Powered by Deep Web Technologies
Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Testing emotion dysregulation as a moderator in an interpersonal process model of intimacy in couples  

E-Print Network [OSTI]

-disclosure by one partner, coupled with empathic responding by the other partner, results in greater subjective emotional intimacy. Previous studies have examined this interpersonal process model in a sample of community couples in committed romantic relationships...

Herrington, Rachael

2009-05-15T23:59:59.000Z

2

Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes.  

SciTech Connect (OSTI)

Most materials microstructural evolution processes progress with multiple processes occurring simultaneously. In this work, we have concentrated on the processes that are active in nuclear materials, in particular, nuclear fuels. These processes are coarsening, nucleation, differential diffusion, phase transformation, radiation-induced defect formation and swelling, often with temperature gradients present. All these couple and contribute to evolution that is unique to nuclear fuels and materials. Hybrid model that combines elements from the Potts Monte Carlo, phase-field models and others have been developed to address these multiple physical processes. These models are described and applied to several processes in this report. An important feature of the models developed are that they are coded as applications within SPPARKS, a Sandiadeveloped framework for simulation at the mesoscale of microstructural evolution processes by kinetic Monte Carlo methods. This makes these codes readily accessible and adaptable for future applications.

Tikare, Veena; Hernandez-Rivera, Efrain; Madison, Jonathan D.; Holm, Elizabeth Ann [Carnegie Mellon University, Pittsburgh, PA; Patterson, Burton R. [University of Florida, Gainesville, FL; Homer, Eric R. [Brigham Young University, Provo, UT

2013-09-01T23:59:59.000Z

3

Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures  

SciTech Connect (OSTI)

In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

2014-08-14T23:59:59.000Z

4

Modeling the coupled mechanics, transport, and growth processes in collagen tissues.  

SciTech Connect (OSTI)

The purpose of this project is to develop tools to model and simulate the processes of self-assembly and growth in biological systems from the molecular to the continuum length scales. The model biological system chosen for the study is the tendon fiber which is composed mainly of Type I collagen fibrils. The macroscopic processes of self-assembly and growth at the fiber scale arise from microscopic processes at the fibrillar and molecular length scales. At these nano-scopic length scales, we employed molecular modeling and simulation method to characterize the mechanical behavior and stability of the collagen triple helix and the collagen fibril. To obtain the physical parameters governing mass transport in the tendon fiber we performed direct numerical simulations of fluid flow and solute transport through an idealized fibrillar microstructure. At the continuum scale, we developed a mixture theory approach for modeling the coupled processes of mechanical deformation, transport, and species inter-conversion involved in growth. In the mixture theory approach, the microstructure of the tissue is represented by the species concentration and transport and material parameters, obtained from fibril and molecular scale calculations, while the mechanical deformation, transport, and growth processes are governed by balance laws and constitutive relations developed within a thermodynamically consistent framework.

Holdych, David J.; Nguyen, Thao D.; Klein, Patrick A.; in't Veld, Pieter J.; Stevens, Mark Jackson

2006-11-01T23:59:59.000Z

5

Vehicle Technologies Office Merit Review 2014: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and Electrochemical Processes  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupled hierarchical models...

6

Coupled modeling of groundwater flow solute transport, chemical reactions and microbial processes in the 'SP' island  

SciTech Connect (OSTI)

The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behavior and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by /Banwart et al, 1995/. Later, /Banwart et al, 1999/ presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by /Molinero, 2000/ who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulfate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of /Molinero, 2000/ and extends the preliminary microbial model of /Zhang, 2001/ by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfate concentration, thus adding additional evidence for the possibility of organic matter oxidation as the main source of bicarbonate. Model results indicate that pH and Eh are relatively stable. The dissolution-precipitation trends of hematite, pyrite and calcite also coincide with those indicated by the conceptual model. A thorough sensitivity analysis has been performed for the most relevant microbial parameters as well as for initial and boundary POC and DOC concentrations. The results of such analysis indicate that computed concentrations of bicarbonate, sulfate and DOC are sensitive to most of the microbial parameters, including specific growth rates, half-saturation constants, proportionality coefficients and yield coefficients. Model results, however, are less sensitive to the yield coefficient of DOC to iron-reducer bacteria. The sensitivity analysis indicates that changes in fermentation microbial parameters affect the growth of the iron-reducer, thus confirming the interconnection of both microbial processes. Computed concentrations of bicarbonate and sulfate are found to be sensitive to changes in the initial concentration of POC and the boundary concentration of DOC, but they lack sensitivity to the initial concentration of DOC and the boundary concentration of POC. The explanation for such result is related to the fact that POC has a low mobility due to its large molecular weight. DOC, however, can migrate downwards. Although a coupled hydro-bio-geochemical 1-D model can reproduce the observed ''unexpected'' increase of concentrations of bicarbonate and sulfate at a depth of 70 m, further modeling work is required in order to obtain a similar conclusion under the more realistic two dimensional conditions of the fracture zone.

Samper, Javier; Molinero, Jorg; Changbing, Yang; Zhang, Guoxiang

2003-12-01T23:59:59.000Z

7

3D Modeling of Coupled Rock Deformation and Thermo-Poro-Mechanical Processes in Fractures  

E-Print Network [OSTI]

Problems involving coupled thermo-poro-chemo-mechanical processes are of great importance in geothermal and petroleum reservoir systems. In particular, economic power production from enhanced geothermal systems, effective water-flooding of petroleum...

Rawal, Chakra

2012-07-16T23:59:59.000Z

8

Prediction of the Tool Displacement by Coupled Models of the Compliant Industrial Robot and the Milling Process  

E-Print Network [OSTI]

Prediction of the Tool Displacement by Coupled Models of the Compliant Industrial Robot@sim.tu-darmstadt.de Abstract Using an industrial robot for machining parts provides a cost-saving and flexible alternative Interaction, Milling Process, Robot Structure 1 INTRODUCTION The major field of cutting applications

Stryk, Oskar von

9

Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs  

SciTech Connect (OSTI)

The connectivity and accessible surface area of flowing fractures, whether natural or man-made, is possibly the single most important factor, after temperature, which determines the feasibility of an Enhanced Geothermal System (EGS). Rock deformation and in-situ stress changes induced by injected fluids can lead to shear failure on preexisting fractures which can generate microseismic events, and also enhance the permeability and accessible surface area of the geothermal formation. Hence, the ability to accurately model the coupled thermal-hydrologic-mechanical (THM) processes in fractured geological formations is critical in effective EGS reservoir development and management strategies. The locations of the microseismic events can serve as indicators of the zones of enhanced permeability, thus providing vital information for verification of the coupled THM models. We will describe a general purpose computational code, FEHM, developed for this purpose, that models coupled THM processes during multiphase fluid flow and transport in fractured porous media. The code incorporates several models of fracture aperture and stress behavior combined with permeability relationships. We provide field scale examples of applications to geothermal systems to demonstrate the utility of the method.

Kelkar, Sharad [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

10

The model coupling toolkit.  

SciTech Connect (OSTI)

The advent of coupled earth system models has raised an important question in parallel computing: What is the most effective method for coupling many parallel models to form a high-performance coupled modeling system? We present our solution to this problem--The Model Coupling Toolkit (MCT). We explain how our effort to construct the Next-Generation Coupler for NCAR Community Climate System Model motivated us to create this toolkit. We describe in detail the conceptual design of the MCT and explain its usage in constructing parallel coupled models. We present preliminary performance results for the toolkit's parallel data transfer facilities. Finally, we outline an agenda for future development of the MCT.

Larson, J. W.; Jacob, R. L.; Foster, I.; Guo, J.

2001-04-13T23:59:59.000Z

11

Testing an interpersonal process model of intimacy using intimate discussions of committed romantic couples  

E-Print Network [OSTI]

- and partner-reports of self-disclosure, empathic responding, and emotional intimacy. In this study, data were collected on 108 committed romantic couples from the community. Couples completed a packet of questionnaires individually and then engaged...

Castellani, Angela Marie

2006-08-16T23:59:59.000Z

12

An experimental study and modeling of Transformer-Coupled Toroidal Plasma processing of materials  

E-Print Network [OSTI]

The Transformer Coupled Toroidal Plasma (TCTP) source uses a high power density plasma formed in a toroidal-shaped chamber by transformer coupling using a magnetic core. The objectives of the thesis are (1) to characterize ...

Bai, Bo, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

13

The Los Alamos coupled climate model  

SciTech Connect (OSTI)

To gain a full understanding of the Earth`s climate system, it is necessary to understand physical processes in the ocean, atmosphere, land and sea ice. In addition, interactions between components are very important and models which couple all of the components into a single coupled climate model are required. A climate model which couples ocean, sea ice, atmosphere and land components is described. The component models are run as autonomous processes coupled to a flux coupler through a flexible communications library. Performance considerations of the model are examined, particularly for running the model on distributed-shared-memory machine architectures.

Jones, P.W.; Malone, R.C.; Lai, C.A.

1998-12-31T23:59:59.000Z

14

Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model  

E-Print Network [OSTI]

simulations. Meso- scale models, which have been used not only for numerical weather prediction but also surface and atmosphere into numerical weather or climate prediction. This study describes coupled WRF [Chen et al., 1997; Pielke et al., 1997]. Numerical weather prediction with high spatial and tempo- ral

Small, Eric

15

Edinburgh Research Explorer Processivity and Coupling in Messenger RNA Transcription  

E-Print Network [OSTI]

Edinburgh Research Explorer Processivity and Coupling in Messenger RNA Transcription Citation and processing that is not captured in the model. Methodology: In this paper, we explore the impact on the m, 'Processivity and Coupling in Messenger RNA Transcription' PLoS One, vol 5, no. 1, e8845, pp. 1-12., 10

Millar, Andrew J.

16

Coupling a branching process to an infinite dimensional epidemic process  

E-Print Network [OSTI]

Coupling a branching process to an infinite dimensional epidemic process A. D. Barbour Universit¨at Z¨urich To Cindy Greenwood, for her 70th. Abstract Branching process approximation to the initial stages of an epi- demic process has been used since the 1950's as a technique for pro- viding stochastic

Barbour, Andrew

17

Model building for flavor changing Higgs couplings  

E-Print Network [OSTI]

If $t\\rightarrow hq$ ($q=c,u$) or $h\\rightarrow\\tau\\ell$ ($\\ell=\\mu,e$) decays are observed, it will be a clear signal of new physics. We investigate whether natural and viable flavor models can saturate the present direct upper bounds without violating the indirect constraints from low energy loop processes. We carry out our analysis in two theoretical frameworks: minimal flavor violation (MFV) and Froggatt-Nielsen symmetry (FN). The simplest models in either framework predict flavor changing couplings that are too small to be directly observed. Yet, in the MFV framework, it is possible to have lepton flavor changing Higgs couplings close to the bound if spurions related to heavy singlet neutrinos play a role. In the FN framework, it is possible to have large flavor changing couplings in both the up and the charged lepton sectors if supersymmetry plays a role.

Avital Dery; Aielet Efrati; Yosef Nir; Yotam Soreq; Vasja Susi?

2014-09-21T23:59:59.000Z

18

Bayesian Model comparison of Higgs couplings  

E-Print Network [OSTI]

We investigate the possibility of contributions from physics beyond the Standard Model (SM) to the Higgs couplings, in the light of the LHC data. The work is performed within an interim framework where the magnitude of the Higgs production and decay rates are rescaled though Higgs coupling scale factors. We perform Bayesian parameter inference on these scale factors, concluding that there is good compatibility with the SM. Furthermore, we carry out Bayesian model comparison on all models where any combination of scale factors can differ from their SM values and find that typically models with fewer free couplings are strongly favoured. We consider the evidence that each coupling individually equals the SM value, making the minimal assumptions on the other couplings. Finally, we make a comparison of the SM against a single "not-SM" model, and find that there is moderate to strong evidence for the SM.

Johannes Bergstrom; Stella Riad

2014-11-18T23:59:59.000Z

19

Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism  

SciTech Connect (OSTI)

Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires different ?lines of evidence? indicating that the wastes are effectively destroyed. We are studying the coupled biogeochemical processes that dictate the rate of TCE co-metabolism first in the medial zone (TCE concentration: 1,000 to 20,000 ?g/L) of a plume at the Idaho National Laboratory?s Test Area North (TAN) site and then at Paducah or the Savannah River Site. We will use flow-through in situ reactors (FTISR) to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. TCE co-metabolic rates at TAN are being assessed and interpreted in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial co-metabolism relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites contaminated with chlorinated hydrocarbons.

Rick Colwell; Corey Radtke; Mark Delwiche; Deborah Newby; Lynn Petzke; Mark Conrad; Eoin Brodie; Hope Lee; Bob Starr; Dana Dettmers; Ron Crawford; Andrzej Paszczynski; Nick Bernardini; Ravi Paidisetti; Tonia Green

2006-06-01T23:59:59.000Z

20

Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism  

SciTech Connect (OSTI)

Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires 'lines of evidence' indicating that the wastes are effectively destroyed. Our research will study the coupled biogeochemical processes that dictate the rate of TCE co-metabolism in contaminated aquifers first at the Idaho National Laboratory and then at Paducah or the Savannah River Site, where natural attenuation of TCE is occurring. We will use flow-through in situ reactors to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. We will use new approaches (e.g., stable isotope probing, enzyme activity probes, real-time reverse transcriptase polymerase chain reaction, proteomics) to assay the TCE co-metabolic rates, and interpret these rates in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different methane concentrations and groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites that are contaminated with chlorinated hydrocarbons.

Colwell, Frederick; Radtke, Corey; Newby, Deborah; Delwiche, Mark; Crawf, Ronald L.; Paszczynski, Andrzej; Strap, Janice; Conrad, Mark; Brodic, Eoin; Starr, Robert; Lee, Hope

2006-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modeling the steady-state ISV (in situ vitrification) process: A 3-D finite element analysis of coupled thermal-electric fields  

SciTech Connect (OSTI)

Steady-state modeling considerations for simulating the in situ vitrification (ISV) process are documented based upon the finite element numerical approach. Recommendations regarding boundary condition specifications and mesh discretization are presented. The effects of several parameters on the ISV process response are calculated and the results discussed. The parameters investigated include: (1) electrode depth, (2) ambient temperature, (3) supplied current, (4) electrical conductivity, (5) electrode separation, and (6) soil/waste characterization. 13 refs., 29 figs., 1 tab.

Langerman, M.A.

1990-09-01T23:59:59.000Z

22

Process Modeling for Process Improvement A Process Conformance Approach  

E-Print Network [OSTI]

Process Modeling for Process Improvement - A Process Conformance Approach Sigurd Thunem September processes. In order to improve these processes, knowledge about them is necessary. To support process improve- ment the organization should collect process data, transform process data into knowledge

23

Piezoelectric and Semiconducting Coupled Power Generating Process of a  

E-Print Network [OSTI]

of the electric generator relies on the unique coupling of piezoelectric and semiconducting dual properties of ZnPiezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment Jinhui Song, Jun Zhou, and Zhong Lin Wang* School

Wang, Zhong L.

24

Effective reuse of coupling technologies for Earth System Models.  

E-Print Network [OSTI]

??Designing and implementing coupled Earth System Models (ESMs) is a challenge for climate scientists and software engineers alike. Coupled models incorporate two or more independent… (more)

Dunlap, Ralph S.

2013-01-01T23:59:59.000Z

25

Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro-machined Electrodes Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro-machined Electrodes 2010 DOE...

26

Modeling Quality Information within Business Process Models  

E-Print Network [OSTI]

Modeling Quality Information within Business Process Models Robert Heinrich, Alexander Kappe. Business process models are a useful means to document information about structure and behavior literature and tool survey on modeling quality information within business process models. Keywords: Business

Paech, Barbara

27

Process for fabricating a charge coupled device  

DOE Patents [OSTI]

A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

Conder, Alan D. (Tracy, CA); Young, Bruce K. F. (Livermore, CA)

2002-01-01T23:59:59.000Z

28

Hybrid coupled modeling of the tropical Pacific using neural networks  

E-Print Network [OSTI]

Hybrid coupled modeling of the tropical Pacific using neural networks Shuyong Li, William W. Hsieh To investigate the potential for improving hybrid coupled models (HCM) of the tropical Pacific by the use: dynamical coupled models, statistical models and hybrid coupled models [Barnston et al., 1994]. A hybrid

Hsieh, William

29

Quantum Information Processing by NMR using strongly coupled spins  

E-Print Network [OSTI]

The enormous theoretical potential of Quantum Information Processing (QIP) is driving the pursuit for its practical realization by various physical techniques. Currently Nuclear Magnetic Resonance (NMR) has been the forerunner by demonstrating a majority of quantum algorithms. In NMR, spin systems consisting of coupled nuclear spins are utilized as qubits. In order to carry out QIP, a spin system has to meet two major requirements: (i) qubit addressability and (ii) mutual coupling among the qubits. It has been demonstrated that the magnitude of the mutual coupling among qubits can be increased by orienting the spin-systems in a liquid crystal matrix and utilizing the residual dipolar couplings. While utilizing residual dipolar couplings may be useful to increase the number of qubits, nuclei of same species (homonuclei) might become strongly coupled. In strongly coupled spin-systems, spins loose their individual identity of being qubits. We propose that even such strongly coupled spin-systems can be used for QIP and the qubit-manipulation can be achieved by transition-selective pulses. We demonstrate experimental preparation of pseudopure states, creation of maximally entangled states, implementation logic gates and implementation of Deutsch-Jozsa (DJ) algorithm in strongly coupled 2,3 and 4 spin systems. The energy levels of the strongly coupled 3 and 4 spin systems were obtained by using a Z-COSY experiment.

T. S. Mahesh; Neeraj Sinha; Arindam Ghosh; Ranabir Das; N. Suryaprakash; Malcom H. Levitt; K. V. Ramanathan; Anil Kumar

2003-11-24T23:59:59.000Z

30

Biosphere Process Model Report  

SciTech Connect (OSTI)

To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor. Collectively, the potential human receptor and exposure pathways form the biosphere model. More detailed technical information and data about potential human receptor groups and the characteristics of exposure pathways have been developed in a series of AMRs and Calculation Reports.

J. Schmitt

2000-05-25T23:59:59.000Z

31

Coupled hydro-mechanical processes in crytalline rock and in induratedand plastic clays: A comparative discussion  

E-Print Network [OSTI]

at Grimsel. In Coupled Thermo-Hydro- Mechanical-ChemicalCOUPLED HYDRO-MECHANICAL PROCESSES IN CRYTALLINE ROCK AND IN

Tsang, Chin-Fu; Blumling, Peter; Bernier, Frederic

2008-01-01T23:59:59.000Z

32

Foam process models.  

SciTech Connect (OSTI)

In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

Moffat, Harry K.; Noble, David R.; Baer, Thomas A. (Procter & Gamble Co., West Chester, OH); Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

2008-09-01T23:59:59.000Z

33

Population and Climate Change:Population and Climate Change: Coupling Population Models withCoupling Population Models with  

E-Print Network [OSTI]

Coupling Population Models with Earth System ModelsEarth System Models Eugenia Kalnay, Safa Motesharrei, Jorge Rivas Change: Fully Coupling Population and Earth System Models" My research at the U. of Maryland #12

Kalnay, Eugenia

34

Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments...  

Broader source: Energy.gov (indexed) [DOE]

Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization of Enhanced Geothermal System Development and Production Coupled Thermal-Hydrological-Mechan...

35

Development of a coupled thermo-hydro-mechanical model in discontinuous media for carbon sequestration  

SciTech Connect (OSTI)

Geomechanical alteration of porous media is generally ignored for most shallow subsurface applications, whereas CO2 injection, migration, and trapping in deep saline aquifers will be controlled by coupled multifluid flow, energy transfer, and geomechanical processes. The accurate assessment of the risks associated with potential leakage of injected CO2 and the design of effective injection systems requires that we represent these coupled processes within numerical simulators. The objectives of this study were to develop a coupled thermal-hydro-mechanical model into a single software, and to examine the coupling of thermal, hydrological, and geomechanical processes for simulation of CO2 injection into the subsurface for carbon sequestration. A numerical model is developed to couple nonisothermal multiphase hydrological and geomechanical processes for prediction of multiple interconnected processes for carbon sequestration in deep saline aquifers. The geomechanics model was based on Rigid Body-Spring Model (RBSM), one of the discrete methods to model discontinuous rock system. Poisson’s effect that was often ignored by RBSM was considered in the model. The simulation of large-scale and long-term coupled processes in carbon capture and storage projects requires large memory and computational performance. Global Array Toolkit was used to build the model to permit the high performance simulations of the coupled processes. The model was used to simulate a case study with several scenarios to demonstrate the impacts of considering coupled processes and Poisson’s effect for the prediction of CO2 sequestration.

Fang, Yilin; Nguyen, Ba Nghiep; Carroll, Kenneth C.; Xu, Zhijie; Yabusaki, Steven B.; Scheibe, Timothy D.; Bonneville, Alain

2013-09-12T23:59:59.000Z

36

Final Project Report - Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloriethylene Co-Metabolism: Co-Metabolic Enzyme Activity Probes and Modeling Co-Metabolism and Attenuation  

SciTech Connect (OSTI)

Trichloroethene (TCE) (also known as trichloroethylene) is a common contaminant in groundwater. TCE is regulated in drinking water at a concentration of 5 µg/L, and a small mass of TCE has the potential to contaminant large volumes of water. The physical and chemical characteristics of TCE allow it to migrate quickly in most subsurface environments, and thus large plumes of contaminated groundwater can form from a single release. The migration and persistence of TCE in groundwater can be limited by biodegradation. TCE can be biodegraded via different processes under either anaerobic or aerobic conditions. Anaerobic biodegradation is widely recognized, but aerobic degradation is less well recognized. Under aerobic conditions, TCE can be oxidized to non hazardous conditions via cometabolic pathways. This study applied enzyme activity probes to demonstrate that cometabolic degradation of TCE occurs in aerobic groundwater at several locations, used laboratory microcosm studies to determine aerobic degradation rates, and extrapolated lab-measured rates to in situ rates based on concentrations of microorganisms with active enzymes involved in cometabolic TCE degradation. Microcosms were constructed using basalt chips that were inoculated with microorganisms to groundwater at the Idaho National Laboratory Test Area North TCE plume by filling a set of Flow-Through In Situ Reactors (FTISRs) with chips and placing the FTISRs into the open interval of a well for several months. A parametric study was performed to evaluate predicted degradation rates and concentration trends using a competitive inhibition kinetic model, which accounts for competition for enzyme active sites by both a growth substrate and a cometabolic substrate. The competitive inhibition kinetic expression was programmed for use in the RT3D reactive transport package. Simulations of TCE plume evolution using both competitive inhibition kinetics and first order decay were performed.

Starr, Robert C; Orr, Brennon R; Lee, M Hope; Delwiche, Mark

2010-02-26T23:59:59.000Z

37

Correlation Resonance Generated by Coupled Enzymatic Processing William H. Mather,  

E-Print Network [OSTI]

. Cookson,§ Jeff Hasty,§ Lev S. Tsimring, and Ruth J. Williams{ * Biocircuits Institute, DepartmentCorrelation Resonance Generated by Coupled Enzymatic Processing William H. Mather, Natalie A, R. J. Williams, L. S. Tsimring, and J. Hasty, unpublished). In this study, it was shown that a rate

Hasty, Jeff

38

Correlation resonance generated by coupled enzymatic processing: Supplementary information  

E-Print Network [OSTI]

H. Mather1,2 , Natalie A. Cookson1,3 , Jeff Hasty3,2,1 , Lev S. Tsimring1 and Ruth J. Williams4Correlation resonance generated by coupled enzymatic processing: Supplementary information William Jolla CA 92093-0112 USA. Email: williams@stochastic.ucsd.edu. Throughout this supplement, N and Q

39

A Full Stochastic Model of Coupled Nanomechanical Electron Shuttles  

E-Print Network [OSTI]

We discuss operation of nanomechanical electron shuttles as a ratchet for radiofrequency current rectification based on a fully stochastic model. In such devices, the mechanical motion of coupled nanopillars and the incoherent electronic tunneling can be modeled as a Markov chain. By treating the process in a correlated stochastic fashion, we present a stochastic model represented by a linear master equation. This is crucial for analyzing symmetry breaking, which is in turn responsible for the observed rectification mechanism. For full device simulation, we propose deterministic equations assuming the multivariate Gaussian distributions.

Mo Zhao; Robert H. Blick

2014-07-25T23:59:59.000Z

40

Sensitivity of an Ocean-Atmosphere Coupled Model to the Coupling Method : Study of Tropical Cyclone  

E-Print Network [OSTI]

Sensitivity of an Ocean-Atmosphere Coupled Model to the Coupling Method : Study of Tropical Cyclone) in a realistic configuration aiming at simulating the genesis and propagation of tropical cyclone Erica and Oceanic Coupled Models (AOCMs) which account for important air-sea feedbacks. Separate integrations

Recanati, Catherine

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Method of processing materials using an inductively coupled plasma  

DOE Patents [OSTI]

A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

Hull, D.E.; Bieniewski, T.M.

1987-04-13T23:59:59.000Z

42

Sensitivity of Ocean-Atmosphere Coupled Models to the Coupling Method : Example of Tropical Cyclone  

E-Print Network [OSTI]

Sensitivity of Ocean-Atmosphere Coupled Models to the Coupling Method : Example of Tropical Cyclone and propagation of tropical cyclone Erica. Sensitiv- ity tests to the coupling method are carried out-sea feedbacks. Separate integrations of the Corresponding author. Phone: +33 (0)4 76 51 48 60 Fax: +33 (0)4 76

43

Characterization of Coupled Hydrologic-Biogeochemical Processes Using Geophysical Data  

SciTech Connect (OSTI)

Biogeochemical and hydrological processes are naturally coupled and variable over a wide range of spatial and temporal scales. Many remediation approaches also induce dynamic transformations in natural systems, such as the generation of gases, precipitates and biofilms. These dynamic transformations are often coupled and can reduce the hydraulic conductivity of the geologic materials, making it difficult to introduce amendments or to perform targeted remediation. Because it is difficult to predict these transformations, our ability to develop effective and sustainable remediation conditions at contaminated sites is often limited. Further complicating the problem is the inability to collect the necessary measurements at a high enough spatial resolution yet over a large enough volume for understanding field-scale transformations.

Hubbard, Susan

2005-06-01T23:59:59.000Z

44

Studies of climate variability in a simple coupled model  

E-Print Network [OSTI]

The mechanisms of variability of a coupled atmosphere-ocean model are investigated through the study of two coupled configurations: an aquaplanet in which gyres are absent, and an aquaplanet in which a ridge extending from ...

Abiven, Claude

2007-01-01T23:59:59.000Z

45

A preferential vibration dissociation coupling model for nonequilibrium hypersonic flowfields  

E-Print Network [OSTI]

A preferential vibration-dissociation coupling model is incorporated into a radiatively coupled viscous shock layer code that also includes chemical, radiative, and thermal nonequilibrium. Stagnation point flow profiles are obtained for several...

McGough, David Earl

1993-01-01T23:59:59.000Z

46

Fully coupled thermal-mechanical-fluid flow model for nonliner geologic systems  

SciTech Connect (OSTI)

A single model is presented which describes fully coupled thermal-mechanical-fluid flow behavior of highly nonlinear, dynamic or quasistatic, porous geologic systems. The mathematical formulation for the model utilizes the continuum theory of mixtures to describe the multiphase nature of the system, and incremental linear constitutive theory to describe the path dependency of nonlinear material behavior. The model, incorporated in an explicit finite difference numerical procedure, was implemented in two different computer codes. A special-purpose one-dimensional code, SNEAKY, was written for initial validation of the coupling mechanisms and testing of the coupled model logic. A general purpose commercially available code, STEALTH, developed for modeling dynamic nonlinear thermomechanical processes, was modified to include fluid flow behavior and the coupling constitutive model. The fully explicit approach in the coupled calculation facilitated the inclusion of the coupling mechanisms and complex constitutive behavior. Analytical solutions pertaining to consolidation theory for soils, thermoelasticity for solids, and hydrothermal convection theory provided verification of stress and fluid flow, stress and conductive heat transfer, and heat transfer and fluid flow couplings, respectively, in the coupled model. A limited validation of the adequacy of the coupling constitutive assumptions was also performed by comparison with the physical response from two laboratory tests. Finally, the full potential of the coupled model is illustrated for geotechnical applications in energy-resource related areas. Examples in the areas of nuclear waste isolation and cut-and-fill mining are cited.

Hart, R.D.

1981-01-01T23:59:59.000Z

47

3457, Page, 1 Coupled CFD/Building Envelope Model  

E-Print Network [OSTI]

Performance Buildings Conference at Purdue, 2012 (Accepted) #12;3457, Page, 2 a standard model for a single3457, Page, 1 Coupled CFD/Building Envelope Model for the Purdue Living Lab Donghun KIM (kim1077 features. In the present case we develop a procedure for coupling a building envelope model to a CFD

Gugercin, Serkan

48

Robust model-based fault diagnosis for chemical process systems  

E-Print Network [OSTI]

diagnosis systems, which use limited information about the process model to robustly detect, discriminate, and reconstruct instrumentation faults. Broadly, the proposed method consists of a novel nonlinear state and parameter estimator coupled with a fault...

Rajaraman, Srinivasan

2006-08-16T23:59:59.000Z

49

Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments...  

Broader source: Energy.gov (indexed) [DOE]

Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the...

50

Modeling methane emissions from the Alaskan Yukon River basin, 19862005, by coupling a large-scale hydrological model  

E-Print Network [OSTI]

Modeling methane emissions from the Alaskan Yukon River basin, 1986­2005, by coupling a large-scale hydrological model and a process-based methane model Xiaoliang Lu1 and Qianlai Zhuang1,2 Received 25 August has been made in methane modeling for the Arctic. However, there is still large uncertainty

51

Computational Modeling of Conventionally Reinforced Concrete Coupling Beams  

E-Print Network [OSTI]

COMPUTATIONAL MODELING OF CONVENTIONALLY REINFORCED CONCRETE COUPLING BEAMS A Thesis by AJAY SESHADRI SHASTRI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of requirements... for the degree of MASTER OF SCIENCE December 2010 Major Subject: Civil Engineering Computational Modeling of Conventionally Reinforced Concrete Coupling Beams Copyright 2010...

Shastri, Ajay Seshadri

2012-02-14T23:59:59.000Z

52

Phenomenological band structure model of magnetic coupling in semiconductors  

E-Print Network [OSTI]

Phenomenological band structure model of magnetic coupling in semiconductors Gustavo M. Dalpian a,1­18]. Several models have been proposed to explain the phenomena, including the phenomenological Zener

Gong, Xingao

53

Radiolysis Process Model  

SciTech Connect (OSTI)

Assessing the performance of spent (used) nuclear fuel in geological repository requires quantification of time-dependent phenomena that may influence its behavior on a time-scale up to millions of years. A high-level waste repository environment will be a dynamic redox system because of the time-dependent generation of radiolytic oxidants and reductants and the corrosion of Fe-bearing canister materials. One major difference between used fuel and natural analogues, including unirradiated UO2, is the intense radiolytic field. The radiation emitted by used fuel can produce radiolysis products in the presence of water vapor or a thin-film of water (including OH• and H• radicals, O2-, eaq, H2O2, H2, and O2) that may increase the waste form degradation rate and change radionuclide behavior. H2O2 is the dominant oxidant for spent nuclear fuel in an O2 depleted water environment, the most sensitive parameters have been identified with respect to predictions of a radiolysis model under typical conditions. As compared with the full model with about 100 reactions it was found that only 30-40 of the reactions are required to determine [H2O2] to one part in 10–5 and to preserve most of the predictions for major species. This allows a systematic approach for model simplification and offers guidance in designing experiments for validation.

Buck, Edgar C.; Wittman, Richard S.; Skomurski, Frances N.; Cantrell, Kirk J.; McNamara, Bruce K.; Soderquist, Chuck Z.

2012-07-17T23:59:59.000Z

54

Computational modeling of materials processing and processes  

SciTech Connect (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Anisotropic mechanical properties of densified BSCCO powders are of paramount importance during thermo-mechanical processing of superconducting tapes and wires. Maximum current transport requires high relative density and a high degree of alignment of the single crystal planes of the BSCCO. Unfortunately this configuration causes high stresses that can lead to cracking, and thus reduce the density, and the conductive properties of the tape. The current work develops a micromechanical material mode to model is calibrated and compared to experimental results, and then employed to analyze the effects of initial texture and confinement pressure and shear strains in the core of oxide powder-in-tube (OPIT) processed tapes are calculated by finite-element analysis. The calculated deformations were then applied as boundary conditions to the micromechanical model. Our calculated results were used to interpret a set of prototypical rolling experiments. 11 refs., 5 figs.

Lowe, T.C.; Zhu, Yuntian; Bingert, J.F. [and others

1998-12-31T23:59:59.000Z

55

Kinetic Modeling of Microbiological Processes  

SciTech Connect (OSTI)

Kinetic description of microbiological processes is vital for the design and control of microbe-based biotechnologies such as waste water treatment, petroleum oil recovery, and contaminant attenuation and remediation. Various models have been proposed to describe microbiological processes. This editorial article discusses the advantages and limiation of these modeling approaches in cluding tranditional, Monod-type models and derivatives, and recently developed constraint-based approaches. The article also offers the future direction of modeling researches that best suit for petroleum and environmental biotechnologies.

Liu, Chongxuan; Fang, Yilin

2012-09-17T23:59:59.000Z

56

MODELING COUPLED FLUID FLOW AND GEOMECHANICAL AND GEOPHYSICAL PHENOMENA WITHIN  

E-Print Network [OSTI]

MODELING COUPLED FLUID FLOW AND GEOMECHANICAL AND GEOPHYSICAL PHENOMENA WITHIN A FINITE ELEMENT between pore fluid flow and the concurring deformation of the solid rock matrix. The governing equations and constitutive relations of fluid flow are coupled to stress-strain relations. With the appropriate boundary

57

Fully Coupled Well Models for Fluid Injection and Production  

SciTech Connect (OSTI)

Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving these equations varies from zero coupling to full coupling. In this paper we describe a fully coupled solution approach for well model that allows for a flexible well trajectory and screened interval within a structured hexahedral computational grid. In this scheme the nonlinear well equations have been fully integrated into the Jacobian matrix for the reservoir conservation equations, minimizing the matrix bandwidth.

White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

2013-08-05T23:59:59.000Z

58

Coupling upland watershed and downstream waterbody hydrodynamic and water quality models  

E-Print Network [OSTI]

. Such models lack the capacity to simulate the hydrodynamics and water quality processes of larger waterCoupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins B. Debele & R. Srinivasan

59

A Coupled THMC model of FEBEX mock-up test  

E-Print Network [OSTI]

Samper, J. , Zheng, L. , Montenegro, L. , 2006c. CoupledSamper, J. , Zheng, L. , Montenegro, L. , Fernández, A.M. ,A.M. Fernández and L. Montenegro, 2008b, Inverse modeling of

Zheng, Liange

2010-01-01T23:59:59.000Z

60

Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities  

SciTech Connect (OSTI)

The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Coupled THMC model of FEBEX mock-up test  

SciTech Connect (OSTI)

FEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project for the engineered barrier system (EBS) of a radioactive waste repository in granite. It includes two full-scale heating and hydration tests: the in situ test performed at Grimsel (Switzerland) and a mock-up test operating at CIEMAT facilities in Madrid (Spain). The mock-up test provides valuable insight on thermal, hydrodynamic, mechanical and chemical (THMC) behavior of EBS because its hydration is controlled better than that of in situ test in which the buffer is saturated with water from the surrounding granitic rock. Here we present a coupled THMC model of the mock-up test which accounts for thermal and chemical osmosis and bentonite swelling with a state-surface approach. The THMC model reproduces measured temperature and cumulative water inflow data. It fits also relative humidity data at the outer part of the buffer, but underestimates relative humidities near the heater. Dilution due to hydration and evaporation near the heater are the main processes controlling the concentration of conservative species while surface complexation, mineral dissolution/precipitation and cation exchanges affect significantly reactive species as well. Results of sensitivity analyses to chemical processes show that pH is mostly controlled by surface complexation while dissolved cations concentrations are controlled by cation exchange reactions.

Zheng, Liange; Samper, Javier

2008-09-15T23:59:59.000Z

62

Using Process Modeling for Process Understanding Dewayne E. Perry  

E-Print Network [OSTI]

Using Process Modeling for Process Understanding Dewayne E. Perry Systems and Software Research to improving processes is first understanding them. I report here a case study in process understanding using the process modeling language Interact. I illustrate both the language and the process iteratively, somewhat

Perry, Dewayne E.

63

Standard Model-like D-brane models and gauge couplings  

E-Print Network [OSTI]

We systematically search intersecting D-brane models, which just realize the Standard Model chiral matter contents and gauge symmetry. We construct new classes of non-supersymmetric Standard Model-like models. We also study gauge coupling constants of these models. The tree level gauge coupling is a function of compactification moduli, string scale, string coupling and winding number of D-branes. By tuning them, we examine whether the models can explain the experimental values of gauge couplings. As a result, we find that the string scale should be greater than $10^{14-15}$GeV if the compactification scale and the string scale are the same order.

Yuta Hamada; Tatsuo Kobayashi; Shohei Uemura

2014-09-09T23:59:59.000Z

64

Model-free measure of coupling from embedding principle  

E-Print Network [OSTI]

A model-free measure of coupling between dynamical variables is built from time series embedding principle. The approach described does not require a mathematical form for the dynamics to be assumed. The approach also does not require density estimation which is an intractable problem in high dimensions. The measure has strict asymptotic bounds and is robust to noise. The proposed approach is used to demonstrate coupling between complex time series from the finance world.

Chetan Nichkawde

2014-02-17T23:59:59.000Z

65

Updatable Process Views for Adapting Large Process Models  

E-Print Network [OSTI]

Updatable Process Views for Adapting Large Process Models: The proView Demonstrator Jens Kolb. The increasing adoption of process-aware information sys- tems (PAISs) has resulted in large process model collections. To support users having different perspectives on these processes and related data, a PAIS should

Ulm, Universität

66

High ethylene to ethane processes for oxidative coupling  

DOE Patents [OSTI]

Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

Chafin, Richard B. (Hurricane, WV); Warren, Barbara K. (Charleston, WV)

1991-01-01T23:59:59.000Z

67

High ethylene to ethane processes for oxidative coupling  

DOE Patents [OSTI]

Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

Chafin, R.B.; Warren, B.K.

