Powered by Deep Web Technologies
Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Cost and Performance Assumptions for Modeling Electricity Generation Technologies  

Science Conference Proceedings (OSTI)

The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

2010-11-01T23:59:59.000Z

2

Cost and Performance Assumptions for Modeling Electricity Generation Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost and Performance Cost and Performance Assumptions for Modeling Electricity Generation Technologies Rick Tidball, Joel Bluestein, Nick Rodriguez, and Stu Knoke ICF International Fairfax, Virginia Subcontract Report NREL/SR-6A20-48595 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Cost and Performance Assumptions for Modeling Electricity Generation Technologies Rick Tidball, Joel Bluestein, Nick Rodriguez, and Stu Knoke ICF International Fairfax, Virginia NREL Technical Monitor: Jordan Macknick

3

Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind-to-Hydrogen Cost Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Google Bookmark Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Delicious Rank Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on

4

Technology commercialization cost model and component case study. Final report  

DOE Green Energy (OSTI)

Fuel cells seem poised to emerge as a clean, efficient, and cost competitive source of fossil fuel based electric power and thermal energy. Sponsors of fuel cell technology development need to determine the validity and the attractiveness of a technology to the market in terms of meeting requirements and providing value which exceeds the total cost of ownership. Sponsors of fuel cell development have addressed this issue by requiring the developers to prepare projections of the future production cost of their fuel cells in commercial quantities. These projected costs, together with performance and life projections, provide a preliminary measure of the total value and cost of the product to the customer. Booz-Allen & Hamilton Inc. and Michael A. Cobb & Company have been retained in several assignments over the years to audit these cost projections. The audits have gone well beyond a simple review of the numbers. They have probed the underlying technical and financial assumptions, the sources of data on material and equipment costs, and explored issues such as the realistic manufacturing yields which can be expected in various processes. Based on the experience gained from these audits, the DOE gave Booz-Allen and Michael A. Cobb & company the task to develop a criteria to be used in the execution of future fuel cell manufacturing cost studies. It was thought that such a criteria would make it easier to execute such studies in the future as well as to cause such studies to be more understandable and comparable.

Not Available

1991-12-01T23:59:59.000Z

5

Technology commercialization cost model and component case study  

DOE Green Energy (OSTI)

Fuel cells seem poised to emerge as a clean, efficient, and cost competitive source of fossil fuel based electric power and thermal energy. Sponsors of fuel cell technology development need to determine the validity and the attractiveness of a technology to the market in terms of meeting requirements and providing value which exceeds the total cost of ownership. Sponsors of fuel cell development have addressed this issue by requiring the developers to prepare projections of the future production cost of their fuel cells in commercial quantities. These projected costs, together with performance and life projections, provide a preliminary measure of the total value and cost of the product to the customer. Booz-Allen Hamilton Inc. and Michael A. Cobb Company have been retained in several assignments over the years to audit these cost projections. The audits have gone well beyond a simple review of the numbers. They have probed the underlying technical and financial assumptions, the sources of data on material and equipment costs, and explored issues such as the realistic manufacturing yields which can be expected in various processes. Based on the experience gained from these audits, the DOE gave Booz-Allen and Michael A. Cobb company the task to develop a criteria to be used in the execution of future fuel cell manufacturing cost studies. It was thought that such a criteria would make it easier to execute such studies in the future as well as to cause such studies to be more understandable and comparable.

Not Available

1991-12-01T23:59:59.000Z

6

Geothermal Electricity Technologies Evaluation Model DOE Tool for Assessing Impact of Research on Cost of Power  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) has developed a spreadsheet model to provide insight as to how its research activities can impact of cost of producing power from geothermal energy. This model is referred to as GETEM, which stands for Geothermal Electricity Technologies Evaluation Model. Based on user input, the model develops estimates of costs associated with exploration, well field development, and power plant construction that are used along with estimated operating costs to provide a predicted power generation cost. The model allows the user to evaluate how reductions in cost, or increases in performance or productivity will impact the predicted power generation cost. This feature provides a means of determining how specific technology improvements can impact generation costs, and as such assists DOE in both prioritizing research areas and identifying where research is needed.

Greg Mines

2008-01-01T23:59:59.000Z

7

Performance and Cost Model for Solar Energy Technologies in Support of the Systems-Driven Approach  

DOE Green Energy (OSTI)

A comprehensive solar technology systems analysis model is being developed to support the implementation of the systems driven approach to program planning for the U.S. Department of Energy's Solar Energy Technologies Program (SETP). Use of this systems model, together with technology and cost benchmarking, market penetration analysis, and other relevant considerations, will support the development of program priorities and direction, and the subsequent investment needed to support R&D activities.

Mehos, M.; Mooney, D.

2005-01-01T23:59:59.000Z

8

High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology  

Science Conference Proceedings (OSTI)

This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

Bernacki, Bruce E.

2012-10-05T23:59:59.000Z

9

Program on Technology Innovation: Development of an Integrated Gasification Combined Cycle Performance and Cost Modeling Tool  

Science Conference Proceedings (OSTI)

This report describes the development of an integrated performance and cost model for advanced coal power plant undertaken to enable users to screen technologies prior to engaging in more extensive studies of their preferred choice. Such screening activities generally require utilities to contract with outside engineering firms with access to sophisticated engineering modeling software and experienced staff to perform the studies, thus costing significant time and investment.

2010-12-31T23:59:59.000Z

10

A cost/benefit model for insertion of technological innovation into a total quality management program  

E-Print Network (OSTI)

This study provides economic justification for insertion of technological innovation into a total quality management (TQM) program in a remanufacturing environment. One of the core principles of TQM is continuous improvement. A preferred metric for measuring quality improvement is the cost of quality. Traditionally, comprehensive quality cost reports have regularly been issued in a fixed format to identify opportunities for improvement and provide guidelines for improvement over time. However, current research has shown that continuous improvement is enhanced by a quality cost approach that is much more flexible [1]. This approach is based upon exposure of the cost savings directly related to quality improvement. in many cases a process-level engineer, who may not be trained in quality costing techniques, will be responsible for the economic analysis to justify a quality improvement initiative. Research has shown that most engineers, simply do not have the training or experience to adequately cost justify quality improvement. The results of this study provide process-level engineers with a cost/benefit model template, which can be used to cost justify technological improvement based upon total quality costs.

Ratliff, William L

1997-01-01T23:59:59.000Z

11

Learning and cost reductions for generating technologies in the national energy modeling system (NEMS)  

SciTech Connect

This report describes how Learning-by-Doing (LBD) is implemented endogenously in the National Energy Modeling System (NEMS) for generating plants. LBD is experiential learning that correlates to a generating technology's capacity growth. The annual amount of Learning-by-Doing affects the annual overnight cost reduction. Currently, there is no straightforward way to integrate and make sense of all the diffuse information related to the endogenous learning calculation in NEMS. This paper organizes the relevant information from the NEMS documentation, source code, input files, and output files, in order to make the model's logic more accessible. The end results are shown in three ways: in a simple spreadsheet containing all the parameters related to endogenous learning; by an algorithm that traces how the parameters lead to cost reductions; and by examples showing how AEO 2004 forecasts the reduction of overnight costs for generating technologies over time.

Gumerman, Etan; Marnay, Chris

2004-01-16T23:59:59.000Z

12

Technology and Cost of the Model Year (MY) 2007 Toyota Camry HEV Final Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

2007-09-30T23:59:59.000Z

13

Estimating the Market Penetration of Residential Cool Storage Technology Using Economic Cost Modeling  

E-Print Network (OSTI)

This study estimated the market penetration for residential cool storage technology using economic cost modeling. Residential cool storage units produce and store chill during off-peak periods of the day to be used during times of peak electric power needs. This paper provides projections of unit sales expected in 5-year intervals for the years 1995, 2000, 2005, and 2010, Such projections help to determine the maximum amount o f energy that could be displaced by this technology in the future. This study also found that price incentives offered to households must be varied dramatically by region for residential cool storage systems to be economically competitive relative to conventional systems. Under the most likely scenario, this analysis estimated that residential cool storage units will eventually capture about one-half of the central air conditioning (A/C) market.

Weijo, R. O.; and Brown, D. R.

1988-01-01T23:59:59.000Z

14

Estimating the market penetration of residential cool storage technology using economic cost modeling  

DOE Green Energy (OSTI)

This study estimated the market penetration for residential cool storage technology using economic cost modeling. Residential cool storage units produce and store chill during off-peak periods of the day to be used during times of peak electric power needs. This paper provides projections of unit sales expected in 5-year intervals for the years 1995, 2000, 2005, and 2010. Such projections help to determine the maximum amount of energy that could be displaced by this technology in the future. This study also found that price incentives offered to households must be varied dramatically by region for residential cool storage systems to be economically competitive relative to conventional systems. Under the most likely scenario, this analysis estimated that residential cool storage units will eventually capture about one-half of the central air conditioning (A/C) market. 14 refs., 2 figs., 8 tabs.

Weijo, R.O.; Brown, D.R.

1988-06-01T23:59:59.000Z

15

Geothermal completion technology life cycle cost model (GEOCOM). Volume I. Final report. Volume II. User instruction manual  

DOE Green Energy (OSTI)

Just as with petroleum wells, drilling and completing a geothermal well at minimum original cost may not be the most cost-effective way to exploit the resource. The impacts of the original completion activities on production and costs later in the life of the well must also be considered. In order to evaluate alternate completion and workover technologies, a simple computer model has been developed to compare total life-cycle costs for a geothermal well to total production or injection. Volume I discusses the mechanics of the model and then presents detailed results from its application to different completion and workover questions. Volume II is the user instruction manual.

Anderson, E.R.; Hoessel, W.C.; Mansure, A.J.; McKissen, P.

1982-07-01T23:59:59.000Z

16

Energy information systems (EIS): Technology costs, benefit,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy information systems (EIS): Technology costs, benefit, and best practice uses Title Energy information systems (EIS): Technology costs, benefit, and best practice uses...

17

A cost modeling approach using learning curves to study the evolution of technology  

E-Print Network (OSTI)

The present work looks into the concept of learning curves to decipher the underlying mechanism in cost evolution. The concept is not new and has been used since last seven decades to understand cost walk down in various ...

Kar, Ashish M. (Ashish Mohan)

2007-01-01T23:59:59.000Z

18

Learning and cost reductions for generating technologies in the national energy modeling system (NEMS)  

E-Print Network (OSTI)

other than distributed generation. The cost reductionsWind Solar Thermal Photovoltaic Distributed Generation-Base Distributed Generation-Peak D Vintage PLANT TYPE C

Gumerman, Etan; Marnay, Chris

2004-01-01T23:59:59.000Z

19

Low Wind Speed Technology Phase II: Development of an Operations and Maintenance Cost Model for LWST; Global Energy Concepts  

SciTech Connect

This fact sheet describes a subcontract with Global Energy Concepts to evaluate real-world data on O&M costs and to develop a working model to describe these costs for low wind speed sites.

Not Available

2006-03-01T23:59:59.000Z

20

Learning and cost reductions for generating technologies in the national energy modeling system (NEMS)  

E-Print Network (OSTI)

of the combined cycle gas turbine - an experience curveTechnologies Combustion gas turbine, gas combined- cycle,Integrated Gas CC Gas/Oil Steam Turbine Existing CT Conv CT

Gumerman, Etan; Marnay, Chris

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A cost allocation model for assessing the impact of energy storage technologies upon electric utilities  

Science Conference Proceedings (OSTI)

In order to assist the Division of Energy Storage Systems in the U.S. Department of Energy in prioritizing, developing, and commercializing storage technologies a computer simulation code has been developed by Argonne National Laboratory to assess the ...

R. Giese; L. Holt; R. Scheithauer

1978-12-01T23:59:59.000Z

22

Technology Adoption with Uncertain Future Costs and Quality  

Science Conference Proceedings (OSTI)

In this paper we study the impact of uncertainty about future innovations in quality and costs on consumers' technology adoption decisions. We model the uncertainty in the technology's quality and costs as a Markov process and consider three models of ... Keywords: decision analysis, dynamic programming, sequential

James E. Smith; Canan Ulu

2012-03-01T23:59:59.000Z

23

An Evolutionary Path for Concentrating Thermal Solar Power Technologies: A New Approach for Modeling CSP Power Costs and Potential  

SciTech Connect

Concentrating thermal solar power (CSP) technology is a potentially competitive power generation option, particularly in arid regions where direct sunlight is abundant. We examine the potential role of CSP power plants and their contribution to carbon emissions reduction. The answers to these questions depend on the cost of electricity generated by CSP plants. Although a few studies have projected future CSP costs based on assumptions for technology advancement and the effect of economies of scale and learning curves, few studies have considered the combined effects of intermittency, solar irradiance changes by season, and diurnal and seasonal system load changes. Because the generation of a solar plant varies over a day and by season, the interactions between CSP generators and other generators in the electric system can play an important role in determining costs. In effect, CSP electricity generation cost will depend on the CSP market penetration. This paper examines this relationship and explores possible evolutionary paths for CSP technologies with and without thermal storage.

Zhang, Yabei; Smith, Steven J.

2008-05-08T23:59:59.000Z

24

Biotrans: Cost Optimization Model | Open Energy Information  

Open Energy Info (EERE)

Biotrans: Cost Optimization Model Biotrans: Cost Optimization Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biotrans: Cost Optimization Model Focus Area: Ethanol Topics: Market Analysis Website: www.ecn.nl/units/ps/models-and-tools/biotrans/ Equivalent URI: cleanenergysolutions.org/content/biotrans-cost-optimization-model,http Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation BIOTRANS optimizes the biofuel supply chain allocation by finding the least-cost configuration of resources and trade to meet a specified biofuel demand in the European transportation sector. The user can constrain the optimization by inputting a number of economic and technological assumptions for a specific target year. References Retrieved from

25

External Costs of Energy Technologies Position Statement  

E-Print Network (OSTI)

The American Nuclear Society believes that decisions concerning national energy policy should appropriately take external costs into account. In some energy options, external costs are not included in the cost of the energy produced; instead, they are borne by parties not involved in the original transaction, generally without consent or due compensation. External costs 1 may be related to many factors, including impacts on public health, environmental impacts, degradation of quality of life, degradation of agricultural land, depletion of natural resources, and reduction in security. These costs are incurred at various stages of the life cycle of an energy technology. While some energy technologies may appear to have smaller environmental impacts than others, their external costs may be significant when the complete life cycle costs are taken into account. Particularly, an energy source that is inherently intermittent will require, for applications demanding reliable performance, either a backup energy supply or an energy storage facility, whose external costs are not negligible. On the other hand, practically all the costs to make nuclear power technology safe and secure, including the costs of waste management and disposal, are already incorporated into the cost of electricity generation. 2 Appropriately accounting for external costs should be an essential element in energy policy since in doing so, the final product is compared based on a consistent set of parameters for all technologies, and the resulting mix of energy sources will more appropriately balance the competing economic, environmental, and social needs from energy production and consumption.

unknown authors

2010-01-01T23:59:59.000Z

26

Aerogel commercialization: Technology, markets and costs  

SciTech Connect

Commercialization of aerogels has been slow due to several factors including cost and manufacturability issues. The technology itself is well enough developed as a result of work over the past decade by an international-community of researchers. Several extensive substantial markets appear to exist for aerogels as thermal and sound insulators, if production costs can keep prices in line with competing established materials. The authors discuss here the elements which they have identified as key cost drivers, and they give a prognosis for the evolution of the technology leading to reduced cost aerogel production.

Carlson, G.; Lewis, D.; McKinley, K.; Richardson, J.; Tillotson, T.

1994-10-07T23:59:59.000Z

27

Automotive System Cost Modeling Tool (ASCM)  

E-Print Network (OSTI)

technology vehicles (i.e., diesel, hybrid, and fuel cell) developed for improved fuel economy remains either be done through Argonne National laboratory's hybrid vehicle cost model algorithm (adapted the Tool Can Help Answer · What is the life cycle cost of today's midsize hybrid vehicle? · How does

28

NUCLEAR ENERGY SYSTEM COST MODELING  

Science Conference Proceedings (OSTI)

The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

29

Cost analysis methodology: Photovoltaic Manufacturing Technology Project  

DOE Green Energy (OSTI)

This report describes work done under Phase 1 of the Photovoltaic Manufacturing Technology (PVMaT) Project. PVMaT is a five-year project to support the translation of research and development in PV technology into the marketplace. PVMaT, conceived as a DOE/industry partnership, seeks to advanced PV manufacturing technologies, reduce PV module production costs, increase module performance, and expand US commercial production capacities. Under PVMaT, manufacturers will propose specific manufacturing process improvements that may contribute to the goals of the project, which is to lessen the cost, thus hastening entry into the larger scale, grid-connected applications. Phase 1 of the PVMaT project is to identify obstacles and problems associated with manufacturing processes. This report describes the cost analysis methodology required under Phase 1 that will allow subcontractors to be ranked and evaluated during Phase 2.

Whisnant, R.A. (Research Triangle Inst., Research Triangle Park, NC (United States))

1992-09-01T23:59:59.000Z

30

HTGR Cost Model Users' Manual  

Science Conference Proceedings (OSTI)

The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

A.M. Gandrik

2012-01-01T23:59:59.000Z

31

Cost of Renewable Energy Technology Options | Open Energy Information  

Open Energy Info (EERE)

Cost of Renewable Energy Technology Options Cost of Renewable Energy Technology Options Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Cost of Renewable Energy Technology Options Focus Area: Solar Topics: Opportunity Assessment & Screening Website: www1.eere.energy.gov/tribalenergy/guide/renewable_technologies_costs.h Equivalent URI: cleanenergysolutions.org/content/cost-renewable-energy-technology-opti Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This resource has been extracted and reformatted from the U.S. National Renewable Energy Laboratory's Power Technologies Energy Data Book. The data book is an excellent source of consistent information on renewable energy technology status and future expectations. Cost information is available

32

PRISM 2.0: Regional Energy and Economic Model Development and Initial Application: Phase 2: Electric Sector CO2 Reduction Options to 2050: Dimensions of Technology, Energy Costs, and Environmental Scenarios  

Science Conference Proceedings (OSTI)

EPRI conducted an analysis of electric sector CO2 reduction options to 2050 across a range of scenarios covering dimensions of technology costs and availability, energy costs, and CO2 constraints. Using its U.S. Regional Economy, Greenhouse Gas, and Energy (US-REGEN) model, EPRI calculated the impact of changes in generation portfolio, generation capacity, expenditures, and electricity prices on power sector costs. This analysis estimates different levels of ...

2013-11-06T23:59:59.000Z

33

Energy Technology Cost and Performance Data | Open Energy Information  

Open Energy Info (EERE)

Energy Technology Cost and Performance Data Energy Technology Cost and Performance Data (Redirected from US Department of Energy - Energy Technology Cost and Performance Data) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Technology Cost and Performance Data Agency/Company /Organization: United States Department of Energy Sector: Energy Topics: Resource assessment Resource Type: Dataset Website: www.nrel.gov/analysis/tech_cost_data.html Equivalent URI: cleanenergysolutions.org/content/energy-technology-cost-and-performanc Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation References: Energy Technology Cost and Performance Data: Homepage[1] Logo: Energy Technology Cost and Performance Data This data indicates the range of recent cost estimates for renewable energy

34

Wind Power Technology Status and Performance and Cost Estimates - 2009  

Science Conference Proceedings (OSTI)

This report provides an update on the status and cost of wind power technology based on the Wind Power Technology Status and Performance and Cost Estimates 2008 (EPRI report 1015806). It addresses the status of wind turbine and related technology for both onshore and offshore applications and the performance and cost of onshore wind power plants.

2009-11-20T23:59:59.000Z

35

NREL: Energy Analysis - Energy Technology Cost and Performance Data for  

NLE Websites -- All DOE Office Websites (Extended Search)

Bookmark and Share Bookmark and Share Energy Technology Cost and Performance Data for Distributed Generation Transparent Cost Database Button Recent cost estimates for distributed generation (DG) renewable energy technologies are available across capital costs, operations and maintenance (O&M) costs, and levelized cost of energy (LCOE). Use the tabs below to navigate the charts. The LCOE tab provides a simple calculator for both utility-scale and DG technologies that compares the combination of capital costs, O&M, performance, and fuel costs. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update)

36

Renewable Energy Technology Costs and Drivers | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Technology Costs and Drivers Renewable Energy Technology Costs and Drivers Jump to: navigation, search Tool Summary Name: Renewable Energy Technology Costs and Drivers Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable Energy Topics: Finance, Market analysis, Technology characterizations Resource Type: Publications Website: prod-http-80-800498448.us-east-1.elb.amazonaws.com//w/images/6/63/RE_C Renewable Energy Technology Costs and Drivers Screenshot References: Renewable Energy Technology Costs and Drivers[1] Summary "Provided herein is a preliminary, high-level summary of future and projected cost estimates for 1) Biofuels, 2) Solar (PV & CSP), and 3) Vehicle Batteries. Cost estimates are dependent on various assumptions and

37

Total cost model for making sourcing decisions  

E-Print Network (OSTI)

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

38

Vehicle Technologies Office: Fact #522: June 9, 2008 Costs of...  

NLE Websites -- All DOE Office Websites (Extended Search)

2: June 9, 2008 Costs of Oil Dependence 2008 to someone by E-mail Share Vehicle Technologies Office: Fact 522: June 9, 2008 Costs of Oil Dependence 2008 on Facebook Tweet about...

39

Vehicle Technologies Office: Fact #632: July 19, 2010 The Costs...  

NLE Websites -- All DOE Office Websites (Extended Search)

2: July 19, 2010 The Costs of Oil Dependence to someone by E-mail Share Vehicle Technologies Office: Fact 632: July 19, 2010 The Costs of Oil Dependence on Facebook Tweet about...

40

Vehicle Technologies Office: Fact #179: August 20, 2001 The Costs...  

NLE Websites -- All DOE Office Websites (Extended Search)

9: August 20, 2001 The Costs of Oil Dependence to someone by E-mail Share Vehicle Technologies Office: Fact 179: August 20, 2001 The Costs of Oil Dependence on Facebook Tweet...

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Vehicle Technologies Office: Fact #365: March 28, 2005 The Cost...  

NLE Websites -- All DOE Office Websites (Extended Search)

5: March 28, 2005 The Cost of Driving a Car to someone by E-mail Share Vehicle Technologies Office: Fact 365: March 28, 2005 The Cost of Driving a Car on Facebook Tweet about...

42

Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies  

E-Print Network (OSTI)

Economic evaluations of alternative electric generating technologies typically rely on comparisons between their expected life-cycle production costs per unit of electricity supplied. The standard life-cycle cost metric ...

Joskow, Paul L.

43

Financial and Cost Assessment Model (FICAM) | Open Energy Information  

Open Energy Info (EERE)

Financial and Cost Assessment Model (FICAM) Financial and Cost Assessment Model (FICAM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financial and Cost Assessment Model (FICAM) Agency/Company /Organization: UNEP-Risoe Centre Sector: Climate Focus Area: Greenhouse Gas Topics: Finance, Baseline projection, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: tech-action.org/models.htm Cost: Free Financial and Cost Assessment Model (FICAM) Screenshot References: FICAM[1] "The Financial and Cost Assessment Model (FICAM) evaluates the contribution of technologies and practices towards mitigation of greenhouse gases, and carries a comprehensive financial analysis." References ↑ "FICAM" Retrieved from "http://en.openei.org/w/index.php?title=Financial_and_Cost_Assessment_Model_(FICAM)&oldid=383091"

44

Updating MIT's cost estimation model for shipbuilding  

E-Print Network (OSTI)

This thesis project will update the MIT ship cost estimation model by combining the two existing models (the Basic Military Training School (BMTS) Cost Model and the MIT Math Model) in order to develop a program that can ...

Smith, Matthew B., Lieutenant, junior grade

2008-01-01T23:59:59.000Z

45

NETL: News Release - DOE-Funded Technology Slashes NOx, Costs...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 7, 2005 DOE-Funded Technology Slashes NOx, Costs in Coal-Fired Cyclone Boiler Utility Reconsiders Plans to Install Standard NOx-control Technology After Successful Field...

