Christian W. Straka; Pierre Demarque; D. B. Guenther; Linghuai Li; Frank J. Robinson
2005-09-14
The space telescope MOST is now providing us with extremely accurate low frequency p-mode oscillation data for the star Eta Boo. We demonstrate in this paper that these data, when combined with ground based measurements of the high frequency p-mode spectrum, can be reproduced with stellar models that include the effects of turbulence in their outer layers. Without turbulence, the l=0 modes of our models deviate from either the ground based or the space data by about 1.5-4.0 micro Hz. This discrepancy can be completely removed by including turbulence in the models and we can exactly match 12 out of 13 MOST frequencies that we identified as l=0 modes in addition to 13 out of 21 ground based frequencies within their observational 2 sigma tolerances. The better agreement between model frequencies and observed ones depends for the most part on the turbulent kinetic energy which was taken from a 3D convection simulation for the Sun.
Simple Model of Membrane Proteins Including Solvent
D. L. Pagan; A. Shiryayev; T. P. Connor; J. D. Gunton
2006-03-04
We report a numerical simulation for the phase diagram of a simple two dimensional model, similar to one proposed by Noro and Frenkel [J. Chem. Phys. \\textbf{114}, 2477 (2001)] for membrane proteins, but one that includes the role of the solvent. We first use Gibbs ensemble Monte Caro simulations to determine the phase behavior of particles interacting via a square-well potential in two dimensions for various values of the interaction range. A phenomenological model for the solute-solvent interactions is then studied to understand how the fluid-fluid coexistence curve is modified by solute-solvent interactions. It is shown that such a model can yield systems with liquid-liquid phase separation curves that have both upper and lower critical points, as well as closed loop phase diagrams, as is the case with the corresponding three dimensional model.
T. Thiemann
1999-10-04
We present here the canonical treatment of spherically symmetric (quantum) gravity coupled to spherically symmetric Maxwell theory with or without a cosmological constant. The quantization is based on the reduced phase space which is coordinatized by the mass and the electric charge as well as their canonically conjugate momenta, whose geometrical interpretation is explored. The dimension of the reduced phase space depends on the topology chosen, quite similar to the case of pure (2+1) gravity. We also compare the reduced phase space quantization to the algebraic quantization. Altogether, we observe that the present model serves as an interesting testing ground for full (3+1) gravity. We use the new canonical variables introduced by Ashtekar which simplifies the analysis tremendously.
A coke oven model including thermal decomposition kinetics of tar
Munekane, Fuminori; Yamaguchi, Yukio [Mitsubishi Chemical Corp., Yokohama (Japan); Tanioka, Seiichi [Mitsubishi Chemical Corp., Sakaide (Japan)
1997-12-31
A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.
Model selection in compositional spaces
Grosse, Roger Baker
2014-01-01
We often build complex probabilistic models by composing simpler models-using one model to generate parameters or latent variables for another model. This allows us to express complex distributions over the observed data ...
Lyon, Richard Harry, 1981-
2004-01-01
Correct modeling of the space environment, including radiative forces, is an important aspect of space situational awareness for geostationary (GEO) spacecraft. Solar radiation pressure has traditionally been modeled using ...
Elastic–Plastic Spherical Contact Modeling Including Roughness Effects
Li, L.; Etsion, I.; Talke, F. E.
2010-01-01
A multilevel model for elastic–plastic contact between ajunction growth of an elastic–plastic spherical contact. J.nite element based elastic–plastic model for the contact of
Comparison of Joint Modeling Approaches Including Eulerian Sliding...
Office of Scientific and Technical Information (OSTI)
the geologic model are well suited for such an analysis. Unfortunately, current meshing tools are unable to automatically generate adequate hexahedral meshes for large numbers of...
Including model uncertainty in risk-informed decision-making
Reinert, Joshua M
2005-01-01
Model uncertainties can have a significant impact on decisions regarding licensing basis changes. We present a methodology to identify basic events in the risk assessment that have the potential to change the decision and ...
Alabama in Huntsville, University of
, Polymer, and Wood Science) 1403 Civil Engineering (including Architectural, Architecture, Environmental, Physical Chemistry, Polymer Science, excluding Biochemistry) 1503 Physics (including Acoustics, Atomic Processing, Informational Sciences, Information Technology, Management Information Systems) 1901 Biological
Homogenous charge compression ignition engine having a cylinder including a high compression space
Agama, Jorge R.; Fiveland, Scott B.; Maloney, Ronald P.; Faletti, James J.; Clarke, John M.
2003-12-30
The present invention relates generally to the field of homogeneous charge compression engines. In these engines, fuel is injected upstream or directly into the cylinder when the power piston is relatively close to its bottom dead center position. The fuel mixes with air in the cylinder as the power piston advances to create a relatively lean homogeneous mixture that preferably ignites when the power piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. Thus, the present invention divides the homogeneous charge between a controlled volume higher compression space and a lower compression space to better control the start of ignition.
T. Thiemann
1999-10-04
We extend here the canonical treatment of spherically symmetric (quantum) gravity to the most simple matter coupling, namely spherically symmetric Maxwell theory with or without a cosmological constant. The quantization is based on the reduced phase space which is coordinatized by the mass and the electric charge as well as their canonically conjugate momenta, whose geometrical interpretation is explored. The dimension of the reduced phase space depends on the topology chosen, quite similar to the case of pure (2+1) gravity. We investigate several conceptual and technical details that might be of interest for full (3+1) gravity. We use the new canonical variables introduced by Ashtekar, which simplifies the analysis tremendously.
Grace, T. M.; Wag, K. J.; Horton, R. R.; Frederick, W. J.
1994-01-01
This paper describes an improved model of char burning during black liquor combustion that is capable of predicting net rates of sulfate reduction to sulfide as well as carbon burnup rates. Enhancements include a proper ...
OUR SPACES--THE MOST USED RESOURCE ON Library facilities include two main libraries--the D. H. Hill
Young, R. Michael
, the Libraries supports the innovation that is the economic engine of growth for the state. LIBRARIES FACT SHEETOUR SPACES--THE MOST USED RESOURCE ON CAMPUS Library facilities include two main libraries--the D. H. Hill Library and the James B. Hunt Jr. Library--as well as the Harrye B. Lyons Design Library
Improved time-space method for 3-D heat transfer problems including global warming
Saitoh, T.S.; Wakashima, Shinichiro
1999-07-01
In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.
Phase space analysis of some interacting Chaplygin gas models
M. Khurshudyan; R. Myrzakulov
2015-09-08
The goal of this paper is to discuss phase space analysis of some interacting Chaplygin gas models in General Relativity. Chaplygin gas is one of the fluids actively considered in modern cosmology due to the fact that it is a joint model of dark energy and dark matter. In this paper we have considered various forms of interaction term Q including linear and non linear sign changeable interactions. For each case late time attractors for the field equations are found.
Unsupervised State-Space Modelling Using Reproducing Kernels
Tobar, Felipe; Djuri?, Petar M.; Mandic, Danilo P.
2015-06-22
gradient- based methods. These include ridge regression (RR) in the offline case, and least mean square (LMS) and recursive least squares (RLS) in online cases. These linear estimation algorithms are the basis of kernel adaptive filters. [ACCEPTED... in red. the observation signal yt using kernels and an LMS-based update rule; see [41]. Kernel State-Space Model (KSSM): The adaptive version of the proposed method, where the predictions are gener- ated by propagating the particles of the state according...
McCalley, James D.
1 Linearization of Generator Current-State Space Model We developed a state-space current model for the synchronous machine with the G-circuit represented (see notes on per- unitization), and it was found to be
Destination Choice Model including panel data using WiFi localization in a pedestrian facility
Bierlaire, Michel
Destination Choice Model including panel data using WiFi localization in a pedestrian facility Loïc data using WiFi localization in a pedestrian facility April 2015 EPFL Destination Choice Model including panel data using WiFi localization in a pedestrian facility Loïc Tinguely, Antonin Danalet
Sigma-models having supermanifolds as target spaces
Albert Schwarz
1995-06-10
We study a topological sigma-model ($A$-model) in the case when the target space is an ($m_0|m_1$)-dimensional supermanifold. We prove under certain conditions that such a model is equivalent to an $A$-model having an ($m_0-m_1$)-dimensional manifold as a target space. We use this result to prove that in the case when the target space of $A$-model is a complete intersection in a toric manifold, this $A$-model is equivalent to an $A$-model having a toric supermanifold as a target space.
Physical space and cosmology. I: Model
Valeriy P. Polulyakh
2011-02-01
The nature of the physical space seems the most important subject in physics. A present paper proceeds from the assumption of physical reality of space contrary to the standard view of the space as a purely relational nonexistence - void. The space and its evolution are the primary sources of phenomena in Mega- and micro-worlds. Thus cosmology and particle physics have the same active agent - physical space.
Modeling dynamic crack propagation in fiber reinforced composites including frictional effects q
Espinosa, Horacio D.
Modeling dynamic crack propagation in fiber reinforced composites including frictional effects q S Abstract Dynamic crack propagation in a unidirectional carbon/epoxy composite is studied through finite deformation anisotropic visco-plastic model is used to describe the constitutive response of the composite
A non-isothermal PEM fuel cell model including two water transport mechanisms in the
Münster, Westfälische Wilhelms-Universität
A non-isothermal PEM fuel cell model including two water transport mechanisms in the membrane K Freiburg Germany A dynamic two-phase flow model for proton exchange mem- brane (PEM) fuel cells and the species concentrations. In order to describe the charge transport in the fuel cell the Poisson equations
Including Source-Specific Phosphorus Mobility in a Nonpoint Source Pollution Model
Walter, M.Todd
pollution; Nonpoint pollution. Introduction In order to protect water quality, watershed managers tasked with implementing strategies for controlling nonpoint source NPS pollution need water quality models that canIncluding Source-Specific Phosphorus Mobility in a Nonpoint Source Pollution Model for Agricultural
Dimer Models, Integrable Systems and Quantum Teichmuller Space
Sebastian Franco
2011-07-05
We introduce a correspondence between dimer models (and hence superconformal quivers) and the quantum Teichmuller space of the Riemann surfaces associated to them by mirror symmetry. Via the untwisting map, every brane tiling gives rise to a tiling of the Riemann surface with faces surrounding punctures. We explain how to obtain an ideal triangulation by dualizing this tiling. In order to do so, tiling nodes of valence greater than 3 (equivalently superpotential terms of order greater than 3 in the corresponding quiver gauge theories) must be decomposed by the introduction of 2-valent nodes. From a quiver gauge theory perspective, this operation corresponds to integrating-in massive fields. Fock coordinates in Teichmuller space are in one-to-one correspondence with chiral fields in the quiver. We present multiple explicit examples, including infinite families of theories, illustrating how the right number of Fock coordinates is generated by this procedure. Finally, we explain how Chekhov and Fock commutation relations between coordinates give rise to the commutators associated to dimer models by Goncharov and Kenyon in the context of quantum integrable systems. For generic dimer models (i.e. those containing nodes that are not 3-valent), this matching requires the introduction of a natural generalization of Chekhov and Fock rules. We also explain how urban renewal in the original brane tiling (Seiberg duality for the quivers) is mapped to flips of the ideal triangulation.
Exploiting Compositionality to Explore a Large Space of Model Structures
Grosse, Roger Baker
The recent proliferation of richly structured probabilistic models raises the question of how to automatically determine an appropriate model for a dataset. We investigate this question for a space of matrix decomposition ...
Hierarchical Bayesian models for space-time air pollution data
Sahu, Sujit K
Hierarchical Bayesian models for space-time air pollution data Sujit K. Sahu June 14, 2011 sets have led to a step change in the analysis of space-time air pollution data. Accurate predictions-time air pollution data and illustrate the benefits of modeling with a real data example on monitoring
A wave equation including leptons and quarks for the standard model of quantum physics in
Boyer, Edmond
A wave equation including leptons and quarks for the standard model of quantum physics in Clifford-m@orange.fr August 27, 2014 Abstract A wave equation with mass term is studied for all particles and an- tiparticles of color and antiquarks u and d. This wave equation is form invariant under the Cl 3 group generalizing
Discrimination of the Native from Misfolded Protein Models with an Energy Function Including
Lazaridis, Themis
Discrimination of the Native from Misfolded Protein Models with an Energy Function Including for theoretical protein structure prediction is an energy function that can discriminate the native from non by the widespread belief that they are superior for such discrimination to physics-based energy functions
Grossmann, Ignacio E.
Method Two objectives are included in the model: A cost minimization and an environmental impact minimization. The environmental impact is evaluated using the Eco- indicator 99 method. A set of Pareto optimal solutions is generated using the -constraint method. Conclusions · Environmental impact can be reduced by up
Validation of nuclear models used in space radiation shielding applications
Norman, Ryan B.; Blattnig, Steve R.
2013-01-15
A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.
RELAP5-3D Code Includes Athena Features and Models
Richard A. Riemke; Cliff B. Davis; Richard R. Schultz
2006-07-01
Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, sf6, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5- 3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper.
The Food Crises: A quantitative model of food prices including speculators and ethanol conversion
Lagi, Marco; Bertrand, Karla Z; Bar-Yam, Yaneer
2011-01-01
Recent increases in basic food prices are severely impacting vulnerable populations worldwide. Proposed causes such as shortages of grain due to adverse weather, increasing meat consumption in China and India, conversion of corn to ethanol in the US, and investor speculation on commodity markets lead to widely differing implications for policy. A lack of clarity about which factors are responsible reinforces policy inaction. Here, for the first time, we construct a dynamic model that quantitatively agrees with food prices. The results show that the dominant causes of price increases are investor speculation and ethanol conversion. Models that just treat supply and demand are not consistent with the actual price dynamics. The two sharp peaks in 2007/2008 and 2010/2011 are specifically due to investor speculation, while an underlying upward trend is due to increasing demand from ethanol conversion. The model includes investor trend following as well as shifting between commodities, equities and bonds to take ad...
Hallucination machine : a body centric model of space perception
Zaman, C?ag?r? Hakan
2014-01-01
In this thesis I present a novel approach to space perception. I provide a body-centric computational model, The Hallucination Machine, that integrates bodily knowledge with senses in a common modality which I call "the ...
Nonlinear Sigma Models with Compact Hyperbolic Target Spaces
Gubser, Steven; Schoenholz, Samuel S; Stoica, Bogdan; Stokes, James
2015-01-01
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the $O(2)$ model. Unlike in the $O(2)$ case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggest...
Is space expanding in the Friedmann universe models?
Oyvind Gron; Oystein Elgaroy
2006-09-18
The interpretation of the expanding universe as an expansion of space has recently been challenged. From the geodesic equation in Friedmann universe models and the empty Milne model, we argue that a Newtonian or special relativistic analysis is not applicable on large scales, and the general relativistic interpretation in terms of expanding space has the advantage of being globally consistent. We also show that the cosmic redshift, interpreted as an expansion effect, containts both the Doppler effect and the gravitational frequency shift.
Model for the catalytic oxidation of CO, including gas-phase impurities and CO desorption
Buendia, G M
2013-01-01
We present results of kinetic Monte Carlo simulations of a modified Ziff-Gulari-Barshad model for the reaction CO+O --> CO_2 on a catalytic surface. Our model includes impurities in the gas phase, CO desorption, and a modification known to eliminate the unphysical O poisoned phase. The impurities can adsorb and desorb on the surface, but otherwise remain inert. In a previous work that did not include CO desorption [G. M. Buendia and P. A. Rikvold, Phys. Rev. E, 85 031143 (2012)], we found that the impurities have very distinctive effects on the phase diagram and greatly diminish the reactivity of the system. If the impurities do not desorb, once the system reaches a stationary state, the CO_2 production disappears. When the impurities are allowed to desorb, there are regions where the CO_2 reaction window reappears, although greatly reduced. Following experimental evidence that indicates that temperature effects are crucial in many catalytic processes, here we further analyze these effects by including a CO d...
A discrete-space urban model with environmental amenities
Thomas, David D.
to increase equilibrium housing density and price within a neighborhood. In an open-city model, open space provision also increases housing density and price in other neighborhoods if there is an amenity spillover effect. In a closed-city model, housing density and prices in other neighborhoods can decrease
Nonlinear Sigma Models with Compact Hyperbolic Target Spaces
Steven Gubser; Zain H. Saleem; Samuel S. Schoenholz; Bogdan Stoica; James Stokes
2015-10-07
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the $O(2)$ model. Unlike in the $O(2)$ case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.
MODELING SPACE-TIME DEPENDENT HELIUM BUBBLE EVOLUTION IN TUNGSTEN ARMOR UNDER IFE CONDITIONS
Ghoniem, Nasr M.
dependent Helium transport in finite geometries, including the simultaneous transient production of defects of Helium bubbles. I. INTRODUCTION Helium production and helium bubble evolution in neutronMODELING SPACE-TIME DEPENDENT HELIUM BUBBLE EVOLUTION IN TUNGSTEN ARMOR UNDER IFE CONDITIONS Qiyang
Inferred Models for Dynamic and Sparse Hardware-Software Spaces Weidan Wu Benjamin C. Lee
Lee, Benjamin C.
Inferred Models for Dynamic and Sparse Hardware-Software Spaces Weidan Wu Benjamin C. Lee Duke University {weidan.wu, benjamin.c.lee}@duke.edu Abstract Diverse software and heterogeneous hardware pose new hardware-software analysis. These strategies include (i) identifying shared software behavior; (ii
Modeling Space Shuttle Software Failures at Varying Criticality Levels
Morgan, Joseph
of a software failure data set for an industrial software development project. They propose models based criticality levels. A family of models based on transforms of cumulative time and cumulative failures the exponential, logarithmic, and power models. It also includes models based on transforms of the time per
Gall, Elliott T; Siegel, Jeffrey A; Corsi, Richard L
2015-01-01
C. Ozone deposition velocities, reaction probabilities andreaction phenomena described by a single parameter, the ozone deposition velocity,velocity, v t (m h ?1 ), a characteristic of the ?uid mechanics of a space, and the reaction
SpaceWire model development technology for satellite architecture.
Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.
2011-09-01
Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.
Effectiveness of 4D construction modeling in detecting time-space conflicts of construction sites
Nigudkar, Narendra Shriniwas
2005-11-01
This research investigated whether 4D construction model effectively helps project participants on construction sites in detecting time-space conflicts in the schedule. Previous researchers on construction space management typically modeled space...
Norbert, M.A.; Yale, O.
1992-04-28
A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employes speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by a electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 15 figs.
Norbert, Massie A. (San Ramon, CA); Yale, Oster (Danville, CA)
1992-01-01
A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employes speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by a electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.
Space-time models derived from Schwarzschild's solution
Lluis Bel
2008-12-09
We discuss two space-time models: one is expanding, the other is static. They are both derived from Schwarzschild's exterior solution. But they differ in the implementation of the parallelism at a distance and the choice of their master frame of reference.
Synergia: An accelerator modeling tool with 3-D space charge
Amundson, J. [Fermi National Accelerator Laboratory, Computing Division, CEPA/PSM, P.O. Box 500, Batavia, IL 60510 (United States); Spentzouris, P. [Fermi National Accelerator Laboratory, Computing Division, CEPA/PSM, P.O. Box 500, Batavia, IL 60510 (United States)]. E-mail: spentz@fnal.gov; Qiang, J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ryne, R. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2006-01-01
High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. We describe Synergia, a high-fidelity parallel beam dynamics simulation package with fully three-dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles. We also perform code benchmarks comparing to semi-analytic results and other codes. Finally, we present initial results on particle tune spread, beam halo creation, and emittance growth in the Fermilab Booster accelerator.
Amemiya, Kenta; Toyoshima, Akio; Kikuchi, Takashi; Kosuge, Takashi; Nigorikawa, Kazuyuki; Sumii, Ryohei; Ito, Kenji
2010-06-23
The design and commissioning of a new soft X-ray beamline, BL-16A, at the Photon Factory is presented. The beamline consists of a pre-focusing mirror, an entrance slit, a variable-included-angle varied-line-spacing plane grating monochromator, and a post-focusing system as usual, and provides circularly and linearly polarized soft X rays in the energy range 200-1500 eV with an APPLE-II type undulator. The commissioning procedure for the beamline optics is described in detail, especially the check of the focal position for the zero-th order and diffracted X rays.
de Weck, Olivier L.
A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING Students #12;2 A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING in Aeronautics and Astronautics #12;3 Abstract A space logistics modeling framework to support space exploration
Space-time complexity in solid state models
Bishop, A.R.
1985-01-01
In this Workshop on symmetry-breaking it is appropriate to include the evolving fields of nonlinear-nonequilibrium systems in which transitions to and between various degrees of ''complexity'' (including ''chaos'') occur in time or space or both. These notions naturally bring together phenomena of pattern formation and chaos and therefore have ramifications for a huge array of natural sciences - astrophysics, plasmas and lasers, hydrodynamics, field theory, materials and solid state theory, optics and electronics, biology, pattern recognition and evolution, etc. Our particular concerns here are with examples from solid state and condensed matter.
ONE-DIMENSIONAL PSEUDO-HOMOGENEOUS PACKED BED REACTOR MODELING INCLUDING NO-CO KINETICS
Srinivasan, Anand
2011-08-31
-homogeneous packed bed reactor model for this type of reactor setup built in collaboration with the Chemical and Petroleum Engineering Department at the University of Kansas. A brief summary of the pseudo-homogeneous model is presented in order to properly develop...
Pandoe, Wahyu Widodo
2004-09-30
provides a basis for determining how the water circulation three-dimensionally controls the hydrodynamics of the system and ultimately transports the suspended and soluble materials due to combined currents and waves. A three-dimensional circulation model...
A model for including Arduino microcontroller programming in the introductory physics lab
Haugen, Andrew J
2014-01-01
The paper describes a curricular framework for introducing microcontroller programming in the University Physics lab. The approach makes use of Modeling Instruction, an effective approach for teaching science at the secondary level in which student learn the standard material by developing and deploying models of the physical world. In our approach, students engage with a context-rich problem that can be solved with one or more sensors and a microcontroller. The solution path we describe then consists of developing a mathematical model for how the sensors' data can be mapped to a meaningful measurement, and further, developing an algorithmic model that will be implemented in the microcontroller. Once the system is developed and implemented, students are given an array of similar problems in which they can deploy their data collection system. Results from the implementation of this idea, in two University Physics sections, using Arduino microcontrollers, are also described.
Model of medical supply demand and astronaut health for long-duration human space flight
Assad, Albert
2009-01-01
The medical care of space crews is the primary limiting factor in the achievement of long-duration space missions. (Nicogossian 2003) The goal of this thesis was to develop a model of long-duration human space flight ...
Grogan, Paul Thomas, 1985-
2010-01-01
A space logistics modeling framework to support space exploration to remote environments is the target of research within the MIT Space Logistics Project. This thesis presents a revised and expanded framework providing ...
Groleau, Julie; Marecaux, Christophe; Payrard, Natacha; Segaud, Brice; Rochette, Michel; Perrier, Pascal; Payan, Yohan
2008-01-01
A 3D biomechanical finite element model of the face is presented. Muscles are represented by piece-wise uniaxial tension cable elements linking the insertion points. Such insertion points are specific entities differing from nodes of the finite element mesh, which makes possible to change either the mesh or the muscle implementation totally independently of each other. Lip/teeth and upper lip/lower lip contacts are also modeled. Simulations of smiling and of an Orbicularis Oris activation are presented and interpreted. The importance of a proper account of contacts and of an accurate anatomical description is shown
de Weck, Olivier L.
A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING Students #12;#12;3 Abstract A space logistics modeling framework to support space exploration to remote environments is the target of research within the MIT Space Logistics Project. This thesis presents a revised
A stepped leader model for lightning including charge distribution in branched channels
Shi, Wei; Zhang, Li [School of Electrical Engineering, Shandong University, Jinan 250061 (China); Li, Qingmin, E-mail: lqmeee@ncepu.edu.cn [Beijing Key Lab of HV and EMC, North China Electric Power University, Beijing 102206 (China); State Key Lab of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206 (China)
2014-09-14
The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.
Hiroaki Sugiyama; Koji Tsumura; Hiroshi Yokoya
2012-10-05
The doubly charged scalar boson (H^{\\pm\\pm}) is introduced in several models of the new physics beyond the standard model. The H^{\\pm\\pm} has Yukawa interactions with two left-handed charged leptons or two right-handed charged leptons depending on the models. We study kinematical properties of H^{\\pm\\pm} decay products through tau leptons in order to discriminate the chiral structures of the new Yukawa interaction. The chirality of tau leptons can be measured by the energy distributions of the tau decay products, and thus the chiral structure of the new Yukawa interaction can be traced in the invariant-mass distributions of the H^{\\pm\\pm} decay products. We perform simulation studies for the typical decay patterns of the H^{\\pm\\pm} with simple event selections and tau-tagging procedures, and show that the chiral structure of the Yukawa interactions of H^{\\pm\\pm} can be distinguished by measuring the invariant-mass distributions.
H. J. Haubold; D. Kumar
2007-08-16
The Maxwell-Boltzmannian approach to nuclear reaction rate theory is extended to cover Tsallis statistics (Tsallis, 1988) and more general cases of distribution functions. An analytical study of respective thermonuclear functions is being conducted with the help of statistical techniques. The pathway model, recently introduced by Mathai (2005), is utilized for thermonuclear functions and closed-form representations are obtained in terms of H-functions and G-functions. Maxwell-Boltzmannian thermonuclear functions become particular cases of the extended thermonuclear functions. A brief review on the development of the theory of analytic representations of nuclear reaction rates is given.
Analyzing monotone space complexity via the switching network model
Potechin, Aaron H
2015-01-01
Space complexity is the study of how much space/memory it takes to solve problems. Unfortunately, proving general lower bounds on space complexity is notoriously hard. Thus, we instead consider the restricted case of ...
The parameter space of Cubic Galileon models for cosmic acceleration
Emilio Bellini; Raul Jimenez
2013-11-19
We use recent measurements of the expansion history of the universe to place constraints on the parameter space of cubic Galileon models, in particular we concentrate on those models which contain the simplest Galileon term plus a linear potential. This gives strong constraints on the Lagrangian of these models. Most dynamical terms in the Galileon Lagrangian are constraint to be small and the acceleration is effectively provided by a constant term in the scalar potential, thus reducing, effectively, to a LCDM model for current acceleration. The effective equation of state is indistinguishable from that of a cosmological constant w = -1 and the data constraint it to have no temporal variations of more than at the few % level. The energy density of the Galileon can contribute only to about 10% of the acceleration energy density, being the other 90% a cosmological constant term. This demonstrates how useful direct measurements of the expansion history of the universe are at constraining the dynamical nature of dark energy.
Presently, the PV industry is switching to the selective emitter design, where the phosphorus densityIMPROVING THE PREDICTIVE POWER OF MODELING THE EMITTER DIFFUSION BY FULLY INCLUDING or a spin-on source. In the selective emitter design, the phosphorus density is significantly reduced
Space Logistics Modeling and Simulation Analysis using SpaceNet: Four Application Cases
Grogan, Paul Thomas
The future of space exploration will not be limited to sortie-style missions to single destinations. Even in present exploration taking place at the International Space Station in low-Earth orbit, logistics is complicated ...
Lagi, Marco; Bertrand, Karla Z; Bar-Yam, Yaneer
2012-01-01
Increases in global food prices have led to widespread hunger and social unrest---and an imperative to understand their causes. In a previous paper published in September 2011, we constructed for the first time a dynamic model that quantitatively agreed with food prices. Specifically, the model fit the FAO Food Price Index time series from January 2004 to March 2011, inclusive. The results showed that the dominant causes of price increases during this period were investor speculation and ethanol conversion. The model included investor trend following as well as shifting between commodities, equities and bonds to take advantage of increased expected returns. Here, we extend the food prices model to January 2012, without modifying the model but simply continuing its dynamics. The agreement is still precise, validating both the descriptive and predictive abilities of the analysis. Policy actions are needed to avoid a third speculative bubble that would cause prices to rise above recent peaks by the end of 2012.
Transient modeling of thermionic space nuclear power systems
Berge, Francoise M
1991-01-01
be activated or disabled. The reactor kinetics model itself can be disabled so that only the thermal-hydraulic model is solved. Five types of reactivity feed- back mechanisms are implemented in CENTAR: programmed reactivity, fuel tempera- ture feedback... do not include the reactivity control. The power can be controlled as a function of the transient time. The pump head, on the other hand, can be specified to be constant and/or controlled as a function of the transient time and/or any temperature...
Models for estimating saturation flow and maximum demand at closely spaced intersections
Nanduri, Sreelata
1995-01-01
This thesis describes models for saturation flow and maximum demand at closely spaced intersections. The effects of queue interaction between these two intersections are taken into account in both models. The saturation flow model is based...
A NONLINEAR INVERSE SCALE SPACE METHOD FOR A CONVEX MULTIPLICATIVE NOISE MODEL
Ferguson, Thomas S.
A NONLINEAR INVERSE SCALE SPACE METHOD FOR A CONVEX MULTIPLICATIVE NOISE MODEL JIANING SHI for image denoising [5, 6], whereby noise can be removed with minimal degradation. The additive noise model], and the inverse scale space flow [5, 6]. However, the multiplicative noise model has not been studied thoroughly
Model-reference adaptive control applied to load-following of a space-nuclear power system
Metzger, J.D.; El-Genk, M.S.; Parlos, A.G.; New Mexico Univ., Albuquerque, NM . Inst. for Space Nuclear Power Studies; Texas A and M Univ., College Station, TX . Dept. of Nuclear Engineering)
1989-01-01
Nuclear power systems are presently being investigated as an alternative for both commercial and military space power systems because of their projected longevity of 7 to 10 years, their mass advantage over other space power sources at powers above approximately 25 kW{sub e}, and their ability to operate without direct illumination from the sun. These space-nuclear power systems are being designed to supply from tens of kilowatts to multimegawatts of power for continuous operation of seven years and more. Space-nuclear power systems designs that meet these requirements will not be available for refueling or maintenance during their lifetime. To ensure that the space-nuclear power system will operate safely and will respond in a predictable and desired manner, the design of the system's controller must account for changes in the system parameters over its lifetime. This paper applies model-reference adaptive control to an increase in the power demand by the load. A model-reference adaptive controller will force the actual space-nuclear power system to follow the predictable and desired response of a reference model, despite changes in the actual system's operating parameters. Included in this paper are the model-reference adaptive control algorithm, the description of the computer simulation of a space-nuclear power system and the reference model, and results that demonstrate the application of model-reference adaptive control to a change in the load power demand. The results demonstrate that model-reference adaptive control can ensure the transient response of the system despite differences between the design of the system and the as-built system as well as for variations in the systems parameters. 5 refs., 3 figs.
