interaction under high wind conditions. This coupled modeling system is made of three well-tested model components: The Pennsylvania State University–...

J-W. Bao; J. M. Wilczak; J-K. Choi; L. H. Kantha

2000-07-01T23:59:59.000Z

205

Modeling of Geothermal Reservoirs: Fundamental Processes, Computer  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Abstract This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir modeling are briefly reviewed, with special emphasis on flow in fractured media. We then examine some applications of numerical simulation to studies of reservoir dynamics, well test design and analysis, and modeling of specific fields. Tangible impacts of reservoir simulation

206

Quantum irreversible process in a simple model  

E-Print Network (OSTI)

We present a very simple model of a quantum system in which an irreversible process happens. The model can be used as an example of a quantum dynamical problem in introductory courses of Quantum Mechanics or as the introduction to courses on Quantum Irreversible Processes. In both cases it will help students to build some intuition on dynamical behaviour of quantum systems consisting of many degrees of freedom beyond perturbation theory and classical thermodynamics.

Wójcik, Krzysztof Piotr

2012-01-01T23:59:59.000Z

207

Coupling pore-scale networks to continuum-scale models of porous media  

Science Conference Proceedings (OSTI)

Network modeling is a useful tool for investigating pore-scale behavior and in some cases for determining macroscopic information such as permeability, relative permeability, and capillary pressure. Physically representative network models are particularly ... Keywords: Coupling, Fractured porous media, Multiscale modeling, Network modeling, Pore-scale modeling

Matthew T. Balhoff; Karsten E. Thompson; Martin Hjortsø

2007-03-01T23:59:59.000Z

208

Assessing the Vulnerability of Large Critical Infrastructure Using Fully-Coupled Blast Effects Modeling  

Science Conference Proceedings (OSTI)

Structural failures, such as the MacArthur Maze I-880 overpass in Oakland, California and the I-35 bridge in Minneapolis, Minnesota, are recent examples of our national infrastructure's fragility and serve as an important reminder of such infrastructure in our everyday lives. These two failures, as well as the World Trade Center's collapse and the levee failures in New Orleans, highlight the national importance of protecting our infrastructure as much as possible against acts of terrorism and natural hazards. This paper describes a process for evaluating the vulnerability of critical infrastructure to large blast loads using a fully-coupled finite element approach. A description of the finite element software and modeling technique is discussed along with the experimental validation of the numerical tools. We discuss how such an approach can be used for specific problems such as modeling the progressive collapse of a building.

McMichael, L D; Noble, C R; Margraf, J D; Glascoe, L G

2009-03-26T23:59:59.000Z

209

Variability of the Thermohaline Circulation in an Ocean General Circulation Model Coupled to an Atmospheric Energy Balance Model  

Science Conference Proceedings (OSTI)

The variability of the ocean’s thermohaline circulation in an oceanic general circulation model (OGCM) coupled to a two-dimensional atmospheric energy balance model (EBM) is examined. The EBM calculates air temperatures by balancing heat fluxes, ...

David W. Pierce; K-Y. Kim; Tim P. Barnett

1996-05-01T23:59:59.000Z

210

Trilinear Higgs couplings in the two Higgs doublet model with CP violation  

E-Print Network (OSTI)

We carry out a detailed analysis of the general two Higgs doublet model with CP violation. We describe two different parametrizations of this model, and then study the Higgs boson masses and the trilinear Higgs couplings for these two parametrizations. Within a rather general model, we find that the trilinear Higgs couplings have a significant dependence on the details of the model, even when the lightest Higgs boson mass is taken to be a fixed parameter. We include radiative corrections in the one-loop effective potential approximation in our analysis of the Higgs boson masses and the Higgs trilinear couplings. The one-loop corrections to the trilinear couplings of the two Higgs doublet model also depend significantly on the details of the model, and can be rather large. We study quantitatively the trilinear Higgs couplings, and show that these couplings are typically several times larger than the corresponding Standard Model trilinear Higgs coupling in some regions of the parameter space. We also briefly discuss the decoupling limit of the two Higgs doublet model.

Per Osland; P. N. Pandita; Levent Selbuz

2008-02-01T23:59:59.000Z

211

Electromechanical coupling model for cutterhead driving system of shield machines  

Science Conference Proceedings (OSTI)

The synchronization of the cutterhead driving system of shield machines is affected by not only the nonlinearity of mechanical transmission mechanism and the characteristics of driving motors, but also their interaction. In this paper, dynamics of the ... Keywords: cutterhead, electromechanical coupling, synchronization

Jianzhong Sun; Ran Liu; Yaqin Luo; Wei Sun

2010-11-01T23:59:59.000Z

212

Dirichlet Process Mixtures of Generalized Linear Models  

Science Conference Proceedings (OSTI)

We propose Dirichlet Process mixtures of Generalized Linear Models (DP-GLM), a new class of methods for nonparametric regression. Given a data set of input-response pairs, the DP-GLM produces a global model of the joint distribution through a mixture ...

Lauren A. Hannah; David M. Blei; Warren B. Powell

2011-02-01T23:59:59.000Z

213

On the well-posedness of a coupled one-dimensional biological-physical model for the upper ocean  

E-Print Network (OSTI)

This paper introduces a one-dimensional NPZD-model developed to simulate biological activity in a turbulent ocean water column. The model consists of a system of coupled semilinear parabolic equations. An initial-boundary value problem is formulated and the existence of a unique positive weak solution to it is proved. The existence result is derived using a variational formulation, an approximate model and a fixed-point method. It is shown that the qualitative analysis performed still applies if different parameterizations of several biological processes found in the biogeochemical modeling literature are used.

Faugeras, Blaise

2010-01-01T23:59:59.000Z

214

CFD Modeling of Splash in Molten Materials Processing Operations  

Science Conference Proceedings (OSTI)

A Coupled CFD-Thermodynamic-Kinetic Model to Simulate a Gas Stirred Ladle ... Exercise on Thermal and Thermosolutal Natural Convection in Liquid Alloys.

215

Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions  

DOE Patents (OSTI)

The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

McGrail, Bernard P. (Pasco, WA); Martin, Paul F. (Richland, WA); Lindenmeier, Clark W. (Richland, WA)

1999-01-01T23:59:59.000Z

216

Process modeling study of the CIF incinerator  

SciTech Connect

The Savannah River Site (SRS) plans to begin operating the Consolidated Incineration Facility (CIF) in 1996. The CIF will treat liquid and solid low-level radioactive, mixed and RCRA hazardous wastes generated at SRS. In addition to experimental test programs, process modeling was applied to provide guidance in areas of safety, environmental regulation compliances, process improvement and optimization. A steady-state flowsheet model was used to calculate material/energy balances and to track key chemical constituents throughout the process units. Dynamic models were developed to predict the CIF transient characteristics in normal and abnormal operation scenarios. Predictions include the rotary kiln heat transfer, dynamic responses of the CIF to fluctuations in the solid waste feed or upsets in the system equipments, performance of the control system, air inleakage in the kiln, etc. This paper reviews the modeling study performed to assist in the deflagration risk assessment.

Hang, T.

1995-02-01T23:59:59.000Z

217

Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model  

SciTech Connect

Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

Huang, Hai; Plummer, Mitchell; Podgorney, Robert

2013-02-01T23:59:59.000Z

218

Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint  

DOE Green Energy (OSTI)

This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.

Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

2006-03-01T23:59:59.000Z

219

Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint  

SciTech Connect

This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.

Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

2006-03-01T23:59:59.000Z

220

Estimation of landfill emission lifespan using process oriented modeling  

SciTech Connect

Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section.

Ustohalova, Veronika [Institute of Waste Management, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)]. E-mail: veronika.ustohalova@uni-essen.de; Ricken, Tim [Institute of Mechanics, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Widmann, Renatus [Institute of Waste Management, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Coupled hydrological-economic modelling for optimised irrigated cultivation in a semi-arid catchment of West Africa  

Science Conference Proceedings (OSTI)

A coupled model system, consisting of a distributed hydrological model and an economic optimisation model, communicating via model interfaces, is developed and applied to investigate regional interdependencies between irrigated agriculture and regional ... Keywords: Decision support, Distributed hydrological modelling, Economic modelling, Irrigated agriculture, Model coupling, Non-linear programming, West Africa

H. Ahrends; M. Mast; Ch. Rodgers; H. Kunstmann

2008-04-01T23:59:59.000Z

222

Simulation of the Tropical Pacific Climate with a Coupled Ocean-Atmosphere General Circulation Model. Part II: Interannual Variability  

Science Conference Proceedings (OSTI)

Two multiyear simulations with a coupled ocean-atmosphere general circulation model (GCM)-totaling 45 years-are used to investigate interannual variability at the equator. The model consists of the UCLA global atmospheric GCM coupled to the GFDL ...

A. W. Robertson; C-C. Ma; M. Ghil; C. R. Mechoso

1995-05-01T23:59:59.000Z

223

Development of the T+M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems  

Science Conference Proceedings (OSTI)

We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, ... Keywords: Double porosity, Fracture propagation, Hydraulic fracturing, Poromechanics, Shale gas, Tensile failure

Jihoon Kim, George J. Moridis

2013-10-01T23:59:59.000Z

224

Hydrothermal processing of Hanford tank wastes: Process modeling and control  

Science Conference Proceedings (OSTI)

In the Los Alamos National Laboratory (LANL) hydrothermal process, waste streams are first pressurized and heated as they pass through a continuous flow tubular reactor vessel. The waste is maintained at reaction temperature of 300--550 C where organic destruction and sludge reformation occur. This report documents LANL activities in process modeling and control undertaken in FY94 to support hydrothermal process development. Key issues discussed include non-ideal flow patterns (e.g. axial dispersion) and their effect on reactor performance, the use and interpretation of inert tracer experiments, and the use of computational fluid mechanics to evaluate novel hydrothermal reactor designs. In addition, the effects of axial dispersion (and simplifications to rate expressions) on the estimated kinetic parameters are explored by non-linear regression to experimental data. Safety-related calculations are reported which estimate the explosion limits of effluent gases and the fate of hydrogen as it passes through the reactor. Development and numerical solution of a generalized one-dimensional mathematical model is also summarized. The difficulties encountered in using commercially available software to correlate the behavior of high temperature, high pressure aqueous electrolyte mixtures are summarized. Finally, details of the control system and experiments conducted to empirically determine the system response are reported.

Currier, R.P. [comp.

1994-10-01T23:59:59.000Z

225

Attrition and abrasion models for oil shale process modeling  

Science Conference Proceedings (OSTI)

As oil shale is processed, fine particles, much smaller than the original shale are created. This process is called attrition or more accurately abrasion. In this paper, models of abrasion are presented for oil shale being processed in several unit operations. Two of these unit operations, a fluidized bed and a lift pipe are used in the Lawrence Livermore National Laboratory Hot-Recycle-Solid (HRS) process being developed for the above ground processing of oil shale. In two reports, studies were conducted on the attrition of oil shale in unit operations which are used in the HRS process. Carley reported results for attrition in a lift pipe for oil shale which had been pre-processed either by retorting or by retorting then burning. The second paper, by Taylor and Beavers, reported results for a fluidized bed processing of oil shale. Taylor and Beavers studied raw, retorted, and shale which had been retorted and then burned. In this paper, empirical models are derived, from the experimental studies conducted on oil shale for the process occurring in the HRS process. The derived models are presented along with comparisons with experimental results.

Aldis, D.F.

1991-10-25T23:59:59.000Z

226

Interhemispheric Thermohaline Circulation in a Coupled Box Model  

Science Conference Proceedings (OSTI)

The interhemispheric thermohaline circulation is examined using Rooth’s three-box ocean model, whereby overturning strength is parameterized from density differences between high-latitude boxes. Recent results with general circulation models ...

Jeffery R. Scott; Jochem Marotzke; Peter H. Stone

1999-03-01T23:59:59.000Z

227

The Coupling between Wind and Waves in the WAM Model  

Science Conference Proceedings (OSTI)

The reliability of the wave model (WAM, cycle 4) for predicting waves and wind stress in restricted fetches is investigated using measured data obtained during the Risø Air–Sea Experiment (RASEX) at Vindeby, Denmark. The WAM model includes ...

H. K. Johnson; H. J. Vested; Hans Hersbach; J. Højstrup; S. E. Larsen

1999-11-01T23:59:59.000Z

228

Evaluating Error Propagation in Coupled Land–Atmosphere Models  

Science Conference Proceedings (OSTI)

This study examines how land-use errors from the Land Transformation Model (LTM) propagate through to climate as simulated by the Regional Atmospheric Model System (RAMS). The authors conducted five simulations of regional climate over East Africa:...

Bryan Pijanowski; Nathan Moore; Dasaraden Mauree; Dev Niyogi

2011-10-01T23:59:59.000Z

229

Flux Replacement as a Method to Diagnose Coupled Land–Atmosphere Model Feedback  

Science Conference Proceedings (OSTI)

The potential role of the land surface state in improving predictions of seasonal climate is investigated with a coupled land–atmosphere climate model. Climate simulations for 18 boreal-summer seasons (1982–99) have been conducted with specified ...

Paul A. Dirmeyer; Mei Zhao

2004-12-01T23:59:59.000Z

230

The Response of a Coupled Model of ENSO to Observed Estimates of Stochastic Forcing  

Science Conference Proceedings (OSTI)

In this work the role that observed intraseasonal atmospheric variability may play in controlling and maintaining ENSO variability is examined. To this end, an asymptotically stable intermediate coupled model of El Niño–Southern Oscillation (ENSO)...

J. Zavala-Garay; A. M. Moore; C. L. Perez; R. Kleeman

2003-09-01T23:59:59.000Z

231

Unstable and Damped Equatorial Modes in Simple Coupled Ocean-Atmosphere Models  

Science Conference Proceedings (OSTI)

Free equatorial modes for several simple coupled ocean-atmosphere models are determined. They are found to include unstable and damped modes of large zonal scale and long period. The influence of ocean thermo-dynamics on unstable modal behavior ...

Anthony C. Hirst

1986-03-01T23:59:59.000Z

232

Anisotropic electron coupling as a phenomenological model for high-[ital T][sub [ital c  

Science Conference Proceedings (OSTI)

A three-dimensional weak coupling BCS model with an [ital anisotropic] pairing interaction in momentum space is reported. It exhibits an anisotropic gap in accord with recent experimental observations for high-[ital T][sub [ital c

Langfeld, K. (Institut fuer Theoretische Physik, Universitaet Tuebingen, DW-7400 Tuebingen (Germany) Physik Department, Technische Universitaet Muenchen, DW-8046 Garching (Germany)); Frey, E. (Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts ( ))

1993-08-01T23:59:59.000Z

233

Coupling of Integrated Biosphere Simulator to Regional Climate Model Version 3  

E-Print Network (OSTI)

A description of the coupling of Integrated Biosphere Simulator (IBIS) to Regional Climate Model version 3 (RegCM3) is presented. IBIS introduces several key advantages to RegCM3, most notably vegetation dynamics, the ...

Winter, Jonathan (Jonathan Mark)

234

Generalized Inversion of Tropical Atmosphere–Ocean Data and a Coupled Model of the Tropical Pacific  

Science Conference Proceedings (OSTI)

It is hypothesized that the circulation of the tropical Pacific Ocean and atmosphere satisfies the equations of a simple coupled model to within errors having specified covariances, and that the Tropical Atmosphere–Ocean array (TAO) measures the ...

Andrew F. Bennett; Boon S. Chua; D. Ed Harrison; Michael J. McPhaden

1998-07-01T23:59:59.000Z

235

A Density Current Parameterization Coupled with Emanuel’s Convection Scheme. Part I: The Models  

Science Conference Proceedings (OSTI)

The aim of the present series of papers is to develop a density current parameterization for global circulation models. This first paper is devoted to the presentation of this new wake parameterization coupled with Emanuel’s convective scheme. ...

Jean-Yves Grandpeix; Jean-Philippe Lafore

2010-04-01T23:59:59.000Z

236

Coupled Variability and Predictability in a Stochastic Climate Model of the Tropical Atlantic  

Science Conference Proceedings (OSTI)

The coupled variability and predictability of the tropical Atlantic ocean–atmosphere system were analyzed within the framework of a linear stochastic climate model. Despite the existence of a meridional dipole as the leading mode, tropical ...

Faming Wang; Ping Chang

2008-12-01T23:59:59.000Z

237

Coupled Model Simulations of the West African Monsoon System: Twentieth- and Twenty-First-Century Simulations  

Science Conference Proceedings (OSTI)

The ability of coupled GCMs to correctly simulate the climatology and a prominent mode of variability of the West African monsoon is evaluated, and the results are used to make informed decisions about which models may be producing more reliable ...

Kerry H. Cook; Edward K. Vizy

2006-08-01T23:59:59.000Z

238

Coupling of Integrated Biosphere Simulator to Regional Climate Model Version 3  

Science Conference Proceedings (OSTI)

A description of the coupling of Integrated Biosphere Simulator (IBIS) to Regional Climate Model version 3 (RegCM3) is presented. IBIS introduces several key advantages to RegCM3, most notably vegetation dynamics, the coexistence of multiple ...

Jonathan M. Winter; Jeremy S. Pal; Elfatih A. B. Eltahir

2009-05-01T23:59:59.000Z

239

Assessing Future Changes in the East Asian Summer Monsoon Using CMIP5 Coupled Models  

Science Conference Proceedings (OSTI)

Future changes in the East Asian summer monsoon (EASM) are estimated from historical and Representative Concentration Pathway 6.0 (RCP6) experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The historical runs show ...

Kyong-Hwan Seo; Jung Ok; Jun-Hyeok Son; Dong-Hyun Cha

2013-10-01T23:59:59.000Z

240

Present-Day Arctic Sea Ice Variability in the Coupled ECHAM5/MPI-OM Model  

Science Conference Proceedings (OSTI)

As a contribution to a detailed evaluation of Intergovernmental Panel on Climate Change (IPCC)-type coupled climate models against observations, this study analyzes Arctic sea ice parameters simulated by the Max-Planck-Institute for Meteorology (...

Nikolay V. Koldunov; Detlef Stammer; Jochem Marotzke

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Climate Forcings and Climate Sensitivities Diagnosed from Coupled Climate Model Integrations  

Science Conference Proceedings (OSTI)

A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled atmosphere–ocean general circulation models (AOGCMs). This “climate forcing” differs from the conventionally defined radiative ...

Piers Mde F. Forster; Karl E. Taylor

2006-12-01T23:59:59.000Z

242

Estimation of Meteorological Parameters for Air Quality Management: Coupling of Sodar Data with Simple Numerical Models  

Science Conference Proceedings (OSTI)

In this paper an attempt is made to couple sodar data and simple numerical models to calculate the wind field and the boundary layer parameters that are relevant to air quality monitoring and studies. For this purpose, a diagnostic, mass-...

Dimitrios Melas; Giulia Abbate; Dias Haralampopoulos; Alexandros Kelesidis

2000-04-01T23:59:59.000Z

243

A Global Intercomparison of Modeled and Observed Land–Atmosphere Coupling  

Science Conference Proceedings (OSTI)

Land–atmosphere coupling strength or the degree to which land surface anomalies influence boundary layer development—and in extreme cases, rainfall—is arguably the single most fundamental criterion for evaluating hydrological model performance. ...

Craig R. Ferguson; Eric F. Wood; Raghuveer K. Vinukollu

2012-06-01T23:59:59.000Z

244

Coupled Ocean–Atmosphere Dynamics in a Simple Midlatitude Climate Model  

Science Conference Proceedings (OSTI)

Midlatitude air–sea interactions are investigated by coupling a stochastically forced two-layer quasigeostrophic channel atmosphere to a simple ocean model. The stochastic forcing has a large-scale standing pattern to simulate the main modes of ...

David Ferreira; Claude Frankignoul; John Marshall

2001-09-01T23:59:59.000Z

245

Indian Ocean Dipolelike Variability in the CSIRO Mark 3 Coupled Climate Model  

Science Conference Proceedings (OSTI)

Coupled ocean–atmosphere variability in the tropical Indian Ocean is explored with a multicentury integration of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Mark 3 climate model, which runs without flux adjustment. ...

Wenju Cai; Harry H. Hendon; Gary Meyers

2005-05-01T23:59:59.000Z

246

Climate Simulation for 125 kyr BP with a Coupled Ocean–Atmosphere General Circulation Model  

Science Conference Proceedings (OSTI)

The ECHAM-1 T21/LSG coupled ocean–atmosphere general circulation model (GCM) is used to simulate climatic conditions at the last interglacial maximum (Eemian, 125 kyr BP). The results reflect the expected surface temperature changes (with respect ...