46

Energy Technology Cost and Performance Data | OpenEI  

Open Energy Info (EERE)

Technology Cost and Performance Data Technology Cost and Performance Data Dataset Summary Description This data indicates the range of recent cost estimates for renewable energy and other technologies. The estimates are shown in dollars per installed kilowatts of generating capacity. This data provides a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. All costs are in 2006 dollars per installed kilowatts in the United States. Source NREL Date Released August 06th, 2009 (5 years ago) Date Updated August 06th, 2009 (5 years ago) Keywords analysis Department of Energy DOE National Renewable Energy Laboratory Data application/vnd.ms-excel icon Energy Technology Cost and Performance Data (xls, 107.5 KiB) text/csv icon Capacity Factor (csv, 1.8 KiB)

47

The impact of different fibre access network technologies on cost, competition and welfare  

Science Conference Proceedings (OSTI)

Using a novel approach to the evaluation of new network technologies that combines an engineering cost model with a differentiated multi-player oligopoly model with wholesale access regulation this article evaluates the choice among different Fibre-to-the-Home ... Keywords: Bitstream access, Cost modelling, FTTH, NGA, Unbundling, Welfare analysis

Steffen Hoernig; Stephan Jay; Karl-Heinz Neumann; Martin Peitz; Thomas Plckebaum; Ingo Vogelsang

2012-03-01T23:59:59.000Z

48

Available Technologies: Low Cost, Simplified Manufacturing ...  

For Industry; For Researchers; Success Stories; About Us; Available Technologies. Browse By Category Advanced Materials; ... Processes using ceramic m ...

49

Cost estimate guidelines for advanced nuclear power technologies  

SciTech Connect

To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

Delene, J.G.; Hudson, C.R. II.

1990-03-01T23:59:59.000Z

50

COST SHARING ON SPONSORED PROJECTS California Institute of Technology  

E-Print Network (OSTI)

COST SHARING ON SPONSORED PROJECTS California Institute of Technology Pasadena, California 1 of 4 7 is that portion of the total cost of a research or other externally funded project that is not funded as a demonstration of its commitment to the project. When voluntary cost sharing is included in the proposal budget

Goddard III, William A.

51

Waste Shipment Tracking Technology Lowers Costs, Increases Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shipment Tracking Technology Lowers Costs, Increases Shipment Tracking Technology Lowers Costs, Increases Efficiency Waste Shipment Tracking Technology Lowers Costs, Increases Efficiency February 27, 2013 - 12:00pm Addthis This graphic shows how the radiofrequency identification technology tracks and monitors packages in transport, in-transit stops and storage. This graphic shows how the radiofrequency identification technology tracks and monitors packages in transport, in-transit stops and storage. The technology developed by EM’s Office of Packaging and Transportation Packaging Certification Program technology development team was selected by the RFID Journal as the "Most Innovated Use of RFIDs.” Team members pictured here include Dr. John Lee, Dr. Yung Liu, Dr. Jim Shuler, Dr. Hanchung Tsai and John Anderson. Team members not pictured are Brian Craig and Dr. Kun Chen.

52

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network (OSTI)

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National been identified by carbon fiber manufacturers as a market with substantial growth potential. When manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able

53

An analysis of cost improvement in chemical process technologies  

DOE Green Energy (OSTI)

Cost improvement -- sometimes called the learning curve or progress curve -- plays a crucial role in the competitiveness of the US chemical industry. More rapid cost improvement for a product results in expanding market share and larger profits. Expectations of rapid cost improvement motivate companies to invest heavily in the development and introduction of new chemical products and processes, even if production from the first pioneer facility is economically marginal. The slope of the learning curve can also indicate whether government support of new chemical processes such as synthetic fuels can be expected to have large social benefits or to simply represent a net loss to the public treasury. Despite the importance of the slope of the learning curve in the chemical process industries (CPI), little analytical investigation has been made into the factors that accelerate or retard cost improvement. This study develops such a model for the CPI. Using information from ten in-depth case studies and a database consisting of year-by-year market histories of 44 chemical products, including organic chemicals, inorganic chemicals, synthetic fibers, and primary metals, the analysis explores the relationships among the rate of learning and characteristics of the technologies, the nature of markets, and management approaches. 78 refs., 8 figs., 15 tabs.

Merrow, E.W.

1989-05-01T23:59:59.000Z

54

Energy Technology Cost and Performance Data | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Energy Technology Cost and Performance Data Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Technology Cost and Performance Data Agency/Company /Organization: United States Department of Energy Sector: Energy Topics: Resource assessment Resource Type: Dataset Website: www.nrel.gov/analysis/tech_cost_data.html Equivalent URI: cleanenergysolutions.org/content/energy-technology-cost-and-performanc Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation References: Energy Technology Cost and Performance Data: Homepage[1]

55

Installation, Operation, and Maintenance Costs for Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

Distributed generation (DG) is a broad term that encompasses both mature and emerging onsite power generation technologies with power output as small as 1 kW and as large as 20 MW. While the equipment or purchase cost of a DG system is very important, installation, operation, and maintenance (IOM) costs also are significant and often overlooked. This report reviews IOM costs for both mature and emerging DG technologies. Some equipment cost data is included for reference, but is not the focus of this repo...

2003-02-03T23:59:59.000Z

56

Vehicle Technologies Office: Fact #400: November 28, 2005 Model...  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2005 Model Year 2006 Fuel Economy and Fuel Cost to someone by E-mail Share Vehicle Technologies Office: Fact 400: November 28, 2005 Model Year 2006 Fuel Economy and Fuel Cost...

57

Capital cost models for geothermal power plants  

SciTech Connect

A computer code, titled GEOCOST, has been developed at Battelle, Pacific Northwest Laboratories, to rapidly and systematically calculate the potential costs of geothermal power. A description of the cost models in GEOCOST for the geothermal power plants is given here. Plant cost models include the flashed steam and binary systems. The data sources are described, along with the cost data correlations, resulting equations, and uncertainties. Comparison among GEOCOST plant cost estimates and recent A-E estimates are presented. The models are intended to predict plant costs for second and third generation units, rather than the more expensive first-of-a-kind units.

Cohn, P.D.; Bloomster, C.H.

1976-07-01T23:59:59.000Z

58

Wind Power Technology Status and Performance and Cost Estimates - 2008  

Science Conference Proceedings (OSTI)

This report addresses the status of wind turbine and related technology for both onshore and offshore applications, and the performance and cost of onshore wind power plants. It also presents a sample analysis of wind project financial performance.

2008-12-15T23:59:59.000Z

59

Technology Partnerships Are Yielding Reliable, Cost-Saving Appliances |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Partnerships Are Yielding Reliable, Cost-Saving Technology Partnerships Are Yielding Reliable, Cost-Saving Appliances Technology Partnerships Are Yielding Reliable, Cost-Saving Appliances November 9, 2011 - 12:01pm Addthis Oak Ridge National Laboratory's facility tests several water heaters at one time. Because of ORNL's accelerated durability testing, they estimate that 10 months of constant operation in its testing facility is comparable to 10 years of service life in a typical residential setting. | Photo courtesy of the Building Technologies Research and Integration Center, ORNL Oak Ridge National Laboratory's facility tests several water heaters at one time. Because of ORNL's accelerated durability testing, they estimate that 10 months of constant operation in its testing facility is comparable to 10

60

Breakthrough Cutting Technology Promises to Reduce Solar Costs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Cutting Technology Promises to Reduce Solar Costs Breakthrough Cutting Technology Promises to Reduce Solar Costs Breakthrough Cutting Technology Promises to Reduce Solar Costs March 1, 2010 - 4:34am Addthis Using SiGen's new cutting process, less material is wasted in creating solar products like this, a breakthrough that is expected to help make solar power more affordable. | Photo courtesy SiGen Using SiGen's new cutting process, less material is wasted in creating solar products like this, a breakthrough that is expected to help make solar power more affordable. | Photo courtesy SiGen Joshua DeLung Silicon Genesis is a San Jose, Calif., company that is advancing the field of solar energy by developing a process that will virtually eliminate all waste when cutting materials needed to implement solar technology.

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Cost modelling using automobile warranty data.  

E-Print Network (OSTI)

??This thesis sets out to model, from the manufacturer's point of view, the warranty cost of a repairable product. The product can be a complex (more)

Summit, Raymond

2004-01-01T23:59:59.000Z

62

Wind Turbine Design Cost and Scaling Model  

SciTech Connect

This model intends to provide projections of the impact on cost from changes in economic indicators such as the Gross Domestic Product and Producer Price Index.

Fingersh, L.; Hand, M.; Laxson, A.

2006-12-01T23:59:59.000Z

63

Power Tower Technology Roadmap and cost reduction plan.  

DOE Green Energy (OSTI)

Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

Mancini, Thomas R.; Gary, Jesse A. (U.S. Department of Energy); Kolb, Gregory J.; Ho, Clifford Kuofei

2011-04-01T23:59:59.000Z

64

Reducing the Manufacturing Cost of Tubular SOFC Technology  

SciTech Connect

In recent years, Westinghouse Electric Corporation has made great strides in advancing tubular solid oxide fuel cell (SOFC) technology towards commercialization by the year 2001. In 1993, Westinghouse initiated a program to develop a `MWe Class` (1-3 MWe) pressurized SOFC (PSOFC) gas turbine (GT) combined cycle power system for distributed power applications because of its: (1) ultra high efficiency (approx. 63% net AC/LHV CH{sub 4}), (2) its compatibility with a factory packaged, minimum site work philosophy, and (3) its cost effectiveness. Since then two cost studies on this market entry product performed by consultants to the U.S. Department of Energy have confirmed Westinghouse cost studies that fully installed costs of under $1300/kWe can be achieved in the early commercialization years for such small PSOFC/GT power systems. The paper will present the results of these cost studies in the areas of cell manufacturing cost, PSOFC generator manufacturing cost, balance-of-plant (BOP) cost, and system installation cost. In addition, cost of electricity calculations will be presented.

George, R.A.; Bessette, N.F.

1997-12-31T23:59:59.000Z

65

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology | Open  

Open Energy Info (EERE)

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Focus Area: Electricity Topics: Policy Impacts Website: www.nrel.gov/vehiclesandfuels/vsa/pdfs/40485.pdf Equivalent URI: cleanenergysolutions.org/content/cost-benefit-analysis-plug-hybrid-ele Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Fuel Efficiency Standards This paper presents a comparison of the costs and benefits of plug-in hybrid electric vehicles (PHEVs) relative to hybrid electric and conventional vehicles. A detailed simulation model is used to predict

66

Low-cost hydrogen sensors: Technology maturation progress  

SciTech Connect

The authors are developing a low-cost, solid-state hydrogen sensor to support the long-term goals of the Department of Energy (DOE) Hydrogen Program to encourage acceptance and commercialization of renewable energy-based technologies. Development of efficient production, storage, and utilization technologies brings with it the need to detect and pinpoint hydrogen leaks to protect people and equipment. The solid-state hydrogen sensor, developed at Oak Ridge National Laboratory (ORNL), is potentially well-suited to meet cost and performance objectives for many of these applications. Under a cooperative research and development Agreement and license agreement, they are teaming with a private company, DCH Technology, Inc., to develop the sensor for specific market applications related to the use of hydrogen as an energy vector. This report describes the current efforts to optimize materials and sensor performance to reach the goals of low-cost fabrication and suitability for relevant application areas.

Hoffheins, B.S.; Rogers, J.E.; Lauf, R.J.; Egert, C.M. [Oak Ridge National Lab., TN (United States); Haberman, D.P. [DCH Technology, Inc., Sherman Oaks, CA (United States)

1998-04-01T23:59:59.000Z

67

Forecasting technology costs via the Learning Curve - Myth or Magic?  

E-Print Network (OSTI)

is generally considered to be traditional fossil fuel power stations, hence making a further assumption that such a value for cost can be forecasted). In situations where niche markets exist (for example solar PV electricity for remote areas or hand held... Solar PV provides a good example of the use and dangers of using experience curves to forecast future costs of an energy technology. It is a good example since solar PV modules are generally accessed by an international market allowing for worldwide...

Alberth, Stephan

68

Solar Thermal Technology Status, Performance, and Cost Estimates -- 2011  

Science Conference Proceedings (OSTI)

Solar thermal power plants use mirrors to focus solar radiation onto a solar receiver, which heats a heat transfer fluid that drives either a turbine or heat engine to generate electricity. This study provides cost and performance information for three commercial or early commercial solar thermal electric technologies: parabolic trough (with and without thermal storage), molten salt power tower with thermal energy storage, and parabolic dish engine. Capital, operations, and maintenance cost estimates are...

2012-03-15T23:59:59.000Z

69

Waste management facilities cost information: System cost model product description. Revision 2  

SciTech Connect

In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation`s generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities.

Lundeen, A.S.; Hsu, K.M.; Shropshire, D.E.

1996-02-01T23:59:59.000Z

70

Plug-in Hybrid Modeling and Application: Cost/Benefit Analysis (Presentation)  

DOE Green Energy (OSTI)

Presents data from a simulation of plug-in hybrid electric vehicle efficiency and cost, including baseline vehicle assumptions, powertrain technology scenarios, and component modeling.

Simpson, A.

2006-08-24T23:59:59.000Z

71

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

extra-heavy oil and shale have zero Resource- Cost), whileof the Oil Transition: Modeling Capacity, Costs, andof the oil transition: modeling capacity, costs, and

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

72

Multi-Pollutant Control Technology and Cost Sensitivity Analysis  

Science Conference Proceedings (OSTI)

Current emissions control systems used by the U.S. generating fleet typically reduce emission rates of only one pollutant. This requires installation in series of various combinations of emission control systems to remove multiple pollutants. Technologies for simultaneous removal of multiple pollutants are now moving toward commercialization. These integrated systems have the potential to require less capital investment and to offer lower operating costs than traditional technologies. This report investi...

2008-12-22T23:59:59.000Z

73

Coal supply and cost under technological and environmental uncertainty  

E-Print Network (OSTI)

Coal supply and cost under technological and environmental uncertainty Submitted in partial, and Rod Lawrence at Foundation Coal. I received a lot of feedback and input on this report, and would like chapters. My conversations with Kurt Walzer at Clean Air Task Force and Rory McIlmoil at Coal Valley Wind

74

Technology Partnerships Are Yielding Reliable, Cost-Saving Appliances |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnerships Are Yielding Reliable, Cost-Saving Partnerships Are Yielding Reliable, Cost-Saving Appliances Technology Partnerships Are Yielding Reliable, Cost-Saving Appliances November 9, 2011 - 12:01pm Addthis Oak Ridge National Laboratory's facility tests several water heaters at one time. Because of ORNL's accelerated durability testing, they estimate that 10 months of constant operation in its testing facility is comparable to 10 years of service life in a typical residential setting. | Photo courtesy of the Building Technologies Research and Integration Center, ORNL Oak Ridge National Laboratory's facility tests several water heaters at one time. Because of ORNL's accelerated durability testing, they estimate that 10 months of constant operation in its testing facility is comparable to 10 years of service life in a typical residential setting. | Photo courtesy of

75

NETL: Mercury Emissions Control Technologies - Low-Cost Options for  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Options for Moderate Levels of Mercury Control Low-Cost Options for Moderate Levels of Mercury Control ADA- Environmental Solutions will test two new technologies for mercury control. The TOXECON II(tm) technology injects activated carbon directly into the downstream collecting fields of an electrostatic precipitator. The benefit of this technology is that the majority of the fly ash is collected in the upstream collecting fields which results in only a small portion of carbon-contaminated ash. Additionally, the TOXECON II(tm) technology requires minimal capital investment as only minor retrofits to the electrostatic precipitator are needed. The second technology is injection of novel sorbents for mercury removal on units with hot-side electrostatic precipitators (ESPs). Mercury removal from hot-side electrostatic precipitators is difficult as their high operating temperature range keeps the mercury in the vapor phase and prevents the mercury from adsorbing onto sorbents. The TOXECON II(tm) technology will be tested at Entergy's Independence Station which burns PRB coal. The novel sorbents for hot-side ESPs technology will be tested at MidAmerican's Council Bluffs Energy Center and MidAmerican's Louisa Station, both of which burn PRB coal. Additional project partners include EPRI, MidAmerican, Entergy, Alliant, ATCO Power, DTE Energy, Oglethorpe Power, Norit Americas Inc., Xcel Energy, Southern Company, Arch Coal, and EPCOR.

76

Wind Energy Technology Trends: Comparing and Contrasting Recent Cost and Performance Forecasts (Poster)  

DOE Green Energy (OSTI)

Poster depicts wind energy technology trends, comparing and contrasting recent cost and performance forecasts.

Lantz, E.; Hand, M.

2010-05-01T23:59:59.000Z

77

Comparing cost prediction models by resampling techniques  

Science Conference Proceedings (OSTI)

The accurate software cost prediction is a research topic that has attracted much of the interest of the software engineering community during the latest decades. A large part of the research efforts involves the development of statistical models based ... Keywords: Accuracy measure, Bootstrap, Confidence interval, Permutation test, Software cost estimation

Nikolaos Mittas; Lefteris Angelis

2008-05-01T23:59:59.000Z

78

An economic model of software quality costs  

Science Conference Proceedings (OSTI)

As of today there is very little knowledge is available about the economics of software quality. The costs incurred and benefits of implementing different quality practices over the software development life cycle are not well understood. There are some ... Keywords: TQM, quality cost model, software quality

Amel Kolainac; Ljubomir Lazic; Denan Avdic

2008-11-01T23:59:59.000Z

79

Electricity Generation Cost Simulation Model (GenSim)  

Science Conference Proceedings (OSTI)

The Electricity Generation Cost Simulation Model (GenSim) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration of a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the US. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emissions trade-offs. The base case results, using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8cents/kwhr.

DRENNEN, THOMAS E.; KAMERY, WILLIAM

2002-11-01T23:59:59.000Z

80

Electricity Generation Cost Simulation Model (GenSim).  

Science Conference Proceedings (OSTI)

The Electricity Generation Cost Simulation Model (GenSim) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration of a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercuty. Two different data sets are included in the model; one from the US. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emissions trade-offs. The base case results, using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8cents/kwhr.

Kamery, William (Hobart and William Smith Colleges, Geneva, NY); Baker, Arnold Barry; Drennen, Thomas E.

2003-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Renewable Energy Technologies Financial Model (RET Finance) | Open Energy  

Open Energy Info (EERE)

Renewable Energy Technologies Financial Model (RET Finance) Renewable Energy Technologies Financial Model (RET Finance) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Technologies Financial Model (RET Finance) Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: analysis.nrel.gov/retfinance/login.asp Equivalent URI: cleanenergysolutions.org/content/renewable-energy-technologies-financi Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The RET Finance model calculates levelized cost of energy of renewable electricity generation technologies including biomass, geothermal, solar, and wind. The model calculates project earnings, detailed cash flows, and debt payments and also computes a project's levelized cost of electricity,

82

Simple cost model for EV traction motors  

DOE Green Energy (OSTI)

A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

Cuenca, R.M.

1995-02-01T23:59:59.000Z

83

Alternative wind power modeling methods using chronological and load duration curve production cost models  

DOE Green Energy (OSTI)

As an intermittent resource, capturing the temporal variation in windpower is an important issue in the context of utility production cost modeling. Many of the production cost models use a method that creates a cumulative probability distribution that is outside the time domain. The purpose of this report is to examine two production cost models that represent the two major model types: chronological and load duration cure models. This report is part of the ongoing research undertaken by the Wind Technology Division of the National Renewable Energy Laboratory in utility modeling and wind system integration.

Milligan, M R

1996-04-01T23:59:59.000Z

84

Distributed utility technology cost, performance, and environmental characteristics  

Science Conference Proceedings (OSTI)

Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking information on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.

Wan, Y.; Adelman, S.

1995-06-01T23:59:59.000Z

85

Minimum cost model energy code envelope requirements  

SciTech Connect

This paper describes the analysis underlying development of the U.S. Department of Energy`s proposed revisions of the Council of American Building Officials (CABO) 1993 Model Energy Code (MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. This analysis resulted in revised MEC envelope conservation levels based on an objective methodology that determined the minimum-cost combination of energy efficiency measures (EEMs) for residences in different locations around the United States. The proposed MEC revision resulted from a cost-benefit analysis from the consumer`s perspective. In this analysis, the costs of the EEMs were balanced against the benefit of energy savings. Detailed construction, financial, economic, and fuel cost data were compiled, described in a technical support document, and incorporated in the analysis. A cost minimization analysis was used to compare the present value of the total long-nm costs for several alternative EEMs and to select the EEMs that achieved the lowest cost for each location studied. This cost minimization was performed for 881 cities in the United States, and the results were put into the format used by the MEC. This paper describes the methodology for determining minimum-cost energy efficiency measures for ceilings, walls, windows, and floors and presents the results in the form of proposed revisions to the MEC. The proposed MEC revisions would, on average, increase the stringency of the MEC by about 10%.

Connor, C.C.; Lucas, R.G.; Turchen, S.J.

1994-08-01T23:59:59.000Z

86

Cost model for a small glass manufacturing enterprise.  

E-Print Network (OSTI)

??The cost model developed is for small, glass-manufacturing enterprises to help themdetermine their product costs. It estimates the direct cost in glass manufacturing such as (more)

Gopisetti, Swetha.

2008-01-01T23:59:59.000Z

87

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

or design of improved production cost models. to assess thelearning which lowers production costs, and resourcewhich increases production costs. Each of these modules are

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

88

Technology Cost and Performance Toolkit | Open Energy Information  

Open Energy Info (EERE)

Technology Cost and Performance Toolkit Technology Cost and Performance Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development

89

Technology Cost and Performance Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Technology Cost and Performance Toolkit (Redirected from Gateway:International/Technology Performance and Costs) Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and

90

Analytic framework for TRL-based cost and schedule models  

E-Print Network (OSTI)

Many government agencies have adopted the Technology Readiness Level (TRL) scale to help improve technology development management under ever increasing cost, schedule, and complexity constraints. Many TRL-based cost and ...

El-Khoury, Bernard

2012-01-01T23:59:59.000Z

91

Technological Change and Its Effects on Mitigation Costs  

Science Conference Proceedings (OSTI)

This report emphasizes that understanding the way technologies evolve and penetrate the market is essential to understanding methods of addressing global climate change. The focus of this chapter is on the ways in which technological change is captured by climate change policy modelers, with particular attention on two idealized approaches: top-down and bottom-up. The conclusion is that in order to understand the implications of large-scale economic models of the climate change problem, it is essential to understand first the assumptions that have been made regarding the path of technological progress.

Edmonds, James A.; Roop, Joseph M.; Scott, M. J.

2001-01-01T23:59:59.000Z

92

A Nonlinear Generalized Additive Error Model of Production and Cost  

E-Print Network (OSTI)

Additive Error Model of Production and Cost by Quirino ParisError Model of Production and Cost Quirino Paris* UniversityAdditive Error Model of Production and Cost I. Introduction

Paris, Quirino; Caputo, Michael R.

2004-01-01T23:59:59.000Z

93

Efficient Estimates of a Model of Production and Cost  

E-Print Network (OSTI)

Estimates of a Model of Production and Cost by Quirino ParisEstimates of a Model of Production and Cost Quirino Paris*Estimates of a Model of Production and Cost I. Introduction

Paris, Quirino; Caputo, Michael R.

2004-01-01T23:59:59.000Z

94

Vehicle Technologies Office: Fact #407: January 16, 2006 Vehicle Fuel Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

7: January 16, 7: January 16, 2006 Vehicle Fuel Cost vs. Home Heating Cost: Which Causes More Concern? to someone by E-mail Share Vehicle Technologies Office: Fact #407: January 16, 2006 Vehicle Fuel Cost vs. Home Heating Cost: Which Causes More Concern? on Facebook Tweet about Vehicle Technologies Office: Fact #407: January 16, 2006 Vehicle Fuel Cost vs. Home Heating Cost: Which Causes More Concern? on Twitter Bookmark Vehicle Technologies Office: Fact #407: January 16, 2006 Vehicle Fuel Cost vs. Home Heating Cost: Which Causes More Concern? on Google Bookmark Vehicle Technologies Office: Fact #407: January 16, 2006 Vehicle Fuel Cost vs. Home Heating Cost: Which Causes More Concern? on Delicious Rank Vehicle Technologies Office: Fact #407: January 16, 2006 Vehicle Fuel Cost vs. Home Heating Cost: Which Causes More Concern? on Digg

95

Technology Improvement Pathways to Cost-Effective Vehicle Electrification  

DOE Green Energy (OSTI)

Electrifying transportation can reduce or eliminate dependence on foreign fuels, emission of green house gases, and emission of pollutants. One challenge is finding a pathway for vehicles that gains wide market acceptance to achieve a meaningful benefit. This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective including opportunity charging, replacing the battery over the vehicle life, improving battery life, reducing battery cost, and providing electric power directly to the vehicle during a portion of its travel. Many combinations of PHEV electric range and battery power are included. For each case, the model accounts for battery cycle life and the national distribution of driving distances to size the battery optimally. Using the current estimates of battery life and cost, only the dynamically plugged-in pathway was cost-effective to the consumer. Significant improvements in battery life and battery cost also made PHEVs more cost-effective than today's hybrid electric vehicles (HEVs) and conventional internal combustion engine vehicles (CVs).

Brooker, A.; Thornton, M.; Rugh, J. P.