Determining Interactions in PSA models: Application to a Space PSA
C. Smith; E. Borgonovo
2010-06-01
This paper addresses use of an importance measure interaction study of a probabilistic risk analysis (PSA) performed for a hypothetical aerospace lunar mission. The PSA methods used in this study follow the general guidance provided in the NASA Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners. For the PSA portion, we used phased-based event tree and fault tree logic structures are used to model a lunar mission, including multiple phases (from launch to return to the Earth surface) and multiple critical systems. Details of the analysis results are not provided in this paper – instead specific basic events are denoted by number (e.g., the first event is 1, the second is 2, and so on). However, in the model, we used approximately 150 fault trees and over 800 basic events. Following analysis and truncation of cut sets, we were left with about 400 basic events to evaluate. We used this model to explore interactions between different basic events and systems. These sensitivity studies provide high-level insights into features of the PSA for the hypothetical lunar mission.
de Weck, Olivier L.
American Institute of Aeronautics and Astronautics 1 Space Logistics Modeling and Simulation at the International Space Station in low-Earth orbit, logistics is complicated by flights arriving from five launch sites on Earth. The future challenges of space logistics given complex campaigns of interconnected
Application of a new phenomenological coronal mass ejection model to space weather forecasting
Howard, Tim
to space weather forecasting T. A. Howard1 and S. J. Tappin2 Received 15 October 2009; revised 27 April with the Earth. Hence the model can be used for space weather forecasting. We present a preliminary evaluation to fully validate it for integration with existing tools for space weather forecasting. Citation: Howard, T
Sawa Manoff
2003-09-09
The notions of centrifugal (centripetal) and Coriolis velocities and accelerations are introduced and considered in spaces with affine connections and metrics used as models of space or of space-time. It is shown that these types of velocities and accelerations are generated by the relative motions between mass elements in a continuous media or of particles. The velocities and accelerations are closely related to the kinematic characteristics of the relative velocity and of the relative acceleration. The relation between the centrifugal (centripetal) velocity and the Hubble law is found. The centrifugal (centripetal) acceleration could be interpreted as gravitational acceleration as it has been done in the Einstein theory of gravitation. This fact could be used as a basis for working out of new gravitational theories in spaces with affine connections and metrics.
Scot Martin
2013-01-31
The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveApril 2, 2014 Smith Named as NewAprilSpace
On housing booms and credit market conditions: A state space model
Del Moral , Pierre
On housing booms and credit market conditions: A state space model Helmut Herwartz Christian: The massive and persistent increases of house prices in the US before the 2008/09 financial crisis show space model characterized by a time varying long-term state of the log house price to rent ratio
Gravitational Stability for a Vacuum Cosmic Space Crystalline Model
J. A. Montemayor-Aldrete; J. R. Morones-Ibarra; A. Morales-Mori; A. Mendoza-Allende; A. Montemayor-Varela; M. del Castillo-Mussot; G. J. Vazquez
2006-03-13
Using Heisenberg's uncertainty principle it is shown that the gravitational stability condition for a crystalline vacuum cosmic space implies to obtain an equation formally equivalent to the relation first used by Gamow to predict the present temperature of the microwave background from the matter density. The compatibility condition between the quantum and the relativistic approaches has been obtained without infinities arising from the quantum analysis or singularities arising from the relativistic theory. The action which leads to our theory is the least action possible in a quantum scheme. The energy fluctuation involved in the gravitational stabilization of vacuum space is 10 to the power of (-40) times the energy of the crystalline structure of vacuum space inside the present Universe volume.
Sample Spaces and Feature Models: There and Back Again Krzysztof Czarnecki, Steven She
Czarnecki, Krzysztof
Sample Spaces and Feature Models: There and Back Again Krzysztof Czarnecki, Steven She University of feature configurations, each representing a particular product in the family. Basic feature models had propagation and auto- completion [13], and feature model refactoring [2]. Although basic feature models
Stringy models of modified gravity: space-time defects and structure formation
Mavromatos, Nick E.; Sakellariadou, Mairi; Yusaf, Muhammad Furqaan, E-mail: nikolaos.mavromatos@kcl.ac.uk, E-mail: mairi.sakellariadou@kcl.ac.uk, E-mail: muhammad.yusaf@kcl.ac.uk [King's College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom)
2013-03-01
Starting from microscopic models of space-time foam, based on brane universes propagating in bulk space-times populated by D0-brane defects (''D-particles''), we arrive at effective actions used by a low-energy observer on the brane world to describe his/her observations of the Universe. These actions include, apart from the metric tensor field, also scalar (dilaton) and vector fields, the latter describing the interactions of low-energy matter on the brane world with the recoiling point-like space-time defect (D-particle). The vector field is proportional to the recoil velocity of the D-particle and as such it satisfies a certain constraint. The vector breaks locally Lorentz invariance, which however is assumed to be conserved on average in a space-time foam situation, involving the interaction of matter with populations of D-particle defects. In this paper we clarify the role of fluctuations of the vector field on structure formation and galactic growth. In particular we demonstrate that, already at the end of the radiation era, the (constrained) vector field associated with the recoil of the defects provides the seeds for a growing mode in the evolution of the Universe. Such a growing mode survives during the matter dominated era, provided the variance of the D-particle recoil velocities on the brane is larger than a critical value. We note that in this model, as a result of specific properties of D-brane dynamics in the bulk, there is no issue of overclosing the brane Universe for large defect densities. Thus, in these models, the presence of defects may be associated with large-structure formation. Although our string inspired models do have (conventional, from a particle physics point of view) dark matter components, nevertheless it is interesting that the role of ''extra'' dark matter is also provided by the population of massive defects. This is consistent with the weakly interacting character of the D-particle defects, which predominantly interact only gravitationally.
Integrated Core-SOL-Divertor Modelling for ITER Including Impurity: Effect of Tungsten on Fusion Performance in H-mode and Hybrid Scenario
Friedman, Carey
We use the global 3-D chemical transport model GEOS-Chem to simulate long-range atmospheric transport of polycyclic aromatic hydrocarbons (PAHs). To evaluate the model’s ability to simulate PAHs with different volatilities, ...
Even-Parity S_(N) Adjoint Method Including SP_(N) Model Error and Iterative Efficiency
Zhang, Yunhuang
2014-08-10
In this Dissertation, we analyze an adjoint-based approach for assessing the model error of SP_(N) equations (low fidelity model) by comparing it against S_(N) equations (high fidelity model). Three model error estimation methods, namely, direct...
Huang, C.; Song, Y.; Luo, X.
2006-01-01
Based on the Block model for predicting vertical temperature distribution in a large space, this paper describes an improved Gebhart-Block model for predicting vertical temperature distribution of a large space with natural ventilation...
Design of a Personalized Lighting Control System Enabled by a Space Model
Suter, G.; Petrushevski, F.; Sipetic, M.
2011-01-01
This paper reports on a research effort to develop a prototype of a personalized lighting control system that adjusts the visual environment based on user preferences. Lighting controllers query a space model to retrieve lighting objects...
Pruess, K.
2011-05-15
Storage of CO{sub 2} in saline aquifers is intended to be at supercritical pressure and temperature conditions, but CO{sub 2} leaking from a geologic storage reservoir and migrating toward the land surface (through faults, fractures, or improperly abandoned wells) would reach subcritical conditions at depths shallower than 500-750 m. At these and shallower depths, subcritical CO{sub 2} can form two-phase mixtures of liquid and gaseous CO{sub 2}, with significant latent heat effects during boiling and condensation. Additional strongly non-isothermal effects can arise from decompression of gas-like subcritical CO{sub 2}, the so-called Joule-Thomson effect. Integrated modeling of CO{sub 2} storage and leakage requires the ability to model non-isothermal flows of brine and CO{sub 2} at conditions that range from supercritical to subcritical, including three-phase flow of aqueous phase, and both liquid and gaseous CO{sub 2}. In this paper, we describe and demonstrate comprehensive simulation capabilities that can cope with all possible phase conditions in brine-CO{sub 2} systems. Our model formulation includes: (1) an accurate description of thermophysical properties of aqueous and CO{sub 2}-rich phases as functions of temperature, pressure, salinity and CO{sub 2} content, including the mutual dissolution of CO{sub 2} and H{sub 2}O; (2) transitions between super- and subcritical conditions, including phase change between liquid and gaseous CO{sub 2}; (3) one-, two-, and three-phase flow of brine-CO{sub 2} mixtures, including heat flow; (4) non-isothermal effects associated with phase change, mutual dissolution of CO{sub 2} and water, and (de-) compression effects; and (5) the effects of dissolved NaCl, and the possibility of precipitating solid halite, with associated porosity and permeability change. Applications to specific leakage scenarios demonstrate that the peculiar thermophysical properties of CO{sub 2} provide a potential for positive as well as negative feedbacks on leakage rates, with a combination of self-enhancing and self-limiting effects. Lower viscosity and density of CO{sub 2} as compared to aqueous fluids provides a potential for self-enhancing effects during leakage, while strong cooling effects from liquid CO{sub 2} boiling into gas, and from expansion of gas rising towards the land surface, act to self-limit discharges. Strong interference between fluid phases under three-phase conditions (aqueous - liquid CO{sub 2} - gaseous CO{sub 2}) also tends to reduce CO{sub 2} fluxes. Feedback on different space and time scales can induce non-monotonic behavior of CO{sub 2} flow rates.
Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations
Washington, K.E.
1986-05-01
The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations.
Shekhar, Ravi
2009-05-15
and amplitude variation with offset (AVO) results for our example model predicts that CO2 is easier to detect than brine in the fractured reservoirs. The effects of geochemical processes on seismics are simulated by time-lapse modeling for t = 1000 years. My...
Loya, Sudarshan Kedarnath
2011-12-31
these postulations have been effective in the past, they might not work with new versions of catalytic converters and the architectures being proposed. In particular, classical models neglect viscosity, conductivity and diffusion in the bulk gas phase. However...
Photon storage in Lambda-type optically dense atomic media. II. Free-space model
Alexey V. Gorshkov; Axel Andre; Mikhail D. Lukin; Anders S. Sorensen
2007-09-08
In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we presented a universal physical picture for describing a wide range of techniques for storage and retrieval of photon wave packets in Lambda-type atomic media in free space, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo based techniques. This universal picture produced an optimal control strategy for photon storage and retrieval applicable to all approaches and yielded identical maximum efficiencies for all of them. In the present paper, we present the full details of this analysis as well some of its extensions, including the discussion of the effects of non-degeneracy of the two lower levels of the Lambda system. The analysis in the present paper is based on the intuition obtained from the study of photon storage in the cavity model in the preceding paper [Gorshkov et al., Phys. Rev. A 76, 033804 (2007)].
Fernández-Nieto, E D; Narbona-Reina, G; Zabsonré, J D
2015-01-01
In this work we present a deduction of the Saint-Venant-Exner model through an asymptotic analysis of the Navier-Stokes equations. A multi-scale analysis is performed in order to take into account that the velocity of the sediment layer is smaller than the one of the fluid layer. This leads us to consider a shallow water type system for the fluid layer and a lubrication Reynolds equation for the sediment one. This deduction provides some improvements with respect to the classical Saint-Venant-Exner model: (i) the deduced model has an associated energy. Moreover, it allows us to explain why classical models do not have an associated energy and how to modify them in order to recover a model with this property. (ii) The model incorporates naturally a necessary modification that must be taken into account in order to be applied to arbitrarily sloping beds. Furthermore, we show that this modification is different of the ones considered classically, and that it coincides with a classical one only if the solution ha...
Marriage of Electromagnetism and Gravity in Extended Space Model and Astrophysical Phenomena
V. A. Andreev; D. Yu. Tsipenyuk
2013-04-06
The generalization of Einstein's special theory of relativity (SRT) is proposed. In this model the possibility of unification of scalar gravity and electromagnetism into a single united field is considered. Formally, the generalization of the SRT is that instead of (1+3)-dimensional Minkowski space the (1+4)-dimensional extension G is considered. As a fifth additional coordinate the interval S is used. This value is saved under the usual Lorentz transformations in Minkowski space M, but it changes when the transformations in the extended space G are used. We call this model the extended space model (ESM). From a physical point of view our expansion means that processes in which the rest mass of the particles changes are acceptable now. If the rest mass of a particle does not change and the physical quantities do not depend on an additional variable S, then the electromagnetic and gravitational fields exist independently of each other. But if the rest mass is variable and there is a dependence on S, then these two fields are combined into a single united field. In the extended space model a photon can have a nonzero mass and this mass can be either positive or negative. The gravitational effects such as the speed of escape, gravitational red shift and deflection of light can be analyzed in the frame of the extended space model. In this model all these gravitational effects can be found algebraically by the rotations in the (1+4) dimensional space. Now it becomes possible to predict some future results of visible size of super massive objects in our Universe due to new stage of experimental astronomy development in the Radio Astron Project and analyze phenomena of the star V838 Monocerotis explosion as possible Local Big Bang (LBB).
Model predicts space weather and protects satellite hardware
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework uses concrete7 AssessmentBusinessAlternativeModel Verification
Kukushkin, A B
2005-01-01
The paper briefly reviews (i) the evidences for self-similar structures of a skeletal form (namely, tubules and cartwheels, and their simplest combinations), called the Universal Skeletal Structures (USS), observed in the range 10-5 cm - 1023 cm. in the high-current electric discharges in various fusion devices, severe weather phenomena, and space, (ii) the models for interpreting the phenomenon of skeletal structures, including the hypothesis for a fractal condensed matter (FCM), assembled from nanotubular dust, and (iii) probable role of FCM, which might be responsible for the USS phenomenon, in tornado, ball lightning, and waterspout.
Prediction Space Weather Using an Asymmetric Cone Model for Halo CMEs
G. Michalek; N. Gopalswamy; S. Yashiro
2007-10-24
Halo coronal mass ejections (HCMEs) are responsible of the most severe geomagnetic storms. A prediction of their geoeffectiveness and travel time to Earth's vicinity is crucial to forecast space weather. Unfortunately coronagraphic observations are subjected to projection effects and do not provide true characteristics of CMEs. Recently, Michalek (2006, {\\it Solar Phys.}, {\\bf237}, 101) developed an asymmetric cone model to obtain the space speed, width and source location of HCMEs. We applied this technique to obtain the parameters of all front-sided HCMEs observed by the SOHO/LASCO experiment during a period from the beginning of 2001 until the end of 2002 (solar cycle 23). These parameters were applied for the space weather forecast. Our study determined that the space speeds are strongly correlated with the travel times of HCMEs within Earth's vicinity and with the magnitudes related to geomagnetic disturbances.
Michael V. Glazoff; Jeong-Whan Yoon
2013-08-01
In this report (prepared in collaboration with Prof. Jeong Whan Yoon, Deakin University, Melbourne, Australia) a research effort was made to develop a non associated flow rule for zirconium. Since Zr is a hexagonally close packed (hcp) material, it is impossible to describe its plastic response under arbitrary loading conditions with any associated flow rule (e.g. von Mises). As a result of strong tension compression asymmetry of the yield stress and anisotropy, zirconium displays plastic behavior that requires a more sophisticated approach. Consequently, a new general asymmetric yield function has been developed which accommodates mathematically the four directional anisotropies along 0 degrees, 45 degrees, 90 degrees, and biaxial, under tension and compression. Stress anisotropy has been completely decoupled from the r value by using non associated flow plasticity, where yield function and plastic potential have been treated separately to take care of stress and r value directionalities, respectively. This theoretical development has been verified using Zr alloys at room temperature as an example as these materials have very strong SD (Strength Differential) effect. The proposed yield function reasonably well models the evolution of yield surfaces for a zirconium clock rolled plate during in plane and through thickness compression. It has been found that this function can predict both tension and compression asymmetry mathematically without any numerical tolerance and shows the significant improvement compared to any reported functions. Finally, in the end of the report, a program of further research is outlined aimed at constructing tensorial relationships for the temperature and fluence dependent creep surfaces for Zr, Zircaloy 2, and Zircaloy 4.
Two way coupling RAM-SCB to the space weather modeling framework
Welling, Daniel T [Los Alamos National Laboratory; Jordanova, Vania K [Los Alamos National Laboratory; Zaharia, Sorin G [Los Alamos National Laboratory; Toth, Gabor [UNIV OF MICHIGAN
2010-12-03
The Ring current Atmosphere interaction Model with Self-Consistently calculated 3D Magnetic field (RAM-SCB) has been used to successfully study inner magnetosphere dynamics during different solar wind and magnetosphere conditions. Recently, one way coupling of RAM-SCB with the Space Weather Modeling Framework (SWMF) has been achieved to replace all data or empirical inputs with those obtained through first-principles-based codes: magnetic field and plasma flux outer boundary conditions are provided by the Block Adaptive Tree Solar wind Roe-type Upwind Scheme (BATS-R-US) MHO code, convection electric field is provided by the Ridley Ionosphere Model (RIM), and ion composition is provided by the Polar Wind Outflow Model (PWOM) combined with a multi-species MHO approach. These advances, though creating a powerful inner magnetosphere virtual laboratory, neglect the important mechanisms through which the ring current feeds back into the whole system, primarily the stretching of the magnetic field lines and shielding of the convection electric field through strong region two Field Aligned Currents (FACs). In turn, changing the magnetosphere in this way changes the evolution of the ring current. To address this shortcoming, the coupling has been expanded to include feedback from RAM-SCB to the other coupled codes: region two FACs are returned to the RIM while total plasma pressure is used to nudge the MHO solution towards the RAMSCB values. The impacts of the two way coupling are evaluated on three levels: the global magnetospheric level, focusing on the impact on the ionosphere and the shape of the magnetosphere, the regional level, examining the impact on the development of the ring current in terms of energy density, anisotropy, and plasma distribution, and the local level to compare the new results to in-situ measurements of magnetic and electric field and plasma. The results will also be compared to past simulations using the one way coupling and no coupling whatsoever. This work is the first to fully couple an anisotropic kinetic ring current code with a selfconsistently calculated magnetic field to a set of global models.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Tourret, Damien; Clarke, Amy J.; Imhoff, Seth D.; Gibbs, Paul J.; Gibbs, John W.; Karma, Alain
2015-05-27
We present a three-dimensional extension of the multiscale dendritic needle network (DNN) model. This approach enables quantitative simulations of the unsteady dynamics of complex hierarchical networks in spatially extended dendritic arrays. We apply the model to directional solidification of Al-9.8 wt.%Si alloy and directly compare the model predictions with measurements from experiments with in situ x-ray imaging. The focus is on the dynamical selection of primary spacings over a range of growth velocities, and the influence of sample geometry on the selection of spacings. Simulation results show good agreement with experiments. The computationally efficient DNN model opens new avenues formore »investigating the dynamics of large dendritic arrays at scales relevant to solidification experiments and processes.« less
Climate Projections Using Bayesian Model Averaging and Space-Time Dependence
Haran, Murali
Climate Projections Using Bayesian Model Averaging and Space-Time Dependence K. Sham Bhat, Murali Haran, Adam Terando, and Klaus Keller. Abstract Projections of future climatic changes are a key input to the design of climate change mitiga- tion and adaptation strategies. Current climate change projections
Towards the Realization of a Public Health Model for Shared Secure Cyber-Space
California at Davis, University of
Towards the Realization of a Public Health Model for Shared Secure Cyber-Space Jeff Rowe UC Davis mahogarth@ucdavis.edu ABSTRACT It has been a longstanding goal of the cyber-security community to improve susceptibility to attack; we refer to this as improving the public cyber-security. Traditionally, computer
On housing booms and credit market conditions: A state space model
Krivobokova, Tatyana
On housing booms and credit market conditions: A state space model Helmut Herwartz University increasing housing price since 1990s in the US? Focus: the role of the credit market conditions 1 #12 and securitization on the house prices: Real mortgage rates: financial costs (user cost approach, Poterba, 1984
Reeves, Geoffrey D [Los Alamos National Laboratory; Friedel, Reiner H W [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory
2008-01-01
The Dynamic Radiation Environment Assimilation Model (DREAM) was developed at Los Alamos National Laboratory to assess, quantify, and predict the hazards from the natural space environment and the anthropogenic environment produced by high altitude nuclear explosions (HANE). DREAM was initially developed as a basic research activity to understand and predict the dynamics of the Earth's Van Allen radiation belts. It uses Kalman filter techniques to assimilate data from space environment instruments with a physics-based model of the radiation belts. DREAM can assimilate data from a variety of types of instruments and data with various levels of resolution and fidelity by assigning appropriate uncertainties to the observations. Data from any spacecraft orbit can be assimilated but DREAM was designed to function with as few as two spacecraft inputs: one from geosynchronous orbit and one from GPS orbit. With those inputs, DREAM can be used to predict the environment at any satellite in any orbit whether space environment data are available in those orbits or not. Even with very limited data input and relatively simple physics models, DREAM specifies the space environment in the radiation belts to a high level of accuracy. DREAM has been extensively tested and evaluated as we transition from research to operations. We report here on one set of test results in which we predict the environment in a highly-elliptical polar orbit. We also discuss long-duration reanalysis for spacecraft design, using DREAM for real-time operations, and prospects for 1-week forecasts of the radiation belt environment.
Farrar, Charles [Los Alamos National Laboratory; Figueiredo, Eloi [UNIV OF PORTO; Todd, Michael [UCSD; Flynn, Eric [UCSD
2010-01-01
A nonlinear time series approach is presented to detect damage in systems by using a state-space reconstruction to infer the geometrical structure of a deterministic dynamical system from observed time series response at multiple locations. The unique contribution of this approach is using a Multivariate Autoregressive (MAR) model of a baseline condition to predict the state space, where the model encodes the embedding vectors rather than scalar time series. A hypothesis test is established that the MAR model will fail to predict future response if damage is present in the test condition, and this test is investigated for robustness in the context of operational and environmental variability. The applicability of this approach is demonstrated using acceleration time series from a base-excited 3-story frame structure.
Testing for dynamical dark energy models with redshift-space distortions
Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Felice, Antonio De [ThEP's CRL, NEP, The Institute for Fundamental Study, Naresuan University, Phitsanulok 65000 (Thailand); Alcaniz, Jailson, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: antoniod@nu.ac.th, E-mail: alcaniz@on.br [Departamento de Astronomia, Observatório Nacional, 20921-400 Rio de Janeiro - RJ (Brazil)
2013-01-01
The red-shift space distortions in the galaxy power spectrum can be used to measure the growth rate of matter density perturbations ?{sub m}. For dynamical dark energy models in General Relativity we provide a convenient analytic formula of f(z)?{sub 8}(z) written as a function of the redshift z, where f = dln ?{sub m}/dln a (a is the cosmological scale factor) and ?{sub 8} is the rms amplitude of over-density at the scale 8 h{sup ?1} Mpc. Our formula can be applied to the models of imperfect fluids, quintessence, and k-essence, provided that the dark energy equation of state w does not vary significantly and that the sound speed is not much smaller than 1. We also place observational constraints on dark energy models of constant w and tracking quintessence from the recent data of red-shift space distortions.
Bernard J. Rauscher; Ori Fox; Pierre Ferruit
2007-06-15
We describe how the James Webb Space Telescope (JWST) Near-Infrared Spectrograph's (NIRSpec's) detectors will be read out, and present a model of how noise scales with the number of multiple non-destructive reads sampling-up-the-ramp. We believe that this noise model, which is validated using real and simulated test data, is applicable to most astronomical near-infrared instruments. We describe some non-ideal behaviors that have been observed in engineering grade NIRSpec detectors, and demonstrate that they are unlikely to affect NIRSpec sensitivity, operations, or calibration. These include a HAWAII-2RG reset anomaly and random telegraph noise (RTN). Using real test data, we show that the reset anomaly is: (1) very nearly noiseless and (2) can be easily calibrated out. Likewise, we show that large-amplitude RTN affects only a small and fixed population of pixels. It can therefore be tracked using standard pixel operability maps.
Space-Time Models based on Random Fields with Local Interactions
Dionissios T. Hristopulos; Ivi C. Tsantili
2015-03-06
The analysis of space-time data from complex, real-life phenomena requires the use of flexible and physically motivated covariance functions. In most cases, it is not possible to explicitly solve the equations of motion for the fields or the respective covariance functions. In the statistical literature, covariance functions are often based on mathematical constructions. We propose deriving space-time covariance functions by solving "effective equations of motion", which can be used as statistical representations of systems with diffusive behavior. In particular, we propose using the linear response theory to formulate space-time covariance functions based on an equilibrium effective Hamiltonian. The effective space-time dynamics are then generated by a stochastic perturbation around the equilibrium point of the classical field Hamiltonian leading to an associated Langevin equation. We employ a Hamiltonian which extends the classical Gaussian field theory by including a curvature term and leads to a diffusive Langevin equation. Finally, we derive new forms of space-time covariance functions.
High-order continuum kinetic method for modeling plasma dynamics in phase space
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Vogman, G. V.; Colella, P.; Shumlak, U.
2014-12-15
Continuum methods offer a high-fidelity means of simulating plasma kinetics. While computationally intensive, these methods are advantageous because they can be cast in conservation-law form, are not susceptible to noise, and can be implemented using high-order numerical methods. Advances in continuum method capabilities for modeling kinetic phenomena in plasmas require the development of validation tools in higher dimensional phase space and an ability to handle non-cartesian geometries. To that end, a new benchmark for validating Vlasov-Poisson simulations in 3D (x,vx,vy) is presented. The benchmark is based on the Dory-Guest-Harris instability and is successfully used to validate a continuum finite volumemore »algorithm. To address challenges associated with non-cartesian geometries, unique features of cylindrical phase space coordinates are described. Preliminary results of continuum kinetic simulations in 4D (r,z,vr,vz) phase space are presented.« less
De Zeeuw, Darren L.
pipelines, and the electric power grid have all become facts of life; however, they all rely on technologiesSun-to-thermosphere simulation of the 28--30 October 2003 storm with the Space Weather Modeling was carried out with the newly developed Space Weather Modeling Framework (SWMF, see http
EXPERIMENTS IN MODELING THE SPACE-TIME INDOOR WIRELESS COMMUNICATION CHANNEL
Swindlehurst, A. Lee
include only time of arrival characteris- tics. However, in order to use statistical models in simu to know the statis- tics of the angle of arrival and its correlation with time of arrival. Inthis paper
From Clifford Algebra of Nonrelativistic Phase Space to Quarks and Leptons of the Standard Model
Piotr ?enczykowski
2015-05-11
We review a recently proposed Clifford-algebra approach to elementary particles. We start with: (1) a philosophical background that motivates a maximally symmetric treatment of position and momentum variables, and: (2) an analysis of the minimal conceptual assumptions needed in quark mass extraction procedures. With these points in mind, a variation on Born's reciprocity argument provides us with an unorthodox view on the problem of mass. The idea of space quantization suggests then the linearization of the nonrelativistic quadratic form ${\\bf p}^2 +{\\bf x}^2$ with position and momentum satisfying standard commutation relations. This leads to the 64-dimensional Clifford algebra ${Cl}_{6,0}$ of nonrelativistic phase space within which one identifies the internal quantum numbers of a single Standard Model generation of elementary particles (i.e. weak isospin, hypercharge, and color). The relevant quantum numbers are naturally linked to the symmetries of macroscopic phase space. It is shown that the obtained phase-space-based description of elementary particles gives a subquark-less explanation of the celebrated Harari-Shupe rishon model. Finally, the concept of additivity is used to form novel suggestions as to how hadrons are constructed out of quarks and how macroscopically motivated invariances may be restored at the hadron level.
Kwicklis, Edward Michael [Los Alamos National Laboratory; Keating, Elizabeth H [Los Alamos National Laboratory
2010-12-02
Much progress has been made in the last several years in modeling radionuclide transport from tests conducted both in the unsaturated zone and saturated volcanic rocks of Yucca Flat, Nevada. The presentations to the DOE NNSA pre-emptive review panel contained herein document the progress to date, and discuss preliminary conclusions regarding the present and future extents of contamination resulting from past nuclear tests. The presentations also discuss possible strategies for addressing uncertainty in the model results.
space/time and modeling formalisms; extensions: Multilevel modeling in CA
Utrecht, Universiteit
expectation (attractors, mesoscale patterns) · Exploration what happens if we assume.... emergent behaviour MESOSCALE ENTITIES: - discovery and description - modeling these entities -'beyond' dynamical systems (IBM models) PREDEFINED MULTIPLE LEVEL - e.g. predefined cells as mesoscale - multiple timescales
Continuous time random walk models for fractional space-time diffusion equations
Sabir Umarov
2014-09-14
In this paper continuous time random walk models approximating fractional space-time diffusion processes are studied. Stochastic processes associated with the considered equations represent time-changed processes, where the time-change process is a L\\'evy's stable subordinator with the stability index $\\beta \\in (0,1).$ In the parer the convergence of constructed CTRWs to time-changed processes associated with the corresponding fractional diffusion equations are proved using a new analytic method.
Ahmadi, Rouhollah; Khamehchi, Ehsan
2013-12-15
Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks and fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data.
Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Read, Randy J. [University of Cambridge, Cambridge CB2 0XY (United Kingdom); Adams, Paul D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Brunger, Axel T. [Stanford University, 318 Campus Drive West, Stanford, CA 94305-5432 (United States); Afonine, Pavel V.; Grosse-Kunstleve, Ralf W. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Hung, Li-Wei [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2012-07-01
A density-based procedure is described for improving a homology model that is locally accurate but differs globally. The model is deformed to match the map and refined, yielding an improved starting point for density modification and further model-building. An approach is presented for addressing the challenge of model rebuilding after molecular replacement in cases where the placed template is very different from the structure to be determined. The approach takes advantage of the observation that a template and target structure may have local structures that can be superimposed much more closely than can their complete structures. A density-guided procedure for deformation of a properly placed template is introduced. A shift in the coordinates of each residue in the structure is calculated based on optimizing the match of model density within a 6 Å radius of the center of that residue with a prime-and-switch electron-density map. The shifts are smoothed and applied to the atoms in each residue, leading to local deformation of the template that improves the match of map and model. The model is then refined to improve the geometry and the fit of model to the structure-factor data. A new map is then calculated and the process is repeated until convergence. The procedure can extend the routine applicability of automated molecular replacement, model building and refinement to search models with over 2 Å r.m.s.d. representing 65–100% of the structure.