Marisa Montoya; Hans von Storch; Thomas J. Crowley

2000-03-01T23:59:59.000Z

247

Surface Ocean Fluxes and Water-Mass Transformation Rates in the Coupled NCAR Climate System Model  

Science Conference Proceedings (OSTI)

The global distributions of the air–sea fluxes of heat and freshwater and water mass transformation rates from a control integration of the coupled National Center for Atmospheric Research (NCAR) Climate System Model (CSM) are compared with ...

Scott C. Doney; William G. Large; Frank O. Bryan

1998-06-01T23:59:59.000Z

248

Effects of Ocean Biology on the Penetrative Radiation in a Coupled Climate Model  

Science Conference Proceedings (OSTI)

The influence of phytoplankton on the seasonal cycle and the mean global climate is investigated in a fully coupled climate model. The control experiment uses a fixed attenuation depth for shortwave radiation, while the attenuation depth in the ...

Patrick Wetzel; Ernst Maier-Reimer; Michael Botzet; Johann Jungclaus; Noel Keenlyside; Mojib Latif

2006-08-01T23:59:59.000Z

249

Challenges to Reproduce Vegetation Structure and Dynamics in Amazonia Using a Coupled Climate–Biosphere Model  

Science Conference Proceedings (OSTI)

The Amazon rain forest constitutes one of the major global stocks of carbon. Recent studies, including the last Intergovernmental Panel on Climate Change report and the Coupled Climate Carbon Cycle Model Intercomparison Project, have suggested ...

Mônica Carneiro Alves Senna; Marcos Heil Costa; Lucía Iracema Chipponelli Pinto; Hewlley Maria Acioli Imbuzeiro; Luciana Mara Freitas Diniz; Gabrielle Ferreira Pires

2009-09-01T23:59:59.000Z

250

A Three-Dimensional Coupled Chemistry–Climate Model Simulation of Past Stratospheric Trends  

Science Conference Proceedings (OSTI)

A coupled chemistry–climate model is integrated for the period March 1979–January 2000 with sea surface temperatures and sea ice amounts specified from observations. Greenhouse gas concentrations and halogen loading are also taken from ...

John Austin

2002-01-01T23:59:59.000Z

251

Two-Year Simulation of the Great Lakes Region with a Coupled Modeling System  

Science Conference Proceedings (OSTI)

In this paper, we report on an experiment aimed at evaluating the feasibility of the application of our coupled regional climate modeling system to long-term climate simulations over the Great Lakes region. The simulation analyzed covers a ...

Gary T. Bates; Steven W. Hostetler; Filippo Giorgi

1995-05-01T23:59:59.000Z

252

Stability and Variability in a Coupled Ocean–Atmosphere Climate Model: Results of 100-year Simulations  

Science Conference Proceedings (OSTI)

Two 100-year seasonal simulators, one performed with a low resolution atmospheric general circulation model (GCM) coupled to a mixed-layer ocean formulation and the other made with the GCM forced by prescribed ocean conditions, are compared to ...

David D. Houghton; Robert G. Gallimore; Linda M. Keller

1991-06-01T23:59:59.000Z

253

GFDL's CM2 Global Coupled Climate Models. Part II: The Baseline Ocean Simulation  

Science Conference Proceedings (OSTI)

The current generation of coupled climate models run at the Geophysical Fluid Dynamics Laboratory (GFDL) as part of the Climate Change Science Program contains ocean components that differ in almost every respect from those contained in previous ...

Anand Gnanadesikan; Keith W. Dixon; Stephen M. Griffies; V. Balaji; Marcelo Barreiro; J. Anthony Beesley; William F. Cooke; Thomas L. Delworth; Rudiger Gerdes; Matthew J. Harrison; Isaac M. Held; William J. Hurlin; Hyun-Chul Lee; Zhi Liang; Giang Nong; Ronald C. Pacanowski; Anthony Rosati; Joellen Russell; Bonita L. Samuels; Qian Song; Michael J. Spelman; Ronald J. Stouffer; Colm O. Sweeney; Gabriel Vecchi; Michael Winton; Andrew T. Wittenberg; Fanrong Zeng; Rong Zhang; John P. Dunne

2006-03-01T23:59:59.000Z

254

The New Hadley Centre Climate Model (HadGEM1): Evaluation of Coupled Simulations  

Science Conference Proceedings (OSTI)

A new coupled general circulation climate model developed at the Met Office's Hadley Centre is presented, and aspects of its performance in climate simulations run for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC ...

T. C. Johns; C. F. Durman; H. T. Banks; M. J. Roberts; A. J. McLaren; J. K. Ridley; C. A. Senior; K. D. Williams; A. Jones; G. J. Rickard; S. Cusack; W. J. Ingram; M. Crucifix; D. M. H. Sexton; M. M. Joshi; B.-W. Dong; H. Spencer; R. S. R. Hill; J. M. Gregory; A. B. Keen; A. K. Pardaens; J. A. Lowe; A. Bodas-Salcedo; S. Stark; Y. Searl

2006-04-01T23:59:59.000Z

255

Multiple Equilibria and Transitions in a Coupled Ocean–Atmosphere Box Model  

Science Conference Proceedings (OSTI)

A six-box model is employed as a prototype of the coupled Atlantic ocean–atmosphere system. Ice dynamics are excluded. Numerical integration of this system shows that different thermohaline circulation patterns are possible under the same forcing ...

Sergey V. Kravtsov; William K. Dewar

1998-02-01T23:59:59.000Z

256

Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: plate model  

E-Print Network (OSTI)

By considering the membrane's dissipation, the membrane-type acoustic metamaterial (MAM) has been demonstrated as a super absorber for low-frequency sound. In the paper, a theoretical vibroacoustic plate model is developed to reveal sound energy absorption mechanism within the MAM under a plane normal incidence. Based on the plate model in conjunction with the point matching method, the in-plane strain energy of the membrane due to the resonant and antiresonant motion of the attached masses can be accurately captured by solving the coupled vibroacoustic integrodifferential equation. Therefore, the sound absorption of the MAM is obtained and discussed, which is also in good agreement with the prediction from the finite element method. In particular, microstructure effects including eccentricity of the attached masses, the depth, thickness and loss factor of the membrane on sound absorption peak values are quantitatively investigated.

Yangyang Chen; Xiaoming Zhou; Gengkai Hu; Chin-Teh Sun; Guoliang Huang

2013-10-30T23:59:59.000Z

257

Global Ocean Surface Wave Simulation Using a Coupled Atmosphere–Wave Model  

Science Conference Proceedings (OSTI)

This study describes a 29-yr (1981–2009) global ocean surface gravity wave simulation generated by a coupled atmosphere–wave model using NOAA/GFDL’s High-Resolution Atmosphere Model (HiRAM) and the WAVEWATCH III surface wave model developed and ...

Yalin Fan; Shian-Jiann Lin; Isaac M. Held; Zhitao Yu; Hendrik L. Tolman

2012-09-01T23:59:59.000Z

258

Comparison of Arctic Climate Simulations by Uncoupled and Coupled Global Models  

Science Conference Proceedings (OSTI)

Simulations of present-day Arctic climate are assessed from suites of 1) 13 global atmosphere-only models from the Atmospheric Model Intercomparison Project (AMIP-II) and 2) 8 coupled atmosphere–ocean–ice models from the Data Distribution Center ...

John E. Walsh; Vladimir M. Kattsov; William L. Chapman; Veronika Govorkova; Tatyana Pavlova

2002-06-01T23:59:59.000Z

259

Motion and Evolution of Binary Tropical Cyclones in a Coupled Atmosphere–Ocean Numerical Model  

Science Conference Proceedings (OSTI)

The interaction of binary tropical cyclones (TC) is investigated using a coupled TC-ocean movable nested-grid model. The model consists of an eight-layer atmospheric model in the sigma coordinate system and a three-layer primitive equation ocean ...

Alexander I. Falkovich; Alexander P. Khain; Isaac Ginis

1995-05-01T23:59:59.000Z

260

Coupling geological and numerical models to simulate groundwater flow and contaminant transport in fractured media  

Science Conference Proceedings (OSTI)

A new modeling approach is presented to improve numerical simulations of groundwater flow and contaminant transport in fractured geological media. The approach couples geological and numerical models through an intermediate mesh generation phase. As ... Keywords: Fractures, Geomodel, Influence coefficient technique, Numerical modeling, Tetrahedra

Daniela Blessent; René Therrien; Kerry MacQuarrie

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Dynamic Process of Money Transfer Models  

E-Print Network (OSTI)

We have studied numerically the statistical mechanics of the dynamic phenomena, including money circulation and economic mobility, in some transfer models. The models on which our investigations were performed are the basic model proposed by A. Dragulescu and V. Yakovenko [1], the model with uniform saving rate developed by A. Chakraborti and B.K. Chakrabarti [2], and its extended model with diverse saving rate [3]. The velocity of circulation is found to be inversely related with the average holding time of money. In order to check the nature of money transferring process in these models, we demonstrated the probability distributions of holding time. In the model with uniform saving rate, the distribution obeys exponential law, which indicates money transfer here is a kind of Poisson process. But when the saving rate is set diversely, the holding time distribution follows a power law. The velocity can also be deduced from a typical individual's optimal choice. In this way, an approach for building the micro-...

Wang, Y; Wang, Yougui; Ding, Ning

2005-01-01T23:59:59.000Z

262

Coupled Mesoscale-Large-Eddy Modeling of Realistic Stable Boundary Layer Turbulence  

E-Print Network (OSTI)

Site-specific flow and turbulence information are needed for various practical applications, ranging from aerodynamic/aeroelastic modeling for wind turbine design to optical diffraction calculations. Even though highly desirable, collecting on-site meteorological measurements can be an expensive, time-consuming, and sometimes a challenging task. In this work, we propose a coupled mesoscale-large-eddy modeling framework to synthetically generate site-specific flow and turbulence data. The workhorses behind our framework are a state-of-the-art, open-source atmospheric model called the Weather Research and Forecasting (WRF) model and a tuning-free large-eddy simulation (LES) model. Using this coupled framework, we simulate a nighttime stable boundary layer (SBL) case from the well-known CASES-99 field campaign. One of the unique aspects of this work is the usage of a diverse range of observations for characterization and validation. The coupled models reproduce certain characteristics of observed low-level jets....

Wang, Yao; Manuel, Lance

2013-01-01T23:59:59.000Z

263

Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments...  

Open Energy Info (EERE)

of Applications for Research, Development and Analysis of Geothermal Technologies Project Type Topic 2 Integrated Chemical, Thermal, Mechanical and Hydrological Modeling...

264

Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary Model Validation  

Science Conference Proceedings (OSTI)

A number of short-term numerical experiments conducted by the Penn State–NCAR fifth-generation Mesoscale Model (MM5) coupled with an advanced land surface model, alongside the simulations coupled with a simple slab model, are verified with ...

Fei Chen; Jimy Dudhia

2001-04-01T23:59:59.000Z

265

Modeling magnetic coupling for on-chip interconnect  

Science Conference Proceedings (OSTI)

As advances in IC technologies and operat-ing frequencies make the modeling of on-chip magnetic interactions a necessity, it is apparent that extension of traditional inductance extraction approaches to full-chip scale problems is impractical. There ... Keywords: inductance, interconnect modeling, magnetic interaction, susceptance

Michael W. Beattie; Lawrence T. Pileggi

2001-06-01T23:59:59.000Z

266

Response of the NCAR Climate System Model to Increased CO2 and the Role of Physical Processes  

Science Conference Proceedings (OSTI)

The global warming resulting from increased CO2 is addressed in the context of two regional processes that contribute to climate change in coupled climate models, the “El Niño–like” response (slackening of the equatorial Pacific SST gradient) and ...

Gerald A. Meehl; William D. Collins; Byron A. Boville; Jeffrey T. Kiehl; T. M. L. Wigley; Julie M. Arblaster

2000-06-01T23:59:59.000Z

267

Evaluating the Carbon Cycle of a Coupled Atmosphere-Biosphere Model  

SciTech Connect

We investigate how well a coupled biosphere-atmosphere model, CCM3-IBIS, can simulate the functioning of the terrestrial biosphere and the carbon cycling through it. The simulated climate is compared to observations, while the vegetation cover and the carbon cycle are compared to an offline version of the biosphere model IBIS forced with observed climatic variables. The simulated climate presents some local biases that strongly affect the vegetation (e.g., a misrepresentation of the African monsoon). Compared to the offline model, the coupled model simulates well the globally averaged carbon fluxes and vegetation pools. The zonal mean carbon fluxes and the zonal mean seasonal cycle are also well represented except between 0{sup o} and 20{sup o}N due to the misrepresentation of the African monsoon. These results suggest that, despite regional biases in climate and ecosystem simulations, this coupled atmosphere-biosphere model can be used to explore geographic and temporal variations in the global carbon cycle.

Delire, C; Foley, J A; Thompson, S

2002-08-21T23:59:59.000Z

268

Using Coupled Harmonic Oscillators to Model Some Greenhouse Gas Molecules  

Science Conference Proceedings (OSTI)

Common greenhouse gas molecu les SF 6 NO 2 CH 4 and CO 2 are modeled as harmonic oscillators whose potential and kinetic energies are derived. Using the Euler?Lagrange equation

Clark Kendrick C. Go; Joel T. Maquiling

2010-01-01T23:59:59.000Z

269

Equatorial Convectively Coupled Waves in a Simple Multicloud Model  

Science Conference Proceedings (OSTI)

Linear stability results for the multicloud model recently developed by the authors on an equatorial beta plane are presented here. The linearized equations, about a realistic radiative–convective equilibrium (RCE) are projected in the meridional ...

Boualem Khouider; Andrew J. Majda

2008-11-01T23:59:59.000Z

270

A Coupled Soil Moisture and Surface Temperature Prediction Model  

Science Conference Proceedings (OSTI)

A model for soil moisture and soil surface temperature prediction for bare soil is considered in this paper. In describing evaporation rate. soil structure and moisture were taken into account as much as possible. Soil moisture prediction was ...

F. Ács; D. T. Mihailovi?; B. Rajkovi?

1991-06-01T23:59:59.000Z

271

VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas Exploration  

E-Print Network (OSTI)

VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas dedicated to oil and gas exploration. Our system combines probe- based volume rendering with data processing Seismic interpretation is an important task in the oil and gas exploration-production (EP) workflow [9, 26

Paris-Sud XI, Université de

272

Coupled modeling of non-isothermal multiphase flow, solutetransport and reactive chemistry in porous and fractured media: 1. ModelDevelopment and Validation  

Science Conference Proceedings (OSTI)

Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, mineral deposition, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. Here they present a numerical simulation model, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered. The model can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions is considered, such as aqueous complexation, gas dissolution/exsolution, cation exchange, and surface complexation. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. The coupled model employs a sequential iteration approach with reasonable computing efficiency. The development of the governing equations and numerical approach is presented along with the discussion of the model implementation and capabilities. The model is verified for a wide range of subsurface physical and chemical processes. The model is well suited for flow and reactive transport in variably saturated porous and fractured media. In the second of this two-part paper, three applications covering a variety of problems are presented to illustrate the capabilities of the model.

Xu, Tianfu; Pruess, Karsten

1998-09-01T23:59:59.000Z

273

Coupling the Mixed Potential and Radiolysis Models for Used Fuel Degradation  

SciTech Connect

The primary purpose of this report is to describe the strategy for coupling three process level models to produce an integrated Used Fuel Degradation Model (FDM). The FDM, which is based on fundamental chemical and physical principals, provides direct calculation of radionuclide source terms for use in repository performance assessments. The G-value for H2O2 production (Gcond) to be used in the Mixed Potential Model (MPM) (H2O2 is the only radiolytic product presently included but others will be added as appropriate) needs to account for intermediate spur reactions. The effects of these intermediate reactions on [H2O2] are accounted for in the Radiolysis Model (RM). This report details methods for applying RM calculations that encompass the effects of these fast interactions on [H2O2] as the solution composition evolves during successive MPM iterations and then represent the steady-state [H2O2] in terms of an “effective instantaneous or conditional” generation value (Gcond). It is anticipated that the value of Gcond will change slowly as the reaction progresses through several iterations of the MPM as changes in the nature of fuel surface occur. The Gcond values will be calculated with the RM either after several iterations or when concentrations of key reactants reach threshold values determined from previous sensitivity runs. Sensitivity runs with RM indicate significant changes in G-value can occur over narrow composition ranges. The objective of the mixed potential model (MPM) is to calculate the used fuel degradation rates for a wide range of disposal environments to provide the source term radionuclide release rates for generic repository concepts. The fuel degradation rate is calculated for chemical and oxidative dissolution mechanisms using mixed potential theory to account for all relevant redox reactions at the fuel surface, including those involving oxidants produced by solution radiolysis and provided by the radiolysis model (RM). The RM calculates the concentration of species generated at any specific time and location from the surface of the fuel. Several options being considered for coupling the RM and MPM are described in the report. Different options have advantages and disadvantages based on the extent of coding that would be required and the ease of use of the final product.

Buck, Edgar C.; Jerden, James L.; Ebert, William L.; Wittman, Richard S.

2013-08-30T23:59:59.000Z

274

Quantum information processing by NMR using a 5-qubit system formed by dipolar coupled spins in an oriented molecule  

E-Print Network (OSTI)

Quantum Information processing by NMR with small number of qubits is well established. Scaling to higher number of qubits is hindered by two major requirements (i) mutual coupling among qubits and (ii) qubit addressability. It has been demonstrated that mutual coupling can be increased by using residual dipolar couplings among spins by orienting the spin system in a liquid crystalline matrix. In such a case, the heteronuclear spins are weakly coupled but the homonuclear spins become strongly coupled. In such circumstances, the strongly coupled spins can no longer be treated as qubits. However, it has been demonstrated elsewhere, that the $2^N$ energy levels of a strongly coupled N spin-1/2 system can be treated as an N-qubit system. For this purpose the various transitions have to be identified to well defined energy levels. This paper consists of two parts. In the first part, the energy level diagram of a heteronuclear 5-spin system is obtained by using a newly developed heteronuclear z-cosy (HET-Z-COSY) experiment. In the second part, implementation of logic gates, preparation of pseudopure states, creation of entanglement and entanglement transfer is demonstrated, validating the use of such systems for quantum information processing.

Ranabir Das; Rangeet Bhattacharyya; Anil Kumar

2004-09-27T23:59:59.000Z

275

Monitoring the Coupling-Update Frequency of a Limited-Area Model by Means of a Recursive Digital Filter  

Science Conference Proceedings (OSTI)

In operational applications lateral-boundary coupling data are provided to one-way nested limited-area models with time intervals of more than an order of magnitude larger than the time step of the coupled model. In practice, these fixed coupling-...

Piet Termonia

2004-08-01T23:59:59.000Z

276

Monitoring and Improving the Temporal Interpolation of Lateral-Boundary Coupling Data for Limited-Area Models  

Science Conference Proceedings (OSTI)

It is investigated how the quality of the temporal interpolation of lateral-boundary coupling data for limited-area models (LAMs) can be improved or kept under control, while increasing the data transfer between the coupling and the coupled model ...

Piet Termonia

2003-10-01T23:59:59.000Z

277

A comparison of staggered solution schemes for coupled particle---continuum systems modeled with the Arlequin method  

Science Conference Proceedings (OSTI)

This contribution aims at a systematic investigation of staggered solution schemes for the computation of coupled domains having different resolutions in space, a problem frequently arising in multi-scale modeling of materials. To couple a standard finite ... Keywords: Atomistic---continuum coupling, Bridging domain method, Domain decomposition, Lagrange multipliers, Multiscale modeling

S. Pfaller; G. Possart; P. Steinmann; M. Rahimi; F. Müller-Plathe; M. C. Böhm

2012-05-01T23:59:59.000Z

278

Dynamics of Quintessence Models of Dark Energy with Exponential Coupling to the Dark Matter  

E-Print Network (OSTI)

We explore quintessence models of dark energy which exhibit non-minimal coupling between the dark matter and the dark energy components of the cosmic fluid. The kind of coupling chosen is inspired in scalar-tensor theories of gravity. We impose a suitable dynamics of the expansion allowing to derive exact Friedmann-Robertson-Walker solutions once the coupling function is given as input. Self-interaction potentials of single and double exponential types emerge as result of our choice of the coupling function. The stability and existence of the solutions is discussed in some detail. Although, in general, models with appropriated interaction between the components of the cosmic mixture are useful to handle the coincidence problem, in the present study the coincidence can not be evaded due to the choice of the solution generating ansatz.