2010-04-01T23:59:59.000Z

96

DOE Hydrogen Analysis Repository: Automotive System Cost Model...  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive System Cost Model (ASCM) Project Summary Full Title: Automotive System Cost Model (ASCM) Project ID: 118 Principal Investigator: Sujit Das Purpose Estimate current and...

97

Process-Based Cost Modeling to Support Target Value Design  

E-Print Network (OSTI)

in Designing to Target Cost. 12th Annual Conference of thethe Hurdle of First Cost: Action Research in TargetD.T. (1987). A Future for Cost Modelling: Building Cost

Nguyen, Hung Viet

2010-01-01T23:59:59.000Z

98

Wind Turbine Design Cost and Scaling Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Turbine Design Cost Wind Turbine Design Cost and Scaling Model L. Fingersh, M. Hand, and A. Laxson Technical Report NREL/TP-500-40566 December 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Wind Turbine Design Cost and Scaling Model L. Fingersh, M. Hand, and A. Laxson Prepared under Task No. WER6.0703 Technical Report NREL/TP-500-40566 December 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

99

Geothermal Electricity Technology Evaluation Model (GETEM) | Open Energy  

Open Energy Info (EERE)

Electricity Technology Evaluation Model (GETEM) Electricity Technology Evaluation Model (GETEM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Electricity Technology Evaluation Model (GETEM) Agency/Company /Organization: National Renewable Energy Laboratory Sector: Climate Focus Area: Geothermal Phase: Evaluate Options Topics: Opportunity Assessment & Screening Resource Type: Software/modeling tools User Interface: Desktop Application Website: www1.eere.energy.gov/geothermal/getem.html OpenEI Keyword(s): EERE tool Equivalent URI: cleanenergysolutions.org/content/geothermal-electricity-technology-eva Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance References: Geothermal Electricity Technology Evaluation Model[1] Model the estimated performance and costs of available U.S. geothermal

100

The sensitivity of wind technology utilization to cost and market parameters  

DOE Green Energy (OSTI)

This study explores the sensitivity of future wind energy market penetration to available wind resources, wind system costs, and competing energy system fuel costs for several possible energy market evolution scenarios. The methodology for the modeling is described in general terms. Cost curves for wind technology evolution are presented and used in conjunction with wind resource estimates and energy market projections to estimate wind penetration into the market. Results are presented that show the sensitivity of the growth of wind energy use to key cost parameters and to some of the underlying modeling assumptions. In interpreting the results, the authors place particular emphasis on the relative influence of the parameters studied. 4 refs., 8 figs., 1 tab.

Dodd, H.M. (Sandia National Labs., Albuquerque, NM (USA)); Hock, S.M.; Thresher, R.W. (Solar Energy Research Inst., Golden, CO (USA))

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts  

DOE Green Energy (OSTI)

Sargent& Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

Not Available

2003-10-01T23:59:59.000Z

102

Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts  

DOE Green Energy (OSTI)

Sargent and Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

Not Available

2003-10-01T23:59:59.000Z

103

Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)  

DOE Green Energy (OSTI)

Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

Pesaran, A.; Markel, T.; Simpson, A.

2006-10-01T23:59:59.000Z

104

Solid-State Lighting: Simple Modular LED Cost Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Simple Modular LED Cost Model to someone by E-mail Share Solid-State Lighting: Simple Modular LED Cost Model on Facebook Tweet about Solid-State Lighting: Simple Modular LED Cost...

105

Review of PV Inverter Technology Cost and Performance Projections  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

Navigant Consulting Inc.

2006-01-01T23:59:59.000Z

106

Review of PV Inverter Technology Cost and Performance Projections  

SciTech Connect

The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

Navigant Consulting Inc.

2006-01-01T23:59:59.000Z

107

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

108

A cost analysis model for heavy equipment  

Science Conference Proceedings (OSTI)

Total cost is one of the most important factors for a heavy equipment product purchase decision. However, the different cost views and perspectives of performance expectations between the different involved stakeholders may cause customer relation problems ... Keywords: Cost responsibilities, Operating costs, Ownership costs, Post-Manufacturing Product Cost (PMPC), System life-cycle cost

Shibiao Chen; L. Ken Keys

2009-05-01T23:59:59.000Z

109

Technology and Technical Change in the MIT EPPA Model  

E-Print Network (OSTI)

Potential technology change has a strong influence on projections of greenhouse gas emissions and costs of control, and computable general equilibrium (CGE) models are a common device for studying these phenomena. Using ...

Jacoby, Henry D.

110

Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage  

DOE Green Energy (OSTI)

This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation system leads to higher thermal-to-electric conversion efficiency. However, in a CSP system, higher operating temperature also leads to greater thermal losses. These two effects combine to give an optimal system-level operating temperature that may be less than the upper operating temperature limit of system components. The overall efficiency may be improved by developing materials, power cycles, and system-integration strategies that enable operation at elevated temperature while limiting thermal losses. This is particularly true for the TES system and its components. Meeting the SunShot cost target will require cost and performance improvements in all systems and components within a CSP plant. Solar collector field hardware will need to decrease significantly in cost with no loss in performance and possibly with performance improvements. As higher temperatures are considered for the power block, new working fluids, heat-transfer fluids (HTFs), and storage fluids will all need to be identified to meet these new operating conditions. Figure 1 shows thermodynamic conversion efficiency as a function of temperature for the ideal Carnot cycle and 75% Carnot, which is considered to be the practical efficiency attainable by current power cycles. Current conversion efficiencies for the parabolic trough steam cycle, power tower steam cycle, parabolic dish/Stirling, Ericsson, and air-Brayton/steam Rankine combined cycles are shown at their corresponding operating temperatures. Efficiencies for supercritical steam and carbon dioxide (CO{sub 2}) are also shown for their operating temperature ranges.

Glatzmaier, G.

2011-12-01T23:59:59.000Z

111

Survey of LWR environmental control technology performance and cost  

Science Conference Proceedings (OSTI)

This study attempts to establish a ranking for species that are routinely released to the environment for a projected nuclear power growth scenario. Unlike comparisons made to existing standards, which are subject to frequent revision, the ranking of releases can be used to form a more logical basis for identifying the areas where further development of control technology could be required. This report describes projections of releases for several fuel cycle scenarios, identifies areas where alternative control technologies may be implemented, and discusses the available alternative control technologies. The release factors were used in a computer code system called ENFORM, which calculates the annual release of any species from any part of the LWR nuclear fuel cycle given a projection of installed nuclear generation capacity. This survey of fuel cycle releases was performed for three reprocessing scenarios (stowaway, reprocessing without recycle of Pu and reprocessing with full recycle of U and Pu) for a 100-year period beginning in 1977. The radioactivity releases were ranked on the basis of a relative ranking factor. The relative ranking factor is based on the 100-year summation of the 50-year population dose commitment from an annual release of radioactive effluents. The nonradioactive releases were ranked on the basis of dilution factor. The twenty highest ranking radioactive releases were identified and each of these was analyzed in terms of the basis for calculating the release and a description of the currently employed control method. Alternative control technology is then discussed, along with the available capital and operating cost figures for alternative control methods.

Heeb, C.M.; Aaberg, R.L.; Cole, B.M.; Engel, R.L.; Kennedy, W.E. Jr.; Lewallen, M.A.

1980-03-01T23:59:59.000Z

112

On EOQ Cost Models with Arbitrary Purchase and Transportation ...  

E-Print Network (OSTI)

Abstract: We analyze an economic order quantity cost model with unit ... For the remaining purchase-transportation cost functions, when this problem becomes a ...

113

Energyenvironment policy modeling of endogenous technological change with personal vehicles  

E-Print Network (OSTI)

reserved. Keywords: Greenhouse gas; Hybrid cost models; Transportation emissions policy; Bottom-up; Top-down; Technological change; Greenhouse gas abatement policy 1. Introduction A major challenge for greenhouse gas (GHGMETHODS Energy­environment policy modeling of endogenous technological change with personal

114

Technology Improvement Pathway to Cost-effective Vehicle Electrification: Preprint  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

454 454 February 2010 Technology Improvement Pathways to Cost-Effective Vehicle Electrification Preprint A. Brooker, M. Thornton, and J. Rugh National Renewable Energy Laboratory To be presented at SAE 2010 World Congress Detroit, Michigan April 13-15, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

115

DOE G 430.1-1 Chp 22, Cost Model and Cost Estimating Software  

Directives, Delegations, and Requirements

This chapter discusses a formalized methodology is basically a cost model, which forms the basis for estimating software.

1997-03-28T23:59:59.000Z

116

A Transaction Cost Perspective of the "Software as a Service" Business Model  

Science Conference Proceedings (OSTI)

Application service providers (ASP), which host and maintain information technology (IT) applications across the Internet, offer an alternative to traditional models of IT service for user firms. We build on prior literature in transaction cost economics ... Keywords: Application Service Providers, Contract Choice, Logit Models, Transaction Cost Economics

Anjana Susarla; Anitesh Barua; Andrew Whinston

2009-09-01T23:59:59.000Z

117

Process-Based Cost Modeling to Support Target Value Design  

E-Print Network (OSTI)

elemental analysis (cost-per-square-foot) are referred to asTraditional models (cost per square foot, elementalunit costs per an area unit (i.e. , $/Square Foot) or per a

Nguyen, Hung Viet

2010-01-01T23:59:59.000Z

118

Technology and Cost of the MY 2007 toyota Camry HEV -- A Subcontract Report  

DOE Green Energy (OSTI)

The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

Marlino, Laura D [ORNL

2007-09-01T23:59:59.000Z

119

Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive and MHE Automotive and MHE Fuel Cell System Cost Analysis (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Google Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Delicious Rank Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on AddThis.com...

120

Vehicle Technologies Office: Fact #694: September 26, 2011 Costs of Owning  

NLE Websites -- All DOE Office Websites (Extended Search)

4: September 26, 4: September 26, 2011 Costs of Owning a Vehicle by State to someone by E-mail Share Vehicle Technologies Office: Fact #694: September 26, 2011 Costs of Owning a Vehicle by State on Facebook Tweet about Vehicle Technologies Office: Fact #694: September 26, 2011 Costs of Owning a Vehicle by State on Twitter Bookmark Vehicle Technologies Office: Fact #694: September 26, 2011 Costs of Owning a Vehicle by State on Google Bookmark Vehicle Technologies Office: Fact #694: September 26, 2011 Costs of Owning a Vehicle by State on Delicious Rank Vehicle Technologies Office: Fact #694: September 26, 2011 Costs of Owning a Vehicle by State on Digg Find More places to share Vehicle Technologies Office: Fact #694: September 26, 2011 Costs of Owning a Vehicle by State on AddThis.com...

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to  

NLE Websites -- All DOE Office Websites (Extended Search)

1: August 5, 1: August 5, 2013 Comparative Costs to Drive an Electric Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on Facebook Tweet about Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on Twitter Bookmark Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on Google Bookmark Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on Delicious Rank Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on Digg Find More places to share Vehicle Technologies Office: Fact #791: August 5, 2013 Comparative Costs to Drive an Electric Vehicle on

122

ALUMINIUM REDUCTION TECHNOLOGY: VII: Modelling  

Science Conference Proceedings (OSTI)

Previous models of the behaviour of interfacial waves in aluminium reduction cells ... Attia A. Arif, Omar M. Dahab, Power and Energy Dept., Minya University, Egypt ... of Technology, Liancheng Aluminum Plant, Lanzhou, Gansu 730335, China.

123

New Wind Energy Technologies Are Cost-Effective in Federal Applications--Technology Focus  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy systems are producing energy systems are producing electricity in some areas of the United States for 5¢ per kilowatt-hour (kWh) or less. As the demand for advanced wind systems increases, wind turbines can be manufactured on a larger scale. This demand, coupled with improvements in the technology, will further reduce the cost of wind- generated electricity. Today, using wind systems to generate electricity can be a cost-effective option for many Federal facilities. This is especially true for facilities that have access to good wind resources and rela- tively high utility costs, and those that depend on diesel power generation. Applications for wind systems are similar to those for solar systems: * Remote communications equipment * Ranger stations * Military installations * Visitor centers and other facilities in

124

New Wind Energy Technologies Are Cost-Effective in Federal Applications--Technology Focus  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind energy systems are producing Wind energy systems are producing electricity in some areas of the United States for 5¢ per kilowatt-hour (kWh) or less. As the demand for advanced wind systems increases, wind turbines can be manufactured on a larger scale. This demand, coupled with improvements in the technology, will further reduce the cost of wind- generated electricity. Today, using wind systems to generate electricity can be a cost-effective option for many Federal facilities. This is especially true for facilities that have access to good wind resources and rela- tively high utility costs, and those that depend on diesel power generation. Applications for wind systems are similar to those for solar systems: * Remote communications equipment * Ranger stations * Military installations * Visitor centers and other facilities in

125

Validation and Comparison of Carbon Sequestration Project Cost Models with Project Cost Data Obtained from the Southwest Partnership  

SciTech Connect

Obtaining formal quotes and engineering conceptual designs for carbon dioxide (CO{sub 2}) sequestration sites and facilities is costly and time-consuming. Frequently, when looking at potential locations, managers, engineers and scientists are confronted with multiple options, but do not have the expertise or the information required to quickly obtain a general estimate of what the costs will be without employing an engineering firm. Several models for carbon compression, transport and/or injection have been published that are designed to aid in determining the cost of sequestration projects. A number of these models are used in this study, including models by J. Ogden, MIT's Carbon Capture and Sequestration Technologies Program Model, the Environmental Protection Agency and others. This report uses the information and data available from several projects either completed, in progress, or conceptualized by the Southwest Regional Carbon Sequestration Partnership on Carbon Sequestration (SWP) to determine the best approach to estimate a project's cost. The data presented highlights calculated versus actual costs. This data is compared to the results obtained by applying several models for each of the individual projects with actual cost. It also offers methods to systematically apply the models to future projects of a similar scale. Last, the cost risks associated with a project of this scope are discussed, along with ways that have been and could be used to mitigate these risks.

Robert Lee; Reid Grigg; Brian McPherson

2011-04-15T23:59:59.000Z

126

Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)  

SciTech Connect

EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

Goodrich, A. C.; Woodhouse, M.; James, T.

2011-02-01T23:59:59.000Z

127

Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)  

DOE Green Energy (OSTI)

EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

Goodrich, A. C.; Woodhouse, M.; James, T.

2011-02-01T23:59:59.000Z

128

Estimation of costs for applications of remediation technologies for the Department of Energy`s Programmatic Environmental Impact Statement  

SciTech Connect

The Programmatic Environmental impact Statement (PEIS) being developed by the US Department of Energy (DOE) for environmental restoration (ER) and waste management (WM) activities expected to be carried out across the DOE`s nationwide complex of facilities is assessing the impacts of removing, transporting, treating, storing, and disposing of waste from these ER and WM activities. Factors being considered include health and safety impacts to the public and to workers, impacts on the environment, costs and socio-economic impacts, and near-term and residual risk during those ER and WM operations. The purpose of this paper is to discuss the methodology developed specifically for the PEIS to estimate costs associated with the deployment and application of individual remediation technologies. These individual costs are used in developing order-of-magnitude cost estimates for the total remediation activities. Costs are developed on a per-unit-of-material-to-be-treated basis (i.e., $/m{sup 3}) to accommodate remediation projects of varying sizes. The primary focus of this cost-estimating effort was the development of capital and operating unit cost factors based on the amount of primary media to be removed, handled, and treated. The unit costs for individual treatment technologies were developed using information from a variety of sources, mainly from periodicals, EPA documentation, handbooks, vendor contacts, and cost models. The unit cost factors for individual technologies were adjusted to 1991 dollars.

Villegas, A.J.; Hansen, R.I.; Humphreys, K.K.; Paananen, J.M.; Gildea, L.F.

1994-03-01T23:59:59.000Z

129

Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model  

Science Conference Proceedings (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

Blair, N.; Mehos, M.; Christensen, C.

2008-03-01T23:59:59.000Z

130

Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with Solar Advisor Model  

DOE Green Energy (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. SAM allows users to do complex system modeling with an intuitive graphical user interface (GUI). In fact, all tables and graphics for this paper are taken directly from the model GUI. This model has the capability to compare different solar technologies within the same interface, making use of similar cost and finance assumptions. Additionally, the ability to do parametric and sensitivity analysis is central to this model. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

2008-01-01T23:59:59.000Z

131

Technology Advancements to Lower Costs of Electrochromic Window Glazing  

DOE Green Energy (OSTI)

An Electrochromic (EC) Window is a solar control device that can electronically regulate the flow of sunlight and heat. In the case of the SageGlass{reg_sign} EC window, this property derives from a proprietary all-ceramic, intrinsically durable thin-film stack applied to an inner surface of a glass double-pane window. As solar irradiation and temperatures change, the window can be set to an appropriate level of tint to optimize the comfort and productivity of the occupants as well as to minimize building energy usage as a result of HVAC and lighting optimization. The primary goal of this project is to replace certain batch processes for EC thin film deposition resulting in a complete in-line vacuum process that will reduce future capital and labor coats, while increasing throughput and yields. This will require key technology developments to replace the offline processes. This project has enabled development of the next generation of electrochromic devices suitable for large-scale production. Specifically, the requirements to produce large area devices cost effectively require processes amenable to mass production, using a variety of different substrate materials, having minimal handling and capable of being run at high yield. The present SageGlass{reg_sign} production process consists of two vacuum steps separated by an atmospheric process. This means that the glass goes through several additional handling steps, including venting and pumping down to go from vacuum to atmosphere and back, which can only serve to introduce additional defects associated with such processes. The aim of this project therefore was to develop a process which would eliminate the need for the atmospheric process. The overall project was divided into several logical tasks which would result in a process ready to be implemented in the present SAGE facility. Tasks 2 and 3 were devoted to development and the optimization of a new thin film material process. These tasks are more complicated than would be expected, as it has been determined in the past that there are a number of interactions between the new material and the layers beneath, which have an important effect on the behavior of the device. The effects of these interactions needed to be understood in order for this task to be successful. Tasks 4 and 5 were devoted to production of devices using the novel technology developed in the previous tasks. In addition, characterization tests were required to ensure the devices would perform adequately as replacements for the existing technology. Each of these tasks has been achieved successfully. In task 2, a series of potential materials were surveyed, and ranked in order of desirability. Prototype device structures were produced and characterized in order to do this. This satisfied the requirements for Task 2. From the results of this relatively extensive survey, the number of candidate materials was reduced to one or two. Small devices were made in order to test the functionality of such samples, and a series of optimization experiments were carried out with encouraging results. Devices were fabricated, and some room temperature cycling carried out showing that there are no fundamental problems with this technology. This series of achievements satisfied the requirements for Tasks 3 and 4. The results obtained from Task 3 naturally led to scale-up of the process, so a large cathode was obtained and installed in a spare slot in the production coater, and a series of large devices fabricated. In particular, devices with dimensions of 60-inch x 34-inch were produced, using processes which are fully compatible with mass production. Testing followed, satisfying the requirements for Task 5. As can be seen from this discussion, all the requirements of the project have therefore been successfully achieved. The devices produced using the newly developed technology showed excellent optical properties, often exceeding the performance of the existing technology, equivalent durability results, and promise a significantly simplified manufacturing approach, the

Mark Burdis; Neil Sbar

2008-07-13T23:59:59.000Z

132

Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines  

DOE Green Energy (OSTI)

This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE`s ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

Not Available

1992-08-01T23:59:59.000Z

133

Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines  

DOE Green Energy (OSTI)

This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE's ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

Not Available

1992-08-01T23:59:59.000Z

134

Modeling the technology mix  

SciTech Connect

The electricity industry is now actively considering which combination of advanced technologies can best meet CO{sub 2} emissions reduction targets. The fundamental challenge is to develop a portfolio of options that is technically feasible and can provide affordable electricity to customers. As the US industry considers its investments in research, development and demonstration projects, EPRI's PRISM and MERGE analyses address this challenge and point toward a solution that EPRI describes as 'The Full Portfolio'. The PRISM results show much greater use of nuclear power, renewable energy and coal with carbon capture and storage (CCS) towards 2030, and a sharply lower contribution from natural gas and coal without CCS. The MERGE analysis shows that, assuming CCS would not be available, the use of coal would fall off sharply in favour of natural gas and there would be a fall in electricity demand driven by very high prices. With the Full Portfolio, nuclear power and advanced coal generation with CCS reduce emissions to a point where a much lower demand reduction is needed. By 2050 the Full Portfolio will have decarbonized the electricity sector and reduced the impact on electricity prices to below a fifth that of the limited portfolio. 2 figs.

Douglas, J. [EPRI (United States)

2007-09-30T23:59:59.000Z

135

Building Technologies Office: Energy Modeling Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Software on Twitter Bookmark Building Technologies Office: Energy Modeling Software on Google Bookmark Building Technologies Office: Energy Modeling Software on Delicious Rank...

136

Alternative methods of modeling wind generation using production costing models  

DOE Green Energy (OSTI)

This paper examines the methods of incorporating wind generation in two production costing models: one is a load duration curve (LDC) based model and the other is a chronological-based model. These two models were used to evaluate the impacts of wind generation on two utility systems using actual collected wind data at two locations with high potential for wind generation. The results are sensitive to the selected wind data and the level of benefits of wind generation is sensitive to the load forecast. The total production cost over a year obtained by the chronological approach does not differ significantly from that of the LDC approach, though the chronological commitment of units is more realistic and more accurate. Chronological models provide the capability of answering important questions about wind resources which are difficult or impossible to address with LDC models.

Milligan, M.R. [National Renewable Energy Lab., Golden, CO (United States); Pang, C.K. [P Plus Corp., Cupertino, CA (United States)

1996-08-01T23:59:59.000Z

137

Fuel Cell Technologies Office: DOE Announces New Hydrogen Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

138

Vehicle Technologies Office: Fact #731: June 11, 2012 Cost-Effectiveness of  

NLE Websites -- All DOE Office Websites (Extended Search)

1: June 11, 2012 1: June 11, 2012 Cost-Effectiveness of a Hybrid Vehicle is Highly Conditional to someone by E-mail Share Vehicle Technologies Office: Fact #731: June 11, 2012 Cost-Effectiveness of a Hybrid Vehicle is Highly Conditional on Facebook Tweet about Vehicle Technologies Office: Fact #731: June 11, 2012 Cost-Effectiveness of a Hybrid Vehicle is Highly Conditional on Twitter Bookmark Vehicle Technologies Office: Fact #731: June 11, 2012 Cost-Effectiveness of a Hybrid Vehicle is Highly Conditional on Google Bookmark Vehicle Technologies Office: Fact #731: June 11, 2012 Cost-Effectiveness of a Hybrid Vehicle is Highly Conditional on Delicious Rank Vehicle Technologies Office: Fact #731: June 11, 2012 Cost-Effectiveness of a Hybrid Vehicle is Highly Conditional on Digg

139

APT cost scaling: Preliminary indications from a Parametric Costing Model (PCM)  

Science Conference Proceedings (OSTI)

A Parametric Costing Model has been created and evaluate as a first step in quantitatively understanding important design options for the Accelerator Production of Tritium (APT) concept. This model couples key economic and technical elements of APT in a two-parameter search of beam energy and beam power that minimizes costs within a range of operating constraints. The costing and engineering depth of the Parametric Costing Model is minimal at the present {open_quotes}entry level{close_quotes}, and is intended only to demonstrate a potential for a more-detailed, cost-based integrating design tool. After describing the present basis of the Parametric Costing Model and giving an example of a single parametric scaling run derived therefrom, the impacts of choices related to resistive versus superconducting accelerator structures and cost of electricity versus plant availability ({open_quotes}load curve{close_quotes}) are reported. Areas of further development and application are suggested.

Krakowski, R.A.

1995-02-03T23:59:59.000Z

140

Production cost models with regard to liberalised electricity markets.  

E-Print Network (OSTI)

??This book makes a contribution to the formulation and implementation of production cost models for the modelling of liberalized electricity markets by addressing issues associated (more)

Martinez Diaz, David Jos

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

TIBER-II cost models and estimates  

SciTech Connect

This report consists of a series of viewgraphs dealing with cost associated with construction of a thermonuclear power plant. (JDH)

Thomson, S.L.

1987-04-06T23:59:59.000Z

142

The Integration of Process and Cost Modeling  

Science Conference Proceedings (OSTI)

For information on the symposium, refer to the November Meetings Calendar, beginning ... The managers of materials enterprises are market and cost driven. ... The fact that matter and thermal energy must be conserved (i.e., they cannot be .... sheet to a cost analysis and obtain information on the projected production costs.