Optimized Fock space in the large N limit of quartic interactions in Matrix Models
Hynek, Mariusz
2015-01-01
We consider the problem of quantization of the bosonic membrane via the large $N$ limit of its matrix regularizations $H_N$ in Fock space. We prove that there exists a choice of the Fock space frequency such that $ H_N$ can be written as a sum of a non-interacting Hamiltonian $H_{0,N}$ and the original normal ordered quartic potential. Using this decomposition we obtain upper and lower bounds for the ground state energy, we study a perturbative expansion about the spectrum of $H_{0,N}$, and show that the spectral gap remains finite at $N=\\infty$ at least up to the second order. We also apply the method to a toy model, the $U(N)$-invariant anharmonic oscillator, and compare our bounds with the exact values.
A Novel Statistical Channel Model for Turbulence-Induced Fading in Free-Space Optical Systems
Aminikashani, Mohammadreza; Kavehrad, Mohsen
2015-01-01
In this paper, we propose a new probability distribution function which accurately describes turbulence-induced fading under a wide range of turbulence conditions. The proposed model, termed Double Generalized Gamma (Double GG), is based on a doubly stochastic theory of scintillation and developed via the product of two Generalized Gamma (GG) distributions. The proposed Double GG distribution generalizes many existing turbulence channel models and provides an excellent fit to the published plane and spherical waves simulation data. Using this new statistical channel model, we derive closed form expressions for the outage probability and the average bit error as well as corresponding asymptotic expressions of free-space optical communication systems over turbulence channels. We demonstrate that our derived expressions cover many existing results in the literature earlier reported for Gamma-Gamma, Double-Weibull and K channels as special cases.
A Novel Statistical Channel Model for Turbulence-Induced Fading in Free-Space Optical Systems
Mohammadreza Aminikashani; Murat Uysal; Mohsen Kavehrad
2015-02-02
In this paper, we propose a new probability distribution function which accurately describes turbulence-induced fading under a wide range of turbulence conditions. The proposed model, termed Double Generalized Gamma (Double GG), is based on a doubly stochastic theory of scintillation and developed via the product of two Generalized Gamma (GG) distributions. The proposed Double GG distribution generalizes many existing turbulence channel models and provides an excellent fit to the published plane and spherical waves simulation data. Using this new statistical channel model, we derive closed form expressions for the outage probability and the average bit error as well as corresponding asymptotic expressions of free-space optical communication systems over turbulence channels. We demonstrate that our derived expressions cover many existing results in the literature earlier reported for Gamma-Gamma, Double-Weibull and K channels as special cases.
Chang, Zhe
2009-01-01
Gravitational field equations in Randers-Finsler space of approximate Berwald type are investigated. A modified Friedmann model is proposed. It is showed that the accelerated expanding universe is guaranteed by a constrained Randers-Finsler structure without invoking dark energy. The geodesic in Randers-Finsler space is studied. The additional term in the geodesic equation acts as repulsive force against the gravity.
Zhe Chang; Xin Li
2009-01-08
Gravitational field equations in Randers-Finsler space of approximate Berwald type are investigated. A modified Friedmann model is proposed. It is showed that the accelerated expanding universe is guaranteed by a constrained Randers-Finsler structure without invoking dark energy. The geodesic in Randers-Finsler space is studied. The additional term in the geodesic equation acts as repulsive force against the gravity.
Gu, Fei
2013-05-31
In this work, two types of bootstrap methods are used to evaluate the absolute goodness-of-fit for the linear state space model. The first bootstrap is called parametric bootstrap, and the second one is called the ...
A finite element model for transient thermal/structural analysis of large composite space structures
Lutz, James Delmar
1986-01-01
Composite Space Structures. (May 1986) James Delmar Lutz, B. S. , Texas A&M University Chairmen of Advisory Committee: Dr. David H. Allen Dr. Walter E. Haisler A finite element model is developed for predicting the transient thermal/structural response... of structures to be analyzed in order to simplify the heat load analysis. The first r estr iction applies to the geometry of struc- tures to be analyzed. An appropriate structure should be of open lattice-type construction and have highly repetitive...
High-order continuum kinetic method for modeling plasma dynamics in phase space
Vogman, G. V.; Colella, P.; Shumlak, U.
2014-12-15
Continuum methods offer a high-fidelity means of simulating plasma kinetics. While computationally intensive, these methods are advantageous because they can be cast in conservation-law form, are not susceptible to noise, and can be implemented using high-order numerical methods. Advances in continuum method capabilities for modeling kinetic phenomena in plasmas require the development of validation tools in higher dimensional phase space and an ability to handle non-cartesian geometries. To that end, a new benchmark for validating Vlasov-Poisson simulations in 3D (x,v_{x},v_{y}) is presented. The benchmark is based on the Dory-Guest-Harris instability and is successfully used to validate a continuum finite volume algorithm. To address challenges associated with non-cartesian geometries, unique features of cylindrical phase space coordinates are described. Preliminary results of continuum kinetic simulations in 4D (r,z,v_{r},v_{z}) phase space are presented.
State space modeling of reactor core in a pressurized water reactor
Ashaari, A.; Ahmad, T.; M, Wan Munirah W.; Shamsuddin, Mustaffa; Abdullah, M. Adib
2014-07-10
The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.
Albers, Robert C [Los Alamos National Laboratory; Julien, Jean P [Los Alamos National Laboratory
2008-01-01
We have developed a new efficient and accurate impurity solver for the single impurity Anderson model (SIAM), which is based on a non-perturbative recursion technique in a space of operators and involves expanding the self-energy as a continued fraction. The method has no special occupation number or temperature restrictions; the only approximation is the number of levels of the continued fraction retained in the expansion. We also show how this approach can be used as a new approach to Dynamical Mean Field Theory (DMTF) and illustrate this with the Hubbard model. The three lowest orders of recursion give the Hartree-Fock, Hubbard I, and Hubbard III approximations. A higher level of recursion is able to reproduce the expected 3-peak structure in the spectral function and Fermi liquid behavior.
Optical models of the big bang and non-trivial space-time metrics based on metamaterials
Igor I. Smolyaninov
2009-08-17
Optics of metamaterials is shown to provide interesting table top models of many non-trivial space-time metrics. The range of possibilities is broader than the one allowed in classical general relativity. For example, extraordinary waves in indefinite metamaterials experience an effective metric, which is formally equivalent to the "two times physics" model in 2+2 dimensions. An optical analogue of a "big bang" event is presented during which a (2+1) Minkowski space-time is created together with large number of particles populating this space-time. Such metamaterial models enable experimental exploration of the metric phase transitions to and from the Minkowski space-time as a function of temperature and/or light frequency.
Novel Constraint on Parameter Space of the Georgi-Machacek Model by Current LHC Data
Cheng-Wei Chiang; Shinya Kanemura; Kei Yagyu
2014-11-15
The same-sign diboson process $pp\\to W^\\pm W^\\pm jj$ has been measured at the LHC using leptonic decay channels of the $W$ bosons, with production cross sections of two fiducial regions reported to be consistent with the standard model expectations within 1 sigma. These results constrain new physics models with a modified $W^+W^+W^-W^-$ vertex. We consider in particular the Georgi-Machacek model in which the quartic $W$ boson vertex is effectively modified due to mediations of new Higgs bosons in the model. The relevant gauge-gauge-scalar couplings are all proportional to the vacuum expectation value of the isospin triplets, which can be of $\\mathcal{O}(10)$ GeV because of custodial vacuum alignment. Using the current 8-TeV data at the LHC, we exclude parameter space on the plane of the triplet vacuum expectation value and the new Higgs boson mass. The expected discovery reach at the 14-TeV LHC is also studied.
Modeling of Adaptive Optics-Based Free-Space Communications Systems
Wilks, S C; Morris, J R; Brase, J M; Olivier, S S; Henderson, J R; Thyompson, C; Kartz, M; Ruggiero, A J
2002-08-06
We introduce a wave-optics based simulation code written for air-optic laser communications links, that includes a detailed model of an adaptive optics compensation system. We present the results obtained by this model, where the phase of a communications laser beam is corrected, after it propagates through a turbulent atmosphere. The phase of the received laser beam is measured using a Shack-Hartmann wavefront sensor, and the correction method utilizes a MEMS mirror. Strehl improvement and amount of power coupled to the receiving fiber for both 1 km horizontal and 28 km slant paths are presented.
A water bag model of driven phase space holes in non-neutral plasmas L. Friedland,1,a
Friedland, Lazar
A water bag model of driven phase space holes in non-neutral plasmas I. Barth,1 L. Friedland,1,a, quasi-one-dimensional water bag model of this excitation for an initially flat-top distribution estimated within the water bag theory. © 2008 American Institute of Physics. DOI: 10.1063/1.2969738 I
-Gram-based Input Encoding for Continuous Space Language Models Henning Sperr , Jan Niehues and Alexander Waibel.lastname@kit.edu henning.sperr@student.kit.edu Abstract We present a letter-based encoding for words in continuous space approach is n-gram-based language models (Chen and Goodman, 1999). In recent years Continuous Space
Sengupta, Sudip, E-mail: sudip@ipr.res.in [Institute for Plasma Research, Bhat , Gandhinagar - 382428 (India)
2014-02-11
Spatio-temporal evolution of relativistically intense longitudinal space charge waves in a cold homogeneous plasma is studied analytically as well as numerically, as an initial value problem, using Dawson sheet model. It is found that, except for very special initial conditions which generates the well known longitudinal Akhiezer-Polovin mode, for all other initial conditions, the waves break through a novel mechanism called phase mixing at an amplitude well below the Akhiezer-Polovin limit. An immediate consequence of this is, that Akhiezer-Polovin waves break when subjected to arbitrarily small longitudinal perturbations. We demonstrate this by performing extensive numerical simulations. This result may be of direct relevance to ultrashort, ultraintense laser/beam pulse-plasma interaction experiments where relativistically intense waves are routinely excited.
Similarity dark energy models in Bianchi type -I space-time
Ali, Ahmad T; Alzahrani, Abdulah K
2015-01-01
We investigate some new similarity solutions of anisotropic dark energy and perfect fluid in Bianchi type-I space-time. Three different time dependent skewness parameters along the spatial directions are introduced to quantify the deviation of pressure from isotropy. We consider the case when the dark energy is minimally coupled to the perfect fluid as well as direct interaction with it. The Lie symmetry generators that leave the equation invariant are identified and we generate an optimal system of one-dimensional subalgebras. Each element of the optimal system is used to reduce the partial differential equation to an ordinary differential equation which is further analyzed. We solve the Einstein field equations, described by a system of non-linear partial differential equations (NLPDEs), by using the Lie point symmetry analysis method. The geometrical and kinematical features of the models and the behavior of the anisotropy of dark energy, are examined in detail.
Phase Space Distribution for Two-Gap Solution in Unitary Matrix Model
Parikshit Dutta; Suvankar Dutta
2015-10-12
We analyze the dynamics of weakly coupled finite temperature $U(N)$ gauge theories on $S^3$ by studying a class of effective unitary matrix model. Solving Dyson-Schwinger equation at large $N$, we find that different phases of gauge theories are characterized by gaps in eigenvalue distribution over a unit circle. In particular, we obtain no-gap, one-gap and two-gap solutions at large $N$ for a class of matrix model we are considering. The same effective matrix model can equivalently be written as a sum over representations (or Young diagrams) of unitary group. We show that at large $N$, Young diagrams corresponding to different phases can be classified in terms of discontinuities in number of boxes in two consecutive rows. More precisely, the representation, where there is no discontinuity, corresponds to no-gap and one-gap solution, where as, a diagram with one discontinuity corresponds to two-gap phase, mentioned above. This observation allows us to write a one to one relation between eigenvalue distribution function and Young tableaux distribution function for each saddle point, in particular for two-gap solution. We find that all the saddle points can be described in terms of free fermions with a phase space distribution for no-gap, one-gap and two-gap phases.
Enabling a Highly-Scalable Global Address Space Model for Petascale Computing
Apra, Edoardo; Vetter, Jeffrey S; Yu, Weikuan
2010-01-01
Over the past decade, the trajectory to the petascale has been built on increased complexity and scale of the underlying parallel architectures. Meanwhile, software de- velopers have struggled to provide tools that maintain the productivity of computational science teams using these new systems. In this regard, Global Address Space (GAS) programming models provide a straightforward and easy to use addressing model, which can lead to improved produc- tivity. However, the scalability of GAS depends directly on the design and implementation of the runtime system on the target petascale distributed-memory architecture. In this paper, we describe the design, implementation, and optimization of the Aggregate Remote Memory Copy Interface (ARMCI) runtime library on the Cray XT5 2.3 PetaFLOPs computer at Oak Ridge National Laboratory. We optimized our implementation with the flow intimation technique that we have introduced in this paper. Our optimized ARMCI implementation improves scalability of both the Global Arrays (GA) programming model and a real-world chemistry application NWChem from small jobs up through 180,000 cores.
Wee, Brian (Brian J.)
2013-01-01
This thesis seeks to assess the viability of a space qualified shape memory polymer (SMP) mechanical counter pressure (MCP) suit. A key development objective identified by the International Space Exploration Coordination ...
bioenergetics models were expanded to the population- level and dynamically coupled to the lower trophic levels (LTL) of the NEMURO model. The individual fish bioenergetics model and the one-way coupling to NEMURO (i.e. NEMURO is run first and output is used to force the fish bioenergetics model) are described
Karl B. Fisher
1994-12-20
The relation between the galaxy correlation function in real and redshift-space is derived in the linear regime by an appropriate averaging of the joint probability distribution of density and velocity. The derivation recovers the familiar linear theory result on large scales but has the advantage of clearly revealing the dependence of the redshift distortions on the underlying peculiar velocity field; streaming motions give rise to distortions of ${\\cal O}(\\Omega^{0.6}/b)$ while variations in the anisotropic velocity dispersion yield terms of order ${\\cal O}(\\Omega^{1.2}/b^2)$. This probabilistic derivation of the redshift-space correlation function is similar in spirit to the derivation of the commonly used ``streaming'' model, in which the distortions are given by a convolution of the real-space correlation function with a velocity distribution function. The streaming model is often used to model the redshift-space correlation function on small, highly non-linear, scales. There have been claims in the literature, however, that the streaming model is not valid in the linear regime. Our analysis confirms this claim, but we show that the streaming model can be made consistent with linear theory {\\it provided} that the model for the streaming has the functional form predicted by linear theory and that velocity distribution is chosen to be a Gaussian with the correct linear theory dispersion.
Spycher, N.; Oldenburg, C.M.
2014-01-01
This study uses modeling and simulation approaches to investigate the impacts on injectivity of trace amounts of mercury (Hg) in a carbon dioxide (CO{sub 2}) stream injected for geologic carbon sequestration in a sandstone reservoir at ~2.5 km depth. At the range of Hg concentrations expected (7-190 ppbV, or ~ 0.06-1.6 mg/std.m{sup 3}CO{sub 2}), the total volumetric plugging that could occur due to complete condensation of Hg, or due to complete precipitation of Hg as cinnabar, results in a very small porosity change. In addition, Hg concentration much higher than the concentrations considered here would be required for Hg condensation to even occur. Concentration of aqueous Hg by water evaporation into CO{sub 2} is also unlikely because the higher volatility of Hg relative to H{sub 2}O at reservoir conditions prevents the Hg concentration from increasing in groundwater as dry CO{sub 2} sweeps through, volatilizing both H{sub 2}O and Hg. Using a model-derived aqueous solution to represent the formation water, batch reactive geochemical modeling show that the reaction of the formation water with the CO{sub 2}-Hg mixture causes the pH to drop to about 4.7 and then become buffered near 5.2 upon reaction with the sediments, with a negligible net volume change from mineral dissolution and precipitation. Cinnabar (HgS(s)) is found to be thermodynamically stable as soon as the Hg-bearing CO{sub 2} reacts with the formation water which contains small amounts of dissolved sulfide. Liquid mercury (Hg(l)) is not found to be thermodynamically stable at any point during the simulation. Two-dimensional radial reactive transport simulations of CO{sub 2} injection at a rate of 14.8 kg/s into a 400 m-thick formation at isothermal conditions of 106°C and average pressure near 215 bar, with varying amounts of Hg and H{sub 2}S trace gases, show generally that porosity changes only by about ±0.05% (absolute, i.e., new porosity = initial porosity ±0.0005) with Hg predicted to readily precipitate from the CO{sub 2} as cinnabar in a zone mostly matching the single-phase CO{sub 2} plume. The precipitation of minerals other than cinnabar, however, dominates the evolution of porosity. Main reactions include the replacement of primarily Fe-chlorite by siderite, of calcite by dolomite, and of K-feldspar by muscovite. Chalcedony is also predicted to precipitate from the dissolution of feldspars and quartz. Although the range of predicted porosity change is quite small, the amount of dissolution and precipitation predicted for these individual minerals is not negligible. These reactive transport simulations assume that Hg gas behaves ideally. To examine effects of non-ideality on these simulations, approximate calculations of the fugacity coefficient of Hg in CO{sub 2} were made. Results suggest that Hg condensation could be significantly overestimated when assuming ideal gas behavior, making our simulation results conservative with respect to impacts on injectivity. The effect of pressure on Henry’s constant for Hg is estimated to yield Hg solubilities about 10% lower than when this effect is not considered, a change that is considered too small to affect the conclusions of this report. Although all results in this study are based on relatively mature data and modeling approaches, in the absence of experimental data and more detailed site-specific information, it is not possible to fully validate the results and conclusions.
Pump apparatus including deconsolidator
Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew
2014-10-07
A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.
Normal, Not Paracompact Spaces
Fleissner, William G.
1982-07-01
We describe some recently constructed counterexamples in general topology, including a normal, nonmetrizable Moore space, a normal para-Lindelof, not paracompact space, and a normal, screenable, not paracompact space....
Chang, Bor-Yuh Evan
Access Nets: Modeling Access to Physical Spaces Robert Frohardt, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan University of Colorado, Boulder, Colorado, USA {frohardt,bec,srirams}@cs.colorado.edu Abstract Frohardt, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan Lobby Archive Gallery visitor guard curator
Occhipinti, Giovanni "Ninto"
LETTER Earth Planets Space, 63, 847851, 2011 Three-dimensional numerical modeling of tsunami, 2011; Accepted June 30, 2011; Online published September 27, 2011) The tremendous tsunami following, to reproduce the tsunami signature observed in the airglow by the imager located in Hawaii and clearly showing
A new parameter space study of the fermionic cold dark matter model
Bagherian, Z.; Ettefaghi, M.M.; Haghgouyan, Z.; Moazzemi, R. E-mail: mettefaghi@qom.ac.ir E-mail: r.moazzemi@qom.ac.ir
2014-10-01
We consider the standard model (SM) extended by a gauge singlet fermion as cold dark matter (SFCDM) and a gauge singlet scalar (singlet Higgs) as a mediator. The parameter space of the SM is enlarged by seven new ones. We obtain the total annihilation cross section of singlet fermions to the SM particles and singlet Higgs at tree level. Regarding the relic abundance constraint obtained by WMAP observations, we study the dependency on each parameter separately, for dark matter masses up to 1 TeV. In particular, the coupling of SFCDM to singlet Higgs g{sub s}, the SFCDM mass m{sub ?}, the second Higgs mass m{sub h{sub 2}}, and the Higgs bosons mixing angel ? are investigated accurately. Three other parameters play no significant role. For a maximal mixing of Higgs bosons or at resonances, g{sub s} is applicable for the perturbation theory at tree level. We also obtain the scattering cross section of SFCDM off nucleons and compare our results with experiments which have already reported data in this mass range; XENON100, LUX, COUPP and PICASSO collaborations. Our results show that the SFCDM is excluded by these experiments for choosing parameters which are consistent with perturbation theory and relic abundance constraints.
DIMITRI GIDASPOW
1997-08-15
The objective of this study is to develop a predictive experimentally verified computational fluid dynamic (CFD) three phase model. It predicts the gas, liquid and solid hold-ups (volume fractions) and flow patterns in the industrially important bubble-coalesced (churn-turbulent) regime. The input into the model can be either particulate viscosities as measured with a Brookfield viscometer or effective restitution coefficient for particles. A combination of x-ray and {gamma}-ray densitometers was used to measure solid and liquid volume fractions. There is a fair agreement between the theory and the experiment. A CCD camera was used to measure instantaneous particle velocities. There is a good agreement between the computed time average velocities and the measurements. There is an excellent agreement between the viscosity of 800 {micro}m glass beads obtained from measurement of granular temperature (random kinetic energy of particles) and the measurement using a Brookfield viscometer. A relation between particle Reynolds stresses and granular temperature was found for developed flow. Such measurement and computations gave a restitution coefficient for a methanol catalyst to be about 0.9. A transient, two-dimensional hydrodynamic model for production of methanol from syn-gas in an Air Products/DOE LaPorte slurry bubble column reactor was developed. The model predicts downflow of catalyst at the walls and oscillatory particle and gas flow at the center, with a frequency of about 0.7 Hertz. The computed temperature variation in the rector with heat exchangers was only about 5 K, indicating good thermal management. The computed slurry height, the gas holdup and the rate of methanol production agree with LaPorte's reported data. Unlike the previous models in the literature, this model computes the gas and the particle holdups and the particle rheology. The only adjustable parameter in the model is the effective particle restitution coefficient.
Web-based description of the space radiation environment using the Bethe-Bloch model
Cazzola, Emanuele; Lapenta, Giovanni
2015-01-01
Space weather is a rapidly growing area not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We present a new approach to presenting the topic by developing a web-based tool that combines some of the fundamental concepts from these two fields in a single tool that can be developed in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to asses rapidly the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions to produce a first order approximation of the dose an astronaut would receive during a mission of exploration in deep space. DREADcode is based on a intuitive GUI interfa...
Transactions of the fourth symposium on space nuclear power systems
El-Genk, M.S.; Hoover, M.D.
1987-01-01
This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)
Transactions of the fifth symposium on space nuclear power systems
El-Genk, M.S.; Hoover, M.D.
1988-01-01
This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)
) Total 15 Total 14 Total 14 Total 16 3rd Year 4th Year FALL SPRING FALL SPRING CS 3311 3 CS 4411 4 CS your academic dept. Includes 3 units of co-curricular activities. Effective Fall 2010 1st Year 2nd Year
Activity (1) Total 17 Total 15 Total 14-15 Total 16-17 3rd Year 4th Year FALL SPRING FALL SPRING CS 3311 3 your academic dept. Includes 3 units of co-curricular activities. Effective Fall 2010 1st Year 2nd Year
Dias, M. S. [Center for Development of the Nuclear Technology - CDTN, National Commission for the Nuclear Energy - CNEN, PO Box: 941, 30.161-970, Belo Horizonte, Minas Gerais (Brazil); De Vasconcelos, V.; Mattos, J. R. L. [Center for Development of the Nuclear Technology - CDTN, National Commission for the Nuclear Energy - CNEN (Brazil); Jordao, E. [Chemistry Engineering Dept., Campinas State Univ., FEQ/ UNICAMP, Av. Albert Einstein, 500, 13083-852, Campinas, Sao Paulo (Brazil)
2012-07-01
Formal definitions of convergence, connected-ness and continuity were established to characterize and describe the crystalline solid and its properties as a unified notion in the topological space. In this unified notion, physical and material properties are modeled by means of an intrinsic and invariable form function: the Relative Variational Model. The crystalline solid is assumed an empty space that has been filled with atoms and phonons, i.e., the crystal is built with packages of matter and energy in a regular and orderly repetitive pattern along three orthogonal dimensions of the space. The spatial occupation of the atom in the crystalline structure is determined by its mean vibrational volume, which also defines the lattice parameter or interatomic distance. However, as packages of vibrational energy, phonons can only exist as vibrations of atoms. Any variation of internal energy is in fact the discretized variations of phonon's population. These variations occur in the quantized modes of vibration, and therefore the balance between the frequency and amplitude of vibrations also is a dynamic variable. In this paper, the Relative Variational Model was applied to de-convolutions of frequency spectra of the inelastic neutron scatterings. Some dynamic aspects of atom vibration were presented and evaluated in support to the model's fundamentals. (authors)
Smith, Kyle A. (Kyle Alexander)
2013-01-01
The Traffic Alert and Collision Avoidance System (TCAS) is mandated worldwide to protect against aircraft mid-air collisions. One drawback of the current TCAS design is limited support for certain closely spaced parallel ...
Space radiation-induced bystander signaling in 2D and 3D skin tissue models
Lumpkins, Sarah B
2012-01-01
Space radiation poses a significant hazard to astronauts on long-duration missions, and the low fluences of charged particles characteristic of this field suggest that bystander effects, the phenomenon in which a greater ...
Analytical model and simulations of closed-loop rebreather systems for Earth and Space applications
Josan-Drinceanu, Ioana
2015-01-01
Humans in extreme environments, regardless of whether in space or deep in the oceans of the Earth, rely on life support systems to be kept alive and perform their exploration missions. Diving is similar to extravehicular ...
Integrated modeling to facilitate control architecture design for lightweight space telescopes
Cohan, Lucy Elizabeth
2007-01-01
The purpose of this thesis it to examine the effects of utilizing control to better meet performance and systematic requirements of future space telescopes. New telescope systems are moving toward tighter optical performance ...
Usami, Shunsuke [Department of Helical Plasma Research, National Institute for Fusion Science, Toki 509-5292 (Japan)] [Department of Helical Plasma Research, National Institute for Fusion Science, Toki 509-5292 (Japan); Horiuchi, Ritoku; Ohtani, Hiroaki [Department of Helical Plasma Research, National Institute for Fusion Science, Toki 509-5292 (Japan) [Department of Helical Plasma Research, National Institute for Fusion Science, Toki 509-5292 (Japan); The Graduate University for Advanced Studies (Soken-dai), Toki 509-5292 (Japan); Den, Mitsue [National Institute of Information and Communications Technology, Koganei 184-8795 (Japan)] [National Institute of Information and Communications Technology, Koganei 184-8795 (Japan)
2013-06-15
A multi-hierarchy simulation model aimed at magnetic reconnection studies has been developed, in which macroscopic and microscopic physics are solved self-consistently and simultaneously. In this work, the previous multi-hierarchy model by these authors is extended to a more realistic one with non-uniform space grids. Based on the domain decomposition method, the multi-hierarchy model consists of three parts: a magnetohydrodynamics algorithm to express the macroscopic global dynamics, a particle-in-cell algorithm to describe the microscopic kinetic physics, and an interface algorithm to interlock macro and micro hierarchies. For its verification, plasma flow injection is simulated in this multi-hierarchy model and it is confirmed that the interlocking method can describe the correct physics. Furthermore, this model is applied to collisionless driven reconnection in an open system. Magnetic reconnection is found to occur in a micro hierarchy by injecting plasma from a macro hierarchy.
Space Physics In our daily environment, we encounter matter in three
Mojzsis, Stephen J.
processes of space plasmas because those in near-Earth space can seriously affect modern technologies like GPS. LASP research focuses on space plasma within our Solar System, and includes numerical modeling of plasma, designing space missions, building instruments, and analyzing and interpreting plasma
On Particle Methods for Parameter Estimation in General State-Space Models
Kantas, Nikolas; Doucet, Arnoud; Singh, Sumeetpal S.; Maciejowski, Jan; Chopin, Nicolas
2015-08-10
argument of Q(?k, ?) can be characterized explicitly through a suitable function ? : Rns ? ?, i.e. (5.5) ?k+1 = ? ( T?1S?kT ) . 12 5.1.4 Discussion of particle implementations The path space approximation (3.7) can be used to approximate the score (2...
Van Nguyen, Linh; Chainais, Pierre
2015-01-01
The study of turbulent flows calls for measurements with high resolution both in space and in time. We propose a new approach to reconstruct High-Temporal-High-Spatial resolution velocity fields by combining two sources of information that are well-resolved either in space or in time, the Low-Temporal-High-Spatial (LTHS) and the High-Temporal-Low-Spatial (HTLS) resolution measurements. In the framework of co-conception between sensing and data post-processing, this work extensively investigates a Bayesian reconstruction approach using a simulated database. A Bayesian fusion model is developed to solve the inverse problem of data reconstruction. The model uses a Maximum A Posteriori estimate, which yields the most probable field knowing the measurements. The DNS of a wall-bounded turbulent flow at moderate Reynolds number is used to validate and assess the performances of the present approach. Low resolution measurements are subsampled in time and space from the fully resolved data. Reconstructed velocities ar...
Improving the Fanger model's thermal comfort predictions for naturally ventilated spaces
Truong, Phan Hue
2010-01-01
The Fanger model is the official thermal comfort model in U.S. and international standards and is based on the heat balance of the human body with the environment. This investigation focuses on re-specifying the parameters ...
Yandell, Brian S.
Space-Time Modelling with Long-Memory Dependence: Assessing Ireland's Wind Power Resource Author the long termaverage power output froma wind turbinegenerator at a site forwhich few data on wind speeds and Conditions #12;Appl. Statist.(1989) 38, No. 1, pp. 1-50 Space-timeModellingwithLong-memory Dependence:AssessingIreland'sWind
Configuration Spaces in Fundamental Physics
Edward Anderson
2015-05-13
I consider configuration spaces for $N$-body problems, gauge theories and for GR in both geometrodynamical and Ashtekar variables forms, including minisuperspace and inhomogeneous perturbations thereabout in the former case. These include many interesting spaces of shapes (with and without whichever of local or global notions of scale). In considering reduced configuration spaces, stratified manifolds arise. Three strategies to deal with these are `excise', `unfold' and `accept'. I show that spaces of triangles arising from various interpretations of 3-body problems already serve as model arena for all three. I furthermore argue in favour of the `accept' strategy on relational grounds. Sheaf methods then become relevant in this case, as does the stratifold construct that pairs some well-behaved stratified manifolds with sheaves. I apply arguing against `excise' and `unfold' to GR's superspace and thin sandwich, and to the removal of collinear configurations in mechanics. Non-redundant configurations are also useful in providing more accurate names for various spaces and theories. I also cover notions of distance between shapes, that some perturbative midisuperspace configuration spaces are simple and similar to minisuperspace ones, and similarities between CS (conformal superspace) and CS + V (including the global spatial volume).