Tame Gonzalez; Genly Leon; Israel Quiros

2007-02-08T23:59:59.000Z

279

Modification of Surface Fluxes from Component Models in Global Coupled Models  

Science Conference Proceedings (OSTI)

The present generation of global coupled ocean–atmosphere GCMs contains considerable systematic errors both in terms of net surface heat flux and simulated SSTs. Here, a global coupled GCM is used to illustrate how systematic errors in the ...

Gerald A. Meehl

1997-11-01T23:59:59.000Z

280

A Dynamic Model coupling Photoacclimation and Photoinhibition in Microalgae  

E-Print Network (OSTI)

of biodiesel. In order to improve large- scale, industrial culturing systems, the development of math- ematical in microalgae, thereby spanning multiple time scales. The properties of the model are investigated under quasi been devoted to enhancing lipid production, from which biodiesel can be derived. Lipid productivity can

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A sustained oscillation in a toy-model of the coupled atmosphere-ocean system  

E-Print Network (OSTI)

Interaction between atmospheric mid-latitude flow and wind-driven ocean circulation is studied coupling two idealized low-order spectral models. The barotropic Charney-DeVore model with three components simulates a bimodal mid-latitude atmospheric circulation in a channel with two stable flow patterns induced by topography. The wind-driven ocean double gyre circulation in a square basin (of half the channel length) is modeled by an equivalent barotropic formulation of the Veronis model with 21 components, which captures Rossby-wave dynamics and nonlinear decadal variability. When coupled, the atmosphere forces the ocean by wind-stress while, simultaneously, the ocean affects the atmosphere by thermal forcing in terms of a vorticity source. Coupled atmosphere-ocean simulations show two stable flow patterns associated with the topographically induced atmospheric bimodality and a sustained oscillation due to interaction between atmospheric bimodality and oceanic Rossby dynamics. The oscillation is of inter-annua...

Bothe, Oliver

2011-01-01T23:59:59.000Z

282

Development of a Coupled Land Surface Hydrologic Model and Evaluation at a Critical Zone Observatory  

Science Conference Proceedings (OSTI)

A fully-coupled land surface hydrologic model, Flux-PIHM, is developed by incorporating a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land-surface scheme is adapted from the Noah LSM. Because PIHM is capable of ...

Yuning Shi; Kenneth J. Davis; Christopher J. Duffy; Xuan Yu

283

Coupling remote sensing with computational fluid dynamics modelling to estimate lake chlorophyll-a concentration  

E-Print Network (OSTI)

Coupling remote sensing with computational fluid dynamics modelling to estimate lake chlorophyll form 17 October 2000; accepted 1 June 2001 Abstract A remotely sensed image of Loch Leven, a shallow in the remotely sensed image. It is proposed that CFD modelling benefits the interpretation of remotely sensed

284

Response of the Atlantic Thermohaline Circulation to Increased Atmospheric CO2 in a Coupled Model  

Science Conference Proceedings (OSTI)

Changes in the thermohaline circulation (THC) due to increased CO2 are important in future climate regimes. Using a coupled climate model, the Parallel Climate Model (PCM), regional responses of the THC in the North Atlantic to increased CO2 and ...

Aixue Hu; Gerald A. Meehl; Warren M. Washington; Aiguo Dai

2004-11-01T23:59:59.000Z

285

Atlantic Thermohaline Circulation in a Coupled General Circulation Model: Unforced Variations versus Forced Changes  

Science Conference Proceedings (OSTI)

A 1200-yr unforced control run and future climate change simulations using the Parallel Climate Model (PCM), a coupled atmosphere–ocean–land–sea ice global model with no flux adjustments and relatively high resolution (2.8° for the atmosphere ...

Aiguo Dai; A. Hu; G. A. Meehl; W. M. Washington; W. G. Strand

2005-08-01T23:59:59.000Z

286

Numerical Early Warning Model Research of Landfill Gas Permeation and Diffusion Considering Flow-Temperature Coupling  

Science Conference Proceedings (OSTI)

Based on seepage mechanics in porous medium gas and heat transfer theory, numerical early warning model is established, which is on quantitative description of migration and release of landfill gas and penetration and diffusion of energy, and dynamic ... Keywords: component, landfill gas, flow-temperature coupling, gas pressure and temperature distribution, numerical early warning model

Xue Qiang; Feng Xia-ting; Ma Shi-jin; Zhou Xiao-jun

2009-10-01T23:59:59.000Z

287

The Scripps Coupled Ocean–Atmosphere Regional (SCOAR) Model, with Applications in the Eastern Pacific Sector  

Science Conference Proceedings (OSTI)

A regional coupled ocean–atmosphere model is introduced. It is designed to admit the air–sea feedbacks arising in the presence of an oceanic mesoscale eddy field. It consists of the Regional Ocean Modeling System (ROMS) and the Regional Spectral ...

Hyodae Seo; Arthur J. Miller; John O. Roads

2007-02-01T23:59:59.000Z

288

Long-Term Variability in a Coupled Atmosphere–Biosphere Model  

Science Conference Proceedings (OSTI)

A fully coupled atmosphere–biosphere model, version 3 of the NCAR Community Climate Model (CCM3) and the Integrated Biosphere Simulator (IBIS), is used to illustrate how vegetation dynamics may be capable of producing long-term variability in the ...

Christine Delire; Jonathan A. Foley; Starley Thompson

2004-10-01T23:59:59.000Z

289

A new coupled fluid-structure modeling methodology for running ductile fracture  

Science Conference Proceedings (OSTI)

A coupled fluid-structure modeling methodology for running ductile fracture in pressurized pipelines has been developed. The pipe material and fracture propagation have been modeled using the finite-element method with a ductile fracture criterion. The ... Keywords: CFD, FEM, Fluid-structure, Fracture, Leak, Pipeline

H. O. Nordhagen; S. Kragset; T. Berstad; A. Morin; C. Dørum; S. T. Munkejord

2012-03-01T23:59:59.000Z

290

Why is the AMOC mono-stable in Coupled General Circulation Models?  

Science Conference Proceedings (OSTI)

This paper is concerned with the question: why do Coupled General Circulation Models (CGCM) seem to be biased towards a mono-stable AMOC? In particular, we investigate whether the mono-stable behavior of the CGCMs is caused by a bias of model ...

Wei Liu; Zhengyu Liu; Esther C. Brady

291

Testing a Coupled Ice-Mixed-Layer Model Under Subarctic Conditions  

Science Conference Proceedings (OSTI)

A one-dimensional oceanic mixed-layer model has been coupled with a thermodynamic sea ice model in order to study the seasonal cycle of ice-ocean interaction in the subarctic ocean. The ice thickness is assumed constant and only variations of ice ...

Marie-Noëlle Houssais

1988-02-01T23:59:59.000Z

292

A numerical model of hydro-thermo-mechanical coupling in a fractured rock mass  

DOE Green Energy (OSTI)

Coupled hydro-thermo-mechanical codes with the ability to model fractured materials are used for predicting groundwater flow behavior in fractured aquifers containing thermal sources. The potential applications of such a code include the analysis of groundwater behavior within a geothermal reservoir. The capability of modeling hydro-thermo systems with a dual porosity, fracture flow model has been previously developed in the finite element code, FEHM. FEHM has been modified to include stress coupling with the dual porosity feature. FEHM has been further developed to implicitly couple the dependence of fracture hydraulic conductivity on effective stress within two dimensional, saturated aquifers containing fracture systems. The cubic law for flow between parallel plates was used to model fracture permeability. The Bartin-Bandis relationship was used to determine the fracture aperture within the cubic law. The code used a Newton Raphson iteration to implicitly solve for six unknowns at each node. Results from a model of heat flow from a reservoir to the moving fluid in a single fracture compared well with analytic results. Results of a model showing the increase in fracture flow due to a single fracture opening under fluid pressure compared well with analytic results. A hot dry rock, geothermal reservoir was modeled with realistic time steps indicating that the modified FEHM code does successfully model coupled flow problems with no convergence problems.

Bower, K.M.

1996-06-01T23:59:59.000Z

293

A Description of a 1260-Year Control Integration with the Coupled ECHAM1/LSG General Circulation Model  

Science Conference Proceedings (OSTI)

A 1260-yr integration generated by the ECHAM1/LSG (Large Scale Geostrophic) coupled atmosphere–ocean general circulation model is analyzed in this paper. The analysis focuses on the climate drift and on the variations of the coupled atmosphere–...

Jin-Song von Storch; Viatcheslav V. Kharin; Ulrich Cubasch; Gabriele C. Hegerl; Dierk Schriever; Hans von Storch; Eduardo Zorita

1997-07-01T23:59:59.000Z

294

SU(5) and SO(10) models from F-theory with natural Yukawa couplings  

SciTech Connect

We construct the SU(5) and SO(10) models from F-theory. Turning on the U(1) fluxes, we can break the SU(5) gauge symmetry down to the standard model (SM) gauge symmetry, and break the SO(10) gauge symmetry down to the SU(3){sub C}xSU(2){sub L}xSU(2){sub R}xU(1){sub B-L} gauge symmetry. In particular, all the SM fermion Yukawa couplings preserve the enhanced U(1){sub a}xU(1){sub b} gauge or global symmetries at the triple intersections of the SM fermion and Higgs curves. And the SM fermion masses and mixings can be generated in the presence of background fluxes. In our models, the doublet-triplet splitting problem can be solved naturally. The additional vectorlike particles can obtain heavy masses via the instanton effects or Higgs mechanism and then decouple at the high scale. The SM gauge couplings at the string scale, which are split due to the U(1) flux effects, can be explained by considering heavy threshold corrections from the extra vectorlike particles. Moreover, in the SU(5) model, we have the Yukawa coupling unification for the bottom quark and tau lepton. In the SO(10) models, we have the Yukawa coupling unification for the top and bottom quarks, and the Yukawa coupling unification for the tau lepton and tau neutrino.

Li Tianjun [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China) and George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, Texas 77843 (United States)

2010-03-15T23:59:59.000Z

295

Coupled thermodynamic-dynamic semi-analytical model of Free Piston Stirling engines  

E-Print Network (OSTI)

The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standard...

Formosa, Fabien

2013-01-01T23:59:59.000Z

296

The Influence of Hydrologic Modeling on the Predicted Local Weather: Two-Way Coupling of a Mesoscale Weather Prediction Model and a Land Surface Hydrologic Model  

Science Conference Proceedings (OSTI)

A two-way coupling of the operational mesoscale weather prediction model known as Lokal Modell (LM; German Weather Service) with the land surface hydrologic “TOPMODEL”-Based Land Surface–Atmosphere Transfer Scheme (TOPLATS; Princeton University) ...

G. Seuffert; P. Gross; C. Simmer; E. F. Wood

2002-10-01T23:59:59.000Z

297

Statistics of the Air-Sea Fluxes of Momentum and Mechanical Energy in a Coupled Wave-Atmosphere Model  

Science Conference Proceedings (OSTI)

An atmospheric general circulation model (GCM) and a wind wave model are coupled through the wind stress. The wind stress which forces the wave model, depends in the coupled model on the stage of development of the wave field. As the waves depend ...

Susanne L. Weber

1994-06-01T23:59:59.000Z

298

Multiphase Flow Modeling of Biofuel Production Processes  

Science Conference Proceedings (OSTI)

As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

D. Gaston; D. P. Guillen; J. Tester

2011-06-01T23:59:59.000Z

299

Coupled rock motion and gas flow modeling in blasting  

SciTech Connect

The spherical element computer code DMC (Distinct Motion Code) used to model rock motion resulting from blasting has been enhanced to allow routine computer simulations of bench blasting. The enhancements required for bench blast simulation include: (1) modifying the gas flow portion of DMC, (2) adding a new explosive gas equation of state capability, (3) modifying the porosity calculation, and (4) accounting for blastwell spacing parallel to the face. A parametric study performed with DMC shows logical variation of the face velocity as burden, spacing, blastwell diameter and explosive type are varied. These additions represent a significant advance in the capability of DMC which will not only aid in understanding the physics involved in blasting but will also become a blast design tool. 8 refs., 7 figs., 1 tab.

Preece, D.S. (Sandia National Labs., Albuquerque, NM (United States)); Knudsen, S.D. (RE/SPEC, Inc., Albuquerque, NM (United States))

1991-01-01T23:59:59.000Z

300

Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling  

SciTech Connect

A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model s domain consists of a single, explicitly represented three-dimensional fuel plate and a simplified two-dimensional coolant channel slice. In simplifying the coolant channel, and thus the number of mesh points in which the Navier-Stokes equations must be solved, the computational cost and solution time are both greatly reduced. In order for the reduced-dimension coolant channel to interact with the explicitly represented fuel plate, however, interdimensional variable coupling must be enacted along all shared boundaries. The primary focus of this paper is in detailing the collection, storage, passage, and application of variables across this interdimensional interface. Comparisons are made showing the general speed-up associated with this simplified coupled model.

Travis, Adam R [ORNL] ORNL; Freels, James D [ORNL] ORNL; Ekici, Kivanc [ORNL] ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

New Model of Inflation with Non-minimal Derivative Coupling of Standard Model Higgs Boson to Gravity  

E-Print Network (OSTI)

In this letter we show that there is a unique non-minimal derivative coupling of the Standard Model Higgs boson to gravity such that: it propagates no more degrees of freedom than General Relativity sourced by a scalar field, reproduces a successful inflating background within the Standard Model Higgs parameters and, finally, does not suffer from dangerous quantum corrections.

Cristiano Germani; Alex Kehagias

2010-03-12T23:59:59.000Z

302

Modelling of heat transfer at glass/mould interface in press and blow forming processes  

Science Conference Proceedings (OSTI)

Numerical models may play an important role in the optimization of the quality of hollow-ware glass articles in glass industry. Due to the complexity of the phenomena involved a coupling between thermal and mechanical aspects is crucial. One of the key ... Keywords: Finite elements, Glass forming, Heat conduction, Heat transfer coefficient, Interface element, Press/blow process

Sébastien Grégoire; José M. A. César de Sá; Philippe Moreau; Dominique Lochegnies

2007-08-01T23:59:59.000Z

303

Final Report on Hierarchical Coupled Modeling and Prediction of Regional Climate Change in the Atlantic Sector  

SciTech Connect

During the course of this project, we have accomplished the following: a) Carried out studies of climate changes in the past using a hierarchy of intermediate coupled models (Chang et al., 2008; Wan et al 2009; Wen et al., 2010a,b) b) Completed the development of a Coupled Regional Climate Model (CRCM; Patricola et al., 2011a,b) c) Carried out studies testing hypotheses testing the origin of systematic errors in the CRCM (Patricola et al., 2011a,b) d) Carried out studies of the impact of air-sea interaction on hurricanes, in the context of barrier layer interactions (Balaguru et al)

Saravanan, Ramalingam [Texas A& M University

2011-10-30T23:59:59.000Z

304

The cost of gauge coupling unification in the SU(5) model at three loops  

E-Print Network (OSTI)

The non-supersymmetric SU(5) model can accommodate heavy neutrinos and gauge coupling unification when augmented with an adjoint fermionic multiplet 24_F. Among the most important phenomenological implications of the model is the prediction of light fermions and scalars, charged under the SU(2) gauge group, in the reach of the Large Hadron Collider (LHC). In this talk, we report on the recent calculation of the correlation function between the mass scale of the new electroweak multiplets and the gauge coupling unification scale at three loop accuracy.

L. Mihaila

2013-05-14T23:59:59.000Z

305

Author manuscript, published in "International Conference on Image Processing (ICIP) (2009)" LIDAR WAVEFORM MODELING USING A MARKED POINT PROCESS  

E-Print Network (OSTI)

Lidar waveforms are 1D signal consisting of a train of echoes where each of them correspond to a scattering target of the Earth surface. Modeling these echoes with the appropriate parametric function is necessary to retrieve physical information about these objects and characterize their properties. This paper presents a marked point process based model to reconstruct a lidar signal in terms of a set of parametric functions. The model takes into account both a data term which measures the coherence between the models and the waveforms, and a regularizing term which introduces physical knowledge on the reconstructed signal. We search for the best configuration of functions by performing a Reversible Jump Markov Chain Monte Carlo sampler coupled with a simulated annealing. Results are finally presented on different kinds of signals in urban areas. Index Terms — Signal reconstruction, Lidar, Source modeling, Marked point process, RJMCMC, 3D point cloud.

Clément Mallet; Florent Lafarge; Frédéric Bretar; Uwe Soergel; Christian Heipke

2013-01-01T23:59:59.000Z

306

Analyzing interacting WS-BPEL processes using flexible model generation  

Science Conference Proceedings (OSTI)

We address the problem of analyzing the interaction between WS-BPEL processes. We present a technology chain that starts out with a WS-BPEL process and translates it into a Petri net model. On the model we decide controllability of the process (the existence ... Keywords: Business process modeling and analysis, Formal models in business process management, Petri nets, Process verification and validation, WS-BPEL

Niels Lohmann; Peter Massuthe; Christian Stahl; Daniela Weinberg

2008-01-01T23:59:59.000Z

307

Coupling Air Flow Models to Load/Energy Models and Implications...  

NLE Websites -- All DOE Office Websites (Extended Search)

For loadenergy calculation, coupling allows for air system control based on a "thermostat" and produces more realistic interior surface temperatures. Examples of applying the...

308

Decadal Predictability of the Atlantic Ocean in a Coupled GCM: Forecast Skill and Optimal Perturbations Using Linear Inverse Modeling  

Science Conference Proceedings (OSTI)

The decadal predictability of three-dimensional Atlantic Ocean anomalies is examined in a coupled global climate model [the third climate configuration of the Met Office Unified Model (HadCM3)] using a linear inverse modeling (LIM) approach. It ...

Ed Hawkins; Rowan Sutton

2009-07-01T23:59:59.000Z

309

Performance of Long-Term Integrations of the Japan Meteorological Agency Nonhydrostatic Model Using the Spectral Boundary Coupling Method  

Science Conference Proceedings (OSTI)

The spectral boundary coupling (SBC) method, which is an approach used to couple a limited-area model with a large-scale model, was introduced into a nonhydrostatic model. To investigate whether the SBC method works well in a long-term ...

Kazuaki Yasunaga; Hidetaka Sasaki; Yasutaka Wakazuki; Teruyuki Kato; Chiashi Muroi; Akihiro Hashimoto; Sachie Kanada; Kazuo Kurihara; Masanori Yoshizaki; Yasuo Sato

2005-12-01T23:59:59.000Z

310

Computational Efficiency and Accuracy of Methods for Asynchronously Coupling Atmosphere–Ocean Climate Models. Part I: Testing with a Mean Annual Model  

Science Conference Proceedings (OSTI)

Using the mean annual, globally-averaged, coupled atmosphere–ocean energy balance model of Harvey and Schneider, the effect on the transient climate response to a step function solar constant increase using a variety of asynchronous coupling ...

S. H. Schneider; L. D. D. Harvey

1986-01-01T23:59:59.000Z

311

Efficiency and Fluctuation in Tight-Coupling Model of Molecular Motor  

E-Print Network (OSTI)

A simple tight-coupling model of a molecular chemical engine is proposed. The efficiency of the chemical engine and its average velocity can be explicitly calculated. The diffusion constant is evaluated approximately using the fluctuation theorem. Langevin simulations with stochastic boundary conditions are performed and the numerical results are compared with theoretical calculations.

Hidetsugu Sakaguchi

2006-05-08T23:59:59.000Z

312

Relations between Northward Ocean and Atmosphere Energy Transports in a Coupled Climate Model  

Science Conference Proceedings (OSTI)

The Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) is used to analyze the relation between northward energy transports in the ocean and atmosphere at centennial time scales. In a transient water-hosing experiment, ...

Michael Vellinga; Peili Wu

2008-02-01T23:59:59.000Z

313

Subduction over the Southern Indian Ocean in a High-Resolution Atmosphere–Ocean Coupled Model  

Science Conference Proceedings (OSTI)

This study examines the subduction of the Subantarctic Mode Water in the Indian Ocean in an ocean–atmosphere coupled model in which the ocean component is eddy permitting. The purpose is to assess how sensitive the simulated mode water is to the ...

Mei-Man Lee; A. J. George Nurser; I. Stevens; Jean-Baptiste Sallée

2011-08-01T23:59:59.000Z

314

Circumpolar Deep Water Circulation and Variability in a Coupled Climate Model  

Science Conference Proceedings (OSTI)

The natural variability of Circumpolar Deep Water (CDW) is analyzed using a long-term integration of a coupled climate model. The variability is decomposed using a standard EOF analysis into three separate modes accounting for 68% and 82% of the ...