143

Electricity Energy Storage Technology Options 2012 System Cost Benchmarking  

Science Conference Proceedings (OSTI)

This report provides an update on the current capital and lifecycle costs estimates of electric energy storage options for a variety of grid and end-user applications. Data presented in this report update 2010 data provided in EPRI Technical Report 1020676. The goal of this research was to develop objective and consistent installed costs and operational and maintenance costs for a set of selected energy storage systems in the identified applications. Specific objectives included development of ...

2012-12-10T23:59:59.000Z

144

Technology Improvement Pathways to Cost-Effective Vehicle Electrification: Preprint  

DOE Green Energy (OSTI)

This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective.

Brooker, A.; Thornton, M.; Rugh, J.

2010-02-01T23:59:59.000Z

145

Available Technologies: Low-cost, Efficient, Flexible Solar ...  

3D solar cell of nanopillars. ... Layered Nanocrystal Photovoltaic Cells, IB-2511 . Hot Electron Photovoltaics Using Low Cost Materials and Simple Cel ...

146

Available Technologies: Lower Cost Lithium Ion Batteries from ...  

Lower Cost Lithium Ion Batteries from ... Although lithium ion batteries are the most promising candidates for plug-in hybrid electric vehicles, the u ...

147

Innovation in Nuclear Technology for the Least Product Price and Cost  

SciTech Connect

In energy markets, costs dominate for all new technology introductions (pressure valves, gas turbines, reactors) both now and far into the future. Technology improves, and costs are reduced as markets are penetrated with the trend following a learning/experience curve (MCE) based on classic economic forces. The curve followed is governed by development costs and market targets, and nuclear systems follow such a curve in order to compete with other technologies and projected future cost for alternate energy initiatives. Funding impacts directly on market penetration and on the ''learning rate.'' The CANDU/AECL development path (experience curve) is a chosen balance between evolution and revolution for a competitive advantage.

Duffey, Romney

2003-09-01T23:59:59.000Z

148

Cost update technology, safety, and costs of decommissioning a reference uranium hexafluoride conversion plant  

Science Conference Proceedings (OSTI)

The purpose of this study is to update the cost estimates developed in a previous report, NUREG/CR-1757 (Elder 1980) for decommissioning a reference uranium hexafluoride conversion plant from the original mid-1981 dollars to values representative of January 1993. The cost updates were performed by using escalation factors derived from cost index trends over the past 11.5 years. Contemporary price quotes wee used for costs that have increased drastically or for which is is difficult to find a cost trend. No changes were made in the decommissioning procedures or cost element requirements assumed in NUREG/CR-1757. This report includes only information that was changed from NUREG/CR-1757. Thus, for those interested in detailed descriptions and associated information for the reference uranium hexafluoride conversion plant, a copy of NUREG/CR-1757 will be needed.

Miles, T.L.; Liu, Y.

1995-08-01T23:59:59.000Z

149

Energy Storage Technology and Application Cost and Performance Data Base-2012: Bulk Energy Storage Systems  

Science Conference Proceedings (OSTI)

This report updates EPRI reports 1020071, Energy Storage Technology and Application Cost and Performance Data Base-2010, and 1021932, Energy Storage Technology and Application Cost and Performance Data Base-2011, which presents 2011 updated data on the cost, performance, and capabilities of energy storage systems only for bulk energy storage applications in a Excel workbook database. The distributed options detailed in the index can be found in the 2011 product, 1021932. The goal of this research was to ...

2012-02-27T23:59:59.000Z

150

ONTOCOM: A Cost Estimation Model for Ontology Engineering  

E-Print Network (OSTI)

Abstract: This paper introduces ONTOCOM, a parametric cost estimation model for Semantic Web ontologies. After analyzing established, general-purpose cost estimation methodologies we propose a methodology, which can be applied to develop cost models for ontology engineering. We examine the particularities of this engineering field on the basis of the proposed methodology, in order to identify cost factors which influence the effort invested in ontology building, reuse and maintenance. 1

Elena Paslaru Bontas; Malgorzata Mochol; Freie Universitt

2006-01-01T23:59:59.000Z

151

Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)  

DOE Green Energy (OSTI)

This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

Turchi, C. S.; Heath, G. A.

2013-02-01T23:59:59.000Z

152

Available Technologies: Carbon Dioxide Capture at a Reduced Cost  

Scientists at Berkeley Lab have developed a method that reduces the expense of capturing carbon dioxide generated by the combustion of fossil fuels. This technology ...

153

Integrated thermal and nonthermal treatment technology and subsystem cost sensitivity analysis  

SciTech Connect

The U.S. Department of Energy`s (DOE) Environmental Management Office of Science and Technology (EM-50) authorized studies on alternative systems for treating contact-handled DOE mixed low-level radioactive waste (MLLW). The on-going Integrated Thermal Treatment Systems` (ITTS) and the Integrated Nonthermal Treatment Systems` (INTS) studies satisfy this request. EM-50 further authorized supporting studies including this technology and subsystem cost sensitivity analysis. This analysis identifies areas where technology development could have the greatest impact on total life cycle system costs. These areas are determined by evaluating the sensitivity of system life cycle costs relative to changes in life cycle component or phase costs, subsystem costs, contingency allowance, facility capacity, operating life, and disposal costs. For all treatment systems, the most cost sensitive life cycle phase is the operations and maintenance phase and the most cost sensitive subsystem is the receiving and inspection/preparation subsystem. These conclusions were unchanged when the sensitivity analysis was repeated on a present value basis. Opportunity exists for technology development to reduce waste receiving and inspection/preparation costs by effectively minimizing labor costs, the major cost driver, within the maintenance and operations phase of the life cycle.

Harvego, L.A.; Schafer, J.J.

1997-02-01T23:59:59.000Z

154

Modeling Impacts of Climate Change Mitigation Technologies on Power Grids  

Science Conference Proceedings (OSTI)

This paper describes a modeling approach that simulate the impacts of different climate change mitigation technologies on power grids for power system planning purposes. Because the historical data is less credible when new technologies are being deployed to the system, it is then critical to model them to address their impacts. This paper illustrated how to integrate modeling results obtained from different modeling tools to give a reasonable forecast of the future. Building simulation tools, distribution power grid modeling tools, and power system planning tools are used to model and aggregate the impacts from the end-use to the system level. Electricity generation, production cost, emission, and transmission congestions are used to quantify the influence of different mitigation technologies. Modeling results have shown that the cross-discipline modeling approach provided the modeler with the necessary time resolution and input details to address the variables that influence the modeling results. Different modeling issues are also addressed in the paper.

Nguyen, Tony B.; Lu, Ning; Jin, Chunlian

2011-10-10T23:59:59.000Z

155

Modeling The Potential For Thermal Concentrating Solar Power Technologies  

SciTech Connect

In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

2010-10-25T23:59:59.000Z

156

An Integrated Modeling Framework for Carbon Capture and Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Karen L. cohen Karen L. cohen Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6667 karen.cohen@netl.doe.gov Edward s. Rubin Carnegie Mellon University 5000 Forbes Avenue 128A Baker Hall Pittsburgh, PA 15213 412-268-5897 rubin@cmu.edu An IntegrAted ModelIng FrAMework For CArbon CApture And StorAge teChnologIeS Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is developing safe, lower-cost methods of carbon dioxide (CO 2 ) capture and storage (CCS) as a potential option for climate change mitigation. In addition to technology development, there is a need for modeling and assessment tools to evaluate and compare the cost and effectiveness of CCS methods. Analytical

157

Cost of energy from some renewable and conventional technologies. Progress report, FY 1980  

DOE Green Energy (OSTI)

Up-to-date, consistent, and transparent estimates of the cost of delivered energy from a selected number of solar and renewable technologies were developed and these were compared with the costs of conventional alternatives meeting the energy needs in comparable applications. Technology characterizations and cost assessments of representative systems relating to 23 solar and renewable resource technology/application pairs were performed. For each pair, identical assessments were also made for representative conventional (e.g., fossil fuel) competing systems. Section 2 summarizes the standardized methodology developed to do the technology characterizations and cost assessments. Assessments of technology/application pairs relating to distributed applications are presented in Section 3. Central system assessments are presented in Section 4. (MCW)

Not Available

1981-04-01T23:59:59.000Z

158

SOLID OXIDE FUEL CELL MANUFACTURING COST MODEL: SIMULATING RELATIONSHIPS BETWEEN PERFORMANCE, MANUFACTURING, AND COST OF PRODUCTION  

DOE Green Energy (OSTI)

The successful commercialization of fuel cells will depend on the achievement of competitive system costs and efficiencies. System cost directly impacts the capital equipment component of cost of electricity (COE) and is a major contributor to the O and M component. The replacement costs for equipment (also heavily influenced by stack life) is generally a major contributor to O and M costs. In this project, they worked with the SECA industrial teams to estimate the impact of general manufacturing issues of interest on stack cost using an activities-based cost model for anode-supported planar SOFC stacks with metallic interconnects. An earlier model developed for NETL for anode supported planar SOFCs was enhanced by a linkage to a performance/thermal/mechanical model, by addition of Quality Control steps to the process flow with specific characterization methods, and by assessment of economies of scale. The 3-dimensional adiabatic performance model was used to calculate the average power density for the assumed geometry and operating conditions (i.e., inlet and exhaust temperatures, utilization, and fuel composition) based on publicly available polarizations curves. The SECA team provided guidance on what manufacturing and design issues should be assessed in this Phase I demonstration of cost modeling capabilities. They considered the impact of the following parameters on yield and cost: layer thickness (i.e., anode, electrolyte, and cathode) on cost and stress levels, statistical nature of ceramic material failure on yield, and Quality Control steps and strategies. In this demonstration of the capabilities of the linked model, only the active stack (i.e., anode, electrolyte, and cathode) and interconnect materials were included in the analysis. Factory costs are presented on an area and kilowatt basis to allow developers to extrapolate to their level of performance, stack design, materials, seal and system configurations, and internal corporate overheads and margin goals.

Eric J. Carlson; Yong Yang; Chandler Fulton

2004-04-20T23:59:59.000Z

159

Reliability Models for Facility Location: The Expected Failure Cost ...  

E-Print Network (OSTI)

Aug 25, 2003 ... Reliability Models for Facility Location: The Expected Failure Cost Case. Lawrence V. Snyder (larry.snyder ***at*** lehigh.edu) Mark S. Daskin...

160

Expert judgement in cost estimating: Modelling the reasoning process  

E-Print Network (OSTI)

Expert Judgement (EJ) is used extensively during the generation of cost estimates. Cost estimators have to make numerous assumptions and judgements about what they think a new product will cost. However, the use of EJ is often frowned upon, not well accepted or understood by non-cost estimators within a concurrent engineering environment. Computerised cost models, in many ways, have reduced the need for EJ but by no means have they, or can they, replace it. The cost estimates produced from both algorithmic and non-algorithmic cost models can be widely inaccurate; and, as the work of this paper highlights, require extensive use of judgement in order to produce a meaningful result. Very little research tackles the issues of capturing and integrating EJ and rationale into the cost estimating process. Therefore, this

Christopher Rush; Rajkumar Roy

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL: Mercury Emissions Control Technologies - Assessment Of Low Cost Novel  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment Of Low Cost Novel Mercury Sorbents Assessment Of Low Cost Novel Mercury Sorbents Project Summary: Apogee Scientific Inc. will assess up to a dozen carbon-based and other sorbents that are expected to remove more than 90 percent of mercury and cost 40 to 75 percent less than commercial sorbents because they feature inexpensive precursors and simple activation steps. Six to 12 sorbents will undergo fixed-bed adsorption tests with the most promising three to six being further evaluated by injecting them into a pilot-scale electrostatic precipitator and baghouse. Commercial flue gas desulfurization activated carbon will provide the baseline for comparisons. A portable pilot system will be constructed and would accommodate a slipstream ESP or baghouse at minimal cost. Tests will be conducted at Wisconsin Electric's Valley power plant in Milwaukee, WI, and Midwest Generation's Powerton Station in Pekin, IL. The project team consists of URS Radian, Austin, TX; the Electric Power Research Institute, Palo Alto, CA; the Illinois State Geological Survey, Champaign, IL; ADA Environmental Solutions, Littleton, CO; and Physical Sciences Inc., Andover, MA.

162

Staff Draft Report. Comparative Cost of California Central Station Electricity Generation Technologies.  

DOE Green Energy (OSTI)

This Energy Commission staff draft report presents preliminary levelized cost estimates for several generic central-station electricity generation technologies. California has traditionally adopted energy policies that balance the goals of supporting economic development, improving environmental quality and promoting resource diversity. In order to be effective, such policies must be based on comprehensive and timely gathering of information. With this goal in mind, the purpose of the report is to provide comparative levelized cost estimates for a set of renewable (e.g., solar) and nonrenewable (e.g., natural gas-fired) central-station electricity generation resources, based on each technology's operation and capital cost. Decision-makers and others can use this information to compare the generic cost to build specific technology. These costs are not site specific. If a developer builds a specific power plant at a specific location, the cost of siting that plant at that specific location must be considered. The Energy Commission staff also identifies the type of fuel used by each technology and a description of the manner in which the technology operates in the generation system. The target audiences of this report are both policy-makers and anyone wishing to understand some of the fundamental attributes that are generally considered when evaluating the cost of building and operating different electricity generation technology resources. These costs do not reflect the total cost to consumers of adding these technologies to a resources portfolio. These technology characterizations do not capture all of the system, environmental or other relevant attributes that would typically be needed by a portfolio manager to conduct a comprehensive ''comparative value analysis''. A portfolio analysis will vary depending on the particular criteria and measurement goals of each study. For example, some form of firm capacity is typically needed with wind generation to support system reliability. [DJE-2005

Badr, Magdy; Benjamin, Richard

2003-02-11T23:59:59.000Z

163

Staff Draft Report. Comparative Cost of California Central Station Electricity Generation Technologies.  

SciTech Connect

This Energy Commission staff draft report presents preliminary levelized cost estimates for several generic central-station electricity generation technologies. California has traditionally adopted energy policies that balance the goals of supporting economic development, improving environmental quality and promoting resource diversity. In order to be effective, such policies must be based on comprehensive and timely gathering of information. With this goal in mind, the purpose of the report is to provide comparative levelized cost estimates for a set of renewable (e.g., solar) and nonrenewable (e.g., natural gas-fired) central-station electricity generation resources, based on each technology's operation and capital cost. Decision-makers and others can use this information to compare the generic cost to build specific technology. These costs are not site specific. If a developer builds a specific power plant at a specific location, the cost of siting that plant at that specific location must be considered. The Energy Commission staff also identifies the type of fuel used by each technology and a description of the manner in which the technology operates in the generation system. The target audiences of this report are both policy-makers and anyone wishing to understand some of the fundamental attributes that are generally considered when evaluating the cost of building and operating different electricity generation technology resources. These costs do not reflect the total cost to consumers of adding these technologies to a resources portfolio. These technology characterizations do not capture all of the system, environmental or other relevant attributes that would typically be needed by a portfolio manager to conduct a comprehensive ''comparative value analysis''. A portfolio analysis will vary depending on the particular criteria and measurement goals of each study. For example, some form of firm capacity is typically needed with wind generation to support system reliability. [DJE-2005

Badr, Magdy; Benjamin, Richard

2003-02-11T23:59:59.000Z

164

Low cost high performance generator technology program. Addendum report  

DOE Green Energy (OSTI)

The results of a system weight, efficiency, and size analysis which was performed on the 500 W(e) low cost high performance generator (LCHPG) are presented. The analysis was performed in an attempt to improve system efficiency and specific power over those presented in June 1975, System Design Study Report TES-SNSO-3-25. Heat source volume, configuration, and safety as related to the 500 W(e) LCHPG are also discussed. (RCK)

Not Available

1975-09-01T23:59:59.000Z

165

Low-Cost NIALMS Technology: Market Issues & Product Assessment  

Science Conference Proceedings (OSTI)

Non-Intrusive Appliance Load Monitoring System (NIALMS) provides the ability to submeter residential loads from the meter, without intruding into the home. It utilizes a meter recorder installed between the meter socket and a meter, eliminating the need for additional sensors and dataloggers. NIALMS is now a commercially available product, used primarily for load research by utilities. The issues surrounding the proliferation of NIALMS in the meter industry have always involved cost and functionality. Bu...

1997-09-30T23:59:59.000Z

166

Energy Analysis Models, Tools and Software Technologies ...  

Energy Analysis Models, Tools and Software Technologies Available for Licensing U.S. Department of Energy laboratories and participating research ...

167

Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

SciTech Connect

Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Stephens, T.

2013-03-01T23:59:59.000Z

168

Vehicle Technologies Office: Modeling, Testing and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Testing and Modeling, Testing and Analysis to someone by E-mail Share Vehicle Technologies Office: Modeling, Testing and Analysis on Facebook Tweet about Vehicle Technologies Office: Modeling, Testing and Analysis on Twitter Bookmark Vehicle Technologies Office: Modeling, Testing and Analysis on Google Bookmark Vehicle Technologies Office: Modeling, Testing and Analysis on Delicious Rank Vehicle Technologies Office: Modeling, Testing and Analysis on Digg Find More places to share Vehicle Technologies Office: Modeling, Testing and Analysis on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Modeling, Testing and Analysis The Vehicle Technologies Office's robust portfolio is supported by

169

PRISM 2.0: Modeling Technology Learning for Electricity Supply Technologies  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) developed the U.S. Regional Economy, Greenhouse Gas, and Energy (US-REGEN) model, under the PRISM 2.0 Project. This model can assess the impact of various climate, energy, and environmental policies on the electric power sector, the energy system, and the overall U.S. economy. This report compares the technology learning rates implied by the exogenous cost specifications used in the US-REGEN model to those found in a literature ...

2013-09-19T23:59:59.000Z

170

CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES  

E-Print Network (OSTI)

Technologies. (1993a). Energy-saving roller kiln - TechnicalEnergy Savings .6  Analyses of energy savings, cost, other

Xu, T.

2011-01-01T23:59:59.000Z

171

NREL: Energy Analysis - Geothermal Technology Analysis Models...  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration Energy Analysis Search More Search Options Site Map Printable Version Geothermal Technology Analysis Models and Tools The following is a list of models and tools...

172

Energy Analysis Models, Tools and Software Technologies ...  

Energy Analysis Models, Tools and Software Technology Marketing Summaries Here youll find marketing summaries of energy analysis models, tools, and software ...

173

Available Technologies: Membrane-Electrode Structures for Low Cost ...  

Medical Devices; Medical Imaging Mouse Models; Research Tools; Developing World; Energy. Energy Efficiency; Energy Storage and Recovery; Renewable Energy;

174

NETL: News Release - Innovative Technology Shows Promise for Low-Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2, 2005 June 2, 2005 Innovative Technology Shows Promise for Low-Cost Mercury Control Patented DOE Process Licensed to Industry for Commercial Development WASHINGTON, DC - Close on the heels of the U.S. Environmental Protection Agency's March 15 release of its Clean Air Mercury Rule, the U.S. Department of Energy has issued a license to private industry to commercially develop a promising low-cost, DOE-patented mercury control technology. MORE INFO Technical Report on the Thief Process [PDF-374KB] DOE's National Energy Technology Laboratory issued the license on a technology called the Thief Process to Mobotec USA, Inc., of Walnut Creek, Calif. Mobotec, a leader in developing cost-effective combustion improvement and multi-pollutant reduction technologies for industrial and

175

SEMATECH: A Model for Advancing Solar Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology May 24, 2011 - 11:22am Addthis SEMATECH brings 14 companies together to help them share and collaborate in their most expensive and difficult manufacturing development projects. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs One of the hardest parts for start-up companies producing an emerging technology is the cost to test and develop more efficient manufacturing processes -- and to win the clean energy race, energy technologies not only need to be invented in America, but made in America too. That's why consortiums like SEMATECH in Albany, New York, are so important. Back in the '80s and '90s, SEMATECH breathed new life into the

176

Benefit/Cost Analysis of Geothermal Technology R&D. Volume III: Energy Extraction and Utilization Technology  

DOE Green Energy (OSTI)

This document describes the benefit/cost relationship for 44 research and development (R and D) projects being funded by the Utilization Technology Branch (UTB) of the Division of Geothermal Energy (DGE), Department of Energy (DOE) as a part of its Energy Extraction and Conversion Technology program. The benefits were computed in terms of the savings resulting from the reduction in the cost of electricity projected to be generated at 27 hydrothermal prospects in the US between 1978 and 2000, due to technological improvements brought about by successful R and D. The costs of various projects were estimated by referring to the actual expenditures already incurred and the projected future budgets for these projects. In certain cases, the expected future expenditures had to be estimated on the basis of the work which would need to be done to carry a project to the commercialization stage.

Dhillon, Harpal S.; Nguyen, Van Thanh; Pfundstein, Richard T.; Entingh, Daniel J.

1979-05-01T23:59:59.000Z

177

DOE Fuel Cell Technologies Program Record 12020: Fuel Cell System Cost - 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Record Record Record #: 12020 Date: August 21, 2012 Title: Fuel Cell System Cost - 2012 Update to: Record 11012 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: September 14, 2012 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on 2012 technology 1 and operating on direct hydrogen is projected to be $47/kW when manufactured at a volume of 500,000 units/year. Rationale: The DOE Fuel Cell Technologies Program supports analysis projects that perform detailed analysis to estimate cost status of fuel cell systems, updated on an annual basis [1]. In fiscal year 2012, Strategic Analysis, Inc. (SA) updated their 2011 cost analysis of an 80-kW net direct hydrogen PEM automotive fuel cell system, based on 2012 technology and projected to a

178

Process design and costing of bioethanol technology: A tool for determining the status and direction of research and development  

SciTech Connect

Bioethanol is a fuel-grade ethanol made from trees, grasses, and waste materials. It represents a sustainable substitute for gasoline in today's passenger cars. Modeling and design of processes for making bioethanol are critical tools used in the US Department of Energy's bioethanol research and development program. The authors use such analysis to guide new directions for research and to help them understand the level at which and the time when bioethanol will achieve commercial success. This paper provides an update on their latest estimates for current and projected costs of bioethanol. These estimates are the result of very sophisticated modeling and costing efforts undertaken in the program over the past few years. Bioethanol could cost anywhere from $1.16 to $1.44 per gallon, depending on the technology and the availability of low cost feedstocks for conversion to ethanol. While this cost range opens the door to fuel blending opportunities, in which ethanol can be used, for example, to improve the octane rating of gasoline, it is not currently competitive with gasoline as a bulk fuel. Research strategies and goals described in this paper have been translated into cost savings for ethanol. Their analysis of these goals shows that the cost of ethanol could drop by 40 cents per gallon over the next ten years by taking advantage of exciting new tools in biotechnology that will improve yield and performance in the conversion process.

Wooley, R.; Ruth, M.; Glassner, D.; Sheehan, J.

1999-10-01T23:59:59.000Z

179

NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NASA Ames Saves Energy and Reduces Project Costs NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies The Wireless Pneumatic Thermostat Enables Energy Efficiency Strategies, Ongoing Commissioning and Improved Operational Control Harry Sim CEO Cypress Envirosystems harry.sim@cypressenvirosystems.com www.cypressenvirosystems.com NASA Ames Reduced Project Cost by Over 80% with Non-Invasive Retrofit Technologies * Legacy Pneumatic Thermostats  Waste energy  High maintenance costs  Uncomfortable occupants  No visibility * Project Scope  14 buildings  1,370 pneumatic thermostats  Integration with campus BAS  Diagnostics for ongoing commissioning * Traditional DDC Retrofit  Cost over $4.1 million  Asbestos exposure/abatement  Occupants significantly disrupted

180

Battery-level material cost model facilitates high-power li-ion battery cost reductions.  