Colouring Space -A Coloured Framework for Spatial Modelling in Systems Biology
Gilbert, David
, hy- brid Petri nets, spatial modelling, biomolecular networks, Systems Biology, BioModel Engineering- tributes of dynamic systems using coloured Petri nets and show how it can be applied to biological systems for the uncoloured family of Petri net classes. Keywords: Coloured Petri nets, qualitative, stochastic, continuous
Leaf Modeling and Constrained Leaf Morphing in Leaf Space Saurabh Garg1
Leow, Wee Kheng
, and structure of the leaves among different species of plants. The main draw- back of existing methods. In this paper, we present a novel parametric leaf model based on botanical considerations for generating is generated by fitting quadratic B-spline curves to the landmark points and tangents. The proposed leaf model
Modeling and Analysis of a Lunar Space Reactor with the Computer...
Office of Scientific and Technical Information (OSTI)
(HXs). Each secondary loop provides heat to four SEs. The primary loop includes the nuclear reactor with the lower and more upper plena, the core with 85 fuel pins, and...
Now includes video! A Haunting
Rogers, John A.
We Left Earth: NASA· games Game Central· Interactive Central· Puzzle Central· Quiz Central· blogs· Earth· Egypt· Green· Global Warming· History· Sharks· Space· Survival Zone· Technology· newsletters Sign
Three- and Four-Body Scattering Calculations including the Coulomb Force
A. Deltuva
2009-01-17
The method of screening and renormalization for including the Coulomb interaction in the framework of momentum-space integral equations is applied to the three- and four-body nuclear reactions. The Coulomb effect on the observables and the ability of the present nuclear potential models to describe the experimental data is discussed.
Geddes, Cameron Guy Robinson
space resulting from the use of Lorentz boosted frames of calculation on laser propagation in plasmas in the plasma column in space-tim
Scramjet including integrated inlet and combustor
Kutschenreuter, P.H. Jr.; Blanton, J.C.
1992-02-04
This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.
Learning Setting-Generalized Activity Models for Smart Spaces Diane J. Cook
Cook, Diane J.
found in smart homes offer unprecedented opportunities for providing context-aware services, including the recognition of activities is an important step toward monitoring the functional health of a smart home datasets from the CASAS Smart Home project [2]. #12;Figure 1. Sensor layout for the seven CASAS smart
S. V. Jeffers; J. P. Aufdenberg; G. A. J. Hussain; A. Collier Cameron; V. R. Holzwarth
2006-02-02
The variation of the specific intensity across the stellar disc is essential input parameter in surface brightness reconstruction techniques such as Doppler imaging, where the relative intensity contributions of different surface elements are important in detecting starspots. We use PHOENIX and ATLAS model atmospheres to model lightcurves derived from high precision (S/N ~ 5000) HST data of the eclipsing binary SV Cam (F9V + K4V), where the variation of specific intensity across the stellar disc will determine the contact points of the binary system lightcurve. For the first time we use chi^2 comparison fits to the first derivative profiles to determine the best-fitting model atmosphere. We show the wavelength dependence of the limb darkening and that the first derivative profile is sensitive to the limb-darkening profile very close to the limb of the primary star. It is concluded that there is only a marginal difference (< 1sigma) between the chi^2 comparison fits of the two model atmospheres to the HST lightcurve at all wavelengths. The usefulness of the second derivative of the light-curve for measuring the sharpness of the primary's limb is investigated, but we find that the data are too noisy to permit a quantitative analysis.
Modeling and Generation of Space-Time Correlated Signals for Sensor Network Fields
Rossi, Michele
and recovery in Wireless Sensor Networks (WSNs) have utilized the spatio-temporal statistics of real world signals in order to achieve good performance in terms of energy savings and improved signal reconstruction model is accurate in reproducing the signal statistics of interest. I. INTRODUCTION AND RELATED WORK
POLICY MODEL FOR SPACE ECONOMY INFRASTRUCTURE Narayanan Komerath, James Nally, Elizabeth Zilin Tang
. The basic premise of this work is that a viable economic rationale is essential to the health and growth Tang School of Aerospace Engineering and Center for International Strategy, Technology & Policy Georgia. The beginnings of an economic simulation model are presented, along with examples of how interactions
Restricted N-glycan Conformational Space in the PDB and Its Implication in Glycan Structure Modeling
Jo, Sunhwan; Lee, Hui Sun; Skolnick, Jeffrey; Im, Wonpil
2013-03-14
including their orientations with respect to the protein is discussed separately below. Figure 2 shows the RMSD distributions of the N-glycan structure pairs in the PDB and random conformation pool. Note that the RMSD is only measured between glycan... background glycan structures (see Methods for details). By deriving the statistical significance using the random background having the identical N-glycan sequence, the length dependence is effectively removed. The generalized extreme value distribution (Eq...
Scale-model Experiment of Magnetoplasma Sail for Future Deep Space Missions
Funaki, Ikkoh [Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, 229-8510 (Japan); Yamakawa, Hiroshi [Kyoto University, Uji, Kyoto, 611-0011 (Japan); Ueno, Kazuma; Kimura, Toshiyuki; Ayabe, Tomohiro; Horisawa, Hideyuki [Tokai University, Hiratsuka, Kanagawa, 259-1292 (Japan)
2008-04-28
When Magnetic sail (MagSail) spacecraft is operated in space, the supersonic solar wind plasma flow is blocked by an artificially produced magnetic cavity to accelerate the spacecraft in the direction leaving the Sun. To evaluate the momentum transferring process from the solar wind to the coil onboard the MagSail spacecraft, we arranged a laboratory experiment of MagSail spacecraft. Based on scaling considerations, a solenoidal coil was immersed into the plasma flow from a magnetoplasmadynamic arcjet in a quasi-steady mode of about 1 ms duration. In this setup, it is confirmed that a magnetic cavity, which is similar to that of the geomagnetic field, was formed around the coil to produce thrust in the ion Larmor scale interaction. Also, the controllability of magnetic cavity size by a plasma jet from inside the coil of MagSail is demonstrated, although the thrust characteristic of the MagSail with plasma jet, which is so called plasma sail, is to be clarified in our next step.
Xavier Busch
2014-11-06
The two main predictions of quantum field theory in curved space-time, namely Hawking radiation and cosmological pair production, have not been directly tested and involve ultra high energy configurations. As a consequence, they should be considered with caution. Using the analogy with condensed matter systems, their analogue versions could be tested in the lab. Moreover, the high energy behavior of these systems is known and involves dispersion and dissipation, which regulate the theory at short distances. When considering experiments which aim to test the above predictions, there will also be a competition between the stimulated emission from thermal noise and the spontaneous emission out of vacuum. In order to measure these effects, one should thus compute the consequences of UV dispersion and dissipation, and identify observables able to establish that the spontaneous emission took place. In this thesis, we first analyze the effects of dispersion and dissipation on both Hawking radiation and pair particle production. To get explicit results, we work in the context of de Sitter space. Using the extended symmetries of the theory in such a background, exact results are obtained. These are then transposed to the context of black holes using the correspondence between de Sitter space and the black hole near horizon region. To introduce dissipation, we consider an exactly solvable model producing any decay rate. We also study the quantum entanglement of the particles so produced. In a second part, we consider explicit condensed matter systems, namely Bose Einstein condensates and exciton-polariton systems. We analyze the effects of dissipation on entanglement produced by the dynamical Casimir effect. As a final step, we study the entanglement of Hawking radiation in the presence of dispersion for a generic analogue system.
Time-domain Simulation of Multibody Floating Systems based on State-space Modeling Technology
Yu, Xiaochuan
2012-10-19
operation. Hong, et al. (2005) applied the Higher-Order Boundary Element Method (HOBEM) to analyze the motions and drift force of side-by-side moored multiple vessels, such as Floating Production Storage and Offloading (FPSO) unit for Liquid Natural Gas... associated with the small gap between two barges, which is fundamental for understanding FPSO-shuttle tanker interactions during side-by- side offloading. The test results and comparisons with numerical model predictions were used to optimize future test...
Phase Space Distribution for Two-Gap Solution in Unitary Matrix Model
Dutta, Parikshit
2015-01-01
We analyze the dynamics of weakly coupled finite temperature $U(N)$ gauge theories on $S^3$ by studying a class of effective unitary matrix model. Solving Dyson-Schwinger equation at large $N$, we find that different phases of gauge theories are characterized by gaps in eigenvalue distribution over a unit circle. In particular, we obtain no-gap, one-gap and two-gap solutions at large $N$ for a class of matrix model we are considering. The same effective matrix model can equivalently be written as a sum over representations (or Young diagrams) of unitary group. We show that at large $N$, Young diagrams corresponding to different phases can be classified in terms of discontinuities in number of boxes in two consecutive rows. More precisely, the representation, where there is no discontinuity, corresponds to no-gap and one-gap solution, where as, a diagram with one discontinuity corresponds to two-gap phase, mentioned above. This observation allows us to write a one to one relation between eigenvalue distributio...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Standard, including the processing and communications architecture, common hardware and software components, and its communications protocols Modular space payload architecture...
Haven't a Cue? Mapping the CUE Space as an Aid to HRA Modeling
David I Gertman; Ronald L Boring; Jacques Hugo; William Phoenix
2012-06-01
Advances in automation present a new modeling environment for the human reliability analysis (HRA) practitioner. Many, if not most, current day HRA methods have their origin in characterizing and quantifying human performance in analog environments where mode awareness and system status indications are potentially less comprehensive, but simpler to comprehend at a glance when compared to advanced presentation systems. The introduction of highly complex automation has the potential to lead to: decreased levels of situation awareness caused by the need for increased monitoring; confusion regarding the often non-obvious causes of automation failures, and emergent system dependencies that formerly may have been uncharacterized. Understanding the relation of incoming cues available to operators during plant upset conditions, in conjunction with operating procedures, yields insight into understanding the nature of the expected operator response in this control room environment. Static systems methods such as fault trees do not contain the appropriate temporal information or necessarily specify the relationship among cues leading to operator response. In this paper, we do not attempt to replace standard performance shaping factors commonly used in HRA nor offer a new HRA method, existing methods may suffice. In this paper we strive to enhance current understanding of the basis for operator response through a technique that can be used during the qualitative portion of the HRA analysis process. The CUE map is a means to visualize the relationship among salient cues in the control room that help influence operator response, show how the cognitive map of the operator changes as information is gained or lost, and is applicable to existing as well as advanced hybrid plants and small modular reactor designs. A brief application involving loss of condensate is presented and advantages and limitations of the modeling approach and use of the CUE map are discussed.
SPACE WEATHER RISKS FROM AN INSURANCE PERSPECTIVE
Schrijver, Karel
SPACE WEATHER RISKS FROM AN INSURANCE PERSPECTIVE 26.04.2011 Jan Eichner Geo Risks Research #12, including geophysical hazards, weather-related hazards and potential consequences of climate change weather). · Linking geo-scientific research with business expertise in risk assessment, risk modeling
The Geroch group in Einstein spaces
Robert G. Leigh; Anastasios C. Petkou; P. Marios Petropoulos; Prasanta K. Tripathy
2015-06-17
Geroch's solution-generating method is extended to the case of Einstein spaces, which possess a Killing vector {{}and are thus asymptotically (locally) (anti-)de Sitter}. This includes the reduction to a three-dimensional coset space, the description of the dynamics in terms of a sigma-model and its transformation properties under the $SL(2,\\mathbb{R})$ group, and the reconstruction of new four-dimensional Einstein spaces. The detailed analysis of the space of solutions is performed using the Hamilton--Jacobi method in the instance where the three-dimensional coset space is conformal to $\\mathbb{R}\\times \\mathcal{S}_2$. The cosmological constant appears in this framework as a constant of motion and transforms under $SL(2,\\mathbb{R})$.
Countries Gasoline Prices Including Taxes
Gasoline and Diesel Fuel Update (EIA)
Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and...
WILLIS WL; AHRENDT MR
2009-08-11
Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.
Li, Xinlin
1 A New Model for the Prediction of Dst on the Basis of the Solar Wind M. Temerin Space Sciences on solar wind data for the years 1995-1999 gives a good fit with a prediction efficiency of 88%, a linear and a term proportional to the square root of the solar wind dynamic pressure is added to give the predicted
Neutralino relic density including coannihilations
Paolo Gondolo; Joakim Edsjo
1997-11-25
We give an overview of our precise calculation of the relic density of the lightest neutralino, in which we included relativistic Boltzmann averaging, subthreshold and resonant annihilations, and coannihilation processes with charginos and neutralinos.
Biswajit Pandey; Somnath Bharadwaj
2005-01-19
The anisotropies in the galaxy two-point correlation function measured from redshift surveys exhibits deviations from the predictions of the linear theory of redshift space distortion on scales as large 20 Mpc/h where we expect linear theory to hold in real space. Any attempt at analyzing the anisotropies in the redshift correlation function and determining the linear distortion parameter \\beta requires these deviations to be correctly modeled and taken into account. These deviations are usually attributed to galaxy random motions and these are incorporated in the analysis through a phenomenological model where the linear redshift correlation is convolved with the random pairwise velocity distribution function along the line of sight. We show that a substantial part of the deviations arise from non-linear effects in the mapping from real to redshift space caused by the coherent flows. Models which incorporate this effect provide a better fit to N-body results as compared to the phenomenological model which has only the effect of random motions. We find that the pairwise velocity dispersion predicted by all the models that we have considered are in excess of the values determined directly from the N-body simulations. This indicates a shortcoming in our understanding of the statistical properties of peculiar velocities and their relation to redshift distortion.
Bayesian redshift-space distortions correction from galaxy redshift surveys
Kitaura, Francisco-Shu; Angulo, Raul E; Chuang, Chia-Hsun; Rodriguez-Torres, Sergio; Monteagudo, Carlos Hernandez; Prada, Francisco; Yepes, Gustavo
2015-01-01
We present a Bayesian reconstruction method which maps a galaxy distribution from redshift-space to real-space inferring the distances of the individual galaxies. The method is based on sampling density fields assuming a lognormal prior with a likelihood given by the negative binomial distribution function modelling stochastic bias. We assume a deterministic bias given by a power law relating the dark matter density field to the expected halo or galaxy field. Coherent redshift-space distortions are corrected in a Gibbs-sampling procedure by moving the galaxies from redshift-space to real-space according to the peculiar motions derived from the recovered density field using linear theory with the option to include tidal field corrections from second order Lagrangian perturbation theory. The virialised distortions are corrected by sampling candidate real-space positions (being in the neighbourhood of the observations along the line of sight), which are compatible with the bulk flow corrected redshift-space posi...
*D. J. Kelleher
2013-11-16
The Space of Metric Spaces. *D. J. Kelleher1. 1Department of Mathematics. University of Connecticut. UConn— SIGMA Seminar — Fall 2013. D. J. Kelleher.
SpacePy - a Python-based library of tools for the space sciences
Morley, Steven K [Los Alamos National Laboratory; Welling, Daniel T [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Larsen, Brian A [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory
2010-01-01
Space science deals with the bodies within the solar system and the interplanetary medium; the primary focus is on atmospheres and above - at Earth the short timescale variation in the the geomagnetic field, the Van Allen radiation belts and the deposition of energy into the upper atmosphere are key areas of investigation. SpacePy is a package for Python, targeted at the space sciences, that aims to make basic data analysis, modeling and visualization easier. It builds on the capabilities of the well-known NumPy and MatPlotLib packages. Publication quality output direct from analyses is emphasized. The SpacePy project seeks to promote accurate and open research standards by providing an open environment for code development. In the space physics community there has long been a significant reliance on proprietary languages that restrict free transfer of data and reproducibility of results. By providing a comprehensive, open-source library of widely used analysis and visualization tools in a free, modern and intuitive language, we hope that this reliance will be diminished. SpacePy includes implementations of widely used empirical models, statistical techniques used frequently in space science (e.g. superposed epoch analysis), and interfaces to advanced tools such as electron drift shell calculations for radiation belt studies. SpacePy also provides analysis and visualization tools for components of the Space Weather Modeling Framework - currently this only includes the BATS-R-US 3-D magnetohydrodynamic model and the RAM ring current model - including streamline tracing in vector fields. Further development is currently underway. External libraries, which include well-known magnetic field models, high-precision time conversions and coordinate transformations are wrapped for access from Python using SWIG and f2py. The rest of the tools have been implemented directly in Python. The provision of open-source tools to perform common tasks will provide openness in the analysis methods employed in scientific studies and will give access to advanced tools to all space scientists regardless of affiliation or circumstance.
Ortiz Prada, Rubiel Paul
2012-02-14
Optimizing well spacing in unconventional gas reservoirs is difficult due to complex heterogeneity, large variability and uncertainty in reservoir properties, and lack of data that increase the production uncertainty. Previous methods are either...
Lin, M. C., E-mail: mingchiehlin@gmail.com; Lu, P. S. [NanoScience Simulation Laboratory, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China) [NanoScience Simulation Laboratory, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Plasma Theory and Simulation Group, Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States); Chang, P. C. [NanoScience Simulation Laboratory, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China) [NanoScience Simulation Laboratory, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Plasma Theory and Simulation Group, Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States); Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Ragan-Kelley, B. [Plasma Theory and Simulation Group, Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States) [Plasma Theory and Simulation Group, Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States); Applied Science and Technology, University of California, Berkeley, California 94720 (United States); Verboncoeur, J. P. [Plasma Theory and Simulation Group, Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States) [Plasma Theory and Simulation Group, Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States); Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)
2014-02-15
Recently, field emission has attracted increasing attention despite the practical limitation that field emitters operate below the Child-Langmuir space charge limit. By introducing counter-streaming ion flow to neutralize the electron charge density, the space charge limited field emission (SCLFE) current can be dramatically enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of SCLFE by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a benchmark or comparison for verification of simulation codes, as well as extension to higher dimensions.
Meyer, Sebastian; Rössler, Wulf; Held, Leonhard
2015-01-01
Spatio-temporal interaction is inherent to cases of infectious diseases and occurrences of earthquakes, whereas the spread of other events, such as cancer or crime, is less evident. Statistical significance tests of space-time clustering usually assess the correlation between the spatial and temporal (transformed) distances of the events. Although appealing through simplicity, these classical tests do not adjust for the underlying population nor can they account for a distance decay of interaction. We propose to use the framework of an endemic-epidemic point process model to jointly estimate a background event rate explained by seasonal and areal characteristics, as well as a superposed epidemic component representing the hypothesis of interest. We illustrate this new model-based test for space-time interaction by analysing psychiatric inpatient admissions in Zurich, Switzerland (2007-2012). Several socio-economic factors were found to be associated with the admission rate, but there was no evidence of genera...
Integration of space weather into space situational awareness
Reeves, Geoffrey D
2010-11-09
Rapid assessment of space weather effects on satellites is a critical step in anomaly resolution and satellite threat assessment. That step, however, is often hindered by a number of factors including timely collection and delivery of space weather data and the inherent com plexity of space weather information. As part of a larger, integrated space situational awareness program, Los Alamos National Laboratory has developed prototype operational space weather tools that run in real time and present operators with customized, user-specific information. The Dynamic Radiation Environment Assimilation Model (DREAM) focuses on the penetrating radiation environment from natural or nuclear-produced radiation belts. The penetrating radiation environment is highly dynamic and highly orbit-dependent. Operators often must rely only on line plots of 2 MeV electron flux from the NOAA geosynchronous GOES satellites which is then assumed to be representative of the environment at the satellite of interest. DREAM uses data assimilation to produce a global, real-time, energy dependent specification. User tools are built around a distributed service oriented architecture (SOA) which will allow operators to select any satellite from the space catalog and examine the environment for that specific satellite and time of interest. Depending on the application operators may need to examine instantaneous dose rates and/or dose accumulated over various lengths of time. Further, different energy thresholds can be selected depending on the shielding on the satellite or instrument of interest. In order to rapidly assess the probability that space weather was the cause of anomalous operations, the current conditions can be compared against the historical distribution of radiation levels for that orbit. In the simplest operation a user would select a satellite and time of interest and immediately see if the environmental conditions were typical, elevated, or extreme based on how often those conditions occur in that orbit. This allows users to rapidly rule in or out environmental causes of anomalies. The same user interface can also allow users to drill down for more detailed quantitative information. DREAM can be run either from a distributed web-based user interface or as a stand-alone application for secure operations. In this paper we discuss the underlying structure of the DREAM model and demonstrate the user interface that we have developed . We also present some prototype data products and user interfaces for DREAM and discuss how space environment information can be seamlessly integrated into operational SSA systems.
Bentlage, Bastian; Peterson, A. Townsend; Cartwright, Paulyn
2009-05-29
: insights from predictive models. Glob Ecol Bio- geogr 11:131–141 Anderson RP, Lew D, Peterson AT (2003) Evaluating predic- tive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232 Bahn V, McGill BJ (2007) Can...
Romero, Vicente Jose
2011-11-01
This report explores some important considerations in devising a practical and consistent framework and methodology for utilizing experiments and experimental data to support modeling and prediction. A pragmatic and versatile 'Real Space' approach is outlined for confronting experimental and modeling bias and uncertainty to mitigate risk in modeling and prediction. The elements of experiment design and data analysis, data conditioning, model conditioning, model validation, hierarchical modeling, and extrapolative prediction under uncertainty are examined. An appreciation can be gained for the constraints and difficulties at play in devising a viable end-to-end methodology. Rationale is given for the various choices underlying the Real Space end-to-end approach. The approach adopts and refines some elements and constructs from the literature and adds pivotal new elements and constructs. Crucially, the approach reflects a pragmatism and versatility derived from working many industrial-scale problems involving complex physics and constitutive models, steady-state and time-varying nonlinear behavior and boundary conditions, and various types of uncertainty in experiments and models. The framework benefits from a broad exposure to integrated experimental and modeling activities in the areas of heat transfer, solid and structural mechanics, irradiated electronics, and combustion in fluids and solids.
Ryuichi Nakayama
2011-12-13
A simple conformal quantum mechanics model of a d-component variable is proposed, which exactly reproduces the retarded Green functions and conformal weights of conformally coupled scalar fields in de Sitter spacetime seen by a static patch observer. It is found that the action integral of this model is automatically expressed by a complex integral over the time variable t along a closed contour in a way which is typical to the Schwinger-Keldysh formalism of a thermofield theory. Hence this model is at finite temperature. The case of conformally coupled scalar fields in 3d Schwarzschild de Sitter space is also considered and then a large-N matrix model is obtained.
Hacker, Randi; Oborny, Jaimie; Tsutsui, William
2006-07-05
Broadcast Transcript: In space, no one can hear you scream... but did you know that in space no one can detect your smell either? The smell-taste connection means that food in space is not only weightless but tasteless, too. What's a flavor...
de Weck, Olivier L.
Logistics Analysis Tools Paul T. Grogan* , Chaiwoo Lee , and Olivier L. de Weck Massachusetts Institute tools to help plan and analyze logistics. To encourage their use, space logistics tools must be usable logistics analysis requires the integrated modeling of many components including launch vehicles, in- space
Buden, D.
1990-10-01
Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig.
Kessler, Christoph
] (where a[n] = +infty). C's * bsearch() can't be used, it requires a[j]==key. */ int findloc( void *key CombineCRCW BSPQuicksort * variant by Gerbessiotis/Valiant JPDC 22(1994) * implemented in NestStepC. */ int N=10; // default value /** findloc(): find largest index j in [0..n1] with * a[j
Numerical simulations for low energy nuclear reactions including...
Office of Scientific and Technical Information (OSTI)
Numerical simulations for low energy nuclear reactions including direct channels to validate statistical models Citation Details In-Document Search Title: Numerical simulations for...
Tan, Sirui; Huang, Lianjie
2014-11-01
For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within a given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.
Scalar Dark Matter From Theory Space
Birkedal-Hansen, Andreas; Wacker, Jay G.
2003-12-26
The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to a relic density calculation. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass {Omicron}(100 GeV), the second region has a candidate with a mass greater than {Omicron}(500 GeV). The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a possible WIMP (weakly interacting massive particle).
Physics in discrete spaces (A): Space-Time organization
P. Peretto
2010-12-29
We put forward a model of discrete physical space that can account for the structure of space- time, give an interpretation to the postulates of quantum mechanics and provide a possible explanation to the organization of the standard model of particles.
T. P. Shestakova
2013-03-06
Among theoretical issues in General Relativity the problem of constructing its Hamiltonian formulation is still of interest. The most of attempts to quantize Gravity are based upon Dirac generalization of Hamiltonian dynamics for system with constraints. At the same time there exists another way to formulate Hamiltonian dynamics for constrained systems guided by the idea of extended phase space. We have already considered some features of this approach in the previous MG12 Meeting by the example of a simple isotropic model. Now we apply the approach to a generalized spherically symmetric model which imitates the structure of General Relativity much better. In particular, making use of a global BRST symmetry and the Noether theorem, we construct the BRST charge that generates correct gauge transformations for all gravitational degrees of freedom.
Wang, Chien-Hen
Traditionally, the relationship between housing amenity values and property prices has been investigated through the global model (OLS), in which spatial heterogeneity is largely ignored in the regression procedure. This ...
Assessment of Mission Design Including Utilization of Libration
Barcelona, Universitat de
Assessment of Mission Design Including Utilization of Libration Points and Weak Stability: The International Sun-Earth Explorer 3 . . . . . . . . . . . . . . . 11 2.1.2 WIND/JWST: Next Generation Space Telescope . . . . . . . . . . . . . . . 33 2.1.9 FIRST/HERSCHEL: Far Infra
Ben-Zion, Yehuda
process. Earthquake forecast/prediction The forecast or predic- tion of an earthquake is a statement about question in earthquake science is whether earthquake prediction is possible. Related issues include the following: Can a prediction of earthquakes solely based on the emergence of seismicity patterns be re
Comen, E; Mason, J; Kuhn, P; Nieva, J; Newton, P; Norton, L; Venkatappa, N; Jochelson, M
2014-06-01
Purpose: Traditionally, breast cancer metastasis is described as a process wherein cancer cells spread from the breast to multiple organ systems via hematogenous and lymphatic routes. Mapping organ specific patterns of cancer spread over time is essential to understanding metastatic progression. In order to better predict sites of metastases, here we demonstrate modeling of the patterned migration of metastasis. Methods: We reviewed the clinical history of 453 breast cancer patients from Memorial Sloan Kettering Cancer Center who were non-metastatic at diagnosis but developed metastasis over time. We used the variables of organ site of metastases as well as time to create a Markov chain model of metastasis. We illustrate the probabilities of metastasis occurring at a given anatomic site together with the probability of spread to additional sites. Results: Based on the clinical histories of 453 breast cancer patients who developed metastasis, we have learned (i) how to create the Markov transition matrix governing the probabilities of cancer progression from site to site; (ii) how to create a systemic network diagram governing disease progression modeled as a random walk on a directed graph; (iii) how to classify metastatic sites as ‘sponges’ that tend to only receive cancer cells or ‘spreaders’ that receive and release them; (iv) how to model the time-scales of disease progression as a Weibull probability distribution function; (v) how to perform Monte Carlo simulations of disease progression; and (vi) how to interpret disease progression as an entropy-increasing stochastic process. Conclusion: Based on our modeling, metastatic spread may follow predictable pathways. Mapping metastasis not simply by organ site, but by function as either a ‘spreader’ or ‘sponge’ fundamentally reframes our understanding of metastatic processes. This model serves as a novel platform from which we may integrate the evolving genomic landscape that drives cancer metastasis. PS-OC Trans-Network Project Grant Award for “Data Assimilation and ensemble statistical forecasting methods applied to the MSKCC longitudinal metastatic breast cancer cohort.”.
Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model
Peltier, W. Richard
. Peltier1 , D. F. Argus2 , and R. Drummond1 1 Department of Physics, University of Toronto, Toronto] or a combination of such influences [Vettoretti and Peltier, 2003]. Simple ice sheet coupled climate models have been successful in explaining the origins of this 100 kyr cyclic behavior [Tarasov and Peltier, 1997
Reeves, Geoffrey D.
WORKSHOP ON RADIATION BELTS: MODELS & STANDARDS, BRUSSELS, 17{20 OCT., 1995 Los Alamos. Henderson, R. A. Christensen, P. S. McLachlan, and J. C. Ingraham Los Alamos National Laboratory, Mail Stop D436, Los Alamos, NM 87545, USA, reeves@lanl.gov Abstract. This paper presents an overview
Articles which include chevron film cooling holes, and related processes
Bunker, Ronald Scott; Lacy, Benjamin Paul
2014-12-09
An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.
NASA Creates Space Technology Mission Directorate
drew media attention and articles on 3D printing, including coverage by Popular Mechanics and website on 3D printing and prototyping technology to create parts for the Space Launch System at Marshall Space
Prices include compostable serviceware and linen tablecloths
California at Davis, University of
APPETIZERS Prices include compostable serviceware and linen tablecloths for the food tables.ucdavis.edu. BUTTERNUT SQUASH & BLACK BEAN ENCHILADAS #12;BUFFETS Prices include compostable serviceware and linen
Curved Space or Curved Vacuum?
Eric V. Linder
2005-10-11
While the simple picture of a spatially flat, matter plus cosmological constant universe fits current observation of the accelerated expansion, strong consideration has also been given to models with dynamical vacuum energy. We examine the tradeoff of ``curving'' the vacuum but retaining spatial flatness, vs. curving space but retaining the cosmological constant. These different breakdowns in the simple picture could readily be distinguished by combined high accuracy supernovae and cosmic microwave background distance measurements. If we allow the uneasy situation of both breakdowns, the curvature can still be measured to 1%, but at the price of degrading estimation of the equation of state time variation by 60% or more, unless additional information (such as weak lensing data or a tight matter density prior) is included.
TANK SPACE ALTERNATIVES ANALYSIS REPORT
TURNER DA; KIRCH NW; WASHENFELDER DJ; SCHAUS PS; WODRICH DD; WIEGMAN SA
2010-04-27
This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.
Finite Difference Elastic Wave Modeling Including Surface Topography
Al Muhaidib, Abdulaziz
2011-01-01
Surface topography and the weathered zone (i.e., heterogeneity near the earth’s surface) have great effects on elastic wave propagation. Both surface waves and body waves are contaminated by scattering and conversion by ...