Agus Santoso; Matthew H. England; Anthony C. Hirst

2006-08-01T23:59:59.000Z

315

A Simplified Ice–Ocean Coupled Model for the Antarctic Ice Melt Season  

Science Conference Proceedings (OSTI)

In the Antarctic Ocean, sea ice melts mostly by warming of the ocean mixed layer through heat input (mainly solar radiation) in open water areas. A simplified ice–upper ocean coupled model is proposed in which sea ice melts only by the ocean heat ...

Kay I. Ohshima; Sohey Nihashi

2005-02-01T23:59:59.000Z

316

The Role of the Indonesian Throughflow on ENSO Dynamics in a Coupled Climate Model  

Science Conference Proceedings (OSTI)

The effects of the Indonesian Throughflow (ITF) on ENSO dynamics are studied in a coupled climate model by comparing two simulations, one with an open ITF and the other with a closed ITF. Closing the ITF results in an El Niño–like climate state ...

A. Santoso; W. Cai; M. H. England; S. J. Phipps

2011-02-01T23:59:59.000Z

317

A Non-minimally Coupled Quintom Dark Energy Model on the Warped DGP Brane  

E-Print Network (OSTI)

We study dynamics of equation of state parameter for a non-minimally coupled quintom dark energy component on the warped DGP brane. We investigate crossing of the cosmological constant line in this scenario. This crossing occurs in both DGP$^{\\pm}$ branches of the model.

Kourosh Nozari; M. R. Setare; Tahereh Azizi; Noushin Behrouz

2008-10-08T23:59:59.000Z

318

A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis  

SciTech Connect

The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

Zheng, L.; Samper, J.; Montenegro, L.

2011-04-01T23:59:59.000Z

319

Business process modelling: coarse to fine grain mapping using metamodels  

Science Conference Proceedings (OSTI)

One of the key objectives of Business Process Modelling is to better understand and visualise business processes in order to improve and/or enact them in some IT infrastructure. This modelling perspective becomes more complicated and challenging with ... Keywords: business process modelling, meta-models, role activity diagramming, translation

Zaheer Abbas Khan; Mohammed Odeh

2008-02-01T23:59:59.000Z

320

Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint  

SciTech Connect

Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

Jonkman, J. M.; Sclavounos, P. D.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Modeling of thermally driven hydrological processes in partially saturated fractured rock  

E-Print Network (OSTI)

the dominant heat-transfer process. Because the multipleof coupled heat transfer and reactive transport processes inflow, heat transfer, and phase transformation processes

Tsang, Yvonne

2010-01-01T23:59:59.000Z

322

Final Report Coupling in silico microbial models with reactive transport models to predict the fate of contaminants in the subsurface.  

Science Conference Proceedings (OSTI)

This project successfully accomplished its goal of coupling genome-scale metabolic models with hydrological and geochemical models to predict the activity of subsurface microorganisms during uranium bioremediation. Furthermore, it was demonstrated how this modeling approach can be used to develop new strategies to optimize bioremediation. The approach of coupling genome-scale metabolic models with reactive transport modeling is now well enough established that it has been adopted by other DOE investigators studying uranium bioremediation. Furthermore, the basic principles developed during our studies will be applicable to much broader investigations of microbial activities, not only for other types of bioremediation, but microbial metabolism in diversity of environments. This approach has the potential to make an important contribution to predicting the impact of environmental perturbations on the cycling of carbon and other biogeochemical cycles.

Lovley, Derek R.

2012-10-31T23:59:59.000Z

323

Coupled Ocean–Atmosphere Dynamical Processes in the Tropical Indian and Pacific Oceans and the TBO  

Science Conference Proceedings (OSTI)

The transitions (from relatively strong to relatively weak monsoon) in the tropospheric biennial oscillation (TBO) occur in northern spring for the south Asian or Indian monsoon and northern fall for the Australian monsoon involving coupled land–...

Gerald A. Meehl; Julie M. Arblaster; Johannes Loschnigg

2003-07-01T23:59:59.000Z

324

A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC®  

Science Conference Proceedings (OSTI)

A 3D simulation tool for modeling solid oxide fuel cells is described. The tool combines the versatility and efficiency of a commercial finite element analysis code, MARC{reg_sign}, with an in-house developed robust and flexible electrochemical (EC) module. Based upon characteristic parameters obtained experimentally and assigned by the user, the EC module calculates the current density distribution, heat generation, and fuel and oxidant species concentration, taking the temperature profile provided by MARC{reg_sign} and operating conditions such as the fuel and oxidant flow rate and the total stack output voltage or current as the input. MARC{reg_sign} performs flow and thermal analyses based on the initial and boundary thermal and flow conditions and the heat generation calculated by the EC module. The main coupling between MARC{reg_sign} and EC is for MARC{reg_sign} to supply the temperature field to EC and for EC to give the heat generation profile to MARC{reg_sign}. The loosely coupled, iterative scheme is advantageous in terms of memory requirement, numerical stability and computational efficiency. The coupling is iterated to self-consistency for a steady-state solution. Sample results for steady states as well as the startup process for stacks with different flow designs are presented to illustrate the modeling capability and numerical performance characteristic of the simulation tool.

Khaleel, Mohammad A.; Lin, Zijing; Singh, Prabhakar; Surdoval, Wayne; Collin, D

2004-05-03T23:59:59.000Z

325

Modeling of coupled heat transfer and reactive transport processesin porous media: Application to seepage studies at Yucca Mountain, Nevada  

SciTech Connect

When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However, coupled THC seepage models that include both permeability and capillary changes to fractures may not show this additional seepage.

Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

2007-01-15T23:59:59.000Z

326

Modeling of coupled heat transfer and reactive transport processesin porous media: Application to seepage studies at Yucca Mountain, Nevada  

SciTech Connect

When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO{sub 2} volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However, coupled THC seepage models that include both permeability and capillary changes to fractures may not show this additional seepage.

Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

2007-01-15T23:59:59.000Z

327

TSPA Model Development and Sensitivity Analysis of Processes...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Processes Affecting Performance of a Salt Repository for Disposal of Heat-Generating Nuclear Waste TSPA Model Development and Sensitivity Analysis of Processes Affecting...

328

Coupled Intermittent Maps Modelling the Statistics of Genomic Sequences: A Network Approach  

E-Print Network (OSTI)

The dynamics of coupled intermittent maps is used to model the correlated structure of genomic sequences. The use of intermittent maps, as opposed to other simple chaotic maps, is particularly suited for the production of long range correlation features which are observed in the genomic sequences of higher eucaryotes. A weighted network approach to symbolic sequences is introduced and it is shown that coupled intermittent polynomial maps produce degree and link size distributions with power law exponents similar to the ones observed in real genomes. The proposed network approach to symbolic sequences is generic and can be applied to any symbol sequence (artificial or natural).

Astero Provata; Christian Beck

2012-05-10T23:59:59.000Z

329

Coupling characteristics of the ITER relevant lower hybrid antenna in Tore Supra: experiments and modelling  

Science Conference Proceedings (OSTI)

A new concept of lower hybrid antenna for current drive has been proposed for ITER [Bibet et al, Nuclear Fusion 1995]: the Passive Active Multijunction (PAM) antenna that relies on a periodic combination of active and passive waveguides. An actively cooled PAM antenna at 3.7 GHz has been recently installed on the tokamak Tore Supra. The paper summarizes the comprehensive experimental characterization of the linear coupling properties of the PAM antenna to the Tore Supra plasmas. These experimental results are systematically compared with the linear wave coupling theory via the linear ALOHA code. Good agreement between experimental results and ALOHA have been obtained. The detailed validation of the coupling modelling is an important step toward the validation of the PAM concept in view of further optimizing the electromagnetic properties of the future ITER antenna.

Preynas, M.; Ekedahl, A.; Fedorczak, N.; Goniche, M.; Guilhem, D.; Gunn, J. P.; Hillairet, J.; Litaudon, X. [CEA, IRFM, 13108 Saint Paul lez Durance (France); Associacao Euratom-IST, Centro de Fusao Nuclear 1049-001 Lisboa (Portugal)

2011-12-23T23:59:59.000Z

330

A Coupled Micromechanical Model of Moisture-Induced Damage in Asphalt Mixtures: Formulation and Applications  

E-Print Network (OSTI)

The deleterious effect of moisture on the structural integrity of asphalt mixtures has been recognized as one of the main causes of early deterioration of asphalt pavements. This phenomenon, usually referred to as moisture damage, is defined as the progressive loss of structural integrity of the mixture that is primarily caused by the presence of moisture in liquid or vapor state. Moisture damage is associated with the development of different physical, mechanical, and chemical processes occurring within the microstructure of the mixture at different intensities and rates. Although there have been important advancements in identifying and characterizing this phenomenon, there is still a lack of understanding of the damage mechanisms occurring at the microscopic level. This situation has motivated the research work reported in this dissertation. The main objective of this dissertation is to formulate and apply a numerical micromechanical model of moisture-induced damage in asphalt mixtures. The model focuses on coupling the effects of moisture diffusion—one of the three main modes of moisture transport within asphalt mixtures—with the mechanical performance of the microstructure. Specifically, the model aims to account for the effect of moisture diffusion on the degradation of the viscoelastic bulk matrix of the mixture (i.e., cohesive degradation) and on the gradual deterioration of the adhesive bonds between the aggregates and the asphalt matrix (i.e., adhesive degradation). The micromechanical model was applied to study the role of some physical and mechanical properties of the constitutive phases of the mixtures on the susceptibility of the mixture to moisture damage. The results from this analysis suggest that the diffusion coefficients of the asphalt matrix and aggregates, as well as the bond strength of the aggregate-matrix interface, have the most influence on the moisture susceptibility of the mixtures. The micromechanical model was further used to investigate the influence of the void phase of asphalt mixtures on the generation of moisture-related deterioration processes. Two different probabilistic-based approaches were used to accomplish this objective. In the first approach, a volumetric distribution of air voids sizes measured using X-Ray Computed Tomography in a dense-graded asphalt mixture was used to generate probable void structures in a microstructure of an asphalt mixture. In the second approach, a stochastic modeling technique based on random field theory was used to generate probable air voids distributions of the mixture. In this second approach, the influence of the air voids was accounted for by making the physical and mechanical properties of the asphalt matrix dependent on probable voids distributions. Although both approaches take into consideration the characteristics of the air void phase on the mechanical response of the mixtures subjected to moist environments, the former explicitly introduces the air phase within the microstructure while the latter indirectly includes its effects by modifying the material properties of the bulk matrix. The results from these simulations demonstrated that the amount, variability and location of air voids are decisive in determining the moisture-dependent performance of asphalt mixtures. The results from this dissertation provide new information on the kinetics of moisture damage mechanisms in asphalt mixtures. In particular, the results obtained from applying the micromechanical model permitted identification of the relative influence of the characteristics of the constitutive phases of a mixture on its moisture-related mechanical performance. This information can be used as part of design methodologies of asphalt mixtures, and/or as an input in life-cycle analysis models and maintenance programs of road infrastructure.

Caro Spinel, Silvia

2009-12-01T23:59:59.000Z

331

Optimization models of gas recovery and gas condensate processing  

Science Conference Proceedings (OSTI)

We present a complex of mathematical models that formalize gas recovery and processing. Optimization problems for gas recovery and gas condensate processing are stated and corresponding solution algorithms are suggested. These mathematical models provide ...

M. Kh. Prilutskii; V. E. Kostyukov

2012-05-01T23:59:59.000Z

332

Directional Wind-Wave Coupling in Fully Coupled Atmosphere-Wave-Ocean Models: Results from CBLAST-Hurricane  

Science Conference Proceedings (OSTI)

The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The Coupled Boundary Layer Air-Sea Transfer (...

Shuyi S. Chen; Wei Zhao; Mark A. Donelan; Hendrik L. Tolman

333

Directional Wind–Wave Coupling in Fully Coupled Atmosphere–Wave–Ocean Models: Results from CBLAST-Hurricane  

Science Conference Proceedings (OSTI)

The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The Coupled Boundary Layer Air–Sea Transfer (...

Shuyi S. Chen; Wei Zhao; Mark A. Donelan; Hendrik L. Tolman

2013-10-01T23:59:59.000Z

334

Multiple-code benchmark simulation study of coupled THMC processes in the excavation disturbed zone associated with geological nuclear waste repositories  

E-Print Network (OSTI)

MULTIPLE-CODE BENCHMARK SIMULATION STUDY OF COUPLED THMCinternational, multiple-code benchmark test (BMT) study isinternational, multiple-model benchmark test (BMT) study of

2006-01-01T23:59:59.000Z

335

Influence of Air-Conditioning Waste Heat on Air Temperature in Tokyo during Summer: Numerical Experiments Using an Urban Canopy Model Coupled with a Building Energy Model  

Science Conference Proceedings (OSTI)

A coupled model consisting of a multilayer urban canopy model and a building energy analysis model has been developed to investigate the diurnal variations of outdoor air temperature in the office areas of Tokyo, Japan. Observations and numerical ...

Yukitaka Ohashi; Yutaka Genchi; Hiroaki Kondo; Yukihiro Kikegawa; Hiroshi Yoshikado; Yujiro Hirano

2007-01-01T23:59:59.000Z

336

Integrated dynamic and simulation model on coupled closed-loop workstation capacity controls in a multi-workstation production system  

Science Conference Proceedings (OSTI)

In this paper, a dynamic model coupled with a simulation model is introduced to control a multi-workstation production system such that a given performance measure is achieved. In particular, we consider closed loop capacity controls for regulating WIP ...

Tao Wu; Leyuan Shi; Benjamin Quirt; N. A. Duffie

2008-12-01T23:59:59.000Z

337

The El Niño–Southern Oscillation in the Second Hadley Centre Coupled Model and Its Response to Greenhouse Warming  

Science Conference Proceedings (OSTI)

This paper describes El Niño–Southern Oscillation (ENSO) interannual variability simulated in the second Hadley Centre coupled model under “control” and “greenhouse warming” scenarios. The model produces a very reasonable simulation of ENSO in ...

Matthew Collins

2000-04-01T23:59:59.000Z

338

Predictability of Linear Coupled Systems. Part II: An Application to a Simple Model of Tropical Atlantic Variability  

Science Conference Proceedings (OSTI)

A predictability analysis developed within a general framework of linear stochastic dynamics in a companion paper is applied to a simple coupled climate model of tropical Atlantic variability (TAV). The simple model extends the univariate ...

Ping Chang; R. Saravanan; Faming Wang; Link Ji

2004-04-01T23:59:59.000Z

339

Feedbacks of Vegetation on Summertime Climate Variability over the North American Grasslands. Part II: A Coupled Stochastic Model  

Science Conference Proceedings (OSTI)

A coupled linear model is derived to describe interactions between anomalous precipitation and vegetation over the North American Grasslands. The model is based on biohydrological characteristics in the semiarid environment and has components to ...

Weile Wang; Bruce T. Anderson; Dara Entekhabi; Dong Huang; Robert K. Kaufmann; Christopher Potter; Ranga B. Myneni

2006-09-01T23:59:59.000Z

340

Dynamic and Thermodynamic Air–Sea Coupling Associated with the Indian Ocean Dipole Diagnosed from 23 WCRP CMIP3 Models  

Science Conference Proceedings (OSTI)

The performance of 23 World Climate Research Programme (WCRP) Coupled Model Intercomparison Project, phase 3 (CMIP3) models in the simulation of the Indian Ocean dipole (IOD) is evaluated, and the results show large diversity in the simulated IOD ...

Lin Liu; Weidong Yu; Tim Li

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Modeling and Scaling Coupled Energy, Water, and Carbon Fluxes Based on Remote Sensing: An Application to Canada’s Landmass  

Science Conference Proceedings (OSTI)

Land surface models (LSMs) need to be coupled with atmospheric general circulation models (GCMs) to adequately simulate the exchanges of energy, water, and carbon between the atmosphere and terrestrial surfaces. The heterogeneity of the land ...

Baozhang Chen; Jing M. Chen; Gang Mo; Chiu-Wai Yuen; Hank Margolis; Kaz Higuchi; Douglas Chan

2007-04-01T23:59:59.000Z

342

Impact of Climate Drift on Twenty-First-Century Projection in a Coupled Atmospheric–Ocean General Circulation Model  

Science Conference Proceedings (OSTI)

Reducing climate drift in coupled atmosphere–ocean general circulation models (AOGCMs) usually requires 1000–2000 years of spinup, which has not been practical for every modeling group to do. For the purpose of evaluating the impact of climate ...

Mao-Chang Liang; Li-Ching Lin; Ka-Kit Tung; Yuk L. Yung; Shan Sun

2013-10-01T23:59:59.000Z

343

Simulation of the Tropical Oceans with an Ocean GCM Coupled to an Atmospheric Mixed-Layer Model  

Science Conference Proceedings (OSTI)

A reduced gravity, primitive equation, ocean general circulation model (GCM) is coupled to an advective atmospheric mixed-layer (AML) model to demonstrate the importance of a nonlocal atmospheric mixed-layer parameterization for a proper ...

Ragu Murtugudde; Richard Seager; Antonio Busalacchi

1996-08-01T23:59:59.000Z

344

Determining Greenland Ice Sheet sensitivity to regional climate change: one-way coupling of a 3-D thermo-mechanical ice sheet model with a mesoscale climate model  

E-Print Network (OSTI)

responsible almost 40% of the ice sheet’s total dischargeCurrently, no coupled Greenland Ice Sheet model experimentaccelerated melting of Greenland ice sheet, Science, v. 313,

Schlegel, Nicole-Jeanne

2011-01-01T23:59:59.000Z

345

The Land Surface Climatology of the NCAR Land Surface Model Coupled to the NCAR Community Climate Model  

Science Conference Proceedings (OSTI)

The National Center for Atmospheric Research (NCAR) Land Surface Model (LSM, version 1.0) provides a comprehensive treatment of land surface processes for the NCAR Community Climate Model version 3 (CCM3). It replaces the prescribed surface ...

Gordon B. Bonan

1998-06-01T23:59:59.000Z

346

PROCESS MODEL FOR THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE CO-ELECTROLYSIS  

DOE Green Energy (OSTI)

A process model has been developed to evaluate the potential performance of a large-scale high-temperature coelectrolysis plant for the production of syngas from steam and carbon dioxide. The coelectrolysis process allows for direct electrochemical reduction of the steam – carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the HYSYS systems analysis code. Using this code, a detailed process flowsheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard HYSYS component, a custom one-dimensional coelectrolysis model was developed for incorporation into the overall HYSYS process flowsheet. The 1-D coelectrolysis model assumes local chemical equilibrium among the four process-gas species via the shift reaction. The electrolyzer model allows for the determination of coelectrolysis outlet temperature, composition (anode and cathode sides), mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully 3-D computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the HYSYS flowsheet model for a 300 MW coelectrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The coelectrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the entire process would be climate neutral.

M. G. McKellar; J. E. O'Brien; C. M. Stoots; G. L. Hawkes

2007-11-01T23:59:59.000Z

347

Distributed Processing of a Regional Prediction Model  

Science Conference Proceedings (OSTI)

This paper describes the parallelization of a mesoscale-cloud-scale numerical weather prediction model and experiments conducted to assess its performance. The model used is the Advanced Regional Prediction System (ARPS), a limited-area ...

Kenneth W. Johnson; Jeff Bauer; Gregory A. Riccardi; Kelvin K. Droegemeier; Ming Xue

1994-11-01T23:59:59.000Z

348

A filter model for mobile processes  

Science Conference Proceedings (OSTI)

This paper presents a filter model for ?-calculus and shows its full abstraction with respect to a ‘may’ operational semantics. The model is introduced in the form of a type assignment system. Types are related by a preorder that mimics ...

Ferruccio Damiani; Mariangiola Dezani-Ciancaglini; Paola Giannini

1999-02-01T23:59:59.000Z

349

Soil Carbon Modeling (Mac Post) A. Rothamsted model carbon pools and processes. Their approximate equivalents for the EBIS sample processing  

E-Print Network (OSTI)

Soil Carbon Modeling (Mac Post) A. Rothamsted model carbon pools and processes. Their approximate' soil horizon show that model improvements need to be made to capture observed soil carbon cycling and transport processes. Testing and improvement of soil carbon cycling models is a key anticipated output

350

Coupling atomistic and continuum hydrodynamics through a mesoscopic model: application to liquid water  

E-Print Network (OSTI)

We have conducted a triple-scale simulation of liquid water by concurrently coupling atomistic, mesoscopic, and continuum models of the liquid. The presented triple-scale hydrodynamic solver for molecular liquids enables the insertion of large molecules into the atomistic domain through a mesoscopic region. We show that the triple-scale scheme is robust against the details of the mesoscopic model owing to the conservation of linear momentum by the adaptive resolution forces. Our multiscale approach is designed for molecular simulations of open domains with relatively large molecules, either in the grand canonical ensemble or under non-equilibrium conditions.