SciTech Connect

Under the FreedomCAR Partnership, Argonne National Laboratory (ANL) is working to identify and develop advanced anode, cathode, and electrolyte components that can significantly reduce the cost of the cell chemistry, while simultaneously enhancing the calendar life and inherent safety of high-power Li-Ion batteries. Material cost savings are quantified and tracked via the use of a cell and battery design model that establishes the quantity of each material needed in batteries designed to meet the requirements of hybrid electric vehicles (HEVs). In order to quantify the material costs, relative to the FreedomCAR battery cost goals, ANL uses (1) laboratory cell performance data, (2) its battery design model and (3) battery manufacturing process yields to create battery-level material cost models. Using these models and industry-supplied material cost information, ANL assigns battery-level material costs for different cell chemistries. These costs can then be compared to the battery cost goals to determine the probability of meeting the goals with these cell chemistries. The most recent freedomCAR cost goals for 25-kW and 40-kW power-assist HEV batteries are $500 and $800, respectively, which is $20/kW in both cases. In 2001, ANL developed a high-power cell chemistry that was incorporated into high-power 18650 cells for use in extensive accelerated aging and thermal abuse characterization studies. This cell chemistry serves as a baseline for this material cost study. It incorporates a LiNi0.8Co0.15Al0.05O2 cathode, a synthetic graphite anode, and a LiPF6 in EC:EMC electrolyte. Based on volume production cost estimates for these materials-as well as those for binders/solvents, cathode conductive additives, separator, and current collectors--the total cell winding material cost for a 25-kW power-assist HEV battery is estimated to be $399 (based on a 48- cell battery design, each cell having a capacity of 15.4 Ah). This corresponds to {approx}$16/kW. Our goal is to reduce the cell winding material cost to <$10/kW, in order to allow >$10/kW for the cell and battery manufacturing costs, as well as profit for the industrial manufacturer. The material cost information is obtained directly from the industrial material suppliers, based on supplying the material quantities necessary to support an introductory market of 100,000 HEV batteries/year. Using its battery design model, ANL provides the material suppliers with estimates of the material quantities needed to meet this market, for both 25-kW and 40-kW power-assist HEV batteries. Also, ANL has funded a few volume-production material cost analyses, with industrial material suppliers, to obtain needed cost information. In a related project, ANL evaluates and develops low-cost advanced materials for use in high-power Li-Ion HEV batteries. [This work is the subject of one or more separate papers at this conference.] Cell chemistries are developed from the most promising low-cost materials. The performance characteristics of test cells that employ these cell chemistries are used as input to the cost model. Batteries, employing these cell chemistries, are designed to meet the FreedomCAR power, energy, weight, and volume requirements. The cost model then provides a battery-level material cost and material cost breakdown for each battery design. Two of these advanced cell chemistries show promise for significantly reducing the battery-level material costs (see Table 1), as well as enhancing calendar life and inherent safety. It is projected that these two advanced cell chemistries (A and B) could reduce the battery-level material costs by an estimated 24% and 43%, respectively. An additional cost advantage is realized with advanced chemistry B, due to the high rate capability of the 3-dimensional LiMn{sub 2}O{sub 4} spinel cathode. This means that a greater percentage of the total Ah capacity of the cell is usable and cells with reduced Ah capacity can be used. This allows for a reduction in the quantity of the anode, electrolyte, separator, and current collector materials needed f

Henriksen, G.; Chemical Engineering

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cost savings deliverables and criteria for the OST technology decision process  

SciTech Connect

This document has been prepared to assist focus area (FA) technical and management teams in understanding the cost savings deliverables associated with a technology system during its research and development (R and D) phases. It discusses the usefulness of cost analysis in the decision-making process, and asserts that the level of confidence and data quality of a cost analysis is proportional to the maturity of the technology system`s development life cycle. Suggestions of specific investment criteria or cost savings metrics that a FA might levy on individual research projects are made but the final form of these elements should be stipulated by the FA management based on their rationale for a successful technology development project. Also, cost savings deliverables for a single FA will be more detailed than those for management of the Office of Science and Technology (OST). For example, OST management may want an analysis of the overall return on investment for each FA, while the FA program manager may want this analysis and the return on investment metrics for each technology research activity the FA supports.

McCown, A.

1997-04-01T23:59:59.000Z

182

BatPaC - Battery Performance and Cost model - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

> BatPaC Home About BatPaC Download BatPaC Contact Us BatPaC: A Lithium-Ion Battery Performance and Cost Model for Electric-Drive Vehicles The recent penetration of...

183

Sensor Technology Integration for Efficient and Cost-Effective D&D  

Science Conference Proceedings (OSTI)

The deactivation and decommissioning of radiologically contaminated facilities require the use of a multitude of technologies to perform characterization, decontamination, dismantlement, and waste management. Current baseline technologies do not provide adequate tools to perform this work in an efficient and cost-effective manner. Examples of such tasks that can be modified to enhance the D&D work include: floor and wall decontamination, pipe decontamination, and surveillance and monitoring. FIU-HCET's Technology Development, Integration and Deployment (TDID) group aims to enhance the D&D process by integrating sensor technology to existing decontamination and remote surveillance tools. These integrated systems have been demonstrated throughout the DOE Complex and commercial nuclear facilities undergoing decommissioning. Finding new ways of integrating technologies utilized in the decommissioning and surveillance & monitoring process has been a goal of this group during the past several years. Current and previous integration projects include: Mobile Integrated Piping Decontamination and Characterization System, On-Line Decontamination and Characterization System, In-Situ Pipe Decontamination and Unplugging System, Remote Hazardous Environment Surveyor (RHES), and the Online Handheld grit blasting decontamination system As a result of integrating sensors with D&D tools, the resulting technologies have removed the downtime currently found in baseline processes by allowing operators and project managers to have real-time contamination data during the specified D&D process. This added component allows project managers to verify that full decontamination and surveillance has been conducted. Through successful demonstration and deployments of the TDID-developed technologies, FIU-HCET has provided tools that can impact the cost, schedule and health and safety of D&D operations in a positive way, leading to shorter downtimes and significant cost-savings. This paper will discuss the development of technologies currently modified with sensor technology by the TDID group, from conceptual design to Deployment at a DOE or commercial nuclear facility. Cost information associated with the respective technology will also be discussed.

Varona, J. M.; Lagos, L. E.

2002-02-25T23:59:59.000Z

184

Solid waste integrated cost analysis model: 1991 project year report  

SciTech Connect

The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

Not Available

1991-01-01T23:59:59.000Z

185

AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES  

Science Conference Proceedings (OSTI)

CO{sub 2} capture and storage (CCS) is gaining widespread interest as a potential method to control greenhouse gas emissions from fossil fuel sources, especially electric power plants. Commercial applications of CO{sub 2} separation and capture technologies are found in a number of industrial process operations worldwide. Many of these capture technologies also are applicable to fossil fuel power plants, although applications to large-scale power generation remain to be demonstrated. This report describes the development of a generalized modeling framework to assess alternative CO{sub 2} capture and storage options in the context of multi-pollutant control requirements for fossil fuel power plants. The focus of the report is on post-combustion CO{sub 2} capture using amine-based absorption systems at pulverized coal-fired plants, which are the most prevalent technology used for power generation today. The modeling framework builds on the previously developed Integrated Environmental Control Model (IECM). The expanded version with carbon sequestration is designated as IECM-cs. The expanded modeling capability also includes natural gas combined cycle (NGCC) power plants and integrated coal gasification combined cycle (IGCC) systems as well as pulverized coal (PC) plants. This report presents details of the performance and cost models developed for an amine-based CO{sub 2} capture system, representing the baseline of current commercial technology. The key uncertainties and variability in process design, performance and cost parameters which influence the overall cost of carbon mitigation also are characterized. The new performance and cost models for CO{sub 2} capture systems have been integrated into the IECM-cs, along with models to estimate CO{sub 2} transport and storage costs. The CO{sub 2} control system also interacts with other emission control technologies such as flue gas desulfurization (FGD) systems for SO{sub 2} control. The integrated model is applied to study the feasibility and cost of carbon capture and sequestration at both new and existing PC plants as well as new NGCC plants. The cost of CO{sub 2} avoidance using amine-based CO{sub 2} capture technology is found to be sensitive to assumptions about the reference plant design and operation, as well as assumptions about the CO{sub 2} capture system design. The case studies also reveal multi-pollutant interactions and potential tradeoffs in the capture of CO{sub 2}, SO{sub 2}, NO{sub 2} and NH{sub 3}. The potential for targeted R&D to reduce the cost of CO{sub 2} capture also is explored using the IECM-cs in conjunction with expert elicitations regarding potential improvements in key performance and cost parameters of amine-based systems. The results indicate that the performance of amine-based CO{sub 2} capture systems can be improved significantly, and the cost of CO{sub 2} capture reduced substantially over the next decade or two, via innovations such as new or improved sorbents with lower regeneration heat requirements, and improvements in power plant heat integration to reduce the (currently large) energy penalty of CO{sub 2} capture. Future work will explore in more detail a broader set of advanced technology options to lower the costs of CO{sub 2} capture and storage. Volume 2 of this report presents a detailed User's Manual for the IECM-cs computer model as a companion to the technical documentation in Volume 1.

Anand B. Rao; Edward S. Rubin; Michael B. Berkenpas

2004-03-01T23:59:59.000Z

186

Costs Models in Design and Manufacturing of Sand Casting Products  

E-Print Network (OSTI)

In the early phases of the product life cycle, the costs controls became a major decision tool in the competitiveness of the companies due to the world competition. After defining the problems related to this control difficulties, we will present an approach using a concept of cost entity related to the design and realization activities of the product. We will try to apply this approach to the fields of the sand casting foundry. This work will highlight the enterprise modelling difficulties (limits of a global cost modelling) and some specifics limitations of the tool used for this development. Finally we will discuss on the limits of a generic approach.

Perry, Nicolas; Bernard, Alain

2010-01-01T23:59:59.000Z

187

Costs Models in Design and Manufacturing of Sand Casting Products  

E-Print Network (OSTI)

In the early phases of the product life cycle, the costs controls became a major decision tool in the competitiveness of the companies due to the world competition. After defining the problems related to this control difficulties, we will present an approach using a concept of cost entity related to the design and realization activities of the product. We will try to apply this approach to the fields of the sand casting foundry. This work will highlight the enterprise modelling difficulties (limits of a global cost modelling) and some specifics limitations of the tool used for this development. Finally we will discuss on the limits of a generic approach.

Nicolas Perry; Magali Mauchand; Alain Bernard

2010-11-26T23:59:59.000Z

188

Specialization and extrapolation of software cost models  

Science Conference Proceedings (OSTI)

Despite the widespread availability of software effort estimation models (e.g. COCOMO [2], Price-S [12], SEER-SEM [13], SLIM [14]), most managers still estimate new projects by extrapolating from old projects [3, 5, 7]. In this delta method, the ...

Tim Menzies; Dan Port; Zhihao Chen; Jairus Hihn

2005-11-01T23:59:59.000Z

189

DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Record Office Record Record #: 13012 Date: September 18, 2013 Title: Fuel Cell System Cost - 2013 Update to: Record 12020 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: October 16, 2013 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on 2013 technology 1 and operating on direct hydrogen is projected to be $67/kW when manufactured at a volume of 100,000 units/year, and $55/kW at 500,000 units/year. Rationale: The DOE Fuel Cell Technologies (FCT) Office supports projects that perform detailed analysis to estimate cost status of fuel cell systems, updated on an annual basis [1]. In fiscal year 2013, Strategic Analysis, Inc. (SA) updated their 2012 cost analysis of an 80-kW

190

Energy Analysis Models, Tools and Software Technologies ...  

Energy Analysis Models, Tools and Software Technologies Available for Licensing U.S. Department of Energy laboratories and participating research institutions have ...

191

Comparative Analysis of the Cost Models Used for Estimating Renovation Costs of Universities in Texas  

E-Print Network (OSTI)

Facility managers use various cost models and techniques to estimate the cost of renovating a building and to secure the required funds needed for building renovation. A literature search indicates that these techniques offer both advantages and disadvantages that need to be studied and analyzed. Descriptive statistical methods and qualitative analysis are employed to identify and compare techniques used by facility managers to calculate the expected renovation costs of a building. The cost models presently used to predict the cost and accumulate the budget required for renovation of a building were determined through interviews with ten Texas-based university facilities managers. The data and information gathered were analyzed and compared. Analysis of results suggests that traditional methods like Floor Area Method (FAM) is the most accurate, less time consuming, easy to use as well as convenient for data collection. Case-Based Reasoning (CBR), though not as widely used as FAM, is known to facilities managers. This is due to the fact that, if a new type of project needs to be renovated, and the data for a similar project is not available with the facilities manager, a completely new database needs to be created. This issue can be resolved by creating a common forum where data for all types of project could be made available for the facilities managers. Methods such as regression analysis and neural networks are known to give more accurate results. However, of the ten interviewees, only one was aware of these new models but did not use them as they would be helpful for very large projects and they would need expertise. Thus such models should be simplified to not only give accurate results in less time but also be easy to use. These results may allow us to discuss changes needed within the various cost models.

Faquih, Yaquta Fakhruddin

2010-08-01T23:59:59.000Z

192

Selected bibliography: cost and energy savings of conservation and renewable energy technologies  

DOE Green Energy (OSTI)

This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

None

1980-05-01T23:59:59.000Z

193

Cost-Benefit Analysis of Smart Grid Technologies Through System Simulations  

Open Energy Info (EERE)

Cost-Benefit Analysis of Smart Grid Technologies Through System Simulations Cost-Benefit Analysis of Smart Grid Technologies Through System Simulations Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Cost-Benefit_Analysis_of_Smart_Grid_Technologies_Through_System_Simulations&oldid=514355"

194

Development of cost-effective surfactant flooding technology. Final report  

Science Conference Proceedings (OSTI)

Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also available in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.

Pope, G.A.; Sepehrnoori, K.

1996-11-01T23:59:59.000Z

195

EUVL reticle factory model and reticle cost analysis  

SciTech Connect

The key issues in reticle manufacturing are cost and delivery time, both of which are dependent upon the yield of the process line. To estimate the cost and delivery time for EUVL reticles in commercial manufacturing, we have developed the first model for an EUV reticle factory which includes all the tools required for a presumed EUVL reticle fabrication process. This model includes the building, support tools and sufficient ``in-line`` process tools for the manufacture of (more than) 2500 reticles per year. Industry specifications for the tool performance are used to determine the number of tools required per process step and the average number of reticles fabricated per year. Building and capital equipment depreciation costs, tool installation costs, tool maintenance costs, labor, clean room costs, process times and process yields are estimated and used to calculate the yearly operating cost of the reticle factory and the average reticle fabrication cost. We estimate the sales price of an EUV reticle to be $60K for non-critical levels and $120K for ``leading-edge.`` The average reticle fabrication time is calculated for three different process-line yields.

Hawryluk, A.M. [Lawrence Livermore National Lab., CA (United States); Shelden, G. [SEMATECH, Austin, TX (United States); Troccolo, P. [Intel Corp., Santa Clara, CA (United States)

1996-05-22T23:59:59.000Z

196

Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis  

SciTech Connect

The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.

1994-01-01T23:59:59.000Z

197

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

SciTech Connect

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

198

Modeling Greenhouse Gas Energy Technology Responses to Climate Change  

Science Conference Proceedings (OSTI)

Models of the global energy system can help shed light on the competition and complementarities among technologies and energy systems both in the presence and absence of actions to affect the concentration of greenhouse gases. This paper explores the role of modeling in the analysis of technology deployment in addressing climate change. It examines the competition among technologies in a variety of markets, and explores conditions under which new markets, such as for hydrogen and carbon disposal, or modern commercial biomass, could emerge. Carbon capture and disposal technologies are shown have the potential to play a central role in controlling the cost of stabilizing the concentration of greenhouse gases, the goal of the UN Framework Convention on Climate Change.

Edmonds, James A.; Clarke, John F.; Dooley, James J.; Kim, Son H.; Smith, Steven J.

2004-07-01T23:59:59.000Z

199

Energy Policy 34 (2006) 16451658 Technological learning and renewable energy costs: implications for  

E-Print Network (OSTI)

electricity cost estimates used in energy policy planning models. Sensitivities of the learning rates penetration rates range from highly optimistic judgments to historical trend extrapolation. One particular: Learning by doing; Renewable energy costs; Research expenditures 1. Introduction Changes in the electricity

Vermont, University of

200

Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants  

SciTech Connect

OAK-B135 This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

Camillo A. DiNunzio Framatome ANP DE& S; Dr. Abhinav Gupta Assistant Professor NCSU; Dr. Michael Golay Professor MIT Dr. Vincent Luk Sandia National Laboratories; Rich Turk Westinghouse Electric Company Nuclear Systems; Charles Morrow, Sandia National Laboratories; Geum-Taek Jin, Korea Power Engineering Company Inc.

2002-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint  

Science Conference Proceedings (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

2008-05-01T23:59:59.000Z

202

General Equilibrium, Electricity Generation Technologies and the Cost of Carbon Abatement  

E-Print Network (OSTI)

Electricity generation is a major contributor to carbon dioxide emissions, and a key determinant of abatement costs. Ex-ante assessments of carbon policies mainly rely on either of two modeling paradigms: (i) partial ...

Lanz, Bruno, 1980-

203

New Zealand Interactive Electricity Generation Cost Model 2010 | Open  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » New Zealand Interactive Electricity Generation Cost Model 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: New Zealand Interactive Electricity Generation Cost Model 2010 Agency/Company /Organization: New Zealand Energy Authority Sector: Energy Topics: Finance, Implementation, Co-benefits assessment Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.med.govt.nz/templates/MultipageDocumentTOC____45553.aspx Country: New Zealand Cost: Free Australia and New Zealand Coordinates: -40.900557°, 174.885971°

204

NREL: Technology Deployment - Integrated Deployment Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Deployment Model Integrated Deployment Model NREL's integrated deployment model provides a framework to focus on the national goal of accelerating market adoption of clean energy technologies through local efforts. With support from the U.S. Department of Energy (DOE), NREL developed and applies the integrated deployment model to select projects including disaster recovery, statewide activities, federal agency support, island activities, and community renewable energy deployment. How the Model Works To address the complex challenges of multi-technology, multi-stakeholder, and multi-fuel deployment, NREL created the integrated deployment model to support each technology area separately but also consider the integration points between the technologies. NREL also identifies the cross-cutting

205

Cost effectiveness of the 1993 Model Energy Code in Colorado  

SciTech Connect

This report documents an analysis of the cost effectiveness of the Council of American Building Officials` 1993 Model Energy Code (MEC) building thermal-envelope requirements for single-family homes in Colorado. The goal of this analysis was to compare the cost effectiveness of the 1993 MEC to current construction practice in Colorado based on an objective methodology that determined the total life-cycle cost associated with complying with the 1993 MEC. This analysis was performed for the range of Colorado climates. The costs and benefits of complying with the 1993 NIEC were estimated from the consumer`s perspective. The time when the homeowner realizes net cash savings (net positive cash flow) for homes built in accordance with the 1993 MEC was estimated to vary from 0.9 year in Steamboat Springs to 2.4 years in Denver. Compliance with the 1993 MEC was estimated to increase first costs by $1190 to $2274, resulting in an incremental down payment increase of $119 to $227 (at 10% down). The net present value of all costs and benefits to the home buyer, accounting for the mortgage and taxes, varied from a savings of $1772 in Springfield to a savings of $6614 in Steamboat Springs. The ratio of benefits to costs ranged from 2.3 in Denver to 3.8 in Steamboat Springs.

Lucas, R.G.

1995-06-01T23:59:59.000Z

206

HVAC Modeling for Cost of Ownership Assessment in Biotechnology & Drugs Manufacturing  

E-Print Network (OSTI)

2000 Broomes, Peter. , HVAC Modeling for Cost of Ownership2000 Broomes, Peter. , HVAC Results Comparison, April,HVAC Modeling for Cost of Ownership Assessment in

Broomes, Peter; Dornfeld, David A

2003-01-01T23:59:59.000Z

207

System cost model user`s manual, version 1.2  

SciTech Connect

The System Cost Model (SCM) was developed by Lockheed Martin Idaho Technologies in Idaho Falls, Idaho and MK-Environmental Services in San Francisco, California to support the Baseline Environmental Management Report sensitivity analysis for the U.S. Department of Energy (DOE). The SCM serves the needs of the entire DOE complex for treatment, storage, and disposal (TSD) of mixed low-level, low-level, and transuranic waste. The model can be used to evaluate total complex costs based on various configuration options or to evaluate site-specific options. The site-specific cost estimates are based on generic assumptions such as waste loads and densities, treatment processing schemes, existing facilities capacities and functions, storage and disposal requirements, schedules, and cost factors. The SCM allows customization of the data for detailed site-specific estimates. There are approximately forty TSD module designs that have been further customized to account for design differences for nonalpha, alpha, remote-handled, and transuranic wastes. The SCM generates cost profiles based on the model default parameters or customized user-defined input and also generates costs for transporting waste from generators to TSD sites.

Shropshire, D.

1995-06-01T23:59:59.000Z

208

Energy Policy 28 (2000) 907}921 Modeling uncertainty of induced technological change  

E-Print Network (OSTI)

This paper presents a new method for modeling-induced technological learning and uncertainty in energy systems. Three related features are introduced simultaneously: (1) increasing returns to scale for the costs of new technologies; (2) clusters of linked technologies that induce learning depending on their technological `proximitya in addition to the technology relations through the structure (and connections) of the energy system; and (3) uncertain costs of all technologies and energy sources. The energy systems-engineering model MESSAGE developed at IIASA was modi"ed to include these three new features. MESSAGE is a linear programming optimization model. The starting point for this new approach was a global (single-region) energy systems version of the MESSAGE model that includes more than 100 di!erent energy extraction, conversion, transport, distribution and end-use technologies. A new feature is that the future costs of all technologies are uncertain and assumed to be distributed according to the log-normal distribution. These are stylized distribution functions that indirectly re#ect the cost distributions of energy technologies in the future based on the analysis of the IIASA energy technology inventory. In addition, the expected value of these cost distributions is assumed to decrease and variance to narrow with the increasing application of new technologies. This means that the process of technological learning is uncertain even as cumulative experience increases. New technologies include, for example, fuel cells, photovoltaic and wind energy conversion technologies. The technologies are related through the structure of energy system in MESSAGE. For example, cheaper wind energy has direct

Andrii Gritsevskyi; Nebojs A Nakich Enovich

2000-01-01T23:59:59.000Z

209

Applying environmental externalities to US Clean Coal Technologies for Asia. [Including external environmental costs  

SciTech Connect

The United States is well positioned to play an expanding role in meeting the energy technology demands of the Asian Pacific Basin, including Indonesia, Thailand, and the Republic of China (ROC-Taiwan). The US Department of Energy Clean Coal Technology (CCT) Demonstration Program provides a proving ground for innovative coal-related technologies that can be applied domestically and abroad. These innovative US CCTs are expected to satisfy increasingly stringent environmental requirements while substantially improving power generation efficiencies. They should also provide distinct advantages over conventional pulverized coal-fired combustors. Finally, they are expected to be competitive with other energy options currently being considered in the region. This paper presents potential technology scenarios for Indonesia, Thailand, and the ROC-Taiwan and considers an environmental cost-benefit approach employing a newly developed method of applying environmental externalities. Results suggest that the economic benefits from increased emission control can indeed be quantified and used in cost-benefit comparisons, and that US CCTs can be very cost effective in reducing emissions.

Szpunar, C.B.; Gillette, J.L.

1993-01-01T23:59:59.000Z

210

A fresh look at cost estimation, process models and risk analysis, EDSER-1  

E-Print Network (OSTI)

Reliable cost estimation is indispensable for industrial software development. A detailed analysis shows why the existing cost models are unreliable. Cost estimation should integrate software process modelling and risk analysis. A novel approach based on probability theory is proposed. A probabilistic cost model could provide a solid basis for cost-benefit analyses. 1

Frank Padberg

1999-01-01T23:59:59.000Z

211

Updated Cost and Performance Estimates for Clean Coal Technologies Including CO2 Capture - 2006  

Science Conference Proceedings (OSTI)

Construction and commodity costs were relatively stable for the period 2000-2003. However there were also very few orders for new coal plants in that period when Natural Gas Combined Cycle (NGCC) Plants were mostly the chosen technology selection. Since 2003 the value of the US dollar has been reduced versus other currencies. The rapid increases in crude oil and natural gas prices since early 2004 have also produced marked increases in several commodities and thereby the cost of construction of power pla...

2007-03-27T23:59:59.000Z

212

Survey of Technologies and Cost Estimates for Residential Electricity Services Jason W. Black, Marija Ilic, IEEE Fellow  

E-Print Network (OSTI)

Survey of Technologies and Cost Estimates for Residential Electricity Services Jason W. Black This survey contains a sample of the available technologies for implementing residential electricity services understanding of the potential for implementation of residential services. The estimation of the costs

Ilic, Marija D.

213

WELCST: engineering cost model of geothermal wells. Description and user's guide  

DOE Green Energy (OSTI)

WELCST, a FORTRAN code for estimating the effects of R and D project results upon the future cost of geothermal wells is described. The code simulates the drilling and completion of a well at 27 specific US geothermal prospects, given assumptions about well design and casing plan, formation drillability, and selected engineering and cost characteristics of today's drilling technology. The user may change many of the assumptions about engineering and cost characteristics to allow WELCST to simulate impacts of specific R and D projects on the estimated cost of wells at the prospects. An important capability of WELCST is that it simulates rates and costs of major drilling mishaps, based on drilling incident data from the Imperial Valley and Geysers geothermal fields. WELCST is capable of estimating geothermal well costs at liquid-dominated (hydrothermal) sites, vapor-dominated sites, geopressured sites, and Hot Dry Rock sites. The model can contribute to many system-optimization studies, and could be easily adapted to estimate well costs outside of the United States.

Entingh, D.J.; Lopez, A.