Unitarity bounds in the Higgs model including triplet fields...
Office of Scientific and Technical Information (OSTI)
elastic-scattering channels are taken into account to evaluate the S-wave amplitude matrix, and then the condition of perturbative unitarity is imposed on the eigenvalues to...
Comparison of Joint Modeling Approaches Including Eulerian Sliding
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnect Collider Tests of theSignatures (Journal(TechnicalInterfaces
Comparison of Joint Modeling Approaches Including Eulerian Sliding
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnect Collider Tests of theSignatures
Trends and challenges when including microstructure in materials modeling:
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and PionExperimentsConnect Conference:electronExamples of
Architectural space in the Gothic and Renaissance periods
Lamb, Nellie Maie
1967-01-01
Creation of space is the principal aim of architecture. It forms spaces and masses which model each other reciprocally and relate to each other through the representation of movement. Architectural space is characterized by infinite multiplicity...
INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION
Office of Scientific and Technical Information (OSTI)
interval technical basis document Chiaro, P.J. Jr. 44 INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION DETECTORS; RADIATION MONITORS; DOSEMETERS;...
Espinosa, Horacio D.
SPACE DAILY SPACE WAR TERRA DAILY MARS DAILY SPACE MART SPACE TRAVEL NANO TECH World's Smallest, professor of mechanical Get Our Free Newsletters Via Email Space - War - Earth - Energy - China your email yes Search All Of Our Sites In One Search SpaceDaily - SpaceWar - TerraDaily Search Horacio D
Understanding space weather to shield society
Schrijver, Karel
Understanding space weather to shield society An international, interdisciplinary roadmap to advance the scientific understanding of the Sun-Earth connections leading to space weather, on behalf observatory along with models and innovative approaches to data incorporation;! b) Understand space weather
BSD Postdoctoral Association BulletinOctober 2, 2006 Included in this bulletin
for this one day event. Topics will include the academic job search, preparing for careers in industry Center offer? -A quite, private space for nursing and changing a baby or using a pump -Refrigerated
Course may include: Research in Education
Course may include: Research in Education Statistics in Education Theories of Educational Admin Policy Analysis Sociological Aspects of Education Approaches to Literacy Development Information and Communication Technologies Issues in Education Final Project Seminar Master of Education Educational
Lyapunov functions nonlinear spaces
Hafstein, Sigurður Freyr
Lyapunov functions on nonlinear spaces R. Sepulchre -- University of Liege, Belgium Reykjavik - July 2013 Constructing Lyapunov functions: a personal journey · Lyap functions in linear spaces (1994: homogeneous spaces with flat, positive, and negative curvature) Lyapunov functions in linear spaces 3
Gas storage materials, including hydrogen storage materials
Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji
2014-11-25
A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.
Gas storage materials, including hydrogen storage materials
Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji
2013-02-19
A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.
Tsai, Cheng; Douglas, David R.; Li, Rui
2015-09-01
The coherent synchrotron radiation (CSR) of a high brightness electron beam traversing a series of dipoles, such as transport or recirculation arcs, may result in the microbunching instability (?BI). To accurately quantify the direct consequence of this effect, we further extend our previously developed semi-analytical Vlasov solver to include more relevant coherent radiation models than the steady-state free-space CSR impedance, such as the entrance and exit transient effects derived from upstream beam entering to and exiting from individual dipoles. The resultant microbunching gain functions and spectra for our example lattices are presented and compared with particle tracking simulation. Some underlying physics with inclusion of these effects are also discussed.
Social Media: Space Weather #SpaceWeather
://www.swpc.noaa.gov/impacts/spaceweatherandgpssystems #SpaceWeather #12;Space Weather Impacts on the Power Grid Facebook The electric power grid. To learn about space weather and impacts to the electric grid visit http on the Power Grid Space Weather and the Aurora Borealis What are Solar Flares? What are Coronal Mass
DISCRETE MODELS FOR THE p-LOCAL HOMOTOPY THEORY OF COMPACT LIE GROUPS AND p-COMPACT GROUPS
Oliver, Bob
. Secondary 55R40, 57T1* *0. Key words and phrases. Classifying space, p-completion, fusion, compact Lie g DISCRETE MODELS FOR THE p-LOCAL HOMOTOPY THEORY OF COMPACT LIE GROUPS AND p-COMPACT a certain class of spaces which includes p-* *completed classifying spaces of compact Lie groups
Classical Symmetries of Some Two-Dimensional Models
John H. Schwarz
1995-03-27
It is well-known that principal chiral models and symmetric space models in two-dimensional Minkowski space have an infinite-dimensional algebra of hidden symmetries. Because of the relevance of symmetric space models to duality symmetries in string theory, the hidden symmetries of these models are explored in some detail. The string theory application requires including coupling to gravity, supersymmetrization, and quantum effects. However, as a first step, this paper only considers classical bosonic theories in flat space-time. Even though the algebra of hidden symmetries of principal chiral models is confirmed to include a Kac--Moody algebra (or a current algebra on a circle), it is argued that a better interpretation is provided by a doubled current algebra on a semi-circle (or line segment). Neither the circle nor the semi-circle bears any apparent relationship to the physical space. For symmetric space models the line segment viewpoint is shown to be essential, and special boundary conditions need to be imposed at the ends. The algebra of hidden symmetries also includes Virasoro-like generators. For both principal chiral models and symmetric space models, the hidden symmetry stress tensor is singular at the ends of the line segment.
Thermalization of gluon matter including ggggg interactions
A. El; C. Greiner; Z. Xu
2006-09-27
Within a pQCD inspired kinetic parton cascade we simulate the space time evolution of gluons which are produced initially in a heavy ion collision at RHIC energy. The inelastic gluonic interactions $gg \\leftrightarrow ggg$ do play an important role: For various initial conditions it is found that thermalization and the close to ideal fluid dynamical behaviour sets in at very early times. Special emphasis is put on color glass condensate initial conditions and the `bottom up thermalization' scenario. Off-equilibrium $3\\to 2$ processes make up the very beginning of the evolution leading to an initial decrease in gluon number and a temporary avalanche of the gluon momentum distribution to higher transversal momenta.
Electric Power Monthly, August 1990. [Glossary included
Not Available
1990-11-29
The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.
David W. Essex
2015-01-25
A new model for space and matter is obtained by joining every pair of point charges in the observable universe by an ethereal string. Positive gravitational potential energy in each string gives an attractive gravitational force due to the action of an energy conservation constraint. Newton's laws of motion are derived and inertia is explained in accordance with Mach's principle. The Machian string model gives a surprisingly simple way to understand the expansion history of the Universe. The decelerating expansion in the radiation era and the matter era is explained without using General Relativity and the transition from deceleration to acceleration is explained without the need to introduce a separate 'dark energy' component. The interaction between Machian strings gives a physical model for modified Newtonian dynamics (MOND) and is therefore an alternative to 'dark matter'.
MOTIVATION INCLUDED OR EXCLUDED FROM Mihaela Cocea
Cocea, Mihaela
MOTIVATION Â INCLUDED OR EXCLUDED FROM E-LEARNING Mihaela Cocea National College of Ireland Mayor, Dublin 1, Ireland sweibelzahl@ncirl.ie ABSTRACT The learners' motivation has an impact on the quality-Learning, motivation has been mainly considered in terms of instructional design. Research in this direction suggests
Energy Consumption of Personal Computing Including Portable
Namboodiri, Vinod
processing unit (CPU) processing power and capacity of mass storage devices doubles every 18 months. Such growth in both processing and storage capabilities fuels the production of ever more powerful portableEnergy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1
Course may include: Research in Education
Development Information and Communication Technologies Issues in Education Final Project Seminar Master, the Final Project Seminar. This graduate program will allow you to develop your skills and knowledgeCourse may include: Research in Education Qualitative Methods in Educational Research Fundamentals
Communication in automation, including networking and wireless
Antsaklis, Panos
Communication in automation, including networking and wireless Nicholas Kottenstette and Panos J and networking in automation is given. Digital communication fundamentals are reviewed and networked control are presented. 1 Introduction 1.1 Why communication is necessary in automated systems Automated systems use
Cotta, R.C.; Gainer, J.S.; Hewett, J.L.; Rizzo, T.G.; /SLAC
2010-08-26
We present a summary of recent results obtained from a scan of the 19-dimensional parameter space of the pMSSM and its implications for dark matter searches. We have generated a large set of points in parameter space (which we call 'models') for the 19-parameter CP-conserving pMSSM, where MFV has been assumed. We subjected these models to numerous experimental and theoretical constraints to obtain a set of {approx}68 K models which are consistent with existing data. We attempted to be somewhat conservative in our implementation of these constraints; in particular we only demanded that the relic density of the LSP not be greater than the measured value of {Omega}H{sup 2} for non-baryonic dark matter, rather than assuming that the LSP must account for the entire observed relic density. Examining the properties of the neutralinos in these models, we find that many are relatively pure gauge eigenstates with Higgsinos being the most common, followed by Winos. The relative prevalence of Higgsino and Wino LSPs leads many of our models to have a chargino as nLSP, often with a relatively small mass splitting between this nLSP and the LSP; this has important consequences in both collider and astroparticle phenomenology. We find that, in general, the LSP in our models provides a relatively small ({approx} 4%) contribution to the dark matter, however there is a long tail to this distribution and a substantial number of models for which the LSP makes up all or most of the dark matter. Typically these neutralinos are mostly Binos. Examining the signatures of our models in direct and indirect dark matter detection experiments, we find a wide range of signatures for both cases. In particular, we find a much larger range of WIMP-nucleon cross sections than is found in any particular model of SUSY-breaking. As these cross sections also enter the regions of parameter space suggested by non-SUSY models, it appears that the discovery of WIMPs in direct detection experiments might not be sufficient to determine the correct model of the underlying physics. As a first look at the signatures of these models in indirect detection experiments, we examined whether our models could explain the PAMELA excess in the positron to electron ratio at high energies. We find that there are models which fit the PAMELA data rather well, and some of these have significantly smaller boost factors than generally assumed for a thermal relic. The study of the pMSSM presents exciting new possibilities for SUSY phenomenology. The next few years will hopefully see important discoveries both in colliders and in satellite or ground-based astrophysical experiments. It is important that we follow the data and not our existing prejudices; hopefully this sort of relatively model-independent approach to collider and astrophysical phenomenology can be useful in this regard.
Subterranean barriers including at least one weld
Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.
2007-01-09
A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.
Photoactive devices including porphyrinoids with coordinating additives
Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav
2015-05-12
Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.
Power generation method including membrane separation
Lokhandwala, Kaaeid A. (Union City, CA)
2000-01-01
A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.
Rotor assembly including superconducting magnetic coil
Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)
2003-01-01
Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.
Nuclear reactor shield including magnesium oxide
Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)
1981-01-01
An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.
Electric power monthly, September 1990. [Glossary included
Not Available
1990-12-17
The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)
National Aeronautics and Space Administration space launch system
Waliser, Duane E.
Shuttle Main Engine Processing Facility, solid rocket motor test firing, J-2X test firing #12;Providing Heavy-Lift Launch Vehicle NASA's Space Launch System is an advanced, heavy-lift launch vehicle which including near-Earth asteroids, Lagrange points, the moon and ultimately Mars. The SLS heavy-lift launch
Robinson, Tyler D; Marley, Mark S
2015-01-01
Several concepts now exist for small, space-based missions to directly characterize exoplanets in reflected light. Here, we develop an instrument noise model suitable for studying the spectral characterization potential of a coronagraph-equipped, space-based telescope. We adopt a baseline set of telescope and instrument parameters, including a 2 m diameter primary aperture, an operational wavelength range of 0.4-1.0 um, and an instrument spectral resolution of 70, and apply our baseline model to a variety of spectral models of different planet types, including Earth twins, Jupiter twins, and warm and cool Jupiters and Neptunes. With our exoplanet spectral models, we explore wavelength-dependent planet-star flux ratios for main sequence stars of various effective temperatures, and discuss how coronagraph inner and outer working angle constraints will influence the potential to study different types of planets. For planets most favorable to spectroscopic characterization---cool Jupiters and Neptunes as well as ...
National Aeronautics and Space Administration
Rathbun, Julie A.
-generation space fleet, Orion will push the envelope of human spaceflight far beyond low Earth orbit. Orion may features dozens of technology advancements and innovations that have been incorporated into the spacecraft and avionics systems. Building upon the best of Apollo and shuttle-era design, the Orion spacecraft includes
Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha
1992-08-01
Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.
Nakagawa, Junko, 1975-
2002-01-01
How does one experience space? What kind of information do humans collect in the process of constructing space in their mind? How does one begin to understand volume, light, texture, material, smell and sense of space? The ...
Constrained space camera assembly
Heckendorn, F.M.; Anderson, E.K.; Robinson, C.W.; Haynes, H.B.
1999-05-11
A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity is disclosed. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras. 17 figs.
Quantum singularities in static and conformally static space-times
D. A. Konkowski; T. M. Helliwell
2011-12-22
The definition of quantum singularity is extended from static space-times to conformally static space-times. After the usual definitions of classical and quantum singularities are reviewed, examples of quantum singularities in static space-times are given. These include asymptotically power-law space-times, space-times with diverging higher-order differential invariants, and a space-time with a 2-sphere singularity. The theory behind quantum singularities in conformally static space-times is followed by an example, a Friedmann-Robertson-Walker space-time with cosmic string. The paper concludes by discussing areas of future research.
Optical panel system including stackable waveguides
DeSanto, Leonard (Dunkirk, MD); Veligdan, James T. (Manorville, NY)
2007-11-20
An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.
Thermovoltaic semiconductor device including a plasma filter
Baldasaro, Paul F. (Clifton Park, NY)
1999-01-01
A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.
is to parameterise and drive models with ground based data from sparse measurement networks. One characteristic the ecology, management, etc. Remotely sensed data offers a unique, large area data source to constrain models models: Kriging allows us to more objectively interpolate our data over the domain of interest
Engine lubrication circuit including two pumps
Lane, William H.
2006-10-03
A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.
Minimally non-local nucleon-nucleon potentials with chiral two-pion exchange including $?$'s
M. Piarulli; L. Girlanda; R. Schiavilla; R. Navarro Pérez; J. E. Amaro; E. Ruiz Arriola
2015-02-16
We construct a coordinate-space chiral potential, including $\\Delta$-isobar intermediate states in its two-pion-exchange component. The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders ($Q^2$ and $Q^4$, respectively, $Q$ denoting generically the low momentum scale) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 $pp$ and 2982 $np$ data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0--300 MeV. For the total 5291 $pp$ and $np$ data in this range, we obtain a $\\chi^2$/datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, $R_{\\rm L}$ and $R_{\\rm S}$ respectively, ranging from $(R_{\\rm L},R_{\\rm S})=(1.2,0.8)$ fm down to $(0.8,0.6)$ fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.
Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including ? resonances
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Piarulli, M.; Girlanda, L.; Schiavilla, R.; Pérez, R. Navarro; Amaro, J. E.; Arriola, E. Ruiz
2015-02-26
In this study, we construct a coordinate-space chiral potential, including ?-isobar intermediate states in its two-pion-exchange component up to order Q3 (Q denotes generically the low momentum scale). The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q2 and Q4, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0–300 MeV. For the total 5291 $pp$more »and $np$ data in this range, we obtain a ?2 /datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, RL and RS respectively, ranging from (RL,RS)=(1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less
Dynamical 3-Space: Emergent Gravity
Reginald T Cahill
2011-02-16
The laws of gravitation devised by Newton, and by Hilbert and Einstein, have failed many experimental and observational tests, namely the bore hole g anomaly, flat rotation curves for spiral galaxies, supermassive black hole mass spectrum, uniformly expanding universe, cosmic filaments, laboratory G measurements, galactic EM bending, precocious galaxy formation,.. The response has been the introduction of the new epicycles: ``dark matter", ``dark energy", and others. To understand gravity we must restart with the experimental discoveries by Galileo, and following a heuristic argument we are led to a uniquely determined theory of a dynamical 3-space. That 3-space exists has been missed from the beginning of physics, although it was 1st directly detected by Michelson and Morley in 1887. Uniquely generalising the quantum theory to include this dynamical 3-space we deduce the response of quantum matter and show that it results in a new account of gravity, and explains the above anomalies and others. The dynamical theory for this 3-space involves G, which determines the dissipation rate of space by matter, and alpha, which experiments and observation reveal to be the fine structure constant. For the 1st time we have a comprehensive account of space and matter and their interaction - gravity.
McManus, Dr. Hugh
Final Report of SSPARC: the Space Systems, Policy, and Architecture Research Consortium (Thrust II and III)
Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.
2015-12-08
An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.
Social Media: Space Weather #SpaceWeather
causing blackouts in rare cases. To learn about space weather and impacts to the electric grid visit on the Power Grid Space Weather and the Aurora Borealis What are Solar Flares? What are Coronal Mass we do. Satellite communications, GPS applications, and the electric power grid provide the backbone
A Physics of Bounded Metric Spaces
Pierre Peretto
1997-06-25
We consider the possibility of obtaining emergent properties of physical spaces endowed with structures analogous to that of collective models put forward by classical statistical physics. We show that, assuming that a so-called "metric scale" does exist, one can indeed recover a number of properties of physical spaces such as the Minkowski metric, the relativistic quantum dynamics and the electroweak theory.
OPERADS AND KNOT SPACES 1. Introduction Let Em denote the ...
Knot space models through homotopy limits of configuration spaces ..... These properties led to this construction's independent discovery, its ...... to check, as repeating coordinates and passing to the quotient ˜Ck?[Rm]? are processes which.
Spatial Valuation of Open Space Externalities in Baltimore County, Maryland
Gurung, Kushal
2012-11-08
Different open space types are assumed to be valued in different ways by the public. This thesis analyzes four spatially explicit hedonic models of Baltimore County, Maryland to examine the effect of six different open spaces types on house value...
Loop spaces in motivic homotopy theory
Decker, Marvin Glen
2009-06-02
In topology loop spaces can be understood combinatorially using algebraic theories. This approach can be extended to work for certain model structures on categories of presheaves over a site with functorial unit interval objects, such as topological...
Protoplanetary disks including radiative feedback from accreting planets
Montesinos, Matias; Perez, Sebastian; Baruteau, Clement; Casassus, Simon
2015-01-01
While recent observational progress is converging on the detection of compact regions of thermal emission due to embedded protoplanets, further theoretical predictions are needed to understand the response of a protoplanetary disk to the planet formation radiative feedback. This is particularly important to make predictions for the observability of circumplanetary regions. In this work we use 2D hydrodynamical simulations to examine the evolution of a viscous protoplanetary disk in which a luminous Jupiter-mass planet is embedded. We use an energy equation which includes the radiative heating of the planet as an additional mechanism for planet formation feedback. Several models are computed for planet luminosities ranging from $10^{-5}$ to $10^{-3}$ Solar luminosities. We find that the planet radiative feedback enhances the disk's accretion rate at the planet's orbital radius, producing a hotter and more luminous environement around the planet, independently of the prescription used to model the disk's turbul...
Phase-space jets drive transport and anomalous resistivity (Journal...
Office of Scientific and Technical Information (OSTI)
transport and anomalous resistivity In the presence of wave dissipation, phase-space structures spontaneously emerge in nonlinear Vlasov dynamics. These structures include not only...
A golden anniversary for space-based treaty verification
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Los Alamos space technology deployed on scientific satellites has helped scientists worldwide determine the elemental composition of the surface of the moon, including the...
Space Science and Applications
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
the first measurements of Earth's space radiation environment and the discovery of gamma-ray bursts. The majority of ISR-1 staff hold PhDs in Space Physics, Nuclear Physics, or...
Olivier Poujade; Alain Lebrun
2002-02-08
Fission chambers were first made fifty years ago for neutron detection. At the moment, the French Atomic Energy Commission \\textsf{(CEA-Cadarache)} is developing a sub-miniature fission chamber technology with a diameter of 1.5 mm working in the current mode (Bign). To be able to measure intense fluxes, it is necessary to adjust the chamber geometry and the gas pressure before testing it under real neutron flux. In the present paper, we describe a theoretical method to foresee the current-voltage characteristics (sensitivity and saturation plateau) of a fission chamber whose geometrical features are given, taking into account the neutron flux to be measured (spectrum and intensity). The proposed theoretical model describes electric field distortion resulting from charge collection effect. A computer code has been developed on this model basis. Its application to 3 kinds of fission chambers indicates excellent agreement between theoretical model and measured characteristics.
Senior Space Camp 2015, Andya Space Center, Norway Senior Space Camp 2015
Gerhardy, Philipp
Senior Space Camp 2015, Andøya Space Center, Norway Senior Space Camp 2015 Arrangører: Nasjonalt deltakere Sted: Andøya Space Center (ASC), Andøya, Norway Undervisning: Programmet er delt mellom, Andøya Space Center, Norway FORELESERE / ADMINISTRASJON Tittel Etternavn Fornavn Initialer Organisasjon
Faddeev-type calculations of few-body nuclear reactions including Coulomb interaction
A. Deltuva
2008-10-24
The method of screening and renormalization is used to include the Coulomb interaction between the charged particles in the description of few-body nuclear reactions. Calculations are done in the framework of Faddeev-type equations in momentum-space. The reliability of the method is demonstrated. The Coulomb effect on observables is discussed.
An Online Interactive Geometric Database: Including Exact Solutions of Einstein's Field Equations
Mustapha Ishak; Kayll Lake
2001-12-11
We describe a new interactive database (GRDB) of geometric objects in the general area of differential geometry. Database objects include, but are not restricted to, exact solutions of Einstein's field equations. GRDB is designed for researchers (and teachers) in applied mathematics, physics and related fields. The flexible search environment allows the database to be useful over a wide spectrum of interests, for example, from practical considerations of neutron star models in astrophysics to abstract space-time classification schemes. The database is built using a modular and object-oriented design and uses several Java technologies (e.g. Applets, Servlets, JDBC). These are platform-independent and well adapted for applications developed to run over the World Wide Web. GRDB is accompanied by a virtual calculator (GRTensorJ), a graphical user interface to the computer algebra system GRTensorII used to perform online coordinate, tetrad or basis calculations. The highly interactive nature of GRDB allows for systematic internal self-checking and a minimization of the required internal records.
National Aeronautics and Space Administration In-Space propulSIon SyStemS roadmap
Waliser, Duane E.
National Aeronautics and Space Administration In-Space propulSIon SyStemS roadmap Technology Area Missions TA02-24 Acknowledgements TA02-24 #12;Foreword NASA's integrated technology roadmap, including both Roadmap, an integrated set of fourteen technology area roadmaps, recommending the overall technology
Krishnamoorthy, Sriram; Catalyurek, Umit; Nieplocha, Jarek; Sadayappan, Ponnuswamy
2006-04-25
This paper describes a global-addressspace framework for the convenient specification and effi- cient execution of parallel out-of-core applications operating on block-sparse data. The programming model provides a global view of block-sparse matrices and a mechanism for the expression of parallel tasks that operate on blocksparse data. The tasks are automatically partitioned into phases that operate on memory-resident data, and mapped onto processors to optimize load balance and data locality. Experimental results are presented that demonstrate the utility of the approach.
Large aperture diffractive space telescope
Hyde, Roderick A. (Livermore, CA)
2001-01-01
A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.
Predicting species invasions using ecological niche modeling
Peterson, A. Townsend; Vieglais, David A.
2001-05-01
) and commission (including niche space not ,lctually occupied by the 'pecies). Each algorithm for modeling specIes' ecological niches involves a specific com binatiol1 of errors of omission ,md commission. A rel.ltively new approach, called the (;enetic...
Space-charge effects in the Fermilab Main Ring at 8 GeV
Mane, S.R.
1989-03-01
I use computer tracking to investigate the effects of space-charge on particle motion in the Fermilab Main Ring at p = 8 GeV/c. The results are found to agree with the Laslett tuneshift formula. Simple model cases are also studied to speed up the tracking. The effects of synchrotron oscillations, via tune modulation and dispersion, are included. 2 refs., 5 figs.
Phase-space localization: Topological aspects of quantum chaos
Leboeuf, P. (Division de Physique Theorique, Institut de Physique Nucleire, 91406 Orsay CEDEX (France)); Kurchan, J. (Nuclear Physics Department, Weizmann Institute of Science, Rehovot 76100 (Israel)); Feingold, M. (Lawrence Berkeley Laboratory, University of California, Berkeley, CA (USA) Department of Physics, University of California, Berkeley, CA (USA)); Arovas, D.P. (Department of Physics, B-019, University of California at San Diego, La Jolla, CA (USA))
1990-12-17
We study quantized classically chaotic maps on a toroidal two-diensional phase space. A discrete, topological criterion for phase-space localization is presented. To each eigenfunction an integer is associated, analogous to a quantized Hall conductivity, which when nonzero reflects phase-space delocalization. A model system is studied, and a correspondence between delocalization and chaotic classical dynamics is discussed.
Deterministic Extractors For Small-Space Sources Jesse Kamp
Vadhan, Salil
random sources can also arise in cryptography when an adversary learns some partial information aboutDeterministic Extractors For Small-Space Sources Jesse Kamp Department of Computer Science-time, deterministic randomness extrac- tors for sources generated in small space, where we model space s sources on {0
Deterministic Extractors For SmallSpace Sources Jesse Kamp #
Vadhan, Salil
random sources can also arise in cryptography when an adversary learns some partial information aboutDeterministic Extractors For SmallSpace Sources Jesse Kamp # Department of Computer Sciencetime, deterministic randomness extrac tors for sources generated in small space, where we model space s sources on {0
Jet spaces of varieties over differential and difference fields
Ziegler, Martin
Jet spaces of varieties over differential and difference fields Anand Pillay University of IllinoisÂ¨at zu Berlin December 5, 2001 Abstract We give elementary proofs, using suitable jet spaces, of some old case, using differential and difference analogues of jet spaces. The main result, stated in model
Jet spaces of varieties over differential and difference fields
Ziegler, Martin
Jet spaces of varieties over differential and difference fields Abstract We give elementary proofs, using suitable jet spaces, of some old and new structural and differe* *nce analogues of jet spaces. The main result, stated in model-theoretic language, is
Space Systems Finland 1 Deployment in the Space Sector
Southampton, University of
© Space Systems Finland 1 Deployment in the Space Sector #12;© Space Systems Finland 2 SW Constraints Design Requirements User Requirements SW Requirements #12;© Space Systems Finland 3 The space, but there is no viable alternative · Many requirements are not testable #12;© Space Systems Finland 4 SSF OBJECTIVES
UCL DEPARTMENT OF SPACE & CLIMATE PHYSICS SPACE PLASMA PHYSICS GROUP
Anand, Mahesh
UCL DEPARTMENT OF SPACE & CLIMATE PHYSICS SPACE PLASMA PHYSICS GROUP ESA Lunar Lander L-DEPP C.J. Owen and D.O. Kataria UCL/MSSL #12;UCL DEPARTMENT OF SPACE & CLIMATE PHYSICS SPACE PLASMA PHYSICS GROUP is LEIA necessary? · Potential UK benefits · Summary #12;UCL DEPARTMENT OF SPACE & CLIMATE PHYSICS SPACE
Williams, Pharis E
2009-03-16
The compact reactor concept (Williams, 2007) has the potential to provide clean, safe and unlimited supply of energy for Earth and Space applications. The concept is a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for individual home and space power. The concept also would make it possible for each plant or remote location to have it's own power source, on site, without the need for a connection to the power grid. This would minimize, or eliminate, power blackouts. The concept could replace large fission reactors and fossil fuel power plants plus provide energy for ships, locomotives, trucks and autos. It would make an ideal source of energy for space power applications and for space propulsion.
Yousef Ghazi-Tabatabai
2012-11-19
While Quantum Gravity remains elusive and Quantum Field Theory retains the interpretational difficulties of Quantum Mechanics, we have introduced an alternate approach to the unification of particles, fields, space and time, suggesting that the concept of matter as space without time provides a framework which unifies matter with spacetime and in which we anticipate the development of complete theories (ideally a single unified theory) describing observed 'particles, charges, fields and forces' solely with the geometry of our matter-space-time universe.
Gasoline and Diesel Fuel Update (EIA)
Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...
Gasoline and Diesel Fuel Update (EIA)
Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...
Newtonian Lorentz Metric Spaces
Costea, Serban
2011-01-01
This paper studies Newtonian Sobolev-Lorentz spaces. We prove that these spaces are Banach. We also study the global p,q-capacity and the p,q-modulus of families of rectifiable curves. Under some additional assumptions (that is, the space carries a doubling measure and a weak Poincare inequality) and some restrictions on q, we show that the Lipschitz functions are dense in those spaces. Moreover, in the same setting we also show that the p,q-capacity is Choquet provided that q is strictly greater than 1. We provide a counterexample for the density result of Lipschitz functions in the Euclidean setting.
Alexander Bolonkin
2008-03-02
On 4 January 2007 the author published the article Wireless Transfer of Electricity in Outer Space in http://arxiv.org wherein he offered and researched a new revolutionary method of transferring electric energy in space. In that same article, he offered a new engine which produces a large thrust without throwing away large amounts of reaction mass (unlike the conventional rocket engine). In the current article, the author develops the theory of this kind of impulse engine and computes a sample project which shows the big possibilities opened by this new AB-Space Engine. The AB-Space Engine gets the energy from ground-mounted power; a planet electric station can transfer electricity up to 1000 millions (and more) of kilometers by plasma wires. Author shows that AB-Space Engine can produce thrust of 10 tons (and more). That can accelerate a space ship to some thousands of kilometers/second. AB-Space Engine has a staggering specific impulse owing to the very small mass expended. The AB-Space Engine reacts not by expulsion of its own mass (unlike rocket engine) but against the mass of its planet of origin (located perhaps a thousand of millions of kilometers away) through the magnetic field of its plasma cable. For creating this plasma cable the AB-Space Engine spends only some kg of hydrogen.
Balcomb, J.D.
1980-01-01
An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.
Egbert, Hal; Walker, Ronald; Flocchini, R.