1991-12-17T23:59:59.000Z

68

A Dynamic Model coupling Photoacclimation and Photoinhibition in Microalgae  

E-Print Network [OSTI]

A Dynamic Model coupling Photoacclimation and Photoinhibition in Microalgae Philipp Hartmann1, Andreas Nikolaou2, Beno^it Chachuat2, Olivier Bernard1 Abstract-- Microalgae are often considered in microalgae, thereby spanning multiple time scales. The properties of the model are investigated under quasi

Boyer, Edmond

69

The Kuramoto model of coupled oscillators with a bi-harmonic coupling function  

E-Print Network [OSTI]

We study synchronization in a Kuramoto model of globally coupled phase oscillators with a bi-harmonic coupling function, in the thermodynamic limit of large populations. We develop a method for an analytic solution of self-consistent equations describing uniformly rotating complex order parameters, both for single-branch (one possible state of locked oscillators) and multi-branch (two possible values of locked phases) entrainment. We show that synchronous states coexist with the neutrally linearly stable asynchronous regime. The latter has a finite life time for finite ensembles, this time grows with the ensemble size as a power law.

M. Komarov; A. Pikovsky

2014-04-29T23:59:59.000Z

70

Hybrid coupled models of the tropical Paci c | II ENSO prediction  

E-Print Network [OSTI]

Hybrid coupled models of the tropical Paci#12;c | II ENSO prediction by Youmin Tang 1 , William W: ytang@cims.nyu.edu #12; Abstract Two hybrid coupled models (HCMs), a dynamical ocean model coupled Introduction Models for ENSO prediction can be categorized into purely statistical models, hybrid coupled

Hsieh, William

71

Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers  

SciTech Connect (OSTI)

This report is the final scientific one for the award DE- FE0000988 entitled “Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers.” The work has been divided into six tasks. In task, “Development of a Three-Phase Non-Isothermal CO2 Flow Module,” we developed a fluid property module for brine-CO2 mixtures designed to handle all possible phase combinations of aqueous phase, sub-critical liquid and gaseous CO2, supercritical CO2, and solid salt. The thermodynamic and thermophysical properties of brine-CO2 mixtures (density, viscosity, and specific enthalpy of fluid phases; partitioning of mass components among the different phases) use the same correlations as an earlier fluid property module that does not distinguish between gaseous and liquid CO2-rich phases. We verified the fluid property module using two leakage scenarios, one that involves CO2 migration up a blind fault and subsequent accumulation in a secondary “parasitic” reservoir at shallower depth, and another investigating leakage of CO2 from a deep storage reservoir along a vertical fault zone. In task, “Development of a Rock Mechanical Module,” we developed a massively parallel reservoir simulator for modeling THM processes in porous media brine aquifers. We derived, from the fundamental equations describing deformation of porous elastic media, a momentum conservation equation relating mean stress, pressure, and temperature, and incorporated it alongside the mass and energy conservation equations from the TOUGH2 formulation, the starting point for the simulator. In addition, rock properties, namely permeability and porosity, are functions of effective stress and other variables that are obtained from the literature. We verified the simulator formulation and numerical implementation using analytical solutions and example problems from the literature. For the former, we matched a one-dimensional consolidation problem and a two-dimensional simulation of the Mandel-Cryer effect. For the latter, we obtained a good match of temperature and gas saturation profiles, and surface uplift, after injection of hot fluid into a model of a caldera structure. In task, “Incorporation of Geochemical Reactions of Selected Important Species,” we developed a novel mathematical model of THMC processes in porous and fractured saline aquifers, simulating geo-chemical reactions associated with CO2 sequestration in saline aquifers. Two computational frameworks, sequentially coupled and fully coupled, were used to simulate the reactions and transport. We verified capabilities of the THMC model to treat complex THMC processes during CO2 sequestration by analytical solutions and we constructed reactive transport models to analyze the THMC process quantitatively. Three of these are 1D reactive transport under chemical equilibrium, a batch reaction model with equilibrium chemical reactions, and a THMC model with CO2 dissolution. In task “Study of Instability in CO2 Dissolution-Diffusion-Convection Processes,” We reviewed literature related to the study of density driven convective flows and on the instability of CO2 dissolution-diffusion-convection processes. We ran simulations that model the density-driven flow instability that would occur during CO2 sequestration. CO2 diffused through the top of the system and dissolved in the aqueous phase there, increasing its density. Density fingers formed along the top boundary, and coalesced into a few prominent ones, causing convective flow that forced the fluid to the system bottom. These simulations were in two and three dimensions. We ran additional simulations of convective mixing with density contrast caused by variable dissolved CO2 concentration in saline water, modeled after laboratory experiments in which supercritical CO2 was circulated in the headspace above a brine saturated packed sand in a pressure vessel. As CO2 dissolved into the upper part of the saturated sand, liquid phase density increases causing instability and setting off convective mixing. We obtained good agreement

Wu, Yu-Shu; Chen, Zizhong; Kazemi, Hossein; Yin, Xiaolong; Pruess, Karsten; Oldenburg, Curt; Winterfeld, Philip; Zhang, Ronglei

2014-09-30T23:59:59.000Z

72

A COUPLED APPROACH FOR THE MODELLING OF ARC WELDING Christel Pequet1  

E-Print Network [OSTI]

A COUPLED APPROACH FOR THE MODELLING OF ARC WELDING PROCESSES Christel Pequet1 , Patrice Lasne1 ; email : michel.bellet@ensmp.fr Keywords: welding, finite elements, thermal arising in arc welding as well as their interaction: heat input, metal deposit, solidification, phase

Paris-Sud XI, Université de

73

Business Process Modeling for developing Process Oriented IT Systems Track: Business Process Management Tools and Technologies  

E-Print Network [OSTI]

Business Process Modeling for developing Process Oriented IT Systems Track: Business Process should be like. Therefore, business process modeling becomes a pre-requisite for system requirements, the paradigm of Business Process Management contrasts with traditional information system development, which

Paris-Sud XI, Université de

74

Numerical Modeling of Thermal EOR: Comprehensive Coupling of an AMR-Based Model  

E-Print Network [OSTI]

Numerical Modeling of Thermal EOR: Comprehensive Coupling of an AMR-Based Model of Thermal Fluid.renard@ifpen.fr * Corresponding author Résumé -- Modélisation numérique d'EOR thermique : couplage complet entre un modèle d of Thermal EOR: Comprehensive Coupling of an AMR-Based Model of Thermal Fluid Flow and Geomechanics

Paris-Sud XI, Université de

75

Thin film coating process using an inductively coupled plasma  

DOE Patents [OSTI]

Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

Kniseley, Richard N. (Ames, IA); Schmidt, Frederick A. (Ames, IA); Merkle, Brian D. (Ames, IA)

1990-01-30T23:59:59.000Z

76

Queueing up for enzymatic processing: Correlated signaling through coupled degradation  

E-Print Network [OSTI]

J. Williams, Lev S. Tsimring, Jeff Hasty SBML Model The SBML file of the model used for this study (Supplementary Information) Natalie A. Cookson, William H. Mather, Tal Danino, Octavio Mondrag´on-Palomino, Ruth

77

Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes  

SciTech Connect (OSTI)

We describe how electromagnetically induced transparency can arise in quadratically coupled optomechanical systems. Due to quadratic coupling, the underlying optical process involves a two-phonon process in an optomechanical system, and this two-phonon process makes the mean displacement, which plays the role of atomic coherence in traditional electromagnetically induced transparency (EIT), zero. We show how the fluctuation in displacement can play a role similar to atomic coherence and can lead to EIT-like effects in quadratically coupled optomechanical systems. We show how such effects can be studied using the existing optomechanical systems.

Huang, Sumei; Agarwal, G. S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)

2011-02-15T23:59:59.000Z

78

Modelling and Control of Activated Sludge Processes  

E-Print Network [OSTI]

Modelling and Control of Activated Sludge Processes Michela Mulas Dottorato di Ricerca of Activated Sludge Processes Michela Mulas Supervisors: Prof. Roberto Baratti Ing. Stefania Tronci Dottorato . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 ASP Models and Simulations 7 2.1 The Activated Sludge Process

Skogestad, Sigurd

79

Lightweight Process Modeling for Virtual Enterprise Process Collaboration  

E-Print Network [OSTI]

Lightweight Process Modeling for Virtual Enterprise Process Collaboration Lai Xu1 , Paul de Vrieze1 of mashups are often more data related than process related. In this paper, we explore the differences between data-oriented mashups and process-oriented enterprise mashups and consider how process mashups can

Paris-Sud XI, Université de

80

Coupling schemes for modeling hydraulic fracture propagation using the XFEM  

E-Print Network [OSTI]

Coupling schemes for modeling hydraulic fracture propagation using the XFEM Elizaveta Gordeliy of hydraulic fractures in an elastic medium. With appropriate enrichment, the XFEM resolves the Neumann(h) accuracy. For hydraulic fracture problems with a lag separating the uid front from the fracture front, we

Peirce, Anthony

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Model coupling friction and adhesion for steel-concrete interfaces  

E-Print Network [OSTI]

Model coupling friction and adhesion for steel- concrete interfaces Michel Raous Laboratoire de: In this paper the interface behaviour between steel and concrete, during pull out tests, is numerically a variable friction coefficient in order to simulate the behaviour of the steel-concrete interface during

Boyer, Edmond

82

Explosive shock processing of Pr2Fe14B/ Fe exchange-coupled nanocomposite bulk magnets  

E-Print Network [OSTI]

Explosive shock processing of Pr2Fe14B/ ­Fe exchange-coupled nanocomposite bulk magnets Z.Q. Jin between neigh- boring magnetic phases.1,2 The prerequisite for effective exchange coupling is a small are usually used to produce single-phase microcrystalline permanent magnets, are not favored in making bulk

Liu, J. Ping

83

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot...  

Office of Environmental Management (EM)

Design, and Operation Summary Results for Brine Migration Modeling Performed by LANL, LBNL and SNL for the Used Fuel Disposition Program Establishing the Technical Basis for...

84

Optimizing the anaerobic digestion of microalgae in a coupled process Terence Bayen1,4 and Francis Mairet2 and Pierre Martinon3 and Matthieu Sebbah4  

E-Print Network [OSTI]

Optimizing the anaerobic digestion of microalgae in a coupled process Terence Bayen1,4 and Francis the production of methane in a bioreactor coupling an anaerobic digester and a culture of micro-algae limited-dimensional system taking into account a day-night model of the light in the culture of micro-algae. Applying

Boyer, Edmond

85

Coupling Multi-Component Models with MPH on Distributed Memory Computer Architectures  

E-Print Network [OSTI]

Among these, NASA’s Earth System Models Framework (ESMF) [to facilitate coupling earth system model components and to

He, Yun; Ding, Chris

2005-01-01T23:59:59.000Z

86

An information modeling framework for process planning  

E-Print Network [OSTI]

69 69 CHAPTER Page F G H Structure of Infons . The Model G. l. Process Plan G. 2. Process Plan Set G. 3. Process Plan Activity G. 4. Recursive Nature G. 5. Process Plan Set Element G. 6. Serial Process Plan Set . G. 7. Parallel Process... Knowle D. Implications of Dimensions and Tolerances E. Set-Up Planning F. Tool Path Planning G. Activity Parameter Specification 3. Observations of Situation Theoretic Modelling 4. Interaction Between Models A. Interaction in Terms of Databases B...

Atreya, Dinesh S.

1993-01-01T23:59:59.000Z

87

Coupled-channel optical model potential for rare earth nuclei  

E-Print Network [OSTI]

Inspired by the recent work by Dietrich et al., substantiating validity of the adiabatic assumption in coupled-channel calculations, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on statically deformed nuclei. The generalization consists in adding the coupling of the ground state rotational band, deforming the potential by introducing appropriate quadrupole and hexadecupole deformation and correcting the OMP radius to preserve volume integral of the spherical OMP. We choose isotopes of three rare-earth elements (W, Ho, Gd), which are known to be nearly perfect rotors, to perform a consistent test of our conjecture on integrated cross sections as well as on angular distributions for elastic and inelastic neutron scattering. When doing this we employ the well-established Koning-Delaroche global spherical potential and experimentally determined deformations without any adjustments. We observe a dramatically improved agreement with experimental data compared to spherical optical model calculations. The effect of changing the OMP radius to preserve volume integral is moderate but visibly improves agreement at lower incident energies. We find that seven collective states need to be considered for the coupled-channel calculations to converge. Our results for total, elastic, inelastic, and capture cross sections, as well as elastic and inelastic angular distributions are in remarkable agreement with experimental data. This result confirms that the adiabatic assumption holds and can extend applicability of the global spherical OMP to rotational nuclei in the rare-earth region, essentially without any free parameter. Thus, quite reliable coupled-channel calculations can be performed on such nuclei even when the experimental data, and consequently a specific coupled-channel potential, are not available.

M. Herman; G. P. A. Nobre; A. Palumbo; F. S. Dietrich; D. Brown; S. Hoblit

2014-02-06T23:59:59.000Z

88

Coupling the High Complexity Land Surface Model ACASA to the Mesoscale Model WRF  

E-Print Network [OSTI]

In this study, the Weather Research and Forecasting Model (WRF) is coupled with the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA), a high complexity land surface model. Although WRF is a state-of-the-art regional ...

Xu, L.

89

A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain  

SciTech Connect (OSTI)

A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

1993-07-01T23:59:59.000Z

90

Coupled wake boundary layer model of wind-farms  

E-Print Network [OSTI]

We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall wind-farm boundary layer structure. The wake expansion/superposition model captures the effect of turbine positioning, while the top-down portion adds the interaction between the wind-turbine wakes and the atmospheric boundary layer. Each portion of the model requires specification of a parameter that is not known a-priori. For the wake model the wake expansion coefficient is required, while the top-down model requires an effective span-wise turbine spacing within which the model's momentum balance is relevant. The wake expansion coefficient is obtained by matching the predicted mean velocity at the turbine from both approaches, while the effective span-wise turbine spacing depends on turbine positioning and thus can be determined from the wake expansion...

Stevens, Richard J A M; Meneveau, Charles

2014-01-01T23:59:59.000Z

91

An AirSea Coupled Skeleton Model for the MaddenJulian Oscillation* FEI LIU AND BIN WANG  

E-Print Network [OSTI]

An Air­Sea Coupled Skeleton Model for the Madden­Julian Oscillation* FEI LIU AND BIN WANG remains confined to atmospheric processes only. Here the authors study the role of air­sea in- teraction by implementing an oceanic mixed-layer (ML) model of Wang and Xie into the MJO skeleton model. In this new air

Wang, Bin

92

Dynamics of an Economics Model for Generation Coupled to the OPA Power Transmission Model  

E-Print Network [OSTI]

Dynamics of an Economics Model for Generation Coupled to the OPA Power Transmission Model B. A a dynamic model of the power transmission system (OPA) and a simple economic model of power generation development. Despite the simplicity of this economic model, complex dynamics both in the economics (prices

Dobson, Ian

93

Solvable model for chimera states of coupled oscillators  

E-Print Network [OSTI]

Networks of identical, symmetrically coupled oscillators can spontaneously split into synchronized and desynchronized sub-populations. Such chimera states were discovered in 2002, but are not well understood theoretically. Here we obtain the first exact results about the stability, dynamics, and bifurcations of chimera states by analyzing a minimal model consisting of two interacting populations of oscillators. Along with a completely synchronous state, the system displays stable chimeras, breathing chimeras, and saddle-node, Hopf and homoclinic bifurcations of chimeras.

Daniel M. Abrams; Renato E. Mirollo; Steven H. Strogatz; Daniel A. Wiley

2008-08-26T23:59:59.000Z

94

Determination of the controlling process in coupled heat and mass transfer  

SciTech Connect (OSTI)

The influence of non-condensable gases on condensation is well known going back to Nusselt. The non-condensables tend to form a blanket around the cooled surface which can significantly slow condensation rates by introducing a controlling mass transfer resistance. The coupled heat and mass transfer process that results has a significant impact on the optimum design of compact condenser bundles. One of the questions that arises in analyzing such a coupled process is which of the two processes is controlling the overall transfer process? One way to quantify a solution to this problem is to take a thermodynamic perspective and to compute the entropy generation associated with each of the individual processes. Then, the process that contributes the largest entropy generation is viewed as the controlling process. The result of such a determination provides insight as to how to augment the overall transfer process. The approach taken in this study is to use available CFD (computational fluid dynamics) codes to formulate and solve the condenser problem to gain insight into the coupled process. The resulting temperature, velocity and concentration data can then be analyzed to determine the entropy generation associated with each of the processes. Results are presented for a series of simplified geometries that define the magnitude of the effects contributed by each of the transfer processes.

Bell, B.; Kakavas, T.; Herold, K.E. [Univ. of Maryland, College Park, MD (United States). Center for Environmental Energy Engineering

1996-12-31T23:59:59.000Z

95

Relativistic Point Coupling Model for Vibrational Excitations in the Continuum  

SciTech Connect (OSTI)

An implementation of the relativistic random phase approximation with the proper treatment of the continuum has been developed for the relativistic point coupling model and applied to investigate collective excitations in spherical nuclei. The results are compared with the spectral implementation of the same model. In heavy nuclei, where the escape width is negligible, we find an excellent agreement between both methods in the region of giant resonance and some discrepancies in the region of low-lying pygmy resonance. The differences are more pronounced in light nuclei due to the larger values of the escape widths.

Ring, P.; Daoutidis, J. [Physics Department Technical University Munich, 85748 Garching (Germany); Litvinova, E. [Gesellschaft fuer Schwerionenforschung mbH, 64291 Darmstadt (Germany); Niksic, T.; Paar, N.; Vretenar, D. [Physics Department, Faculty of Science, University of Zagreb (Croatia)

2009-08-26T23:59:59.000Z

96

Entanglement generation in the ultra-strongly coupled Rabi model  

E-Print Network [OSTI]

We analyze the dynamics of the quantum Rabi model for two qubits interacting through a common bosonic field mode (resonator), focusing on the generation and detection of maximally entangled Bell states. We obtain analytical results for the unitary dynamics of this system in the slow-qubit (or degenerate) regime, considering ultra-strong coupling between qubits and resonator mode, for which the rotating wave approximation is no longer applicable. We also numerically investigate the dynamics beyond the slow-qubit condition in order to study the validity of the model in the presence of less strict conditions.

Matteo Bina; Stefano Maffezzoli Felis; Stefano Olivares

2014-10-23T23:59:59.000Z

97

Quantum Jump Approach to Switching Process of a Josephson Junction Coupled to a Microscopic Two-Level System  

E-Print Network [OSTI]

With microwave irradiation, the switching current of a Josephson junction coupled to a microscopic two-level system jumps randomly between two discrete states. We modeled the switching process of the coupled system with quantum jump approach that was generally used in quantum optics. The parameters that affect the character of the quantum jumps between macroscopic quantum states are discussed. The results obtained from our theoretical analysis agree well with those of the experiments and provide a clear physical picture for the macroscopic quantum jumps in Josephson junctions coupled with two-level systems. In addition, quantum jumps may serve as a useful tool to investigate the microscopic two-level structures in solid-state systems.

Xueda Wen; Yiwen Wang; Ning Dong; Guozhu Sun; Jian Chen; Lin Kang; Weiwei Xu; Peiheng Wu; Yang Yu

2009-07-14T23:59:59.000Z

98

Cupola Furnace Computer Process Model  

SciTech Connect (OSTI)

The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

Seymour Katz

2004-12-31T23:59:59.000Z

99

Framework for Coupling Room Air Models to Heat Balance Model Load and Energy Calculations (RP-1222)  

E-Print Network [OSTI]

1 Framework for Coupling Room Air Models to Heat Balance Model Load and Energy Calculations (RP in a program for hourly load calculations of a single thermal zone. The heat balance model for load and energy to heat balance model load and energy calculations," HVAC&R Research, 10(2), 91-111. #12;2 · Mixed

Chen, Qingyan "Yan"

100

Towards a Security Engineering Process Model for Electronic Business Processes  

E-Print Network [OSTI]

Business process management (BPM) and accompanying systems aim at enabling enterprises to become adaptive. In spite of the dependency of enterprises on secure business processes, BPM languages and techniques provide only little support for security. Several complementary approaches have been proposed for security in the domain of BPM. Nevertheless, support for a systematic procedure for the development of secure electronic business processes is still missing. In this paper, we pinpoint the need for a security engineering process model in the domain of BPM and identify key requirements for such process model.

Eichler, Jörn

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

BUSINESS PROCESS MODELING WITH UML Nuno Castela  

E-Print Network [OSTI]

BUSINESS PROCESS MODELING WITH UML Nuno Castela Escola Superior de Tecnologia de Castelo Branco@est.ipcb.pt Key words: Modeling, Business processes, UML Abstract: This paper focuses the reasons and advantages and description of the methodology to apply business modeling is made, namely, the organization of the modeling

102

Evergreening Peer Review Business Process Modeling (BPM)  

E-Print Network [OSTI]

Evergreening Peer Review Business Process Modeling (BPM) On behalf of the Peer Review Subject of the BPM process undertaken to model the current business process of peer review from the perspective. Sheryl K. Brining, Ph.D. Michael Rennolds Paul Sheehy, Ph.D. #12;Peer Review BPM White Paper-Dec1_FINAL

Rau, Don C.

103

Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances  

SciTech Connect (OSTI)

Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5 20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,g)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,g)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.

Thompson, I J [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Escher, Jutta E [ORNL] [ORNL; Arbanas, Goran [ORNL] [ORNL

2013-01-01T23:59:59.000Z

104

Developing Great Lakes Ice Model (GLIM) using CIOM (Coupled Ice-Ocean Model) in Lake Erie  

E-Print Network [OSTI]

Developing Great Lakes Ice Model (GLIM) using CIOM (Coupled Ice- Ocean Model) in Lake Erie Primary of the ice-ocean models, assistance with development of project reports and scientific presentations will first start the implementation of the CIOM in Lake Erie, assemble satellite observations of ice cover

105

Correlation Functions in the Multiple Ising Model Coupled to Gravity  

E-Print Network [OSTI]

The model of p Ising spins coupled to 2d gravity, in the form of a sum over planar phi-cubed graphs, is studied and in particular the two-point and spin-spin correlation functions are considered. We first solve a toy model in which only a partial summation over spin configurations is performed and, using a modified geodesic distance, various correlation functions are determined. The two-point function has a diverging length scale associated with it. The critical exponents are calculated and it is shown that all the standard scaling relations apply. Next the full model is studied, in which all spin configurations are included. Many of the considerations for the toy model apply for the full model, which also has a diverging geometric correlation length associated with the transition to a branched polymer phase. Using a transfer function we show that the two-point and spin-spin correlation functions decay exponentially with distance. Finally, by assuming various scaling relations, we make a prediction for the critical exponents at the transition between the magnetized and branched polymer phases in the full model.

M. G. Harris; J. Ambjorn

1996-02-06T23:59:59.000Z

106

Analysis of badlands: coupling of tectonic and land surface processes in the Pyrenees of Spain  

E-Print Network [OSTI]

Analysis of badlands: coupling of tectonic and land surface processes in the Pyrenees of Spain MSc to rainstorms. In north-east Spain, sediment from rapidly eroding badlands has significantly reduced reservoir-funded research consortium (SESAM II) with partners at the University of Lleida, Spain

Baer, Christian

107

Bio-Optical Response and Coupling with Physical Processes in the Lombok Strait Region  

E-Print Network [OSTI]

Bio-Optical Response and Coupling with Physical Processes in the Lombok Strait Region Burton H.boss@maine.edu ABSTRACT The optical structure and variability of the Lombok Straits region is poorly understood, but available remotely sensed ocean color indicates that there is a strong optical response and signal

Boss, Emmanuel S.

108

Modeling of Geothermal Reservoirs: Fundamental Processes, Computer...  

Open Energy Info (EERE)

Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Modeling of...

109

Image Processing with Manifold Models  

E-Print Network [OSTI]

to the following signals ensemble def. = {x f(x) = A(x) cos((x)) \\ ||A || Amax and || || max.} This model to = R+ Ă? R+ Ă? S1 . The projection of a patch p L2 ([-/2, /2]) on M can be carried over approximately] and defines the windowed Fourier 20 = {x f(x) = A(x) cos((x)) \\ ||A || Amax and || || max.} model of locally

Milanfar, Peyman

110

Mathematical Formulation Requirements and Specifications for the Process Models  

SciTech Connect (OSTI)

The Advanced Simulation Capability for Environmental Management (ASCEM) is intended to be a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM program is aimed at addressing critical EM program needs to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in nuclear waste disposal facilities, in order to reduce uncertainties and risks associated with DOE EM's environmental cleanup and closure activities. Building upon national capabilities developed from decades of Research and Development in subsurface geosciences, computational and computer science, modeling and applied mathematics, and environmental remediation, the ASCEM initiative will develop an integrated, open-source, high-performance computer modeling system for multiphase, multicomponent, multiscale subsurface flow and contaminant transport. This integrated modeling system will incorporate capabilities for predicting releases from various waste forms, identifying exposure pathways and performing dose calculations, and conducting systematic uncertainty quantification. The ASCEM approach will be demonstrated on selected sites, and then applied to support the next generation of performance assessments of nuclear waste disposal and facility decommissioning across the EM complex. The Multi-Process High Performance Computing (HPC) Simulator is one of three thrust areas in ASCEM. The other two are the Platform and Integrated Toolsets (dubbed the Platform) and Site Applications. The primary objective of the HPC Simulator is to provide a flexible and extensible computational engine to simulate the coupled processes and flow scenarios described by the conceptual models developed using the ASCEM Platform. The graded and iterative approach to assessments naturally generates a suite of conceptual models that span a range of process complexity, potentially coupling hydrological, biogeochemical, geomechanical, and thermal processes. The Platform will use ensembles of these simulations to quantify the associated uncertainty, sensitivity, and risk. The Process Models task within the HPC Simulator focuses on the mathematical descriptions of the relevant physical processes.

Steefel, C.; Moulton, D.; Pau, G.; Lipnikov, K.; Meza, J.; Lichtner, P.; Wolery, T.; Bacon, D.; Spycher, N.; Bell, J.; Moridis, G.; Yabusaki, S.; Sonnenthal, E.; Zyvoloski, G.; Andre, B.; Zheng, L.; Davis, J.

2010-11-01T23:59:59.000Z

111

Modeling of the oxygen transfer in the respiratory process Sebastien Martin  

E-Print Network [OSTI]

in the acinar periphery. Introduction The respiratory system is designed to achieve two main functions: oxygenModeling of the oxygen transfer in the respiratory process S´ebastien Martin Laboratoire de Math, coupled with a lumped mechanical model for the ventilation process. Objectives. We aim at investigating

Paris-Sud XI, Université de

112

Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model  

E-Print Network [OSTI]

The supersymmetrized DFSZ axion model is highly motivated not only because it offers solutions to both the gauge hierarchy and strong CP problems, but also because it provides a solution to the SUSY mu problem which naturally allows for a Little Hierarchy. We compute the expected mixed axion-neutralino dark matter abundance for the SUSY DFSZ axion model in two benchmark cases-- a natural SUSY model with a standard neutralino underabundance (SUA) and an mSUGRA/CMSSM model with a standard overabundance (SOA). Our computation implements coupled Boltzmann equations which track the radiation density along with neutralino, axion (produced thermally (TH) and via coherent oscillations (CO)), saxion (TH- and CO-produced), axino and gravitino densities. In the SUSY DFSZ model, axions, axinos and saxions go through the process of freeze-in-- in contrast to freeze-out or out-of-equilibrium production as in the SUSY KSVZ model-- resulting in thermal yields which are largely independent of the re-heat temperature. We find the SUA case with suppressed saxion-axion couplings (\\xi=0) only admits solutions for PQ breaking scale f_a~radiation or violation of BBN constraints. An exception occurs at very large f_a~ 10^{15}-10^{16} GeV where large entropy dilution from CO-produced saxions leads to allowed models.

Kyu Jung Bae; Howard Baer; Andre Lessa; Hasan Serce

2014-06-16T23:59:59.000Z

113

Coupling a transient solvent extraction module with the separations and safeguards performance model.  

SciTech Connect (OSTI)

A number of codes have been developed in the past for safeguards analysis, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM), developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.

DePaoli, David W. (Oak Ridge National Laboratory, Oak Ridge, TN); Birdwell, Joseph F. (Oak Ridge National Laboratory, Oak Ridge, TN); Gauld, Ian C. (Oak Ridge National Laboratory, Oak Ridge, TN); Cipiti, Benjamin B.; de Almeida, Valmor F. (Oak Ridge National Laboratory, Oak Ridge, TN)

2009-10-01T23:59:59.000Z

114

Modeling Business Objectives for Business Process Management  

E-Print Network [OSTI]

Modeling Business Objectives for Business Process Management Matthias Lohrmann and Manfred Reichert quality, business objective models assume the role of formal requirements definitions as in software engi a refined business objective modeling approach. Our approach builds on use case-based effectiveness criteria

Ulm, Universität

115

Spheroidal close-coupling scheme to describe ionization processes in one-electron diatomic systems  

SciTech Connect (OSTI)

We propose a molecular close-coupling expansion in terms of prolate spheroidal wave functions confined in an ellipsoidal box. We first implement the method for ionization of H{sub 2}{sup +} molecular ions, by linearly polarized strong and short laser pulses, in the nonperturbative regime and within the (fixed nuclei) Born-Oppenheimer approximation. We further analyze the adequacy of the method to reproduce both the bound and the continuum nonadiabatic processes in ion-atom collisions.

Pons, B. [Centre Lasers Intenses et Applications, UMR 5107 du CNRS, Universite de Bordeaux-I, 351 Cours de la Liberation, F-33405 Talence (France)

2003-04-01T23:59:59.000Z

116

Pion photoproduction in a dynamical coupled-channels model  

E-Print Network [OSTI]

The charged and neutral pion photoproduction reactions are investigated in a dynamical coupled-channels approach based on the formulation of Haberzettl, Huang, and Nakayama [Phys. Rev. C 83, 065502 (2011)]. The hadronic final-state interaction is provided by the Juelich pi-N model, which includes the channels pi-N and eta-N comprising stable hadrons as well as the effective pi-pi-N channels pi-Delta, sigma-N, and rho-N. This hadronic model has been quite successful in describing pi-N to pi-N scattering for center-of-mass energies up to 1.9 GeV. By construction, the full pion photoproduction current satisfies the generalized Ward-Takahashi identity and thus is gauge invariant as a matter of course. The calculated differential cross sections and photon spin asymmetries up to 1.65 GeV center-of-mass energy for the reactions gamma p to pi+ n, gamma p to pi0 p, gamma n to pi- p and gamma n to pi0 n are in good agreement with the experimental data.

Huang, F; Haberzettl, H; Haidenbauer, J; Hanhart, C; Krewald, S; ner, U -G Meiß; Nakayama, K

2011-01-01T23:59:59.000Z

117

Pion photoproduction in a dynamical coupled-channels model  

E-Print Network [OSTI]

The charged and neutral pion photoproduction reactions are investigated in a dynamical coupled-channels approach based on the formulation of Haberzettl, Huang, and Nakayama [Phys. Rev. C 83, 065502 (2011)]. The hadronic final-state interaction is provided by the Juelich pi-N model, which includes the channels pi-N and eta-N comprising stable hadrons as well as the effective pi-pi-N channels pi-Delta, sigma-N, and rho-N. This hadronic model has been quite successful in describing pi-N to pi-N scattering for center-of-mass energies up to 1.9 GeV. By construction, the full pion photoproduction current satisfies the generalized Ward-Takahashi identity and thus is gauge invariant as a matter of course. The calculated differential cross sections and photon spin asymmetries up to 1.65 GeV center-of-mass energy for the reactions gamma p to pi+ n, gamma p to pi0 p, gamma n to pi- p and gamma n to pi0 n are in good agreement with the experimental data.

F. Huang; M. Döring; H. Haberzettl; J. Haidenbauer; C. Hanhart; S. Krewald; U. -G. Meiß ner; K. Nakayama

2011-10-17T23:59:59.000Z

118

Development of a scalable model for predicting arsenic transport coupled with oxidation and adsorption reactions  

E-Print Network [OSTI]

modeling; Contaminant transport; Scaling; Numerical modeling 1. Introduction Management of groundwaterDevelopment of a scalable model for predicting arsenic transport coupled with oxidation is critical for predicting its transport dynamics in groundwater systems. We completed batch experiments

Clement, Prabhakar

119

A radiation transport coupled particle-in-cell simulation. I. Description of the model  

E-Print Network [OSTI]

A radiation transport coupled particle-in-cell simulation. I. Description of the model Hae June-dimensional radiation transport model is coupled with a particle-in-cell simulation in order to incorporate such as ground, radiative, and metastable state atoms are treated with a fluid model combined with the Holstein

Lee, Hae June

120

Coupled Environmental Processes and Long-term Performance of Landfill Covers in the northern Mojave Desert  

SciTech Connect (OSTI)

Evapotransiration (ET) covers have gained widespread acceptance as a closure feature for waste disposal sites, particularly in the arid and semi-arid regions of the southwestern U.S. But as landforms, ET covers are subject to change over time because of processes such as pedogenesis, hydrologic processes, vegetation establishment and change, and biological processes. To better understand the effects of coupled process changes to ET covers, a series of four primary analog sites in Yucca Flat on the Nevada Test Site, along with measurements and observations from other locations in the Mojave Desert, were selected to evaluate changes in ET covers over time. The analog sites, of varying ages, were selected to address changes in the early post-institutional control period, the 1,000-year compliance period for disposal of low-level and mixed low-level waste, and the 10,000-year compliance period for transuranic waste sites.

David Shafer; Michael Young; Stephen Zitzer; Eric McDonald; Todd Caldwell

2004-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A modeling approach for analysis of coupled multiphase fluid flow ...  

E-Print Network [OSTI]

tion of hazardous waste, geothermal energy extraction, ... and soil mechanics and can also handle coupled ... flux density for energy over all phases (J/(m2 s)).

2002-07-08T23:59:59.000Z

122

Coupled Model for Heat and Water Transport in a High Level Waste...  

Broader source: Energy.gov (indexed) [DOE]

algorithm for mineral dehydration is also applied in the modeling. The Finite Element Heat and Mass transfer code (FEHM) is used to simulate coupled thermal, hydrological, and...

123

A Conceptual Approach to Two-Scale Constitutive Modelling For Hydro-Mechanical Coupling  

E-Print Network [OSTI]

Large scale modelling of fluid flow coupled with solid failure in geothermal reservoirs or hydrocarbon extraction from reservoir rocks usually involves behaviours at two scales: lower scale of the inelastic localization zone, and larger scale of the bulk continuum where elastic behaviour can be reasonably assumed. The hydraulic conductivities corresponding to the mechanical properties at these two scales are different. In the bulk elastic host rock, the hydraulic conductivity does not vary much with the deformation, while it significantly changes in the lower scale of the localization zone due to inelastic deformation. Increase of permeability due to fracture and/or dilation, or reduction of permeability due to material compaction can take place inside this zone. The challenge is to predict the evolution of hydraulic conductivities coupled with the mechanical behaviour of the material in all stages of the deformation process. In the early stage of diffuse deformation, the permeability of the material can be reasonably assumed to be homogenous over the whole Representative Volume Element (RVE) However, localized failure results in distinctly different conductivities in different parts of the RVE. This paper establishes a general framework and corresponding field equations to describe the hydro-mechanical coupling in both diffuse and localized stages of deformation in rocks. In particular, embedding the lower scale hydro-mechanical behaviour of the localization zone inside an elastic bulk, together with their corresponding effective sizes, helps effectively deal with scaling issues in large-scale modelling. Preliminary results are presented which demonstrate the promising features of this new approach.

Giang D. Nguyen; Abbas El-Zein; Terry Bennett

2014-06-05T23:59:59.000Z

124

Process-Based Cost Modeling to Support Target Value Design  

E-Print Network [OSTI]

Costing as a Tool for Process Improvement Evaluation. ”A. (2005). “Determination of Process Durations on VirtualR.G. (1987). “Cost Modeling: a Process-Modeling Approach”.

Nguyen, Hung Viet

2010-01-01T23:59:59.000Z

125

Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal  

E-Print Network [OSTI]

I. Reservoir Engineering in Coal Seams: Part 1—The PhysicalStorage and Movement in Coal Seams. SPE Reserv. Eng. , 2 (swelling stress for coal seams that can involve swelling or

Liu, Hui-Hai

2010-01-01T23:59:59.000Z

126

Forced response of the East Asian summer rainfall over the past millennium: results from a coupled model simulation  

E-Print Network [OSTI]

of a millennium simulation of the coupled ECHO-G model. The model results indicate that the centennial

Wang, Bin

127

Coupling of a regional atmospheric model (RegCM3) and a regional oceanic model (FVCOM) over the maritime continent  

E-Print Network [OSTI]

Climatological high resolution coupled climate model simulations for the maritime continent have been carried out using the regional climate model (RegCM) version 3 and the finite volume coastal ocean model (FVCOM) ...

Wei, Jun

128

Cosmological Perturbations in Models of Coupled Dark Energy  

E-Print Network [OSTI]

Models in which dark energy interacts with dark matter have been proposed in the literature to help explain why dark energy should only come to dominate in recent times. In this paper, we present a dynamical framework to calculate cosmological perturbations for a general quintessence potential and interaction term. Our formalism is built upon the powerful phase-space approach often used to analyse the dynamical attractors in the background. We obtain a set of coupled differential equations purely in terms of dimensionless, bounded variables and apply these equations to calculate perturbations in a number of scenarios. Interestingly, in the presence of dark-sector interactions, we find that dark energy perturbations do not redshift away at late times, but can cluster even on small scales. We also clarify the initial conditions for the perturbations in the dark sector, showing that adiabaticity is no longer conserved in the presence of dark-sector interactions, even on large scales. Some issues of instability in the perturbations are also discussed.

Sirichai Chongchitnan

2009-02-26T23:59:59.000Z

129

SURVEY, ANALYSIS AND VALIDATION OF INFORMATION FOR BUSINESS PROCESS MODELING  

E-Print Network [OSTI]

SURVEY, ANALYSIS AND VALIDATION OF INFORMATION FOR BUSINESS PROCESS MODELING Nuno Castela Escola, Business Processes, Informational Resources, Activities, UML Abstract: Business processes modeling became a fundamental task for organizations. To model business processes is necessary to know all the activities

130

A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite  

SciTech Connect (OSTI)

Unsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed on a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl{sup -} data is excellent except for the data near the heater. The largest deviations of the model from inferred aqueous extract data occur for dissolved SO{sub 4}{sup 2-} which is underpredicted by the model. There are uncertainties on the amount of gypsum available for dissolution and its dissolution mechanism (kinetics or local equilibrium).