Rafael Delgado-Buscalioni; Kurt Kremer; Matej Praprotnik

2009-08-04T23:59:59.000Z

351

Processing Advancements via Modeling and Simulation  

Science Conference Proceedings (OSTI)

Feb 28, 2011... TMS Materials Processing and Manufacturing Division, TMS Structural ... the design of high-integrity components such as turbine blades and ...

352

Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)  

E-Print Network (OSTI)

installation and initial water intake of the buffer over asaturated with water. Water intake is a slow process because

Steefel, Carl

2010-01-01T23:59:59.000Z

353

Coupled Reactor Kinetics and Heat Transfer Model for Heat Pipe Cooled Reactors  

SciTech Connect

Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). The paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities.

WRIGHT,STEVEN A.; HOUTS,MICHAEL

2000-11-22T23:59:59.000Z

354

A Multiscale Model for Coupled Heat Conduction and Deformations of Viscoelastic Composites  

E-Print Network (OSTI)

This study introduces a multiscale model for analyzing nonlinear thermo-viscoelastic responses of particulate composites. A simplified micromechanical model consisting of four sub-cells, i.e., one particle and three matrix sub-cells is formulated to obtain the effective thermal and mechanical properties and time-dependent response of the composites. The particle and matrix constituents are made of isotropic homogeneous viscoelastic bodies undergoing small deformation gradients. Perfect bonds are assumed along the sub-cell???s interfaces. The coupling between the thermal and mechanical response is attributed to the dissipation of energy due to the viscoelastic deformation and temperature dependent material parameters in the viscoelastic constitutive model. The micromechanical relations are formulated in terms of incremental average field quantities, i.e., stress, strain, heat flux and temperature gradient, in the sub-cells. The effective mechanical properties and coefficient of thermal expansion are derived by satisfying displacement- and traction continuities at the interfaces during the thermo-viscoelastic deformations. The effective thermal conductivity is formulated by imposing heat flux- and temperature continuities at the subcells??? interfaces. The expression of the effective specific heat at a constant stress is also established. A time integration algorithm for simultaneously solving the equations that govern heat conduction and thermoviscoelastic deformations of isotropic materials is developed. The algorithm is then incorporated within each sub-cell of the micromechanical model together with the macroscopic energy equation to determine the effective coupled thermoviscoelastic response of the particulate composite. The numerical formulation is implemented within the ABAQUS, general purpose displacement based FE software, allowing for analyzing coupled heat conduction and deformations of composite structures. Experimental data on the effective thermal properties and time dependent responses of particulate composites available in the literature are used to verify the micromechanical model formulation. The multiscale model capability is also examined by comparing the field variables, i.e., temperature, displacement, stresses and strains, obtained from heterogeneous and homogeneous composite structures, during the transient heat conduction and deformations. Examples of coupled thermoviscoelastic analyses of particulate composites and functionally graded structures are also presented. The present micromechanical modeling approach is found to be computationally efficient and shows good agreement with experiments in predicting the effective thermo-mechanical response of particulate composites and functionally graded materials. Our analyses forecast a better design for creep resistant and less dissipative structures using particulate composites and functionally graded materials.

Khan, Kamran Ahmed

2011-05-01T23:59:59.000Z

355

Modeling of Production Metal Cutting Processes  

Science Conference Proceedings (OSTI)

... oblique cutting, and nose turning. Finally, a system-level mechanistic machining model is briefly described for turning, milling, and drilling, and a ...

2011-01-12T23:59:59.000Z

356

Modeling and Simulation Applied to Metals Processing  

Science Conference Proceedings (OSTI)

This symposium will provide an overview of various fundamental materials ... modeling and simulation area they have detailed in the handbooks and the latest  ...

357

Bayesian dynamic models for space-time point processes  

Science Conference Proceedings (OSTI)

In this work we propose a model for the intensity of a space-time point process, specified by a sequence of spatial surfaces that evolve dynamically in time. This specification allows flexible structures for the components of the model, in order to handle ... Keywords: Bayesian inference, Disease mapping, Dynamic models, Integrated Laplace, Monte Carlo Markov chain, Space-time point processes

Edna A. Reis; Dani Gamerman; Marina S. Paez; Thiago G. Martins

2013-04-01T23:59:59.000Z

358

Modeling of thermally driven hydrological processes in partially saturated fractured rock  

Science Conference Proceedings (OSTI)

This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

2009-03-15T23:59:59.000Z

359

Validation of the Coupled NCEP Mesoscale Spectral Model and an Advanced Land Surface Model over the Hawaiian Islands. Part II: A High Wind Event  

Science Conference Proceedings (OSTI)

A high wind event (14–15 February 2001) over the Hawaiian Islands associated with a cold front is simulated using the National Centers for Environmental Prediction (NCEP) Mesoscale Spectral Model (MSM) coupled with an advanced land surface model (...

Yongxin Zhang; Yi-Leng Chen; Kevin Kodama

2005-12-01T23:59:59.000Z

360

Coupling the ISBA Land Surface Model and the TOPMODEL Hydrological Model for Mediterranean Flash-Flood Forecasting: Description, Calibration, and Validation  

Science Conference Proceedings (OSTI)

Innovative coupling between the soil–vegetation–atmosphere transfer (SVAT) model Interactions between Soil, Biosphere, and Atmosphere (ISBA) and the hydrological model TOPMODEL has been specifically designed for flash-flood forecasting in the ...

Ludovic Bouilloud; Katia Chancibault; Béatrice Vincendon; Véronique Ducrocq; Florence Habets; Georges-Marie Saulnier; Sandrine Anquetin; Eric Martin; Joel Noilhan

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Coupled-channel treatment of Isobaric Analog Resonances in (p,p') Capture Processes  

SciTech Connect

With the advent of nuclear reactions on unstable isotopes, there has been a renewed interest in using isobaric analogue resonances (IAR) as a tool for probing the nuclear structure. The position and width of isobaric analogue resonances in nucleon-nucleus scattering are accurate and detailed indicators of the positions of resonances and bound states with good single-particle characters. We report on implementation within our coupled-channels code FRESCO of the charge-exchange interaction term that transforms an incident proton into a neutron. Isobaric analog resonances are seen as peaks in gamma-ray spectrum when the proton is transformed into a neutron at an energy near a neutron bound state. The Lane coupled-channels formalism was extended to follow the nonorthogonality of this neutron channel with that configuration of an inelastic outgoing proton, and the target being left in a particle-hole excited state. This is tested for 208Pb, for which good (p,p g)

Thompson, I J [Lawrence Livermore National Laboratory (LLNL); Arbanas, Goran [ORNL

2013-01-01T23:59:59.000Z

362

Nuclear Asset Management (NAM) Process Model  

Science Conference Proceedings (OSTI)

Nuclear asset management (NAM) is the process of making operational, resource allocation, and risk management decisions at all levels of a nuclear generation business to maximize nuclear power plant value to stakeholders, while maintaining safety to the public and the plant staff. To support nuclear utilities in achieving these goals, the Nuclear Energy Institute (NEI) issued NEI AP 940, Nuclear Asset Management Process Description and Guideline, in May 2005. This document provides high-level guidance. H...

2007-12-20T23:59:59.000Z

363

Online Modeling in the Process Industry for Energy Optimization  

E-Print Network (OSTI)

"This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam and electricity. It further discusses the methods of providing this energy for refineries, petrochemical plants, and other processing plants - chemical, paper, and metal. A typical system flow diagram is used to highlight the energy system network and describe areas where steady-state models are used. The types of models used are discussed, and a scheme for putting the models together to provide total process plant energy optimization is summarized. The types of optimization which can be implemented in a process plant is thus presented. The paper points out what steady-state modeling is needed to do online optimization of an energy network in a processing plant. Finally, a discussion of the economics on online energy optimization is presented."

Alexander, J.

1988-09-01T23:59:59.000Z

364

Efficient flowline simulations of ice-shelf/ocean interactions: Sensitivity studies with a fully coupled model  

Science Conference Proceedings (OSTI)

Thermodynamic flowline and plume models for the ice-shelf/ocean system simplify the ice and ocean dynamics sufficiently to allow extensive exploration of parameters affecting ice-sheet stability while including key physical processes. Comparison ...

Ryan T. Walker; David M. Holland; Byron R. Parizek; Richard B. Alley; Sophie M. J. Nowicki; Adrian Jenkins

365

Calibrating a Coupled SVAT–Vegetation Growth Model with Remotely Sensed Reflectance and Surface Temperature—A Case Study for the HAPEX-Sahel Grassland Sites  

Science Conference Proceedings (OSTI)

Models simulating the seasonal growth of vegetation have been recently coupled to soil–vegetation–atmosphere transfer schemes (SVATS). Such coupled vegetation–SVATS models (V–S) account for changes of the vegetation leaf area index (LAI) over ...

P. Cayrol; L. Kergoat; S. Moulin; G. Dedieu; A. Chehbouni

2000-12-01T23:59:59.000Z

366

Numerical Modeling of Coupled Groundwater and Surface Water Interactions in an Urban Setting  

Science Conference Proceedings (OSTI)

The Dominguez Channel Watershed (DCW), located in the southern portion of Los Angeles County (Figure A.1), drains about 345 square miles into the Los Angeles Harbor. The cities and jurisdictions in DCW are shown in Figure A.2. The largest of these include the cities of Los Angeles, Carson, and Torrance. This watershed is unique in that 93% of its land area is highly developed (i.e. urbanized). The watershed boundaries are defined by a complex network of storm drains and flood control channels, rather than being defined by natural topography. Table (1) shows a summary of different land uses in the Dominguez Channel Watershed (MEC, 2004). The Dominguez Watershed has the highest impervious area of all watersheds in the Los Angeles region. The more impervious the surface, the more runoff is generated during a storm. Storm water runoff can carry previously accumulated contaminants and transport them into receiving water systems. Point sources such as industrial wastewater and municipal sewage as well as urban runoff from commercial, residential, and industrial areas are all recognized as contributors to water quality degradation at DWC. Section 303(d) of the 1972 Federal Clean Water Act (CWA) requires states to identify and report all waters not meeting water quality standards and to develop action plans to pursue the water quality objectives. These plans specify the maximum amount of a given pollutant that the water body of concern can receive and still meet water quality standards. Such plans are called Total Maximum Daily Loads (TMDLs). TMDLs also specify allocations of pollutant loadings to point and non-point sources taking into account natural background pollutant levels. This demonstrates the importance of utilizing scientific tools, such as flow and transport models, to identify contaminant sources, understand integrated flow paths, and assess the effectiveness of water quality management strategies. Since overland flow is a very important component of the water balance and hydrology of DCW, a parallel, distributed watershed model that treats flow in groundwater and surface water in a dynamically coupled manner will be used to build a flow model of the watershed. This coupled model forms the basis for modeling and understanding the transport of contaminants through the Dominguez Channel Watershed, which can be used in designing and implementing TMDLs to manage the water quality in this basin. In this report, the coupled surface water-groundwater flow model of DCW will be presented. This flow model was calibrated against a storm that occurred in February 21st, 2004. The model and approach are explained further in the following sections.

Rihani, J F; Maxwell, R M

2007-09-26T23:59:59.000Z

367

Reversible computation as a model for the quantum measurement process  

E-Print Network (OSTI)

One-to-one reversible automata are introduced. Their applicability to a modelling of the quantum mechanical measurement process is discussed.

Karl Svozil

2009-04-15T23:59:59.000Z

368

Process Modelling of Electron Beam Welding of Aeroengine ...  

Science Conference Proceedings (OSTI)

PROCESS MODELLING OF THE ELECTRON BEAM WELDING OF AEROENGINE COMPONENTS. R. C. Reed, H.J. Stone, D Dye and S.M. Roberts.

369

Through-process Modeling for Cold Spray Alloy Optimization  

Science Conference Proceedings (OSTI)

Presentation Title, Through-process Modeling for Cold Spray Alloy Optimization ... repairability, and energy efficiency are highly desirable in many industries.

370

Simulation Techniques for Process Energy Modeling - Doing it ...  

Science Conference Proceedings (OSTI)

Simulation Techniques for Process Energy Modeling ... 2: Constrained Material Balance for Maximum Activity of Carbon; SuperSolver's Optimization Feature. III.

371

Unified Model for the Heat Transfer Processes that Occur During  

E-Print Network (OSTI)

A unified general model for the heat transfer processes that occur within a food product subjected to canning or aseptic thermal treatment, is presented. Two principles are extensively used in the model building process: system segregation and energy balancing. The model is summarized in an algorithm, whose specification is showed for different combinations of processing system type (PST) and product formulation (PF) with a single particle type. A discussion on the practical relevance of proper product identification in the case of aseptic processing, is included. Finally, an illustration is given on the results that can be obtained from the model algorithm application, in a comparative study of different PST-PF combinations.

Jose F. Pastrana; Harvey J. Gold; Kenneth R. Swanzel; Pastrana Gold; Jose F. Pastrana; Harvey J. Gold; Kenneth R. Swartzel

1992-01-01T23:59:59.000Z

372

A Review of Ground Coupled Heat Pump Models Used in Whole-Building Computer Simulation Programs  

E-Print Network (OSTI)

Increasingly, building owners are turning to ground source heat pump (GSHP) systems to improve energy efficiency. Ground-coupled heat pump (GCHP) systems with a vertical closed ground loop heat exchanger are one of the more widely used systems. Over the last thirty years, a number of simulation models have been developed to calculate the performance of the ground heat exchanger (GHX). The several computer programs can evaluate the GCHP systems as a part of the whole-building energy simulation. This paper briefly presents a general introduction to GSHP systems and the GCHP system, and reviews the currently developed GCHP models and compares computer programs for a GCHP design. In addition, GHX models which play an important role on the GCHP performance are reviewed. Finally, several widely recognized computer simulation programs for building energy analysis are compared regarding their GCHP simulation capability.

Do, S. L.; Haberl, J. S.

2010-08-01T23:59:59.000Z

373

Gauge coupling unification in heterotic string models with gauge mediated supersymmetry breaking  

Science Conference Proceedings (OSTI)

We calculate the weak scale minimal supersymmetric standard model spectrum starting from a heterotic string theory compactified on an anisotropic orbifold. Supersymmetry breaking is mediated by vectorlike exotics that arise naturally in heterotic string theories. The messengers that mediate supersymmetry breaking come in incomplete grand unified theory (GUT) multiplets and give rise to nonuniversal gaugino masses at the GUT scale. Models with nonuniversal gaugino masses at the GUT scale have the attractive feature of allowing for precision gauge coupling unification at the GUT scale with negligible contributions from threshold corrections near the unification scale. The unique features of this minimally supersymmetric standard model spectrum are light gluinos and also large mass differences between the lightest and the next-to-lightest neutralinos and charginos which could lead to interesting signatures at the colliders.

Anandakrishnan, Archana; Raby, Stuart [Department of Physics, Ohio State University, 191, W. Woodruff Ave, Columbus, Ohio 43210 (United States)

2011-04-01T23:59:59.000Z

374

Coastal Atmospheric Circulation around an Idealized Cape during Wind-Driven Upwelling Studied from a Coupled Ocean–Atmosphere Model  

Science Conference Proceedings (OSTI)

The study analyzes atmospheric circulation around an idealized coastal cape during summertime upwelling-favorable wind conditions simulated by a mesoscale coupled ocean–atmosphere model. The domain resembles an eastern ocean boundary with a ...

Natalie Perlin; Eric D. Skyllingstad; Roger M. Samelson

2011-03-01T23:59:59.000Z

375

Evolution of Water Vapor Concentrations and Stratospheric Age of Air in Coupled Chemistry-Climate Model Simulations  

Science Conference Proceedings (OSTI)

Stratospheric water vapor concentrations and age of air are investigated in an ensemble of coupled chemistry-climate model simulations covering the period from 1960 to 2005. Observed greenhouse gas concentrations, halogen concentrations, aerosol ...

John Austin; John Wilson; Feng Li; Holger Vömel

2007-03-01T23:59:59.000Z

376

Tropical Oceanic Response to Extratropical Thermal Forcing in a Coupled Climate Model: A Comparison between the Atlantic and Pacific Oceans  

Science Conference Proceedings (OSTI)

The tropical oceanic response to the extratropical thermal forcing is quantitatively estimated in a coupled climate model. This work focuses on comparison of the responses between the tropical Atlantic and Pacific. Under the same extratropical ...

Haijun Yang; Lu Wang

2011-08-01T23:59:59.000Z

377

Response of a Coupled Ocean–Atmosphere Model to Increasing Atmospheric Carbon Dioxide: Sensitivity to the Rate of Increase  

Science Conference Proceedings (OSTI)

The influence of differing rates of increase of the atmospheric CO2 concentration on the climatic response is investigated using a coupled ocean–atmosphere model. Five transient integrations are performed each using a different constant ...

Ronald J. Stouffer; Syukuro Manabe

1999-08-01T23:59:59.000Z

378

Multiple-Century Response of a Coupled Ocean-Atmosphere Model to an Increase of Atmospheric Carbon Dioxide  

Science Conference Proceedings (OSTI)

To speculate on the future change of climate over several centuries, three 500-year integrations of a coupled ocean-atmosphere model were performed. In addition to the standard integration in which the atmospheric concentration of carbon dioxide ...

Syukuro Manabe; Ronald J. Stouffer

1994-01-01T23:59:59.000Z

379

Whole-Building Energy Simulation with a Three-Dimensional Ground-Coupled Heat Transfer Model: Preprint  

DOE Green Energy (OSTI)

A three-dimensional, finite-element, heat-transfer computer program was developed to study ground-coupled heat transfer from buildings. It was used in conjunction with the SUNREL whole-building energy simulation program to analyze ground-coupled heat transfer from buildings, and the results were compared with the simple ground-coupled heat transfer models used in whole-building energy simulation programs. The detailed model provides another method of testing and refining the simple models and analyzing complex problems. This work is part of an effort to improve the analysis of the ground-coupled heat transfer in building energy simulation programs. The output from this detailed model and several others will form a set of reference results for use with the BESTEST diagnostic procedure. We anticipate that the results from the work will be incorporated into ANSI/ASHRAE 140-2001, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs.

Deru, M.; Judkoff, R.; Neymark, J.

2002-08-01T23:59:59.000Z

380

Source and Pathway of the Western Arctic Upper Halocline in a Data-Constrained Coupled Ocean and Sea Ice Model  

E-Print Network (OSTI)

A coupled ocean and sea ice model is used to investigate dense water (DW) formation in the Chukchi and Bering shelves and the pathways by which this water feeds the upper halocline. Two 1992–2008 data-constrained solutions ...

Nguyen, An T.

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Interhemispheric Asymmetry in the Transient Response of a Coupled Ocean–Atmosphere Model to a CO2 Forcing  

Science Conference Proceedings (OSTI)

Numerical experiments are carried out using a general circulation model of a coupled ocean-atmosphere system with idealized geography, exploring the transient response of climate to a rapid increase of atmospheric carbon dioxide. The ...

K. Bryan; S. Manabe; M. J. Spelman

1988-06-01T23:59:59.000Z

382

Predictability of Seasonal Sahel Rainfall Using GCMs and Lead-Time Improvements Through the Use of a Coupled Model  

Science Conference Proceedings (OSTI)

The ability of several atmosphere-only and coupled ocean–atmosphere general circulation models (AGCMs and CGCMs, respectively) is explored for the prediction of seasonal July–September (JAS) Sahel rainfall. The AGCMs driven with observed sea ...

Ousmane Ndiaye; M. Neil Ward; Wassila M. Thiaw

2011-04-01T23:59:59.000Z

383

Influence of Low-Frequency Indonesian Throughflow Transport on Temperatures in the Indian Ocean in a Coupled Model  

Science Conference Proceedings (OSTI)

The relationship between 3- and 10-yr variability in Indian Ocean temperatures and Indonesian throughflow (ITF) volume transport is examined using results from a 300-yr integration of the coupled NCAR Parallel Climate Model (PCM). Correlation and ...