2007-01-01
Kevin Shields, “Optimization of neutron tomography for rapidNEUTRON TOMOGRAPHY AND SPACE Hal Egbert, Ronald Walker, R.industrial applications[1]. Neutron Computed Tomography was
Alkhalili, Nura
2012-01-01
city and a neighboring refugee camp. It seeks to narrate thechange, and the neighboring refugee camp. The public parkoccurring in Ramallah between refugee and non-refugee space.
Multimegawatt space power reactors
Dearien, J.A.; Whitbeck, J.F.
1989-01-01
In response to the need of the Strategic Defense Initiative (SDI) and long range space exploration and extra-terrestrial basing by the National Air and Space Administration (NASA), concepts for nuclear power systems in the multi-megawatt levels are being designed and evaluated. The requirements for these power systems are being driven primarily by the need to minimize weight and maximize safety and reliability. This paper will discuss the present requirements for space based advanced power systems, technological issues associated with the development of these advanced nuclear power systems, and some of the concepts proposed for generating large amounts of power in space. 31 figs.
Semi--vector spaces and units of measurement
Josef Janyška; Marco Modugno; Raffaele Vitolo
2007-10-05
This paper is aimed at introducing an algebraic model for physical scales and units of measurement. This goal is achieved by means of the concept of ``positive space'' and its rational powers. Positive spaces are 1-dimensional ``semi-vector spaces'' without the zero vector. A direct approach to this subject might be sufficient. On the other hand, a broader mathematical understanding requires the notions of sesqui- and semi-tensor products between semi-vector spaces and vector spaces. So, the paper is devoted to an original contribution to the algebraic theory of semi-vector spaces, to the algebraic analysis of positive spaces and, eventually, to the algebraic model of physical scales and units of measurement in terms of positive spaces.
Automated Design Space Exploration with Aspen
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Spafford, Kyle L.; Vetter, Jeffrey S.
2015-01-01
Architects and applications scientists often use performance models to explore a multidimensional design space of architectural characteristics, algorithm designs, and application parameters. With traditional performance modeling tools, these explorations forced users to first develop a performance model and then repeatedly evaluate and analyze the model manually. These manual investigations proved laborious and error prone. More importantly, the complexity of this traditional process often forced users to simplify their investigations. To address this challenge of design space exploration, we extend our Aspen (Abstract Scalable Performance Engineering Notation) language with three new language constructs: user-defined resources, parameter ranges, and a collection ofmore »costs in the abstract machine model. Then, we use these constructs to enable automated design space exploration via a nonlinear optimization solver. We show how four interesting classes of design space exploration scenarios can be derived from Aspen models and formulated as pure nonlinear programs. The analysis tools are demonstrated using examples based on Aspen models for a three-dimensional Fast Fourier Transform, the CoMD molecular dynamics proxy application, and the DARPA Streaming Sensor Challenge Problem. Our results show that this approach can compose and solve arbitrary performance modeling questions quickly and rigorously when compared to the traditional manual approach.« less
Nuclear Arms Control R&D Consortium includes Los Alamos
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Nuclear Arms Control R&D Consortium includes Los Alamos Nuclear Arms Control R&D Consortium includes Los Alamos A consortium led by the University of Michigan that includes LANL as...
Unknown
2011-08-17
We study the geometric classi?cation of Banach spaces via Lipschitz, uniformly continuous, and coarse mappings. We prove that a Banach space which is uniformly homeomorphic to a linear quotient of lp is itself a linear quotient of lp when p<2...
Bolonkin, Alexander
2008-01-01
On 4 January 2007 the author published the article Wireless Transfer of Electricity in Outer Space in http://arxiv.org wherein he offered and researched a new revolutionary method of transferring electric energy in space. In that same article, he offered a new engine which produces a large thrust without throwing away large amounts of reaction mass (unlike the conventional rocket engine). In the current article, the author develops the theory of this kind of impulse engine and computes a sample project which shows the big possibilities opened by this new AB-Space Engine. The AB-Space Engine gets the energy from ground-mounted power; a planet electric station can transfer electricity up to 1000 millions (and more) of kilometers by plasma wires. Author shows that AB-Space Engine can produce thrust of 10 tons (and more). That can accelerate a space ship to some thousands of kilometers/second. AB-Space Engine has a staggering specific impulse owing to the very small mass expended. The AB-Space Engine reacts not b...
Moduli Spaces and Grassmannian
Jia-Ming Liou; Albert Schwarz
2012-04-12
We calculate the homomorphism of the cohomology induced by the Krichever map of moduli spaces of curves into infinite-dimensional Grassmannian. This calculation can be used to compute the homology classes of cycles on moduli spaces of curves that are defined in terms of Weierstrass points.
SPACE TECHNOLOGY Actual Estimate
technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management..." Space Technology investmentsSPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY
Multi-Space Structure of the Universe
Andrei Novikov-Borodin
2012-11-06
If our universe has appeared in a result of Big Bang or something like this, whether we have reasons to deny an existence of other universes appearing by the same or similar way? An objection that there is no anything like it, is doubtful, because nobody knows: what could we observe in this case? A model of a multi-space universe with mutual coupling of spaces is being proposed and investigated.
Deriving time from the geometry of space
James M. Chappell; John G. Hartnett; Nicolangelo Iannella; Derek Abbott
2015-04-08
The Minkowski formulation of special relativity reveals the essential four-dimensional nature of spacetime, consisting of three space and one time dimension. Recognizing its fundamental importance, a variety of arguments have been proposed over the years attempting to derive the Minkowski spacetime structure from fundamental physical principles. In this paper we illustrate how Minkowski spacetime follows naturally from the geometric properties of three dimensional Clifford space modeled with multivectors. This approach also generalizes spacetime to an eight dimensional space as well as doubling the size of the Lorentz group. This description of spacetime also provides a new geometrical interpretation of the nature of time.
Newport News in Review, ch. 47, segment includes TEDF groundbreaking...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
https:www.jlab.orgnewsarticlesnewport-news-review-ch-47-segment-includes-tedf-groundbreaking-event Newport News in Review, ch. 47, segment includes TEDF groundbreaking event...
Solar Energy Education. Reader, Part II. Sun story. [Includes...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Part II. Sun story. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Reader, Part II. Sun story. Includes glossary You are...
Microfluidic devices and methods including porous polymer monoliths...
Office of Scientific and Technical Information (OSTI)
devices and methods including porous polymer monoliths Citation Details In-Document Search Title: Microfluidic devices and methods including porous polymer monoliths Microfluidic...
Fractional Inversion in Krylov Space
B. Bunk
1998-05-28
The fractional inverse $M^{-\\gamma}$ (real $\\gamma >0$) of a matrix $M$ is expanded in a series of Gegenbauer polynomials. If the spectrum of $M$ is confined to an ellipse not including the origin, convergence is exponential, with the same rate as for Chebyshev inversion. The approximants can be improved recursively and lead to an iterative solver for $M^\\gamma x = b$ in Krylov space. In case of $\\gamma = 1/2$, the expansion is in terms of Legendre polynomials, and rigorous bounds for the truncation error are derived.
Jones, Peter JS
. The second phase expanded the scope to include structurally com-9 plex 3-D plant architectures agreement since RAMI-2, and the capability of/need for RT models to15 accurately reproduce local estimates and opportunities of the RAMI project in the future.22 1. Introduction Space-borne observations constitute a highly
Space Charge and Equilibrium Emittances in Damping Rings
Venturini, Marco; Oide, Katsunobu; Wolski, Andy
2006-06-21
We present a model of dynamics to account for the possible impact of space charge on the equilibrium emittances in storage rings and apply the model to study the current design of the International Linear Collider (ILC) damping rings.
UCL DEPARTMENT OF SPACE & CLIMATE PHYSICS SPACE PLASMA PHYSICS GROUP
UCL DEPARTMENT OF SPACE & CLIMATE PHYSICS SPACE PLASMA PHYSICS GROUP 18th September 2012 STFC Summer School An Introduction to the Structure of the Magnetosphere Prof. Chris Owen Mullard Space 2012 #12;UCL DEPARTMENT OF SPACE & CLIMATE PHYSICS SPACE PLASMA PHYSICS GROUP 18th September 2012 STFC
Herman, Robert A.
1968-01-01
. PRELIMINARIES 1 CHAPTER II . SFACBS IN WHICH SEQUENCES SUFFICE 6 CHAPTER III . QUOTIENTS OF SEPARABLE METRIC SPACES Ik CHAPTER IV. GENERAL QUOTIENT SPACES 25 CHAPTER V. CLOSED QUOTIENT MAPS 35 CHAPTER VI. OPEN QUOTIENT MAPS 50 CHAPTER VII. OPEN AND CLOSED... QUOTIENT MAPS 55 CHAPTER VIII. ANOTHER RESULT 6l BIBLIOGRAPHY 65 CHAPTER I. PRELIMINARIES We begin by stating some basic definitions and theorems. Definition 1 . 1 ; Let f be a function from a topological space X onto a set Y. Then the quotient...
Differential two-body compound nuclear cross section, including the width-fluctuation corrections
Brown, D.; Herman, M.
2014-09-02
We figure out the compound angular differential cross sections, following mainly Fröbrich and Lipperheide, but with the angular momentum couplings that make sense for optical model work. We include the width-fluctuation correction along with calculations.
Method and system including a double rotary kiln pyrolysis or gasification of waste material
McIntosh, M.J.; Arzoumanidis, G.G.
1997-09-02
A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet. 5 figs.
Method and system including a double rotary kiln pyrolysis or gasification of waste material
McIntosh, Michael J. (Bolingbrook, IL); Arzoumanidis, Gregory G. (Naperville, IL)
1997-01-01
A method of destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500.degree. C. to heat the particulate material to a temperature in the range of from about 200.degree. C. to about 900.degree. C. in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.
Sighting optics including an optical element having a first focal length and a second focal length
Crandall, David Lynn (Idaho Falls, ID)
2011-08-01
One embodiment of sighting optics according to the teachings provided herein may include a front sight and a rear sight positioned in spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus, for a user, images of the front sight and the target.
Shell model description of Ge isotopes
J. G. Hirsch; P. C. Srivastava
2012-04-12
A shell model study of the low energy region of the spectra in Ge isotopes for $38\\leq N\\leq 50$ is presented, analyzing the excitation energies, quadrupole moments, $B(E2)$ values and occupation numbers. The theoretical results have been compared with the available experimental data. The shell model calculations have been performed employing three different effective interactions and valence spaces.We have used two effective shell model interactions, JUN45 and jj44b, for the valence space $f_{5/2} \\, p \\,g_{9/2}$ without truncation. To include the proton subshell $f_{7/2}$ in valence space we have employed the $fpg$ effective interaction due to Sorlin {\\it et al.}, with $^{48}$Ca as a core and a truncation in the number of excited particles.
Flat space (higher spin) gravity with chemical potentials
Michael Gary; Daniel Grumiller; Max Riegler; Jan Rosseel
2014-11-24
We introduce flat space spin-3 gravity in the presence of chemical potentials and discuss some applications to flat space cosmology solutions, their entropy, free energy and flat space orbifold singularity resolution. Our results include flat space Einstein gravity with chemical potentials as special case. We discover novel types of phase transitions between flat space cosmologies with spin-3 hair and show that the branch that continuously connects to spin-2 gravity becomes thermodynamically unstable for sufficiently large temperature or spin-3 chemical potential.
Information content of nonautonomous free fields in curved space-time
Parreira, J. E.; Nemes, M. C.; Fonseca-Romero, K. M.
2011-03-15
We show that it is possible to quantify the information content of a nonautonomous free field state in curved space-time. A covariance matrix is defined and it is shown that, for symmetric Gaussian field states, the matrix is connected to the entropy of the state. This connection is maintained throughout a quadratic nonautonomous (including possible phase transitions) evolution. Although particle-antiparticle correlations are dynamically generated, the evolution is isoentropic. If the current standard cosmological model for the inflationary period is correct, in absence of decoherence such correlations will be preserved, and could potentially lead to observable effects, allowing for a test of the model.
Evolution of small-space plasma in a microthruster designed for small spacecraft
Farahat, A. M., E-mail: farahata@kfupm.edu.sa [King Fahd University of Petroleum and Minerals, College of Applied and Supporting Studies (Saudi Arabia); Ramadan, E. [King Fahd University of Petroleum and Minerals, Department of Information and Computer Science (Saudi Arabia)
2014-12-15
Plasma and gas particle dynamics in atmospheric pressure helium-filled small volume are investigated using a two-dimensional model. The model includes the conservation equations for the plasma and the neutral gas. In this paper, results are presented from simulation of the interaction between gas and charged species, which in turn causes heating and thrust generation for this microengine. Gas heating and neutral depletion initiations are observed, highlighting the close interaction between gas and charged species in governing the evolution of the small-space plasma inside a microthruster designed for microsatellites.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Piarulli, M; Girlanda, L; Schiavilla, R; Perez, R Navarro; Amaro, J E; Arriola, E Ruiz
2015-02-01
We construct a coordinate-space chiral potential, including ?-isobar intermediate states in its two-pion-exchange component up to order Q3 (Q denotes generically the low momentum scale).The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q2 and Q4, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0--300 MeV. For the total 5291 $pp$ and $np$ data inmore »this range, we obtain a ?2 /datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, RL and RS respectively, ranging from (RL,RS)=(1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less
Metastring Theory and Modular Space-time
Laurent Freidel; Robert G. Leigh; Djordje Minic
2015-02-27
String theory is canonically accompanied with a space-time interpretation which determines S-matrix-like observables, and connects to the standard physics at low energies in the guise of local effective field theory. Recently, we have introduced a reformulation of string theory which does not rely on an {\\it a priori} space-time interpretation or a pre-assumption of locality. This \\hlt{metastring theory} is formulated in such a way that stringy symmetries (such as T-duality) are realized linearly. In this paper, we study metastring theory on a flat background and develop a variety of technical and interpretational ideas. These include a formulation of the moduli space of Lorentzian worldsheets, a careful study of the symplectic structure and consequently consistent closed and open boundary conditions, and the string spectrum and operator algebra. What emerges from these studies is a new quantum notion of space-time that we refer to as a quantum Lagrangian or equivalently a \\hlt{modular space-time}. This concept embodies the standard tenets of quantum theory and implements in a precise way a notion of {relative locality}. The usual string backgrounds (non-compact space-time along with some toroidally compactified spatial directions) are obtained from modular space-time by a limiting procedure that can be thought of as a correspondence limit.
Gasoline and Diesel Fuel Update (EIA)
Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...
Jacobson, Samuel Ray
2013-01-01
Very little has been written on sexuality in architectural scholarship. Sexuality & Space (Princeton Architectural Press, 1992) contains the proceedings of an eponymous 1990 conference at Princeton University, and was both ...
Hacker, Randi
2013-09-09
Broadcast Transcript: The Chinese are geniuses at utilizing every inch of space. In a country that is historically overcrowded, this skill is important for survival. Chinese vegetable gardens are miracles of permaculture layout: small plants nestle...
Waliser, Duane E.
Payload: 36th ISS flight (ULF6), EXPRESS Logistics Carrier 3 (ELC3), Alpha Magnetic Spectrometer (AMS;8 Transition #12;9 Major Space Shuttle Program Facilities Reusable Solid Rocket Motor ATK Thiokol Propulsion
Dosev, Detelin
2010-10-12
. In particular, we will focus our attention to the spaces $\\lambda I and $\\linf$. The main results are that the commutators on $\\ell_1$ are the operators not of the form $\\lambda I + K$ with $\\lambda\
Neutron Star Matter Including Delta Isobars Guang-Zhou Liu1,2
Xu, Ren-Xin
Neutron Star Matter Including Delta Isobars Guang-Zhou Liu1,2 , Wei Liu1 and En-Guang Zhao2 1 a new phase structure of neutron star matter including nucleons and delta isobars is presented. Particle fractions populated and pion condensations in neutron star matter are investgated in this model
Strictly singular operators and isomorphisms of Cartesian products of power series spaces
Yanikoglu, Berrin
Strictly singular operators and isomorphisms of Cartesian products of power series spaces By P. BÃ?the spaces that include Cartesian and tensor products of power series spaces (for further developments see of Fredholm operators to develop a method to classify Cartesian products of locally convex spaces
Title IX & Discrimination Complaint Form (including sexual harassment)
Walker, Lawrence R.
Title IX & Discrimination Complaint Form (including sexual harassment) Office of Diversity. Although the university cannot commit to keeping a complaint of discrimination confidential the process for filing or investigating complaints of discrimination (including sexual harassment). Note
Explosion at Louisa (including Morrison Old) Colliery, Durham
Yates, R.
MINISTRY OF FUEL AND POWER - EXPLOSION AT LOUISA (including MORRISON OLD) COLLIERY, DURHAM REPORT On the Causes of, and Circumstances attending, the Explosion which occurred at Louisa (including Morrison Old) Colliery, ...
library.syr.edu Spaces and Places
McConnell, Terry
library.syr.edu #12;Spaces and Places Bird Library, the largest library on campus, welcomes over sciences, library administrative offices, the Special Collections Research Center, and the library café, Pages. Other library facilities include the Carnegie Library, the Geology Library in Heroy
Modeling the reconstructed BAO in Fourier space
Seo, Hee-Jong; Ross, Ashley J; Saito, Shun
2015-01-01
The density field reconstruction technique, which was developed to partially reverse the nonlinear degradation of the Baryon Acoustic Oscillation (BAO) feature in the galaxy redshift surveys, has been successful in substantially improving the cosmology constraints from recent galaxy surveys such as Baryon Oscillation Spectroscopic Survey (BOSS). We estimate the efficiency of the reconstruction method as a function of various reconstruction details. To directly quantify the BAO information in nonlinear density fields before and after reconstruction, we calculate the cross-correlations (i.e., propagators) of the pre(post)-reconstructed density field with the initial linear field using a mock galaxy sample that is designed to mimic the clustering of the BOSS CMASS galaxies. The results directly provide the BAO damping as a function of wavenumber that can be implemented into the Fisher matrix analysis. We focus on investigating the dependence of the propagator on a choice of smoothing filters and on two major dif...
Target space supersymmetric sigma model techniques
de Boer, Jan
2009-01-01
equivalence with the usual RNS formulation of the heteroticas that of the conventional RNS string, and to ?rst order in
Observations and simulations improve space weather models
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeedingLightweight MaterialsGasObservation of
Observations and simulations improve space weather models
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSEHowScientific andComplex Oak RidgeObservation of
National Aeronautics and Space Administration
Rathbun, Julie A.
,,/ NASA National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston by the National Aeronautics and Space Administration ii Hosted by the National Academy of Sclences for library, abstract service, educational, or research purposes; however, republication of any paper
is able to model the 2-m temperature accurately, as well as the 10-m wind, without any use of analyticalIncluding Atmospheric Layers in Vegetation and Urban Offline Surface Schemes VALE´ RY MASSON coupling between atmospheric-model levels and surface-scheme levels, the coupling proposed here remains
China's Space Robotic Arms Programs
POLLPETER, Kevin
2013-01-01
2013 China’s Space Robotic Arm Programs Kevin POLLPETERdebris observation and space robotic arm technologies. Thelikely equipped with a robotic arm, grappling the target
Debris and Future Space Activities
California at Santa Cruz, University of
Debris and Future Space Activities Prof. Joel R. Primack Physics Department University would be endangered. Every person who cares about the human future in space should also realize
Minisuperspace models as infrared contributions
Bojowald, Martin
2015-01-01
A direct correspondence of quantum mechanics as a minisuperspace model for a self-interacting scalar quantum-field theory is established by computing, in several models, the infrared contributions to 1-loop effective potentials of Coleman--Weinberg type. A minisuperspace approximation rather than truncation is thereby obtained. By this approximation, the spatial averaging scale of minisuperspace models is identified with an infrared scale (but not a regulator or cut-off) delimiting the modes included in the minisuperspace model. Some versions of the models studied here have discrete space or modifications of the Hamiltonian expected from proposals of loop quantum gravity. They shed light on the question of how minisuperspace models of quantum cosmology can capture features of full quantum gravity. While it is shown that modifications of the Hamiltonian can well be described by minisuperspace truncations, some related phenomena such as signature change, confirmed and clarified here for modified scalar field th...
Thermofield-Bosonization on Compact Space
R. L. P. G. Amaral; L. V. Belvedere
2014-08-13
We develop the construction of fermionic fields in terms of bosonic ones to describe free and interaction models in the circle, using thermofielddynamics. The description in the case of finite temperature is developed for both normal modes and zero modes. The treatment extends the thermofield-bosonization for periodic space.
Rodgers, Lennon Patrick
2006-01-01
This thesis will present concepts of modular space systems, including definitions and specific examples of how modularity has been incorporated into past and present space missions. In addition, it will present two ...
Lichter, Matthew D. (Matthew Daniel), 1977-
2005-01-01
Future space missions are expected to use autonomous robotic systems to carry out a growing number of tasks. These tasks may include the assembly, inspection, and maintenance of large space structures; the capture and ...
The Impact of Social Space Design on Students’ Behavioral Problems in Middle Schools
Schneider, Raechel
2011-08-08
that is physically or emotionally harmful to another student, oneself, or school property (e.g., stealing, fighting and name-calling). For each space, design elements that were analyzed included seating, privacy, equipment, structure, and open space. Within one...
What To Include In The Whistleblower Complaint? | National Nuclear...
National Nuclear Security Administration (NNSA)
Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our Operations Management and Budget Whistleblower Program What To Include In The Whistleblower Complaint?...
Introduction to Small-Scale Photovoltaic Systems (Including RETScreen...
Introduction to Small-Scale Photovoltaic Systems (Including RETScreen Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale...
Including Retro-Commissioning in Federal Energy Savings Performance...
Broader source: Energy.gov (indexed) [DOE]
More Documents & Publications Including Retro-Commissioning in Federal Energy Savings Performance Contracts Enabling Mass-Scale Financing for Federal Energy, Water, and...
U-182: Microsoft Windows Includes Some Invalid Certificates
Broader source: Energy.gov [DOE]
The operating system includes some invalid intermediate certificates. The vulnerability is due to the certificate authorities and not the operating system itself.
National Aeronautics and Space Administration NaNotechNology Roadmap
Waliser, Duane E.
National Aeronautics and Space Administration · NaNotechNology Roadmap Technology Area 10 Michael A-27 #12;Foreword NASA's integrated technology roadmap, including both technology pull and technology push state of this effort is documented in NASA's DRAFT Space Technology Roadmap, an integrated set
Montana Space Grant Consortium Montana NASA EPSCoR
Maxwell, Bruce D.
Montana Space Grant Consortium and Montana NASA EPSCoR CALL FOR PROPOSALS 3 OPPORTUNITIES http campuses is a goal of Space Grant and NASA EPSCoR. If you wish to have an example of a successful MSGC MSU must still include at least 1:1 non-federal cost share for requested NASA/MSGC funds. If you have
Bill Steigerwald Goddard Space Flight Center, Greenbelt, Md.
's Goddard Space Flight Center, the University of Chicago, University of Wisconsin, and the Danish Space will provide a powerful way to tell which of several explanations of the current data are correct. The TopHat experiment includes a spinning telescope and a detector system. It maps a 48-degree diameter disk of the sky
The World Space Observatory (WSO-UV) - Current status
Michela Uslenghi; Isabella Pagano; Cristian Pontoni; Salvatore Scuderi; Boris Shustov
2008-01-14
This paper reports on the current status of the World Space Observatory WSO-UV, a space mission for UV astronomy, planned for launch at the beginning of next decade. It is based on a 1.7 m telescope, with focal plane instruments including high resolution spectrographs, long slit low resolution spectrographs and imaging cameras.
National Aeronautics and Space Administration www.nasa.gov
Christian, Eric
National Aeronautics and Space Administration www.nasa.gov Volume 4, Issue 21 December 2008 Goddard and the Virginia Department of Aviation. Established in 1945 by the National Advisory Committee for Aeronautics contributed to both aeronautical and space flight research. The unveiling ceremony included comments by local
High-Performance Computer Modeling of the Cosmos-Iridium Collision
Olivier, S; Cook, K; Fasenfest, B; Jefferson, D; Jiang, M; Leek, J; Levatin, J; Nikolaev, S; Pertica, A; Phillion, D; Springer, K; De Vries, W
2009-08-28
This paper describes the application of a new, integrated modeling and simulation framework, encompassing the space situational awareness (SSA) enterprise, to the recent Cosmos-Iridium collision. This framework is based on a flexible, scalable architecture to enable efficient simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel, high-performance computer systems available, for example, at Lawrence Livermore National Laboratory. We will describe the application of this framework to the recent collision of the Cosmos and Iridium satellites, including (1) detailed hydrodynamic modeling of the satellite collision and resulting debris generation, (2) orbital propagation of the simulated debris and analysis of the increased risk to other satellites (3) calculation of the radar and optical signatures of the simulated debris and modeling of debris detection with space surveillance radar and optical systems (4) determination of simulated debris orbits from modeled space surveillance observations and analysis of the resulting orbital accuracy, (5) comparison of these modeling and simulation results with Space Surveillance Network observations. We will also discuss the use of this integrated modeling and simulation framework to analyze the risks and consequences of future satellite collisions and to assess strategies for mitigating or avoiding future incidents, including the addition of new sensor systems, used in conjunction with the Space Surveillance Network, for improving space situational awareness.
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Rathbun, Julie A.
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION OFFICE OF MANNED SPACE FLIGHT DEPARTMENT OF THE ARMY of the Chief of Engineers Washington, D. C. and National Aeronautics and Space Administration Office of Manned of the National Aeronautics and Space Administration concept development program for LESA and was conducted under
National Aeronautics and Space Administration
Xu, Kun
National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681 Aeronautics a
Reciprocal-space solvent flattening
Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Structural Biology Group, Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
1999-11-01
A procedure is described for improvement of crystallographic phases by reciprocal-space maximization of a likelihood function including experimental phases and characteristics of the electron-density map. Solvent flattening is a powerful tool for improving crystallographic phases for macromolecular structures obtained at moderate resolution, but uncertainties in the optimal weighting of experimental phases and modified phases make it difficult to extract all the phase information possible. Solvent flattening is essentially an iterative method for maximizing a likelihood function which consists of (i) experimental phase information and (ii) information on the likelihood of various arrangements of electron density in a map, but the likelihood function is generally not explicitly defined. In this work, a procedure is described for reciprocal-space maximization of a likelihood function based on experimental phases and characteristics of the electron-density map. The procedure can readily be applied to phase improvement based on solvent flattening and can potentially incorporate information on a wide variety of other characteristics of the electron-density map.
space holder Fisheries Economics
#12;#12;space holder Fisheries Economics of the United States, 2011 Economics and Social Analysis Citation: National Marine Fisheries Service. 2012. Fisheries Economics of the United States, 2011. U/publication/index.html. A copy of this report may be obtained from: Economics and Social Analysis Division
On-orbit serviceability of space system architectures
Richards, Matthew G
2006-01-01
On-orbit servicing is the process of improving a space-based capability through a combination of in-orbit activities which may include inspection; rendezvous and docking; and value-added modifications to a satellite's ...
Survivable pulse power space radiator
Mims, J.; Buden, D.; Williams, K.
1988-03-11
A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometerorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length. 5 figs.
PSERC 97-12 "Thermal Unit Commitment Including
PSERC 97-12 "Thermal Unit Commitment Including Optimal AC Power Flow Constraints" Carlos Murillo-562-3966. #12;Thermal Unit Commitment Including Optimal AC Power Flow Constraints Carlos Murillo S anchez Robert a new algorithm for unit commitment that employs a Lagrange relaxation technique with a new augmentation
Summer Conference Participant Registration Fee: $200 Includes the following
Tullos, Desiree
Summer Conference Participant Registration Fee: $200 Includes the following: Lodging for Wednesday on Wednesday, Thursday, and Friday Brunch on Saturday Summer Conference T-shirt Class materials Congress Only only (although they are encouraged to attend the entire conference). This fee includes the following
Solar Energy Education. Reader, Part II. Sun story. [Includes glossary
Not Available
1981-05-01
Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)
Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development
Chen, Tsuhan
Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Transitions: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st the Marcellus shale In addition to the specific questions identified for the case of Marcellus shale gas in New
Differential expansion of space and the Hubble flow anisotropy
Krzysztof Bolejko; M. Ahsan Nazer; David L. Wiltshire
2015-12-24
The Universe on scales $10-100~h^{-1}$ Mpc is dominated by a cosmic web of voids, filaments, sheets and knots of galaxy clusters. These structures participate differently in the global expansion of the Universe: from non-expanding clusters to the above average expansion rate of voids. In this paper we characterize Hubble expansion anisotropies in the COMPOSITE sample of 4534 galaxies and clusters. We concentrate on the dipole and quadrupole in the rest frame of the Local Group. These both have statistically significant amplitudes. These anisotropies, and their redshift dependence, cannot be explained solely by a boost of the Local Group in the Friedmann-Lema\\^{i}tre-Robertson-Walker (FLRW) model which expands isotropically in the rest frame of the cosmic microwave background (CMB) radiation. We simulate the local expansion of the Universe with inhomogeneous Szekeres models, which match the standard FLRW model on $> 100~ h^{-1}$ Mpc scales but exhibit nonkinematic differential expansion on small scales. We restrict models to be consistent with observed CMB temperature anisotropies, while simultaneously fitting the redshift variation of the Hubble expansion dipole. We include features to account for both the Local Void and the "Great Attractor". While this naturally accounts for the Hubble expansion and CMB dipoles, the simulated quadrupoles are smaller than observed. Further refinement to incorporate additional structures may improve this. This would enable a test of the hypothesis that some large angle CMB anomalies result from failing to treat the differential expansion of space; a natural feature of Einstein's equations not included in the current standard model of cosmology.