1979-02-01T23:59:59.000Z

214

Cost effectiveness analysis of the SEAMIST{trademark} membrane system technology  

SciTech Connect

This report describes the cost and performance characteristics of SEAMIST{trademark}, an innovative technology that facilitates measurements of contaminants in both vertical and horizontal vadose zone boreholes. This new technology consists of an airtight membrane linear that is pneumatically emplaced inside the borehole structure. Sampling ports with attached tubing, absorbent collectors, or various in situ measuring devices can be fabricated into the linear and used for monitoring volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides, herbicides, polynuclear aromatic hydrocarbons, polychlorinated biphenyls, or radioactive substances. In addition, small instruments can be guided through the lined borehole and measurements taken inside at specified intervals.

Henriksen, A.D.; Booth, S.R.

1993-11-01T23:59:59.000Z

215

Lawrence Livermore National Security Cost Model Functional Management Assessment  

Science Conference Proceedings (OSTI)

The scope of the Functional Management Assessment of the cost model included a review of the plan and progress of the Cost Model Review Team. The review focused on processes in place to ensure simplicity, compliance with cost accounting standards and indirect cost allocation methodology, and the change management plan. This was intended to be a high-level initial review in order to provide recommendations for a subsequent more comprehensive review. The single document reviewed by the team during the assessment was the Indirect Cost Recovery Model Review, which describes how the indirect rate restructure and new organizational structure have resulted in streamlined charging practices to better understand and strategically manage costs. ISSUE 1: The cost model focuses heavily on rate structure but not on cost management. Significant progress has been made to simplify the rate structure. The number of indirect rates has been reduced from 67 different indirect rates used under the prior contract to 32 rates in the first year of the LLNS contract, with a goal of further reduction to 16 for FY09. The reductions are being recommended by a broad-based Working Group driven by Lab leadership desiring a simplified rate structure that would make it easier to analyze the true cost of overhead, be viewed as equitable, and ensure appropriate use of Service, i.e., operations, Centers. This has been a real challenge due to the significant change in approach from one that previously involved a very complex rate structure. Under this prior approach, the goal was to manage the rates, and rates were established at very detailed levels that would 'shine the light' on pools of overhead costs. As long as rates stayed constant or declined, not as much attention tended to be given to them, particularly with so many pools to review (184 indirect rate pools in FY05). However, as difficult and important as simplifying the rate structure has been, the fundamental reason for the simplification is to make it easier to analyze the true cost of overhead so the costs can be effectively managed. For the current year, the overall the goal of keeping the total cost of an FTE to FY07 levels. This approach reflects the past practice of managing to rates rather than focusing on costs, although streamlined with the more simplified rate structure. Given all the challenges being faced with the contract transition, this was a reasonable interim tactic for dealing with the known cost increases such as fees and taxes. Nonetheless, in order to take full advantage of the opportunities that exist for making sound decisions for further reducing the rates themselves, the Laboratory needs to implement an ongoing and disciplined approach to understanding and managing overhead cost. ISSUE 2: The NIF has a significantly different rate structure than other Laboratory work. Because of its significant size and unique organizational structure as a major construction project, the National Ignition Facility (NIF) has indirect charges that vary from the norm. These variations were reviewed and approved by and disclosed to the NNSA in the Laboratory's past annual Disclosure Statements. In mid-FY 09, NIF will begin transition from a construction line item to an operational center. The reallocation of costs when this occurs could significantly impact the Laboratory's rates and rate structure planning for that transition from a cost- and rate- impact standpoint should begin soon. ISSUE 3: The new rate model must be finalized shortly in order to implement the model beginning in FY 09. As noted in Issue No.1, a Working Group has developed a simplified rate structure for the Lab to use for FY09. The Working Group has evaluated the cost impacts of the simplified rate structure at the major program level and identified a disparate impact in the Safeguards and Security area where a substantial increase in overhead cost allocation may need to be mitigated. The simplified rate structure will need to be approved by the Laboratory Director and issued within the Laboratory to formulate detailed bu

Tevis, J; Hirahara, J; Thomas, B; Mendez, M

2008-06-12T23:59:59.000Z

216

Empirical Memory-Access Cost Models in Multicore NUMA Architectures  

SciTech Connect

Data location is of prime importance when scheduling tasks in a non-uniform memory access (NUMA) architecture. The characteristics of the NUMA architecture must be understood so tasks can be scheduled onto processors that are close to the task's data. However, in modern NUMA architectures, such as AMD Magny-Cours and Intel Nehalem, there may be a relatively large number of memory controllers with sockets that are connected in a non-intuitive manner, leading to performance degradation due to uninformed task-scheduling decisions. In this paper, we provide a method for experimentally characterizing memory-access costs for modern NUMA architectures via memory latency and bandwidth microbenchmarks. Using the results of these benchmarks, we propose a memory-access cost model to improve task-scheduling decisions by scheduling tasks near the data they need. Simple task-scheduling experiments using the memory-access cost models validate the use of empirical memory-access cost models to significantly improve program performance.

McCormick, Patrick S. [Los Alamos National Laboratory; Braithwaite, Ryan Karl [Los Alamos National Laboratory; Feng, Wu-chun [Virginia Tech

2011-01-01T23:59:59.000Z

217

Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.  

SciTech Connect

This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.

Laird, Daniel L.; Johnson, Erick L.; Ochs, Margaret Ellen; Boren, Blake [Oregon State University, Corvallis, OR

2013-05-01T23:59:59.000Z

218

Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGHT-DUTY VEHICLES LIGHT-DUTY VEHICLES Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies TRANSPORTATION ENERGY FUTURES SERIES: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, Illinois 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

219

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

6719 6719 November 2009 Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage D. Steward, G. Saur, M. Penev, and T. Ramsden National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-560-46719 November 2009 Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage D. Steward, G. Saur, M. Penev, and T. Ramsden Prepared under Task No. H278.3400 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

220

Development of Cost Effective Oxy-Combustion Technology for Retrofitting Coal-Fired Boilers  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost effeCtive Cost effeCtive oxy-Combustion teChnology for retrofitting Coal-fireD boilers Background Electric power generation from fossil fuels represents one of the largest contributors to greenhouse gas emissions, not just in the United States, but throughout the world. Various technologies and concepts are being investigated as means to mitigate carbon dioxide (CO 2 ) emissions. The concept of pulverized coal (PC) oxy-combustion is one potential economical solution, whereby coal is combusted in an enriched oxygen environment using pure oxygen diluted with recycled flue gas. In this manner, the flue gas is composed primarily of CO 2 and H 2 O, so that a concentrated stream of CO 2 is produced by simply condensing the water in the exhaust stream. An advantage of

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3  

SciTech Connect

The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

Frey, H.C. [North Carolina State Univ., Raleigh, NC (United States); Williams, R.B. [Carneigie Mellon Univ., Pittsburgh, PA (United States)

1995-09-01T23:59:59.000Z

222

Wireless Smart Sensor Development Update: Applying Technology to Reduce Fire Watch Costs and to Improve Coverage  

Science Conference Proceedings (OSTI)

Smart Sensor product development for the use of fire watch improvement has been initiated by EPRI for the purposes of understanding the current state and/or industry available systems for electronically supporting the performance of existing work activities and/or providing for performance enhancement through cost effective monitoring and automation capabilities. The use of wireless technologies will allow a greater ease of deployment, reduced response time, and increased efficiency for fire watch equipm...

2004-12-11T23:59:59.000Z

223

A stochastic model for the measurement of electricity outage costs  

SciTech Connect

The measurement of customer outage costs has recently become an important subject of research for electric utilities. This paper uses a stochastic dynamic model as the starting point in developing a market-based method for the evaluation of outage costs. Specifically, the model postulates that once an electricity outage occurs, all production activity stops. Full production is resumed once the electricity outage is over. This process repeats itself indefinitely. The business customer maximizes his expected discounted profits (the expected value of the firm), taking into account his limited ability to respond to repeated random electricity outages. The model is applied to 11 industrial branches in Israel. The estimates exhibit a large variation across branches. 34 refs., 3 tabs.

Grosfeld-Nir, A.; Tishler, A. (Tel Aviv Univ. (Israel))

1993-01-01T23:59:59.000Z

224

Report on the planning workshop on cost-effective ceramic machining. Ceramic Technology Project  

DOE Green Energy (OSTI)

A workshop on ``Cost Effective Ceramic Machining`` (CECM) was held at Oak Ridge Associated Universities Pollard Auditorium, Oak Ridge, Tennessee, May 1991. The purpose of this workshop was to present a preliminary project plan for industry critique and to identify specific components and cost-reduction targets for a new project on Cost Effective Ceramic Machining. The CECM project is an extension of the work on the Ceramic Technology for Advanced Heat Engines (CTAHE) Program sponsored by the Department of Energy, Office of Transportation Materials. The workshop consisted of fifteen invited papers, discussions, a survey of the attendee`s opinions, and a tour of the High Temperature Materials Laboratory at ORNL. The total number of registrants was sixty-seven, including thirty-three from industry or private sector organizations, seven from universities, three from industry groups, fourteen from DOE laboratories (including ORNL, Y-12, and Lawrence Livermore Laboratory), three from trade associations, and three from other government organizations. Forty- one survey forms, which critiqued the proposed project plan, were completed by attendees, and the results are presented in this report. Valves, cam roller followers, water pump seals, and diesel engine head plates were rated highest fro application of ceramic machining concepts to reduce cost. Coarse grinding, abrasives and wheel technology, and fine grinding were most highly rated as regards their impact on cost reduction. Specific cost-reduction targets for given parts varied greatly in the survey results and were not felt to be useful for the purposes for the CECM plan development. A range of individual comments were obtained and are listed in an appendix. As a result of the workshop and subsequent discussions, a modified project plan, different in certain aspects from the original CECM plan, has been developed.

Blau, P.J.

1991-11-01T23:59:59.000Z

225

Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

Science Conference Proceedings (OSTI)

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Ellen Hawes; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

2006-09-30T23:59:59.000Z

226

Case studies of energy information systems and related technology: Operational practices, costs, and benefits  

SciTech Connect

Energy Information Systems (EIS), which can monitor and analyze building energy consumption and related data throughout the Internet, have been increasing in use over the last decade. Though EIS developers describe the capabilities, costs, and benefits of EIS, many of these descriptions are idealized and often insufficient for potential users to evaluate cost, benefit and operational usefulness. LBNL has conducted a series of case studies of existing EIS and related technology installations. This study explored the following questions: (1) How is the EIS used in day-to-day operation? (2) What are the costs and benefits of an EIS? (3) Where do the energy savings come from? This paper reviews the process of these technologies from installation through energy management practice. The study is based on interviews with operators and energy managers who use EIS. Analysis of energy data trended by EIS and utility bills was also conducted to measure the benefit. This paper explores common uses and findings to identify energy savings attributable to EIS, and discusses non-energy benefits as well. This paper also addresses technologies related to EIS that have been demonstrated and evaluated by LBNL.

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Dewey, Jim

2003-09-02T23:59:59.000Z

227

Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

SciTech Connect

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

Bill Stanley; Patrick Gonzalez; Sandra Brown; Sarah Woodhouse Murdock; Jenny Henman; Zoe Kant; Gilberto Tiepolo; Tim Pearson; Neil Sampson; Miguel Calmon

2005-10-01T23:59:59.000Z

228

Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

SciTech Connect

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Zoe Kant; Sarah Woodhouse Murdock; Neil Sampson; Gilberto Tiepolo; Tim Pearson; Sarah Walker; Miguel Calmon

2006-01-01T23:59:59.000Z

229

Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

SciTech Connect

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2007. The specific tasks discussed include: Task 1--carbon inventory advancements; Task 2--emerging technologies for remote sensing of terrestrial carbon; Task 3--baseline method development; Task 4--third-party technical advisory panel meetings; Task 5--new project feasibility studies; and Task 6--development of new project software screening tool.

Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

2007-03-31T23:59:59.000Z

230

Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

SciTech Connect

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between October 1st and December 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

2006-12-31T23:59:59.000Z

231

Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

SciTech Connect

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon

2006-04-01T23:59:59.000Z

232

On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells  

DOE Green Energy (OSTI)

Final Report of On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells. The objective of this effort was to technologically enable a compact, fast start-up integrated Water Gas Shift-Pd membrane reactor for integration into an On Board Fuel Processing System (FPS) for an automotive 50 kWe PEM Fuel Cell (PEM FC). Our approach was to: (1) use physics based reactor and system level models to optimize the design through trade studies of the various system design and operating parameters; and (2) synthesize, characterize and assess the performance of advanced high flux, high selectivity, Pd alloy membranes on porous stainless steel tubes for mechanical strength and robustness. In parallel and not part of this program we were simultaneously developing air tolerant, high volumetric activity, thermally stable Water Gas Shift catalysts for the WGS/membrane reactor. We identified through our models the optimum WGS/membrane reactor configuration, and best Pd membrane/FPS and PEM FC integration scheme. Such a PEM FC power plant was shown through the models to offer 6% higher efficiency than a system without the integrated membrane reactor. The estimated FPS response time was < 1 minute to 50% power on start-up, 5 sec transient response time, 1140 W/L power density and 1100 W/kg specific power with an estimated production cost of $35/kW. Such an FPS system would have a Catalytic Partial Oxidation System (CPO) rather than the slower starting Auto-Thermal Reformer (ATR). We found that at optimum WGS reactor configuration that H{sub 2} recovery efficiencies of 95% could be achieved at 6 atm WGS pressure. However optimum overall fuel to net electrical efficiency ({approx}31%) is highest at lower fuel processor efficiency (67%) with 85% H{sub 2} recovery because less parasitic power is needed. The H{sub 2} permeance of {approx}45 m{sup 3}/m{sup 2}-hr-atm{sup 0.5} at 350 C was assumed in these simulations. In the laboratory we achieved a H{sub 2} permeance of 50 m{sup 3}/(m{sup 2}-hr-atm{sup 0.5}) with a H{sub 2}/N{sub 2} selectivity of 110 at 350 C with pure Pd. We also demonstrated that we could produce Pd-Ag membranes. Such alloy membranes are necessary because they aren't prone to the Pd-hydride {alpha}-{beta} phase transition that is known to cause membrane failure in cyclic operation. When funding was terminated we were on track to demonstrated Pd-Ag alloy deposition on a nano-porous ({approx}80 nm) oxide layer supported on porous stainless steel tubing using a process designed for scale-up.

Thomas H. Vanderspurt; Zissis Dardas; Ying She; Mallika Gummalla; Benoit Olsommer

2005-12-30T23:59:59.000Z

233

Process-Based Cost Modeling to Support Target Value Design  

E-Print Network (OSTI)

Maintaining Activity-based Cost Estimates with Feature-Based2004). Effective Cost Estimate and Construction Processesof new designs. These cost estimates are inflated by the

Nguyen, Hung Viet

2010-01-01T23:59:59.000Z

234

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network (OSTI)

of the battery, according to the battery cost equations (seediscussion of battery cost above). There actually are twoin the amount and cost of fuel-storage, battery, vehicle

Delucchi, Mark

2005-01-01T23:59:59.000Z

235

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hour-by-Hour Cost Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Genevieve Saur (PI), Chris Ainscough (Presenter), Kevin Harrison, Todd Ramsden National Renewable Energy Laboratory January 17 th , 2013 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Acknowledgements * This work was made possible by support from the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy (EERE). http://www.eere.energy.gov/topics/hydrogen_fuel_cells.html * NREL would like to thank our DOE Technology Development Managers for this project, Sara Dillich, Eric Miller, Erika Sutherland, and David Peterson. * NREL would also like to acknowledge the indirect

236

Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant  

Science Conference Proceedings (OSTI)

Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0.88 million, the annual maintenance and surveillance cost is estimated to be about $0.095 million, and deferred decontamination is estimated to cost about $6.50 million. Therefore, passive SAFSTOR for 10 years is estimated to cost $8.33 million in nondiscounted 1981 dollars. DECON with lagoon waste stabilization is estimated to cost about $4.59 million, with an annual cost of $0.011 million for long-term care. All of these estimates include a 25% contingency. Waste management costs for DECON, including the net cost of disposal of the solvent extraction lagoon wastes by shipping those wastes to a uranium mill for recovery of residual uranium, comprise about 38% of the total decommissioning cost. Disposal of lagoon waste at a commercial low-level waste burial ground is estimated to add $10.01 million to decommissioning costs. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year committed dose equivalent to members of the public from airborne releases during normal decommissioning activities is estimated to 'Je about 4.0 man-rem. Radiation doses to the public from accidents are found to be very low for all phases of decommissioning. Occupational radiation doses from normal decommissioning operations (excluding transport operations) are estimated to be about 79 man-rem for DECON and about 80 man-rem for passive SAFSTOR with 10 years of safe storage. Doses from DECON with lagoon waste stabilization are about the same as for DECON except there is less dose resulting from transportation of radioactive waste. The number of fatalities and serious lost-time injuries not related to radiation is found to be very small for all decommissioning alternatives. Comparison of the cost estimates shows that DECON with lagoon waste stabilization is the least expensive method. However, this alternative does not allow unrestricted release of the site. The cumulative cost of maintenance and surveillance and the higher cost of deferred decontamination makes passive SAFSTOR more expensive than DECON. Seve

Elder, H. K.

1981-10-01T23:59:59.000Z

237

Sustainability and socio-enviro-technical systems: modeling total cost of ownership in capital facilities  

Science Conference Proceedings (OSTI)

Investment in sustainability strategies and technologies holds promise for significant cost savings over the operational phase of a facility's life cycle, while more effectively meeting stakeholder needs. However, accurately estimating the first costs ...

Annie R. Pearce; Kristen L. Sanford Bernhardt; Michael J. Garvin

2010-12-01T23:59:59.000Z

238

Technical Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

Science Conference Proceedings (OSTI)

The Nature Conservancy participated in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project was 'Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration'. The objectives of the project were to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Final Technical Report discusses the results of the six tasks that The Nature Conservancy undertook to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between July 1st 2001 and July 10th 2008. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. The project occurred in two phases. The first was a focused exploration of specific carbon measurement and monitoring methodologies and pre-selected carbon sequestration opportunities. The second was a more systematic and comprehensive approach to compare various competing measurement and monitoring methodologies, and assessment of a variety of carbon sequestration opportunities in order to find those that are the lowest cost with the greatest combined carbon and other environmental benefits. In the first phase we worked in the U.S., Brazil, Belize, Bolivia, Peru, and Chile to develop and refine specific carbon inventory methods, pioneering a new remote-sensing method for cost-effectively measuring and monitoring terrestrial carbon sequestration and system for developing carbon baselines for both avoided deforestation and afforestation/reforestation projects. We evaluated the costs and carbon benefits of a number of specific terrestrial carbon sequestration activities throughout the U.S., including reforestation of abandoned mined lands in southwest Virginia, grassland restoration in Arizona and Indiana, and reforestation in the Mississippi Alluvial Delta. The most cost-effective U.S. terrestrial sequestration opportunity we found through these studies was reforestation in the Mississippi Alluvial Delta. In Phase II we conducted a more systematic assessment and comparison of several different measurement and monitoring approaches in the Northern Cascades of California, and a broad 11-state Northeast regional assessment, rather than pre-selected and targeted, analysis of terrestrial sequestration costs and benefits. Work was carried out in Brazil, Belize, Chile, Peru and the USA. Partners include the Winrock International Institute for Agricultural Development, The Sampson Group, Programme for Belize, Society for Wildlife Conservation (SPVS), Universidad Austral de Chile, Michael Lefsky, Colorado State University, UC Berkeley, the Carnegie Institution of Washington, ProNaturaleza, Ohio State University, Stephen F. Austin University, Geographical Modeling Services, Inc., WestWater, Los Alamos National Laboratory, Century Ecosystem Services, Mirant Corporation, General Motors, American Electric Power, Salt River Project, Applied Energy Systems, KeySpan, NiSource, and PSEG. This project, 'Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration', has resulted in over 50 presentations and reports, available publicly through the Department of Energy or by visiting the links listed in Appendix 1. More

Bill Stanley; Sandra Brown; Zoe Kant; Patrick Gonzalez

2009-01-07T23:59:59.000Z

239

Technical Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

SciTech Connect

The Nature Conservancy participated in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project was 'Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration'. The objectives of the project were to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Final Technical Report discusses the results of the six tasks that The Nature Conservancy undertook to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between July 1st 2001 and July 10th 2008. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. The project occurred in two phases. The first was a focused exploration of specific carbon measurement and monitoring methodologies and pre-selected carbon sequestration opportunities. The second was a more systematic and comprehensive approach to compare various competing measurement and monitoring methodologies, and assessment of a variety of carbon sequestration opportunities in order to find those that are the lowest cost with the greatest combined carbon and other environmental benefits. In the first phase we worked in the U.S., Brazil, Belize, Bolivia, Peru, and Chile to develop and refine specific carbon inventory methods, pioneering a new remote-sensing method for cost-effectively measuring and monitoring terrestrial carbon sequestration and system for developing carbon baselines for both avoided deforestation and afforestation/reforestation projects. We evaluated the costs and carbon benefits of a number of specific terrestrial carbon sequestration activities throughout the U.S., including reforestation of abandoned mined lands in southwest Virginia, grassland restoration in Arizona and Indiana, and reforestation in the Mississippi Alluvial Delta. The most cost-effective U.S. terrestrial sequestration opportunity we found through these studies was reforestation in the Mississippi Alluvial Delta. In Phase II we conducted a more systematic assessment and comparison of several different measurement and monitoring approaches in the Northern Cascades of California, and a broad 11-state Northeast regional assessment, rather than pre-selected and targeted, analysis of terrestrial sequestration costs and benefits. Work was carried out in Brazil, Belize, Chile, Peru and the USA. Partners include the Winrock International Institute for Agricultural Development, The Sampson Group, Programme for Belize, Society for Wildlife Conservation (SPVS), Universidad Austral de Chile, Michael Lefsky, Colorado State University, UC Berkeley, the Carnegie Institution of Washington, ProNaturaleza, Ohio State University, Stephen F. Austin University, Geographical Modeling Services, Inc., WestWater, Los Alamos National Laboratory, Century Ecosystem Services, Mirant Corporation, General Motors, American Electric Power, Salt River Project, Applied Energy Systems, KeySpan, NiSource, and PSEG. This project, 'Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration', has resulted in over 50 presentations and reports, available publicly through the Department of Energy or by visiting the links listed in Appendix 1. More

Bill Stanley; Sandra Brown; Zoe Kant; Patrick Gonzalez

2009-01-07T23:59:59.000Z

240

THE APPLICATION AND DEVELOPMENT OF APPROPRIATE TOOLS AND TECHNOLOGIES FOR COST-EFFECTIVE CARBON SEQUESTRATION  

SciTech Connect

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research projects is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

Bill Stanley; Sandra Brown; Ellen Hawes; Zoe Kant; Miguel Calmon; Gilberto Tiepolo

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

SciTech Connect

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: remote sensing for carbon analysis; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

Bill Stanley; Sandra Brown; Patrick Gonzalez; Zoe Kant; Gilberto Tiepolo; Wilber Sabido; Ellen Hawes; Jenny Henman; Miguel Calmon; Michael Ebinger

2004-07-10T23:59:59.000Z

242

APPLICATION AND DEVELOPMENT OF APPROPRIATE TOOLS AND TECHNOLOGIES FOR COST-EFFECTIVE CARBON  

SciTech Connect

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

Bill Stanley; Sandra Brown; Ellen Hawes; Zoe Kant; Miguel Calmon; Patrick Gonzalez; Brad Kreps; Gilberto Tiepolo

2003-09-01T23:59:59.000Z

243

Renewable Energy Cost Modeling: A Toolkit for Establishing Cost-Based Incentives in the United States; March 2010 -- March 2011  

Science Conference Proceedings (OSTI)

This report is intended to serve as a resource for policymakers who wish to learn more about establishing cost-based incentives. The report will identify key renewable energy cost modeling options, highlight the policy implications of choosing one approach over the other, and present recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, feed-in tariffs (FITs), or similar policies. These recommendations will be utilized in designing the Cost of Renewable Energy Spreadsheet Tool (CREST). Three CREST models will be publicly available and capable of analyzing the cost of energy associated with solar, wind, and geothermal electricity generators. The CREST models will be developed for use by state policymakers, regulators, utilities, developers, and other stakeholders to assist them in current and future rate-setting processes for both FIT and other renewable energy incentive payment structures and policy analyses.

Gifford, J. S.; Grace, R. C.; Rickerson, W. H.