James T. Potemra; Niklas Schneider

2007-04-01T23:59:59.000Z

384

A Simple Coupled Atmosphere–Ocean–Sea Ice–Land Surface Model for Climate and Paleoclimate Studies  

Science Conference Proceedings (OSTI)

The authors develop a coupled atmosphere–ocean–sea ice–land surface model for long-term climate change studies that incorporates the seasonal cycle. Three ocean basins, the Antarctic Circumpolar Current region, and the major continents are ...

Zhaomin Wang; Lawrence A. Mysak

2000-03-01T23:59:59.000Z

385

Influence of the Extratropical Ocean Circulation on the Intertropical Convergence Zone in an Idealized Coupled General Circulation Model  

Science Conference Proceedings (OSTI)

The authors present coupled model simulations in which the ocean's meridional overturning circulation (MOC) sets the zonal mean location of the intertropical convergence zone (ITCZ) in the hemisphere with deep-water production. They use a coarse-...

Neven S. Fu?kar; Shang-Ping Xie; Riccardo Farneti; Elizabeth A. Maroon; Dargan M. W. Frierson

2013-07-01T23:59:59.000Z

386

Anaerobic Digestion Process Identification Using Recurrent Neural Network Model  

Science Conference Proceedings (OSTI)

This paper proposes the use of a Recurrent Neural Network Model (RNNM) for decentralized and centralized identification of an aerobic digestion process, carried out in a fixed bed and a recirculation tank anaerobic wastewater treatment system. The analytical ... Keywords: Recurrent neural network model, backpropagation learning, decentralized model, centralized model, system identification, anaerobic digestion bioprocess

Rosalba Galvan-Guerra; Ieroham S. Baruch

2007-11-01T23:59:59.000Z

387

Perspectives on Geospace Plasma Coupling  

Science Conference Proceedings (OSTI)

There are a large variety of fascinating and instructive aspects to examining the coupling of mass and energy from the solar wind into the Earth's magnetosphere. Past research has suggested that magnetic reconnection (in a fluid sense) on the day-side magnetopause plays the key role in controlling the energy coupling. However, both linear and nonlinear coupling processes involving kinetic effects have been suggested through various types of innovative data analysis. Analysis and modeling results have also indicated a prominent role for multi-scale processes of plasma coupling. Examples include evidence of control by solar wind turbulence in the coupling sequence and localized (finite gyroradius) effects in dayside plasma transport. In this paper we describe several solar wind-magnetosphere coupling scenarios. We particularly emphasize the study of solar wind driving of magnetospheric substorm, and related geomagnetic disturbances.

Baker, Daniel N. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303-7814 (United States)

2011-01-04T23:59:59.000Z

388

A model for a non-minimally coupled scalar field interacting with dark matter  

E-Print Network (OSTI)

In this work we investigate the evolution of a Universe consisted of a scalar field, a dark matter field and non-interacting baryonic matter and radiation. The scalar field, which plays the role of dark energy, is non-minimally coupled to space-time curvature, and drives the Universe to a present accelerated expansion. The non-relativistic dark matter field interacts directly with the dark energy and has a pressure which follows from a thermodynamic theory. We show that this model can reproduce the expected behavior of the density parameters, deceleration parameter and luminosity distance.

J. B. Binder; G. M. Kremer

2006-01-25T23:59:59.000Z

389

Phase-field modeling of temperature gradient driven pore migration coupling with thermal conduction  

SciTech Connect

Pore migration in a temperature gradient (Soret effect) is investigated by a phase-field model coupled with a heat transfer calculation. Pore migration is observed towards the high temperature domain with velocities that agree with analytical solution. Due to the low thermal conductivity of the pores, the temperature gradient across individual pores is increased, which in turn, accelerates the pore migration. In particular, for pores filled with xenon and helium, the pore velocities are increased by a factor of 2.2 and 2.1, respectively. A quantitative equation is then derived to predict the influence of the low thermal conductivity of pores.

Liangzhe Zhang; Michael R Tonks; Paul C Millett; Yongfeng Zhang; Karthikeyan Chockalingam; Bulent Biner

2012-04-01T23:59:59.000Z

390

Optimizing the anaerobic digestion of microalgae in a coupled process Terence Bayen1,4 and Francis Mairet2 and Pierre Martinon3 and Matthieu Sebbah4  

E-Print Network (OSTI)

Optimizing the anaerobic digestion of microalgae in a coupled process Terence Bayen1,4 and Francis the production of methane in a bioreactor coupling an anaerobic digester and a culture of micro-algae limited as an attractive alternative for sustainable energy production [2]. Anaerobic digestion can be applied to convert

Paris-Sud XI, Université de

391

Software maintenance maturity model (smmm): the software maintenance process model  

E-Print Network (OSTI)

This paper summarizes the research work leading to a Phd thesis that addresses the assessment and improvement of the software maintenance function by proposing a maturity model for daily software maintenance activities: Software Maintenance Maturity Model (SM mm) as well as its supporting knowledge based system SM Xpert. The software maintenance function suffers from a scarcity of management models to facilitate its evaluation, management, and continuous improvement. The SM mm addresses the unique activities of software maintenance while preserving a structure similar to that of the CMMi ©1 maturity model. It is designed to be used as a complement to this model. The SM mm is based on practitioners ’ experience, international standards, and the seminal literature on software maintenance. This paper presents the model’s purpose, scope, foundation, and architecture, followed by a knowledgebased system to help software maintainers learn and use the maturity model. 1.

Alain April; Jean-marc Desharnais

2005-01-01T23:59:59.000Z

392

Chemical kinetics models for semiconductor processing  

SciTech Connect

Chemical reactions in the gas-phase and on surfaces are important in the deposition and etching of materials for microelectronic applications. A general software framework for describing homogeneous and heterogeneous reaction kinetics utilizing the Chemkin suite of codes is presented. Experimental, theoretical and modeling approaches to developing chemical reaction mechanisms are discussed. A number of TCAD application modules for simulating the chemically reacting flow in deposition and etching reactors have been developed and are also described.

Coltrin, M.E.; Creighton, J.R. [Sandia National Labs., Albuquerque, NM (United States); Meeks, E.; Grcar, J.F.; Houf, W.G. [Sandia National Labs., Livermore, CA (United States); Kee, R.J. [Colorado School of Mines, Golden, CO (United States)

1997-12-31T23:59:59.000Z

393

Characteristics of Drought and Persistent Wet Spells over the United States in the Atmosphere–Land–Ocean Coupled Model Experiments  

Science Conference Proceedings (OSTI)

Atmosphere–land–ocean coupled model simulations are examined to diagnose the ability of models to simulate drought and persistent wet spells over the United States. A total of seven models are selected for this study. They are three versions of ...

Kingtse C. Mo; Lindsey N. Long; Jae-Kyung E. Schemm

2012-09-01T23:59:59.000Z

394

Improving the agent-oriented modeling process by roles  

Science Conference Proceedings (OSTI)

The agent-oriented modeling process is divided in a typical sequence of activities, i.e., \\emph{requirements specification}, \\emph{analysis}, and \\emph{design}. The \\emph{requirements} are specified by descriptions of the system's functionality and by ... Keywords: agents, modeling process, roles, software engineering

Ralph Depke; Reiko Heckel; Jochen M. Kuster

2001-05-01T23:59:59.000Z

395

Measurement and modeling of advanced coal conversion processes  

Science Conference Proceedings (OSTI)

The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

1991-01-01T23:59:59.000Z

396

Meson spectroscopy with unitary coupled-channels model for heavy-meson decay into three mesons  

Science Conference Proceedings (OSTI)

We develop a model for describing excited mesons decay into three mesons. The properties of the excited mesons can be extracted with this model. The model maintains the three-body unitarity that has been missed in previous data analyses based on the conventional isobar models. We study an importance of the three-body unitarity in extracting hadron properties from data. For this purpose, we use the unitary and isobar models to analyze the same pseudo data of {gamma}p {yields} {pi}{sup +}{pi}{sup +}{pi}{sup -}n, and extract the properties of excited mesons. We find a significant difference between the unitary and isobar models in the extracted properties of excited mesons, such as the mass, width and coupling strength to decay channels. Hadron properties such as quantum numbers (spin, parity, etc.), mass and (partial) width have been long studied as a subject called hadron spectroscopy. The hadron properties provide important information for understanding internal structure of the hadron and dynamics which governs it. The dynamics here is of course QCD in its nonperturbative regime. The hadron properties can be extracted from data through a careful analysis, in many cases, partial wave analysis (PWA). Thus it is essential for hadron spectroscopy to have a reliable theoretical analysis tool.

Satoshi Nakamura

2012-04-01T23:59:59.000Z

397

Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model  

Science Conference Proceedings (OSTI)

Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

Mahowald, Natalie [Cornell University; Rothenberg, D. [Cornell University; Lindsay, Keith [National Center for Atmospheric Research (NCAR); Doney, Scott C. [Woods Hole Oceanographic Institution; Moore, Jefferson Keith [University of California, Irvine; Randerson, James T. [University of California, Irvine; Thornton, Peter E [ORNL; Jones, C. D. [Hadley Center, Devon, England

2011-02-01T23:59:59.000Z

398

Model development and calibration for the coupled thermal, hydraulic and mechanical phenomena of the bentonite  

E-Print Network (OSTI)

FOR THE COUPLED THERMAL, HYDRAULIC AND MECHANICAL PHENOMENAby the interdependence of thermal, hydraulic and mechanical

Hernelind, J.

2009-01-01T23:59:59.000Z

399

Coupled-cluster method: A lattice-path-based subsystem approximation scheme for quantum lattice models  

Science Conference Proceedings (OSTI)

An approximation hierarchy, called the lattice-path-based subsystem (LPSUBm) approximation scheme, is described for the coupled-cluster method (CCM). It is applicable to systems defined on a regular spatial lattice. We then apply it to two well-studied prototypical (spin-(1/2) Heisenberg antiferromagnetic) spin-lattice models, namely, the XXZ and the XY models on the square lattice in two dimensions. Results are obtained in each case for the ground-state energy, the ground-state sublattice magnetization, and the quantum critical point. They are all in good agreement with those from such alternative methods as spin-wave theory, series expansions, quantum Monte Carlo methods, and the CCM using the alternative lattice-animal-based subsystem (LSUBm) and the distance-based subsystem (DSUBm) schemes. Each of the three CCM schemes (LSUBm, DSUBm, and LPSUBm) for use with systems defined on a regular spatial lattice is shown to have its own advantages in particular applications.

Bishop, R. F.; Li, P. H. Y. [School of Physics and Astronomy, Schuster Building, University of Manchester, Manchester M13 9PL (United Kingdom)

2011-04-15T23:59:59.000Z

400

Volcanic forcing improves Atmosphere-Ocean Coupled General Circulation Model scaling performance  

E-Print Network (OSTI)

Recent Atmosphere-Ocean Coupled General Circulation Model (AOGCM) simulations of the twentieth century climate, which account for anthropogenic and natural forcings, make it possible to study the origin of long-term temperature correlations found in the observed records. We study ensemble experiments performed with the NCAR PCM for 10 different historical scenarios, including no forcings, greenhouse gas, sulfate aerosol, ozone, solar, volcanic forcing and various combinations, such as it natural, anthropogenic and all forcings. We compare the scaling exponents characterizing the long-term correlations of the observed and simulated model data for 16 representative land stations and 16 sites in the Atlantic Ocean for these scenarios. We find that inclusion of volcanic forcing in the AOGCM considerably improves the PCM scaling behavior. The scenarios containing volcanic forcing are able to reproduce quite well the observed scaling exponents for the land with exponents around 0.65 independent of the station dista...

Vyushin, D; Havlin, S; Bunde, A; Brenner, S; Vyushin, Dmitry; Zhidkov, Igor; Havlin, Shlomo; Bunde, Armin; Brenner, Stephen

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Numerical Modeling of Nonlinear Coupling between Lines/Beams with Multiple Floating Bodies  

E-Print Network (OSTI)

Nonlinear coupling problems between the multiple bodies or between the mooring/riser and the offshore platform are incorporated in the CHARM3D-MultiBody, a fully coupled time domain analysis program for multiple bodies with moorings and risers. The nonlinear spring connection module and the three dimensional beam module are added to appropriately solve the structural connection problem. The nonlinear spring connection module includes the hydro-pneumatic tensioner module with the friction & stick/slip implementation, the tendon/mooring disconnection (breakage/unlatch) module with the tendon down-stroke check, and the contact spring with the initial gap with the friction force implemented. The nonlinear coupling may happen in many places for the offshore floating structures, such as hydro-pneumatic tensioner, tendon of TLP down stroke at the bottom joint, stick-slip phenomena at the tie down of the derrick and most of the fender-to-steel or steel-to-steel contact problem with initial gap during the installation. The mooring/tendon broken and unlatch can be a nonlinear connection problem once the transient mode is taken into account. Nonlinearity of the stiffness and friction characteristics of the tensioner combined with stick-slip behavior of riser keel joint is investigated. The relationship between tensions and strokes for hydro-pneumatic tensioner is based on the ideal gas equation where the isotropic gas constant can be varied to achieve an optimum stroke design based on tensioner stiffness. A transient effect of tendon down-stroke and disconnection on global performance of ETLP for harsh environmental condition is also investigated by incorporating the nonlinear boundary condition of the FE tendon model in CHARM3D. The program is made to be capable of modeling the tendon disconnection both at the top and the bottom connection as well as the down stroke behavior for the pinned bottom joint. The performance of the tie-down clamp of derrick is also investigated by using six degrees of freedom spring model and the three(3) dimensional FE beam model. The coupling of the TLP motion with the reaction force at the tie-down clamp is considered by using exact nonlinear dynamic equations of the motion with the reaction forces modeled with the spring or FE beam model. The method reduces too much conservatism when we design the tie-down system by the conventional method, in which all the environmental forces are combined without the phase lag effect between them. The FE beam model is also applied to the connectors between the semisubmersible and the truss for the pre-service and in-place conditions to be verified with the model test results, which shows good agreements.

Yang, Chan K.

2009-05-01T23:59:59.000Z

402

Astrophysical models of r-process nucleosynthesis: An update  

SciTech Connect

An update on astrophysical models for nucleosynthesis via rapid neutron capture, the r process, is given. A neutrino-induced r process in supernova helium shells may have operated up to metallicities of {approx} 10{sup -3} times the solar value. Another r-process source, possibly neutron star mergers, is required for higher metallicities.

Qian Yongzhong [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

2012-11-12T23:59:59.000Z

403

Towards Process Models for Disaster Response Dirk Fahland1  

E-Print Network (OSTI)

Towards Process Models for Disaster Response Dirk Fahland1 and Heiko Woith2 1 Humboldt capture process execution and adaptation. Based on experiences from actual disaster response set- tings, scenarios, Petri nets, disaster response 1 Introduction The fairly general notion of a process

404

Developing a decision model for business process outsourcing  

Science Conference Proceedings (OSTI)

Information technology (IT) outsourcing has been one of the critical issues in organization management. Business process outsourcing (BPO) is an advanced type of IT outsourcing, which will be the next big wave in information technology services. Nevertheless, ... Keywords: Analytic hierarchy process (AHP), Business process outsourcing (BPO), Decision model

Dong-Hoon Yang; Seongcheol Kim; Changi Nam; Ja-Won Min

2007-12-01T23:59:59.000Z

405

Analysis of sintering process by the mathematical model  

Science Conference Proceedings (OSTI)

A mathematical model of sintering process has been developed, in which considerations have been given to the combustion of coke, drying process of solid, the composition of lime stone and the melting and solidifying process of iron ore. Variations of ... Keywords: Numerical integration, Packed-bed simulation, Partial defferential equation

Juzo Shibata

1988-12-01T23:59:59.000Z

406

Process modeling of hydrogen production from municipal solid waste  

DOE Green Energy (OSTI)

The ASPEN PLUS commercial simulation software has been used to develop a process model for a conceptual process to convert municipal solid waste (MSW) to hydrogen. The process consists of hydrothermal treatment of the MSW in water to create a slurry suitable as feedstock for an oxygen blown Texaco gasifier. A method of reducing the complicated MSW feed material to a manageable set of components is outlined along with a framework for modeling the stoichiometric changes associated with the hydrothermal treatment process. Model results indicate that 0.672 kmol/s of hydrogen can be produced from the processing of 30 kg/s (2600 tonne/day) of raw MSW. A number of variations on the basic processing parameters are explored and indicate that there is a clear incentive to reduce the inert fraction in the processed slurry feed and that cofeeding a low value heavy oil may be economically attractive.

Thorsness, C.B.

1995-01-01T23:59:59.000Z

407

Quark-meson coupling model for antikaon condensation in neutron star matter with strong magnetic fields  

E-Print Network (OSTI)

We study the effects of strong magnetic fields on antikaon condensation in neutron star matter using the quark-meson coupling (QMC) model. The QMC model describes a nuclear many-body system as nonoverlapping MIT bags in which quarks interact through the self-consistent exchange of scalar and vector mesons in the mean-field approximation. It is found that the presence of strong magnetic fields alters the threshold density of antikaon condensation significantly. The onset of $K^-$ condensation stronger depends on the magnetic field strength, and it even shifts beyond the threshold of $\\bar K^0$ condensation for sufficiently strong magnetic fields. In the presence of strong magnetic fields, the equation of state (EOS) becomes stiffer in comparison with the field-free case. The softening of the EOS by antikaon condensation also depends on the magnetic field strength, and it becomes less pronounced with increasing magnetic field strength. The results of the QMC model are compared with those obtained in a relativistic mean-field (RMF) model, and we find there are quantitative differences between the results of the QMC and RMF models.

P. Yue; H. Shen

2008-04-18T23:59:59.000Z

408

A simulation model for strategic management process of software projects  

Science Conference Proceedings (OSTI)

In this study, a simulation model for the strategic management process of software development projects is presented. The proposed model simulates the implications of strategic decisions on factors such as cost, risk, budget and schedule of software ... Keywords: Cost estimation, Decision analysis systems, Risk analysis, Simulation modelling, Strategic management

Masood Uzzafer

2013-01-01T23:59:59.000Z

409

Process-response modelling of fluvio-deltaic stratigraphy  

Science Conference Proceedings (OSTI)

Numerical modelling is a tool to investigate the controls on the formation of the stratigraphic record on geological timescales. The model presented in this paper (DELTASIM) uses a process-response approach that simulates the stratigraphy of fluvial-dominated ... Keywords: Delta development, Event based, Kura delta, Numerical model, Visual basic

Robert M. Hoogendoorn; Irina Overeem; Joep E. A. Storms

2008-10-01T23:59:59.000Z

410

Evaluation of Generic EBS Design Concepts and Process Models Implications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generic EBS Design Concepts and Process Models Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization Evaluation of Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization The assessment of generic Engineered Barrier System (EBS) concepts and design optimization to harbor various disposal configurations and waste types needs advanced approaches and methods to analyze barrier performance. The report addresses: 1) Overview of the importance of Thermal-Hydrological-Mechanical-Chemical (THMC) processes to barrier performance, and international collaborations; 2) THMC processes in clay barriers; 3) experimental studies of clay stability and clay-metal interactions at high temperatures and pressures; 4) thermodynamic modeling and database development; 5) Molecular Dynamics (MD) study of clay

411

Computational Efficiency and Accuracy of Methods for Asynchronously Coupling Atmosphere-Ocean Climate Models. Part II: Testing with a Seasonal Cycle  

Science Conference Proceedings (OSTI)

The asynchronous coupling schemes used in the seasonal, coupled atmosphere–ocean general circulation models (A/O GCMs) of Manabe et al. 1979 and Washington et al. 1980 are tested in the seasonal, coupled atmosphere–ocean model of Harvey and ...

L. D. Danny Harvey

1986-01-01T23:59:59.000Z

412

A minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality  

E-Print Network (OSTI)

We present a minimal model of plasma membrane heterogeneity that combines criticality with connectivity to cortical cytoskeleton. Our model is motivated by recent observations of micron-sized critical fluctuations in plasma membrane vesicles that are detached from their cortical cytoskeleton. We incorporate criticality using a conserved order parameter Ising model coupled to a simple actin cytoskeleton interacting through point-like pinning sites. Using this minimal model, we recapitulate several experimental observations of plasma membrane raft heterogeneity. Small (r~20nm) and dynamic fluctuations at physiological temperatures arise from criticality. Including connectivity to cortical cytoskeleton disrupts large fluctuations, prevents macroscopic phase separation at low temperatures (T<=22{\\deg}C), and provides a template for long lived fluctuations at physiological temperature (T=37{\\deg}C). Cytoskeleton-stabilized fluctuations produce significant barriers to the diffusion of some membrane components in a manner that is weakly dependent on the number of pinning sites and strongly dependent on criticality. More generally, we demonstrate that critical fluctuations provide a physical mechanism to organize and spatially segregate membrane components by providing channels for interaction over large distances.