Zheng, L.; Samper, J.; Montenegro, L.; Fernandez, A.M.

2010-05-01T23:59:59.000Z

131

Gas Distribution Modeling using Sparse Gaussian Process Mixture Models  

E-Print Network [OSTI]

Gas Distribution Modeling using Sparse Gaussian Process Mixture Models Cyrill Stachniss1 Christian-- In this paper, we consider the problem of learning a two dimensional spatial model of a gas distribution with a mobile robot. Building maps that can be used to accurately predict the gas concentration at query

Stachniss, Cyrill

132

Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions  

DOE Patents [OSTI]

The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

McGrail, Bernard P. (Pasco, WA); Martin, Paul F. (Richland, WA); Lindenmeier, Clark W. (Richland, WA)

1999-01-01T23:59:59.000Z

133

Coupling of Integrated Biosphere Simulator to Regional Climate Model version 3  

E-Print Network [OSTI]

Presented in this thesis is a description of the coupling of Integrated Biosphere Simulator (IBIS) to Regional Climate Model version 3 (RegCM3), and an assessment of the coupled model (RegCM3-IBIS). RegCM3 is a 3-dimensional, ...

Winter, Jonathan (Jonathan Mark)

2006-01-01T23:59:59.000Z

134

Hybrid coupled models of the tropical Paci c |I Interannual variability  

E-Print Network [OSTI]

Hybrid coupled models of the tropical Paci#12;c |I Interannual variability by Youmin Tang 1 University, 251 Mercer Street, New York, NY 10012, USA. Email: ytang@cims.nyu.edu #12; Abstract Two hybrid), hybrid models (e.g., Barnett et al 1993; Balmaseda et al. 1994,1995), and fully coupled general

Hsieh, William

135

Hydrothermal processing of Hanford tank wastes: Process modeling and control  

SciTech Connect (OSTI)

In the Los Alamos National Laboratory (LANL) hydrothermal process, waste streams are first pressurized and heated as they pass through a continuous flow tubular reactor vessel. The waste is maintained at reaction temperature of 300--550 C where organic destruction and sludge reformation occur. This report documents LANL activities in process modeling and control undertaken in FY94 to support hydrothermal process development. Key issues discussed include non-ideal flow patterns (e.g. axial dispersion) and their effect on reactor performance, the use and interpretation of inert tracer experiments, and the use of computational fluid mechanics to evaluate novel hydrothermal reactor designs. In addition, the effects of axial dispersion (and simplifications to rate expressions) on the estimated kinetic parameters are explored by non-linear regression to experimental data. Safety-related calculations are reported which estimate the explosion limits of effluent gases and the fate of hydrogen as it passes through the reactor. Development and numerical solution of a generalized one-dimensional mathematical model is also summarized. The difficulties encountered in using commercially available software to correlate the behavior of high temperature, high pressure aqueous electrolyte mixtures are summarized. Finally, details of the control system and experiments conducted to empirically determine the system response are reported.

Currier, R.P. [comp.

1994-10-01T23:59:59.000Z

136

A Signal Processing Model of Quantum Mechanics  

E-Print Network [OSTI]

This paper develops a deterministic model of quantum mechanics as an accumulation-and-threshold process. The model arises from an analogy with signal processing in wireless communications. Complex wavefunctions are interpreted as expressing the amplitude and phase information of a modulated carrier wave. Particle transmission events are modeled as the outcome of a process of signal accumulation that occurs in an extra (non-spacetime) dimension. Besides giving a natural interpretation of the wavefunction and the Born rule, the model accommodates the collapse of the wave packet and other quantum paradoxes such as EPR and the Ahanorov-Bohm effect. The model also gives a new perspective on the 'relational' nature of quantum mechanics: that is, whether the wave function of a physical system is "real" or simply reflects the observer's partial knowledge of the system. We simulate the model for a 2-slit experiment, and indicate possible deviations of the model's predictions from conventional quantum mechanics. We also indicate how the theory may be extended to a field theory.

Chris Thron; Johnny Watts

2012-05-08T23:59:59.000Z

137

Assessing the Vulnerability of Large Critical Infrastructure Using Fully-Coupled Blast Effects Modeling  

SciTech Connect (OSTI)

Structural failures, such as the MacArthur Maze I-880 overpass in Oakland, California and the I-35 bridge in Minneapolis, Minnesota, are recent examples of our national infrastructure's fragility and serve as an important reminder of such infrastructure in our everyday lives. These two failures, as well as the World Trade Center's collapse and the levee failures in New Orleans, highlight the national importance of protecting our infrastructure as much as possible against acts of terrorism and natural hazards. This paper describes a process for evaluating the vulnerability of critical infrastructure to large blast loads using a fully-coupled finite element approach. A description of the finite element software and modeling technique is discussed along with the experimental validation of the numerical tools. We discuss how such an approach can be used for specific problems such as modeling the progressive collapse of a building.

McMichael, L D; Noble, C R; Margraf, J D; Glascoe, L G

2009-03-26T23:59:59.000Z

138

A Process Model of Quantum Mechanics  

E-Print Network [OSTI]

A process model of quantum mechanics utilizes a combinatorial game to generate a discrete and finite causal space upon which can be defined a self-consistent quantum mechanics. An emergent space-time M and continuous wave function arise through a non-uniform interpolation process. Standard non-relativistic quantum mechanics emerges under the limit of infinite information (the causal space grows to infinity) and infinitesimal scale (the separation between points goes to zero). The model has the potential to address several paradoxes in quantum mechanics while remaining computationally powerful.

William Sulis

2014-04-21T23:59:59.000Z

139

Attrition and abrasion models for oil shale process modeling  

SciTech Connect (OSTI)

As oil shale is processed, fine particles, much smaller than the original shale are created. This process is called attrition or more accurately abrasion. In this paper, models of abrasion are presented for oil shale being processed in several unit operations. Two of these unit operations, a fluidized bed and a lift pipe are used in the Lawrence Livermore National Laboratory Hot-Recycle-Solid (HRS) process being developed for the above ground processing of oil shale. In two reports, studies were conducted on the attrition of oil shale in unit operations which are used in the HRS process. Carley reported results for attrition in a lift pipe for oil shale which had been pre-processed either by retorting or by retorting then burning. The second paper, by Taylor and Beavers, reported results for a fluidized bed processing of oil shale. Taylor and Beavers studied raw, retorted, and shale which had been retorted and then burned. In this paper, empirical models are derived, from the experimental studies conducted on oil shale for the process occurring in the HRS process. The derived models are presented along with comparisons with experimental results.

Aldis, D.F.

1991-10-25T23:59:59.000Z

140

Numerical modeling of a thermohydrochemical (T-H-C) coupling and the implications to radionuclide transport.  

SciTech Connect (OSTI)

Thermohydrochemical (T-H-C) processes result from the placement of heat-generating radioactive materials in unsaturated, fractured geologic materials. The placement of materials in the proposed Yucca Mountain repository will result in complex environmental conditions. Simple models are developed liking the thermohydrological effects simulated with TOUGHZ to system chemistry, with an example presented for chloride. Perturbations to near-field chemistry could have a significant impact on the migration of actinides and fission products in geologic materials. Various conceptual models to represent fractures are utilized in TOUGHZ simulations of thermohydrological processes. The simulated moisture redistribution is then coupled to simple chemical models to demonstrate the potential magnitude of T-H-C processes. The concentration of chloride in solution (returning to the engineered barrier system) is demonstrated, in extreme cases, to exceed 100,000 mg/L. The implication is that the system (typically ambient chemical and hydrological conditions) in which radionuclide transport is typically simulated and measured may be significantly different from the perturbed system.

Esh, D. W.; Scheetz, B. E.

1999-09-21T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Exploring chaos to model the design process  

E-Print Network [OSTI]

to a. chaotic svstem mav drive it to neu attractors. Any neiv information introduced to the design proi. ess mav lead to different solutions. CHAPTER II THE FUNDAMENTAL PROCESSES OF DESIGN As ivas stated in the introduction, the first objective... of this researcll v" as i i identify some of the funclamental activities of the design process. In order to acconiphsh tins task. the follniving approach v;as taken. i. 'The hterature ivas surveyed for descriptive models of the design process. klorlcls tliat...

Sharkawy, Ahmed

1990-01-01T23:59:59.000Z

142

Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade  

E-Print Network [OSTI]

Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor metal arc welding (GMAW) butt-joining process has been modeled using a two-way fully coupled, transient in the form of heat, and the mechanical material model of the workpiece and the weld is made temperature

Grujicic, Mica

143

Strongly-coupled Josephson junction array for simulation of frustrated one-dimensional spin models  

E-Print Network [OSTI]

We study the capacitance-coupled Josephson junction array beyond the small-coupling limit. We find that, when the scale of the system is large, its Hamiltonian can be obtained without the small-coupling approximation and the system can be used to simulate strongly frustrated one-dimensional Ising spin problems. To engineer the system Hamiltonian for an ideal theoretical model, we apply a dynamical decoupling technique to eliminate undesirable couplings in the system. Using a 6-site junction array as an example, we numerically evaluate the system to show that it exhibits important characteristics of the frustrated spin model.

Liang-Hui Du; Xingxiang Zhou; Yong-Jian Han; Guang-Can Guo; Zheng-Wei Zhou

2012-12-20T23:59:59.000Z

144

Author's personal copy Two-way coupling of an ENSO model to the global climate model CLIMBER-3a  

E-Print Network [OSTI]

it is possible to introduce ENSO variability to an Earth system Model of Intermediate Complexity (EMIC we are using here. In this study we couple the Earth system model of intermediate complexity (EMIC

Levermann, Anders

145

Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model  

SciTech Connect (OSTI)

Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

Huang, Hai; Plummer, Mitchell; Podgorney, Robert

2013-02-01T23:59:59.000Z

146

Supporting Flexible Business Processes with a Progression Model  

E-Print Network [OSTI]

Supporting Flexible Business Processes with a Progression Model Nicole Stavness Department with information systems to contend with changing business processes, and to support diverse workflow. Model that support flexible business processes. The progression model tracks a user's interaction when using

Schneider, Kevin A.

147

Do Coupled Climate Models Correctly SImulate the Upward Branch of the Deept Ocean Global Conveyor?  

SciTech Connect (OSTI)

The large-scale meridional overturning circulation (MOC) connects the deep ocean, a major reservoir of carbon, to the other components of the climate system and must therefore be accurately represented in Earth System Models. Our project aims to address the specific question of the pathways and mechanisms controlling the upwelling branch of the MOC, a subject of significant disagreement between models and observational syntheses, and among general circulation models. Observations of these pathways are limited, particularly in regions of complex hydrography such as the Southern Ocean. As such, we rely on models to examine theories of the overturning circulation, both physically and biogeochemically. This grant focused on a particular aspect of the meridional overturning circulation (MOC) where there is currently significant disagreement between models and observationally based analyses of the MOC, and amongst general circulation models. In particular, the research focused on addressing the following questions: 1. Where does the deep water that sinks in the polar regions rise to the surface? 2. What processes are responsible for this rise? 3. Do state-of-the-art coupled GCMs capture these processes? Our research had three key components: observational synthesis, model development and model analysis. In this final report we outline the key results from these areas of research for the 2007 to 2012 grant period. The research described here was carried out primarily by graduate student, Daniele Bianchi (now a Postdoc at McGill University, Canada), and Postdoc Stephanie Downes (now a Research Fellow at The Australian national University, Australia). Additional support was provided for programmers Jennifer Simeon as well as Rick Slater.

Sarmiento, Jorge L; Downes, Stephanie; Bianchi, Daniele

2013-01-17T23:59:59.000Z

148

Fractional Dynamical Model for the Generation of ECG like Signals from Filtered Coupled Van-der Pol Oscillators  

E-Print Network [OSTI]

In this paper, an incommensurate fractional order (FO) model has been proposed to generate ECG like waveforms. Earlier investigation of ECG like waveform generation is based on two identical Van-der Pol (VdP) family of oscillators which are coupled by time delays and gains. In this paper, we suitably modify the three state equations corresponding to the nonlinear cross-product of states, time delay coupling of the two oscillators and low-pass filtering, using the concept of fractional derivatives. Our results show that a wide variety of ECG like waveforms can be simulated from the proposed generalized models, characterizing heart conditions under different physiological conditions. Such generalization of the modelling of ECG waveforms may be useful to understand the physiological process behind ECG signal generation in normal and abnormal heart conditions. Along with the proposed FO models, an optimization based approach is also presented to estimate the VdP oscillator parameters for representing a realistic ...

Das, Saptarshi

2014-01-01T23:59:59.000Z

149

Performance modeling in the design process  

SciTech Connect (OSTI)

Here, in capsule form, are some lessons learned trying to integrate performance modeling into the design process. Performance modeling should play a central role in system design; ignore it at your peril. The role of performance modeling is not the same in all design projects. Clearly specify performance goals and what factors will affect performance; they try to model those factors. Obtaining the data for the models can be a major problem; ongoing measurement projects are always worthwhile. Prototypes can be valuable data gathering tools if they are instrumented for this purpose. Anticipate the effect of environment on the system you are designing, and the effects of the system on the environment. Including the performance analyst on the design team from the beginning; if he is perceived as an outsider, he is more likely to be ignored, especially if decisions have already been made.

Alexander, W.; Brice, R.

1982-01-01T23:59:59.000Z

150

Evaluation of Generic EBS Design Concepts and Process Models...  

Broader source: Energy.gov (indexed) [DOE]

Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization Evaluation of Generic EBS Design Concepts and Process Models Implications to EBS Design...

151

A turbulent transport network model in MULTIFLUX coupled with TOUGH2  

SciTech Connect (OSTI)

A new numerical method is described for the fully iterated, conjugate solution of two discrete submodels, involving (a) a transport network model for heat, moisture, and airflows in a high-permeability, air-filled cavity; and (b) a variably saturated fractured porous medium. The transport network submodel is an integrated-parameter, computational fluid dynamics solver, describing the thermal-hydrologic transport processes in the flow channel system of the cavity with laminar or turbulent flow and convective heat and mass transport, using MULTIFLUX. The porous medium submodel, using TOUGH2, is a solver for the heat and mass transport in the fractured rock mass. The new model solution extends the application fields of TOUGH2 by integrating it with turbulent flow and transport in a discrete flow network system. We present demonstrational results for a nuclear waste repository application at Yucca Mountain with the most realistic model assumptions and input parameters including the geometrical layout of the nuclear spent fuel and waste with variable heat load for the individual containers. The MULTIFLUX and TOUGH2 model elements are fully iterated, applying a programmed reprocessing of the Numerical Transport Code Functionalization model-element in an automated Outside Balance Iteration loop. The natural, convective airflow field and the heat and mass transport in a representative emplacement drift during postclosure are explicitly solved in the new model. The results demonstrate that the direction and magnitude of the air circulation patterns and all transport modes are strongly affected by the heat and moisture transport processes in the surrounding rock, justifying the need for a coupled, fully iterated model solution such as the one presented in the paper.

Danko, G.; Bahrami, D.; Birkholzer, J.T.

2011-02-15T23:59:59.000Z

152

Iron and steel industry process model  

SciTech Connect (OSTI)

The iron and steel industry process model depicts expected energy-consumption characteristics of the iron and steel industry and ancillary industries for the next 25 years by means of a process model of the major steps in steelmaking, from ore mining and scrap recycling to the final finishing of carbon, alloy, and stainless steel into steel products such as structural steel, slabs, plates, tubes, and bars. Two plant types are modeled: fully integrated mills and mini-mills. User-determined inputs into the model are as follows: projected energy and materials prices; projected costs of capacity expansion and replacement; energy-conserving options, both operating modes and investments; the internal rate of return required on investment; and projected demand for finished steel. Nominal input choices in the model for the inputs listed above are as follows: National Academy of Sciences Committee on Nuclear and Alternative Energy Systems Demand Panel nominal energy-price projections for oil, gas, distillates, residuals, and electricity and 1975 actual prices for materials; actual 1975 costs; new technologies added; 15% after taxes; and 1975 actual demand with 1.5%/y growth. The model reproduces the base-year (1975) actual performance of the industry; then, given the above nominal input choices, it projects modes of operation and capacity expansion that minimize the cost of meeting the given final demands for each of 5 years, each year being the midpoint of a 5-year interval. The output of the model includes the following: total energy use and intensity (Btu/ton) by type, by process, and by time period; energy conservation options chosen; utilization rates for existing capacity; capital-investment decisions for capacity expansion.

Sparrow, F.T.; Pilati, D.; Dougherty, T.; McBreen, E.; Juang, L.L.

1980-01-01T23:59:59.000Z

153

Right on time: Measuring Kuramoto model coupling from a survey of wristwatches  

E-Print Network [OSTI]

Using a survey of wristwatch synchronization from a randomly selected group of independent volunteers, one can model the system as a Kuramoto-type coupled oscillator network. Based on the phase data, both the order parameter and an estimated value of the coupling is derived and the possibilities for similar research to deduce topology from dynamics are discussed.

Reginald D. Smith

2010-03-25T23:59:59.000Z

154

Multi-scale Characterization and Prediction of Coupled Subsurface Biogeochemical-Hydrological Processes  

SciTech Connect (OSTI)

To advance solutions needed for remediation of DOE contaminated sites, approaches are needed that can elucidate and predict reactions associated with coupled biological, geochemical, and hydrological processes over a variety of spatial scales and in heterogeneous environments. Our previous laboratory experimental experiments, which were conducted under controlled and homogeneous conditions, suggest that geophysical methods have the potential for elucidating system transformations that often occur during remediation. Examples include tracking the onset and aggregation of precipitates associated with sulfate reduction using seismic and complex resistivity methods (Williams et al., 2005; Ntarlagiannis et al., 2005) as well as estimating the volume of evolved gas associated with denitrification using radar velocity. These exciting studies illustrated that geophysical responses correlated with biogeochemical changes, but also that multiple factors could impact the geophysical signature and thus a better understanding as well as integration tools were needed to advance the techniques to the point where they can be used to provide quantitative estimates of system transformations.

Hubbard, Susan; Williams, Ken; Steefel, Carl; Banfield, Jill; Long, Phil; Slater, Lee; Pride, Steve; Jinsong Chen

2006-06-01T23:59:59.000Z

155

A toy model for coupling accretion disk oscillations to the neutron star spin  

E-Print Network [OSTI]

Lee, Abramowicz & Kluzniak (2004) demonstrated numerically that rotation of neutron star couples with oscillations of its accretion disk, and excites resonances. No specific coupling was assumed, but magnetic field was suggested as the most likely one. Following this idea, we show (Petri 2005) that if the neutron star is non-axially symmetric and rotating, its gravity may provide the coupling and excite resonances. Here, we return to the original suggestion that the coupling is of a magnetic origin, and demonstrate how does it work in terms of a simple, analytic toy-model.

J. Petri

2005-09-02T23:59:59.000Z

156

Superconducting qubits coupled to nanoelectromechanical resonators: An architecture for solid-state quantum-information processing  

SciTech Connect (OSTI)

We describe the design for a scalable, solid-state quantum-information-processing architecture based on the integration of GHz-frequency nanomechanical resonators with Josephson tunnel junctions, which has the potential for demonstrating a variety of single- and multiqubit operations critical to quantum computation. The computational qubits are eigenstates of large-area, current-biased Josephson junctions, manipulated and measured using strobed external circuitry. Two or more of these phase qubits are capacitively coupled to a high-quality-factor piezoelectric nanoelectromechanical disk resonator, which forms the backbone of our architecture, and which enables coherent coupling of the qubits. The integrated system is analogous to one or more few-level atoms (the Josephson junction qubits) in an electromagnetic cavity (the nanomechanical resonator). However, unlike existing approaches using atoms in electromagnetic cavities, here we can individually tune the level spacing of the 'atoms' and control their 'electromagnetic' interaction strength. We show theoretically that quantum states prepared in a Josephson junction can be passed to the nanomechanical resonator and stored there, and then can be passed back to the original junction or transferred to another with high fidelity. The resonator can also be used to produce maximally entangled Bell states between a pair of Josephson junctions. Many such junction-resonator complexes can be assembled in a hub-and-spoke layout, resulting in a large-scale quantum circuit. Our proposed architecture combines desirable features of both solid-state and cavity quantum electrodynamics approaches, and could make quantum-information processing possible in a scalable, solid-state environment.

Geller, M.R. [Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602-2451 (United States); Cleland, A.N. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

2005-03-01T23:59:59.000Z

157

Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint  

SciTech Connect (OSTI)

This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.

Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

2006-03-01T23:59:59.000Z

158

VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas Exploration  

E-Print Network [OSTI]

VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas dedicated to oil and gas exploration. Our system combines probe- based volume rendering with data processing Seismic interpretation is an important task in the oil and gas exploration-production (EP) workflow [9, 26

Paris-Sud XI, Université de

159

Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling  

E-Print Network [OSTI]

Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling Michael G of Applied Physics, California Institute of Technology, Pasadena, California 91125, United States Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

Atwater, Harry

160

Business Process Modeling and Agility Nancy Alexopoulou1  

E-Print Network [OSTI]

Business Process Modeling and Agility Nancy Alexopoulou1 Abstract. The objective of this thesis was to investigate business process agility and develop modeling approaches that ensure agility in business process-driven business process modeling approach that promotes agility in business process execution. This approach

Kouroupetroglou, Georgios

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A constitutive model for representing coupled creep, fracture, and healing in rock salt  

SciTech Connect (OSTI)

The development of a constitutive model for representing inelastic flow due to coupled creep, damage, and healing in rock salt is present in this paper. This model, referred to as Multimechanism Deformation Coupled Fracture model, has been formulated by considering individual mechanisms that include dislocation creep, shear damage, tensile damage, and damage healing. Applications of the model to representing the inelastic flow and fracture behavior of WIPP salt subjected to creep, quasi-static loading, and damage healing conditions are illustrated with comparisons of model calculations against experimental creep curves, stress-strain curves, strain recovery curves, time-to-rupture data, and fracture mechanism maps.

Chan, K.S.; Bodner, S.R. [Southwest Research Inst., San Antonio, TX (United States); Munson, D.E.; Fossum, A.F. [Sandia National Labs., Albuquerque, NM (United States)

1996-03-01T23:59:59.000Z

162

Configurable Process Models: Experiences from a Municipality Case Study  

E-Print Network [OSTI]

Configurable Process Models: Experiences from a Municipality Case Study Florian Gottschalk1 , Teun.larosa@qut.edu.au Abstract. Configurable process models integrate different variants of a business process into a single model. Through configuration users of such models can then combine the variants to derive a process

van der Aalst, Wil

163

From Children's Perspectives: A Model of Aesthetic Processing in Theatre  

E-Print Network [OSTI]

A model of aesthetic processing describes how child audiences create meanings of plays in performances.

Klein, Jeanne

2005-01-01T23:59:59.000Z

164

Multiscale modeling of spatially variable water and energy balance processes  

E-Print Network [OSTI]

MULTISCALE WATER AND ENERGY BALANCE MODELING Wood, E. F. ,spatially variable water and energy balance processes J. S.modeling. Water and energy balance models are developed at

Famiglietti, J. S; Wood, E. F

1994-01-01T23:59:59.000Z

165

Developing Fully Coupled Subchannel Model in RELAP-7  

SciTech Connect (OSTI)

This is a DOE milestone report documenting the implementation of the subchannel model into the RELAP-7 code.

Hongbin Zhang; Ling Zou; Haihua Zhao; Richard Martineau

2014-09-01T23:59:59.000Z

166

Process models Process in science is a natural phenomenon made up  

E-Print Network [OSTI]

Process models Process in science is a natural phenomenon made up of a series of operations often scaled so as to preserve certain process(es) that occur in the real-world analog. Conceptual models are just narrative or visual descriptions of forms, process(es), and/or their interactions

Johnson, Edward A.

167

Enhanced energy relaxation process of quantum memory coupled with a superconducting qubit  

E-Print Network [OSTI]

For quantum information processing, each physical system has different advantage for the implementation and so hybrid systems to benefit from several systems would be able to provide a promising approach. One of the common hybrid approach is to combine a superconducting qubit as a controllable qubit and the other quantum system with a long coherence time as a memory qubit. The superconducting qubit allows us to have an excellent controllability of the quantum states and the memory qubit is capable of storing the information for a long time. By tuning the energy splitting between the superconducting qubit and the memory qubit, it is believed that one can realize a selective coupling between them. However, we have shown that this approach has a fundamental drawback concerning energy leakage from the memory qubit. The detuned superconducting qubit is usually affected by severe decoherence, and this causes an incoherent energy relaxation from the memory qubit to the superconducting qubit via the imperfect decoupling. We have also found that this energy transport can be interpreted as an appearance of anti quantum Zeno effect induced by the fluctuation in the superconducting qubit. We also discuss a possible solution to avoid such energy relaxation process, which is feasible with existing technology.

Yuichiro Matsuzaki; Hayato Nakano

2012-01-11T23:59:59.000Z

168

The infrared behaviour in Nelson's model of a quantum particle coupled to a massless scalar field  

E-Print Network [OSTI]

The infrared behaviour in Nelson's model of a quantum particle coupled to a massless scalar field J, Russia minl@iitp.ru Abstract We prove that Nelson's massless field model is infrared divergent in three. KEYWORDS: Nelson's scalar field model, infrared divergence, ground state, Gibbs measure #12; 1 Introduction

169

Ice-ocean boundary conditions for coupled models Gavin A. Schmidt  

E-Print Network [OSTI]

that must be simulated in any comprehensive earth system model incorporating ocean, atmosphere, sea ice different groups (a central fo- cus in the ongoing PRogramme for Integrated earth System Modelling (PRISM) and Earth System Modeling Framework (ESMF) projects). This paper addresses developments in coupling at sea

Bitz, Cecilia

170

Validation of the coupled Eta/SSiB model over South America Sin Chan Chou  

E-Print Network [OSTI]

Validation of the coupled Eta/SSiB model over South America Sin Chan Chou Centro de Previsa~o de with the Simplified Simple Biosphere model (SSiB) over South America. The goal of the present work is to validate of the precipitation annual cycle observed in the central part of South America. The model was integrated continuously

Xue, Yongkang

171

Multiphase Flow Modeling of Biofuel Production Processes  

SciTech Connect (OSTI)

As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

D. Gaston; D. P. Guillen; J. Tester

2011-06-01T23:59:59.000Z

172

The Carbon-Land Model Intercomparison Project (C-LAMP): A Model-Data Comparison System for Evaluation of Coupled Biosphere-Atmosphere Models  

SciTech Connect (OSTI)

The need to capture important climate feebacks in general circulation models (GCMs) has resulted in new efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, now often referred to as Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results, suggesting that a more rigorous set of offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are warranted. The Carbon-Land Model Intercomparison Project (C-LAMP) provides a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). C-LAMP provides feedback to the modeling community regarding model improvements and to the measurement community by suggesting new observational campaigns. C-LAMP Experiment 1 consists of a set of uncoupled simulations of terrestrial carbon models specifically designed to examine the ability of the models to reproduce surface carbon and energy fluxes at multiple sites and to exhibit the influence of climate variability, prescribed atmospheric carbon dioxide (CO{sub 2}), nitrogen (N) deposition, and land cover change on projections of terrestrial carbon fluxes during the 20th century. Experiment 2 consists of partially coupled simulations of the terrestrial carbon model with an active atmosphere model exchanging energy and moisture fluxes. In all experiments, atmospheric CO{sub 2} follows the prescribed historical trajectory from C{sup 4}MIP. In Experiment 2, the atmosphere model is forced with prescribed sea surface temperatures (SSTs) and corresponding sea ice concentrations from the Hadley Centre; prescribed CO{sub 2} is radiatively active; and land, fossil fuel, and ocean CO{sub 2} fluxes are advected by the model. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the Community Land Model version 3 (CLM3) in the Community Climate System Model version 3 (CCSM3): The CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons against Ameriflus site measurements, MODIS satellite observations, NOAA flask records, TRANSCOM inversions, and Free Air CO{sub 2} Enrichment (FACE) site measurements, and other datasets have been performed and are described in Randerson et al. (2009). The C-LAMP diagnostics package was used to validate improvements to CASA and CN for use in the next generation model, CLM4. It is hoped that this effort will serve as a prototype for an international carbon-cycle model benchmarking activity for models being used for the Inter-governmental Panel on Climate Change (IPCC) Fifth Assessment Report. More information about C-LAMP, the experimental protocol, performance metrics, output standards, and model-data comparisons from the CLM3-CASA and CLM3-CN models are available at http://www.climatemodeling.org/c-lamp.

Hoffman, Forrest M [ORNL; Randerson, Jim [University of California, Irvine; Thornton, Peter E [ORNL; Mahowald, Natalie [Cornell University; Bonan, Gordon [National Center for Atmospheric Research (NCAR); Running, Steven [University of Montana, Missoula; Fung, Inez [University of California, Berkeley

2009-01-01T23:59:59.000Z

173

Mathematical Modelling of Glass Forming Processes J. A. W. M. Groot  

E-Print Network [OSTI]

deformations. The process can be modelled as a coupled thermodynamical/mechanical problem with corresponding] external force on plunger Fg [N] force of glass on plunger L [m] characteristic length T [K] temperature Tg ] plunger velocity cp [J kg-1 K-1 ] specific heat g [m s-2 ] gravitational acceleration p [Pa] pressure rp

Eindhoven, Technische Universiteit

174

Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments...  

Broader source: Energy.gov (indexed) [DOE]

of mechanistic crack growth and grain contact models for chemically induced subcritical crack growth and pressure solution, with porosity-permeability changes * Conduct...

175

Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments...  

Broader source: Energy.gov (indexed) [DOE]

of mechanistic crack growth and grain contact models for chemically induced subcritical crack growth and pressure solution, with porosity-permeability changes * Conduct...

176

Modeling the effect of glacier recession on streamflow response using a coupled glacio-hydrological model  

SciTech Connect (OSTI)

We describe an integrated spatially distributed hydrologic and glacier dynamic model, and use it to investigate the effect of glacier recession on streamflow variations for the Upper Bow River basin, a tributary of the South Saskatchewan River. Several recent studies have suggested that observed decreases in summer flows in the South Saskatchewan River are partly due to the retreat of glaciers in the river's headwaters. Modeling the effect of glacier changes on streamflow response in river basins such as the South Saskatchewan is complicated due to the inability of most existing physically-based distributed hydrologic models to represent glacier dynamics. We compare predicted variations in glacier extent, snow water equivalent and streamflow discharge made with the integrated model with satellite estimates of glacier area and terminus position, observed streamflow and snow water equivalent measurements over the period of 1980 2007. Simulations with the coupled hydrology-glacier model reduce the uncertainty in streamflow predictions. Our results suggested that on average, the glacier melt contribution to the Bow River flow upstream of Lake Louise is about 30% in summer. For warm and dry years, however, the glacier melt contribution can be as large as 50% in August, whereas for cold years, it can be as small as 20% and the timing of glacier melt signature can be delayed by a month.

Naz, Bibi S [ORNL] [ORNL; Frans, Chris [University of Washington, Seattle] [University of Washington, Seattle; Clarke, Garry [University of British Columbia, Vancouver] [University of British Columbia, Vancouver; Burns, [Watershed Sciences Inc. (WSI), Portland] [Watershed Sciences Inc. (WSI), Portland; Lettenmaier, Dennis [University of Washington, Seattle] [University of Washington, Seattle

2014-01-01T23:59:59.000Z

177

Coupled-channels study of the $\\pi^{-}p \\to \\eta n$ process  

E-Print Network [OSTI]

The reaction $\\pi^{-}p \\to \\eta n$ is investigated within a dynamical coupled-channels model of meson production reactions in the nucleon resonance region. The meson baryon channels included are $\\pi N$, $\\eta N$, $\\pi \\Delta$, $\\sigma N$, and $\\rho N$. The non-resonant meson-baryon interactions of the model are derived from a set of Lagrangians by using a unitary transformation method. One or two excited nucleon states in each of $S$, $P$, $D$, and $F$ partial waves are included to generate the resonant amplitudes. Data of $\\pi^{-}p \\to \\eta n$ reaction from threshold up to a total center-of-mass energy of about 2 GeV are satisfactorily reproduced and the roles played by the following nine nucleon resonances are investigated: $S_{11}(1535)$, $S_{11}(1650)$, $P_{11}(1440)$, $P_{11}(1710)$, $P_{13}(1720)$, $D_{13}(1520)$, $D_{13}(1700)$, $D_{15}(1675)$, and $F_{15}(1680)$. The reaction mechanism as well as the predicted $\\eta N$ scattering length are discussed.

Durand, J; Lee, T -S H; Saghai, B; Sato, T

2008-01-01T23:59:59.000Z

178

Final Progress Report: Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Cometabolism  

SciTech Connect (OSTI)

Our goal within the overall project is to demonstrate the presence and abundance of methane monooxygenases (MMOs) enzymes and their genes within the microbial community of the Idaho National Laboratory (INL) Test Area North (TAN) site. MMOs are thought to be the primary catalysts of natural attenuation of trichloroethylene (TCE) in contaminated groundwater at this location. The actual presence of the proteins making up MMO complexes would provide direct evidence for its participation in TCE degradation. The quantitative estimation of MMO genes and their translation products (sMMO and pMMO proteins) and the knowledge about kinetics and substrate specificity of MMOs will be used to develop mathematical models of the natural attenuation process in the TAN aquifer. The model will be particularly useful in prediction of TCE degradation rate in TAN and possibly in the other DOE sites. Bacteria known as methanotrophs produce a set of proteins that assemble to form methane monooxygenase complexes (MMOs), enzymes that oxidize methane as their natural substrate, thereby providing a carbon and energy source for the organisms. MMOs are also capable of co-metabolically transforming chlorinated solvents like TCE into nontoxic end products such as carbon dioxide and chloride. There are two known forms of methane monooxygenase, a membrane-bound particulate form (pMMO) and a cytoplasmic soluble form (sMMO). pMMO consists of two components, pMMOH (a hydroxylase comprised of 47-, 27-, and 24-kDa subunits) and pMMOR (a reductase comprised of 63 and 8-kDa subunits). sMMO consists of three components: a hydroxylase (protein A-250 kDa), a dimer of three subunits (?2?2?2), a regulatory protein (protein B-15.8 kDa), and a reductase (protein C-38.6 kDa). All methanotrophs will produce a methanol dehydrogenase to channel the product of methane oxidation (methanol) into the central metabolite formaldehyde. University of Idaho (UI) efforts focused on proteomic analyses using mass spectrometry and genomic analyses using RT-PCR to characterize these enzyme systems. UI’s specific objectives were to develop the proteomics and genomic tools to assess the presence of the methane monooxygenase (MMO) proteins in the aquifers under study and relate this to the enumeration of methanotrophic microorganisms. We targeted the identification of both sMMO and pMMO. We believe that the copper level in the TAN aquifer is most likely suppressing the expression of sMMO and mediates the higher levels of pMMO expression. Hence our investigations included the identification of both forms of MMOs, and we expected a higher concentration of pMMO proteins in TAN samples. The amounts of these proteins present were correlated with numbers of methanotrophs determined by us and other members of the research team using PCR-based methods. In summary, to accomplish our objectives we applied environmental proteomics techniques to monitor proteins that are involved in the co-metabolic degradation of trichloroethylene (TCE) in groundwater of the INL TAN site on Department of Energy ands of near Idaho Falls, ID USA. To acquire peptides sequences information we used an ultra performance chromatography (UPLC) system coupled with QToF Premiere nano-electrospray tandem quadropole-time of flight mass spectrometer. Our goal was to identify signature peptides of methane monooxygenases (MMOs) within methanotrophic bacteria that are active in cometabolic degradation of TCE. We developed a new method for extracting total proteins from environmental planktonic and/or biofilm samples that involve a new time course cell lysis and protein extraction method in combination with chromatographic separation of peptide and tandem mass spectrometry sequencing. The techniques resulted in successful extraction and identification of MMO-based peptides from both pure cultures and TAN site samples. The work confirmed the importance of mathonotrophs in the co-metabolic removal of TCE from the TAN site aquifer.

Crawford, Ronald L; Paszczynski, Andrzej J

2010-02-19T23:59:59.000Z

179

A Three-Dimensional Ocean-Seaice-Carbon Cycle Model and its Coupling to a Two-Dimensional Atmospheric Model: Uses in Climate Change Studies  

E-Print Network [OSTI]

We describe the coupling of a three-dimensional ocean circulation model, with explicit thermodynamic seaice and ocean carbon cycle representations, to a two-dimensional atmospheric/land model. This coupled system has been ...

Dutkiewicz, Stephanie.

180

Coupling the Mixed Potential and Radiolysis Models for Used Fuel Degradation  

SciTech Connect (OSTI)

The primary purpose of this report is to describe the strategy for coupling three process level models to produce an integrated Used Fuel Degradation Model (FDM). The FDM, which is based on fundamental chemical and physical principals, provides direct calculation of radionuclide source terms for use in repository performance assessments. The G-value for H2O2 production (Gcond) to be used in the Mixed Potential Model (MPM) (H2O2 is the only radiolytic product presently included but others will be added as appropriate) needs to account for intermediate spur reactions. The effects of these intermediate reactions on [H2O2] are accounted for in the Radiolysis Model (RM). This report details methods for applying RM calculations that encompass the effects of these fast interactions on [H2O2] as the solution composition evolves during successive MPM iterations and then represent the steady-state [H2O2] in terms of an “effective instantaneous or conditional” generation value (Gcond). It is anticipated that the value of Gcond will change slowly as the reaction progresses through several iterations of the MPM as changes in the nature of fuel surface occur. The Gcond values will be calculated with the RM either after several iterations or when concentrations of key reactants reach threshold values determined from previous sensitivity runs. Sensitivity runs with RM indicate significant changes in G-value can occur over narrow composition ranges. The objective of the mixed potential model (MPM) is to calculate the used fuel degradation rates for a wide range of disposal environments to provide the source term radionuclide release rates for generic repository concepts. The fuel degradation rate is calculated for chemical and oxidative dissolution mechanisms using mixed potential theory to account for all relevant redox reactions at the fuel surface, including those involving oxidants produced by solution radiolysis and provided by the radiolysis model (RM). The RM calculates the concentration of species generated at any specific time and location from the surface of the fuel. Several options being considered for coupling the RM and MPM are described in the report. Different options have advantages and disadvantages based on the extent of coding that would be required and the ease of use of the final product.