Differential expansion of space and the Hubble flow anisotropy
Krzysztof Bolejko; M. Ahsan Nazer; David L. Wiltshire
2015-12-23
The Universe on scales $10-100~h^{-1}$ Mpc is dominated by a cosmic web of voids, filaments, sheets and knots of galaxy clusters. These structures participate differently in the global expansion of the Universe: from non-expanding clusters to the above average expansion rate of voids. In this paper we characterize Hubble expansion anisotropies in the COMPOSITE sample of 4534 galaxies and clusters. We concentrate on the dipole and quadrupole in the rest frame of the Local Group. These both have statistically significant amplitudes. These anisotropies, and their redshift dependence, cannot be explained solely by a boost of the Local Group in the Friedmann-Lema\\^{i}tre-Robertson-Walker (FLRW) model which expands isotropically in the rest frame of the cosmic microwave background (CMB) radiation. We simulate the local expansion of the Universe with inhomogeneous Szekeres models, which match the standard FLRW model on $> 100~ h^{-1}$ Mpc scales but exhibit nonkinematic differential expansion on small scales. We restrict models to be consistent with observed CMB temperature anisotropies, while simultaneously fitting the redshift variation of the Hubble expansion dipole. We include features to account for both the Local Void and the "Great Attractor". While this naturally accounts for the Hubble expansion and CMB dipoles, the simulated quadrupoles are smaller than observed. Further refinement to incorporate additional structures may improve this. This would enable a test of the hypothesis that some large angle CMB anomalies result from failing to treat the differential expansion of space; a natural feature of Einstein's equations not included in the current standard model of cosmology.
Scattering from Star Polymers including Excluded Volume Effects
Li, Xin [ORNL; Do, Changwoo [ORNL; Liu, Yun [National Institute of Standards and Technology (NIST); Sanchez-Diaz, Luis E [ORNL; Hong, Kunlun [ORNL; Smith, Greg [ORNL; Chen, Wei-Ren [ORNL
2014-01-01
In this work we present a new model for the form factor of a star polymer consisting of self-avoiding branches. This new model incorporates excluded volume effects and is derived from the two point correlation function for a star polymer.. We compare this model to small angle neutron scattering (SANS) measurements from polystyrene (PS) stars immersed in a good solvent, tetrahydrofuran (THF). It is shown that this model provides a good description of the scattering signature originating from the excluded volume effect and it explicitly elucidates the connection between the global conformation of a star polymer and the local stiffness of its constituent branch.
Cubature on Wiener Space: Pathwise Convergence
Bayer, Christian Friz, Peter K.
2013-04-15
Cubature on Wiener space (Lyons and Victoir in Proc. R. Soc. Lond. A 460(2041):169-198, 2004) provides a powerful alternative to Monte Carlo simulation for the integration of certain functionals on Wiener space. More specifically, and in the language of mathematical finance, cubature allows for fast computation of European option prices in generic diffusion models.We give a random walk interpretation of cubature and similar (e.g. the Ninomiya-Victoir) weak approximation schemes. By using rough path analysis, we are able to establish weak convergence for general path-dependent option prices.
Exploring theory space with Monte Carlo reweighting
Gainer, James S. [Univ. of Florida, Gainesville, FL (United States); Lykken, Joseph [Fermi National Accelerator Laboratory, Batavia, IL (United States); Matchev, Konstantin T. [Univ. of Florida, Gainesville, FL (United States); Mrenna, Stephen [Fermi National Accelerator Laboratory, Batavia, IL (United States); Park, Myeonghun [The Univ. of Tokyo, Kashiwa (Japan)
2014-10-01
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. In particular, we suggest procedures that allow more efficient collaboration between theorists and experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.
Exploring theory space with Monte Carlo reweighting
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun
2014-10-13
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. In particular, we suggest procedures that allow more efficient collaboration between theoristsmore »and experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.« less
Modeling heavy ion ionization energy loss at low and intermediate energies
Rakhno, I.L.; /Fermilab
2009-11-01
The needs of contemporary accelerator and space projects led to significant efforts made to include description of heavy ion interactions with matter in general-purpose Monte Carlo codes. This paper deals with an updated model of heavy ion ionization energy loss developed previously for the MARS code. The model agrees well with experimental data for various projectiles and targets including super-heavy ions in low-Z media.
Computer aided architectural space planning
Schramek, Charles Wayne
1971-01-01
interrelations II aI M III E~k 0 0 gzu ta oner al 4 al M cluster 1 ll 14 10 4 aster 3 1 cluster 2 0 . . . . o. . . . 00 I 1 00 0 11 0". 0 11 7 0 0 0 10 4 laaa 1 Us?i' 7 TO 'LU laa 1 0" I'l' 15 TU ULUST~ 3 Pass 2 I?41'1 3 To OLUa?44 Paaa 3... L I-I A PT F' R U I THE IrlTERREI ATIONS ANALYSIS MODEL. . . THE SPACE ALLOCATION PROGRAM. . . . . . . . FLITLIRE PLANNING AND DEVELOPMENT. . . . . S(1 40 CI-IRPTER UI I THE SUMIMIARY LITERATURE CITEU. Al'Pi: NDICES SAI'IPLE DATA SHEETS II...
Including Retro-Commissioning in Federal Energy Savings Performance...
the cost of the survey. Developing a detailed scope of work and a fixed price for this work is important to eliminate risk to the Agency and the ESCo. Including a detailed scope...
T-603: Mac OS X Includes Some Invalid Comodo Certificates
Broader source: Energy.gov [DOE]
The operating system includes some invalid certificates. The vulnerability is due to the invalid certificates and not the operating system itself. Other browsers, applications, and operating systems are affected.
FINITE ELEMENT ANALYSIS OF STEEL WELDED COVERPLATE INCLUDING COMPOSITE DOUBLERS
Petri, Brad
2008-05-15
With the increasing focus on welded bridge members resulting in crack initiation and propagation, there is a large demand for creative solutions. One of these solutions includes the application of composite doublers over ...
Title 16 USC 818 Public Lands Included in Project - Reservation...
of Lands From Entry Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 16 USC 818 Public Lands Included in Project...
Including costs of supply chain risk in strategic sourcing decisions
Jain, Avani
2009-01-01
Cost evaluations do not always include the costs associated with risks when organizations make strategic sourcing decisions. This research was conducted to establish and quantify the impact of risks and risk-related costs ...
Orbit Spaces in Superconductivity
Vittorino Talamini
2006-07-30
In the framework of Landau theory of phase transitions one is interested to describe all the possible low symmetry ``superconducting'' phases allowed for a given superconductor crystal and to determine the conditions under which this crystal undergoes a phase transition. These problems are best described and analyzed in the orbit space of the high symmetry group of the ``normal, non-superconducting'' phase of the crystal. In this article it is worked out a simple example concerning superconductivity, that shows the P-matrix method to determine the equations and inequalities defining the orbit space and its stratification. This approach is of general validity and can be used in all physical problems that make use of invariant functions, as long as the symmetry group is compact.
Hybrid powertrain system including smooth shifting automated transmission
Beaty, Kevin D.; Nellums, Richard A.
2006-10-24
A powertrain system is provided that includes a prime mover and a change-gear transmission having an input, at least two gear ratios, and an output. The powertrain system also includes a power shunt configured to route power applied to the transmission by one of the input and the output to the other one of the input and the output. A transmission system and a method for facilitating shifting of a transmission system are also provided.
Limited Personal Use of Government Office Equipment including Information Technology
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2005-01-07
The Order establishes requirements and assigns responsibilities for employees' limited personal use of Government resources (office equipment and other resources including information technology) within DOE, including NNSA. The Order is required to provide guidance on appropriate and inappropriate uses of Government resources. This Order was certified 04/23/2009 as accurate and continues to be relevant and appropriate for use by the Department. Certified 4-23-09. No cancellation.
Sameer M. Ikhdair
2011-10-05
The approximate analytic bound state solutions of the Klein-Gordon equation with equal scalar and vector exponential-type potentials including the centrifugal potential term are obtained for any arbitrary orbital angular momentum number l and dimensional space D. The relativistic/non-relativistic energy spectrum equation and the corresponding unnormalized radial wave functions, in terms of the Jacobi polynomials P_{n}^{({\\alpha},{\\beta})}(z), where {\\alpha}>-1, {\\beta}>-1 and z\\in[-1,+1] or the generalized hypergeometric functions _{2}F_{1}(a,b;c;z), are found. The Nikiforov-Uvarov (NU) method is used in the solution. The solutions of the Eckart, Rosen-Morse, Hulth\\'en and Woods-Saxon potential models can be easily obtained from these solutions. Our results are identical with those ones appearing in the literature. Finally, under the PT-symmetry, we can easily obtain the bound state solutions of the trigonometric Rosen-Morse potential.
Electrostatic AB-Ramjet Space Propulsion
Alexander Bolonkin
2007-01-08
A new electrostatic ramjet space engine is proposed and analyzed. The upper atmosphere (85 -1000 km) is extremely dense in ions (millions per cubic cm). The interplanetary medium contains positive protons from the solar wind. A charged ball collects the ions (protons) from the surrounding area and a special electric engine accelerates the ions to achieve thrust or decelerates the ions to achieve drag. The thrust may have a magnitude of several Newtons. If the ions are decelerated, the engine produces a drag and generates electrical energy. The theory of the new engine is developed. It is shown that the proposed engine driven by a solar battery (or other energy source) can not only support satellites in their orbit for a very long time but can also work as a launcher of space apparatus. The latter capability includes launch to high orbit, to the Moon, to far space, or to the Earth atmosphere (as a return thruster for space apparatus or as a killer of space debris). The proposed ramjet is very useful in interplanetary trips to far planets because it can simultaneously produce thrust or drag and large electric energy using the solar wind. Two scenarios, launch into the upper Earth atmosphere and an interplanetary trip, are simulated and the results illustrate the excellent possibilities of the new concept.
Quantization of Space and Time in 3 and in 4 Space-time Dimensions
G. 't Hooft
1996-08-16
The fact that in Minkowski space, space and time are both quantized does not have to be introduced as a new postulate in physics, but can actually be derived by combining certain features of General Relativity and Quantum Mechanics. This is demonstrated first in a model where particles behave as point defects in 2 space dimensions and 1 time, and then in the real world having 3+1 dimensions. The mechanisms in these two cases are quite different, but the outcomes are similar: space and time form a (non-cummutative) lattice. These notes are short since most of the material discussed in these lectures is based on two earlier papers by the same author (gr-qc/9601014 and gr-qc/9607022), but the exposition given in the end is new.
Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space
Joshua T. Horwood; Raymond G. McLenaghan; Roman G. Smirnov
2006-05-07
The problem of the invariant classification of the orthogonal coordinate webs defined in Euclidean space is solved within the framework of Felix Klein's Erlangen Program. The results are applied to the problem of integrability of the Calogero-Moser model.
Universal cell frame for high-pressure water electrolyzer and electrolyzer including the same
Schmitt, Edwin W.; Norman, Timothy J.
2013-01-08
Universal cell frame generic for use as an anode frame and as a cathode frame in a water electrolyzer. According to one embodiment, the universal cell frame includes a unitary annular member having a central opening. Four trios of transverse openings are provided in the annular member, each trio being spaced apart by about 90 degrees. A plurality of internal radial passageways fluidly interconnect the central opening and each of the transverse openings of two diametrically-opposed trios of openings, the other two trios of openings lacking corresponding radial passageways. Sealing ribs are provided on the top and bottom surfaces of the annular member. The present invention is also directed at a water electrolyzer that includes two such cell frames, one being used as the anode frame and the other being used as the cathode frame, the cathode frame being rotated 90 degrees relative to the anode frame.
Measuring redshift-space distortions with future SKA surveys
Raccanelli, Alvise; Camera, Stefano; Bacon, David; Blake, Chris; Dore, Olivier; Ferreira, Pedro; Maartens, Roy; Santos, Mario; Viel, Matteo; Zhao, Gong-bo
2015-01-01
The peculiar motion of galaxies can be a particularly sensitive probe of gravitational collapse. As such, it can be used to measure the dynamics of dark matter and dark energy as well the nature of the gravitational laws at play on cosmological scales. Peculiar motions manifest themselves as an overall anisotropy in the measured clustering signal as a function of the angle to the line-of-sight, known as redshift-space distortion (RSD). Limiting factors in this measurement include our ability to model non-linear galaxy motions on small scales and the complexities of galaxy bias. The anisotropy in the measured clustering pattern in redshift-space is also driven by the unknown distance factors at the redshift in question, the Alcock-Paczynski distortion. This weakens growth rate measurements, but permits an extra geometric probe of the Hubble expansion rate. In this chapter we will briefly describe the scientific background to the RSD technique, and forecast the potential of the SKA phase 1 and the SKA2 to measu...
Measuring redshift-space distortions with future SKA surveys
Alvise Raccanelli; Philip Bull; Stefano Camera; David Bacon; Chris Blake; Olivier Dore; Pedro Ferreira; Roy Maartens; Mario Santos; Matteo Viel; Gong-bo Zhao
2015-01-15
The peculiar motion of galaxies can be a particularly sensitive probe of gravitational collapse. As such, it can be used to measure the dynamics of dark matter and dark energy as well the nature of the gravitational laws at play on cosmological scales. Peculiar motions manifest themselves as an overall anisotropy in the measured clustering signal as a function of the angle to the line-of-sight, known as redshift-space distortion (RSD). Limiting factors in this measurement include our ability to model non-linear galaxy motions on small scales and the complexities of galaxy bias. The anisotropy in the measured clustering pattern in redshift-space is also driven by the unknown distance factors at the redshift in question, the Alcock-Paczynski distortion. This weakens growth rate measurements, but permits an extra geometric probe of the Hubble expansion rate. In this chapter we will briefly describe the scientific background to the RSD technique, and forecast the potential of the SKA phase 1 and the SKA2 to measure the growth rate using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys.
Topological Characterization of Extended Quantum Ising Models
G. Zhang; Z. Song
2015-10-27
We show that a class of exactly solvable quantum Ising models, including the transverse-field Ising model and anisotropic XY model, can be characterized as the loops in a two-dimensional auxiliary space. The transverse-field Ising model corresponds to a circle and the XY model corresponds to an ellipse, while other models yield cardioid, limacon, hypocycloid, and Lissajous curves etc. It is shown that the variation of the ground state energy density, which is a function of the loop, experiences a nonanalytical point when the winding number of the corresponding loop changes. The winding number can serve as a topological quantum number of the quantum phases in the extended quantum Ising model, which sheds some light upon the relation between quantum phase transition and the geometrical order parameter characterizing the phase diagram.
Broader source: Energy.gov [DOE]
The webinar focused on improving the performance of central space conditioning systems in multifamily buildings, including hydronic heating strategies and the evaluation of thermostatically controlled radiator valves (TRVs).
Redshift-space limits of bound structures
Rolando Dünner; Andreas Reisenegger; Andrés Meza; Pablo A. Araya; Hernán Quintana
2007-02-26
An exponentially expanding Universe, possibly governed by a cosmological constant, forces gravitationally bound structures to become more and more isolated, eventually becoming causally disconnected from each other and forming so-called "island universes". This new scenario reformulates the question about which will be the largest structures that will remain gravitationally bound, together with requiring a systematic tool that can be used to recognize the limits and mass of these structures from observational data, namely redshift surveys of galaxies. Here we present a method, based on the spherical collapse model and N-body simulations, by which we can estimate the limits of bound structures as observed in redshift space. The method is based on a theoretical criterion presented in a previous paper that determines the mean density contrast that a spherical shell must have in order to be marginally bound to the massive structure within it. Understanding the kinematics of the system, we translated the real-space limiting conditions of this "critical" shell to redshift space, producing a projected velocity envelope that only depends on the density profile of the structure. From it we created a redshift-space version of the density contrast that we called "density estimator", which can be calibrated from N-body simulations for a reasonable projected velocity envelope template, and used to estimate the limits and mass of a structure only from its redshift-space coordinates.
Methods of producing adsorption media including a metal oxide
Mann, Nicholas R; Tranter, Troy J
2014-03-04
Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.
Thin film solar cell including a spatially modulated intrinsic layer
Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)
1989-03-28
One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.
Solar Energy Education. Renewable energy: a background text. [Includes glossary
Not Available
1985-01-01
Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)
INSTITUTE OF SPACE AND ATMOSPHERIC
Saskatchewan, University of
Gordon James Larry Newitt Tom McElroy David Kendall Malcolm Vant David Grier Senior Scientist, Space
Daiqin Su; T. C. Ralph
2015-07-02
We show that the particle number distribution of diamond modes, modes that are localised in a finite space-time region, are thermal for the Minkowski vacuum state of a massless scalar field, an analogue to the Unruh effect. The temperature of the diamond is inversely proportional to its size. An inertial observer can detect this thermal radiation by coupling to the diamond modes using an appropriate energy scaled detector. We further investigate the correlations between various diamonds and find that entanglement between adjacent diamonds dominates.
Space Science and Applications
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C. TemperatureThousand CubicArchived1 Space Science and
OPTIMAL OPERATION OF AN INTEGRATED ENERGY PARK INCLUDING FOSSIL FUEL POWER GENERATION,
Stanford University
OPTIMAL OPERATION OF AN INTEGRATED ENERGY PARK INCLUDING FOSSIL FUEL POWER GENERATION, CO2 CAPTURE combustion turbine, and wind generation. Energy park com- ponents are modeled using energy and mass balances. A formal optimization proce- dure is used to determine the optimal hourly dispatch of energy park
1 Copyright 2003 by ASME IMPROVING LIFE CYCLE ASSESSMENT BY INCLUDING SPATIAL, DYNAMIC AND PLACE-
1 Copyright © 2003 by ASME IMPROVING LIFE CYCLE ASSESSMENT BY INCLUDING SPATIAL, DYNAMIC AND PLACE Drawing from the substantial body of literature on life cycle assessment / analysis (LCA), the article models is suggested as a means of improving the impact assessment phase of LCA. Keywords: Life Cycle
BatteryConscious Task Sequencing for Portable Devices Including Voltage/Clock Scaling
Kambhampati, Subbarao
model and validated it with measurements taken on a real lithiumion bat tery used in a pocket computerBatteryConscious Task Sequencing for Portable Devices Including Voltage/Clock Scaling #3; Daler Department, Arizona State University Tempe, Arizona 85287 chaitali@asu.edu ABSTRACT Operation of battery
Krylov, Anna I.
EARTH SCIENCESEARTH SCIENCESEARTH SCIENCES This major includes a spectrum of disciplines focused this understanding to read the record of earth history written in rocks and sediments, and on developing models by humans. Opportunities for Students Sigma Gamma Epsilon: The Omega Chapter of the national honorary earth
Tsunami waveform inversion including dispersive waves: the 2004 earthquake off Kii Peninsula, Japan
Furumura, Takashi
Click Here for Full Article Tsunami waveform inversion including dispersive waves: the 2004 are often assumed to model tsunamis, but the wavelength of the initial water height distribution produced, is sometimes not much greater than the water depth. The resulting tsunami may have a dispersive character
Biomass Potentials from California Forest and Shrublands Including Fuel
Biomass Potentials from California Forest and Shrublands Including Fuel Reduction Potentials-04-004 February 2005 Revised: October 2005 Arnold Schwarzenegger, Governor, State of California #12;Biomass Tiangco, CEC Bryan M. Jenkins, University of California #12;Biomass Potentials from California Forest
Applied Linguistics Department Curriculum for the IEP Including Curriculum Summary
Weaver, Adam Lee
Applied Linguistics Department Curriculum for the IEP Including Curriculum Summary 1 C-1-2 Curriculum for the IEP (as described in CEA Curriculum Standards) I. General Curriculum Philosophy a topics, and global issues. b. Skills Development: The IEP curriculum offers courses that provide skills
Optimal Energy Management Strategy including Battery Health through Thermal
Paris-Sud XI, Université de
Optimal Energy Management Strategy including Battery Health through Thermal Management for Hybrid: Energy management strategy, Plug-in hybrid electric vehicles, Li-ion battery aging, thermal management, Pontryagin's Minimum Principle. 1. INTRODUCTION The interest for energy management strategy (EMS) of Hybrid
Directing all emergency activities including evacuation of personnel.
Johnson, Eric E.
for employees who perform or shut down critical plant operations. · Systems to account for all employees after· Directing all emergency activities including evacuation of personnel. · Ensuring that outside emergency services are notified when necessary. · Directing the shutdown of plant operations when necessary
Thermal Unit Commitment Including Optimal AC Power Flow Constraints
Thermal Unit Commitment Including Optimal AC Power Flow Constraints Carlos Murillo{Sanchez Robert J algorithm for unit commitment that employs a Lagrange relaxation technique with a new augmentation. This framework allows the possibility of committing units that are required for the VArs that they can produce
cDNA encoding a polypeptide including a hevein sequence
Raikhel, N.V.; Broekaert, W.F.; Namhai Chua; Kush, A.
1993-02-16
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids.
Major initiatives in materials research at Western include
Christensen, Dan
, and the growth and formation of new materials. Western is a leader in the study of the interactions of radiationMajor initiatives in materials research at Western include Surface Science Western, Interface of the wide range of materials and biomaterials research within the Faculty of Science and across Western
Free Energy Efficiency Kit includes CFL light bulbs,
Rose, Annkatrin
Free Energy Efficiency Kit Kit includes CFL light bulbs, spray foam, low-flow shower head, and more for discounted energy assessments. FREE HOME ENERGY EFFICIENCY SEMINAR N e w R i ver L i g ht & Pow e r a n d W! Building Science 101 Presentation BPI Certified Building Professionals will present home energy efficiency
Introduction Adhesion complexes play key roles in many events, including
Hardin, Jeff
Introduction Adhesion complexes play key roles in many events, including cell migration cell adhesion are remarkably similar in Caenorhabditis elegans, Drosophila and humans (Hynes and Zhao to reveal much about the basic, conserved molecular mechanisms that mediate and regulate cell adhesion
A Wide Range Neutron Detector for Space Nuclear Reactor Applications
Nassif, Eduardo; Sismonda, Miguel; Matatagui, Emilio; Pretorius, Stephan
2007-01-30
We propose here a versatile and innovative solution for monitoring and controlling a space-based nuclear reactor that is based on technology already proved in ground based reactors. A Wide Range Neutron Detector (WRND) allows for a reduction in the complexity of space based nuclear instrumentation and control systems. A ground model, predecessor of the proposed system, has been installed and is operating at the OPAL (Open Pool Advanced Light Water Research Reactor) in Australia, providing long term functional data. A space compatible Engineering Qualification Model of the WRND has been developed, manufactured and verified satisfactorily by analysis, and is currently under environmental testing.
PT invariant complex E(8) root spaces
Andreas Fring; Monique Smith
2010-10-11
We provide a construction procedure for complex root spaces invariant under antilinear transformations, which may be applied to any Coxeter group. The procedure is based on the factorisation of a chosen element of the Coxeter group into two factors. Each of the factors constitutes an involution and may therefore be deformed in an antilinear fashion. Having the importance of the E(8)-Coxeter group in mind, such as underlying a particular perturbation of the Ising model and the fact that for it no solution could be found previously, we exemplify the procedure for this particular case. As a concrete application of this construction we propose new generalisations of Calogero-Moser Sutherland models and affine Toda field theories based on the invariant complex root spaces and deformed complex simple roots, respectively.
Configuration space Faddeev calculations. Progress report, 1 November 1992--31 October 1993
Payne, G.L.; Klink, W.H.; Polyzou, W.N.
1994-01-01
The detailed study of few-body systems provides one of the most precise tools for studying the dynamics of nuclei and nucleons. This research program consists of a careful theoretical study of few-body systems and methods for modeling these systems. Brief summaries are given on several aspects of this program including the following: the use of configuration-space Faddeev equations to solve the proton-deuteron scattering problem with long-range Coulomb interactions; calculations of the triton binding energy; inclusion of dynamical vacuum structures in Hamiltonian light-front dynamics; constraints in Bethe-Salpeter models; signature of quantum chaos; applications of point form relativistic quantum mechanics collective nuclear models and the symplectic group Sp (6,R); and anharmonic oscillators and quantum mechanics systems in nonconstant magnetic fields.
Prediction of Consensus RNA Secondary Structures Including Pseudoknots
Stadler, Peter F.
Â¨at Leipzig, Kreuzstrasse 7b, D-04103 Leipzig, Germany Abstract Most functional RNA molecules have structure prediction based on the standard energy model is NP-complete [34, 1] in general, albeit restricted are expensive in terms of CPU and memory usage [39, 38, 19, 1, 10] and in addition suffer from uncertainties
Prediction of Consensus RNA Secondary Structures Including Pseudoknots
Stadler, Peter F.
Ë?at Leipzig, Kreuzstrasse 7b, DÂ04103 Leipzig, Germany Abstract Most functional RNA molecules have structure prediction based on the standard energy model is NPÂcomplete [34, 1] in general, albeit restricted are expensive in terms of CPU and memory usage [39, 38, 19, 1, 10] and in addition su#er from uncertainties
Conversion of geothermal waste to commercial products including silica
Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)
2003-01-01
A process for the treatment of geothermal residue includes contacting the pigmented amorphous silica-containing component with a depigmenting reagent one or more times to depigment the silica and produce a mixture containing depigmented amorphous silica and depigmenting reagent containing pigment material; separating the depigmented amorphous silica and from the depigmenting reagent to yield depigmented amorphous silica. Before or after the depigmenting contacting, the geothermal residue or depigmented silica can be treated with a metal solubilizing agent to produce another mixture containing pigmented or unpigmented amorphous silica-containing component and a solubilized metal-containing component; separating these components from each other to produce an amorphous silica product substantially devoid of metals and at least partially devoid of pigment. The amorphous silica product can be neutralized and thereafter dried at a temperature from about 25.degree. C. to 300.degree. C. The morphology of the silica product can be varied through the process conditions including sequence contacting steps, pH of depigmenting reagent, neutralization and drying conditions to tailor the amorphous silica for commercial use in products including filler for paint, paper, rubber and polymers, and chromatographic material.
Including debris cover effects in a distributed model of glacier ablation
and hydroelectricity generation, and have obvious aesthetic qualities that benefit tourism. However, the international
A Mercury orientation model including non-zero obliquity and librations
Margot, Jean-Luc
2009-01-01
al. (1980) 280.9 ? 0.033 T Equinox B1950, epoch J1950 a 61.4+ 6.1385025 d 281.02 ? 0.033 T Equinox J2000, epoch J2000 b
Search for Non-Standard Model Behavior, including CP Violation, in Higgs production and
additional Higgs boson 5 J. Webster J. Webster 4 What is your goal in life? (or at least in HEP) 29 April ( ) ( ) ( ) u c t d s b( ) ( ) ( ) Matter Particles Gauge Bosons Higgs boson: - Simple/Accurate description t d s b( ) ( ) ( ) Matter Particles Gauge Bosons Higgs boson: - Simple/Accurate description elementary
Gall, Elliott T; Siegel, Jeffrey A; Corsi, Richard L
2015-01-01
of healthy young volunteers to ozone causes cardiovasculareffects of five common ozone-initiated terpene reactiondecay rates, and removal of ozone and their relation to
Including probe-level uncertainty in model-based gene expression clustering
Liu, Xuejun; Lin, Kevin K; Andersen, Bogi; Rattray, Magnus
2007-01-01
quantity. For the six-group and seven-group datasets, threeexpression level for group seven is x qij = A qi , where Asecond column is for the seven group dataset with one noise
Bruchon, Matthew Bremer
2013-01-01
In order to meet EU mandates, the island nation of Cyprus must raise penetration of renewable energy from roughly 5% in 2013 to 16% in 2020. This means Cyprus will need economical ways of balancing intermittency, a special ...
Discrete element modelling of iron ore pellets to include the effects of moisture and fines
Morrissey, John Paul
2013-11-28
Across industry the majority of raw materials handled are particulate in nature, ranging in size and properties from aggregates to powders. The stress regimes experienced by the granular solids vary and the exhibited ...
Unitarity bounds in the Higgs model including triplet fields with custodial
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and(Conference)Connecteffect state.symmetry (Journal Article)
Luis J. Garay
1993-06-01
Wormhole boundary conditions for the Wheeler--DeWitt equation can be derived from the path integral formulation. It is proposed that the wormhole wave function must be square integrable in the maximal analytic extension of minisuperspace. Quantum wormholes can be invested with a Hilbert space structure, the inner product being naturally induced by the minisuperspace metric, in which the Wheeler--DeWitt operator is essentially self--adjoint. This provides us with a kind of probabilistic interpretation. In particular, giant wormholes will give extremely small contributions to any wormhole state. We also study the whole spectrum of the Wheeler--DeWitt operator and its role in the calculation of Green's functions and effective low energy interactions.
Composite armor, armor system and vehicle including armor system
Chu, Henry S.; Jones, Warren F.; Lacy, Jeffrey M.; Thinnes, Gary L.
2013-01-01
Composite armor panels are disclosed. Each panel comprises a plurality of functional layers comprising at least an outermost layer, an intermediate layer and a base layer. An armor system incorporating armor panels is also disclosed. Armor panels are mounted on carriages movably secured to adjacent rails of a rail system. Each panel may be moved on its associated rail and into partially overlapping relationship with another panel on an adjacent rail for protection against incoming ordnance from various directions. The rail system may be configured as at least a part of a ring, and be disposed about a hatch on a vehicle. Vehicles including an armor system are also disclosed.
cDNA encoding a polypeptide including a hevein sequence
Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)
1993-02-16
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a pu GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.
Composite material including nanocrystals and methods of making
Bawendi, Moungi G.; Sundar, Vikram C.
2010-04-06
Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.
Composite material including nanocrystals and methods of making
Bawendi, Moungi G. (Boston, MA); Sundar, Vikram C. (New York, NY)
2008-02-05
Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties
Arnold, Jonathan
for Senior Signature (minimum gift to Senior Signature required to be included on Class of 2015 is required to be included on the Class of 2015 plaque) I am proud to support the Georgia Fund SENIOR myID Email Name as it should appear on Senior Signature Class Plaque (maximum 25 spaces) VISA
Community Assessment Tool for Public Health Emergencies Including Pandemic Influenza
ORAU's Oak Ridge Institute for Science Education (HCTT-CHE)
2011-04-14
The Community Assessment Tool (CAT) for Public Health Emergencies Including Pandemic Influenza (hereafter referred to as the CAT) was developed as a result of feedback received from several communities. These communities participated in workshops focused on influenza pandemic planning and response. The 2008 through 2011 workshops were sponsored by the Centers for Disease Control and Prevention (CDC). Feedback during those workshops indicated the need for a tool that a community can use to assess its readiness for a disaster - readiness from a total healthcare perspective, not just hospitals, but the whole healthcare system. The CAT intends to do just that - help strengthen existing preparedness plans by allowing the healthcare system and other agencies to work together during an influenza pandemic. It helps reveal each core agency partners (sectors) capabilities and resources, and highlights cases of the same vendors being used for resource supplies (e.g., personal protective equipment [PPE] and oxygen) by the partners (e.g., public health departments, clinics, or hospitals). The CAT also addresses gaps in the community's capabilities or potential shortages in resources. This tool has been reviewed by a variety of key subject matter experts from federal, state, and local agencies and organizations. It also has been piloted with various communities that consist of different population sizes, to include large urban to small rural communities.