Benjamin B. Machta; Stefanos Papanikolaou; James P. Sethna; Sarah L. Veatch

2010-09-10T23:59:59.000Z

413

A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model Development and Validation  

Science Conference Proceedings (OSTI)

A coupled system of wind, wind wave, and coastal circulation models has been implemented for southern Louisiana and Mississippi to simulate riverine flows, tides, wind waves, and hurricane storm surge in the region. The system combines the NOAA ...

S. Bunya; J. C. Dietrich; J. J. Westerink; B. A. Ebersole; J. M. Smith; J. H. Atkinson; R. Jensen; D. T. Resio; R. A. Luettich; C. Dawson; V. J. Cardone; A. T. Cox; M. D. Powell; H. J. Westerink; H. J. Roberts

2010-02-01T23:59:59.000Z

414

Assimilation of Subsurface Thermal Data into a Simple Ocean Model for the Initialization of an Intermediate Tropical Coupled Ocean-Atmosphere Forecast Model  

Science Conference Proceedings (OSTI)

An adjoint variational assimilation technique is used to assimilate observations of both the oceanic state and wind stress data into an intermediate coupled ENSO prediction model. This method of initialization is contrasted with the more usual ...

Richard Kleeman; Andrew M. Moore; Neville R. Smith

1995-10-01T23:59:59.000Z

415

Adjusting to policy expectations in climate change modeling : an interdiciplinary study of flux adjustments in coupled atmosphere-ocean general circulation models  

E-Print Network (OSTI)

This paper surveys and interprets the attitudes of scientists to the use of flux adjustments in climate projections with coupled Atmosphere Ocean General Circulation Models. The survey is based largely on the responses of ...

Shackley, Simon.; Risbey, James; Stone, Peter H.; Wynne, Brian

416

Transient Response of the Hadley Centre Coupled Ocean-Atmosphere Model to Increasing Carbon Dioxide. Part III: Analysis of Global-Mean Response Using Simple Models  

Science Conference Proceedings (OSTI)

The roles of surface, atmospheric, and oceanic feedbacks in controlling the global-mean transient response of a coupled ocean-atmosphere general circulation model to increasing carbon dioxide are investigated. The analysis employs a four-box ...

J. M. Murphy

1995-03-01T23:59:59.000Z

417

Modelling and model checking suspendible business processes via statechart diagrams and CSP  

Science Conference Proceedings (OSTI)

When modelling object behaviour with UML statechart diagrams, the history mechanism can be useful for modelling the suspension of a ''normal'' business process upon certain ''abnormal'' events together with the subsequent resumption, as illustrated by ... Keywords: History mechanism, Model checking, Object behaviour, Process modelling, Statechart diagrams

W. L. Yeung; K. R. P. H. Leung; Ji Wang; Wei Dong

2007-03-01T23:59:59.000Z

418

Understanding Changes in the Asian Summer Monsoon over the Past Millennium: Insights from a Long-Term Coupled Model Simulation  

Science Conference Proceedings (OSTI)

The Asian summer monsoon (ASM) and its variability were investigated over the past millennium through the analysis of a long-term simulation of the NCAR Climate System Model, version 1.4 (CSM 1.4) coupled model driven with estimated natural and ...

Fangxing Fan; Michael E. Mann; Caspar M. Ammann

2009-04-01T23:59:59.000Z

419

The Effect of Breaking Waves on a Coupled Model of Wind and Ocean Surface Waves. Part I: Mature Seas  

Science Conference Proceedings (OSTI)

This is the first of a two-part investigation of a coupled wind and wave model that includes the enhanced form drag of breaking waves. In Part I here the model is developed and applied to mature seas. Part II explores the solutions in a wide ...

Tobias Kukulka; Tetsu Hara

2008-10-01T23:59:59.000Z

420

A Coupled Biosphere–Atmosphere Climate Model Suitable for Studies of Climatic Change Due to Land Surface Alterations  

Science Conference Proceedings (OSTI)

A biosphere model based on BATS (Biosphere–Atmosphere Transfer Scheme) is coupled to a primitive equation global statistical–dynamical model in order to study the climatic impact due to land surface alterations. The fraction of the earth’s ...

Mário Adelmo Varejão-Silva; Sergio H. Franchito; Vadlamudi Brahmananda Rao

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Systematic parameter estimation and sensitivity analysis using a multidimensional PEMFC model coupled with DAKOTA.  

DOE Green Energy (OSTI)

Current computational models for proton exchange membrane fuel cells (PEMFCs) include a large number of parameters such as boundary conditions, material properties, and numerous parameters used in sub-models for membrane transport, two-phase flow and electrochemistry. In order to successfully use a computational PEMFC model in design and optimization, it is important to identify critical parameters under a wide variety of operating conditions, such as relative humidity, current load, temperature, etc. Moreover, when experimental data is available in the form of polarization curves or local distribution of current and reactant/product species (e.g., O2, H2O concentrations), critical parameters can be estimated in order to enable the model to better fit the data. Sensitivity analysis and parameter estimation are typically performed using manual adjustment of parameters, which is also common in parameter studies. We present work to demonstrate a systematic approach based on using a widely available toolkit developed at Sandia called DAKOTA that supports many kinds of design studies, such as sensitivity analysis as well as optimization and uncertainty quantification. In the present work, we couple a multidimensional PEMFC model (which is being developed, tested and later validated in a joint effort by a team from Penn State Univ. and Sandia National Laboratories) with DAKOTA through the mapping of model parameters to system responses. Using this interface, we demonstrate the efficiency of performing simple parameter studies as well as identifying critical parameters using sensitivity analysis. Finally, we show examples of optimization and parameter estimation using the automated capability in DAKOTA.

Wang, Chao Yang (Penn State University, University Park, PA); Luo, Gang (Penn State University, University Park, PA); Jiang, Fangming (Penn State University, University Park, PA); Carnes, Brian; Chen, Ken Shuang

2010-05-01T23:59:59.000Z

422

Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)  

DOE Green Energy (OSTI)

This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

2012-06-01T23:59:59.000Z

423

Parallel processing in discrimination between models of dynamic systems  

Science Conference Proceedings (OSTI)

The paper considers the problem of determining an optimal observation schedule for discrimination between competing models of a dynamic process. To this end, an approach originating in optimum experimental design is applied. Its use necessitates solving ...

Bartosz Kuczewski; Przemys?aw Baranowski; Dariusz Uci?ski

2005-09-01T23:59:59.000Z

424

Signal processing in biological cells : proteins, networks, and models  

E-Print Network (OSTI)

This thesis introduces systematic engineering principles to model, at different levels of abstraction the information processing in biological cells in order to understand the algorithms implemented by the signaling pathways ...

Said, Maya Rida, 1976-

2005-01-01T23:59:59.000Z

425

Numerical Modeling Studies of a Process of Lee Cyclogenesis  

Science Conference Proceedings (OSTI)

A process of lee cyclogenesis associated with backsheared baroclinic flow is studied using a fully nonlinear, primitive equation numerical model. A region of low pressure and a narrow baroclinic zone develop to the southwest of the mountain in ...

Yuh-Lang Lin; Donald J. Perkey

1989-12-01T23:59:59.000Z

426

Study on Knowledge Management Model Based on Business Process  

Science Conference Proceedings (OSTI)

As an encouraging innovation and breakthrough of management model, knowledge management is required by the management practice of hydropower development enterprises. However, there are still several limitations and insufficiencies in current practice ... Keywords: knowledge management, hydropower development enterprise, business process

Ziye Li; Youmin Xi; Jing Ge

2008-10-01T23:59:59.000Z

427

Fundamental kinetic modeling of the catalytic reforming process  

Science Conference Proceedings (OSTI)

In this work, a fundamental kinetic model for the catalytic reforming process has been developed. The complex network of elementary steps and molecular reactions occurring in catalytic reforming has been generated through a computer algorithm characterizing ...

Rogelio Sotelo-Boyas / Gilbert F. Froment; Rayford G. Anthony

2005-01-01T23:59:59.000Z

428

A Simple Parameterization of Land Surface Processes for Meteorological Models  

Science Conference Proceedings (OSTI)

A parameterization of land surface processes to be included in mesoscale and large-scale meteorological models is presented. The number of parameters has been reduced as much as possible, while attempting to preserve the representation of the ...

J. Noilhan; S. Planton

1989-03-01T23:59:59.000Z

429

Modeling of a Signal Processing System for Aircraft Air Data...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling of a Signal Processing System for Aircraft Air Data Instrumentation Speaker(s): Thomas John Rohloff Date: September 21, 1998 - 12:00pm Location: 90-3148 Seminar HostPoint...

430

Experimental investigation and modeling of a direct-coupled PV/T air collector  

Science Conference Proceedings (OSTI)

Photovoltaic/thermal (PV/T) systems refer to the integration of photovoltaic and solar thermal technologies into one single system, in that both useful heat energy and electricity are produced. The impetus of this paper is to model a direct-coupled PV/T air collector which is designed, built, and tested at a geographic location of Kerman, Iran. In this system, a thin aluminum sheet suspended at the middle of air channel is used to increase the heat exchange surface and consequently improve heat extraction from PV panels. This PV/T system is tested in natural convection and forced convection (with two, four and eight fans operating) and its unsteady results are presented in with and without glass cover cases. A theoretical model is developed and validated against experimental data, where good agreement between the measured values and those calculated by the simulation model were achieved. Comparisons are made between electrical performance of the different modes of operation, and it is concluded that there is an optimum number of fans for achieving maximum electrical efficiency. Also, results show that setting glass cover on photovoltaic panels leads to an increase in thermal efficiency and decrease in electrical efficiency of the system. (author)

Shahsavar, A.; Ameri, M. [Department of Mechanical Engineering, Faculty of Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Energy and Environmental Engineering Research Center, Shahid Bahonar University, Kerman (Iran, Islamic Republic of)

2010-11-15T23:59:59.000Z

431

TSPA Model Development and Sensitivity Analysis of Processes Affecting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TSPA Model Development and Sensitivity Analysis of Processes TSPA Model Development and Sensitivity Analysis of Processes Affecting Performance of a Salt Repository for Disposal of Heat-Generating Nuclear Waste TSPA Model Development and Sensitivity Analysis of Processes Affecting Performance of a Salt Repository for Disposal of Heat-Generating Nuclear Waste The document describes the initial work on designing and developing requirements for a total system performance assessment (TSPA) model that can support preliminary safety assessments for a mined geologic repository for high-level waste (HLW) and spent nuclear fuel (SNF) in salt host rock at a generic site. A preliminary generic salt TSPA model for HLW/SNF disposal has been developed and tested for an isothermal repository in salt, for emplaced waste that is assumed to have no decay heat; for salt

432

Gas permeation carbon capture --- Process modeling and optimization  

SciTech Connect

A multi-staged gas permeation carbon capture process model was developed in Aspen Custom Modeler{reg_sign} (ACM) and optimized in the context of the retrofit of a 550 MW subcritical pulverized coal (PC) power plant. The gas permeation stages in the process are described by a custom multi-component, hollowfiber membrane model. Gas transport across the asymmetric membrane was modeled according to the solution-diffusion model for the selective skin layer and the assumption of negligible flux resistance by the porous support. Counter-current, one-dimensional plug flow was assumed with permeate pressure drop in the fiber lumen side due to capillary constrained flow. A modular optimization framework was used to minimize the levelized cost of electricity (LCOE) by optimizing a set of key process variables. The framework allows the external control of multiple simulation modules from different software packages from a common interface.

Morinelly, Juan; Miller, David

2011-01-01T23:59:59.000Z

433

Semantic modelling of dependency relations between life cycle analysis processes  

Science Conference Proceedings (OSTI)

Life Cycle Assessment provides a well-accepted methodology for modelling environmental impacts of human activities. This methodology relies on the decomposition of a studied system into interdependent processes. Several organisations provide processes ... Keywords: environmental information management, life cycle assessment, ontology

Benjamin Bertin; Marian Scuturici; Jean-Marie Pinon; Emmanuel Risler

2012-09-01T23:59:59.000Z

434

Artificial neural network modeling techniques applied to the hydrodesulfurization process  

Science Conference Proceedings (OSTI)

Reduction of harmful emissions in the combustion of fossil fuels imposes tighter specifications limiting the sulfur content of fuels. Hydrodesulfurization (HDS) is a key process in most petroleum refineries in which the sulfur is mostly eliminated. The ... Keywords: Hydrodesulfurization, Neural networks, Pollution, Process modeling

Enrique Arce-Medina; José I. Paz-Paredes

2009-01-01T23:59:59.000Z

435

Dissociative electron attachment to the H2O molecule II: nucleardynamics on coupled electronic surfaces within the local complexpotential model  

SciTech Connect

We report the results of a first-principles study of dissociative electron attachment (DEA) to H{sub 2}O. The cross sections were obtained from nuclear dynamics calculations carried out in full dimensionality within the local complex potential model by using the multi-configuration time-dependent Hartree method. The calculations employ our previously obtained global, complex-valued, potential energy surfaces for the three ({sup 2}B{sub 1}, {sup 2}A{sub 1}, and {sup 2}B{sub 2}) electronic Feshbach resonances involved in this process. These three metastable states of H{sub 2}O{sup -} undergo several degeneracies, and we incorporate both the Renner-Teller coupling between the {sup 2}B{sub 1} and {sup 2}A{sub 1} states, as well as the conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} states, into our treatment. The nuclear dynamics are inherently multi-dimensional and involve branching between different final product arrangements as well as extensive excitation of the diatomic fragment. Our results successfully mirror the qualitative features of the major fragment channels observed, but are less successful in reproducing the available results for some of the minor channels. We comment on the applicability of the local complex potential model to such a complicated resonant system.

Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

2006-12-21T23:59:59.000Z

436

Advanced process engineering co-simulation using CFD-based reduced order models  

Science Conference Proceedings (OSTI)

The process and energy industries face the challenge of designing the next generation of plants to operate with unprecedented efficiency and near-zero emissions, while performing profitably amid fluctuations in costs for raw materials, finished products, and energy. To achieve these targets, the designers of future plants are increasingly relying upon modeling and simulation to create virtual plants that allow them to evaluate design concepts without the expense of pilot-scale and demonstration facilities. Two of the more commonly used simulation tools include process simulators for describing the entire plant as a network of simplified equipment models and computational fluid dynamic (CFD) packages for modeling an isolated equipment item in great detail by accounting for complex thermal and fluid flow phenomena. The Advanced Process Engineering Co-Simulator (APECS) sponsored by the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has been developed to combine process simulation software with CFD-based equipment simulation software so that design engineers can analyze and optimize the coupled fluid flow, heat and mass transfer, and chemical reactions that drive overall plant performance (Zitney et al., 2006). The process/CFD software integration was accomplished using the process-industry standard CAPE-OPEN interfaces.

Lang, Y.-D.; Biegler, L.T.; Munteanu, S.; Madsen, J.I.; Zitney, S.E.

2007-11-04T23:59:59.000Z

437

The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules  

SciTech Connect

This study describes a new modeling paradigm that significantly advances how the third activity is conducted while also fully exploiting data and findings from the first two activities. The Aerosol Modeling Testbed (AMT) is a computational framework for the atmospheric sciences community that streamlines the process of testing and evaluating aerosol process modules over a wide range of spatial and temporal scales. The AMT consists of a fully-coupled meteorology-chemistry-aerosol model, and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. The philosophy of the AMT is to systematically and objectively evaluate aerosol process modules over local to regional spatial scales that are compatible with most field campaigns measurement strategies. The performance of new treatments can then be quantified and compared to existing treatments before they are incorporated into regional and global climate models. Since the AMT is a community tool, it also provides a means of enhancing collaboration and coordination among aerosol modelers.

Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.; Grell, Georg; Barth, Mary

2011-03-02T23:59:59.000Z

438

Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications  

DOE Green Energy (OSTI)

The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of existing fractures, especially the interaction between propagating fractures and existing fractures, represents a critical goal of our project. To this end, we are continuing to develop a hydraulic fracturing simulation capability within the Livermore Distinct Element Code (LDEC), a combined FEM/DEM analysis code with explicit solid-fluid mechanics coupling. LDEC simulations start from an initial fracture distribution which can be stochastically generated or upscaled from the statistics of an actual fracture distribution. During the hydraulic stimulation process, LDEC tracks the propagation of fractures and other modifications to the fracture system. The output is transferred to the Non-isothermal Unsaturated Flow and Transport (NUFT) code to capture heat transfer and flow at the reservoir scale. This approach is intended to offer flexibility in the types of analyses we can perform, including evaluating the effects of different system heterogeneities on the heat extraction rate as well as seismicity associated with geothermal operations. This paper details the basic methodology of our approach. Two numerical examples showing the capability and effectiveness of our simulator are also presented.

Fu, P; Johnson, S M; Hao, Y; Carrigan, C R

2011-01-18T23:59:59.000Z

439

A Simple Stochastic Model of the Precipitation Process  

Science Conference Proceedings (OSTI)

A simple and rather general model of the precipitation process is reviewed and some applications and comparisons are made using data from Sweden. This model has been used by several authors so the article is partly a survey of earlier works but ...

Hans Alexandersson

1985-12-01T23:59:59.000Z

440

A business process modeling notation extension for risk handling  

Science Conference Proceedings (OSTI)

During the years of prosperity, numerous organizations neglected numerous aspects of risk management. As systematic approach to handling identified risks is crucial to achieving success by the organization, modern business modeling standards and techniques ... Keywords: BPMN extension, business process modeling notation, risk management

Bartosz Marcinkowski; Michal Kuciapski

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Pultrusion manufacturing process development by computational modelling and methods  

Science Conference Proceedings (OSTI)

This paper deals with the modelling and development of computational schemes to simulate pultrusion processes. Two different computational methods, finite differences and elements, are properly developed and critically analyzed. The methods are applied ... Keywords: Degree of cure, Finite difference method, Finite element method, Numerical modelling, Pultrusion, Temperature

P. Carlone; G. S. Palazzo; R. Pasquino

2006-10-01T23:59:59.000Z

442

Process Modelling of Extrusion of AA3xxx Aluminum Alloys  

Science Conference Proceedings (OSTI)

In this project, the following process related models have been developed: i) a ... Model for Grain Growth and Compositional Evolution in Nuclear Fuels ... Computational Methods for New Materials Development: The “Atoms to Airplanes ” Concept ... Interactive Data Storage and Collaboration Tools for ICME Research .

443

World Climate Research Programme's (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3) Multi-Model Dataset Archive at PCMDI (Program for Climate Model Diagnosis and Intercomparison)  

DOE Data Explorer (OSTI)

In response to a proposed activity of the WCRP's Working Group on Coupled Modelling (WGCM),PCMDI volunteered to collect model output contributed by leading modeling centers around the world. Climate model output from simulations of the past, present and future climate was collected by PCMDI mostly during the years 2005 and 2006, and this archived data constitutes phase 3 of the Coupled Model Intercomparison Project (CMIP3). In part, the WGCM organized this activity to enable those outside the major modeling centers to perform research of relevance to climate scientists preparing the Fourth Asssessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The IPCC was established by the World Meteorological Organization and the United Nations Environmental Program to assess scientific information on climate change. The IPCC publishes reports that summarize the state of the science. This unprecedented collection of recent model output is officially known as the WCRP CMIP3 multi-model dataset. It is meant to serve IPCC's Working Group 1, which focuses on the physical climate system - atmosphere, land surface, ocean and sea ice - and the choice of variables archived at the PCMDI reflects this focus. A more comprehensive set of output for a given model may be available from the modeling center that produced it. As of November 2007, over 35 terabytes of data were in the archive and over 303 terabytes of data had been downloaded among the more than 1200 registered users. Over 250 journal articles, based at least in part on the dataset, have been published or have been accepted for peer-reviewed publication. Countries from which models have been gathered include Australia, Canada, China, France, Germany and Korea, Italy, Japan, Norway, Russia, Great Britain and the United States. Models, variables, and documentation are collected and stored. Check http://www-pcmdi.llnl.gov/ipcc/data_status_tables.htm to see at a glance the output that is available. (Description taken from http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php)

444

Development and validation of process models for minor actinide separations processes using centrifugal contactors  

Science Conference Proceedings (OSTI)

As any future spent fuel treatment facility is likely to be based on intensified solvent extraction equipment it is important to understand the chemical and mass transfer kinetics of the processes involved. Two candidate minor actinide separations processes have been examined through a programme of modeling and experimental work to illustrate some of the issues to address in turning these technologies in to fully optimized processes suitable for industrialization. (authors)

Fox, O.D.; Carrott, M.J.; Gaubert, E.; Maher, C.J.; Mason, C.; Taylor, R.J.; Woodhead, D.A. [British Technology Centre, Nexia Solutions, Sellafield, Seascale, CA20 1PG (United Kingdom)

2007-07-01T23:59:59.000Z

445

Development of Mechanistic Modeling Capabilities for Local Neutronically-Coupled Flow-Induced Instabilities in Advanced Water-Cooled Reactors  

SciTech Connect

The major research objectives of this project included the formulation of flow and heat transfer modeling framework for the analysis of flow-induced instabilities in advanced light water nuclear reactors such as boiling water reactors. General multifield model of two-phase flow, including the necessary closure laws. Development of neurton kinetics models compatible with the proposed models of heated channel dynamics. Formulation and encoding of complete coupled neutronics/thermal-hydraulics models for the analysis of spatially-dependent local core instabilities. Computer simulations aimed at testing and validating the new models of reactor dynamics.