Buck, Edgar C.; Jerden, James L.; Ebert, William L.; Wittman, Richard S.

2013-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Dynamical coupled-channels model of $K^- p$ reactions (I): Determination of partial-wave amplitudes  

E-Print Network [OSTI]

We develop a dynamical coupled-channels model of K^- p reactions, aiming at extracting the parameters associated with hyperon resonances and providing the elementary antikaon-nucleon scattering amplitudes that can be used for investigating various phenomena in the strangeness sector such as the production of hypernuclei from kaon-nucleus reactions. The model consists of (a) meson-baryon (MB) potentials v_{M'B',MB} derived from the phenomenological SU(3) Lagrangian, and (b) vertex interactions Gamma_{MB,Y*} for describing the decays of the bare excited hyperon states (Y*) into MB states. The model is defined in a channel space spanned by the two-body barK N, pi Sigma, pi Lambda, eta Lambda, and K Xi states and also the three-body pi pi Lambda and pi barK N states that have the resonant pi Sigma* and barK* N components, respectively. The resulting coupled-channels scattering equations satisfy the multichannel unitarity conditions and account for the dynamical effects arising from the off-shell rescattering processes. The model parameters are determined by fitting the available data of the unpolarized and polarized observables of the K^- p --> barK N, pi Sigma, pi Lambda, eta Lambda, K Xi reactions in the energy region from the threshold to invariant mass W=2.1 GeV. Two models with equally good chi^2 fits to the data have been constructed. The partial-wave amplitudes obtained from the constructed models are compared with the results from a recent partial-wave analysis by the Kent State University group. We discuss the differences between these three analysis results. Our results at energies near the threshold suggest that the higher partial waves should be treated on the same footing as the S wave if one wants to understand the nature of Lambda(1405)1/2^- using the data below the barK N threshold, as will be provided by the J-PARC E31 experiment.

H. Kamano; S. X. Nakamura; T. -S. H. Lee; T. Sato

2014-12-12T23:59:59.000Z

182

Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes  

SciTech Connect (OSTI)

A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of which obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.

Chen, Li; He, Ya-Ling [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China)] [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China); Kang, Qinjun [Computational Earth Science Group (EES-16), Los Alamos National Laboratory, Los Alamos, NM (United States)] [Computational Earth Science Group (EES-16), Los Alamos National Laboratory, Los Alamos, NM (United States); Tao, Wen-Quan, E-mail: wqtao@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China)] [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China)

2013-12-15T23:59:59.000Z

183

Effective Collaboration and Consistency Management in Business Process Modeling  

E-Print Network [OSTI]

Effective Collaboration and Consistency Management in Business Process Modeling Co-Chairs: Moises they are lost. Business Process Modeling (BPM) is a promising approach to enable agility in business process of experts. Business analysts gather requirements and create high-level process models. Solution architects

Czarnecki, Krzysztof

184

Formalizing Concepts for Efficacy-aware Business Process Modeling  

E-Print Network [OSTI]

Formalizing Concepts for Efficacy-aware Business Process Modeling Matthias Lohrmann and Manfred.lohrmann,manfred.reichert}@uni-ulm.de Abstract. In business process design, business objective models can ful- fill the role of formal business process management concepts yet. Moreover, process models are currently not sufficiently

Ulm, Universität

185

COPE -Automating Coupled Evolution of Metamodels and Models  

E-Print Network [OSTI]

, 85748 Garching b. M¨unchen, Germany {herrmama, juergens}@in.tum.de 2 BMW Car IT GmbH Petuelring 116, 80809 M¨unchen, Germany sebastian.benz@bmw-carit.de Abstract. Model-based development promises

186

Density-fitted singles and doubles coupled cluster on graphics processing units  

SciTech Connect (OSTI)

We adapt an algorithm for singles and doubles coupled cluster (CCSD) that uses density fitting (DF) or Cholesky decomposition (CD) in the construction and contraction of all electron repulsion integrals (ERI s) for use on heterogeneous compute nodes consisting of a multicore CPU and at least one graphics processing unit (GPU). The use of approximate 3-index ERI s ameliorates two of the major difficulties in designing scientific algorithms for GPU s: (i) the extremely limited global memory on the devices and (ii) the overhead associated with data motion across the PCI bus. For the benzene trimer described by an aug-cc-pVDZ basis set, the use of a single NVIDIA Tesla C2070 (Fermi) GPU accelerates a CD-CCSD computation by a factor of 2.1, relative to the multicore CPU-only algorithm that uses 6 highly efficient Intel core i7-3930K CPU cores. The use of two Fermis provides an acceleration of 2.89, which is comparable to that observed when using a single NVIDIA Kepler K20c GPU (2.73).

Sherrill, David [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Sumpter, Bobby G [ORNL] [ORNL; DePrince, III, A. Eugene [Georgia Institute of Technology, Atlanta

2014-01-01T23:59:59.000Z

187

E-Print Network 3.0 - advanced processes coupled Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Physics 6 SENSITIVITY ANALYSIS AND APPLICATION GUIDES FOR INTEGRATED BUILDING ENERGY AND CFD SIMULATION Summary: coupling strategy. For instance, a one-step or two-step...

188

A Framework for Modeling Strategy, Business Processes and Information Systems  

E-Print Network [OSTI]

A Framework for Modeling Strategy, Business Processes and Information Systems André Vasconcelos, an organization requires modeling its business processes. Business process modeling comprises the description is used not only in the business but also in the software domain. To represent the goal model, we propose

189

BUSINESS PROCESSES EXTENSIONS TO UML PROFILE FOR BUSINESS MODELING  

E-Print Network [OSTI]

BUSINESS PROCESSES EXTENSIONS TO UML PROFILE FOR BUSINESS MODELING Pedro Sinogas, André Vasconcelos@ceo.inesc.pt, jneves@ieee.org, rmendes@ceo.inesc.pt, jmt@inesc.pt Key words: Business Modeling, Business Process modeling business processes. This paper proposes an extension to UML Profile for Business Modeling

190

Measurement and modeling of transfer functions for lightning coupling into the Sago mine.  

SciTech Connect (OSTI)

This report documents measurements and analytical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy into the Sago mine located near Buckhannon, WV. Two coupling mechanisms were measured: direct and indirect drive. These transfer functions are then used to predict electric fields within the mine and induced voltages on conductors that were left abandoned in the sealed area of the Sago mine.

Morris, Marvin E.; Higgins, Matthew B.

2007-04-01T23:59:59.000Z

191

Instrumental vetoes for transient gravitational-wave triggers using noise-coupling models: The bilinear-coupling veto  

E-Print Network [OSTI]

LIGO and Virgo recently completed searches for gravitational waves at their initial target sensitivities, and soon Advanced LIGO and Advanced Virgo will commence observations with even better capabilities. In the search for short duration signals, such as coalescing compact binary inspirals or "burst" events, noise transients can be problematic. Interferometric gravitational-wave detectors are highly complex instruments, and, based on the experience from the past, the data often contain a large number of noise transients that are not easily distinguishable from possible gravitational-wave signals. In order to perform a sensitive search for short-duration gravitational-wave signals it is important to identify these noise artifacts, and to "veto" them. Here we describe such a veto, the bilinear-coupling veto, that makes use of an empirical model of the coupling of instrumental noise to the output strain channel of the interferometric gravitational-wave detector. In this method, we check whether the data from the output strain channel at the time of an apparent signal is consistent with the data from a bilinear combination of auxiliary channels. We discuss the results of the application of this veto on recent LIGO data, and its possible utility when used with data from Advanced LIGO and Advanced Virgo.

Parameswaran Ajith; Tomoki Isogai; Nelson Christensen; Rana Adhikari; Aaron B. Pearlman; Alex Wein; Alan J. Weinstein; Ben Yuan

2014-05-27T23:59:59.000Z

192

Towards new model systems for the study of proton-coupled electron transfer  

E-Print Network [OSTI]

Two new model systems for the study of orthogonal proton-coupled electron transfer (PCET) have been developed. The first model system is based on Ru"(HzO)(tpy)(bpy) (tpy = 2,2';6',2"terpyridine, bpy = 2,2'-bipyridine) where ...

Yang, Jay Lee

2009-01-01T23:59:59.000Z

193

Global and multi-scale features of solar wind-magnetosphere coupling: From modeling to forecasting  

E-Print Network [OSTI]

and substorms; 2784 Magnetospheric Physics: Solar wind/magnetosphere interactions; 3210 Mathematical Geophysics in the solar wind-magnetosphere interaction, de- veloping first principles models that encompass allGlobal and multi-scale features of solar wind-magnetosphere coupling: From modeling to forecasting

Sitnov, Mikhail I.

194

Outline for the next couple of lectures -Magnetism and the Ising Model (today's lecture)  

E-Print Network [OSTI]

Outline for the next couple of lectures -Magnetism and the Ising Model (today's lecture) -Liquid-field solution to magnetism are equivalent. -Thermodynamic results in magnetism, such as the critical (or Curie) temperature below which spontaneous magnetization occurs. #12;Magnetism: The Ising Model 1) Spins can be only

Ceder, Gerbrand

195

A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples  

E-Print Network [OSTI]

A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples Gwenn E; published 12 November 2002. [1] Basal hydrology is acknowledged as a fundamental control on glacier dynamics of existing basal hydrology models is the treatment of the glacier bed as an isolated system. We present

Flowers, Gwenn

196

STOCHASTIC COMPUTATIONAL DYNAMICAL MODEL OF UNCERTAIN STRUCTURE COUPLED WITH AN INSULATION LAYER  

E-Print Network [OSTI]

STOCHASTIC COMPUTATIONAL DYNAMICAL MODEL OF UNCERTAIN STRUCTURE COUPLED WITH AN INSULATION LAYER the effect of insulation layers in complex dynamical systems for low- and medium-frequency ranges such as car booming noise analysis, one introduces a sim- plified stochastic model of insulation layers based

Boyer, Edmond

197

J. Electrochem. Soc., in press (1998) Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells  

E-Print Network [OSTI]

to simulate batteries and fuel cells was described. The model is capable of incorporating interfacial non1 J. Electrochem. Soc., in press (1998) Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells Part 2. Application to Nickel-Cadmium and Nickel-Metal Hydride Cells W.B. Gu and C.Y. Wang 1

Wang, Chao-Yang

198

J. Electrochem. Soc., in press (1998) MicroMacroscopic Coupled Modeling of Batteries and Fuel Cells  

E-Print Network [OSTI]

to simulate batteries and fuel cells was described. The model is capable of incorporating interfacial non1 J. Electrochem. Soc., in press (1998) Micro­Macroscopic Coupled Modeling of Batteries and Fuel Cells Part 2. Application to Nickel­Cadmium and Nickel­Metal Hydride Cells W.B. Gu and C.Y. Wang 1

Wang, Chao-Yang

199

Automatability of Coupled Evolution of Metamodels and Models in Practice  

E-Print Network [OSTI]

¨unchen Boltzmannstr. 3, 85748 Garching b. M¨unchen, Germany {herrmama, juergens}@in.tum.de 2 BMW Car IT GmbH Petuelring 116, 80809 M¨unchen, Germany sebastian.benz@bmw-carit.de Abstract. Model-based software years. In response, DSLs are receiving increased attention in industry. BMW Car IT for instance applies

200

Coupled thermodynamic-dynamic semi-analytical model of Free Piston Stirling engines  

E-Print Network [OSTI]

The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standard...

Formosa, Fabien

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Surface Wave Effects in the NEMO Ocean Model: Forced and Coupled Experiments  

E-Print Network [OSTI]

The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wave field), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extra-tropics, but the sea-state dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total oce...

Breivik, Řyvind; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A E M

2015-01-01T23:59:59.000Z

202

Tavis-Cummings model beyond the rotating wave approximation: Inhomogeneous coupling  

E-Print Network [OSTI]

We present the analytical solution of the Tavis-Cummings (TC) model for more than one qubit inhomogeneously coupled to a single mode radiation field beyond the rotating-wave approximation (RWA). The significant advantage of the displaced oscillator basis enables us to apply the same truncation techniques adopted in the single qubit Jaynes-Cummings (JC) model to the multiple qubits system. The derived analytical spectrum match perfectly the exact diagonalization numerical solutions of the inhomogeneous TC model in the parameter regime where the qubits transition frequencies are far off-resonance with the field frequency and the interaction strengths reach the ultra-strong coupling regime. The two-qubit TC model is quasi-exactly solvable because part of the spectra can be determined exactly in the homogeneous coupling case with two identical qubits or with symmetric(asymmetric) detuning. By means of the fidelity of quantum states we identify several nontrivial level crossing points in the same parity subspace, which implies that homogeneous coupled two-qubit TC model with $\\omega_1=\\omega_2$ or $\\omega_1\\pm\\omega_2=2\\omega_c$ is integrable. We further explore the time evolution of the qubit's population inversion and the entanglement behavior taking two qubits as an example. The analytical methods provide unexpectedly accurate results in describing the dynamics of the qubit in the present experimentally accessible coupling regime, showing that the collapse-revival phenomena emerge, survive, and are finally destroyed when the coupling strength increases beyond the ultra-strong coupling regime. The suggested procedure applies readily to the multiple qubits system such as the GHZ state entanglement evolution and quantum entanglement between a single photon and superconducting qubits of particular experiment interest.

Lijun Mao; Sainan Huai; Yunbo Zhang

2014-03-24T23:59:59.000Z

203

Using Coupled Harmonic Oscillators to Model Some Greenhouse Gas Molecules  

SciTech Connect (OSTI)

Common greenhouse gas molecules SF{sub 6}, NO{sub 2}, CH{sub 4}, and CO{sub 2} are modeled as harmonic oscillators whose potential and kinetic energies are derived. Using the Euler-Lagrange equation, their equations of motion are derived and their phase portraits are plotted. The authors use these data to attempt to explain the lifespan of these gases in the atmosphere.

Go, Clark Kendrick C.; Maquiling, Joel T. [Department of Physics, Ateneo de Manila University, Katipunan Avenue, Quezon City (Philippines)

2010-07-28T23:59:59.000Z

204

The Model Morphing Approach -Horizontal Transformations between Business Process  

E-Print Network [OSTI]

The Model Morphing Approach - Horizontal Transformations between Business Process Models Marion and business to busi- ness interoperability, there is a need for model transformations in the area of business this paper concentrates on transformations of models between different business process modeling languages

205

Representing Cloud Processing of Aerosol in Numerical Models  

SciTech Connect (OSTI)

The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image is a demonstration of the first indirect effect, in which changes in aerosol modulate cloud droplet radius and concentration, which influences albedo. It is thought that, through the effects it has on precipitation (drizzle), aerosol can also affect the structure and persistence of planetary boundary layer (PBL) clouds. Regions of cellular convection, or open pockets of cloudiness (bottom image) are thought to be remnants of strongly drizzling PBL clouds. Pockets of Open Cloudiness (POCs) (Stevens et al. 2005) or Albrecht's ''rifts'' are low cloud fraction regions characterized by anomalously low aerosol concentrations, implying they result from precipitation. These features may in fact be a demonstration of the second indirect effect. To accurately represent these clouds in numerical models, we have to treat the coupled cloud-aerosol system. We present the following series of mesoscale and large eddy simulation (LES) experiments to evaluate the important aspects of treating the coupled cloud-aerosol problem. 1. Drizzling and nondrizzling simulations demonstrate the effect of drizzle on a mesoscale forecast off the California coast. 2. LES experiments with explicit (bin) microphysics gauge the relative importance of the shape of the aerosol spectrum on the 3D dynamics and cloud structure. 3. Idealized mesoscale model simulations evaluate the relative roles of various processes, sources, and sinks.

Mechem, D.B.; Kogan, Y.L.

2005-03-18T23:59:59.000Z

206

Paper Number -1-Simulation model of dispersions in turning process  

E-Print Network [OSTI]

Paper Number -1- Simulation model of dispersions in turning process Wolff Valery 1, Lefebvre Arnaud. In this paper, an extent of the simulation model of dispersions in turning process first exposed in [W1

Paris-Sud XI, Université de

207

Fully Coupled Well Models for Fluid Injection and Production. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom3,:ACoupled Well Models

208

Modeling Faults to Improve Election Process Robustness  

E-Print Network [OSTI]

this approach for the Yolo County election process. We focuson the election process used by Yolo County, California 2 .cally on the part of the Yolo County process that deals with

2010-01-01T23:59:59.000Z

209

New Model of Inflation with Non-minimal Derivative Coupling of Standard Model Higgs Boson to Gravity  

E-Print Network [OSTI]

In this letter we show that there is a unique non-minimal derivative coupling of the Standard Model Higgs boson to gravity such that: it propagates no more degrees of freedom than General Relativity sourced by a scalar field, reproduces a successful inflating background within the Standard Model Higgs parameters and, finally, does not suffer from dangerous quantum corrections.

Cristiano Germani; Alex Kehagias

2010-06-11T23:59:59.000Z

210

Online Modeling in the Process Industry for Energy Optimization  

E-Print Network [OSTI]

"This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

Alexander, J.

211

Computational implementation of the multi-mechanism deformation coupled fracture model for salt  

SciTech Connect (OSTI)

The Multi-Mechanism Deformation (M-D) model for creep in rock salt has been used in three-dimensional computations for the Waste Isolation Pilot Plant (WIPP), a potential waste, repository. These computational studies are relied upon to make key predictions about long-term behavior of the repository. Recently, the M-D model was extended to include creep-induced damage. The extended model, the Multi-Mechanism Deformation Coupled Fracture (MDCF) model, is considerably more complicated than the M-D model and required a different technology from that of the M-D model for a computational implementation.

Koteras, J.R.; Munson, D.E.

1996-05-01T23:59:59.000Z

212

Engineering Process Coordination based on A Service Event Notification Model  

E-Print Network [OSTI]

Engineering Process Coordination based on A Service Event Notification Model Jian Cao1, Jie Wang2 the project lifecycle process. Grid-based engineering service is a potentially useful technology for process coordination. Thus we propose a Grid service based event notification model to support engineering process

Stanford University

213

APPLYING ACTIVITY PATTERNS FOR DEVELOPING AN INTELLIGENT PROCESS MODELING TOOL  

E-Print Network [OSTI]

attracting the interest of both BPM researchers and BPM tool vendors. Frequently, process models can Process Management (BPM) tools as well as emerging patterns for process modeling and change. BPM processes of an enterprise. Moreover, through Web service technology, the benefits of BPM can be created

Ulm, Universität

214

Spatial Data Models and Query Processing Hanan Samet  

E-Print Network [OSTI]

Spatial Data Models and Query Processing Hanan Samet Walid G. Aref Computer Science Department databases. The focus is on data models and query processing. Query optimization in a spatial environment is also brie y discussed. Keywords and phrases: spatial databases, data models, spatial query processing

Samet, Hanan

215

Capturing Variability in Business Process Models: The Provop Approach  

E-Print Network [OSTI]

Capturing Variability in Business Process Models: The Provop Approach Alena Hallerbach1 , Thomas be transferred to cross-organizational business processes as well [4]. A business process model captures models there exists a multitude of tools like ARIS Business Architect [5], ADONIS [6], and Web

Ulm, Universität

216

Modeling, Safely Advertising and Verifying Time-aware Business Processes  

E-Print Network [OSTI]

Modeling, Safely Advertising and Verifying Time-aware Business Processes : Towards a holistic. Nowadays, the business process model and notation BPMN standard is gaining widspread use in the business, we propose a BPMN extension for capturing temporal requirements during the business process modelling

Paris-Sud XI, Université de

217

A Goal-Directed Modeling Technique towards Business Process  

E-Print Network [OSTI]

A Goal-Directed Modeling Technique towards Business Process Yuqun Zhang, Dewayne E. Perry Center--The modeling techniques for business process are mostly graphics-based, that is argued to be simplified when- plore the properties of the business processes under this modeling technique, we define a set of metrics

Perry, Dewayne E.

218

Low-frequency variability and heat transport in a low-order nonlinear coupled ocean-atmosphere model  

E-Print Network [OSTI]

We formulate and study a low-order nonlinear coupled ocean-atmosphere model with an emphasis on the impact of radiative and heat fluxes and of the frictional coupling between the two components. This model version extends a previous 24-variable version by adding a dynamical equation for the passive advection of temperature in the ocean, together with an energy balance model. The bifurcation analysis and the numerical integration of the model reveal the presence of low-frequency variability (LFV) concentrated on and near a long-periodic, attracting orbit. This orbit combines atmospheric and oceanic modes, and it arises for large values of the meridional gradient of radiative input and of frictional coupling. Chaotic behavior develops around this orbit as it loses its stability; this behavior is still dominated by the LFV on decadal and multi-decadal time scales that is typical of oceanic processes. Atmospheric diagnostics also reveals the presence of predominant low- and high-pressure zones, as well as of a subtropical jet; these features recall realistic climatological properties of the oceanic atmosphere. Finally, a predictability analysis is performed. Once the decadal-scale periodic orbits develop, the coupled system's short-term instabilities --- as measured by its Lyapunov exponents --- are drastically reduced, indicating the ocean's stabilizing role on the atmospheric dynamics. On decadal time scales, the recurrence of the solution in a certain region of the invariant subspace associated with slow modes displays some extended predictability, as reflected by the oscillatory behavior of the error for the atmospheric variables at long lead times.

Stéphane Vannitsem; Jonathan Demaeyer; Lesley De Cruz; Michael Ghil

2014-12-01T23:59:59.000Z

219

Final Report on Hierarchical Coupled Modeling and Prediction of Regional Climate Change in the Atlantic Sector  

SciTech Connect (OSTI)

During the course of this project, we have accomplished the following: a) Carried out studies of climate changes in the past using a hierarchy of intermediate coupled models (Chang et al., 2008; Wan et al 2009; Wen et al., 2010a,b) b) Completed the development of a Coupled Regional Climate Model (CRCM; Patricola et al., 2011a,b) c) Carried out studies testing hypotheses testing the origin of systematic errors in the CRCM (Patricola et al., 2011a,b) d) Carried out studies of the impact of air-sea interaction on hurricanes, in the context of barrier layer interactions (Balaguru et al)

Saravanan, Ramalingam [Texas A& M University

2011-10-30T23:59:59.000Z

220

Application of an exact model matching technique to coupled-core nuclear reactor control  

SciTech Connect (OSTI)

In this Note the control problem of linearized coupled-core multivariable nuclear reactors is treated by using a recent exact model matching technique in the frequency domain. The case of state feedback control is first considered and then the results are used where only the output variables of the reactor are available for feedback. A numerical example of a three coupled-core nuclear reactor model with one delayed neutron group for each core and short neutron travel time between cores is included.

Tzafestas, S.G.; Chrysochoides, N.G.; Rokkos, K.

1984-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Canonical Gauge Coupling Unification in the Standard Model with High-Scale Supersymmetry Breaking  

E-Print Network [OSTI]

Inspired by the string landscape and the unified gauge coupling relation in the F-theory Grand Unified Theories (GUTs) and GUTs with suitable high-dimensional operators, we study the canonical gauge coupling unification and Higgs boson mass in the Standard Model (SM) with high-scale supersymmetry breaking. In the SM with GUT-scale supersymmetry breaking, we achieve the gauge coupling unification at about 5.3 x 10^{13} GeV, and the Higgs boson mass is predicted to range from 130 GeV to 147 GeV. In the SM with supersymmetry breaking scale from 10^4 GeV to 5.3 x 10^{13} GeV, gauge coupling unification can always be realized and the corresponding GUT scale M_U is from 10^{16} GeV to 5.3 x 10^{13} GeV, respectively. Also, we obtain the Higgs boson mass from 114.4 GeV to 147 GeV. Moreover, the discrepancies among the SM gauge couplings at the GUT scale are less than about 4-6%. Furthermore, we present the SU(5) and SO(10) models from the F-theory model building and orbifold constructions, and show that we do not have the dimension-five and dimension-six proton decay problems even if M_U \\le 5 x 10^{15} GeV.

Yun-Jie Huo; Tianjun Li; Dimitri V. Nanopoulos

2011-08-24T23:59:59.000Z

222

The dynamics of a low-order coupled ocean-atmosphere model  

E-Print Network [OSTI]

A system of five ordinary differential equations is studied which combines the Lorenz-84 model for the atmosphere and a box model for the ocean. The behaviour of this system is studied as a function of the coupling parameters. For most parameter values, the dynamics of the atmosphere model is dominant. For a range of parameter values, competing attractors exist. The Kaplan-Yorke dimension and the correlation dimension of the chaotic attractor are numerically calculated and compared to the values found in the uncoupled Lorenz model. In the transition from periodic behaviour to chaos intermittency is observed. The intermittent behaviour occurs near a Neimark-Sacker bifurcation at which a periodic solution loses its stability. The length of the periodic intervals is governed by the time scale of the ocean component. Thus, in this regime the ocean model has a considerable influence on the dynamics of the coupled system.

L. van Veen; F. Verhulst; T. Opsteegh

1998-12-16T23:59:59.000Z

223

PROCESS MODEL FOR THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE CO-ELECTROLYSIS  

SciTech Connect (OSTI)

A process model has been developed to evaluate the potential performance of a large-scale high-temperature coelectrolysis plant for the production of syngas from steam and carbon dioxide. The coelectrolysis process allows for direct electrochemical reduction of the steam – carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the HYSYS systems analysis code. Using this code, a detailed process flowsheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard HYSYS component, a custom one-dimensional coelectrolysis model was developed for incorporation into the overall HYSYS process flowsheet. The 1-D coelectrolysis model assumes local chemical equilibrium among the four process-gas species via the shift reaction. The electrolyzer model allows for the determination of coelectrolysis outlet temperature, composition (anode and cathode sides), mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully 3-D computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the HYSYS flowsheet model for a 300 MW coelectrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The coelectrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the entire process would be climate neutral.

M. G. McKellar; J. E. O'Brien; C. M. Stoots; G. L. Hawkes

2007-11-01T23:59:59.000Z

224

A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis  

SciTech Connect (OSTI)

The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

Zheng, L.; Samper, J.; Montenegro, L.

2011-04-01T23:59:59.000Z

225

Three-dimensional analytic probabilities of coupled vibrational-rotational-translational energy transfer for DSMC modeling of nonequilibrium flows  

SciTech Connect (OSTI)

A three-dimensional, nonperturbative, semiclassical analytic model of vibrational energy transfer in collisions between a rotating diatomic molecule and an atom, and between two rotating diatomic molecules (Forced Harmonic Oscillator–Free Rotation model) has been extended to incorporate rotational relaxation and coupling between vibrational, translational, and rotational energy transfer. The model is based on analysis of semiclassical trajectories of rotating molecules interacting by a repulsive exponential atom-to-atom potential. The model predictions are compared with the results of three-dimensional close-coupled semiclassical trajectory calculations using the same potential energy surface. The comparison demonstrates good agreement between analytic and numerical probabilities of rotational and vibrational energy transfer processes, over a wide range of total collision energies, rotational energies, and impact parameter. The model predicts probabilities of single-quantum and multi-quantum vibrational-rotational transitions and is applicable up to very high collision energies and quantum numbers. Closed-form analytic expressions for these transition probabilities lend themselves to straightforward incorporation into DSMC nonequilibrium flow codes.

Adamovich, Igor V. [Nonequilibrium Thermodynamics Laboratory, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)] [Nonequilibrium Thermodynamics Laboratory, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

2014-04-15T23:59:59.000Z

226

Dark Matter and Gauge Coupling Unification in Non-supersymmetric SO(10) Grand Unified Models  

E-Print Network [OSTI]

Unlike minimal SU(5), SO(10) provides a straightforward path towards gauge coupling unification by modifying the renormalization group evolution of the gauge couplings above some intermediate scale which may also be related to the seesaw mechanism for neutrino masses. Unification can be achieved for several different choices of the intermediate gauge group below the SO(10) breaking scale. In this work, we consider in detail the possibility that SO(10) unification may also provide a natural dark matter candidate, stability being guaranteed by a left over $Z_2$ symmetry. We systematically examine the possible intermediate gauge groups which allow a non-degenerate, fermionic, Standard Model singlet dark matter candidate while at the same time respecting gauge coupling unification. Our analysis is done at the two-loop level. Surprisingly, despite the richness of SO(10), we find that only two models survive the analysis of phenomenological constraints, which include suitable neutrino masses, proton decay, and rehe...

Mambrini, Yann; Olive, Keith A; Quevillon, Jeremie; Zheng, Jiaming

2015-01-01T23:59:59.000Z

227

Coupled Oscillator Model of the Business Cycle with Fluctuating Goods Markets  

E-Print Network [OSTI]

The sectoral synchronization observed for the Japanese business cycle in the Indices of Industrial Production data is an example of synchronization. The stability of this synchronization under a shock, e.g., fluctuation of supply or demand, is a matter of interest in physics and economics. We consider an economic system made up of industry sectors and goods markets in order to analyze the sectoral synchronization observed for the Japanese business cycle. A coupled oscillator model that exhibits synchronization is developed based on the Kuramoto model with inertia by adding goods markets, and analytic solutions of the stationary state and the coupling strength are obtained. We simulate the effects on synchronization of a sectoral shock for systems with different price elasticities and the coupling strengths. Synchronization is reproduced as an equilibrium solution in a nearest neighbor graph. Analysis of the order parameters shows that the synchronization is stable for a finite elasticity, whereas the synchron...

Ikeda, Y; Fujiwara, Y; Iyetomi, H; Ogimoto, K; Souma, W; Yoshikawa, H

2011-01-01T23:59:59.000Z

228

Chimera states in networks of nonlocally coupled Hindmarsh-Rose neuron models  

E-Print Network [OSTI]

We have identified the occurrence of chimera states for various coupling schemes in networks of two-dimensional and three-dimensional Hindmarsh-Rose oscillators, which represent realistic models of neuronal ensembles. This result, together with recent studies on multiple chimera states in nonlocally coupled FitzHugh-Nagumo oscillators, provide strong evidence that the phenomenon of chimeras may indeed be relevant in neuroscience applications. Moreover, our work verifies the existence of chimera states in coupled bistable elements, whereas to date chimeras were known to arise in models possessing a single stable limit cycle. Finally, we have identified an interesting class of mixed oscillatory states, in which desynchronized neurons are uniformly interspersed among the remaining ones that are either stationary or oscillate in synchronized motion.

Johanne Hizanidis; Vasilis Kanas; Anastasios Bezerianos; Tassos Bountis

2013-07-20T23:59:59.000Z

229

Hydro-Mechanical Coupling in Damaged Porous Media Containing Isolated Cracks or/and Vugs: Model and Computations  

E-Print Network [OSTI]

Hydro-Mechanical Coupling in Damaged Porous Media Containing Isolated Cracks or/and Vugs: Model In this paper we present the development of the macroscopic model describing the hydro-mechanical coupling model in the micro-porous domain saturated by a fluid. In the crack/vug domain the Stokes equation

Paris-Sud XI, Université de

230

The development of a cognitive process-oriented correlation model  

E-Print Network [OSTI]

OF SCIENCE December 1988 Major Subject: Curriculum and Instruction THE DEVELOPMENT OF A COGNITIVE PROCESS-ORIENTED CORRELATION MODEL A Thesis by RICHARD JAMES KNEUVEN Approved as to style and content by: P r c'a exander ( r of Committee ) David...-processing correlation model might be translated into a secondary school curriculum. In an attempt to identify underlying cognitive processes that could provide a basis for a process-oriented correlation model, several areas of literature were reviewed. This thesis...

Kneuven, Richard James

1988-01-01T23:59:59.000Z

231

Ground state of the asymmetric Rabi model in the ultrastrong coupling regime  

E-Print Network [OSTI]

We study the ground states of the single- and two-qubit asymmetric Rabi models, in which the qubit-oscillator coupling strengths for the counterrotating-wave and corotating-wave interactions are unequal. We take the transformation method to obtain the approximately analytical ground states for both models and numerically verify its validity for a wide range of parameters under the near-resonance condition. We find that the ground-state energy in either the single- or two-qubit asymmetric Rabi model has an approximately quadratic dependence on the coupling strengths stemming from different contributions of the counterrotating-wave and corotating-wave interactions. For both models, we show that the ground-state energy is mainly contributed by the counterrotating-wave interaction. Interestingly, for the two-qubit asymmetric Rabi model, we find that, with the increase of the coupling strength in the counterrotating-wave or corotating-wave interaction, the two-qubit entanglement first reaches its maximum then drops to zero. Furthermore, the maximum of the two-qubit entanglement in the two-qubit asymmetric Rabi model can be much larger than that in the two-qubit symmetric Rabi model.

Li-Tuo Shen; Zhen-Biao Yang; Mei Lu; Rong-Xin Chen; Huai-Zhi Wu

2014-09-20T23:59:59.000Z

232

A faster numerical scheme for a coupled system to model soil erosion and suspended sediment transport  

E-Print Network [OSTI]

or the kinetic energy of raindrop exceeds the cohesive strength of the soil particles. Once detachedA faster numerical scheme for a coupled system to model soil erosion and suspended sediment´eans, France Abstract Overland flow and soil erosion play an essential role in water quality and soil

Paris-Sud XI, Université de

233

An improved numerical scheme for a coupled system to model soil erosion and polydispersed sediments transport  

E-Print Network [OSTI]

An improved numerical scheme for a coupled system to model soil erosion and polydispersed sediments, the positivity of both water depth and sediment concentrations. Recently, a well-balanced MUSCL-Hancock scheme step is required to ensure the positivity of sediment concentrations. The main result of this paper

Boyer, Edmond

234

Intraseasonal Eastern Pacific Precipitation and SST Variations in a GCM Coupled to a Slab Ocean Model  

E-Print Network [OSTI]

Intraseasonal Eastern Pacific Precipitation and SST Variations in a GCM Coupled to a Slab Ocean-Schubert convection to a slab ocean model (SOM) improves the simulation of eastern Pacific convection during and ocean make eastern Pacific low-level circulation anomalies more complex in the SOM simulation than

Maloney, Eric

235

Gurson's plasticity coupled to damage as a CAP model for concrete compaction in dynamics  

E-Print Network [OSTI]

1 Gurson's plasticity coupled to damage as a CAP model for concrete compaction in dynamics Fabrice (compaction) but also the plastic strains in compression and cracking in tension. Recently, new dynamic is generally described by means of the plasticity theory where the spherical and the deviatoric responses

236

Coupling schemes for modeling hydraulic fracture propagation using the XFEM Elizaveta Gordeliy, Anthony Peirce  

E-Print Network [OSTI]

Coupling schemes for modeling hydraulic fracture propagation using the XFEM Elizaveta Gordeliy August 2012 Accepted 18 August 2012 Available online 15 September 2012 Keywords: XFEM Hydraulic fractures and the Dirichlet to Neumann (DN) map with OĂ°hĂ? accuracy. For hydraulic fracture problems with a lag separating

Peirce, Anthony

237

Prediction of the tool displacement for robot milling applications using coupled models of an industrial  

E-Print Network [OSTI]

. INTRODUCTION The major fields of machining applications for industrial robots are automated pre- machining an industrial robot for milling applications inaccuracies of the serial robot kinematic, the low structuralPrediction of the tool displacement for robot milling applications using coupled models

Stryk, Oskar von

238

Waves and propagation failure in discrete space models with nonlinear coupling and  

E-Print Network [OSTI]

Waves and propagation failure in discrete space models with nonlinear coupling and feedback Markus by the linearisation ahead of the wave front. Wave propagation (and failure) is studied when the homogeneous dynamics are bistable. Simulations show that waves may propagate in either direction, or may be pinned. A Lyapunov

239

Coupled Damage and Plasticity Modelling in Transient Dynamic Analysis of Concrete  

E-Print Network [OSTI]

Coupled Damage and Plasticity Modelling in Transient Dynamic Analysis of Concrete F. Gatuingt Abstract In a concrete structure subjected to an explosion, for example a concrete slab, the material on the same concrete. Computations of split Hopkinson tests on confined concrete, a tensile test with scabbing

240

MODELLING OF CONCRETE STRUCTURES AFFECTED BY INTERNAL SWELLING REACTIONS: COUPLINGS BETWEEN  

E-Print Network [OSTI]

Page 1 MODELLING OF CONCRETE STRUCTURES AFFECTED BY INTERNAL SWELLING REACTIONS: COUPLINGS BETWEEN of the affected concrete that generally leads to cracking and decrease of its mechanical properties of the concrete works and structural integrity. To manage with considered suffering structures, it is necessary

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

An energy-diagnostics intercomparison of coupled ice-ocean Arctic models  

E-Print Network [OSTI]

An energy-diagnostics intercomparison of coupled ice-ocean Arctic models Petteri Uotila a,*, David. Understanding the Arctic Ocean energy balance is important because it can strengthen our understanding for Atmosphere-Ocean Science, Courant Institute of Mathematical Sciences, New York University, NYU, 200 Water

Zhang, Jinlun

242

Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations  

E-Print Network [OSTI]

Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model September 2006) ABSTRACT Temperature and precipitation extremes and their potential future changes on Climate Change (IPCC) diagnostic exercise for the Fourth Assessment Report (AR4). Climate extremes

243

AGU Chapman Conference Hydrogeologic Processes: Building and Testing Atomistic- to Basin-Scale Models  

SciTech Connect (OSTI)

This report presents details of the Chapman Conference given on June 6--9, 1994 in Lincoln, New Hampshire. This conference covered the scale of processes involved in coupled hydrogeologic mass transport and a concept of modeling and testing from the atomistic- to the basin- scale. Other topics include; the testing of fundamental atomic level parameterizations in the laboratory and field studies of fluid flow and mass transport and the next generation of hydrogeologic models. Individual papers from this conference are processed separately for the database.

Weaver, B. [American Geophysical Union, Washington, DC (United States)

1994-12-31T23:59:59.000Z

244

Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint  

SciTech Connect (OSTI)

Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

Jonkman, J. M.; Sclavounos, P. D.

2006-01-01T23:59:59.000Z

245

Final Report Coupling in silico microbial models with reactive transport models to predict the fate of contaminants in the subsurface.  

SciTech Connect (OSTI)

This project successfully accomplished its goal of coupling genome-scale metabolic models with hydrological and geochemical models to predict the activity of subsurface microorganisms during uranium bioremediation. Furthermore, it was demonstrated how this modeling approach can be used to develop new strategies to optimize bioremediation. The approach of coupling genome-scale metabolic models with reactive transport modeling is now well enough established that it has been adopted by other DOE investigators studying uranium bioremediation. Furthermore, the basic principles developed during our studies will be applicable to much broader investigations of microbial activities, not only for other types of bioremediation, but microbial metabolism in diversity of environments. This approach has the potential to make an important contribution to predicting the impact of environmental perturbations on the cycling of carbon and other biogeochemical cycles.