2011-05-01T23:59:59.000Z

244

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

245

Program Record 13006 (Offices of Vehicle Technologies and Fuel Cell Technologies: Life-Cycle Costs of Mid-Size Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Vehicle Technologies & Fuel Cell Program Record (Offices of Vehicle Technologies & Fuel Cell Technologies) Record #: 13006 Date: April 24, 2013 Title: Life-cycle Costs of Mid-Size Light-Duty Vehicles Originator: Tien Nguyen & Jake Ward Approved by: Sunita Satyapal Pat Davis Date: April 25, 2013 Items: DOE is pursuing a portfolio of technologies with the potential to significantly reduce greenhouse gases (GHG) emissions and petroleum consumption while being cost-effective. This record documents the assumptions and results of analyses conducted to estimate the life-cycle costs resulting from several fuel/vehicle pathways, for a future mid-size car. The results are summarized graphically in the following figure. Costs of Operation for Future Mid-Size Car

246

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

Science Conference Proceedings (OSTI)

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

247

Phase 2 cost quality management assessment report for the Office of Technology Development (EM-50)  

SciTech Connect

The Office of Environmental Management (EM) Head quarters (HQ) Cost Quality Management Assessment (CQMA) evaluated the practices of the Office of Technology Development (EM-50). The CQMA reviewed EM-50 management documents and reported results in the HQ CQMA Phase 1 report (March 1993). In this Assessment Phase, EM-50 practices were determined through interviews with staff members. The interviews were conducted from the end of September through early December 1993. EM-50 management documents (Phase 1) and practices (Phase 2) were compared to the Performance Objectives and Criteria (POCs) contained in the DOE/HQ Cost Quality Management Assessment Handbook. More detail on the CQMA process is provided in section 2. Interviewees are listed in appendix A. Documents reviewed during Phase 2 are listed in appendix B. Section 3 contains detailed observations, discussions, and recommendations. A summary of observations and recommendations is presented.

Not Available

1994-08-01T23:59:59.000Z

248

Fuel Cell Technologies Office: Transport Modeling Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Modeling Transport Modeling Working Group to someone by E-mail Share Fuel Cell Technologies Office: Transport Modeling Working Group on Facebook Tweet about Fuel Cell Technologies Office: Transport Modeling Working Group on Twitter Bookmark Fuel Cell Technologies Office: Transport Modeling Working Group on Google Bookmark Fuel Cell Technologies Office: Transport Modeling Working Group on Delicious Rank Fuel Cell Technologies Office: Transport Modeling Working Group on Digg Find More places to share Fuel Cell Technologies Office: Transport Modeling Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

249

Thermal energy storage for space cooling. Technology for reducing on-peak electricity demand and cost  

DOE Green Energy (OSTI)

Cool storage technology can be used to significantly reduce energy costs by allowing energy intensive, electrically driven cooling equipment to be predominantly operated during off-peak hours when electricity rates are lower. In addition, some system configurations may result in lower first costs and/or lower operating costs. Cool storage systems of one type or another could potentially be cost-effectively applied in most buildings with a space cooling system. A survey of approximately 25 manufacturers providing cool storage systems or components identified several thousand current installations, but less than 1% of these were at Federal facilities. With the Federal sector representing nearly 4% of commercial building floor space and 5% of commercial building energy use, Federal utilization would appear to be lagging. Although current applications are relatively few, the estimated potential annual savings from using cool storage in the Federal sector is $50 million. There are many different types of cool storage systems representing different combinations of storage media, charging mechanisms, and discharging mechanisms. The basic media options are water, ice, and eutectic salts. Ice systems can be further broken down into ice harvesting, ice-on-coil, ice slurry, and encapsulated ice options. Ice-on-coil systems may be internal melt or external melt and may be charged and discharged with refrigerant or a single-phase coolant (typically a water/glycol mixture). Independent of the technology choice, cool storage systems can be designed to provide full storage or partial storage, with load-leveling and demand-limiting options for partial storage. Finally, storage systems can be operated on a chiller-priority or storage priority basis whenever the cooling load is less than the design conditions. The first section describes the basic types of cool storage technologies and cooling system integration options. The next three sections define the savings potential in the Federal sector, present application advice, and describe the performance experience of specific Federal users. A step-by-step methodology illustrating how to evaluate cool storage options is presented next, followed by a case study of a GSA building using cool storage. Latter sections list manufacturers, selected Federal users, and reference materials. Finally, the appendixes give Federal life-cycle costing procedures and results for a case study.

None

2000-12-01T23:59:59.000Z

250

Generalized linear model-based expert system for estimating the cost of transportation projects  

Science Conference Proceedings (OSTI)

Timely effective cost management requires reliable cost estimates at every stage of project development. While underestimation of transportation costs seems to be a global trend, improving early cost prediction accuracy in estimates is difficult. This ... Keywords: Cost management, Expert system, Generalized linear model, Relational database, Transportation projects

Jui-Sheng Chou

2009-04-01T23:59:59.000Z

251

Modeling of Cost Curves 1.0 Costs of Generating Electrical Energy  

E-Print Network (OSTI)

production costs. Some typical average costs of fuel are given in the following table for coal, petroleum [1] Petroleum [2] Natural Gas [3] All Fossil Fuels Receipts (Billion BTU) Average Cost Avg. Sulfur fuel, kerosene, petroleum coke (converted to liquid petroleum, see Technical Notes for conversion

McCalley, James D.

252

Los Alamos Waste Management Cost Estimation Model; Final report: Documentation of waste management process, development of Cost Estimation Model, and model reference manual  

Science Conference Proceedings (OSTI)

This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs.

Matysiak, L.M.; Burns, M.L.

1994-03-01T23:59:59.000Z

253

A MODEL FOR DETERMINING DIPOLE, QUADRUPOLE, AND COMBINED FUNCTION MAGNET COSTS.  

SciTech Connect

One of the most important considerations in designing large accelerators is cost. This paper describes a model for estimating accelerator magnet costs, including their dependences on length, radius, and field. The reasoning behind the cost model is explained, and the parameters of the model are chosen so as to correctly give the costs of a few selected magnets. A comparison is made with earlier formulae. Estimates are also given for other costs linearly dependent on length, and for 200 MHz superconducting RF.

PALMER, R.B.; BERG,S.J.

2004-09-14T23:59:59.000Z

254

Building Technologies Office: Energy Modeling Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Software Modeling Software Information from energy simulation software is critical in the design of energy-efficient commercial buildings. The tools listed on this page are the product of Commercial Buildings Integration Program (CBI) research and are used in modeling current CBI projects. Modeling helps architects and building designers quickly identify the most cost-effective and energy-saving measures. Graphic of the EnergyPlus software logo. EnergyPlus - An award-winning new-generation building energy simulation program from the creators of BLAST and DOE-2. EnergyPlus models heating, cooling, lighting, ventilating, water, and other energy flows in buildings. OpenStudio - A free plugin for the SketchUp 3D drawing program. The plugin makes it easy to create and edit the building geometry in your EnergyPlus input files.

255

Design Optimization and Construction of the Thyratron/PFN Based Cost Model Modulator for the NLC  

SciTech Connect

As design studies and various R and D efforts continue on Next Linear Collider (NLC) systems, much R and D work is being done on X-Band klystron development, and development of pulse modulators to drive these X-Band klystrons. A workshop on this subject was held at SLAC in June of 1998, and a follow-up workshop is scheduled at SLAC June 23-25, 1999. At the 1998 workshop, several avenues of R and D were proposed using solid state switching, induction LINAC principles, high voltage hard tubes, and a few more esoteric ideas. An optimized version of the conventional thyratron-PFN-pulse transformer modulator for which there is extensive operating experience is also a strong candidate for use in the NLC. Such a modulator is currently under construction for base line demonstration purposes. The performance of this ''Cost Model'' modulator will be compared to other developing technologies. Important parameters including initial capital cost, operating maintenance cost, reliability, maintainability, power efficiency, in addition to the usual operating parameters of pulse flatness, timing and pulse height jitter, etc. will be considered in the choice of a modulator design for the NLC. This paper updates the progress on this ''Cost Model'' modulator design and construction.

Koontz, Roland F

1999-03-15T23:59:59.000Z

256

Development of cost-effective surfactant flooding technology. Quarterly report, April 1995--June 1995  

SciTech Connect

The objective of this research is to develop cost-effective surfactant flooding technology by using surfactant simulation studies to evaluate and optimize alternative design strategies taking into account reservoir characteristics, process chemistry, and process design options such as horizontal wells. Task 1 is the development of an improved numerical method for our simulator that will enable us to solve a wider class of these difficult simulation problems, accurately and affordably. Task 2 is the application of this simulator to the optimization of surfactant flooding to reduce its risk and cost. The objective of Task 2 is to investigate and evaluate, through a systematic simulation study, surfactant flooding processes that are cost-effective. We previously have reported on low tension polymer flooding as an alternative to classical surfactant/polymer flooding. In this reporting period, we have studied the potential of improving the efficiency of surfactant/polymer flooding by coinjecting an alkali agent such as sodium carbonate under realistic reservoir conditions and process behavior. The alkaline/surfactant/polymer (ASP) flood attempts to take advantage of high pH fluids to reduce the amount of surfactant needed by the chemical reactions between injection fluid and formation fluid or formation rocks.

Pope, G.A.; Sepehrnoori, K.; Jessen, F.W.

1995-12-31T23:59:59.000Z

257

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Appendices. Volume 2  

SciTech Connect

Appendices are presented concerning the evaluations of decommissioning financing alternatives; reference site description; reference BWR facility description; radiation dose rate and concrete surface contamination data; radionuclide inventories; public radiation dose models and calculated maximum annual doses; decommissioning methods; generic decommissioning information; immediate dismantlement details; passive safe storage, continuing care, and deferred dismantlement details; entombment details; demolition and site restoration details; cost estimating bases; public radiological safety assessment details; and details of alternate study bases.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

258

Program on Technology Innovation: Fossil Power Plant Cost and Performance Trends  

Science Conference Proceedings (OSTI)

This report is one of two companion studies that describe trends in operating costs and reliability of fossil steam plants since 1970. The studies are a foundation for more sophisticated statistical studies aimed at modeling and predicting the impacts of cycling. This report summarizes results for gas- and oil-fired steam generating units, contrasting two-shift or daily cycling with all other operating modes. It also includes systematic and similar data on coal plants. Chronological trends since 1982 are...

2006-08-31T23:59:59.000Z

259

Dual Estimates of the Optimal Plan Model and Regional Market Costs: A Relationship  

Science Conference Proceedings (OSTI)

The relationship between linear programming dual estimates for the optimal production plan model and real regional market costs is studied. A two-stage linear programming model is necessary for exact approximation of cost allocation in analyzing with ...

Yu. M. Tsodikov; Ya. Yu. Tsodikova

2001-04-01T23:59:59.000Z

260

Towards a "personal cost" model for end-user development  

Science Conference Proceedings (OSTI)

Software cost estimation techniques are used to provide a useful measure of the complexities, efforts, and costs involved in system development. Despite three decades of research on software cost estimation, the research community has yet to provide ... Keywords: EUD, cost-estimation, end-user development, motivation, qualitative evaluation, software quality

Roderick A. Farmer; Baden Hughes

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vehicle Technologies Office: Modeling, Testing and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Testing and Analysis Modeling, Testing and Analysis The Vehicle Technologies Office's robust portfolio is supported by modeling, testing, and analysis. This work complements the research on batteries, power electronics, and materials, helping researchers integrate these components and ensure the whole vehicle meets consumer and commercial needs. Modeling allows researchers to build "virtual vehicles" that simulate fuel economy, emissions and performance of a potential vehicle. The Office has supported the development of several software-based analytic tools that researchers can use or license. Integration and Validation allows researchers to test physical component and subsystem prototypes as if they are in a real vehicle. Laboratory and Fleet Testing provides data on PEVs through both dynamometer and on-the-road testing. Researchers use the data to benchmark current vehicles, as well as validate the accuracy of software models.

262

Discrete Event Model Development of Pilot Plant Scale Microalgae Facilities: An Analysis of Productivity and Costs  

E-Print Network (OSTI)

America's reliance on foreign oil has raised economic and national security issues, and in turn the U.S. has been active in reducing its dependence on foreign oil to mitigate these issues. Also, the U.S. Navy has been instrumental in driving bio-fuel research and production by setting an ambitious goal to purchase 336M gallons of bio-fuel by 2020. The production of microalgae biomass is a promising field which may be able to meet these demands. The utilization of microalgae for the production of bio-fuel requires the implementation of efficient culturing processes to maximize production and reduce costs. Therefore, three discrete rate event simulation models were developed to analyze different scaling scenarios and determine total costs associated with each scenario. Three scaling scenarios were identified by this analysis and included a stepwise, volume batching and intense culturing process. A base case and potential best case were considered in which the culturing duration, lipid content and lipid induction period were adjusted. A what-if analysis was conducted which identified and reduced capital and operational costs contributing greatly to total costs. An NPV analysis was performed for each scenario to identify the risk associated with future cash flows. The research findings indicate that the intense culturing scaling scenario yielded the greatest model throughput and least total cost for both the base case and potential best case. However, this increased productivity and cost reduction were not significantly greater than the productivity generated by the stepwise scaling scenario, suggesting that the implementation of flat plate bio-reactors in the intense culturing process may be non-advantageous given the increased operational costs of these devices. The volume batching scenario yielded the greatest total cost L^-1 of microalgae bio-oil for both, indicating an inefficient process. The scaling scenarios of the base case and potential best case yielded negative NPV's while the stepwise and intense culturing scenarios of the what-if analysis generated positive NPV's. The base case is based on current technological advances, biological limitations and costs of microalgae production therefore, a negative NPV suggests that utilizing microalgae for bio-fuel production is not an economically feasible project at this time.

Stepp, Justin Wayne

2011-08-01T23:59:59.000Z

263

Capital cost models for geothermal power plants and fluid transmission systems. [GEOCOST  

SciTech Connect

The GEOCOST computer program is a simulation model for evaluating the economics of developing geothermal resources. The model was found to be both an accurate predictor of geothermal power production facility costs and a valid designer of such facilities. GEOCOST first designs a facility using thermodynamic optimization routines and then estimates costs for the selected design using cost models. Costs generated in this manner appear to correspond closely with detailed cost estimates made by industry planning groups. Through the use of this model, geothermal power production costs can be rapidly and accurately estimated for many alternative sites making the evaluation process much simpler yet more meaningful.

Schulte, S.C.

1977-09-01T23:59:59.000Z

264

Modeling the Benefits of Storage Technologies to Wind Power  

DOE Green Energy (OSTI)

Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

Sullivan, P.; Short, W.; Blair, N.

2008-06-01T23:59:59.000Z

265

A model of technological course of using information technology  

Science Conference Proceedings (OSTI)

The purpose of this study was to develop of information technology and network infrastructure construction On the past decades, educators have developed various scales to measure the learning attitudes. But few of them have constructed specifically for ... Keywords: information technology, technological course

Rong-Jyue Fang; Hung Jen Yang; Hua Lin Tsai; Chi Jen Lee; Tien-Sheng Tsai; Dai-Hua Li

2008-03-01T23:59:59.000Z

266

Characterizing emerging industrial technologies in energy models  

E-Print Network (OSTI)

Efficient and Clean Energy Technologies, 2000. Scenarios ofEmerging Energy-Efficient Industrial Technologies, Lawrenceinformation about energy efficiency technologies, their

Laitner, John A. Skip; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

2003-01-01T23:59:59.000Z

267

Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California  

Science Conference Proceedings (OSTI)

Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by California Energy Commission (CEC) and managed by California Institute for Energy and Environment (CIEE). The project purpose is to characterize energy savings, technology costs, market potential, and economic viability of newly selected technologies applicable to California. In this report, LBNL first performed technology reviews to identify new or under-utilized technologies that could offer potential in improving energy efficiency and additional benefits to California industries as well as in the U.S. industries, followed by detailed technology assessment on each targeted technology, with a focus on California applications. A total of eleven emerging or underutilized technologies applicable to California were selected and characterized with detailed information in this report. The outcomes essentially include a multi-page summary profile for each of the 11 emerging or underutilized technologies applicable to California industries, based on the formats used in the technology characterization reports (Xu et al. 2010; Martin et al. 2000).

Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

2010-12-15T23:59:59.000Z

268

Introduction to production cost models 1.0 Introduction  

E-Print Network (OSTI)

(t) is total maintenance costs in year t. · O(t) is the cost associated with outages. and the overbar in (1 · I(t) is total investment costs at year t · S(t) is total salvage value of retired plants at year t (and for all plants still in operation at year T). · F(t) is total fuel costs in year t. · M

McCalley, James D.

269

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

CTL production Oil shale production Biofuels productionshale have zero Resource- Cost), while in GTL and CTL production,

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

270

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

GTL production CTL production Oil shale production Biofuelsoil and shale have zero Resource- Cost), while in GTL and CTL production,

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

271

Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Biomass Program has begun an initiative to obtain consistent quantitative metrics for algal biofuel production to establish an 'integrated baseline' by harmonizing and combining the Program's national resource assessment (RA), techno-economic analysis (TEA), and life-cycle analysis (LCA) models. The baseline attempts to represent a plausible near-term production scenario with freshwater microalgae growth, extraction of lipids, and conversion via hydroprocessing to produce a renewable diesel (RD) blendstock. Differences in the prior TEA and LCA models were reconciled (harmonized) and the RA model was used to prioritize and select the most favorable consortium of sites that supports production of 5 billion gallons per year of RD. Aligning the TEA and LCA models produced slightly higher costs and emissions compared to the pre-harmonized results. However, after then applying the productivities predicted by the RA model (13 g/m2/d on annual average vs. 25 g/m2/d in the original models), the integrated baseline resulted in markedly higher costs and emissions. The relationship between performance (cost and emissions) and either productivity or lipid fraction was found to be non-linear, and important implications on the TEA and LCA results were observed after introducing seasonal variability from the RA model. Increasing productivity and lipid fraction alone was insufficient to achieve cost and emission targets; however, combined with lower energy, less expensive alternative technology scenarios, emissions and costs were substantially reduced.

Davis, R.; Fishman, D.; Frank, E. D.; Wigmosta, M. S.; Aden, A.; Coleman, A. M.; Pienkos, P. T.; Skaggs, R. J.; Venteris, E. R.; Wang, M. Q.

2012-06-01T23:59:59.000Z

272

Financing end-use solar technologies in a restructured electricity industry: Comparing the cost of public policies  

DOE Green Energy (OSTI)

Renewable energy technologies are capital intensive. Successful public policies for promoting renewable energy must address the significant resources needed to finance them. Public policies to support financing for renewable energy technologies must pay special attention to interactions with federal, state, and local taxes. These interactions are important because they can dramatically increase or decrease the effectiveness of a policy, and they determine the total cost of a policy to society as a whole. This report describes a comparative analysis of the cost of public policies to support financing for two end-use solar technologies: residential solar domestic hot water heating (SDHW) and residential rooftop photovoltaic (PV) systems. The analysis focuses on the cost of the technologies under five different ownership and financing scenarios. Four scenarios involve leasing the technologies to homeowners in return for a payment that is determined by the financing requirements of each form of ownership. For each scenario, the authors examine nine public policies that might be used to lower the cost of these technologies: investment tax credits (federal and state), production tax credits (federal and state), production incentives, low-interest loans, grants (taxable and two types of nontaxable), direct customer payments, property and sales tax reductions, and accelerated depreciation.

Jones, E.; Eto, J.

1997-09-01T23:59:59.000Z

273

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

Science Conference Proceedings (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

Sathaye, J.; Xu, T.; Galitsky, C.

2010-08-15T23:59:59.000Z

274

Cost analysis methodology: Photovoltaic Manufacturing Technology Project. Annual subcontract report, 11 March 1991--11 November 1991  

DOE Green Energy (OSTI)

This report describes work done under Phase 1 of the Photovoltaic Manufacturing Technology (PVMaT) Project. PVMaT is a five-year project to support the translation of research and development in PV technology into the marketplace. PVMaT, conceived as a DOE/industry partnership, seeks to advanced PV manufacturing technologies, reduce PV module production costs, increase module performance, and expand US commercial production capacities. Under PVMaT, manufacturers will propose specific manufacturing process improvements that may contribute to the goals of the project, which is to lessen the cost, thus hastening entry into the larger scale, grid-connected applications. Phase 1 of the PVMaT project is to identify obstacles and problems associated with manufacturing processes. This report describes the cost analysis methodology required under Phase 1 that will allow subcontractors to be ranked and evaluated during Phase 2.

Whisnant, R.A. [Research Triangle Inst., Research Triangle Park, NC (United States)

1992-09-01T23:59:59.000Z

275

User manual for GEOCOST: a computer model for geothermal cost analysis. Volume 2. Binary cycle version  

DOE Green Energy (OSTI)

A computer model called GEOCOST has been developed to simulate the production of electricity from geothermal resources and calculate the potential costs of geothermal power. GEOCOST combines resource characteristics, power recovery technology, tax rates, and financial factors into one systematic model and provides the flexibility to individually or collectively evaluate their impacts on the cost of geothermal power. Both the geothermal reservoir and power plant are simulated to model the complete energy production system. In the version of GEOCOST in this report, geothermal fluid is supplied from wells distributed throughout a hydrothermal reservoir through insulated pipelines to a binary power plant. The power plant is simulated using a binary fluid cycle in which the geothermal fluid is passed through a series of heat exchangers. The thermodynamic state points in basic subcritical and supercritical Rankine cycles are calculated for a variety of working fluids. Working fluids which are now in the model include isobutane, n-butane, R-11, R-12, R-22, R-113, R-114, and ammonia. Thermodynamic properties of the working fluids at the state points are calculated using empirical equations of state. The Starling equation of state is used for hydrocarbons and the Martin-Hou equation of state is used for fluorocarbons and ammonia. Physical properties of working fluids at the state points are calculated.

Huber, H.D.; Walter, R.A.; Bloomster, C.H.

1976-03-01T23:59:59.000Z

276

ORCED: A model to simulate the operations and costs of bulk-power markets  

SciTech Connect

Dramatic changes in the structure and operation of US bulk-power markets require new analytical tools. The authors developed the Oak Ridge Competitive Electricity Dispatch (ORCED) model to analyze a variety of public-policy issues related to the many changes underway in the US electricity industry. Such issues include: policy and technology options to reduce carbon emissions from electricity production; the effects of electricity trading between high- and low-cost regions on consumers and producers in both regions; the ability of the owners of certain generating units to exercise market power as functions of the transmission link between two regions and the characteristics of the generating units and loads in each region; and the market penetration of new energy-production and energy-use technologies and the effects of their adoption on fuel use, electricity use and costs, and carbon emissions. ORCED treats two electrical systems connected by a single transmission link ORCED uses two load-duration curves to represent the time-varying electricity consumption in each region. The two curves represent peak and offpeak seasons. User specification of demand elasticities permits ORCED to estimate the effects of changes in electricity price, both overall and hour by hour, on overall electricity use and load shapes. ORCED represents the electricity supply in each region with 26 generating units. The two regions are connected by a single transmission link. This link is characterized by its capacity (MW), cost ({cents}/kWh), and losses (%). This report explains the inputs to, outputs from, and operation of ORCED. It also presents four examples showing applications of the model to various public-policy issues related to restructuring of the US electricity industry.

Hadley, S.; Hirst, E.

1998-06-01T23:59:59.000Z

277

Study of photovoltaic cost elements. Volume 4. Installation cost model for residential PV systems: users manual. Final report  

SciTech Connect

A quantitative methodology is presented for estimating installation costs of residential photovoltaic systems. The Installation Cost Model for Residential PV Systems is comprised of 144 estimating equations selectively exercised, based on user definition of the system. At the input stage, Residential PV systems can be fully described by 9 design option categories and 9 system specification categories. All assumptions have been validated with installers of solar thermal systems and with TB and A's Architects and Engineers Division. A discussion of the model is included as well as an example of its use with an 8 KW PV system for a Southwest All-Electric Residential design.

1981-07-01T23:59:59.000Z

278

Modelling the costs of energy crops: A case study of U.S. corn and Brazilian sugar cane  

E-Print Network (OSTI)

EPRG WORKING PAPER High crude oil prices, uncertainties about the consequences of climate change and the eventual decline of conventional oil production raise the prospects of alternative fuels, such as biofuels. This paper describes a simple probabilistic model of the costs of energy crops, drawing on the user's degree of belief about a series of parameters as an input. This forward-looking analysis quantifies the effects of production constraints and experience on the costs of corn and sugar cane, which can then be converted to bioethanol. Land is a limited and heterogeneous resource: the crop cost model builds on the marginal land suitability, which is assumed to decrease as more land is taken into production, driving down the marginal crop yield. Also, the maximum achievable yield is increased over time by technological change, while the yield gap between the actual yield and the maximum yield decreases through improved management practices. The results show large uncertainties in the future costs of producing corn and sugar cane, with a 90% confidence interval of 2.9 to 7.2 $/GJ in 2030 for marginal corn costs, and 1.5 to 2.5 $/GJ in 2030 for marginal sugar cane costs. The influence of each parameter on these costs is examined.