Michael Podowski

2009-11-30T23:59:59.000Z

446

New process model proves accurate in tests on catalytic reformer  

Science Conference Proceedings (OSTI)

A mathematical model has been devised to represent the process that takes place in a fixed-bed, tubular, adiabatic catalytic reforming reactor. Since its development, the model has been applied to the simulation of a commercial semiregenerative reformer. The development of mass and energy balances for this reformer led to a model that predicts both concentration and temperature profiles along the reactor. A comparison of the model's results with experimental data illustrates its accuracy at predicting product profiles. Simple steps show how the model can be applied to simulate any fixed-bed catalytic reformer.

Aguilar-Rodriguez, E.; Ancheyta-Juarez, J. (Inst. Mexicano del Petroleo, Mexico City (Mexico))

1994-07-25T23:59:59.000Z

447

Gaussian Process Modeling: Applications to Building Systems and Algorithmic  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaussian Process Modeling: Applications to Building Systems and Algorithmic Gaussian Process Modeling: Applications to Building Systems and Algorithmic Challenges Speaker(s): Victor M. Zavala Date: November 5, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Mary Ann Piette Michael Sohn We review applications and algorithmic challenges of Gaussian Process (GP) modeling. GP is a powerful and flexible uncertainty quantification and data analysis technique that enables the construction of complex models without the need to specify algebraic relationships between variables. This is done by working directly in the space of the kernel or covariance matrix. In addition, it derives from a Bayesian framework and, as such, it naturally provides predictive probability distributions. We describe how these features can be exploited in Measurement and Verification (M&V) tasks and

448

Initiative to improve process representation in chemistry-climate models  

SciTech Connect

The Atmospheric Chemistry and Climate Initiative (AC&C) will address the current large uncertainties in our understanding of chemistry-climate interactions for short-lived atmospheric chemical constituents (e.g. aerosols, ozone, and methane). Understanding what controls the distribution of these species, how they affect climate, and how their distributions might change with a changing climate are important for air quality and climate forecasts. AC&C will address this issue in its first phase through a series of modeling exercises designed to test models’ ability to reproduce observed changes in these species distributions, to produce a set of coordinated forecasts for their future distribution, and to understand how processes are represented in different models. Observational databases will be used to test the models and to better understand processes represented in the models. This article describes the plans for this first phase of activities and seeks participation from the research community.

Doherty, Sarah J.; Rasch, Philip J.; Ravishankara, A.R.

2009-06-16T23:59:59.000Z

449

Studies of regional-scale climate variability and change: Hidden Markov models and coupled ocean-atmosphere modes  

SciTech Connect

In this project we developed further a twin approach to the study of regional-scale climate variability and change. The two approaches involved probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs). We thus made progress in identifying the predictable modes of climate variability and investigating their impacts on the regional scale. In previous work sponsored by DOE�s Climate Change Prediction Program (CCPP), we had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale seasonal predictions of general circulation models (GCMs). Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might in�uence large-scale atmospheric circulation patterns on interannual and longer time scales; similar patterns were found in a hybrid coupled ocean�atmosphere�sea-ice model. In this continuation project, we built on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean�atmosphere modes. Our main project results consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM simulations, called empirical mode reduction (EMR); and observational studies of decadal and multi-decadal natural climate variability, informed by ICM simulations. A particularly timely by-product of this work is an extensive study of clustering of cyclone tracks in the extratropical Atlantic and the western Tropical Pacific, with potential applications to predicting landfall.

M. Ghil (UCLA), PI; S. Kravtsov (UWM); A. W. Robertson (IRI); P. Smyth (UCI)

2008-10-14T23:59:59.000Z

450

A Process Model for the Production of Hydrogen Using High Temperature Electrolysis  

DOE Green Energy (OSTI)

High temperature electrolysis (HTE) involves the splitting of stream into hydrogen and oxygen at high temperatures. The primary advantage of HTE over conventional low temperature electrolysis is that considerably higher hydrogen production efficiencies can be achieved. Performing the electrolysis process at high temperatures results in more favorable thermodynamics for electrolysis, more efficient production of electricity, and allows direct use of process heat to generate steam. This paper presents the results of process analyses performed to evaluate the hydrogen production efficiencies of an HTE plant coupled to a 600 MWt Modular Helium Reactor (MHR) that supplies both the electricity and process heat needed to drive the process. The MHR operates with a coolant outlet temperature of 950 C. Approximately 87% of the high-temperature heat is used to generate electricity at high efficiency using a direct, Brayton-cycle power conversion system. The remaining high-temperature heat is used to generate a superheated steam / hydrogen mixture that is supplied to the electrolyzers. The analyses were performed using the HYSYS process modeling software. The model used to perform the analyses consisted of three loops; a primary high temperature helium loop, a secondary helium loop and the HTE process loop. The detailed model included realistic representations of all major components in the system, including pumps, compressors, heat exchange equipment, and the electrolysis stack. The design of the hydrogen production process loop also included a steam-sweep gas system to remove oxygen from the electrolysis stack so that it can be recovered and used for other applications. Results of the process analyses showed that hydrogen production efficiencies in the range of 45% to 50% are achievable with this system.

M. G. Mc Kellar; E. A. Harvego; M. Richards; A. Shenoy

2006-07-01T23:59:59.000Z

451

Implementation of New Process Models for Tailored Polymer Composite Structures into Processing Software Packages  

Science Conference Proceedings (OSTI)

This report describes the work conducted under the Cooperative Research and Development Agreement (CRADA) (Nr. 260) between the Pacific Northwest National Laboratory (PNNL) and Autodesk, Inc. to develop and implement process models for injection-molded long-fiber thermoplastics (LFTs) in processing software packages. The structure of this report is organized as follows. After the Introduction Section (Section 1), Section 2 summarizes the current fiber orientation models developed for injection-molded short-fiber thermoplastics (SFTs). Section 3 provides an assessment of these models to determine their capabilities and limitations, and the developments needed for injection-molded LFTs. Section 4 then focuses on the development of a new fiber orientation model for LFTs. This model is termed the anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model as it explores the concept of anisotropic rotary diffusion to capture the fiber-fiber interaction in long-fiber suspensions and uses the reduced strain closure method of Wang et al. to slow down the orientation kinetics in concentrated suspensions. In contrast to fiber orientation modeling, before this project, no standard model was developed to predict the fiber length distribution in molded fiber composites. Section 5 is therefore devoted to the development of a fiber length attrition model in the mold. Sections 6 and 7 address the implementations of the models in AMI, and the conclusions drawn from this work is presented in Section 8.

Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin; Phelps, Jay; Tucker III, Charles L.; Kunc, Vlastimil; Bapanapalli, Satish K.; Smith, Mark T.

2010-02-23T23:59:59.000Z

452

Simulation of the Present-Day Atmospheric Ozone, Odd Nitrogen, Chlorine and Other Species Using a Coupled 2-D Model in Isentropic Coordinates  

Science Conference Proceedings (OSTI)

This paper documents our two-dimensional model which incorporates comprehensive radiative transfer and chemistry modules coupled with self-consistent dynamical transports.

H. Yang; E. Olaguer; K. K. Tung

1991-02-01T23:59:59.000Z

453

Time-Mean Response over the Tropical Pacific to Increased C02 in a Coupled Ocean-Atmosphere Model  

Science Conference Proceedings (OSTI)

The time-mean response over the tropical Pacific region to a quadrupling Of CO2 is investigated using a global coupled ocean-atmosphere general circulation model. Tropical Pacific sea surface temperatures (SSTs) rise by about 4°–5°C. The zonal ...

Thomas R. Knutson; Syukuro Manabe

1995-09-01T23:59:59.000Z

454

Source and Pathway of the Western Arctic Upper Halocline in a Data-Constrained Coupled Ocean and Sea Ice Model  

Science Conference Proceedings (OSTI)

A coupled ocean and sea ice model is used to investigate dense water (DW) formation in the Chukchi and Bering shelves and the pathways by which this water feeds the upper halocline. Two 1992–2008 data-constrained solutions at 9- and 4-km ...

An T. Nguyen; Ronald Kwok; Dimitris Menemenlis

2012-05-01T23:59:59.000Z

455

The Strength of the Brewer–Dobson Circulation in a Changing Climate: Coupled Chemistry–Climate Model Simulations  

Science Conference Proceedings (OSTI)

The strength of the Brewer–Dobson circulation (BDC) in a changing climate is studied using multidecadal simulations covering the 1960–2100 period with a coupled chemistry–climate model, to examine the seasonality of the change of the BDC. The ...

Feng Li; John Austin; John Wilson

2008-01-01T23:59:59.000Z

456

Seasonal Prediction of Sea Surface Temperature Anomalies Using a Suite of 13 Coupled Atmosphere–Ocean Models  

Science Conference Proceedings (OSTI)

Improved seasonal prediction of sea surface temperature (SST) anomalies over the global oceans is the theme of this paper. Using 13 state-of-the-art coupled global atmosphere–ocean models and 13 yr of seasonal forecasts, the performance of ...

T. N. Krishnamurti; Arindam Chakraborty; Ruby Krishnamurti; William K. Dewar; Carol Anne Clayson

2006-12-01T23:59:59.000Z

457

Response to CO2 Transient Increase in the GISS Coupled Model:Regional Coolings in a Warming Climate  

Science Conference Proceedings (OSTI)

The GISS coupled atmosphere–ocean model is used to investigate the effect of increased atmospheric CO2 by comparing a compounded 1% CO2 increase experiment with a control simulation. After 70 yr of integration, the global surface air temperature ...

Gary L. Russell; David Rind

1999-02-01T23:59:59.000Z

458

A two-mesh coupled gas flow-solid interaction model for 2D blast analysis in fractured media  

Science Conference Proceedings (OSTI)

A 2D coupled two-mesh interaction model for blast gas flow through fractured and fragmented solid media is presented. It is mainly designed to solve blast problems where a complicated set of wide difficult phenomena are involved: shock waves, progressive ... Keywords: Blast, Combined finite/discrete element method, Cracking, Explosion, Fragmentation, Gas-solid interaction

S. Mohammadi; A. Pooladi

2012-03-01T23:59:59.000Z

459

Multicentury Changes to the Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model  

Science Conference Proceedings (OSTI)

A coupled climate and carbon (CO2) cycle model is used to investigate the global climate and carbon cycle changes out to the year 2300 that would occur if CO2 emissions from all the currently estimated fossil fuel resources were released to the ...

G. Bala; K. Caldeira; A. Mirin; M. Wickett; C. Delire

2005-11-01T23:59:59.000Z

460

Super-allowed beta-decay rates in 1d5/2 shell in Coriolis coupling model  

E-Print Network (OSTI)

The expression for super-allowed beta-decay transition rates have been derived within the context of Coriolis coupling model. The derived expressions, valid for the beta-decay between any two mirror nuclei, has been applied to calculate super-allowed beta-decay transition rates of 21Na, 21Mg, 21Al, and 21Si. The calculated rates agree well with the data and the calculations done using the shell model with configuration admixture.

M. Sultan Parvez; F. Bary Malik

2009-04-03T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Modeling PWR Fuel Corrosion Product Deposition and Growth Processes  

Science Conference Proceedings (OSTI)

Development of axial offset anomaly (AOA) in pressurized water reactors (PWRs) drove industry to conduct crud scrape campaigns at a number of units to characterize and better understand the material being deposited on the fuel clad surface. This report describes the first phase of a program to develop models that describe the crud deposition and growth process, including the many phenomena that influence not only the deposit mass, but the composition. The models will be benchmarked against published crud...

2004-12-09T23:59:59.000Z

462

Evolution of quantum-like modeling in decision making processes  

SciTech Connect

The application of the mathematical formalism of quantum mechanics to model behavioral patterns in social science and economics is a novel and constantly emerging field. The aim of the so called 'quantum like' models is to model the decision making processes in a macroscopic setting, capturing the particular 'context' in which the decisions are taken. Several subsequent empirical findings proved that when making a decision people tend to violate the axioms of expected utility theory and Savage's Sure Thing principle, thus violating the law of total probability. A quantum probability formula was devised to describe more accurately the decision making processes. A next step in the development of QL-modeling in decision making was the application of Schroedinger equation to describe the evolution of people's mental states. A shortcoming of Schroedinger equation is its inability to capture dynamics of an open system; the brain of the decision maker can be regarded as such, actively interacting with the external environment. Recently the master equation, by which quantum physics describes the process of decoherence as the result of interaction of the mental state with the environmental 'bath', was introduced for modeling the human decision making. The external environment and memory can be referred to as a complex 'context' influencing the final decision outcomes. The master equation can be considered as a pioneering and promising apparatus for modeling the dynamics of decision making in different contexts.

Khrennikova, Polina [School of Management, University of Leicester, University Road Leicester LE1 7RH (United Kingdom)

2012-12-18T23:59:59.000Z

463

Measurement and modeling of advanced coal conversion processes, Volume III  

SciTech Connect

A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.

Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G. [and others

1993-08-01T23:59:59.000Z

464

A dimensionless parameter model for arc welding processes  

SciTech Connect

A dimensionless parameter model previously developed for C0{sub 2} laser beam welding has been shown to be applicable to GTAW and PAW autogenous arc welding processes. The model facilitates estimates of weld size, power, and speed based on knowledge of the material`s thermal properties. The dimensionless parameters can also be used to estimate the melting efficiency, which eases development of weld schedules with lower heat input to the weldment. The mathematical relationship between the dimensionless parameters in the model has been shown to be dependent on the heat flow geometry in the weldment.

Fuerschbach, P.W.

1994-12-31T23:59:59.000Z

465

The Pantex Process model: Formulations of the evaluation planning module  

SciTech Connect

This paper describes formulations of the Evaluation Planning Module that have been developed since its inception. This module is one of the core algorithms in the Pantex Process Model, a computerized model to support production planning in a complex manufacturing system at the Pantex Plant, a US Department of Energy facility. Pantex is responsible for three major DOE programs -- nuclear weapons disposal, stockpile evaluation, and stockpile maintenance -- using shared facilities, technicians, and equipment. The model reflects the interactions of scheduling constraints, material flow constraints, and the availability of required technicians and facilities.

JONES,DEAN A.; LAWTON,CRAIG R.; LIST,GEORGE FISHER; TURNQUIST,MARK ALAN

1999-12-01T23:59:59.000Z

466

MPS Model-Based Software Acquisition Process Improvement in Brazil  

Science Conference Proceedings (OSTI)

This paper describes an initiative to improve software acquisition process in Brazil. This initiative was conducted in the context of the MPS.BR Program, a nationwide effort to develop and disseminate the MPS Model both in large organizations and Small ...

Kival Chaves Weber; Eratostenes Edson Ramalho de Araujo; Danilo Scalet; Edmeia Leonor Pereira de Andrade; Ana Regina Cavalcanti da Rocha; Mariano Angel Montoni

2007-09-01T23:59:59.000Z

467

Intermittency in soft hadronic processes and Zip-model  

E-Print Network (OSTI)

Abstract A low constituent number scheme based on the nontrivial gluon string splitting (the Zip--model) is shown to yield a substantial intermittency for soft hadronic processes. With a simplest addition of the Bose--Einstein correlations the remarkable agreement with the NA22 experimental data on rapidity factorial moments is reached.

Gurvich, E G; Sarkisyan-Grinbaum, E

1994-01-01T23:59:59.000Z

468

Intermittency in soft hadronic processes and Zip-model  

E-Print Network (OSTI)

A low constituent number scheme based on the nontrivial gluon string splitting (the Zip--model) is shown to yield a substantial intermittency for soft hadronic processes. With a simplest addition of the Bose--Einstein correlations the remarkable agreement with the NA22 experimental data on rapidity factorial moments is reached.

E. G. Gurvich; G. G. Leptoukh; E. K. Sarkisyan

1994-01-07T23:59:59.000Z

469

Industrial experiences from multi-paradigmatic modelling of signal processing  

Science Conference Proceedings (OSTI)

Embedded software is often composed of interacting domains. A common problem is that the implementation intertwines the different domain solutions with each other and the platform-specific details. The result is a code mass that is hard to understand, ... Keywords: case study, digital signal processing, executable software models, telecommunications industry

Håkan Burden; Rogardt Heldal; Martin Lundqvist

2012-10-01T23:59:59.000Z

470

Software process simulation modeling: an extended systematic review  

Science Conference Proceedings (OSTI)

Software Process Simulation Modeling (SPSM) research has increased in the past two decades, especially since the first ProSim Workshop held in 1998. Our research aims to systematically assess how SPSM has evolved during the past 10 years in particular ...

He Zhang; Barbara Kitchenham; Dietmar Pfahl

2010-07-01T23:59:59.000Z

471

System of models for transport processes in layered strata  

Science Conference Proceedings (OSTI)

In this paper the normalized form of the generalized integral parabolic spline is described, which interpolates the integral averaged values of piecewise-smooth function. The three-dimensional system of partial differential equations as model of transport ... Keywords: conservative averaging, integral spline, layered media, three-dimensional, transport processes

Margarita Buike; Andris Buikis

2006-12-01T23:59:59.000Z

472

A NONGAUSSIAN ORNSTEINUHLENBECK PROCESS FOR ELECTRICITY SPOT PRICE MODELING AND  

E-Print Network (OSTI)

A NON­GAUSSIAN ORNSTEIN­UHLENBECK PROCESS FOR ELECTRICITY SPOT PRICE MODELING AND DERIVATIVES for analytical pricing of electricity forward and futures contracts. Electricity forward and futures contracts to capture the observed dynamics of electricity spot prices. We also discuss the pricing of European call

Kallsen, Jan

473

Simplified economic screening models for enhanced oil recovery processes  

Science Conference Proceedings (OSTI)

The effective screening of reservoirs for implementation of enhanced oil recovery processes is critical to the financial success of a proposed project. Screening techniques that have been used in the past normally consisted of comparing individual reservoir and fluid properties with tables of the preferred values of these properties. The shortcoming of this procedure is that it does not account for interactions among the technical parameters, nor does it provide a measure of the economic attractiveness of the project. Intercomp has developed, under the sponsorship of the Bartlesville Energy Technology Center of DOE, a set of economic screening models for micellar-polymer, steam drive and CO/sub 2/ miscible EOR processes. These models include accurate oil production predictive algorithms and routines which provide measures of economic attractiveness based on time value of money economics. The formulation of these models is presented with examples of their use.

Paul, G.W.; Ford, M.

1982-08-01T23:59:59.000Z

474

Tropical Sensitivity of a Coupled Model to Specified ISCCP Low Clouds  

Science Conference Proceedings (OSTI)

The seasonal cycle of SST observed in the eastern equatorial Pacific is poorly simulated by many ocean–atmosphere coupled GCMs. This deficiency may be partly due to an incorrect prediction of tropical marine stratocumulus (MSc). To explore this ...

C. T. Gordon; A. Rosati; R. Gudgel

2000-07-01T23:59:59.000Z

475

A Modeling and Observational Framework for Diagnosing Local Land–Atmosphere Coupling on Diurnal Time Scales  

Science Conference Proceedings (OSTI)

Land–atmosphere interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The degree of coupling between the land surface and PBL in numerical ...

Joseph A. Santanello Jr.; Christa D. Peters-Lidard; Sujay V. Kumar; Charles Alonge; Wei-Kuo Tao

2009-06-01T23:59:59.000Z

476