Lovley, Derek R.

2012-10-31T23:59:59.000Z

246

Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region  

SciTech Connect (OSTI)

A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*) in the meson production reactions induced by pions and photons. Our objective is to extract the N* parameters and to investigate the meson production reaction mechanisms for mapping out the quark-gluon substructure of N* from the data. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.

T.-S. H. Lee; A. Matsuyama; T. Sato

2006-11-15T23:59:59.000Z

247

Fractional Dynamical Model for the Generation of ECG like Signals from Filtered Coupled Van-der Pol Oscillators  

E-Print Network [OSTI]

In this paper, an incommensurate fractional order (FO) model has been proposed to generate ECG like waveforms. Earlier investigation of ECG like waveform generation is based on two identical Van-der Pol (VdP) family of oscillators which are coupled by time delays and gains. In this paper, we suitably modify the three state equations corresponding to the nonlinear cross-product of states, time delay coupling of the two oscillators and low-pass filtering, using the concept of fractional derivatives. Our results show that a wide variety of ECG like waveforms can be simulated from the proposed generalized models, characterizing heart conditions under different physiological conditions. Such generalization of the modelling of ECG waveforms may be useful to understand the physiological process behind ECG signal generation in normal and abnormal heart conditions. Along with the proposed FO models, an optimization based approach is also presented to estimate the VdP oscillator parameters for representing a realistic ECG like signal.

Saptarshi Das; Koushik Maharatna

2014-10-20T23:59:59.000Z

248

Critical analysis of quark-meson coupling models for nuclear matter and finite nuclei  

E-Print Network [OSTI]

Three versions of the quark-meson coupling (QMC) model are applied to describe properties of nuclear matter and finite nuclei. The models differ in the treatment of the bag constant and in terms of nonlinear scalar self-interactions. As a consequence opposite predictions for the medium modifications of the internal nucleon structure arise. After calibrating the model parameters at equilibrium nuclear matter density, binding energies, charge radii, single-particle spectra and density distributions of spherical nuclei are analyzed and compared with QHD calculations. For the models which predict a decreasing size of the nucleon in the nuclear environment, unrealistic features of the nuclear shapes arise.

Horst Mueller; Byron K. Jennings

1998-07-09T23:59:59.000Z

249

Quantifying the Parallelism in BPMN Processes using Model Checking  

E-Print Network [OSTI]

a valuable guide for the problem of resource allocation in business processes. In this paper, we investigate . time and space, with a beginning and an end [5]. Business process modelling is an important area process efficiency and quality. More precisely, it is a stage to model activities, their causal

Paris-Sud XI, Université de

250

Reactor Modeling and Recipe Optimization of Polyether Polyol Processes  

E-Print Network [OSTI]

Reactor Modeling and Recipe Optimization of Polyether Polyol Processes Spring 2013 EWO Meeting Yisu.M. Wassick. Reactor Modeling and Recipe Optimization of Polyether Polyol Processes: Polypropylene Glycol Project timeline Development of systematic optimization methods of batch processes Nov. 2009 - Dec. 2011

Grossmann, Ignacio E.

251

Sensitivity of Optimal Operation of an Activated Sludge Process Model  

E-Print Network [OSTI]

Sensitivity of Optimal Operation of an Activated Sludge Process Model Antonio Araujo, Simone sensitivity analysis of optimal operation conducted on an activated sludge process model based on the test.[7] applied a systematic procedure for control structure design of an activated sludge process

Skogestad, Sigurd

252

Modeling and simulation of film blowing process  

E-Print Network [OSTI]

, their work does not include crystallization kinetics, hence, restricted to amorphous polymers. Cao and Campbell?s predictions of bubble radius, temperature, and velocity profiles are in reasonably good agreement with Gupta?s (1980) experimental measurements.... . . . . . . . . . . . . . 95 V Process conditions used for the analysis of Exxon data. . . . . . . . . 99 VI The influence of radiation heat transfer on the process. . . . . . . . . 171 x LIST OF FIGURES FIGURE Page 1 Schematic of a typical film blowing process...

Mayavaram, Ravisankar S.

2005-08-29T23:59:59.000Z

253

A three-dimensional phase field model coupled with lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field  

SciTech Connect (OSTI)

In this study, which builds on other related work, we present a new three-dimensional numerical model for crystal growth in a vertical solidification system. This model accounts for buoyancy, accelerated crucible rotation technique (ACRT), and traveling magnetic field (TMF) induced convective flow and their effect on crystal growth and the chemical component's transport process. The evolution of the crystal growth interface is simulated using the phase field method. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. A one-way coupled concentration transport model is used to simulate the component fraction variation in both the liquid and solid phases, which can be used to check the quality of the crystal growth.

Lin, Guang; Bao, Jie; Xu, Zhijie

2014-11-01T23:59:59.000Z

254

Topological Equivalence of a Structure-Preserving Power Network Model and a Non-Uniform Kuramoto Model of Coupled Oscillators  

E-Print Network [OSTI]

Model of Coupled Oscillators Florian D¨orfler and Francesco Bullo Abstract-- We study synchronization IIS-0904501 and CNS- 0834446. Florian D¨orfler and Francesco Bullo are with the Center for Control, {dorfler, bullo}@engineering.ucsb.edu on the reduced network can then be related to the original network

Bullo, Francesco

255

An Ontology-enabled Approach for Modelling Business Processes  

E-Print Network [OSTI]

An Ontology-enabled Approach for Modelling Business Processes Thi-Hoa-Hue Nguyen and Nhan Le problem regard- ing business processes modelled with CPNs sharing and subsequently their reuse need for representing business models in a meta-knowledge base. Firstly, the CPN ontology is defined to represent CPNs

Paris-Sud XI, Université de

256

Semantic Lifting of Business Process models Mario Lezoche1  

E-Print Network [OSTI]

Semantic Lifting of Business Process models Mario Lezoche1 , Antonio De Nicola1 , Tania Di Mascio1, Italy tania@ing.univaq.it Abstract. Business Process modeling is constantly acquiring attention in modern enterprises. Today, BP editor tools support modelers in building correct diagrams only from

Paris-Sud XI, Université de

257

Model-Driven Business Process Recovery , Terence C. Lau2  

E-Print Network [OSTI]

Model-Driven Business Process Recovery Ying Zou1 , Terence C. Lau2 , Kostas Kontogiannis3 , Tack. In this paper, we propose a model-driven business process recovery framework that captures the essential-to-date linkage between business tasks and their implementation in source code, we propose a model-driven business

Zou, Ying

258

The effect of self-disclosure and empathic responding on intimacy: testing an interpersonal process model of intimacy using an observational coding system  

E-Print Network [OSTI]

the evidence for the interpersonal process model of intimacy described by Reis and Shaver (1988), which proposes that self-disclosure and empathic responding are the basis of intimate interactions. The sample consisted of 108 community couples who completed...

Mitchell, Alexandra Elizabeth

2007-09-17T23:59:59.000Z

259

Synchronization of organ pipes by means of air flow coupling: experimental observations and modeling  

E-Print Network [OSTI]

We report measurements on two organ pipes positioned side by side. We investigate two different questions. First, the mutual influence of two pipes with different pitch. In analogy to the coupling of two nonlinear oscillators with feedback, one observes a frequency locking, which can be explained by synchronization theory. Second, we measure the dependence of the frequency of the signals emitted by two mutually detuned pipes with varying distance between the pipes. The spectrum shows a broad ``hump'' structure, not found for coupled oscillators. This indicates a complicated hydrodynamical coupling of the two jets creating the acoustic field when exiting from the pipe mouth. We interpret our acoustic measurements with a model for the flow which exits from the flues of the pipes.

Abel, M; Gerhard-Multhaupt, R

2005-01-01T23:59:59.000Z

260

Modeling of thermally driven hydrological processes in partially saturated fractured rock  

SciTech Connect (OSTI)

This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

2009-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Gaussian Process Product Models for Nonparametric Nonstationarity  

E-Print Network [OSTI]

.ac.uk Oliver Stegle os252@cam.ac.uk Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK- dictive distributions. 1. Introduction The Gaussian process (Rasmussen & Williams, 2006) is a useful approaches involve Gaussian process mix- tures (Rasmussen, 2000), augmentation of the input space (Pfingsten

Adams, Ryan Prescott

262

Coupled Operation of a Wind Farm and Pumped Storage Facility: Techno-Economic Modelling and Stochastic Optimization  

E-Print Network [OSTI]

Coupled Operation of a Wind Farm and Pumped Storage Facility: Techno-Economic Modelling Operation of a Wind Farm and Pumped Storage Facility: Techno-Economic Modelling and Stochastic Optimization a stochastic programming approach to the techno-economic analysis of a wind farm coupled with a pumped storage

Victoria, University of

263

Feedback control of HfO{sub 2} etch processing in inductively coupled Cl{sub 2}/N{sub 2}/Ar plasmas  

SciTech Connect (OSTI)

The etch rate of HfO{sub 2} etch processing has been feedback controlled in inductively coupled Cl{sub 2}/N{sub 2}/Ar plasmas. The ion current and the root mean square rf voltage on the wafer stage, which are measured using a commercial impedance meter connected to the wafer stage, are chosen as controlled variables because the positive-ion flux and ion energy incident upon the wafer surface are the key factors that determine the etch rate. Two 13.56 MHz rf generators are used to adjust the inductively coupled plasma power and bias power which control ion density and ion energy, respectively. The adopted HfO{sub 2} etch processing used rather low rf voltage. The ion-current value obtained by the power/voltage method is underestimated, so the neural-network model was developed to assist estimating the correct ion-current value. The experimental results show that the etch-rate variation of the closed-loop control is smaller than that of the open-loop control. However, the first wafer effect cannot be eliminated using closed-loop control and thus to achieve a constant etch rate, the chamber-conditioning procedure is required in this etch processing.

Lin Chaung; Leou, K.-C.; Li, T.-C.; Lee, L.-S.; Tzeng, P.-J. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan 30043 (China); Electronic Research and Service Organization, Industrial Technology Research Institute, Hsinchu, Taiwan 310 (China)

2008-09-15T23:59:59.000Z

264

Predicting Coupled Ocean-Atmosphere Modes with a Climate Modeling Hierarchy -- Final Report  

SciTech Connect (OSTI)

The goal of the project was to determine midlatitude climate predictability associated with tropical-extratropical interactions on interannual-to-interdecadal time scales. Our strategy was to develop and test a hierarchy of climate models, bringing together large GCM-based climate models with simple fluid-dynamical coupled ocean-ice-atmosphere models, through the use of advanced probabilistic network (PN) models. PN models were used to develop a new diagnostic methodology for analyzing coupled ocean-atmosphere interactions in large climate simulations made with the NCAR Parallel Climate Model (PCM), and to make these tools user-friendly and available to other researchers. We focused on interactions between the tropics and extratropics through atmospheric teleconnections (the Hadley cell, Rossby waves and nonlinear circulation regimes) over both the North Atlantic and North Pacific, and the ocean’s thermohaline circulation (THC) in the Atlantic. We tested the hypothesis that variations in the strength of the THC alter sea surface temperatures in the tropical Atlantic, and that the latter influence the atmosphere in high latitudes through an atmospheric teleconnection, feeding back onto the THC. The PN model framework was used to mediate between the understanding gained with simplified primitive equations models and multi-century simulations made with the PCM. The project team is interdisciplinary and built on an existing synergy between atmospheric and ocean scientists at UCLA, computer scientists at UCI, and climate researchers at the IRI.

Michael Ghil, UCLA; Andrew W. Robertson, IRI, Columbia Univ.; Sergey Kravtsov, U. of Wisconsin, Milwaukee; Padhraic Smyth, UC Irvine

2006-08-04T23:59:59.000Z

265

Chemical Models for Aqueous Biodynamical Processes  

E-Print Network [OSTI]

The proton inventory method was applied to the study of three processes: the viscous flow of water, the neutral hydrolysis of esters, and the exchange reaction between aqueous sodium ion and the carboxylic exchanger Amberlite ...

Mata-Segreda, Julio F.

1975-05-01T23:59:59.000Z

266

Reversible computation as a model for the quantum measurement process  

E-Print Network [OSTI]

One-to-one reversible automata are introduced. Their applicability to a modelling of the quantum mechanical measurement process is discussed.

Karl Svozil

2009-04-15T23:59:59.000Z

267

Determining Greenland Ice Sheet sensitivity to regional climate change: one-way coupling of a 3-D thermo-mechanical ice sheet model with a mesoscale climate model  

E-Print Network [OSTI]

in running RCM’s over Greenland to produce high-qualityoutlet glaciers. For Greenland, this detail is specificallyCurrently, no coupled Greenland Ice Sheet model experiment

Schlegel, Nicole-Jeanne

2011-01-01T23:59:59.000Z

268

Achieving Process modeling and Execution through the Combination of Aspect and Model-Driven Engineering  

E-Print Network [OSTI]

Achieving Process modeling and Execution through the Combination of Aspect and Model. One major advantage of executable software process models is that once defined, they can be simulated for important process improvement decisions such as resource allocation, deadlock identification and process

Paris-Sud XI, Université de

269

Bayesian variable selection in clustering via dirichlet process mixture models  

E-Print Network [OSTI]

simultane- ously. I use Dirichlet process mixture models to define the cluster structure and to introduce in the model a latent binary vector to identify discriminating variables. I update the variable selection index using a Metropolis algorithm and obtain...

Kim, Sinae

2007-09-17T23:59:59.000Z

270

Adjoint modeling for atmospheric pollution process sensitivity at regional scale  

E-Print Network [OSTI]

Adjoint modeling for atmospheric pollution process sensitivity at regional scale Laurent Menut; 0345 Atmospheric Composition and Structure: Pollution--urban and regional (0305); 3210 Mathematical: atmospheric pollution, tropospheric ozone, urban pollution peaks, adjoint modeling, sensitivity Citation

Menut, Laurent

271

AMFIBIA: A Meta-Model for the Integration of Business Process Modelling Aspects  

E-Print Network [OSTI]

AMFIBIA: A Meta-Model for the Integration of Business Process Modelling Aspects Bj¨orn Axenath that formalizes the essential as- pects and concepts of business process modelling. Though AMFIBIA is not the first approach to formalizing the aspects and concepts of busi- ness process modelling, it is more

Kindler, Ekkart

272

Couple Control Model Implementation on Antagonistic Mono- and Bi-Articular Actuators  

E-Print Network [OSTI]

Recently, robot assisted therapy devices are increasingly used for spinal cord injury (SCI) rehabilitation in assisting handicapped patients to regain their impaired movements. Assistive robotic systems may not be able to cure or fully compensate impairments, but it should be able to assist certain impaired functions and ease movements. In this study, a couple control model for lower-limb orthosis of a body weight support gait training system is proposed. The developed leg orthosis implements the use of pneumatic artificial muscle as an actuation system. The pneumatic muscle was arranged antagonistically to form two pair of mono-articular muscles (i.e., hip and knee joints), and a pair of bi-articular actuators (i.e., rectus femoris and hamstring). The results of the proposed couple control model showed that, it was able to simultaneously control the antagonistic mono- and bi-articular actuators and sufficiently performed walking motion of the leg orthosis.

Prattico, Flavio; Yamamoto, Shin-ichiroh

2014-01-01T23:59:59.000Z

273

Fitting Non-Minimally Coupled Scalar Models to Gold SnIa Dataset  

E-Print Network [OSTI]

Non-minimally coupled theories of special potentials are analyzed numerically. Such theories yield equations of state $\\omegadataset, we obtain results comparable with other models. A potential of the form $V(\\phi)=V_0e^{a_1\\phi^2}$ yields $\\chi^2_{min}=170.127$. Similar results are obtained for potentials of the form $V(\\phi)=V_0+a_1\\phi^n$.

Mingxing Luo; Qiping Su

2005-08-18T23:59:59.000Z

274

Solutions of coupled BPS equations for two-family Calogero and matrix models  

SciTech Connect (OSTI)

We consider a large N, two-family Calogero and matrix model in the Hamiltonian, collective-field approach. The Bogomol'nyi limit appears and the solutions to the coupled Bogomol'nyi-Prasad-Sommerfeld equations are given by the static soliton configurations. We find all solutions close to constant and construct exact one-parameter solutions in the strong-weak dual case. Full classification of these solutions is presented.

Bardek, Velimir; Meljanac, Stjepan; Meljanac, Daniel [Institute Rudjer Boskovic, Bijenicka cesta 54, HR-10002 Zagreb (Croatia)

2009-10-15T23:59:59.000Z

275

Removal of hydrophobic Volatile Organic Compounds1 in an integrated process coupling Absorption and2  

E-Print Network [OSTI]

technology like photochemical oxidation shows high efficiency70 but is also high energy-consuming; moreover processes involve water as absorbent, they appear not always really efficient for the treatment of24 of the process, hydrophobic VOC27 absorption in a gas-liquid contactor, and biodegradation in the TPPB. VOC

Boyer, Edmond

276

Author's personal copy Fuzzy modelling of the composting process  

E-Print Network [OSTI]

Author's personal copy Fuzzy modelling of the composting process E. Giusti, S. Marsili May 2009 Available online 18 June 2009 Keywords: Composting Fuzzy models Fuzzy identification Fuzzy clustering a b s t r a c t Composting is a solid waste treatment process consisting of the biochemical

277

Adaptive Methods for Modelling Transport Processes in Fractured Subsurface Systems  

E-Print Network [OSTI]

­ discrete Galerkin method applying finite differences for the discretization in time and the StreamlineAdaptive Methods for Modelling Transport Processes in Fractured Subsurface Systems 3rd­adaptive methods for modelling transport processes in fractured rock. As a simplification, ideal tracers

Cirpka, Olaf Arie

278

Interacting agegraphic dark energy model in tachyon cosmology coupled to matter  

E-Print Network [OSTI]

Scalar-field dark energy models for tachyon fields are often regarded as an effective description of an underlying theory of dark energy. In this paper, we propose the agegraphic dark energy model in tachyon cosmology by interaction between the components of the dark sectors. In the formalism, the interaction term emerges from the tachyon field nonminimally coupled to the matter Lagrangian in the model rather than being inserted into the formalism as an external source. The model is constrained by the observational data. Based on the best fitted parameters in both original and new agegraphic dark energy scenarios, the model is tested by Sne Ia data. The tachyon potential and tachyon field are reconstructed and coincidence problem is revisited.

H. Farajollahi; A. Ravanpak; G. F. Fadakar

2012-07-10T23:59:59.000Z

279

Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model  

SciTech Connect (OSTI)

In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO{sub 2}, DMS and H{sub 2}SO{sub 4} species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed.

Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

1993-09-01T23:59:59.000Z

280

Modeling and analysis of dual hydroforming process  

E-Print Network [OSTI]

economic product with the best performance, it is important to choose proper material and process 11 parameters [28]. The experiments were conducted on various steel grades ranging from high strength to low strength steels. The material parameters... pressure and axial feeding. There are many applications of tube hydroforming in the automotive industry and in household uses. This technology uses clamping devices such as mechanical presses, pressure intensifiers, hydraulic punches and control systems...

Jain, Nishant

2004-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Model-based experimental analysis for inter-polymer process  

E-Print Network [OSTI]

) + Polyethylene (PE) ARCEL TOUGH FLEXIBLE Advanced packaging material Interpenetrating polymer network productModel-based experimental analysis for inter-polymer process CMU: Weijie Lin, Lorenz T. Biegler processed in a sequential way Polymer A Polymer B Project overview Inter-polymer process #12;Project

Grossmann, Ignacio E.

282

Process modeling of hydrogen production from municipal solid waste  

SciTech Connect (OSTI)

The ASPEN PLUS commercial simulation software has been used to develop a process model for a conceptual process to convert municipal solid waste (MSW) to hydrogen. The process consists of hydrothermal treatment of the MSW in water to create a slurry suitable as feedstock for an oxygen blown Texaco gasifier. A method of reducing the complicated MSW feed material to a manageable set of components is outlined along with a framework for modeling the stoichiometric changes associated with the hydrothermal treatment process. Model results indicate that 0.672 kmol/s of hydrogen can be produced from the processing of 30 kg/s (2600 tonne/day) of raw MSW. A number of variations on the basic processing parameters are explored and indicate that there is a clear incentive to reduce the inert fraction in the processed slurry feed and that cofeeding a low value heavy oil may be economically attractive.

Thorsness, C.B.

1995-01-01T23:59:59.000Z

283

Analyzing Critical Process Models through Behavior Model Synthesis Christophe Damas1  

E-Print Network [OSTI]

be verified on Little-JIL process models [17], after task conversion into LTS, using LTSA [18]. LTSA was also

Bonaventure, Olivier

284

Stability of the Zagreb realization of the Carnegie-Mellon-Berkeley coupled-channels unitary model  

SciTech Connect (OSTI)

In Hadzimehmedovicet al.[Phys. Rev. C 84, 035204 (2011)] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial-wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions and that it can reliably predict the pole positions of the fitted partial-wave amplitudes.

Osmanovic, H.; Hadzimehmedovic, M.; Stahov, J. [University of Tuzla, Faculty of Science, Univerzitetska 4, 75000 Tuzla (Bosnia and Herzegowina); Ceci, S.; Svarc, A. [Rudjer Boskovic Institute, Bijenicka cesta 54, P.O. Box 180, 10002 Zagreb (Croatia)

2011-09-15T23:59:59.000Z

285

The shallow shelf approximation as a "sliding law" in a thermomechanically coupled ice sheet model  

E-Print Network [OSTI]

The shallow shelf approximation is a better ``sliding law'' for ice sheet modeling than those sliding laws in which basal velocity is a function of driving stress. The shallow shelf approximation as formulated by \\emph{Schoof} [2006a] is well-suited to this use. Our new thermomechanically coupled sliding scheme is based on a plasticity assumption about the strength of the saturated till underlying the ice sheet in which the till yield stress is given by a Mohr-Coulomb formula using a modeled pore water pressure. Using this scheme, our prognostic whole ice sheet model has convincing ice streams. Driving stress is balanced in part by membrane stresses, the model is computable at high spatial resolution in parallel, it is stable with respect to parameter changes, and it produces surface velocities seen in actual ice streams.

Bueler, Ed

2008-01-01T23:59:59.000Z

286

On the connection between continental-scale land surface processes and the tropical climate in a coupled ocean-atmosphere-land system  

SciTech Connect (OSTI)

The impact of global tropical climate to perturbations in land surface processes (LSP) are evaluated using perturbations given by different LSP representations of continental-scale in a global climate model that includes atmosphere-ocean interactions. One representation is a simple land scheme, which specifies climatological albedos and soil moisture availability. The other representation is the more comprehensive Simplified Simple Biosphere Model, which allows for interactive soil moisture and vegetation biophysical processes. The results demonstrate that LSP processes such as interactive soil moisture and vegetation biophysical processes have strong impacts on the seasonal mean states and seasonal cycles of global precipitation, clouds, and surface air temperature. The impact is especially significant over the tropical Pacific. To explore the mechanisms for such impact, different LSP representations are confined to selected continental-scale regions where strong interactions of climate-vegetation biophysical processes are present. We find that the largest impact is mainly from LSP perturbations over the tropical African continent. The impact is through anomalous convective heating in tropical Africa due to changes in the surface heat fluxes, which in turn affect basinwide teleconnections in the Pacific through equatorial wave dynamics. The modifications in the equatorial Pacific climate are further enhanced by strong air-sea coupling between surface wind stress and upwelling, as well as effect of ocean memory. Our results further suggest that correct representations of land surface processes, land use change and the associated changes in the deep convection over tropical Africa are crucial to reducing the uncertainty when performing future climate projections under different climate change scenarios.

Ma, Hsi-Yen; Mechoso, C. R.; Xue, Yongkang; Xiao, Heng; Neelin, David; Ji, Xuan

2013-11-15T23:59:59.000Z

287

Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)  

E-Print Network [OSTI]

bentonite buffers and tunnel backfill are a key issues inbefore backfill and closure, between the tunnel air humiditybackfill options. Figure 3.1-2 presents the model geometry representing one deposition hole and tunnel

Steefel, Carl

2010-01-01T23:59:59.000Z

288

Modeling the coupling between free and forced convection in a vertical permeable slot: implications for the heat  

E-Print Network [OSTI]

1 Modeling the coupling between free and forced convection in a vertical permeable slot numerical study of the coupling between forced and free convective flows has been performed by considering: implications for the heat production of an Enhanced Geothermal System Arnaud Batailléa , Pierre Genthona

Paris-Sud XI, Université de

289

HYDROGEOCHEM: A coupled model of HYDROlogic transport and GEOCHEMical equilibria in reactive multicomponent systems  

SciTech Connect (OSTI)

This report presents the development of a hydrogeochemical transport model for multicomponent systems. The model is designed for applications to proper hydrological setting, accommodation of complete suite of geochemical equilibrium processes, easy extension to deal with chemical kinetics, and least constraints of computer resources. The hydrological environment to which the model can be applied is the heterogeneous, anisotropic, saturated-unsaturated subsurface media under either transient or steady state flow conditions. The geochemical equilibrium processes included in the model are aqueous complexation, adsorption-desorption, ion exchange, precipitation-dissolution, redox, and acid-base reactions. To achieve the inclusion of the full complement of these geochemical processes, total analytical concentrations of all chemical components are chosen as the primary dependent variables in the hydrological transport equations. Attendant benefits of this choice are to make the extension of the model to deal with kinetics of adsorption-desorption, ion exchange, precipitation-dissolution, and redox relatively easy. To make the negative concentrations during the iteration between the hydrological transport and geochemical equilibrium least likely, an implicit form of transport equations are proposed. To alleviate severe constraints of computer resources in terms of central processing unit (CPU) time and CPU memory, various optional numerical schemes are incorporated in the model. The model consists of a hydrological transport module and geochemical equilibrium module. Both modules were thoroughly tested in code consistency and were found to yield plausible results. The model is verified with ten examples. 79 refs., 21 figs., 17 tabs.

Yeh, G.T.; Tripathi, V.S.

1990-11-01T23:59:59.000Z

290

Numerical Modeling of Fracture Permeability Change in Naturally Fractured Reservoirs Using a Fully Coupled Displacement Discontinuity Method.  

E-Print Network [OSTI]

finite difference method to solve the fluid flow in fractures, a fully coupled displacement discontinuity method to build the global relation of fracture deformation, and the Barton-Bandis model of fracture deformation to build the local relation...

Tao, Qingfeng

2010-07-14T23:59:59.000Z

291

Mechanistic studies of photo-induced proton-coupled electron transfer and oxygen atom transfer reactions in model systems  

E-Print Network [OSTI]

Time-resolved optical spectroscopy has been employed for mechanistic studies in model systems designed to undergo photo-induced proton-coupled electron transfer (PCET) and oxygen atom transfer (OAT) reactions, both of which ...

Hodgkiss, Justin M. (Justin Mark), 1978-

2007-01-01T23:59:59.000Z

292

Coupled In-Rock and In-Drift Hydrothermal Model Stuudy For Yucca Mountain  

SciTech Connect (OSTI)

A thermal-hydrologic-natural-ventilation model is configured for simulating temperature, humidity, and condensate distributions in the coupled domains of the in-drift airspace and the near-field rockmass in the proposed Yucca Mountain repository. The multi-physics problem is solved with MULTIFLUX in which a lumped-parameter computational fluid dynamics model is iterated with TOUGH2. The solution includes natural convection, conduction, and radiation for heat as well as moisture convection and diffusion for moisture transport with half waste package scale details in the drift, and mountain-scale heat and moisture transport in the porous and fractured rock-mass. The method provides fast convergence on a personal computer computational platform. Numerical examples and comparison with a TOUGH2 based, integrated model are presented.

G. Danko; J. Birkholzer; D. Bahrami

2006-12-18T23:59:59.000Z

293

Close-coupled Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies. Final report, [October 1, 1988--July 31, 1993  

SciTech Connect (OSTI)

This is the final report of a four year and ten month contract starting on October 1, 1988 to July 31, 1993 with the US Department of Energy to study and improve Close-Coupled Catalytic Two-Stage Direct Liquefaction of coal by producing high yields of distillate with improved quality at lower capital and production costs in comparison to existing technologies. Laboratory, Bench and PDU scale studies on sub-bituminous and bituminous coals are summarized and referenced in this volume. Details are presented in the three topical reports of this contract; CTSL Process Bench Studies and PDU Scale-Up with Sub-Bituminous Coal-DE-88818-TOP-1, CTSL Process Bench Studies with Bituminous Coal-DE-88818-TOP-2, and CTSL Process Laboratory Scale Studies, Modelling and Technical Assessment-DE-88818-TOP-3. Results are summarized on experiments and studies covering several process configurations, cleaned coals, solid separation methods, additives and catalysts both dispersed and supported. Laboratory microautoclave scale experiments, economic analysis and modelling studies are also included along with the PDU-Scale-Up of the CTSL processing of sub-bituminous Black Thunder Mine Wyoming coal. During this DOE/HRI effort, high distillate yields were maintained at higher throughput rates while quality was markedly improved using on-line hydrotreating and cleaned coals. Solid separations options of filtration and delayed coking were evaluated on a Bench-Scale with filtration successfully scaled to a PDU demonstration. Directions for future direct coal liquefaction related work are outlined herein based on the results from this and previous programs.

Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Popper, G.A.; Stalzer, R.H.; Smith, T.O.

1993-06-01T23:59:59.000Z

294

An experimental study of heating performance and seasonal modeling of vertical U-tube ground coupled heat pumps  

E-Print Network [OSTI]

AN EXPERIMENTAL STUDY OF HEATING PERFORMANCE AND SEASONAL MODELING OF VERTICAL U-TUBE GROUND COUPLED HEAT PUMPS A Thesis by RANDAL E. MARGO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulftilment... of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Mechanical Engineering AN EXPERIMENTAL STUDY OF HEATING PERFORMANCE AND SEASONAL MODELING OF VERTICAL U-TUBE GROUND COUPLED HEAT PUMPS A Thesis by RANDAL E. MARGO Approved...

Margo, Randal E.

1992-01-01T23:59:59.000Z

295

A comparative study of reaction rate, species, and vibration-dissociation coupling models for an AOTV flowfield  

E-Print Network [OSTI]

A COMPARATIVE STUDY OF REACTION RATE, SPECIES, AND VIBRATION DISSOCIATION COUPLING MODELS FOR AN AOTV FLOWFIELD A Thesis by GLENN JAMES BOBSKILL Submitted to the Graduate College of Texas A&M UniversitY in partial fulfillment... of the requirements for the degree of MASTER GF SC. BNCH August 1938 Major Subject: Aerospace Engineering A COMPARATIVE STUDY OF REACTION RATE, SPECIES, AND VIBRATION -DISSOCIATION COUPLING MODELS FOR AN AOTV FLOWFIELD A Thesis by GLENN JAMES BOBSKILL...

Bobskill, Glenn James

1988-01-01T23:59:59.000Z

296

Digital neural network-based modeling technique for extrusion processes  

E-Print Network [OSTI]

and market conditions. In order to develop reliable and well-performing advanced process monitoring and diagnostic systems for achieving improved product quality and cost-effective operation, the neural network-based modeling technique for the extrusion...

Jang, Won-Hyouk

2001-01-01T23:59:59.000Z

297

"Big Picture" Process Modeling Tools |GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

window) Using process modeling tools to attain cost-effective results for GE customers Jimmy Lopez 2015.03.26 Sometimes, we need to look outside the box to realize the powerful...

298

Cost modeling in the integrated supply chain strategic decision process  

E-Print Network [OSTI]

This thesis is based on an internship at Honeywell Aerospace's Integrated Supply Chain (ISC) Leadership division. This work focuses on the role and use of analytical cost models in the strategy development process. The ...

Robinson, Todd (Todd Christopher)

2006-01-01T23:59:59.000Z

299

Hierarchical Bayesian Models for Predicting The Spread of Ecological Processes  

E-Print Network [OSTI]

Hierarchical Bayesian Models for Predicting The Spread of Ecological Processes Christopher K. Wikle Department of Statistics, University of Missouri To appear: Ecology June 10, 2002 Key Words: Bayesian, Diffusion, Forecast, Hierarchical, House Finch, Invasive, Malthu- sian, State Space, Uncertainty Abstract

300

Modelling and Simulation of a Polluted Water Pumping Process  

E-Print Network [OSTI]

Modelling and Simulation of a Polluted Water Pumping Process Chitra Alavani1 , Roland Glowinski2 concentration when a polluted water pumping ship follows a pre­assigned trajectory to remove the pollutant. We, sea currents and pumping process and the reaction due to the extraction of oil, implying

Tradacete, Pedro

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Diagnostics and modeling of plasma processes in ion sources  

E-Print Network [OSTI]

Diagnostics and modeling of plasma processes in ion sources Akos Vertes*, Renaat Gijbels, and Fred and describe the underlying phys- icochemical processes. Plasma diagnostic methods were borrowed from plasma, Belgium I. INTRODUCTION Plasma ion sources are constantly growing in importance in the field of atomic

Vertes, Akos

302

MODELING OF THERMALLY DRIVEN HYDROLOGICAL PROCESSES IN PARTIALLY  

E-Print Network [OSTI]

) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic AND BACKGROUND [2] The containment of spent fuel from nuclear power plants in a geological repositoryMODELING OF THERMALLY DRIVEN HYDROLOGICAL PROCESSES IN PARTIALLY SATURATED FRACTURED ROCK Y. W

Jellinek, Mark

303

PROCESS MODELING AND CONTROL The Department of Chemical Engineering  

E-Print Network [OSTI]

) · S. Ziaii ­ CO2 absorption process modeling and control/power plant energy integration (Joint research in our department #12;· Ensure safe plant operation · Meet product specifications · Optimize/Control · B. Gill ­ Virtual sensors in etch processes (Texas Instruments) · X. Jiang ­ Controller performance

Lightsey, Glenn

304

MULTISCALE MODELING OF DIFFUSION-INDUCED DEFORMATION PROCESSES  

E-Print Network [OSTI]

MULTISCALE MODELING OF DIFFUSION- INDUCED DEFORMATION PROCESSES Dr. Eugene Olevsky Friday, February 19, 2010 Engineering Bldg. Room E 300 Sintering is a high temperature process of bonding together of matter transport by different diffusion mechanisms driven by the high surface energy of aggregates

Ponce, V. Miguel

305

Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers  

E-Print Network [OSTI]

233 Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers Geophysical to mixing between #12;234 MIcrOBE MInErAl prOcESSES In SEAflOOr SulfIdES seawater and the hydrothermal of Washington, Seattle, Washington, USA Hydrothermal vent sulfides are diverse and dynamic habitats

Holden, James F.

306

Searching for PMIPS: Process Model Instructions Per Second  

E-Print Network [OSTI]

management system (DBMS), process engine (PrE), and user interface (UI) service. The PrE interprets and executes process mod­ els. The DBMS stores and manages both software products and process models machines ranging from terminals to mainframes. tools DBMS C DPP DCS C C ID D A1 A2 A3 A4 PrE A5 DCS DPP Fig

Baldi, Mario

307

Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model  

SciTech Connect (OSTI)

The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species, multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The modeling system is designed in such a way that constraint-based models targeting different microorganisms or competing organism communities can be easily plugged into the system. Constraint-based modeling is very costly given the size of a genome-scale reaction network. To save computation time, a binary tree is traversed to examine the concentration and solution pool generated during the simulation in order to decide whether the constraint-based model should be called. We also show preliminary results from the integrated model including a comparison of the direct and indirect coupling approaches.

Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

2011-02-28T23:59:59.000Z

308

The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules  

SciTech Connect (OSTI)

This study describes a new modeling paradigm that significantly advances how the third activity is conducted while also fully exploiting data and findings from the first two activities. The Aerosol Modeling Testbed (AMT) is a computational framework for the atmospheric sciences community that streamlines the process of testing and evaluating aerosol process modules over a wide range of spatial and temporal scales. The AMT consists of a fully-coupled meteorology-chemistry-aerosol model, and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. The philosophy of the AMT is to systematically and objectively evaluate aerosol process modules over local to regional spatial scales that are compatible with most field campaigns measurement strategies. The performance of new treatments can then be quantified and compared to existing treatments before they are incorporated into regional and global climate models. Since the AMT is a community tool, it also provides a means of enhancing collaboration and coordination among aerosol modelers.

Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.; Grell, Georg; Barth, Mary

2011-03-02T23:59:59.000Z

309

Engineered Barrier System Degradation, Flow, and Transport Process Model Report  

SciTech Connect (OSTI)

The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

E.L. Hardin

2000-07-17T23:59:59.000Z

310

Meson spectroscopy with unitary coupled-channels model for heavy-meson decay into three mesons  

SciTech Connect (OSTI)

We develop a model for describing excited mesons decay into three mesons. The properties of the excited mesons can be extracted with this model. The model maintains the three-body unitarity that has been missed in previous data analyses based on the conventional isobar models. We study an importance of the three-body unitarity in extracting hadron properties from data. For this purpose, we use the unitary and isobar models to analyze the same pseudo data of {gamma}p {yields} {pi}{sup +}{pi}{sup +}{pi}{sup -}n, and extract the properties of excited mesons. We find a significant difference between the unitary and isobar models in the extracted properties of excited mesons, such as the mass, width and coupling strength to decay channels. Hadron properties such as quantum numbers (spin, parity, etc.), mass and (partial) width have been long studied as a subject called hadron spectroscopy. The hadron properties provide important information for understanding internal structure of the hadron and dynamics which governs it. The dynamics here is of course QCD in its nonperturbative regime. The hadron properties can be extracted from data through a careful analysis, in many cases, partial wave analysis (PWA). Thus it is essential for hadron spectroscopy to have a reliable theoretical analysis tool.

Satoshi Nakamura

2012-04-01T23:59:59.000Z

311

Using a multiphase flow code to model the coupled effects of repository consolidation and multiphase brine and gas flow at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

Long-term repository assessment must consider the processes of (1) gas generation, (2) room closure and expansions due to salt creep, and (3) multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. The mechanical creep closure code SANCHO was used to simulate the closure of a single, perfectly sealed disposal room filled with water and backfill. SANCHO uses constitutive models to describe salt creep, waste consolidation, and backfill consolidation, Five different gas-generation rate histories were simulated, differentiated by a rate multiplier, f, which ranged from 0.0 (no gas generation) to 1.0 (expected gas generation under brine-dominated conditions). The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure for a perfectly sealed room. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined. Two of the methods are described.