Including the Effects of Electronic Excitations and Electron-Phonon Coupling in Cascade Simulations
Duffy, Dorothy |
2008-07-01
Radiation damage has traditionally been modeled using cascade simulations however such simulations generally neglect the effects of electron-ion interactions, which may be significant in high energy cascades. A model has been developed which includes the effects of electronic stopping and electron-phonon coupling in Molecular Dynamics simulations by means of an inhomogeneous Langevin thermostat. The energy lost by the atoms to electronic excitations is gained by the electronic system and the energy evolution of the electronic system is modeled by the heat diffusion equation. Energy is exchanged between the electronic system and the atoms in the Molecular Dynamics simulation by means of a Langevin thermostat, the temperature of which is the local electronic temperature. The model is applied to a 10 keV cascade simulation for Fe. (authors)
The Influence of Social Movements on Space Astronomy Policy
Harrisa, Hannah E
2014-01-01
Public engagement (PE) initiatives can lead to a long term public support of science. However most of the real impact of PE initiatives within the context of long-term science policy is not completely understood. An examination of the National Aeronautics and Space Administration's (NASA) Hubble Space Telescope, James Webb Space Telescope, and International Sun-Earth Explorer 3 reveal how large grassroots movements led by citizen scientists and space aficionados can have profound effects on public policy. We explore the role and relevance of public grassroots movements in the policy of space astronomy initiatives, present some recent cases which illustrate policy decisions involving broader interest groups, and consider new avenues of PE including crowdfunding and crowdsourcing.
Information Outage Probability of Orthogonal Space-Time Block Codes over Hoyt Distributed
Rontogiannis, Athanasios A.
Information Outage Probability of Orthogonal Space-Time Block Codes over Hoyt Distributed Fading,tronto,mathio} @space.noa.gr Abstract- In this paper the information outage probabil- ity (IOP) of orthogonal space telecommunications applications. For instance, in [4] this model has been used in outage analysis of cellular mobile
A 4D hyperspherical interpretation of q-space A. Pasha Hosseinbor a,
Chung, Moo K.
interpretation of q-space by projecting it onto a hypersphere and subsequently modeling the q-space signal via 4D-space indices and numerically estimate the diffusion orientation distribution function (dODF). We also derive displacement during the diffusion time. The EAP can characterize complex neural architecture, such as crossing
Plasmon modes of metallic nanowires including quantum nonlocal effects
Moradi, Afshin
2015-03-15
The properties of electrostatic surface and bulk plasmon modes of cylindrical metallic nanowires are investigated, using the quantum hydrodynamic theory of plasmon excitation which allows an analytical study of quantum tunneling effects through the Bohm potential term. New dispersion relations are obtained for each type of mode and their differences with previous treatments based on the standard hydrodynamic model are analyzed in detail. Numerical results show by considering the quantum effects, as the value of wave number increases, the surface modes are slightly red-shifted first and then blue-shifted while the bulk modes are blue-shifted.
Rhoads, James
SES 405 Systems Engineering for Space Missions Instructors: Team teaching engineering with an emphasis on the following topics: the systems engineering process objectives include: 1) to develop a systems engineering perspective of how space
Including nuclear degrees of freedom in a lattice Hamiltonian
Peter L. Hagelstein; Irfan U. Chaudhary
2012-04-08
Motivated by many observations of anomalies in condensed matter systems, we consider a new fundamental Hamiltonian in which condensed matter and nuclear systems are described initially on the same footing. Since it may be possible that the lattice will respond to the mass change associated with a excited nuclear state, we adopt a relativistic description throughout based on a many-particle Dirac formalism. This approach has not been used in the past, perhaps due to the difficulty in separating the center of mass and relative degrees of freedom of the nuclear system, or perhaps due to an absence of applications for such a model. In response to some recent ideas about how to think about the center of mass and relative separation, we obtained from the Dirac model a new fundamental Hamiltonian in which the lattice couples to different states within the composite nuclei within the lattice. In this description the different nuclear states have different mass energies and kinetic energies, as we had expected. In addition there appear new terms which provide for nuclear excitation as a result of coupling to the composite momentum. This new effect comes about because of changes in the composite nuclear state as a result of the dynamical Lorentz boost in the lattice.
Confronting GRB prompt emission with a model for subphotospheric dissipation
Ahlgren, Björn; Nymark, Tanja; Ryde, Felix; Pe'er, Asaf
2015-01-01
The origin of the prompt emission in gamma-ray bursts (GRBs) is still an unsolved problem and several different mechanisms have been suggested. Here we fit Fermi GRB data with a photospheric emission model which includes dissipation of the jet kinetic energy below the photosphere. The resulting spectra are dominated by Comptonization and contain no significant contribution from synchrotron radiation. In order to fit to the data we span a physically motivated part of the model's parameter space and create DREAM ($\\textit{Dissipation with Radiative Emission as A table Model}$), a table model for ${\\scriptsize XSPEC}$. We show that this model can describe different kinds of GRB spectra, including GRB 090618, representing a typical Band function spectrum, and GRB 100724B, illustrating a double peaked spectrum, previously fitted with a Band+blackbody model, suggesting they originate from a similar scenario. We suggest that the main difference between these two types of bursts is the optical depth at the dissipatio...
Transition from ultrafast laser photo-electron emission to space charge limited current in a 1D gap
Yangjie Liu; L. K. Ang
2014-08-21
A one-dimensional (1D) model has been constructed to study the transition of the time-dependent ultrafast laser photo-electron emission from a flat metallic surface to the space charge limited (SCL) current, including the effect of non-equilibrium laser heating on metals at the ultrafast time scale. At a high laser field, it is found that the space charge effect cannot be ignored and the SCL current emission is reached at a lower value predicted by a short pulse SCL current model that assumed a time-independent emission process. The threshold of the laser field to reach the SCL regime is determined over a wide range of operating parameters. The calculated results agree well with particle-in-cell (PIC) simulation. It is found that the space charge effect is more important for materials with lower work function like tungsten (4.4 eV) as compared to gold (5.4 eV). However for a flat surface, both materials will reach the space charge limited regime at the sufficiently high laser field such as $>$ 5 GV/m with a laser pulse length of tens to one hundred femtoseconds.
Entropic Gravity in Rindler Space
Edi Halyo
2011-04-13
We show that Rindler horizons are entropic screens and gravity is an entropic force in Rindler space by deriving the Verlinde entropy formula from the focusing of light due to a mass close to the horizon. Consequently, gravity is also entropic in the near horizon regions of Schwarzschild and de Sitter space-times. In different limits, the entropic nature of gravity in Rindler space leads to the Bekenstein entropy bound and the uncertainty principle.
Electra-optical device including a nitrogen containing electrolyte
Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.
1995-10-03
Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C.
Including stereoscopic information in the reconstruction of coronal magnetic fields
T. Wiegelmann; T. Neukirch
2008-01-23
We present a method to include stereoscopic information about the three dimensional structure of flux tubes into the reconstruction of the coronal magnetic field. Due to the low plasma beta in the corona we can assume a force free magnetic field, with the current density parallel to the magnetic field lines. Here we use linear force free fields for simplicity. The method uses the line of sight magnetic field on the photosphere as observational input. The value of $\\alpha$ is determined iteratively by comparing the reconstructed magnetic field with the observed structures. The final configuration is the optimal linear force solution constrained by both the photospheric magnetogram and the observed plasma structures. As an example we apply our method to SOHO MDI/EIT data of an active region. In the future it is planned to apply the method to analyse data from the SECCHI instrument aboard the STEREO mission.
Electra-optical device including a nitrogen containing electrolyte
Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)
1995-01-01
Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.
Copper laser modulator driving assembly including a magnetic compression laser
Cook, Edward G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Ball, Don G. (Livermore, CA)
1994-01-01
A laser modulator (10) having a low voltage assembly (12) with a plurality of low voltage modules (14) with first stage magnetic compression circuits (20) and magnetic assist inductors (28) with a common core (91), such that timing of the first stage magnetic switches (30b) is thereby synchronized. A bipolar second stage of magnetic compression (42) is coupled to the low voltage modules (14) through a bipolar pulse transformer (36) and a third stage of magnetic compression (44) is directly coupled to the second stage of magnetic compression (42). The low voltage assembly (12) includes pressurized boxes (117) for improving voltage standoff between the primary winding assemblies (34) and secondary winding (40) contained therein.
Pulse transmission transmitter including a higher order time derivate filter
Dress, Jr., William B.; Smith, Stephen F.
2003-09-23
Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission transmitter includes: a clock; a pseudorandom polynomial generator coupled to the clock, the pseudorandom polynomial generator having a polynomial load input; an exclusive-OR gate coupled to the pseudorandom polynomial generator, the exclusive-OR gate having a serial data input; a programmable delay circuit coupled to both the clock and the exclusive-OR gate; a pulse generator coupled to the programmable delay circuit; and a higher order time derivative filter coupled to the pulse generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
Actuator assembly including a single axis of rotation locking member
Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.
2009-12-08
An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.
Hydraulic engine valve actuation system including independent feedback control
Marriott, Craig D
2013-06-04
A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.
Fuel cell repeater unit including frame and separator plate
Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F
2013-11-05
An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.
Glass composition and process for sealing void spaces in electrochemical devices
Meinhardt, Kerry D. (Richland, WA); Kirby, Brent W. (Kennewick, WA)
2012-05-01
A glass foaming material and method are disclosed for filling void spaces in electrochemical devices. The glass material includes a reagent that foams at a temperature above the softening point of the glass. Expansion of the glass fills void spaces including by-pass and tolerance channels of electrochemical devices. In addition, cassette to cassette seals can also be formed while channels and other void spaces are filled, reducing the number of processing steps needed.
Space Instrument Realization (ISR-5)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
design, and fabrication support to all aspects of mechanical and electronic assemblies Mechanical analysis with a focus on space environment-radiation, thermal, vibration...
Portfolio Manager Space Type Discussion
Broader source: Energy.gov [DOE]
This presentation, given through the DOE's Technical Assistance Program (TAP), provides a discussion about space/type in regards to the Portfolio Manager Initiative.
Radioisotopes: Energy for Space Exploration
Carpenter, Bob; Green, James; Bechtel, Ryan
2011-01-01
Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration.
Flat space physics from holography
Bousso, Raphael
2009-01-01
thermodynamics in black hole physics. Phys. Rev. D 9, 3292 (LBNL-53861 Flat space physics from holography RaphaelBousso Center for Theoretical Physics, Department of Physics
Linear Programming and Kantorovich Spaces
S. Kutateladze
2009-05-08
This is a brief overview of the life of Leonid Kantorovich (1912--1986) and his contribution to the fields of linear programming and ordered vector spaces.
Space Instrument Realization (ISR-5)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and fabrication (NASA-certified) assembly Parts inventory database based on "pcMRP" software package Quality assurance System test and integration Space systems engineering...
Radioisotopes: Energy for Space Exploration
Carpenter, Bob; Green, James; Bechtel, Ryan
2013-05-29
Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration.
Portfolio Manager Space Type Discussion
Broader source: Energy.gov [DOE]
This presentation, given through the DOE's Technical Assitance Program (TAP), provides a discussion about space/type in regards to the Portfolio Manager Initiative.
ASAP: An Extensible Platform for State Space Analysis
Evangelista, Sami
model checking) is one of the main approaches to model- based verification of concurrent systems is the state ex- plosion problem, i.e., that state spaces of systems may have a large number of reachable states, meaning that they are too large to be handled with the avail- able computing power (CPU speed
The geometry of Moduli Spaces of pointed curves, the tensor ...
theories with different target spaces (the so–called A–model and B–model) lead to the same ...... system of non–linear differential equations for this generating function. Using a ... for its inverse power series which can be solved explicitly. This fact will be used ...... First and foremost I wish to thank my advisor Prof. Yu. I. Manin ...
Pedestrian Simulation using Geometric Reasoning in Velocity Space
North Carolina at Chapel Hill, University of
Pedestrian Simulation using Geometric Reasoning in Velocity Space Sean Curtis and Dinesh Manocha://gamma.cs.unc.edu/PEDS Abstract. We present a novel pedestrian representation based on a new model of pedestrian motion coupled with a geometric optimization method. The model of pedestrian motion seeks to capture the underlying physiological
Building America Webinar: Retrofitting Central Space Conditioning...
Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings - Control strategies to improve hydronic space heating performance Building America Webinar:...
National Aeronautics and Space Administration space launch system
Rathbun, Julie A.
into the solar system finding potential resources, develop- ing new technologies, and discovering answersNational Aeronautics and Space Administration NASAfacts space launch system Building America's Next to reach further into our solar system. However, if needed, SLS will support backup trans- portation
Nonequilibrium chiral fluid dynamics including dissipation and noise
Nahrgang, Marlene; Herold, Christoph; Bleicher, Marcus; Leupold, Stefan
2011-08-15
We present a consistent theoretical approach for the study of nonequilibrium effects in chiral fluid dynamics within the framework of the linear {sigma} model with constituent quarks. Treating the quarks as an equilibrated heat bath, we use the influence functional formalism to obtain a Langevin equation for the {sigma} field. This allows us to calculate the explicit form of the damping coefficient and the noise correlators. For a self-consistent derivation of both the dynamics of the {sigma} field and the quark fluid, we have to employ the 2PI (two-particle irreducible) effective action formalism. The energy dissipation from the field to the fluid is treated in the exact formalism of the 2PI effective action where a conserved energy-momentum tensor can be constructed. We derive its form and comment on approximations generating additional terms in the energy-momentum balance of the entire system.
Final Report for "Design calculations for high-space-charge beam-to-RF conversion".
David N Smithe
2008-10-17
Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference “cut-cell” boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimum energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT’s, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of “stair-step” geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications, radar and other defense applications.
Crandall, David Lynn
2011-08-16
Sighting optics include a front sight and a rear sight positioned in a spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus for a user images of the front sight and the target.
Stakeholder Value Network Analysis for Space-Based Earth Observations
de Weck, Olivier L.
of a comprehensive qualitative and quantitative stakeholder model. The qualitative model includes a rigorous: ................................................................................................................. Edward F. Crawley Professor of Aeronautics and Astronautics and Engineering Systems Thesis Supervisor. The quantitative model includes a method for assigning numeric scores to each value flow; the calculation of 1880
Environmental Effects on Real-Space and Redshift-Space Galaxy Clustering
Ying Zu; Zheng Zheng; G. T. Zhu; Y. P. Jing
2008-06-13
Galaxy formation inside dark matter halos, as well as the halo formation itself, can be affected by large-scale environments. Evaluating the imprints of environmental effects on galaxy clustering is crucial for precise cosmological constraints with data from galaxy redshift surveys. We investigate such an environmental impact on both real-space and redshift-space galaxy clustering statistics using a semi-analytic model derived from the Millennium Simulation. We compare clustering statistics from original SAM galaxy samples and shuffled ones with environmental influence on galaxy properties eliminated. Among the luminosity-threshold samples examined, the one with the lowest threshold luminosity (~0.2L_*) is affected by environmental effects the most, which has a ~10% decrease in the real-space two-point correlation function (2PCF) after shuffling. By decomposing the 2PCF into five different components based on the source of pairs, we show that the change in the 2PCF can be explained by the age and richness dependence of halo clustering. The 2PCFs in redshift space are found to change in a similar manner after shuffling. If the environmental effects are neglected, halo occupation distribution modeling of the real-space and redshift-space clustering may have a less than 6.5% systematic uncertainty in constraining beta from the most affected SAM sample and have substantially smaller uncertainties from the other, more luminous samples. We argue that the effect could be even smaller in reality. In the Appendix, we present a method to decompose the 2PCF, which can be applied to measure the two-point auto-correlation functions of galaxy sub-samples in a volume-limited galaxy sample and their two-point cross-correlation functions in a single run utilizing only one random catalog.
C -parameter distribution at N 3 LL ' including power corrections
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.
2015-05-01
We compute the e?e? C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(?3s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments ?n. To eliminate an O(?QCD) renormalon ambiguity in the soft function, we switchmore »from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter ?1. We show how to simultaneously account for running effects in ?1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for ?s(mZ) and ?1, the perturbative uncertainty in our cross section is ? 2.5% at Q=mZ.« less
cDNA encoding a polypeptide including a hevein sequence
Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)
1999-05-04
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.
cDNA encoding a polypeptide including a hevein sequence
Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.
1999-05-04
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 12 figs.
C -parameter distribution at N 3 LL ' including power corrections
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.
2015-05-01
We compute the e?e? C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(?3s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments ?n. To eliminate an O(?QCD) renormalon ambiguity in the soft function, we switch from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter ?1. We show how to simultaneously account for running effects in ?1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for ?s(mZ) and ?1, the perturbative uncertainty in our cross section is ? 2.5% at Q=mZ.
Extractant composition including crown ether and calixarene extractants
Meikrantz, David H. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Riddle, Catherine L. (Idaho Falls, ID); Law, Jack D. (Pocalello, ID); Peterman, Dean R. (Idaho Falls, ID); Mincher, Bruce J. (Idaho Falls, ID); McGrath, Christopher A. (Blackfoot, ID); Baker, John D. (Blackfoot, ID)
2009-04-28
An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.
Interim performance criteria for photovoltaic energy systems. [Glossary included
DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.
1980-12-01
This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.
cDNA encoding a polypeptide including a hevein sequence
Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.
1995-03-21
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 11 figures.
CDNA encoding a polypeptide including a hevein sequence
Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)
1995-03-21
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.
Finite Linear Spaces, Plane Geometries, Hilbert spaces and Finite Phase Space
M. Revzen; A. Mann
2015-08-03
Finite plane geometry is associated with finite dimensional Hilbert space. The association allows mapping of q-number Hilbert space observables to the c-number formalism of quantum mechanics in phase space. The mapped entities reflect geometrically based line-point interrelation. Particularly simple formulas are involved when use is made of mutually unbiased bases (MUB) representations for the Hilbert space entries. The geometry specifies a point-line interrelation. Thus underpinning d-dimensional Hilbert space operators (resp. states) with geometrical points leads to operators termed "line operators" underpinned by the geometrical lines. These "line operators", $\\hat{L}_j;$ (j designates the line) form a complete orthogonal basis for Hilbert space operators. The representation of Hilbert space operators in terms of these operators form the phase space representation of the d-dimensional Hilbert space. The "line operators" (resp. "line states") are studied in detail. The paper aims at self sufficiency and to this end all relevant notions are explained herewith.
Coherent State on SUq(2) Homogeneous Space
N. Aizawa; R. Chakrabarti
2009-06-30
The generalized coherent states for quantum groups introduced by Jurco and Stovicek are studied for the simplest example SU_q(2) in full detail. It is shown that the normalized SU_q(2) coherent states enjoy the property of completeness, and allow a resolution of the unity. This feature is expected to play a key role in application of these coherent states in physical models. The homogeneous space of SU_q(2), i.e. the q-sphere of Podles, is reproduced in complex coordinates by using the coherent states. Differential calculus in the complex form on the homogeneous space is developed. High spin limit of the SU_q(2) coherent states is also discussed.
Space Science : Atmosphere Greenhouse Effect
Johnson, Robert E.
Space Science : Atmosphere Greenhouse Effect Part-5a Solar + Earth Spectrum IR Absorbers Grey Atmosphere Greenhouse Effect #12;Radiation: Solar and Earth Surface B"(T) Planck Ideal Emission Integrate and it emits Note: heat balance Fvis( = Fout = Te 4 z #12;(simple Greenhouse cont.) 0 1 2 3 4 Ground Space Top
National Aeronautics and Space Administration
Rathbun, Julie A.
commercial and international partner transportation services to the International Space Station. Designed Administrator Initial Lift Capability 70 Tonnes (t) More than Double Any Operational Vehicle Today Crew orbit, continuing America's human exploration of space. Evolved Lift Capability 130t More than Any Past
Space Telescope Programs Hubble Observatory
Colorado at Boulder, University of
Certifications required for all raw materials Â Shelf Life (Polymerics) materials date controlled by QA Â· DesignsSpace Telescope Programs Hubble Observatory HST-COS FUV PER 11/8/00 FUV Detector System Materials;Space Telescope Programs Hubble Observatory HST-COS FUV PER 11/8/00 Materials and Processes Â· Materials
National Aeronautics and Space Administration
Rathbun, Julie A.
National Aeronautics and Space Administration The Vision for Space Exploration February 2004 #12 #12;Message from the NASA Administrator Dear Reader, With last year's budget, NASA released a new of careful deliberations within the Administration. This plan does not undertake exploration merely
Nonlinear classification of Banach spaces
Randrianarivony, Nirina Lovasoa
2005-11-01
We study the geometric classi?cation of Banach spaces via Lipschitz, uniformly continuous, and coarse mappings. We prove that a Banach space which is uniformly homeomorphic to a linear quotient of lp is itself a linear quotient of lp when p<2...
Nucleosynthesis in Massive Stars - Including All Stable Isotopes
A. Heger; R. D. Hoffman; T. Rauscher; S. E. Woosley
2000-06-25
We present the first calculations to follow the evolution of all stable isotopes (and their abundant radioactive progenitors) in a finely zoned stellar model computed from the onset of central hydrogen burning through explosion as a Type II supernova. The calculations were performed for a 15 solar mass Pop I star using the most recently available set of experimental and theoretical nuclear data, revised opacity tables, and taking into account mass loss due to stellar winds. We find the approximately solar production of proton-rich isotopes above a mass number of A=120 due to the gamma-process. We also find a weak s-process, which along with the gamma-process and explosive helium and carbon burning, produces nearly solar abundances of almost all nuclei from A=60 to 85. A few modifications of the abundances of heavy nuclei above mass 90 by the s-process are also noted and discussed. New weak rates lead to significant alteration of the properties of the presupernova core.
HOW MIGHT INDUSTRY GOVERNANCE BE BROADENED TO INCLUDE NONPROLIFERATION
Hund, Gretchen; Seward, Amy M.
2009-10-06
Broadening industry governance to support nonproliferation could provide significant new leverage in preventing the spread/diversion of nuclear, radiological, or dual-use material or technology that could be used in making a nuclear or radiological weapon. Industry is defined broadly to include 1) the nuclear industry, 2) dual-use industries, and 3) radioactive source manufacturers and selected radioactive source-user industries worldwide. This paper describes how industry can be an important first line of defense in detecting and thwarting proliferation, such as an illicit trade network or an insider theft case, by complementing and strengthening existing governmental efforts. For example, the dual-use industry can play a critical role by providing export, import, or security control information that would allow a government or the International Atomic Energy Agency (IAEA) to integrate this information with safeguards, export, import, and physical protection information it has to create a more complete picture of the potential for proliferation. Because industry is closest to users of the goods and technology that could be illicitly diverted throughout the supply chain, industry information can potentially be more timely and accurate than other sources of information. Industry is in an ideal position to help ensure that such illicit activities are detected. This role could be performed more effectively if companies worked together within a particular industry to promote nonproliferation by implementing an industry-wide self-regulation program. Performance measures could be used to ensure their materials and technologies are secure throughout the supply chain and that customers are legitimately using and/or maintaining oversight of these items. Nonproliferation is the overarching driver that industry needs to consider in adopting and implementing a self-regulation approach. A few foreign companies have begun such an approach to date; it is believed that, ultimately, broad engagement of global industry leaders in self regulation is needed to result in the greatest nonproliferation benefit.
Community Assessment Tool for Public Health Emergencies Including Pandemic Influenza
HCTT-CHE
2011-04-14
The Community Assessment Tool (CAT) for Public Health Emergencies Including Pandemic Influenza (hereafter referred to as the CAT) was developed as a result of feedback received from several communities. These communities participated in workshops focused on influenza pandemic planning and response. The 2008 through 2011 workshops were sponsored by the Centers for Disease Control and Prevention (CDC). Feedback during those workshops indicated the need for a tool that a community can use to assess its readiness for a disaster—readiness from a total healthcare perspective, not just hospitals, but the whole healthcare system. The CAT intends to do just that—help strengthen existing preparedness plans by allowing the healthcare system and other agencies to work together during an influenza pandemic. It helps reveal each core agency partners' (sectors) capabilities and resources, and highlights cases of the same vendors being used for resource supplies (e.g., personal protective equipment [PPE] and oxygen) by the partners (e.g., public health departments, clinics, or hospitals). The CAT also addresses gaps in the community's capabilities or potential shortages in resources. While the purpose of the CAT is to further prepare the community for an influenza pandemic, its framework is an extension of the traditional all-hazards approach to planning and preparedness. As such, the information gathered by the tool is useful in preparation for most widespread public health emergencies. This tool is primarily intended for use by those involved in healthcare emergency preparedness (e.g., community planners, community disaster preparedness coordinators, 9-1-1 directors, hospital emergency preparedness coordinators). It is divided into sections based on the core agency partners, which may be involved in the community's influenza pandemic influenza response.
Staff, Jan E.; Niebergal, Brian P.; Ouyed, Rachid; Pudritz, Ralph E.; Cai, Kai
2010-10-20
We perform state-of-the-art, three-dimensional, time-dependent simulations of magnetized disk winds, carried out to simulation scales of 60 AU, in order to confront optical Hubble Space Telescope observations of protostellar jets. We 'observe' the optical forbidden line emission produced by shocks within our simulated jets and compare these with actual observations. Our simulations reproduce the rich structure of time-varying jets, including jet rotation far from the source, an inner (up to 400 km s{sup -1}) and outer (less than 100 km s{sup -1}) component of the jet, and jet widths of up to 20 AU in agreement with observed jets. These simulations when compared with the data are able to constrain disk wind models. In particular, models featuring a disk magnetic field with a modest radial spatial variation across the disk are favored.
Oscillators in a (2+1)-dimensional noncommutative space
Vega, F.
2014-03-15
We study the Harmonic and Dirac Oscillator problem extended to a three-dimensional noncommutative space where the noncommutativity is induced by the shift of the dynamical variables with generators of SL(2,R) in a unitary irreducible representation considered in Falomir et al. [Phys. Rev. D 86, 105035 (2012)]. This redefinition is interpreted in the framework of the Levi's decomposition of the deformed algebra satisfied by the noncommutative variables. The Hilbert space gets the structure of a direct product with the representation space as a factor, where there exist operators which realize the algebra of Lorentz transformations. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters, finding no constraints between coordinates and momenta noncommutativity parameters. Since the representation space of the unitary irreducible representations SL(2,R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension.
Synergy in a town center : juxtaposition of artifact, public, and educational space
Sartorelli, Pamela Wilson
1994-01-01
This thesis proposes a new model for public and educational space in a synergistic and physical relationship that encourages interaction and change. This model provides an arena for redefinition and mutual transformation ...
Derek P. Horkel; Stephen R. Sharpe
2015-05-09
In a recent paper we used chiral perturbation theory to determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions at non-zero lattice spacing with non-degenerate up and down quarks. Here we extend this work to include the effects of electromagnetism, so that it is applicable to recent simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the phase diagram is unaffected by the inclusion of electromagnetism---the only effect is to raise the charged pion masses. For maximally twisted fermions, we previously took the twist and isospin-breaking directions to be different, in order that the fermion determinant is real and positive. However, this is incompatible with electromagnetic gauge invariance, and so here we take the twist to be in the isospin-breaking direction, following the RM123 collaboration. We map out the phase diagram in this case, which has not previously been studied. The results differ from those obtained with different twist and isospin directions. One practical issue when including electromagnetism is that the critical masses for up and down quarks differ. We show that one of the criteria suggested to determine these critical masses does not work, and propose an alternative.
Derek P. Horkel; Stephen R. Sharpe
2015-09-25
In a recent paper we used chiral perturbation theory to determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions at non-zero lattice spacing with non-degenerate up and down quarks. Here we extend this work to include the effects of electromagnetism, so that it is applicable to recent simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the phase diagram is unaffected by the inclusion of electromagnetism---the only effect is to raise the charged pion masses. For maximally twisted fermions, we previously took the twist and isospin-breaking directions to be different, in order that the fermion determinant is real and positive. However, this is incompatible with electromagnetic gauge invariance, and so here we take the twist to be in the isospin-breaking direction, following the RM123 collaboration. We map out the phase diagram in this case, which has not previously been studied. The results differ from those obtained with different twist and isospin directions. One practical issue when including electromagnetism is that the critical masses for up and down quarks differ. We show that one of the criteria suggested to determine these critical masses does not work, and propose an alternative.
California at San Diego, University of
DG5000 is a multifunctional generator that combines many functions in one, including Function Generator, Arbitrary Waveform Generator, IQ Baseband Source/IQ IF Source, Frequency Hopping Source (optional) and Pattern Generator (optional). It provides single and dual-channel models. The dual-channel model, with two
Common one-parameter models In this section we will explore common one-parameter models, including
Reich, Brian J.
(theta,likelihood,lty=3)} if(n>0){lines(theta,posterior,lty=1,lwd=2)} legend("topright",c("prior","likelihood","posterior"), lty=c(2,3,1),lwd=c(1,1,2),inset=0.01,cex=.5) } Code is online at http://www4.stat.ncsu.edu/reich/ST740
On Minkowski space and finite geometry
Marko Orel
2014-10-08
The main aim of this interdisciplinary paper is to characterize all maps on finite Minkowski space of arbitrary dimension $n$ that map pairs of distinct light-like events into pairs of distinct light-like events. Neither bijectivity of maps nor preservation of light-likeness in the opposite direction, i.e. from codomain to domain, is assumed. We succeed in in many cases, which include the one with $n$ divisible by 4 and the one with $n$ odd and $\\geq 9$, by showing that both bijectivity of maps and the preservation of light-likeness in the opposite direction is obtained automatically. In general, the problem of whether there exist non-bijective mappings that map pairs od distinct light-like events into pairs of distinct light-like events is shown to be related to one of the central problems in finite geometry, namely to existence of ovoids in orthogonal polar space. This problem is still unsolved in general despite a huge amount of research done in this area in the last few decades. The proofs are based on the study of a core of an affine polar graph, which yields results that are closely related to the ones obtained previously by Cameron and Kazanidis for the point graph of a polar space.