Freeze, G.A. [INTERA Inc., Albuquerque, NM (United States); Larson, K.W.; Davies, P.B.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-10-01T23:59:59.000Z

312

The PERC{trademark} process: Existing and potential applications for induction coupled plasma technology in hazardous and radioactive waste treatment  

SciTech Connect (OSTI)

Plasma Technology, Inc. (PTI), a Santa Fe, New Mexico corporation has developed the Plasma Energy Recycle and Conversion (PERC){trademark} treatment process as a safe and environmentally clean alternative to conventional thermal destruction technologies. The PERC{trademark} treatment process uses as its heat source an advanced Induction Coupled Plasma (ICP) torch connected to a reaction chamber system with an additional emission control system. For example, organic-based gas, liquid, slurry, and/or solid waste streams can be converted into usable or even salable products while residual emissions are reduced to an absolute minimum. In applications for treatment of hazardous and radioactive waste streams, the PERC system could be used for destruction of the hazardous organic constituents and/or significant waste volume reduction while capturing the radioactive fraction in a non-leachable form. Like Direct Current (DC) and Alternating Current (AC) arc plasma systems, ICP torches offer sufficient energy to decompose, melt and/or vitrify any waste stream. The decision for an arc plasma or an IC plasma system has to be made on a case by case evaluation and is highly dependent on the specific waste stream`s form and composition. Induction coupled plasma technology offers one simple, but significant difference compared to DC or AC arc plasma systems: the ICP torch is electrodeless. To date, enormous research effort has been spent to improve the lifetime of electrodes and the effectiveness of related cooling systems. Arc plasma systems are established in research laboratories worldwide and are approaching a broad use in commercial applications. ICP technology has been improved relatively recently, but nowadays offers complete new and beneficial approaches in the field of waste conversion and treatment.

Blutke, A.S.; Vavruska, J.S.; Serino, J.F. [Plasma Technology, Inc., Santa Fe, NM (United States)

1996-12-31T23:59:59.000Z

313

Modeling Lake Erie ice dynamics: Process studies , Haoguo Hu2  

E-Print Network [OSTI]

Modeling Lake Erie ice dynamics: Process studies Jia Wang1 , Haoguo Hu2 , and Xuezhi Bai2 1 NOAA of Michigan 4840 S. State Road, Ann Arbor, MI 48108 Abstract. A Great Lakes Ice-circulation Model (GLIM derived from meteorological measurements. After the seasonal cycles of ice concentration, thickness

314

Preliminary results of a dynamic system model for a closed-loop Brayton cycle coupled to a nuclear reactor.  

SciTech Connect (OSTI)

This paper describes preliminary results of a dynamic system model for a closed-loop Brayton-cycle that is coupled to a nuclear reactor. The current model assumes direct coupling between the reactor and the Brayton-cycle, however only minor additions are required to couple the Brayton-cycle through a heat exchanger to either a heat pipe reactor or a liquid metal cooled reactor. Few reactors have ever been coupled to closed Brayton-cycle systems. As such their behavior under dynamically varying loads, startup and shut down conditions, and requirements for safe and autonomous operation are largely unknown. Sandia National Laboratories has developed steady-state and dynamic models for closed-loop turbo-compressor systems (for space and terrestrial applications). These models are expected to provide a basic understanding of the dynamic behavior and stability of the coupled reactor and power generation loop. The model described in this paper is a lumped parameter model of the reactor, turbine, compressor, recuperator, radiator/waste-heat-rejection system and generator. More detailed models that remove the lumped parameter simplifications are also being developed but are not presented here. The initial results of the model indicate stable operation of the reactor-driven Brayton-cycle system and its ability to load-follow. However, the model also indicates some counter-intuitive behavior for the complete coupled system. This behavior will require the use of a reactor control system to select an appropriate reactor operating temperature that will optimize the performance of the complete spacecraft system. We expect this model and subsequent versions of it to provide crucial information in developing procedures for safe start up, shut down, safe-standby, and other autonomous operating modes. Ultimately, Sandia hopes to validate these models and to perform nuclear ground tests of reactor-driven closed Brayton-cycle systems in our nuclear research facilities.

Wright, Steven Alan

2003-06-01T23:59:59.000Z

315

Applying Model Transformation By-Example on Business Process Modeling Languages  

E-Print Network [OSTI]

By Example (MTBE) approaches have been proposed as user-friendly alternative that simplifies the definition of model transformations. Up to now, MTBE ap- proaches have been applied to structural models, only. In this work we apply MTBE to the domain of business process modeling languages, i.e., Event-driven Process

316

A new compact model coupling rainfall-runoff and routing model to support  

E-Print Network [OSTI]

proposes a model for integrated management of a regulated water- shed. In such systems, it is important and guarantee flow at certain critical points. When these points are distant from the reservoir, the managers. For the reservoir manager, it is

Boyer, Edmond

317

Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor  

SciTech Connect (OSTI)

The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac No. 8532, Col. Progreso, C.P. 62550, Jiutepec, Morelos (Mexico)

2012-07-01T23:59:59.000Z

318

Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological  

E-Print Network [OSTI]

that control denitrifica- tion. Hydrological discharge regimes affect the degree of interaction of the water, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We measurements from a variety of US streams. These relations are used in the stream transport model

319

Kaon condensation and composition of neutron star matter in modified quark-meson coupling model  

E-Print Network [OSTI]

We use the modified quark-meson coupling (MQMC) model to study the composition profile of neutron star matter and compare the results with those calculated by quantum hadrodynamics (QHD). Both MQMC and QHD model parameters are adjusted to produce exactly the same saturation properties so that we can investigate the model dependences of the matter composition at high densities. We consider the possibility of deep kaon optical potential and find that the composition of matter is very sensitive to the interaction strength of kaons with matter. The onset densities of the kaon condensation are studied in detail by varying the kaon optical potentials. We find that the MQMC model produces the kaon condensation at lower densities than QHD. The presence of kaon condensation changes drastically the population of octet baryons and leptons. Once the kaon condensation takes place, the population of kaons builds up very quickly, and kaons become the dominant component of the matter. We find that the $\\omega$-meson plays an important role in increasing the kaon population and suppressing the hyperon population.

C. Y. Ryu; C. H. Hyun; S. W. Hong; B. T. Kim

2007-03-29T23:59:59.000Z

320

Composite dark energy: cosmon models with running cosmological term and gravitational coupling  

E-Print Network [OSTI]

In the recent literature on dark energy (DE) model building we have learnt that cosmologies with variable cosmological parameters can mimic more traditional DE pictures exclusively based on scalar fields (e.g. quintessence and phantom). In a previous work we have illustrated this situation within the context of a renormalization group running cosmological term, Lambda. Here we analyze the possibility that both the cosmological term and the gravitational coupling, G, are running parameters within a more general framework (a variant of the so-called ``LXCDM models'') in which the DE fluid can be a mixture of a running Lambda and another dynamical entity X (the ``cosmon'') which may behave quintessence-like or phantom-like. We compute the effective EOS parameter, w, of this composite fluid and show that the LXCDM can mimic to a large extent the standard LCDM model while retaining features hinting at its potential composite nature (such as the smooth crossing of the cosmological constant boundary w=-1). We further argue that the LXCDM models can cure the cosmological coincidence problem. All in all we suggest that future experimental studies on precision cosmology should take seriously the possibility that the DE fluid can be a composite medium whose dynamical features are partially caused and renormalized by the quantum running of the cosmological parameters.

Javier Grande; Joan Sola; Hrvoje Stefancic

2006-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Transition Prediction for Scramjet Intakes Using the \\gamma-Re_\\theta_t Model Coupled to Two Turbulence Models  

E-Print Network [OSTI]

Due to the thick boundary layers in hypersonic flows, the state of the boundary layer significantly influences the whole flow field as well as surface heat loads. Hence, for engineering applications the efficient numerical prediction of laminar-to-turbulent transition is a challenging and important task. Within the framework of the Reynolds averaged Navier-Stokes equations, Langtry/Menter [1] proposed the -Re?t transition model using two transport equations for the intermittency and Re?t combined with the Shear Stress Transport turbulence model (SST) [2]. The transition model contains two empirical correlations for onset and length of transition. Langtry/Menter [1] designed and validated the correlations for the subsonic and transonic flow regime. For our applications in the hypersonic flow regime, the development of a new set of correlations proved necessary, even when using the same SST turbulence model [3]. Within this paper, we propose a next step and couple the transition model with the SSG/LRR-! Reynold...

Frauholz, Sarah; Müller, Siegfried; Behr, Marek

2014-01-01T23:59:59.000Z

322

Web Services-Enhanced Agile Modeling and Integrating Business Processes  

E-Print Network [OSTI]

In a global business context with continuous changes, the enterprises have to enhance their operational efficiency, to react more quickly, to ensure the flexibility of their business processes, and to build new collaboration pathways with external partners. To achieve this goal, they must use e-business methods, mechanisms and techniques while capitalizing on the potential of new information and communication technologies. In this context, we propose a standards, model and Web services-based approach for modeling and integrating agile enterprise business processes. The purpose is to benefit from Web services characteristics to enhance the processes design and realize their dynamic integration. The choice of focusing on Web services is essentially justified by their broad adoption by enterprises as well as their capability to warranty interoperability between both intra and inter-enterprises systems. Thereby, we propose in this chapter a metamodel for describing business processes, and discuss their dynamic in...

Belouadha, Fatima-Zahra; Roudičs, Ounsa

2012-01-01T23:59:59.000Z

323

Learning Business Process Models: A case study Johny Ghattas, Pnina Soffer, Mor Peleg  

E-Print Network [OSTI]

Learning Business Process Models: A case study Johny Ghattas, Pnina Soffer, Mor Peleg Management the application of LPM to a vaccination process. Keywords: Learning, business process model, generic process model the currently defined process model and the actual business process are detected. This forms the basis

Peleg, Mor

324

Development and Evaluation of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model (GEM) for Mesoscale Weather Forecasting Applications  

E-Print Network [OSTI]

Development and Evaluation of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model (GEM) for Mesoscale Weather Forecasting Applications DEV NIYOGI Department of Agronomy, and Department form 13 May 2008) ABSTRACT Current land surface schemes used for mesoscale weather forecast models use

Niyogi, Dev

325

Increase of Carbon Cycle Feedback with Climate Sensitivity: Results from a coupled Climate and Carbon Cycle Model  

SciTech Connect (OSTI)

Coupled climate and carbon cycle modeling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in larger warming. In this paper, we investigate the sensitivity of this feedback for year-2100 global warming in the range of 0 K to 8 K. Differing climate sensitivities to increased CO{sub 2} content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully-coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA) the NCAR/DOE Parallel Coupled Model coupled to the IBIS terrestrial biosphere model and a modified-OCMIP ocean biogeochemistry model. In our model, for scenarios with year-2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO{sub 2} emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO{sub 2} concentration increases were 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO{sub 2} content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K.

Govindasamy, B; Thompson, S; Mirin, A; Wickett, M; Caldeira, K; Delire, C

2004-04-01T23:59:59.000Z

326

Bridging the Gap Between BusinessBridging the Gap Between BusinessBridging the Gap Between BusinessBridging the Gap Between Business Process Models and ServiceProcess Models and ServiceProcess Models and ServiceProcess Models and Service  

E-Print Network [OSTI]

Bridging the Gap Between Business Process Models and ServiceProcess Models and ServiceProcess Models and Service of the major reasons for this deficiency is the gap that exists between business process models on the one hand a flexible approach for aligning business process models with workflow specifications. In order to maintain

Ulm, Universität

327

A subliminal manipulation of the Extended Parallel Process Model  

E-Print Network [OSTI]

the context of skin cancer. The goals of this study were to (1) assess the effects of subliminal embeds as fear appeals (2) within the framework of the Extended Parallel Process Model, the EPPM (Witte, 1992a). While this study demonstrated that subliminal... go unnoticed by individuals (Dixon, 1981). To extend the inquiry into subliminal message processing, this project places embedded pictures (a form of subliminal research) in the context of skin cancer This thesis uses the style of mm ni ' n...

Stephenson, Michael Taylor

1993-01-01T23:59:59.000Z

328

Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)  

SciTech Connect (OSTI)

This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

2012-06-01T23:59:59.000Z

329

Dissociative electron attachment to the H2O molecule II: nucleardynamics on coupled electronic surfaces within the local complexpotential model  

SciTech Connect (OSTI)

We report the results of a first-principles study of dissociative electron attachment (DEA) to H{sub 2}O. The cross sections were obtained from nuclear dynamics calculations carried out in full dimensionality within the local complex potential model by using the multi-configuration time-dependent Hartree method. The calculations employ our previously obtained global, complex-valued, potential energy surfaces for the three ({sup 2}B{sub 1}, {sup 2}A{sub 1}, and {sup 2}B{sub 2}) electronic Feshbach resonances involved in this process. These three metastable states of H{sub 2}O{sup -} undergo several degeneracies, and we incorporate both the Renner-Teller coupling between the {sup 2}B{sub 1} and {sup 2}A{sub 1} states, as well as the conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} states, into our treatment. The nuclear dynamics are inherently multi-dimensional and involve branching between different final product arrangements as well as extensive excitation of the diatomic fragment. Our results successfully mirror the qualitative features of the major fragment channels observed, but are less successful in reproducing the available results for some of the minor channels. We comment on the applicability of the local complex potential model to such a complicated resonant system.

Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

2006-12-21T23:59:59.000Z

330

Physical Origin of Density Dependent Force of the Skyrme Type within the Quark Meson Coupling Model  

SciTech Connect (OSTI)

A density dependent, effective nucleon-nucleon force of the Skyrme type is derived from the quark-meson coupling model--a self-consistent, relativistic quark level description of nuclear matter. This new formulation requires no assumption that the mean scalar field is small and hence constitutes a significant advance over earlier work. The similarity of the effective interaction to the widely used SkM* force encourages us to apply it to a wide range of nuclear problems, beginning with the binding energies and charge distributions of doubly magic nuclei. Finding impressive results in this conventional arena, we apply the same effective interaction, within the Hartree-Fock-Bogoliubov approach, to the properties of nuclei far from stability. The resulting two neutron drip lines and shell quenching are quite satisfactory. Finally, we apply the relativistic formulation to the properties of dense nuclear matter in anticipation of future application to the properties of neutron stars.

Pierre Guichon; Hrayr Matevosyan; N. Sandulescu; Anthony Thomas

2006-03-17T23:59:59.000Z

331

Strong-coupling expansions for the topologically inhomogeneous Bose-Hubbard model  

SciTech Connect (OSTI)

We consider a Bose-Hubbard model with an arbitrary hopping term and provide the boundary of the insulating phase thereof in terms of third-order strong coupling perturbative expansions for the ground state energy. In the general case two previously unreported terms occur, arising from triangular loops and hopping inhomogeneities, respectively. Quite interestingly the latter involves the entire spectrum of the hopping matrix rather than its maximal eigenpair, like the remaining perturbative terms. We also show that hopping inhomogeneities produce a first order correction in the local density of bosons. Our results apply to ultracold bosons trapped in confining potentials with arbitrary topology, including the realistic case of optical superlattices with uneven hopping amplitudes. Significant examples are provided. Furthermore, our results can be extended to magnetically tuned transitions in Josephson junction arrays.

Buonsante, P.; Penna, V.; Vezzani, A. [Dipartimento di Fisica, Politecnico di Torino and INFM, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Dipartimento di Fisica, Universita degli Studi di Parma and INFM, Parco Area delle Scienze 7/a, I-43100 Parma (Italy)

2004-11-01T23:59:59.000Z

332

Metal coupled emission process  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles Page -toMetabolicHydrogenArthur

333

Diode laser welding of ABS: Experiments and process modeling  

E-Print Network [OSTI]

The laser beam weldability of acrylonitrile/butadiene/styrene (ABS) plates is determined by combining both experimental and theoretical aspects. In modeling the process, an optical model is used to determine how the laser beam is attenuated by the first material and to obtain the laser beam profile at the interface. Using this information as the input data to a thermal model, the evolution of the temperature field within the two components can be estimated. The thermal model is based on the first principles of heat transfer and utilizes the temperature variation laws of material properties. Corroborating the numerical results with the experimental results, some important insights concerning the fundamental phenomena that govern the process could be extracted. This approach proved to be an efficient tool in determining the weldability of polimeric materials and assures a significant reduction of time and costs with the experimental exploration.

Ilie, Mariana; Mattei, Simone; Cicala, Eugen; Stoica, Virgil; 10.1016/j.optlastec.2008.10.005

2010-01-01T23:59:59.000Z

334

Experimental investigation and modeling of a direct-coupled PV/T air collector  

SciTech Connect (OSTI)

Photovoltaic/thermal (PV/T) systems refer to the integration of photovoltaic and solar thermal technologies into one single system, in that both useful heat energy and electricity are produced. The impetus of this paper is to model a direct-coupled PV/T air collector which is designed, built, and tested at a geographic location of Kerman, Iran. In this system, a thin aluminum sheet suspended at the middle of air channel is used to increase the heat exchange surface and consequently improve heat extraction from PV panels. This PV/T system is tested in natural convection and forced convection (with two, four and eight fans operating) and its unsteady results are presented in with and without glass cover cases. A theoretical model is developed and validated against experimental data, where good agreement between the measured values and those calculated by the simulation model were achieved. Comparisons are made between electrical performance of the different modes of operation, and it is concluded that there is an optimum number of fans for achieving maximum electrical efficiency. Also, results show that setting glass cover on photovoltaic panels leads to an increase in thermal efficiency and decrease in electrical efficiency of the system. (author)

Shahsavar, A.; Ameri, M. [Department of Mechanical Engineering, Faculty of Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Energy and Environmental Engineering Research Center, Shahid Bahonar University, Kerman (Iran, Islamic Republic of)

2010-11-15T23:59:59.000Z

335

Scaling considerations for modeling the in situ vitrification process  

SciTech Connect (OSTI)

Scaling relationships for modeling the in situ vitrification waste remediation process are documented based upon similarity considerations derived from fundamental principles. Requirements for maintaining temperature and electric potential field similarity between the model and the prototype are determined as well as requirements for maintaining similarity in off-gas generation rates. A scaling rationale for designing reduced-scale experiments is presented and the results are assessed numerically. 9 refs., 6 figs.

Langerman, M.A.; MacKinnon, R.J.

1990-09-01T23:59:59.000Z

336

Coupled fluid flow and geomechanical deformation modeling Susan E. Minkoff a,*, C. Mike Stoneb,1  

E-Print Network [OSTI]

in the coupled code despite dynamically changing reservoir parameters via a modification to the Newton system plastic constitutive relationships available in the coupled code. The results mimic behavior which and Engineering 38 (2003) 37­56 #12;observed in a real field but difficult to capture with a fully coupled

Minkoff, Susan E.

337

Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications  

SciTech Connect (OSTI)

The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of existing fractures, especially the interaction between propagating fractures and existing fractures, represents a critical goal of our project. To this end, we are continuing to develop a hydraulic fracturing simulation capability within the Livermore Distinct Element Code (LDEC), a combined FEM/DEM analysis code with explicit solid-fluid mechanics coupling. LDEC simulations start from an initial fracture distribution which can be stochastically generated or upscaled from the statistics of an actual fracture distribution. During the hydraulic stimulation process, LDEC tracks the propagation of fractures and other modifications to the fracture system. The output is transferred to the Non-isothermal Unsaturated Flow and Transport (NUFT) code to capture heat transfer and flow at the reservoir scale. This approach is intended to offer flexibility in the types of analyses we can perform, including evaluating the effects of different system heterogeneities on the heat extraction rate as well as seismicity associated with geothermal operations. This paper details the basic methodology of our approach. Two numerical examples showing the capability and effectiveness of our simulator are also presented.

Fu, P; Johnson, S M; Hao, Y; Carrigan, C R

2011-01-18T23:59:59.000Z

338

A Survey on Time-aware Business Process Modeling Saoussen Cheikhrouhou1  

E-Print Network [OSTI]

A Survey on Time-aware Business Process Modeling Saoussen Cheikhrouhou1 , Slim Kallel1 , Nawal : Business Process Modeling (BPM) : Workflow : Web service composition : Inter-Organisational Business suites. Consequently, modeling and managing temporal requirements in the business process field

Paris-Sud XI, Université de

339

A NONGAUSSIAN ORNSTEINUHLENBECK PROCESS FOR ELECTRICITY SPOT PRICE MODELING AND  

E-Print Network [OSTI]

A NON­GAUSSIAN ORNSTEIN­UHLENBECK PROCESS FOR ELECTRICITY SPOT PRICE MODELING AND DERIVATIVES for analytical pricing of electricity forward and futures contracts. Electricity forward and futures contracts to capture the observed dynamics of electricity spot prices. We also discuss the pricing of European call

Kallsen, Jan

340

A methodology for simultaneous modeling and control of chemical processes  

E-Print Network [OSTI]

Feedback Control System The Methodology IV APPLICATION TO A TEXTBOOK PROBLEM IMC Controller Structure RLS Algorithm Design Method. Linear Model Description . Simulation with Different Initial System Output Values . . . . Simulation with Different... and Initial System Output Values. Simulation with Different Disturbance Gains. . . . VI CASE STUDY: APPLICATION OF THIS FEEDBACK SYSTEM TO A TENNESSEE EASTMAN TESTBED PROBLEM, . . . Problem Description. Reactor Control and Process Identification. VII...

Zeng, Tong

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Interpreting Eye Movements with Process Models Dario D. Salvucci  

E-Print Network [OSTI]

Interpreting Eye Movements with Process Models Dario D. Salvucci Department of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 +1 412 268 8102 dario+@cs.cmu.edu ABSTRACT Though eye movements provide a wealth of information about how humans interact with computers, the analysis of eye

Salvucci, Dario D.

342

Supporting Generic Cost Models for Wide-Area Stream Processing  

E-Print Network [OSTI]

Supporting Generic Cost Models for Wide-Area Stream Processing Olga Papaemmanouil #1 , Ugur C¸ etintemel 2 , John Jannotti 2 # Deparment of Computer Science, Brandeis University, Waltham, MA, USA 1 olga and increased availability of receptors that report physical or software events has led to the emergence

Cetintemel, Ugur

343

Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers  

E-Print Network [OSTI]

215 Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers Geophysical is very limited. Low-temperature diffuse vent fluids, ubiquitous at hydrothermal systems, provide one microorganisms from diffuse hydrothermal vent fluids and the subseafloor at basalt-hosted mid-ocean ridges

Holden, James F.

344

Queuing Models of Airport Departure Processes for Emissions Reduction  

E-Print Network [OSTI]

is validated through a comparison of its predictions with observed data at Boston's Logan International AirportQueuing Models of Airport Departure Processes for Emissions Reduction Ioannis Simaiakis burn and emissions at airports. This paper investigates the possibility of reducing fuel burn

Gummadi, Ramakrishna

345

Dynamic Modeling and Recipe Optimization of Polyether Polyol Processes  

E-Print Network [OSTI]

Dynamic Modeling and Recipe Optimization of Polyether Polyol Processes Fall 2012 EWO Meeting Yisu Monomer Reactor Basic procedures Starters are first mixed with catalyst in the liquid phase Alkylene oxides in the liquid phase are fed in controlled rates The reactor temperature is controlled by the heat

Grossmann, Ignacio E.

346

Chemical Process Modeling in Modelica Ali Baharev Arnold Neumaier  

E-Print Network [OSTI]

Chemical Process Modeling in Modelica Ali Baharev Arnold Neumaier Fakultät für Mathematik an important role in the development of our novel optimization methods. Foundations of a Modelica library-product distillation were computed as a proof of concept. The Modelica source code is available at the project homepage

Neumaier, Arnold

347

Process modeling for the Integrated Thermal Treatment System (ITTS) study  

SciTech Connect (OSTI)

This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

1995-09-01T23:59:59.000Z

348

Measurement and modeling of advanced coal conversion processes, Volume III  

SciTech Connect (OSTI)

A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.

Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G. [and others

1993-08-01T23:59:59.000Z

349

World Climate Research Programme (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3): Multi-Model Dataset Archive at PCMDI (Program for Climate Model Diagnosis and Intercomparison)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

In response to a proposed activity of the WCRP's Working Group on Coupled Modelling (WGCM),PCMDI volunteered to collect model output contributed by leading modeling centers around the world. Climate model output from simulations of the past, present and future climate was collected by PCMDI mostly during the years 2005 and 2006, and this archived data constitutes phase 3 of the Coupled Model Intercomparison Project (CMIP3). In part, the WGCM organized this activity to enable those outside the major modeling centers to perform research of relevance to climate scientists preparing the Fourth Asssessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The IPCC was established by the World Meteorological Organization and the United Nations Environmental Program to assess scientific information on climate change. The IPCC publishes reports that summarize the state of the science. This unprecedented collection of recent model output is officially known as the WCRP CMIP3 multi-model dataset. It is meant to serve IPCC's Working Group 1, which focuses on the physical climate system - atmosphere, land surface, ocean and sea ice - and the choice of variables archived at the PCMDI reflects this focus. A more comprehensive set of output for a given model may be available from the modeling center that produced it. As of November 2007, over 35 terabytes of data were in the archive and over 303 terabytes of data had been downloaded among the more than 1200 registered users. Over 250 journal articles, based at least in part on the dataset, have been published or have been accepted for peer-reviewed publication. Countries from which models have been gathered include Australia, Canada, China, France, Germany and Korea, Italy, Japan, Norway, Russia, Great Britain and the United States. Models, variables, and documentation are collected and stored. Check http://www-pcmdi.llnl.gov/ipcc/data_status_tables.htm to see at a glance the output that is available. (Description taken from http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php)

350

PASI 2011: Process Modeling and Optimization for Energy and Sustainability Mineral Process Design for  

E-Print Network [OSTI]

PASI 2011 PASI 2011: Process Modeling and Optimization for Energy and Sustainability Mineral, high population growth and urbanization, both key metals consumption and GDP are expected to grow the environmental impact, both in per tonne of product and on total amount of emissions and reduction. #12

Grossmann, Ignacio E.

351

Bessel process, Schramm-Loewner evolution, and Dyson model  

E-Print Network [OSTI]

Bessel process is defined as the radial part of the Brownian motion (BM) in the $D$-dimensional space, and is considered as a one-parameter family of one-dimensional diffusion processes indexed by $D$, BES$^{(D)}$. It is well-known that $D_{\\rm c}=2$ is the critical dimension. Bessel flow is a notion such that we regard BES$^{(D)}$ with a fixed $D$ as a one-parameter family of initial value. There is another critical dimension $\\bar{D}_{\\rm c}=3/2$ and, in the intermediate values of $D$, $\\bar{D}_{\\rm c} multivariate extension of BES$^{(3)}$. We explain the 'parenthood' of BES$^{(D)}$ and SLE$^{(D)}$, and that of BES$^{(3)}$ and the Dyson model. It is shown that complex analysis is effectively applied to study stochastic processes and statistical mechanics models in equilibrium and nonequilibrium states.

Makoto Katori

2011-03-24T23:59:59.000Z

352

Modeling veterans healthcare administration disclosure processes : CY 2012 summary.  

SciTech Connect (OSTI)

As with other large healthcare organizations, medical adverse events at the Department of Veterans Affairs (VA) facilities can expose patients to unforeseen negative risks. VHA leadership recognizes that properly handled disclosure of adverse events can minimize potential harm to patients and negative consequences for the effective functioning of the organization. The work documented here seeks to help improve the disclosure process by situating it within the broader theoretical framework of issues management, and to identify opportunities for process improvement through modeling disclosure and reactions to disclosure. The computational model will allow a variety of disclosure actions to be tested across a range of incident scenarios. Our conceptual model will be refined in collaboration with domain experts, especially by continuing to draw on insights from VA Study of the Communication of Adverse Large-Scale Events (SCALE) project researchers.

Beyeler, Walter Eugene; DeMenno, Mercy B.; Finley, Patrick D.

2013-09-01T23:59:59.000Z

353

The response of a capacitively coupled discharge to the formation of dust particles: Experiments and modeling  

SciTech Connect (OSTI)

The influence of dust particles on the properties of a capacitively coupled Ar-C{sub 2}H{sub 2} discharge is studied both experimentally and theoretically. The results of measurements of the intensity and spatial distribution of the emitted light, the line width of the fast component of H{sub {alpha}} line and of the electron density during the particle growth are presented. To analyze the experimental results a one-dimensional discharge model is developed. Using the model the effects of dust grains on the power absorption (taking into account stochastic and Ohmic heating in the plasma sheaths), the optical emission intensity profile, the sheath size, the rf electric field and on the energy of positive ions bombarding the electrodes are investigated. In particular, it is shown that the decrease of the power absorption in the sheaths of complex plasmas is due to the dependence of the stochastic and Ohmic heating in the plasma sheaths on the electron temperature and the current flowing across the discharge plates. The results of the calculations are compared with the available experimental data and found to be in good agreement.

Denysenko, I.; Berndt, J.; Kovacevic, E.; Stefanovic, I.; Selenin, V.; Winter, J. [School of Physics and Technology, V. N. Karazin Kharkiv National University, Svobody sq. 4, 61077 Kharkiv (Ukraine); Institute of Experimental Physics II, Ruhr-University Bochum, D-44780 Bochum (Germany); Institute of Experimental Physics II, Ruhr-University Bochum, D-44780 Bochum, Germany and Institute of Physics, POB 57, 11001 Belgrade (Serbia and Montenegro); Institute of Experimental Physics II, Ruhr-University Bochum, D-44780 Bochum (Germany)

2006-07-15T23:59:59.000Z

354

Quantum mechanical Hamiltonian models of the computation process  

SciTech Connect (OSTI)

As noted in the proceedings of this conference it is of importance to determine if quantum mechanics imposes fundamental limits on the computation process. Some aspects of this problem have been examined by the development of different types of quantum mechanical Hamiltonian models of Turing machines. (Benioff 1980, 1982a, 1982b, 1982c). Turing machines were considered because they provide a standard representation of all digital computers. Thus, showing the existence of quantum mechanical models of all Turing machines is equivalent to showing the existence of quantum mechanical models of all digital computers. The types of models considered all had different properties. Some were constructed on two-dimensional lattices of quantum spin systems of spin 1/2 (Benioff 1982b, 1982c) or higher spins (Benioff 1980). All the models considered Turing machine computations which were made reversible by addition of a history tape. Quantum mechanical models of Bennett's reversible machines (Bennett 1973) in which the model makes a copy of the computation result and then erases the history and undoes the computation in lockstep to recover the input were also developed (Benioff 1982a). To avoid technical complications all the types of models were restricted to modelling an arbitrary but finite number of computation steps.

Benioff, P.

1983-01-01T23:59:59.000Z

355

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network [OSTI]

design, modeling and process economic analysis are employedper day. Like BTL process, economic analysis has shown thatused as major input for process economic analysis in the

Lu, Xiaoming

2012-01-01T23:59:59.000Z

357

Abstract -This paper presents a methodology and a tool for the coupled magnetic-structural with semi-analytical models. For this  

E-Print Network [OSTI]

Abstract - This paper presents a methodology and a tool for the coupled magnetic-structural with semi-analytical models. For this coupling, the magnetic model is available; we developed the structural MODEL Magnetic fields radiated by permanent magnets and conductors are computed through Coulombian

Boyer, Edmond

358

OASIS4: A Coupling Software for Next Generation Earth System Modelling Ren Redler (1), Sophie Valcke (2) and Hubert Ritzdorf (3)  

E-Print Network [OSTI]

OASIS4: A Coupling Software for Next Generation Earth System Modelling René Redler (1), Sophie system modelling, Geosci. Model. Dev., 3, 87 ­ 104 Link ­ https://oasistrac.cerfacs.fr Financial support ­ R. Redler, S. Valcke and H. Ritzdorf, 2010: OASIS4 ­ a coupling software for next generation earth

359

Three-dimensional modelling and geothermal process simulation  

SciTech Connect (OSTI)

The subsurface geological model or 3-D GIS is constructed from three kinds of objects, which are a lithotope (in boundary representation), a number of fault systems, and volumetric textures (vector fields). The chief task of the model is to yield an estimate of the conductance tensors (fluid permeability and thermal conductivity) throughout an array of voxels. This is input as material properties to a FEHM numerical physical process model. The main task of the FEHM process model is to distinguish regions of convective from regions of conductive heat flow, and to estimate the fluid phase, pressure and flow paths. The temperature, geochemical, and seismic data provide the physical constraints on the process. The conductance tensors in the Franciscan Complex are to be derived by the addition of two components. The isotropic component is a stochastic spatial variable due to disruption of lithologies in melange. The deviatoric component is deterministic, due to smoothness and continuity in the textural vector fields. This decomposition probably also applies to the engineering hydrogeological properties of shallow terrestrial fluvial systems. However there are differences in quantity. The isotropic component is much more variable in the Franciscan, to the point where volumetric averages are misleading, and it may be necessary to select that component from several, discrete possible states. The deviatoric component is interpolated using a textural vector field. The Franciscan field is much more complicated, and contains internal singularities. 27 refs., 10 figs.

Burns, K.L.

1990-01-01T23:59:59.000Z

360

Cloud shading retrieval and assimilation in a satellite-model coupled mesoscale analysis system  

SciTech Connect (OSTI)

A retrieval-assimilation method has been developed as a quantitative means to exploit the information in satellite imagery regarding shading of the ground by clouds, as applied to mesoscale weather analysis. Cloud radiative parameters are retrieved from satellite visible image data and used, along with parameters computed by a numerical model, to control the model's computation of downward radiative fluxes at the ground. These fluxes influence the analysis of ground surface temperatures under clouds. The method is part of a satellite-model coupled four-dimensional analysis system that merges information from visible image data in cloudy areas with infrared sounder data in clear areas, where retrievals of surface temperatures and water vapor concentrations are assimilated. The substantial impact of shading on boundary-layer development and mesoscale circulations was demonstrated in simulations, and the value of assimilating shading retrievals was demonstrated with a case study and with a simulated analysis that included the effects of several potential sources of error. The case study was performed in the northwestern Texas area, where convective cloud development was influenced by the shading effects of a persistent region of stratiform cloud cover. Analyses that included shading retrieval assimilation had consistently smaller shelter-height temperature errors than analyses without shading retrievals. When clear-area surface temperature retrievals from sounder data were analyzed along with cloudy-area shading retrievals, the contrast in heating between the shaded and clear parts of the domain led to large variations in analyzed boundary-layer depths and had a modest impact on analyzed wind flow. The analyzed locations of upward vertical motion corresponded roughly to areas of convective cloud development observed in satellite imagery. 29 refs., 17 figs., 2 tabs.

Lipton, A.E. (Phillips Lab., Hanscom AFB, MA (United States))

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Large scale molecular dynamics modeling of materials fabrication processes  

SciTech Connect (OSTI)

An atomistic molecular dynamics model of materials fabrication processes is presented. Several material removal processes are shown to be within the domain of this simulation method. Results are presented for orthogonal cutting of copper and silicon and for crack propagation in silica glass. Both copper and silicon show ductile behavior, but the atomistic mechanisms that allow this behavior are significantly different in the two cases. The copper chip remains crystalline while the silicon chip transforms into an amorphous state. The critical stress for crack propagation in silica glass was found to be in reasonable agreement with experiment and a novel stick-slip phenomenon was observed.

Belak, J.; Glosli, J.N.; Boercker, D.B.; Stowers, I.F.

1994-02-01T23:59:59.000Z

362

Modelling of reactive gas transport in unsaturated soil. A coupled thermo-hydro-chemical-mechanical approach.  

E-Print Network [OSTI]

??This thesis presents the development of a reactive gas transport equation under coupled framework of thermal, hydraulic, chemical and mechanical (THCM) behaviour of variably saturated… (more)

Masum, Shakil Al

2012-01-01T23:59:59.000Z

363

A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir  

E-Print Network [OSTI]

A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR of New South Wales, Sydney 2052, Australia. Abstract The constitutive thermo-hydro-mechanical equations is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo-hydro

Boyer, Edmond

364

Model for a Josephson junction array coupled to a resonant cavity J. Kent Harbaugh and D. Stroud  

E-Print Network [OSTI]

Model for a Josephson junction array coupled to a resonant cavity J. Kent Harbaugh and D. Stroud junctions, there is a transition from incoherence to coherence as a function of N, the number of Josephson-capacitance and underdamped Josephson junctions, quantum phase fluctua- tions inhibit phase locking.8­13 Thus, until recently

Stroud, David

365

Unification of gauge coupling constants in the minimal supersymmtric model with $?_s\\approx0.11$  

E-Print Network [OSTI]

We have studied the gauge unification with the recent electroweak data as a function of the higgsino mass. It was shown that if the strong coupling constant is small $\\approx 0.11$, consistent picture of gauge unification is not possible in the minimal supersymmetric standard model.

A. K. Chaudhuri

1997-11-28T23:59:59.000Z

366

2D Axisymmetric Coupled CFD-kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel  

E-Print Network [OSTI]

-assisted diesel fuel reformer developed for two different applications: (i) onboard H2 production for fuel cell been also developed for different reforming reactors: solid oxide fuel cell (SOFC)7 , membrane reformer1 2D Axisymmetric Coupled CFD-kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel

Boyer, Edmond

367

Climate Forcings and Climate Sensitivities Diagnosed from Coupled Climate Model Integrations  

SciTech Connect (OSTI)

A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled Atmosphere Ocean General Circulation Models (AOGCMs). This 'climate forcing' differs from the conventionally defined radiative forcing as it includes semi-direct effects that account for certain short timescale responses in the troposphere. Firstly, we calculate a climate feedback term from reported values of 2 x CO{sub 2} radiative forcing and surface temperature time series from 70-year simulations by twenty AOGCMs. In these simulations carbon dioxide is increased by 1%/year. The derived climate feedback agrees well with values that we diagnose from equilibrium climate change experiments of slab-ocean versions of the same models. These climate feedback terms are associated with the fast, quasi-linear response of lapse rate, clouds, water vapor and albedo to global surface temperature changes. The importance of the feedbacks is gauged by their impact on the radiative fluxes at the top of the atmosphere. We find partial compensation between longwave and shortwave feedback terms that lessens the inter-model differences in the equilibrium climate sensitivity. There is also some indication that the AOGCMs overestimate the strength of the positive longwave feedback. These feedback terms are then used to infer the shortwave and longwave time series of climate forcing in 20th and 21st Century simulations in the AOGCMs. We validate the technique using conventionally calculated forcing time series from four AOGCMs. In these AOGCMs the shortwave and longwave climate forcings we diagnose agree with the conventional forcing time series within {approx}10%. The shortwave forcing time series exhibit order of magnitude variations between the AOGCMs, differences likely related to how both natural forcings and/or anthropogenic aerosol effects are included. There are also factor of two differences in the longwave climate forcing time series, which may indicate problems with the modeling of well-mixed-greenhouse-gas changes. The simple diagnoses we present provide an important and useful first step for understanding differences in AOGCM integrations, indicating that some of the differences in model projections can be attributed to different prescribed climate forcing, even for so-called standard climate change scenarios.

Forster, P M A F; Taylor, K E

2006-07-25T23:59:59.000Z

368

Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry  

SciTech Connect (OSTI)

The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T{sub e}) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n{sub e}) is in the range 10{sup 8}--10{sup 10} {sup {minus}cm }at the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} near the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10{sup 4}--10{sup 5} downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z{sup 2} intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z{sup 2} fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument.

Niu, Hongsen

1995-02-10T23:59:59.000Z

369

Process integrated modelling for steelmaking Life Cycle Inventory analysis  

SciTech Connect (OSTI)

During recent years, strict environmental regulations have been implemented by governments for the steelmaking industry in order to reduce their environmental impact. In the frame of the ULCOS project, we have developed a new methodological framework which combines the process integrated modelling approach with Life Cycle Assessment (LCA) method in order to carry out the Life Cycle Inventory of steelmaking. In the current paper, this new concept has been applied to the sinter plant which is the most polluting steelmaking process. It has been shown that this approach is a powerful tool to make the collection of data easier, to save time and to provide reliable information concerning the environmental diagnostic of the steelmaking processes.

Iosif, Ana-Maria [Arcelor Research, Voie Romaine, BP30320, Maizieres-les-Metz, 57283 (France)], E-mail: ana-maria.iosif@arcelormittal.com; Hanrot, Francois [Arcelor Research, Voie Romaine, BP30320, Maizieres-les-Metz, 57283 (France)], E-mail: francois.hanrot@arcelormittal.com; Ablitzer, Denis [LSG2M, Ecole des Mines de Nancy, Parc de Saurupt, F-54042 Nancy cedex (France)], E-mail: denis.ablitzer@mines.inpl-nancy.fr

2008-10-15T23:59:59.000Z

370

ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION  

SciTech Connect (OSTI)

Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

Martino, C.; Herman, D.; Pike, J.; Peters, T.

2014-06-05T23:59:59.000Z

371

Use of artificial intelligence for process modeling and control  

E-Print Network [OSTI]

, recurrent neural networks constitute a simple and effective general method for static and dynmnic input-output mocleling of nonlinear systems. Design of a fuzzy logic control system for a biochemical system is also conducted, Fuzzification membership... method for input-output modeling of static and dynamic nonlinear systems vis, recurrent neural nctvvorks (RNNs) and design of a fuzzy logic control svstem for a biochcnzical process system. Simulation results show tha. t RNNs can learn nonlinear ste...

You, Yong

1991-01-01T23:59:59.000Z

372

A Process Model of Applicant Faking on Overt Integrity Tests  

E-Print Network [OSTI]

of empirically tested models or appropriate theoretical structures to explain the process (Griffith & McDaniel, 2006; Murphy, 2000). Moreover, there seems to be a limited understanding of possible outcomes associated with applicant faking..., Barrett, & Hogan, 2007; McFarland & Ryan, 2006; Morgeson et al., 2007). According to recent studies, approximately 30-50% of job applicants consciously try to elevate their scores (Donovan, Dwight, & Hurtz, 2003; Griffith et al., 2007)1. Faking...

Yu, Janie

2010-01-14T23:59:59.000Z

373

A simple segregated flow model for a WAG process  

E-Print Network [OSTI]

integration, a volumetric balance of the injectants and the initial reservoir fluids is obtained. The model was developed with several simplifying assumptions including immiscible water and gas phases, incompressible fluid f'low, no trapped oil volumes... with the process are the relatively higher sweep efficiencies of water floods and the low residual oil saturations of miscible gas injection. The mechanism oP water flooding is generally well understood. Many Pields have been and still are being waterflooded...

Hopkins, Christopher Wright

1985-01-01T23:59:59.000Z

374

Super-allowed beta-decay rates in 1d5/2 shell in Coriolis coupling model  

E-Print Network [OSTI]

The expression for super-allowed beta-decay transition rates have been derived within the context of Coriolis coupling model. The derived expressions, valid for the beta-decay between any two mirror nuclei, has been applied to calculate super-allowed beta-decay transition rates of 21Na, 21Mg, 21Al, and 21Si. The calculated rates agree well with the data and the calculations done using the shell model with configuration admixture.

M. Sultan Parvez; F. Bary Malik

2009-04-03T23:59:59.000Z

375

Impact of Agricultural Practice on Regional Climate in a CoupledLand Surface Mesoscale Model  

SciTech Connect (OSTI)

The land surface has been shown to form strong feedbacks with climate due to linkages between atmospheric conditions and terrestrial ecosystem exchanges of energy, momentum, water, and trace gases. Although often ignored in modeling studies, land management itself may form significant feedbacks. Because crops are harvested earlier under drier conditions, regional air temperature, precipitation, and soil moisture, for example, affect harvest timing, particularly of rain-fed crops. This removal of vegetation alters the land surface characteristics and may, in turn, affect regional climate. We applied a coupled climate(MM5) and land-surface (LSM1) model to examine the effects of early and late winter wheat harvest on regional climate in the Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility in the Southern Great Plains, where winter wheat accounts for 20 percent of the land area. Within the winter wheat region, simulated 2 m air temperature was 1.3 C warmer in the Early Harvest scenario at mid-day averaged over the two weeks following harvest. Soils in the harvested area were drier and warmer in the top 10 cm and wetter in the 10-20 cm layer. Midday soils were 2.5 C warmer in the harvested area at mid-day averaged over the two weeks following harvest. Harvest also dramatically altered latent and sensible heat fluxes. Although differences between scenarios diminished once both scenarios were harvested, the short-term impacts of land management on climate were comparable to those from land cover change demonstrated in other studies.

Cooley, H.S.; Riley, W.J.; Torn, M.S.; He, Y.

2004-07-01T23:59:59.000Z

376

Processing of cloud condensation nuclei by collision-coalescence in a mesoscale model  

E-Print Network [OSTI]

The Naval Research Laboratory's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is employed to explore the relative importance of source, sink, and transport processes in producing an accurate forecast of the ...

Mechem, David B.; Robinson, Paul C.; Kogan, Yefim L.

2006-09-26T23:59:59.000Z

377

Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling  

SciTech Connect (OSTI)

The objectives of the overall collaborative EMSP effort (with which this project is associated) were to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and field-scale models of geochemistry and mass transfer. The research was intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models could be upscaled for defensible field-scale predictions of uranium transport in the environment. Within this broader context, objectives of the JHU-based project were to test hypotheses regarding the coupled roles of adsorption and impermeable-zone diffusion in controlling the fate and transport of U(VI) species under conditions of comparatively short-term exposure. In particular, this work tested the following hypotheses: (1) the primary adsorption processes in the Hanford sediment over the pH range of 7 to 10 are surface complexation reactions of aqueous U(VI) hydroxycarbonate and carbonate complexes with amphoteric edge sites on detrital phyllosilicates in the silt/clay size fraction; (2) macroscopic adsorption intensity (at given aqueous conditions) is a function of mineral composition and aquatic chemistry; and (3) equilibrium sorption and desorption to apply in short-term, laboratory-spiked pristine sediments; and (4) interparticle diffusion can be fully understood in terms of a model that couples molecular diffusion of uranium species in the porewater with equilibrium sorption under the relevant aqueous conditions. The primary focus of the work was on developing and applying both models and experiments to test the applicability of "local equilibrium" assumptions in the modeling interpretation of sorption retarded interparticle diffusion, as relevant to processes of U(VI) diffusion in silt/clay layers. Batch isotherm experiments were first used to confirm sorption isotherms under the intended test conditions and diffusion cell experiments were then conducted to explore the diffusion hypotheses. Important new information was obtained about the role of aqueous calcium and solid calcium carbonate in controlling sorption equilibrium with Hanford sediments. The retarded interparticle diffusion model with local sorption equilibrium was shown to very successfully simulate diffusion at high aqueous concentration of U(VI). By contrast, however, diffusion data obtained at low concentration suggested nonequilibrium of sorption even at diffusion time scales. Such nonequilibrium effects at low concentration are likely to be the result of sorption retarded intraparticle diffusion, and strong U(VI) sorption in the low concentration range.

Bai, Jing; Dong, Wenming; Ball, William P.

2006-10-12T23:59:59.000Z

378

Gaussian Process Model for Collision Dynamics of Complex Molecules  

E-Print Network [OSTI]

We show that a Gaussian Process model can be combined with a small number of scattering calculations to provide an accurate multi-dimensional dependence of scattering observables on the experimentally controllable parameters (such as the collision energy, temperature or external fields) as well as the potential energy surface parameters. This can be used for solving the inverse scattering problem, the prediction of collision properties of a specific molecular system based on the information for another molecule, the efficient calculation of thermally averaged observables and for reducing the error of the molecular dynamics calculations by averaging over the potential energy surface variations. We show that, trained by a combination of classical and quantum dynamics calculations, the model provides an accurate description of the scattering cross sections, even near scattering resonances. In this case, the classical calculations stabilize the model against uncertainties arising from wildly varying correlations ...

Cui, Jie

2015-01-01T23:59:59.000Z

379

Evolutionary Processes in Economics: Multi-agent Model of Macrogenerations Dynamics  

E-Print Network [OSTI]

Evolutionary Processes in Economics: Multi-agent Model of Macrogenerations Dynamics Kateryna macroeconomic growth as an evolutionary process. Keywords. Economic growth, evolutionary theory, multi]. Our study models the economic growth as an evolutionary process, where the term `macrogeneration

López-Sánchez, Maite

380

Application of Gamma code coupled with turbomachinery models for high temperature gas-cooled reactors  

SciTech Connect (OSTI)

The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-ofcoolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of a toxic gas, CO, and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. GAMMA code is being developed to implement turbomachinery models in the power conversion unit (PCU) and ultimately models associated with the hydrogen plant. Some preliminary results will be described in this paper.

Chang Oh

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Exploring the effects of a double reconstruction on the geometrical parameters of coupled models, using observational data  

E-Print Network [OSTI]

In this work we study the effects of the non-gravitational exchange energy (Q) between dark matter (DM) fluid and dark energy (DE) fluid on the background evolution of the cosmological parameters. A varying equation of state (EOS) parameter, {\\omega}, for DE is proposed. Considering an universe spatially flat, two distinct coupled models were examined to explore the main cosmological effects generated by the simultaneous reconstruction of Q and {\\omega} on the shape of the jerk parameter, j, through a slight enhancement or suppression of their amplitudes with respect to noncoupled scenarios, during its evolution from the past to the near future. In consequence, j could be used to distinguish any coupled DE models. Otherwise, the observational data were used to put stringent constraints on Q and {\\omega}, respectively. In such a way, we used our results as evidences to search possible deviations from the standard concordance model ({\\Lambda}CDM), examining their predictions and improving our knowledge of the c...

Solano, Freddy Cueva

2015-01-01T23:59:59.000Z

382

Modelling floods in theAmmer catchment:limitations and challenges with a coupled meteo-hydrological model approach Hydrology and Earth System Sciences, 7(6), 833847 (2003) EGU  

E-Print Network [OSTI]

Modelling floods in theAmmer catchment:limitations and challenges with a coupled meteo-hydrological model approach 833 Hydrology and Earth System Sciences, 7(6), 833847 (2003) © EGU Modelling floods in the Ammer catchment: limitations and challenges with a coupled meteo-hydrological model approach R. Ludwig1

Paris-Sud XI, Université de

383

A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite  

E-Print Network [OSTI]

R. , Delgado, J. and Montenegro, L. , 2000. CORE 2D : A code5. Samper, J. , Zhang, G. , Montenegro, L. , 2006. CoupledSamper J. , L. Zheng, L. Montenegro, A.M. Fernández, & P.

Zheng, L.

2010-01-01T23:59:59.000Z

384

A model to evaluate the coupling characteristics from a coaxial line into a cylindrical waveguide  

E-Print Network [OSTI]

The current method of evaluating the coupling characteristics for a resonant microwave cavity sensor, such as that for the Flexured Mass Accelerometer, is limited to finite-element analysis, which takes approximately five ...

Youn, Michelle S. (Michelle Soyeoun), 1979-

2001-01-01T23:59:59.000Z

385

State estimation of the Labrador Sea with a coupled sea ice-ocean adjoint model  

E-Print Network [OSTI]

Sea ice (SI) and ocean variability in marginal polar and subpolar seas are closely coupled. SI variability in the Labrador Sea is of climatic interest because of its relationship to deep convection/mode water formation, ...

Fenty, Ian Gouverneur

2010-01-01T23:59:59.000Z

386

Short communication Dynamics of a model of two delay-coupled relaxation oscillators  

E-Print Network [OSTI]

: Coupled oscillators Devil's Staircase Delay-differential equations a b s t r a c t This paper investigates by regions of complicated dynamics, reminiscent of the Devil's Staircase. Stability of motions in the in

Rand, Richard H.

387

Model and Analytic Processes for Export License Assessments  

SciTech Connect (OSTI)

This paper represents the Department of Energy Office of Nonproliferation Research and Development (NA-22) Simulations, Algorithms and Modeling (SAM) Program's first effort to identify and frame analytical methods and tools to aid export control professionals in effectively predicting proliferation intent; a complex, multi-step and multi-agency process. The report focuses on analytical modeling methodologies that alone, or combined, may improve the proliferation export control license approval process. It is a follow-up to an earlier paper describing information sources and environments related to international nuclear technology transfer. This report describes the decision criteria used to evaluate modeling techniques and tools to determine which approaches will be investigated during the final 2 years of the project. The report also details the motivation for why new modeling techniques and tools are needed. The analytical modeling methodologies will enable analysts to evaluate the information environment for relevance to detecting proliferation intent, with specific focus on assessing risks associated with transferring dual-use technologies. Dual-use technologies can be used in both weapons and commercial enterprises. A decision-framework was developed to evaluate which of the different analytical modeling methodologies would be most appropriate conditional on the uniqueness of the approach, data availability, laboratory capabilities, relevance to NA-22 and Office of Arms Control and Nonproliferation (NA-24) research needs and the impact if successful. Modeling methodologies were divided into whether they could help micro-level assessments (e.g., help improve individual license assessments) or macro-level assessment. Macro-level assessment focuses on suppliers, technology, consumers, economies, and proliferation context. Macro-level assessment technologies scored higher in the area of uniqueness because less work has been done at the macro level. An approach to developing testable hypotheses for the macro-level assessment methodologies is provided. The outcome of this works suggests that we should develop a Bayes Net for micro-level analysis and continue to focus on Bayes Net, System Dynamics and Economic Input/Output models for assessing macro-level problems. Simultaneously, we need to develop metrics for assessing intent in export control, including the risks and consequences associated with all aspects of export control.

Thompson, Sandra E.; Whitney, Paul D.; Weimar, Mark R.; Wood, Thomas W.; Daly, Don S.; Brothers, Alan J.; Sanfilippo, Antonio P.; Cook, Diane; Holder, Larry

2011-09-29T23:59:59.000Z

388

Modeling coupled blast/structure interaction with Zapotec, benchmark calculations for the Conventional Weapon Effects Backfill (CONWEB) tests.  

SciTech Connect (OSTI)

Modeling the response of buried reinforced concrete structures subjected to close-in detonations of conventional high explosives poses a challenge for a number of reasons. Foremost, there is the potential for coupled interaction between the blast and structure. Coupling enters the problem whenever the structure deformation affects the stress state in the neighboring soil, which in turn, affects the loading on the structure. Additional challenges for numerical modeling include handling disparate degrees of material deformation encountered in the structure and surrounding soil, modeling the structure details (e.g., modeling the concrete with embedded reinforcement, jointed connections, etc.), providing adequate mesh resolution, and characterizing the soil response under blast loading. There are numerous numerical approaches for modeling this class of problem (e.g., coupled finite element/smooth particle hydrodynamics, arbitrary Lagrange-Eulerian methods, etc.). The focus of this work will be the use of a coupled Euler-Lagrange (CEL) solution approach. In particular, the development and application of a CEL capability within the Zapotec code is described. Zapotec links two production codes, CTH and Pronto3D. CTH, an Eulerian shock physics code, performs the Eulerian portion of the calculation, while Pronto3D, an explicit finite element code, performs the Lagrangian portion. The two codes are run concurrently with the appropriate portions of a problem solved on their respective computational domains. Zapotec handles the coupling between the two domains. The application of the CEL methodology within Zapotec for modeling coupled blast/structure interaction will be investigated by a series of benchmark calculations. These benchmarks rely on data from the Conventional Weapons Effects Backfill (CONWEB) test series. In these tests, a 15.4-lb pipe-encased C-4 charge was detonated in soil at a 5-foot standoff from a buried test structure. The test structure was composed of a reinforced concrete slab bolted to a reaction structure. Both the slab thickness and soil media were varied in the test series. The wealth of data obtained from these tests along with the variations in experimental setups provide ample opportunity to assess the robustness of the Zapotec CEL methodology.

Bessette, Gregory Carl

2004-09-01T23:59:59.000Z

389

Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)  

SciTech Connect (OSTI)

Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

2014-06-01T23:59:59.000Z

390

Investigating the Correspondence Between Transcriptomic and Proteomic Expression Profiles Using Coupled Cluster Models.  

SciTech Connect (OSTI)

Modern transcriptomics and proteomics enable us to survey the expression of RNAs and proteins at large scales. While these data are usually generated and analysed separately, there is an increasing interest in comparing and co-analysing transcriptome and proteome expression data. A major open question is whether transcriptome and proteome expression is linked and how it is coordinated. Results: Here we have developed a probabilistic clustering model that permits analysis of the links between transcriptomic and proteomic profiles in a sensible and flexible manner. Our coupled mixture model defines a prior probability distribution over the component to which a protein profile should be assigned conditioned on which component the associated mRNA profile belongs to. By providing probabilistic assignments this approach sits between the two extremes of concatenating the data on the assumption that mRNA and protein clusters would have a one-to-one relationship, and independent clustering where the mRNA profile provides no information on the protein profile and vice-versa. We apply this approach to a large dataset of quantitative transcriptomic and proteomic expression data obtained from a human breast epithelial cell line (HMEC) stimulated by epidermal growth factor (EGF) over a series of timepoints corresponding to one cell cycle. The results reveal a complex relationship between transcriptome and proteome with most mRNA clusters linked to at least two protein clusters, and vice versa. A more detailed analysis incorporating information on gene function from the gene ontology database shows that a high correlation of mRNA and protein expression is limited to the components of some molecular machines, such as the ribosome, cell adhesion complexes and the TCP-1 chaperonin involved in protein folding. Conclusions: The dynamic regulation of the transcriptome and proteome in mammalian cells in response to an acute mitogenic stimulus appears largely independent with very little correspondence between mRNA and protein expression. The exceptions involve a few selected multi-protein complexes that require the stoichiometric expression of components for correct function. This finding has wide ramifications regarding the understanding of gene and protein expression including its control and evolution. It also shows that transcriptomic and proteomic expression analysis are complementary and non-redundant.

Rogers, Simon; Girolami, Mark; Kolch, Walter; Waters, Katrina M.; Liu, Tao; Thrall, Brian D.; Wiley, H. S.

2008-12-01T23:59:59.000Z

391

Modeling land surface processes of the midwestern United States : predicting soil moisture under a warmer climate  

E-Print Network [OSTI]

This dissertation seeks to quantify the response of soil moisture to climate change in the midwestern United States. To assess this response, a dynamic global vegetation model, Integrated Biosphere Simulator, was coupled ...

Winter, Jonathan (Jonathan Mark)

2010-01-01T23:59:59.000Z

392

Fundamental Chemical Kinetic And Thermodynamic Data For Purex Process Models  

SciTech Connect (OSTI)

To support either the continued operations of current reprocessing plants or the development of future fuel processing using hydrometallurgical processes, such as Advanced Purex or UREX type flowsheets, the accurate simulation of Purex solvent extraction is required. In recent years we have developed advanced process modeling capabilities that utilize modern software platforms such as Aspen Custom Modeler and can be run in steady state and dynamic simulations. However, such advanced models of the Purex process require a wide range of fundamental data including all relevant basic chemical kinetic and thermodynamic data for the major species present in the process. This paper will summarize some of these recent process chemistry studies that underpin our simulation, design and testing of Purex solvent extraction flowsheets. Whilst much kinetic data for actinide redox reactions in nitric acid exists in the literature, the data on reactions in the diluted TBP solvent phase is much rarer. This inhibits the accurate modelization of the Purex process particularly when species show a significant extractability in to the solvent phase or when cycling between solvent and aqueous phases occurs, for example in the reductive stripping of Pu(IV) by ferrous sulfamate in the Magnox reprocessing plant. To support current oxide reprocessing, we have investigated a range of solvent phase reactions: - U(IV)+HNO{sub 3}; - U(IV)+HNO{sub 2}; - U(IV)+HNO{sub 3} (Pu catalysis); - U(IV)+HNO{sub 3} (Tc catalysis); - U(IV)+ Np(VI); - U(IV)+Np(V); - Np(IV)+HNO{sub 3}; - Np(V)+Np(V); Rate equations have been determined for all these reactions and kinetic rate constants and activation energies are now available. Specific features of these reactions in the TBP phase include the roles of water and hydrolyzed intermediates in the reaction mechanisms. In reactions involving Np(V), cation-cation complex formation, which is much more favourable in TBP than in HNO{sub 3}, also occurs and complicates the redox chemistry. Whilst some features of the redox chemistry in TBP appear similar to the corresponding reactions in aqueous HNO{sub 3}, there are notable differences in rates, the forms of the rate equations and mechanisms. Secondly, to underpin the development of advanced single cycle flowsheets using the complexant aceto-hydroxamic acid, we have also characterised in some detail its redox chemistry and solvent extraction behaviour with both Np and Pu ions. We find that simple hydroxamic acids are remarkably rapid reducing agents for Np(VI). They also reduce Pu(VI) and cause a much slower reduction of Pu(IV) through a complex mechanism involving acid hydrolysis of the ligand. AHA is a strong hydrophilic and selective complexant for the tetravalent actinide ions as evidenced by stability constant and solvent extraction data for An(IV), M(III) and U(VI) ions. This has allowed the successful design of U/Pu+Np separation flowsheets suitable for advanced fuel cycles. (authors)

Taylor, R.J.; Fox, O.D.; Sarsfield, M.J.; Carrott, M.J.; Mason, C.; Woodhead, D.A.; Maher, C.J. [British Technology Centre, Nexia Solutions, Sellafield, Seascale, CA20 1PG (United Kingdom); Steele, H. [Nexia Solutions, inton House, Risley, Warrington, WA3 6AS (United Kingdom); Koltunov, V.S. [A.A. Bochvar All-Russia Institute of Inorganic Materials, VNIINM, PO Box 369, Moscow 123060 (Russian Federation)

2007-07-01T23:59:59.000Z

393

Coupled Geochemical and Hydrological Processes Governing the Fate and Transport of Radionuclides and Toxic Metals Beneath the Hanford Tank Farms  

SciTech Connect (OSTI)

The goal of this research was to provide an improved understanding and predictive capability of coupled hydrological and geochemical mechanisms that are responsible for the accelerated migration and immobilization of radionuclides and toxic metals in the badose zone beneath the Hanford Tank Farms.

Scott Fendorf; Phil Jardine

2006-07-21T23:59:59.000Z

394

Report on Modeling Coupled Processes in the Near Field of a Clay Repository  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashesEnergy byNuclear Reactor August S.8,|

395

Efficacy-aware Business Process Modeling Matthias Lohrmann and Manfred Reichert  

E-Print Network [OSTI]

Efficacy-aware Business Process Modeling Matthias Lohrmann and Manfred Reichert Ulm University. In business process design, business objective models can ful- fill the role of formal requirement definitions for progressive appli- cations like automated process optimization. Key words: Business Process Modeling

Ulm, Universität

396

A Model for the Visualization Exploration Process T.J. Jankun-Kelly  

E-Print Network [OSTI]

A Model for the Visualization Exploration Process T.J. Jankun-Kelly Kwan-Liu Ma Michael Gertz of the visualization exploration process. The model, based upon a new parameter derivation calculus, can be used the visualization process to further data exploration. Keywords: visualization process, visualization models, visual

Ma, Kwan-Liu

397

Business Modelling is not Process Modelling Jaap Gordijn12, Hans Akkermans13, and Hans van Vliet1  

E-Print Network [OSTI]

Business Modelling is not Process Modelling Jaap Gordijn12, Hans Akkermans13, and Hans van Vliet1 1 with a design of the e-business model. We often encounter the view, in research as well as industry practice, that an e-business model is similar to a business process model, and so can be specified using UML activity

van Vliet, Hans

398

Coupling GIS and LCA for biodiversity assessments of land use: Part 1: Inventory modeling  

E-Print Network [OSTI]

of land use Part 1: Inventory modeling Roland Geyer & Davidthe use of GIS-based inventory modeling to generatedemonstrated that GIS-based inventory modeling of land use

Geyer, Roland; Stoms, David M.; Lindner, Jan P.; Davis, Frank W.; Wittstock, Bastian

2010-01-01T23:59:59.000Z

399

Model operating permits for natural gas processing plants  

SciTech Connect (OSTI)

Major sources as defined in Title V of the Clean Air Act Amendments of 1990 that are required to submit an operating permit application will need to: Evaluate their compliance status; Determine a strategic method of presenting the general and specific conditions of their Model Operating Permit (MOP); Maintain compliance with air quality regulations. A MOP is prepared to assist permitting agencies and affected facilities in the development of operating permits for a specific source category. This paper includes a brief discussion of example permit conditions that may be applicable to various types of Title V sources. A MOP for a generic natural gas processing plant is provided as an example. The MOP should include a general description of the production process and identify emission sources. The two primary elements that comprise a MOP are: Provisions of all existing state and/or local air permits; Identification of general and specific conditions for the Title V permit. The general provisions will include overall compliance with all Clean Air Act Titles. The specific provisions include monitoring, record keeping, and reporting. Although Title V MOPs are prepared on a case-by-case basis, this paper will provide a general guideline of the requirements for preparation of a MOP. Regulatory agencies have indicated that a MOP included in the Title V application will assist in preparation of the final permit provisions, minimize delays in securing a permit, and provide support during the public notification process.

Arend, C. [Hydro-Search, Inc., Houston, TX (United States)

1995-12-31T23:59:59.000Z

400

A Quality Based Approach for the Analysis and Design of Business Process Models  

E-Print Network [OSTI]

A Quality Based Approach for the Analysis and Design of Business Process Models Sarah Ayad1 CEDRIC in modeling and improving Business Process (BP) models quality. This problem is of growing interest exploiting domain knowledge. Keywords-component: Business Process Models, Quality metrics, Quality

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

MODELING THE INFLUENCE OF HETEROGENEITY AND ANISOTROPY ON PHYSICAL PROCESSES IN  

E-Print Network [OSTI]

the interplay of coupled physical and chemical processes interacting in partially water- saturated waste rock the piles. This process is a much more efficient oxygen transport mechanism than diffusion and it sustains of existing piles and guidelines on constructing new pile with minimal ARD production. Aubertin et al. (2005

Aubertin, Michel

402

NEUTRINO-COOLED ACCRETION MODEL WITH MAGNETIC COUPLING FOR X-RAY FLARES IN GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

The neutrino-cooled accretion disk, which was proposed to work as the central engine of gamma-ray bursts, encounters difficulty in interpreting the X-ray flares after the prompt gamma-ray emission. In this paper, the magnetic coupling (MC) between the inner disk and the central black hole (BH) is taken into consideration. For mass accretion rates around 0.001 {approx} 0.1 M{sub Sun} s{sup -1}, our results show that the luminosity of neutrino annihilation can be significantly enhanced due to the coupling effects. As a consequence, after the gamma-ray emission, a remnant disk with mass M{sub disk} {approx}< 0.5 M{sub Sun} may power most of the observed X-ray flares with the rest frame duration less than 100 s. In addition, a comparison between the MC process and the Blandford-Znajek mechanism is shown on the extraction of BH rotational energy.

Luo Yang; Gu Weimin; Liu Tong; Lu Jufu, E-mail: guwm@xmu.edu.cn [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)

2013-08-20T23:59:59.000Z

403

Statistical Modeling of Marked Point Processes and (Ultra-)High Frequency Data  

E-Print Network [OSTI]

the ACD model with a GARCH model for prices, Engle [25]these, the Generalized ARCH (GARCH) model by Bollerslev [11]in practice. Definition 3.7 (GARCH(r, s) model) A process {z

Wen, Musen

2010-01-01T23:59:59.000Z

404

Petri-Net Simulation Model of a Nuclear Component Degradation Process , E. Zioa,b  

E-Print Network [OSTI]

1 Petri-Net Simulation Model of a Nuclear Component Degradation Process Y.F. Lia* , E. Zioa,b , Y models [2-5] and simulation models [1, 6, 7]. The analytical degradation models can be further classified

Paris-Sud XI, Université de

405

SIMULATING THE FEASIBILITY AND PERFORMANCE OF A REALTIME WATER MARKET BY COUPLING AN AGENTBASED MODEL AND  

E-Print Network [OSTI]

without artificial irrigation (bushel/acre) : maximum yield without water shortage(bushel/acre) : maximumSIMULATING THE FEASIBILITY AND PERFORMANCE OF A REALTIME WATER MARKET BY COUPLING AN AGENTBASED Engineering, University of Illinois at Urbana­Champaign Erhu Du1, Barbara Minsker1 and Ximing Cai1, Water

Yang, Zong-Liang

406

Modeling of diffusion of injected electron spins in spin-orbit coupled microchannels  

E-Print Network [OSTI]

We report on a theoretical study of spin dynamics of an ensemble of spin-polarized electrons injected in a diffusive microchannel with linear Rashba and Dresselhaus spin-orbit coupling. We explore the dependence of the spin-precession and spin...

Zarbo, Liviu P.; Sinova, Jairo; Knezevic, I.; Wunderlich, J.; Jungwirth, T.

2010-01-01T23:59:59.000Z

407

Modeling of inductively coupled plasma SF{sub 6}/O{sub 2}/Ar plasma discharge: Effect of O{sub 2} on the plasma kinetic properties  

SciTech Connect (OSTI)

A global model has been developed for low-pressure, inductively coupled plasma (ICP) SF{sub 6}/O{sub 2}/Ar mixtures. This model is based on a set of mass balance equations for all the considered species, coupled with the discharge power balance equation and the charge neutrality condition. The present study is an extension of the kinetic global model previously developed for SF{sub 6}/Ar ICP plasma discharges [Lallement et al., Plasma Sources Sci. Technol. 18, 025001 (2009)]. It is focused on the study of the impact of the O{sub 2} addition to the SF{sub 6}/Ar gas mixture on the plasma kinetic properties. The simulation results show that the electron density increases with the %O{sub 2}, which is due to the decrease of the plasma electronegativity, while the electron temperature is almost constant in our pressure range. The density evolutions of atomic fluorine and oxygen versus %O{sub 2} have been analyzed. Those atomic radicals play an important role in the silicon etching process. The atomic fluorine density increases from 0 up to 40% O{sub 2} where it reaches a maximum. This is due to the enhancement of the SF{sub 6} dissociation processes and the production of fluorine through the reactions between SF{sub x} and O. This trend is experimentally confirmed. On the other hand, the simulation results show that O(3p) is the preponderant atomic oxygen. Its density increases with %O{sub 2} until reaching a maximum at almost 40% O{sub 2}. Over this value, its diminution with O{sub 2}% can be justified by the high increase in the loss frequency of O(3p) by electronic impact in comparison to its production frequency by electronic impact with O{sub 2}.

Pateau, Amand [Institut des Matériaux Jean Rouxel, Université de Nantes, 2 rue de la Houssiniére 44322 Nantes, France and ST Microelectronics, 10 rue Thals de Milet, 37071 Tours (France); Rhallabi, Ahmed, E-mail: ahmed.rhallabi@univ-nantes.fr; Fernandez, Marie-Claude [Institut des Matériaux Jean Rouxel, Université de Nantes, 2 rue de la Houssiniére 44322 Nantes (France); Boufnichel, Mohamed; Roqueta, Fabrice [ST Microelectronics, 10 rue Thales de Milet, 37071 Tours (France)

2014-03-15T23:59:59.000Z

408

Modeling Wettability Alteration using Chemical EOR Processes in Naturally Fractured Reservoirs  

SciTech Connect (OSTI)

The objective of our search is to develop a mechanistic simulation tool by adapting UTCHEM to model the wettability alteration in both conventional and naturally fractured reservoirs. This will be a unique simulator that can model surfactant floods in naturally fractured reservoir with coupling of wettability effects on relative permeabilities, capillary pressure, and capillary desaturation curves. The capability of wettability alteration will help us and others to better understand and predict the oil recovery mechanisms as a function of wettability in naturally fractured reservoirs. The lack of a reliable simulator for wettability alteration means that either the concept that has already been proven to be effective in the laboratory scale may never be applied commercially to increase oil production or the process must be tested in the field by trial and error and at large expense in time and money. The objective of Task 1 is to perform a literature survey to compile published data on relative permeability, capillary pressure, dispersion, interfacial tension, and capillary desaturation curve as a function of wettability to aid in the development of petrophysical property models as a function of wettability. The new models and correlations will be tested against published data. The models will then be implemented in the compositional chemical flooding reservoir simulator, UTCHEM. The objective of Task 2 is to understand the mechanisms and develop a correlation for the degree of wettability alteration based on published data. The objective of Task 3 is to validate the models and implementation against published data and to perform 3-D field-scale simulations to evaluate the impact of uncertainties in the fracture and matrix properties on surfactant alkaline and hot water floods.

Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

2007-09-30T23:59:59.000Z

409

Adaptive model predictive process control using neural networks  

DOE Patents [OSTI]

A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.

Buescher, Kevin L. (Los Alamos, NM); Baum, Christopher C. (Mazomanie, WI); Jones, Roger D. (Espanola, NM)

1997-01-01T23:59:59.000Z

410

Adaptive model predictive process control using neural networks  

DOE Patents [OSTI]

A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

Buescher, K.L.; Baum, C.C.; Jones, R.D.

1997-08-19T23:59:59.000Z

411

Evaluation and Comparison of Ecological Models Simulating Nitrogen Processes in Treatment Wetlands,Implemented in Modelica.  

E-Print Network [OSTI]

?? Two ecological models of nitrogen processes in treatment wetlands have been evaluated and compared. These models have been implemented, simulated, and visualized in the… (more)

Edelfeldt, Stina

2005-01-01T23:59:59.000Z

412

THE CARBON-LAND MODEL INTERCOMPARISON PROJECT (C-LAMP): A PROTOTYPE FOR COUPLED BIOSPHERE-ATMOSPHERE MODEL  

E-Print Network [OSTI]

often referred to as Earth System Models (ESMs). While a number of terrestrial and ocean carbon models

Hoffman, Forrest M.

413

Higgs couplings and Naturalness in the littlest Higgs model with T-parity at the LHC and TLEP  

E-Print Network [OSTI]

Motivated by the recent LHC Higgs data and null results in searches for any new physics, we investigate the Higgs couplings and naturalness in the littlest Higgs model with T-parity. By performing the global fit of the latest Higgs data, electroweak precise observables and $R_{b}$ measurements, we find that the scale $f$ can be excluded up to 600 GeV at $2\\sigma$ confidence level. The expected Higgs coupling measurements at the future collider TLEP will improve this lower limit to above 3 TeV. Besides, the top parnter mass $m_{T_{+}}$ can be excluded up to 880 GeV at $2\\sigma$ confidence level. The future HL-LHC can constrain this mass in the region $m_{T_{+}} < 2.2$ TeV corresponding to the fine-tuning being lager than 1%.

Bingfang Yang; Guofa Mi; Ning Liu

2014-09-23T23:59:59.000Z

414

The pressure of strong coupling lattice QCD with heavy quarks, the hadron resonance gas model and the large N limit  

E-Print Network [OSTI]

In this paper we calculate the pressure of pure lattice Yang-Mills theories and lattice QCD with heavy quarks by means of strong coupling expansions. Dynamical fermions are introduced with a hopping parameter expansion, which also allows for the incorporation of finite quark chemical potential. We show that in leading orders the results are in full agreement with expectations from the hadron resonance gas model, thus validating it with a first principles calculation. For pure Yang-Mills theories we obtain the corresponding ideal glueball gas, in QCD with heavy quarks our result equals that of an ideal gas of mesons and baryons. Another finding is that the Yang-Mills pressure in the large N limit is of order $\\sim N^0$ to the calculated orders, when the inverse 't Hooft coupling is used as expansion parameter. This property is expected in the confined phase, where our calculations take place.

Jens Langelage; Owe Philipsen

2010-02-08T23:59:59.000Z

415

FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR  

SciTech Connect (OSTI)

Inorganic arsenic and organoarsenic compounds were speciated in seven oil shale retort and process waters, including samples from simulated, true and modified in situ processes, using a high performance liquid chromatograph automatically coupled to a graphite furnace atomic absorption detector. The molecular forms of arsenic at ppm levels (({micro}g/mL) in these waters are identified for the first time, and shown to include arsenate, methylarsonic acid and phenylarsonic acid. An arsenic-specific fingerprint chromatogram of each retort or process water studied has significant impliestions regarding those arsenical species found and those marginally detected, such as dimethylarsinic acid and the suspected carcinogen arsenite. The method demonstrated suggests future means for quantifying environmental impacts of bioactive organometal species involved in oil shale retorting technology.

Fish, Richard H.; Brinckman, Frederick E.; Jewett, Kenneth L.

1981-07-01T23:59:59.000Z

416

Frontal Scale AirSea Interaction in High-Resolution Coupled Climate Models FRANK O. BRYAN, ROBERT TOMAS, AND JOHN M. DENNIS  

E-Print Network [OSTI]

Frontal Scale Air­Sea Interaction in High-Resolution Coupled Climate Models FRANK O. BRYAN, ROBERT The emerging picture of frontal scale air­sea interaction derived from high-resolution satellite observations have revealed fundamentally different air­sea coupling mechanisms on the scale of ocean fronts

Kurapov, Alexander

417

MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS  

SciTech Connect (OSTI)

Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

Nash, C.; Hang, T.; Aleman, S.

2011-01-03T23:59:59.000Z

418

Model for a Josephson junction array coupled to a resonant cavity  

SciTech Connect (OSTI)

We describe a simple Hamiltonian for an underdamped Josephson array coupled to a single photon mode in a resonant cavity. Using a Hartree-like mean-field theory, we show that, for any given strength of coupling between the photon field and the Josephson junctions, there is a transition from incoherence to coherence as a function of N, the number of Josephson junctions in the array. Above that value of N, the energy in the photon field is proportional to N{sup 2}, suggestive of coherent emission. These features remain even when the junction parameters have some random variation from junction to junction, as expected in a real array. Both of these features agree with recent experiments by Barbara and co-workers. (c) 2000 The American Physical Society.

Harbaugh, J. Kent [Department of Physics, Ohio State University, 174 West 18th Avenue, Columbus, Ohio 43210 (United States)] [Department of Physics, Ohio State University, 174 West 18th Avenue, Columbus, Ohio 43210 (United States); Stroud, D. [Department of Physics, Ohio State University, 174 West 18th Avenue, Columbus, Ohio 43210 (United States)] [Department of Physics, Ohio State University, 174 West 18th Avenue, Columbus, Ohio 43210 (United States)

2000-06-01T23:59:59.000Z

419

From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations  

SciTech Connect (OSTI)

Climate projections depend on scenarios of fossil fuel emissions and land use change, and the IPCC AR5 parallel process assumes consistent climate scenarios across Integrated Assessment and Earth System Models (IAMs and ESMs). To facilitate consistency, CMIP5 used a novel land use harmonization to provide ESMs with seamless, 1500-2100 land use trajectories generated by historical data and four IAMs. However, we have identified and partially addressed a major gap in the CMIP5 land coupling design. The CMIP5 Community ESM (CESM) global afforestation is only 22% of RCP4.5 afforestation from 2005 to 2100. Likewise, only 17% of the Global Change Assessment Model’s (GCAM’s) 2040 RCP4.5 afforestation signal, and none of the pasture loss, were transmitted to CESM within a newly integrated model. This is a critical problem because afforestation is necessary for achieving the RCP4.5 climate stabilization. We attempted to rectify this problem by modifying only the ESM component of the integrated model, enabling CESM to simulate 66% of GCAM’s afforestation in 2040, and 94% of GCAM’s pasture loss as grassland and shrubland losses. This additional afforestation increases vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, implying different climate scenarios between CMIP5 GCAM and CESM. Similar inconsistencies likely exist in other CMIP5 model results, primarily because land cover information is not shared between models, with possible contributions from afforestation exceeding model-specific, potentially viable forest area. Further work to harmonize land cover among models will be required to adequately rectify this problem.

Di Vittorio, Alan; Chini, Louise M.; Bond-Lamberty, Benjamin; Mao, Jiafu; Shi, Xiaoying; Truesdale, John E.; Craig, Anthony P.; Calvin, Katherine V.; Jones, Andrew D.; Collins, William D.; Edmonds, James A.; Hurtt, George; Thornton, Peter E.; Thomson, Allison M.

2014-11-27T23:59:59.000Z

420

Application of Gaussian Process Modeling to Analysis of Functional Unreliability  

SciTech Connect (OSTI)

This paper applies Gaussian Process (GP) modeling to analysis of the functional unreliability of a “passive system.” GPs have been used widely in many ways [1]. The present application uses a GP for emulation of a system simulation code. Such an emulator can be applied in several distinct ways, discussed below. All applications illustrated in this paper have precedents in the literature; the present paper is an application of GP technology to a problem that was originally analyzed [2] using neural networks (NN), and later [3, 4] by a method called “Alternating Conditional Expectations” (ACE). This exercise enables a multifaceted comparison of both the processes and the results. Given knowledge of the range of possible values of key system variables, one could, in principle, quantify functional unreliability by sampling from their joint probability distribution, and performing a system simulation for each sample to determine whether the function succeeded for that particular setting of the variables. Using previously available system simulation codes, such an approach is generally impractical for a plant-scale problem. It has long been recognized, however, that a well-trained code emulator or surrogate could be used in a sampling process to quantify certain performance metrics, even for plant-scale problems. “Response surfaces” were used for this many years ago. But response surfaces are at their best for smoothly varying functions; in regions of parameter space where key system performance metrics may behave in complex ways, or even exhibit discontinuities, response surfaces are not the best available tool. This consideration was one of several that drove the work in [2]. In the present paper, (1) the original quantification of functional unreliability using NN [2], and later ACE [3], is reprised using GP; (2) additional information provided by the GP about uncertainty in the limit surface, generally unavailable in other representations, is discussed; (3) a simple forensic exercise is performed, analogous to the inverse problem of code calibration, but with an accident management spin: given an observation about containment pressure, what can we say about the system variables? References 1. For an introduction to GPs, see (for example) Gaussian Processes for Machine Learning, C. E. Rasmussen and C. K. I. Williams (MIT, 2006). 2. Reliability Quantification of Advanced Reactor Passive Safety Systems, J. J. Vandenkieboom, PhD Thesis (University of Michigan, 1996). 3. Z. Cui, J. C. Lee, J. J. Vandenkieboom, and R. W. Youngblood, “Unreliability Quantification of a Containment Cooling System through ACE and ANN Algorithms,” Trans. Am. Nucl. Soc. 85, 178 (2001). 4. Risk and Safety Analysis of Nuclear Systems, J. C. Lee and N. J. McCormick (Wiley, 2011). See especially §11.2.4.

R. Youngblood

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Toward a Time-centric modeling of Business Processes in BPMN 2.0  

E-Print Network [OSTI]

Toward a Time-centric modeling of Business Processes in BPMN 2.0 Saoussen Cheikhrouhou Re, regulatory, and managerial rules. One of the most promising standards for business process model- ing, namely the Business process Model and notation BPMN poorly addresses the time dimension so far. In this paper, we

Paris-Sud XI, Université de

422

A Role-Based Framework for Business Process Modeling Artur Caetano1,2  

E-Print Network [OSTI]

A Role-Based Framework for Business Process Modeling Artur Caetano1,2 , Marielba Zacarias2 to business process modeling do not separate the collaborative aspects of a business object from its internal increasing the understandability and reusability of business process models. This approach makes use

423

Business Excellence '03 A Supporting Tool for Business Process Modeling Castela, Tribolet, Guerra, Lopes  

E-Print Network [OSTI]

Business Excellence '03 A Supporting Tool for Business Process Modeling Castela, Tribolet, Guerra, Lopes A SUPPORTING TOOL FOR BUSINESS PROCESS MODELING Nuno Castela* INESC-CEO / Instituto Politécnico de It is largely recognized that Business Process Modeling it is an increasingly task for nowadays organizations

424

A Model-driven Approach to Designing Cross-enterprise Business Processes  

E-Print Network [OSTI]

A Model-driven Approach to Designing Cross- enterprise Business Processes Bernhard Bauer1, Jörg P.p.mueller@siemens.com Abstract. Modeling and managing business processes that span multiple or- ganizations involves new for interoperability. In this paper, we present an approach to modeling cross-enterprise business processes based

Bauer, Bernhard

425

A Pattern-based Approach to Business Process Modeling and Implementation in Web Services  

E-Print Network [OSTI]

A Pattern-based Approach to Business Process Modeling and Implementation in Web Services Steen are used for tool based model transformations of the business processes. To support our approach, we shall effort of different groups of experts; business analysts model the process at a high conceptual level

Bordbar, Behzad

426

To appear in the IEEE Visualization 2002 Proceedings A Model for the Visualization Exploration Process  

E-Print Network [OSTI]

- sualization process is discussed, leading to a general model of the visualization exploration process this end, a model for the visualization exploration process has been developed. Visualization and GraphicsTo appear in the IEEE Visualization 2002 Proceedings A Model for the Visualization Exploration

Jankun-Kelly, T. J.

427

Uranium Removal from Groundwater via In Situ Biostimulation: Field-Scale Modeling of Transport and Biological Processes  

SciTech Connect (OSTI)

During 2002 and 2003, bioremediation experiments in the unconfined aquifer of the Old Rifle UMTRA field site in western Colorado provided evidence for the immobilization of hexavalent uranium in groundwater by iron-reducing Geobacter sp. stimulated by acetate amendment. As the bioavailable Fe(III) terminal electron acceptor was depleted in the zone just downgradient of the acetate injection gallery, sulfate-reducing organisms came to dominate the microbial community. In the present study, we use multicomponent reactive transport modeling to analyze data from the 2002 field experiment to 1) identify the dominant transport and biological processes controlling uranium mobility during biostimulation, 2) determine field-scale parameters for these modeled processes, and 3) apply the calibrated process models to history match observations during the 2003 field experiment. In spite of temporally and spatially variable observations during the field-scale biostimulation experiments, the coupled process simulation approach was able to establish a quantitative characterization of the principal flow, transport, and reaction processes that could be applied without modification to describe the 2003 field experiment. Insights gained from this analysis include field-scale estimates of bioavailable Fe(III) mineral, and the magnitude of uranium bioreduction during biostimulated growth of the iron-reducing and sulfate-reducing microorganisms.

Yabusaki, Steven B.; Fang, Yilin; Long, Philip E.; Resch, Charles T.; Peacock, Aaron D.; Komlos, John; Jaffe, Peter R.; Morrison, Stan J.; Dayvault, Richard; White, David C.; Anderson, Robert T.

2007-03-12T23:59:59.000Z

428

Enabling a User-Friendly Visualization of Business Process Models  

E-Print Network [OSTI]

complex business pro- cesses. Engineering processes in the automotive domain, for example, may comprise processes [1]. Engineering processes in the automotive domain [2], for example, may comprise hundreds engineering process from the automotive domain. Note that the example only serves for illustration purposes

Ulm, Universität

429

Kinetics and radiative processes in Xe/I{sub 2} inductively coupled rf discharges at low pressure  

SciTech Connect (OSTI)

The environmental concern over the presence of mercury in conventional fluorescent lamps has motivated research into alternative electrically efficient near UV plasma lighting sources. One such candidate is multi-wavelength UV emission from Xe/I{sub 2} mixtures, including excimer radiation from XeI at 253 nm. Previous studies of the XeI system were performed at high pressures and were intended for laser applications. Practical Xe/I{sub 2} lamps will likely operate in the 0.5--10 torr regime and use electrodeless excitation to avoid issues related to electrode erosion by the halogen. In this paper, the authors report on an experimental investigation of low pressure, inductively coupled plasmas sustained in Xe/I{sub 2} mixtures. The goals of this work are to characterize the UV emission and determine excitation mechanisms in a parameter space of interest to lighting applications.

Barnes, P.N.; Verdeyen, J.T.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

1996-12-31T23:59:59.000Z

430

A Categorization of Collaborative Business Process Modeling Techniques Stephan Roser, Bernhard Bauer  

E-Print Network [OSTI]

A Categorization of Collaborative Business Process Modeling Techniques Stephan Roser, Bernhard [roser, bauer]@informatik.uni-augsburg.de Abstract Business Process Modeling (BPM) is one of the key a categorization for the classification of modeling languages and ap- proaches used to model collaborative business

Bauer, Bernhard

431

Chapter 4: Refrigeration Process Control: Simulation Model 64 44.. RREEFFRRIIGGEERRAATTIIOONN PPRROOCCEESSSS  

E-Print Network [OSTI]

Chapter 4: Refrigeration Process Control: Simulation Model 64 44.. RREEFFRRIIGGEERRAATTIIOONN of the simulation model for the two-stage refrigeration system is presented. The model is based on the mathematical, it is #12;Chapter 4: Refrigeration Process Control: Simulation Model 65 translated into FORTRAN or C

Skogestad, Sigurd

432

Nuclear $\\beta$-decay half-lives in the relativistic point-coupling model  

E-Print Network [OSTI]

The self-consistent proton-neutron quasiparticle random phase approximation approach is employed to calculate $\\beta$-decay half-lives of neutron-rich even-even nuclei with $8\\leqslant Z \\leqslant 30$. A newly proposed nonlinear point-coupling effective interaction PC-PK1 is used in the calculations. It is found that the isoscalar proton-neutron pairing interaction can significantly reduce $\\beta$-decay half-lives. With an isospin-dependent isoscalar proton-neutron pairing strength, our results well reproduce the experimental $\\beta$-decay half-lives, although the pairing strength is not adjusted using the half-lives calculated in this study.

Wang, Z Y; Niu, Y F; Guo, J Y

2015-01-01T23:59:59.000Z

433

SciTech Connect: Progress in coupling Land Ice and Ocean Models in the MPAS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) Ca (2)Framework Conference: Progress in coupling

434

Kaon Condensation in a Neutron Star under Strong Magnetic Fields by Using the Modified Quark-meson Coupling Model  

E-Print Network [OSTI]

We have considered the antikaon condensation in a neutron star in the presence of strong magnetic fields by using the modified quark-meson coupling (MQMC) model. The structure of the neutron star is investigated with various magnetic fields and different kaon optical potentials, and the effects of the magnetic fields for kaon condensation is discussed. When employing strong magnetic fields inside a neutron star with hyperons and kaon condensation, the magnetic fields can cause the equation of state to be stiff; thus, a large maximum mass of the neutron star can be obtained.

C. Y. Ryu; S. W. Hong

2011-08-27T23:59:59.000Z

435

The long-term change of El Nińo Southern Oscillation in an ensemble reanalysis and climate coupled models  

E-Print Network [OSTI]

THE LONG-TERM CHANGE OF EL NI?O SOUTHERN OSCILLATION IN AN ENSEMBLE REANALYSIS AND CLIMATE COUPLED MODELS A Dissertation by CHUNXUE YANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...ESM1-M Norwegian Climate Centre 3 F19, L26 gx1v6L53 Bentsen et al. [2012] 20 CHAPTER III RESULTS Ensemble Reanalysis Ensemble Statistics El Ni?o/Southern Oscillation (ENSO) has significant impact on world economics, society...

Yang, Chunxue 1984-

2012-12-06T23:59:59.000Z

436

Thermodynamics of MgB2 described by the weak-coupling two-band BCS model  

E-Print Network [OSTI]

Thermodynamics of MgB2 described by the weak-coupling two-band BCS model Todor M. Mishonov,1,2 Valery L. Pokrovsky,3,4 and Hongduo Wei3 1Faculty of Physics, Sofia University ?St. Kliment Ohridski,? 5 James Bourchier Boulevard, BG-1164 Sofia..., Bulgaria 2Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001, Belgium 3Department of Physics, Texas A&M University, College Station, Texas 77843-4242, USA 4Landau Institute for Theoretical...

Mishonov, TM; Pokrovsky, Valery L.; Wei, HD.

2005-01-01T23:59:59.000Z

437

Advanced modeling of planarization processes for integrated circuit fabrication  

E-Print Network [OSTI]

Planarization processes are a key enabling technology for continued performance and density improvements in integrated circuits (ICs). Dielectric material planarization is widely used in front-end-of-line (FEOL) processing ...

Fan, Wei, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

438

Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP10, Process Modelling, H. K. D. H. Bhadeshia  

E-Print Network [OSTI]

Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP10, Process.­E. Svensson. The metallurgy of the welded joint can be categorised into two major regions, the fusion zone

Cambridge, University of

439

Modeling the coupled effects of heat transfer. thermochemistry, and kinetics during biomass torrefaction  

E-Print Network [OSTI]

Torrefaction is a thermal pretreatment process which improves the energy density, storage, grinding, and handling characteristics of raw biomass. Research efforts to date have focused on empirical measurements of the fuel ...

Bates, Richard Burton

2012-01-01T23:59:59.000Z

440

Summer school MOVEP 2002 MOdelling and VErification of parallel Processes  

E-Print Network [OSTI]

checking and program analysis", Markus Mueller-Olm (University of Dortmund) 2. "Model checking infinite

Ryan, Mark

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Development of Efficient Flowsheet and Transient Modeling for Nuclear Heat Coupled Sulfur Iodine Cyclefor Hydrogen Production  

SciTech Connect (OSTI)

The realization of the hydrogen as an energy carrier for future power sources relies on a practical method of producing hydrogen in large scale with no emission of green house gases. Hydrogen is an energy carrier which can be produced by a thermochemical water splitting process. The Sulfur-Iodine (SI) process is an example of a water splitting method using iodine and sulfur as recycling agents.

Shripad T. Revankar; Nicholas R. Brown; Cheikhou Kane; Seungmin Oh

2010-05-01T23:59:59.000Z

442

RATDAMPER - A Numerical Model for Coupling Mechanical and Hydrological Properties within the Disturbed Rock Zone at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

A numerical model for predicting damage and permeability in the disturbed rock zone (DRZ) has been developed. The semi-empirical model predicts damage based on a function of stress tensor invariant. For a wide class of problems hydrologic/mechanical coupling is necessary for proper analysis. The RATDAMPER model incorporates dilatant volumetric strain and permeability. The RATDAMPER model has been implemented in a weakly coupled code, which combines a finite element structural code and a finite difference multi-phase fluid flow code. Using the development of inelastic volumetric strain, a value of permeability can be assigned. This flexibility allows empirical permeability functional relationships to be evaluated.

RATH,JONATHAN S.; PFEIFLE,T.W.; HUNSCHE,U.

2000-11-27T23:59:59.000Z

443

Study of the digital camera acquisition process and statistical modeling of the sensor raw data  

E-Print Network [OSTI]

Study of the digital camera acquisition process and statistical modeling of the sensor raw data C. In the present report we present a detailed analysis of the digital image acquisition process which allows us. Aguerrebere, J. Delon, Y. Gousseau, P. Mus´e 1 Introduction The accurate modeling of the acquisition process

444

Thermodynamics and kinetics of competing aggregation processes in a simple model system  

E-Print Network [OSTI]

Thermodynamics and kinetics of competing aggregation processes in a simple model system Ambarish 8 November 2007 A simple model system has been used to develop thermodynamics and kinetics for bulk and thermodynamics of the processes and to infer the conditions in which one process dominates another, in the high

Berry, R. Stephen

445

Models for Optimization of Energy Consumption of Pumps in a Wastewater Processing Plant  

E-Print Network [OSTI]

Models for Optimization of Energy Consumption of Pumps in a Wastewater Processing Plant Zijun Zhang in the wastewater preliminary treatment process is discussed. Data- mining algorithms are utilized to develop pump performance models based on industrial data collected at a municipal wastewater processing plant

Kusiak, Andrew

446

Multi-Modal Modeling, Analysis and Validation of Open Source Software Requirements Processes  

E-Print Network [OSTI]

model of the OSS requirements process requires multiple, comparative project case studies, so our1 Multi-Modal Modeling, Analysis and Validation of Open Source Software Requirements Processes Walt@uci.edu Abstract Understanding the context, structure, activities, and content of software development processes

Scacchi, Walt

447

Modeling Disease Incidence Data with Spatial and Spatio-Temporal Dirichlet Process Mixtures  

E-Print Network [OSTI]

Modeling Disease Incidence Data with Spatial and Spatio-Temporal Dirichlet Process Mixtures approaches to analyze such data. We develop a hierarchical specification using spatial random effects modeled. Key words: Areal unit spatial data; Dirichlet process mixture models; Disease mapping; Dy- namic

Wolpert, Robert L

448

Adaptive design of cross-organizational business processes using a model-driven architecture  

E-Print Network [OSTI]

Adaptive design of cross-organizational business processes using a model-driven architecture, methodologies, methods, and infrastructures to support end-to-end modeling of cross-organizational business: First, we present a conceptual architecture for modeling collaborative business processes based

Bauer, Bernhard

449

Sensitivity Analysis of Optimal Operation of an Activated Sludge Process Model for Economic Controlled Variable Selection  

E-Print Network [OSTI]

Sensitivity Analysis of Optimal Operation of an Activated Sludge Process Model for Economic operation conducted on an activated sludge process model based on the test-bed benchmark simulation model no structure that leads to optimal economic operation, while promptly rejecting disturbances at lower layers

Skogestad, Sigurd

450

Energy-efficient Model Inference in Wireless Sensing: Asymmetric Data Processing  

E-Print Network [OSTI]

Energy-efficient Model Inference in Wireless Sensing: Asymmetric Data Processing Paul G. Flikkema assessment and management of model uncertainty. At the same time, energy constraints impose the need--The ultimate product of distributed sensing is nor- mally a model that describes the data or a set of processes

451

HYDROLOGICAL PROCESSES, VOL. 6, 369-395 (1992) STOCHASTIC MODELLING OF GROUNDWATER FLOW AND  

E-Print Network [OSTI]

modelling Groundwater flow Solute transport INTRODUCTION Predicting any natural process is a very difficultHYDROLOGICAL PROCESSES, VOL. 6, 369-395 (1992) STOCHASTIC MODELLING OF GROUNDWATER FLOW AND SOLUTE MODELLING Scales of heterogeneity, REV, dispersion and measurement scale groundwater flow and convection

452

Correctness-Preserving Configuration of Business Process Models  

E-Print Network [OSTI]

such as the IT Infrastructure Library (ITIL) [21] or the Supply Chain Operations Reference (SCOR) model [20]. Also, the SAP

van der Aalst, Wil

453

Magneto-Thermo-Mechanical Coupling, Stability Analysis and Phenomenological Constitutive Modeling of Magnetic Shape Memory Alloys  

E-Print Network [OSTI]

Magnetic shape memory alloys (MSMAs) are a class of active materials that de- form under magnetic and mechanical loading conditions. This work is concerned with the modeling of MSMAs constitutive responses. The hysteretic magneto...

Haldar, Krishnendu 1978-

2012-12-06T23:59:59.000Z

454

A Continuum Coupled Moisture-mechanical Constitutive Model for Asphalt Concrete  

E-Print Network [OSTI]

constitutive relationships are implemented in the Pavement Analysis using Nonlinear Damage Approach (PANDA) finite element (FE) package to model the moisture damage effect on the complex environmental-mechanical response of asphalt concrete. The developed...

Shakiba, Maryam

2013-12-09T23:59:59.000Z

455

Improving parameterization of scalar transport through vegetation in a coupled ecosystem-atmosphere model  

E-Print Network [OSTI]

Several regional-scale ecosystem models currently parameterize subcanopy scalar transport using a rough-wall boundary eddy diffusivity formulation. This formulation predicts unreasonably high soil evaporation beneath tall, ...

Link, Percy Anne

2008-01-01T23:59:59.000Z

456

Coupled Modeling of Dynamic Reservoir/Well Interactions under Liquid-loading Conditions  

E-Print Network [OSTI]

backpressure on the formation, which decreases the gas production rate and may stop the well from flowing. To model these phenomena, the dynamic interaction between the reservoir and the wellbore must be characterized. Due to wellbore phase re...

Limpasurat, Akkharachai

2013-10-23T23:59:59.000Z

457

Parameter estimation of coupled water and energy balance models based on stationary constraints of surface states  

E-Print Network [OSTI]

[1] We use a conditional averaging approach to estimate the parameters of a land surface water and energy balance model and then use the estimated parameters to partition net radiation into latent, sensible, and ground ...

Sun, Jian

458

Model-Driven Process Configuration of Enterprise Systems*  

E-Print Network [OSTI]

by Nordsieck who argued in 1934 that the structure of a company should be process-oriented [Nord34, p. 77] and compared the structure of a company to a stream, because it is an "uninterrupted value chain" [translated from Nord72]. Based on these ideas, Business Process Reengineering (BPR) be- came a popular management

van der Aalst, Wil

459

Detecting thermohaline circulation changes from ocean properties in a coupled model  

E-Print Network [OSTI]

three- dimensional water mass transport along with the atmospheric heating and cooling processes could induce significant cooling in the North Atlantic region, thus triggering a cooling event. [3 [Toggweiler and Samuels, 1998], and geothermal heating [Huang, 1999]. [4] The goal of this paper is to explore

Hu, Aixue

460

Review of Optimization Models for Integrated Process Water Networks and their Application to Biofuel Processes  

E-Print Network [OSTI]

to Biofuel Processes Ignacio E. Grossmann1, Mariano MartĂ­n2 and Linlin Yang1 1Department Chemical Engineering of these techniques to biofuel plants, which are known to consume large amounts of water. Introduction. Although water stress [1]. Since chemical, petroleum, and especially biofuel processes consume significant amounts

Grossmann, Ignacio E.

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Heterogeneous delays making parents synchronized: A coupled maps on Cayley tree model  

E-Print Network [OSTI]

We study the phase synchronized clusters in the diffusively coupled maps on the Cayley tree networks for heterogeneous delay values. Cayley tree networks comprise of two parts: the inner nodes and the boundary nodes. We find that heterogeneous delays lead to various cluster states, such as; (a) cluster state consisting of inner nodes and boundary nodes, and (b) cluster state consisting of only boundary nodes. The former state may comprise of nodes from all the generations forming self-organized cluster or nodes from few generations yielding driven clusters depending upon on the parity of heterogeneous delay values. Furthermore, heterogeneity in delays leads to the lag synchronization between the siblings lying on the boundary by destroying the exact synchronization among them. The time lag being equal to the difference in the delay values. The Lyapunov function analysis sheds light on the destruction of the exact synchrony among the last generation nodes. To the end we discuss the relevance of our results with respect to their applications in the family business as well as in understanding the occurrence of genetic diseases.

Aradhana Singh; Sarika Jalan

2014-06-18T23:59:59.000Z

462

Coarse-scale Modeling of Flow in Gas-injection Processes for Enhanced Oil Recovery  

E-Print Network [OSTI]

Coarse-scale Modeling of Flow in Gas-injection Processes for Enhanced Oil Recovery James V. Lambers of gas-injection processes for enhanced oil recovery may exhibit geometrically complex features

Lambers, James

463

Parallel Simulation for a Fish Schooling Model on a General-Purpose Graphics Processing Unit  

E-Print Network [OSTI]

Model on a General-Purpose Graphics Processing Unit Hong LiThe current generation of graphics processing units is well-we will describe how a Graphics Pro- cessor Unit (GPU) can

Li, Hong; Kolpas, Allison; Petzold, Linda; Moehlis, J

2009-01-01T23:59:59.000Z

464

A Summary of Coupled, Uncoupled, and Hybrid Tectonic Models for the Yakima Fold Belt--Topical Report  

SciTech Connect (OSTI)

This document is one in a series of topical reports compiled by the Pacific Northwest National Laboratory to summarize technical information on selected topics important to the performance of a probabilistic seismic hazard analysis of the Hanford Site. The purpose of this report is to summarize the range of opinions and supporting information expressed by the expert community regarding whether a coupled or uncoupled model, or a combination of both, best represents structures in the Yakima Fold Belt. This issue was assessed to have a high level of contention with up to moderate potential for impact on the hazard estimate. This report defines the alternative conceptual models relevant to this technical issue and the arguments and data that support those models. It provides a brief description of the technical issue and principal uncertainties; a general overview on the nature of the technical issue, along with alternative conceptual models, supporting arguments and information, and uncertainties; and finally, suggests some possible approaches for reducing uncertainties regarding this issue.

Chamness, Michele A.; Winsor, Kelsey; Unwin, Stephen D.

2012-08-01T23:59:59.000Z

465

Modeling of the Properties and Processing of Amorphous Gate Stacks on High Electron Mobility Materials  

E-Print Network [OSTI]

of their defects, simply do not exist. Further, there are no techniques which give the precise bonding structure diffusion of the semiconductor into the oxide? The role of the passivation layer is a key issue which/oxide interfaces and minimize diffusion into the oxide? d. Can we model the C-V and phonon coupling as a function

Kummel, Andrew C.

466

A Two Term Truncation of the Multiple Ising Model Coupled to 2d Gravity  

E-Print Network [OSTI]

We consider a model of p independent Ising spins on a dynamical planar phi-cubed graph. Truncating the free energy to two terms yields an exactly solvable model that has a third order phase transition from a pure gravity region (gamma=-1/2) to a tree-like region (gamma=1/2), with gamma=1/3 on the critical line. We are able to make an order of magnitude estimate of the value of p above which there exists a branched polymer (ie tree-like) phase in the full model, that is, p is approximately 13-23, which corresponds to a central charge c of about 6-12.

Martin G. Harris

1995-02-06T23:59:59.000Z

467

A dual-porosity reservoir model with a nonlinear coupling term  

SciTech Connect (OSTI)

Since their introduction by Barenblatt et al. (1960), double-porosity models have been widely used for simulating flow in fractured reservoirs, such as geothermal reservoirs. In a dual-porosity system, the matrix blocks provide most of the storage of the reservoir, whereas the fractures provide the global transmissivity. Initially, most work on dual-porosity models emphasized the development of analytical solutions to idealized reservoir problems. Increasingly, the dual-porosity approach is being implemented by numerical reservoir simulators. Accurate numerical simulation of a dual-porosity problem often requires a prohibitively large number of computational cells in order to resolve the transient pressure gradients in the matrix blocks. We discuss a new dual-porosity model that utilizes a nonlinear differential equation to approximate the fracture/matrix interactions, When implemented into a numerical simulator, it eliminates the need to discretize the matrix blocks, and thereby allows more efficient simulation of reservoir problems.

Zimmerman, R.W.; Chen, G.; Hadgu, T.; Bodvarsson, G.S.

1992-09-01T23:59:59.000Z

468

Air pollution forecasting by coupled atmosphere-fire model WRF and SFIRE with WRF-Chem  

E-Print Network [OSTI]

Atmospheric pollution regulations have emerged as a dominant obstacle to prescribed burns. Thus, forecasting the pollution caused by wildland fires has acquired high importance. WRF and SFIRE model wildland fire spread in a two-way interaction with the atmosphere. The surface heat flux from the fire causes strong updrafts, which in turn change the winds and affect the fire spread. Fire emissions, estimated from the burning organic matter, are inserted in every time step into WRF-Chem tracers at the lowest atmospheric layer. The buoyancy caused by the fire then naturally simulates plume dynamics, and the chemical transport in WRF-Chem provides a forecast of the pollution spread. We discuss the choice of wood burning models and compatible chemical transport models in WRF-Chem, and demonstrate the results on case studies.

Kochanski, Adam K; Mandel, Jan; Clements, Craig B

2013-01-01T23:59:59.000Z

469

Unified Resource Modelling: Integrating knowledge into business processes  

E-Print Network [OSTI]

regardless of their specific manifestation. Resource Business Process Service Contract Characteristic 1 of the performance of a quantifiable service. Contract involves one or more services that a resource offers

470

Quality Guidelines for Energy System Studies Process Modeling...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

property method. The NRTL method more accurately predicts the solubility of chlorides in water. The sulfur recovery unit and CO 2 capture process use the PENG-ROB equation of...

471

On approximating the stochastic behaviour of Markovian process algebra models   

E-Print Network [OSTI]

Markov chains offer a rigorous mathematical framework to describe systems that exhibit stochastic behaviour, as they are supported by a plethora of methodologies to analyse their properties. Stochastic process algebras ...

Milios, Dimitrios

2014-06-27T23:59:59.000Z

472

Stimulation at Desert Peak -modeling with the coupled THM code FEHM  

SciTech Connect (OSTI)

Numerical modeling of the 2011 shear stimulation at the Desert Peak well 27-15. This submission contains the FEHM executable code for a 64-bit PC Windows-7 machine, and the input and output files for the results presented in the included paper from ARMA-213 meeting.

kelkar, sharad

2013-04-30T23:59:59.000Z

473

Efficient Macro-Micro Scale Coupled Modeling of Batteries Venkat R. Subramanian,*,z  

E-Print Network [OSTI]

in the macroscale x and solid-state diffusion in the microscale inside the particle r . Battery models typically concentration, electrolyte potential, solid-state potential, and solid-state concentra- tion in the porous nonlinear PDEs in x,t in the porous electrode.1-4 In addition, solid-state diffusion should be solved

Subramanian, Venkat

474

Stimulation at Desert Peak -modeling with the coupled THM code FEHM  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Numerical modeling of the 2011 shear stimulation at the Desert Peak well 27-15. This submission contains the FEHM executable code for a 64-bit PC Windows-7 machine, and the input and output files for the results presented in the included paper from ARMA-213 meeting.

kelkar, sharad

475

Modeling pion physics in the $?$-regime of two-flavor QCD using strong coupling lattice QED  

E-Print Network [OSTI]

In order to model pions of two-flavor QCD we consider a lattice field theory involving two flavors of staggered quarks interacting strongly with U(1) gauge fields. For massless quarks, this theory has an $SU_L(2)\\times SU_R(2) \\times U_A(1)$ symmetry. By adding a four-fermion term we can break the U_A(1) symmetry and thus incorporate the physics of the QCD anomaly. We can also tune the pion decay constant F, to be small compared to the lattice cutoff by starting with an extra fictitious dimension, thus allowing us to model low energy pion physics in a setting similar to lattice QCD from first principles. However, unlike lattice QCD, a major advantage of our model is that we can easily design efficient algorithms to compute a variety of quantities in the chiral limit. Here we show that the model reproduces the predictions of chiral perturbation theory in the $\\epsilon$-regime.

D. J. Cecile; Shailesh Chandrasekharan

2007-08-03T23:59:59.000Z

476

J. Electrochem. Soc., in press (1998) MicroMacroscopic Coupled Modeling of Batteries and Fuel Cells  

E-Print Network [OSTI]

, as well as various fuel cells, are widely used in consumer applications and electric vehicles materials and interface morphology and chemistry, has been developed for advanced batteries and fuel cells. Modeling and simulation of battery and fuel cell systems has been a rapidly expanding field, thanks in part

Wang, Chao-Yang

477

J. Electrochem. Soc., in press (1998) Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells  

E-Print Network [OSTI]

, as well as various fuel cells, are widely used in consumer applications and electric vehicles and interface morphology and chemistry, has been developed for advanced batteries and fuel cells. Modeling and simulation of battery and fuel cell systems has been a rapidly expanding field, thanks in part

Wang, Chao-Yang

478

Transient fluid and heat flow modeling in coupled wellbore/reservoir systems  

E-Print Network [OSTI]

....................................................... 66 5.3.1 Modeling Field Data ..................................................................... 68 5.3.2 Optimal Location of Permanent Downhole Gauge....................... 71 5.4 Effect of Gauge Location on Pressure-Transient Analysis... at the midpoint of the flow string................................. 70 Figure 5.26 Downhole gauge placement configurations .............................................. 71 Figure 5.27 Temperature and density profiles in the wellbore...

Izgec, Bulent

2009-05-15T23:59:59.000Z

479

Bond Graph Model of a Vertical U-Tube Steam Condenser Coupled with a Heat Exchanger  

E-Print Network [OSTI]

level. Steam condensers are integral part of any nuclear and thermal power plant utilising steam A simulation model for a vertical U-tube steam condenser in which the condensate is stored at the bottom well and thus the bottom well acts as a heat exchanger. The storage of hydraulic and thermal energies

Paris-Sud XI, Université de

480

Dynamic risk adjustment of prediction models using statistical process control methods  

E-Print Network [OSTI]

Introduction. Models that represent mathematical relationships between clinical outcomes and their predictors are useful to the decision making process in patient care. Many models, such as the score of neonatal physiology ...

Chuo, John, 1969-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "modeling coupled processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Gaussian Process Modeling and Computation in Engineering Applications  

E-Print Network [OSTI]

; and predictive modeling for large datasets. First, we develop a spatial-temporal model for local wind fields in a wind farm with more than 200 wind turbines. Our framework utilizes the correlation among the derivatives of wind speeds to find a neighborhood...

Pourhabib, Arash

2014-07-08T23:59:59.000Z

482

Thermodynamic modeling of CatLiq biomass conversion process  

E-Print Network [OSTI]

with fixed-bed reactor. Results Aim Measurement and Prediction of bubble point pressures of selected model Reactor Trimheater Pressure reduction Separator Circulation pump Thermodynamic model The results were. The proposed algorithm for bubble pressure calculation Yes No No Yes Specify liquid mole fraction xi

Toor, Saqib

483

Spectroscopic investigation of photo-induced proton-coupled electron transfer and Dexter energy transfer in model systems  

E-Print Network [OSTI]

Spectroscopic investigations of systems designed to advance the mechanistic interrogation of photo-induced proton coupled electron transfer (PCET) and proton-coupled (through-bond) energy transfer (PCEnT) are presented. ...

Young, Elizabeth R. (Elizabeth Renee), 1980-

2009-01-01T23:59:59.000Z

484

Multiscale modeling of exocytosis in the fertilization process  

E-Print Network [OSTI]

We discuss the implementation of a multiscale biophysico-chemical model able to cope with the main mechanisms underlying cumulative exocytosis in cells. The model is based on a diffusion equation in the presence of external forces that links calcium signaling and the biochemistry associated to the activity of cytoskeletal-based protein motors. This multiscale model offers an excellent quantitative spatio-temporal description of the cumulative exocytosis measured by means of fluorescence experiments. We also review pre-existing models reported in the literature on calcium waves, protein motor activation and dynamics, and intracellular directed transport of vesicles. As an example of the proposed model, we analyze the formation of the shield against polyspermy in the early events of fertilization in sea urchin eggs.

Aldo Ledesma Duran; I. Santamaria-Holek

2015-02-23T23:59:59.000Z

485

Mixing models for the two-way-coupling of CFD codes and zero-dimensional multi-zone codes to model HCCI combustion  

SciTech Connect (OSTI)

The objective of this work is the development of a consistent mixing model for the two-way-coupling of a CFD code and a multi-zone code based on multiple zero-dimensional reactors. The two-way-coupling allows for a computationally efficient modeling of HCCI combustion. The physical domain in the CFD code is subdivided into multiple zones based on three phase variables (fuel mixture fraction, dilution, and total enthalpy). Those phase variables are sufficient for the description of the thermodynamic state of each zone, assuming that each zone is at the same pressure. Each zone in the CFD code is represented by a corresponding zone in the zero-dimensional code. The zero-dimensional code solves the chemistry for each zone, and the heat release is fed back into the CFD code. The difficulty in facing this kind of methodology is to keep the thermodynamic state of each zone consistent between the CFD code and the zero-dimensional code after the initialization of the zones in the multi-zone code has taken place. The thermodynamic state of each zone (and thereby the phase variables) will change in time due to mixing and source terms (e.g., vaporization of fuel, wall heat transfer). The focus of this work lies on a consistent description of the mixing between the zones in phase space in the zero-dimensional code, based on the solution of the CFD code. Two mixing models with different degrees of accuracy, complexity, and numerical effort are described. The most elaborate mixing model (and an appropriate treatment of the source terms) keeps the thermodynamic state of the zones in the CFD code and the zero-dimensional code identical. The models are appli