Aurlie Mjean; Chris Hope; Aurlie Mjean; Chris Hope

2009-01-01T23:59:59.000Z

279

Energy Analysis Models, Tools and Software Technologies - Energy ...  

Energy Analysis Models, Tools and Software Technology Marketing Summaries Here youll find marketing summaries of energy analysis models, tools, and software ...

280

Plug-In Electric Vehicle Lithium-Ion Battery Cost and Advanced Battery Technologies Forecasts  

Science Conference Proceedings (OSTI)

Batteries are a critical cost factor for plug-in electric vehicles, and the current high cost of lithium ion batteries poses a serious challenge for the competitiveness of Plug-In Electric Vehicles (PEVs). Because the market penetration of PEVs will depend heavily on future battery costs, determining the direction of battery costs is very important. This report examines the cost drivers for lithium-ion PEV batteries and also presents an assessment of recent advancements in the growing attempts to ...

2012-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Five Facts About Prices: A Reevaluation of Menu Cost Models  

E-Print Network (OSTI)

We establish five facts about prices in the U.S. economy: 1) The median implied duration of consumer prices when sales are excluded at the product level is between 8 and 11 months. The median implied duration of finished goods producer prices is 8.7 months. 2) One-third of regular price changes are price decreases. 3) The frequency of price increases responds strongly to inflation while the frequency of price decreases and the size of price increases and price decreases do not. 4) The frequency of price change is highly seasonal: It is highest in the 1st quarter and lowest in the 4th quarter. 5) The hazard function of price changes for individual consumer and producer goods is downward sloping for the first few months and then flat (except for a large spike at 12 months in consumer services and all producer prices). These facts are based on CPI microdata and a new comprehensive data set of microdata on producer prices that we construct from raw production files underlying the PPI. We show that the 1st, 2nd and 3rd facts are consistent with a benchmark menu-cost model, while the 4th and 5th facts are not.

Emi Nakamura; Jn Steinsson

2006-01-01T23:59:59.000Z

282

GEOCITY: a computer model for systems analysis of geothermal district heating and cooling costs  

DOE Green Energy (OSTI)

GEOCITY is a computer-simulation model developed to study the economics of district heating/cooling using geothermal energy. GEOCITY calculates the cost of district heating/cooling based on climate, population, resource characteristics, and financing conditions. The basis for our geothermal-energy cost analysis is the unit cost of energy which will recover all the costs of production. The calculation of the unit cost of energy is based on life-cycle costing and discounted-cash-flow analysis. A wide variation can be expected in the range of potential geothermal district heating and cooling costs. The range of costs is determined by the characteristics of the resource, the characteristics of the demand, and the distance separating the resource and the demand. GEOCITY is a useful tool for estimating costs for each of the main parts of the production process and for determining the sensitivity of these costs to several significant parameters under a consistent set of assumptions.

Fassbender, L.L.; Bloomster, C.H.

1981-06-01T23:59:59.000Z

283

Study of Possible Applications of Currently Available Building Information Modeling Tools for the Analysis of Initial Costs and Energy Costs for Performing Life Cycle Cost Analysis  

E-Print Network (OSTI)

The cost of design, construction and maintenance of facilities is on continual rise. The demand is to construct facilities which have been designed by apply life cycle costing principles. These principles have already given strong decision making power to the manufacturing industry. The need to satisfy the environmental sustainability requirements, improve operational effectiveness of buildings and apply value engineering principles has increased the dependency on life cycle costing analysis. The objective is to obtain economically viable solutions by analyzing the alternatives during the design of a building. Though the LCCA process is able to give the desired results, it does have some problems which have stood as hindrances to the more widespread use of the LCCA concept and method. The literature study has highlighted that the problem areas are the lack of frameworks or mechanisms for collecting and storing data and the complexity of LCCA exercise, which involves the analysis of a thousand of building elements and a number of construction-type options and maintenance activities for each building element at detailed design stages. Building Information Modeling has been able to repeatedly answer the questions raised by the AEC industry. The aim of this study is to identify the areas where BIM can be effectively applied to the LCCA process and become a part of the workflow. In this study, initially four LCCA case studies are read and evaluated from the point of view of understanding the method in which the life cycle costing principles have been applied. The purpose, the type alternatives examined, the process of analysis, the type of software used and the results are understood. An attempt has been carried out to understand the workflow of the LCCA process. There is a confidence that Building Information Modeling is capable of handling changes during the design, construction and maintenance phases of the project. Since applying changes to any kind of information of the building during LCC analysis forms the core, it has become necessary to use computer building models for examining these changes. The building modeling softwares are enumerated. The case studies have highlighted that the evaluation of the alternatives are primarily to achieve energy efficient solutions for the buildings. Applying these solutions involves high initial costs. The return on investment is the means by which these solutions become viable to the owners of the facilities. This is where the LCCA has been applied. Two of the important cost elements of the LCC analysis are initial costs and the operating costs of the building. The collaboration of these modeling tools with other estimating software where the initial costs of the building can be generated is studied. The functions of the quantity take-off tools and estimating tools along with the interoperability between these tools are analyzed. The operating costs are generated from the software that focuses on sustainability. And the currently used tools for performing the calculations of the life cycle costing analysis are also observed. The objective is to identify if the currently available BIM tools and software can help in obtaining LCCA results and are able to offset the hindrances of the process. Therefore, the software are studied from the point of view of ease of handling data and the type of data that can be generated. Possible BIM workflows are suggested depending on the functions of the software and the relationship between them. The study has aimed at taking a snapshot the current tools available which can aid the LCCA process. The research is of significance to the construction industry as it forms a precursor to the application of Building Information Modeling to the LCCA process as it shows that it has the capacity of overcoming the obstacles for life cycle costing. This opens a window to the possibility of applying BIM to LCCA and furthering this study.

Mukherji, Payal Tapandev

2010-12-01T23:59:59.000Z

284

Low-cost, highly efficient, and tunable ultrafast laser technology based on directly diode-pumped Cr:Colquiriites  

E-Print Network (OSTI)

This doctoral project aims to develop robust, ultra low-cost ($5,000-20,000), highly-efficient, and tunable femtosecond laser technology based on diode-pumped Cr:Colquiriite gain media (Cr:LiCAF, Cr3+:LiSAF and Cr:LiSGaF). ...

Demirbas, Umit

2010-01-01T23:59:59.000Z

285

Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology  

DOE Green Energy (OSTI)

Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

2006-08-01T23:59:59.000Z

286

Proceedings: Workshop on CO2 Transport/Storage Cost Modeling  

Science Conference Proceedings (OSTI)

If reductions in CO2 emissions are needed in the utility industry, one of the potential solutions is application of CO2 capture and storage. In order to make informed decisions on applying CO2 capture and storage to the utility industry, high quality estimates of the costs are needed. While significant efforts have been made to evaluate the costs of CO2 capture from power plants, relatively little has been done to develop costs of transport and storage of CO2. This report presents the results of a worksh...

2009-03-27T23:59:59.000Z

287

Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station  

SciTech Connect

This study presents the results of a comparison of a previous decommissioning cost study by Pacific Northwest Laboratory (PNL) and a recent decommissioning cost study of TLG Engineering, Inc., for the same commercial nuclear power reactor station. The purpose of this comparative analysis on the same plant is to determine the reasons why subsequent estimates for similar plants by others were significantly higher in cost and external occupational radiation exposure (ORE) than the PNL study. The primary purpose of the original study by PNL (NUREG/CR-0672) was to provide information on the available technology, the safety considerations, and the probable costs and ORE for the decommissioning of a large boiling water reactor (BWR) power station at the end of its operating life. This information was intended for use as background data and bases in the modification of existing regulations and in the development of new regulations pertaining to decommissioning activities. It was also intended for use by utilities in planning for the decommissioning of their nuclear power stations. The TLG study, initiated in 1987 and completed in 1989, was for the same plant, Washington Public Supply System's Unit 2 (WNP-2), that PNL used as its reference plant in its 1980 decommissioning study. Areas of agreement and disagreement are identified, and reasons for the areas of disagreement are discussed. 31 refs., 3 figs., 22 tabs.

Konzek, G.J.; Smith, R.I. (Pacific Northwest Lab., Richland, WA (USA))

1990-12-01T23:59:59.000Z

288

Energy Storage Technology and Application Cost and Performance Data Base-2011  

Science Conference Proceedings (OSTI)

This product, an update to EPRI product 1020071, presents 2011 updated data on the cost, performance, and capabilities of energy storage systems for various applications. The data is presented in the form of an Excel workbook database. The goal of this research was to develop objective and consistent installed costs and operational and maintenance costs for a set of selected energy storage systems in the identified applications. Specific objectives included development of the installed costs and operatin...

2011-12-16T23:59:59.000Z

289

Integrated modelling of risk and uncertainty underlying the cost and effectiveness of water quality measures  

Science Conference Proceedings (OSTI)

In this paper we present an overview of the most important sources of uncertainty when analysing the least cost way to improve water quality. The estimation of the cost-effectiveness of water quality measures is surrounded by environmental, economic ... Keywords: Cost-effectiveness, Integrated modelling, Risk, Uncertainty, Water quality

Roy Brouwer; Chris De Blois

2008-07-01T23:59:59.000Z

290

Cash Flow Forecasting Model for General Contractors Using Moving Weights of Cost Categories  

E-Print Network (OSTI)

. Navon's model 1995, 1997 automatically in- tegrates the bill of quantity BOQ , cost estimate. Moreover, the main obstacle to automating the integration process is compatibility between cost items, and equipment which are specified as percentages of total cost. This approach is very realistic because

Sheridan, Jennifer

291

Photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. (Solarex Corp., Frederick, MD (United States))

1991-12-01T23:59:59.000Z

292

Cost modeling approach and economic analysis of biomass gasification integrated solid oxide fuel cell systems  

Science Conference Proceedings (OSTI)

This paper presents a cost modeling approach and the economic feasibility for selected plant configurations operating under three modes: air gasification

Rajesh S. Kempegowda; yvind Skreiberg; Khanh-Quang Tran

2012-01-01T23:59:59.000Z

293

Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction: July 9, 2005 - July 8, 2006  

DOE Green Energy (OSTI)

This report analyzes the status of wind energy technology in 2002 and describes the potential for technology advancements to reduce the cost and increase the performance of wind turbines.

Cohen, J.; Schweizer, T.; Laxson, A.; Butterfield, S.; Schreck, S.; Fingersh, L.; Veers, P.; Ashwill, T.

2008-02-01T23:59:59.000Z

294

Evaluating trade-offs between sustainability, performance, and cost of green machining technologies  

E-Print Network (OSTI)

USA Institute for Production Science, Karlsruhe Institute of Technology, Karlsruhe, Germany Abstract The growing demand

Helu, Moneer

2012-01-01T23:59:59.000Z

295

System modeling, analysis, and optimization methodology for diesel exhaust after-treatment technologies; Diesel exhaust after-treatment technologies.  

E-Print Network (OSTI)

??Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing problem for many automotive companies and suppliers. Balancing manufacturing cost, meeting (more)

Graff, Christopher Dominic

2006-01-01T23:59:59.000Z

296

Development of an Operations and Maintenance Cost Model to Identify Cost of Energy Savings for Low Wind Speed Turbines: July 2, 2004 -- June 30, 2008  

SciTech Connect

The report describes the operatons and maintenance cost model developed by Global Energy Concepts under contract to NREL to estimate the O&M costs for commercial wind turbine generator facilities.

Poore, R.

2008-01-01T23:59:59.000Z

297

CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES  

SciTech Connect

Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and their potential significance to energy use in the industries, and new evaluation of additional seven technologies. The re-assessments were essentially updated with recent information that we searched and collected from literature to the extent possible. The progress of selected technologies as they diffused into the marketplace from 2000 to 2010 was then discussed in this report. The report also includes updated detailed characterizations of 15 technologies studied in 2000, with comparisons noted.

Xu, T.; Slaa, J.W.; Sathaye, J.

2010-12-15T23:59:59.000Z

298

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

testing their above-ground shale oil retorting technology.and Miller, G. A. Oil shales and carbon dioxide. Science, [D. J. and Cecchine, G. Oil shale development in the United

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

299

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

for CO2 evolved from oil shale. Fuel Processing Technology,E. T. and Miller, G. A. Oil shales and carbon dioxide.D. J. and Cecchine, G. Oil shale development in the United

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

300

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

D. J. and Cecchine, G. Oil shale development in the Unitedresources of some world oil-shale deposits. Technical Reportfor CO2 evolved from oil shale. Fuel Processing Technology,

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

VISION Model for Vehicle Technologies and Alternative Fuels | Open Energy  

Open Energy Info (EERE)

VISION Model for Vehicle Technologies and Alternative Fuels VISION Model for Vehicle Technologies and Alternative Fuels Jump to: navigation, search Tool Summary LAUNCH TOOL Name: VISION Model for Vehicle Technologies and Alternative Fuels Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Transportation Phase: Create a Vision Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.transportation.anl.gov/modeling_simulation/VISION/ OpenEI Keyword(s): EERE tool, VISION Model for Vehicle Technologies and Alternative Fuels References: The VISION Model [1] Estimate the potential energy use, oil use, and carbon emission impacts of advanced light and heavy-duty vehicle technologies and alternative fuels through 2050. The VISION model has been developed to provide estimates of the potential

302

Program on Technology Innovation: Cost Escalation Impact on Power Plant New Capacity Additions - 2008 to 2020  

Science Conference Proceedings (OSTI)

The EPRI Cost Escalation Impact on Power Plant New Capacity Additions 2008 to 2020 is intended to provide a snapshot of most recent (2003 to 3rd quarter 2008) cost escalation of materials, equipment, and labor in the power generation sector. This document is designed to help with information on current options in power generation infrastructure capital investments. Over the last 4 years, there has been an unprecedented increase in the cost of power plant components such as concrete, steel, copper, electr...

2008-12-22T23:59:59.000Z

303

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology  

DOE Green Energy (OSTI)

This paper presents a comparison of the costs and benefits (reduced petroleum consumption) of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

Markel, T.; Simpson, A.

2006-01-01T23:59:59.000Z

304

Enabling Thin Silicon Technologies for Next Generation Low-cost c ...  

Science Conference Proceedings (OSTI)

Symposium, Solar Cell Silicon ... from fossil fuels to renewable sources has spurred companies to reduce the cost of their solar photovoltaics (PV) systems.

305

TECHNOLOGY TYPE: ENVIRONMENTAL DECISION SUPPORT SOFTWARE APPLICATION: VISUALIZATION, SAMPLE OPTIMIZATION, AND COST- BENEFIT ANALYSIS OF ENVIRONMENTAL DATA SETS  

E-Print Network (OSTI)

Program (ETV) to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the ETV Program is to further environmental protection by substantially accelerating the acceptance and use of improved and cost-effective technologies. ETV seeks to achieve this goal by providing high-quality, peer-reviewed data on technology performance to those involved in the design, distribution, financing, permitting, purchase, and use of environmental technologies. ETV works in partnership with recognized standards and testing organizations and stakeholder groups consisting of regulators, buyers, and vendor organizations, with the full participation of individual technology developers. The program evaluates the performance of innovative technologies by developing test plans that are responsive to the needs of stakeholders, conducting field or laboratory tests (as appropriate), collecting and analyzing data, and preparing peer-reviewed reports. All evaluations are conducted in accordance with rigorous quality assurance protocols to ensure that data of known and adequate quality are generated and that the results are defensible. The Site Characterization and Monitoring Technologies Pilot (SCMT), one of 12 technology areas under ETV, is administered by EPAs National Exposure Research Laboratory (NERL). With the support of the U.S.

unknown authors

2000-01-01T23:59:59.000Z

306

Extending Simulation Modeling to Activity-Based Costing for Clinical Procedures  

Science Conference Proceedings (OSTI)

A simulation model was developed to measure costs in an Emergency Department setting for patients presenting with possible cervical-spine injury who needed radiological imaging. Simulation, a tool widely used to account for process variability but typically ... Keywords: activity-based costing, animated simulation modeling

Noah D. Glick; C. Craig Blackmore; William N. Zelman

2000-04-01T23:59:59.000Z

307

Available Technologies: Heart and Torso Phantom Model of ...  

APPLICATIONS OF TECHNOLOGY: Models the human torso, heart, and lungs for improving SPECT and PET imaging ; Develops and validates algorithms to ...

308

Smart Grid Technology Interactive Model | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Smart Grid Technology Interactive Model Share Description As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid...

309

V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels  

Science Conference Proceedings (OSTI)

The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

2012-10-01T23:59:59.000Z

310

Assessment of Cost Uncertainties for Large Technology Projects: A Methodology and an Application  

Science Conference Proceedings (OSTI)

Large projects, especially those planned and managed by government agencies, often incur substantial cost overruns. The tolerance, particularly on the part of members of Congress, for these cost overruns has decreased, thus increasing the need for accurate, ... Keywords: Decision analysis: risk. Government

Robin L. Dillon; Richard John; Detlof von Winterfeldt

2002-07-01T23:59:59.000Z

311

Vehicle Technologies Office: Modeling and Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

and low emissions in advanced internal combustion engine, advanced diesel engine, hybrid electric, and fuel cell vehicles. Advanced technology vehicles can incorporate any of a...

312

CAST SHOP TECHNOLOGY: I: Fundamentals and Modelling  

Science Conference Proceedings (OSTI)

By combining different techniques the energy dissipation in the reactor, the mass ... Arild Hkonsen, Hydro Aluminium R&D Materials Technology, P.O.Box 219,...

313

Towards sustainable business models from healthcare technology research  

Science Conference Proceedings (OSTI)

As demographic ageing impacts across the world, health and welfare organisations are seeking new paradigms of care that address people's needs as well as being inherently more scalable than the incumbent processes and services. The aim of this paper ... Keywords: Europe, ICT, business models, communications technology, computers in healthcare, health services, healthcare technology, inclusion, information technology, innovation, service provision, social care, welfare services

Maurice Mulvenna; Jonathan Wallace; George Moore; Suzanne Martin; Brendan Galbraith; Timber Haaker; Ferial Moelaert; Maria Jansson; Birgitta Bergvall-Kareborn; Ricardo Castellot; Anita Melander-Wikman; Johan E. Bengtsson; Lennart Isaksson; Chris Nugent

2010-07-01T23:59:59.000Z

314

Review of hardware cost estimation methods, models and tools applied to early phases of space mission planning  

E-Print Network (OSTI)

Equipment; AHP, Analytic Hierarchy Process; AMCM, Advanced Missions Cost Model; ASPE, American SocietyReview of hardware cost estimation methods, models and tools applied to early phases of space Cost estimation Cost model Parametrics Space hardware Early mission phase a b s t r a c t The primary

Sekercioglu, Y. Ahmet

315

PAFC Cost Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

PAFC Cost Challenges Sridhar Kanuri Manager, PAFC Technology *Sridhar.Kanuri@utcpower.com 2 AGENDA Purecell 400 cost challenge Cost reduction opportunities Summary 3 PURECELL ...

316

ESS 2012 Peer Review - Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries - Hongxing Hu, Amsen Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DESIGN © 2008 DESIGN © 2008 www.PosterPresentations.com Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries Hongxing Hu, Amsen Technologies LLC DOE SBIR Project, Program Manager at DOE: Dr. Imre Gyuk Objectives and Technical Approach Objectives: This SBIR project aims to develop low-cost, high performance hybrid polymeric PEMs for redox flow batteries (RFBs). Such membranes shall have high chemical stability in RFB electrolytes, high proton conductivity, low permeability of vanadium ions, along with high dimensional stability, high mechanical strength and durability, and lower cost than Nafion membranes. Approach: * Hybrid membranes of sulfonated polymers * Balance between different types of polymers for proton conductivity and chemical stability

317

DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Fuel Cell Technologies Office Record Record #: 13010 Date: June 11, 2013 Title: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost Originators: Scott McWhorter and Grace Ordaz Approved by: Sunita Satyapal Date: July 17, 2013 Item: This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive applications when manufactured at a volume of 500,000 units per year. The current projected performance and cost of these systems are presented in Table 1 against the DOE Hydrogen Storage System targets. These analyses were performed in support of the Hydrogen Storage

318

Technical Progress Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

Science Conference Proceedings (OSTI)

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. Work is being carried out in Brazil, Belize, Chile, Peru and the USA.

Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Ben Poulter; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon; Gilberto Tiepolo

2006-06-30T23:59:59.000Z

319

Incorporating carbon capture and storage technologies in integrated assessment models  

E-Print Network (OSTI)

and storage of CO2 from electric power plants. The electric power sector accounts for a substant of realistic technology adoption rates. The specification of input substitution, relative costs, and plant change has accounted for a significant portion of economic growth and is, in part, responsible

320

Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.  

Science Conference Proceedings (OSTI)

This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.

Laird, Daniel L.; Johnson, Erick L.; Ochs, Margaret Ellen; Boren, Blake [Oregon State University, Corvallis, OR

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A model of the Capital Cost of a natural gas-fired fuel cell based Central Utilities Plant  

DOE Green Energy (OSTI)

This model defines the methods used to estimate the cost associated with acquisition and installation of capital equipment of the fuel cell systems defined by the central utility plant model. The capital cost model estimates the cost of acquiring and installing the fuel cell unit, and all auxiliary equipment such as a boiler, air conditioning, hot water storage, and pumps. The model provides a means to adjust initial cost estimates to consider learning associated with the projected level of production and installation of fuel cell systems. The capital cost estimate is an input to the cost of ownership analysis where it is combined with operating cost and revenue model estimates.

Not Available

1993-06-30T23:59:59.000Z

322

NREL: Advanced Power Electronics - Modeling of Cooling Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling of Cooling Technologies Improves Performance Modeling of Cooling Technologies Improves Performance Thermal modeling image of spray cooling of inverter chip surface shows the liquid breaking up into fine droplets that impinge on the liquid wall, which enhances the spacial uniformity of heat removal. Modeling Cooling Technologies-Spray Cooling The NREL advanced power electronics team is modeling cooling technologies that would enhance performance of the inverters and motors in hybrid-electric and fuel cell vehicles. The team is modeling two-phase spray cooling, jet impingement, and mini- and micro-channel cooling, and has successfully used Fluent software to show a good comparison between numerical models and published experimental data. Currently, the team is conducting modeling to simulate real life conditions such as those that

323

Bulk Energy Storage Technologies, 2013: Performance Potential, Grid Services, and Cost Expectations  

Science Conference Proceedings (OSTI)

Bulk energy storage (BES) is a valuable technology option that can enhance grid flexibility, facilitate better utilization of existing grid assets, enhance wind farm economics, and facilitate higher penetration of renewables. Significant changes are now occurring that are enhancing the economic viability of BES, including technology advancements, new market products, regulatory incentives, generator retirements, and improved evaluation of BES revenues. As a result, a wide variety of BES technologies ...

2013-12-12T23:59:59.000Z

324

Low Cost High Performance Generator Technology Program. Volume 5. Heat Pipe Topical  

DOE Green Energy (OSTI)

Research progress towards the development of a heat pipe for use in the Low Cost High Performance Thermoelectric Generator Program is reported for the period May 15, 1975 through June 1975. (TFD)

Not Available

1975-07-01T23:59:59.000Z

325

Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology  

DOE Green Energy (OSTI)

This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

Simpson, A.

2006-11-01T23:59:59.000Z

326

Development of design & technology package for cost effective housing in Gujrat  

E-Print Network (OSTI)

Purpose: Improve quality of life in rural areas through intervention of infrastructure and housing improvement. Provide methods of building better and cost-effective houses at a quicker pace. Devise strategies of withdrawing ...

Chaudhry, Rajive

1996-01-01T23:59:59.000Z

327

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report  

SciTech Connect

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

328

Arbitrage Free Models In Markets With Transaction Costs  

E-Print Network (OSTI)

In \\cite{Gua} the notion of stickiness for stochastic processes was introduced. It was also shown that stickiness implies absense of arbitrage in a market with proportional transaction costs. In this paper, we investigate the notion of stickiness further. In particular, we show that stickiness is invariant under composition with continuous functions. We also prove a time change result on stickiness. As an application we provide sufficient conditions for continuous semimartingales to be sticky (A counter example show that not all semi-martingales are sticky). As a result, our paper provides an extended class of stochastic processes that are consistent with the no arbitrage property in a market with friction.

Bayraktar, Erhan

2008-01-01T23:59:59.000Z

329

Modelling Dynamic Constraints in Electricity Markets and the Costs of Uncertain Wind Output  

E-Print Network (OSTI)

III that we sub- sume supply technologies in different groups. To be more precise, we distinguish 16 supply technology groups (nuclear, three lignite, four hard coal, two combined cycle gas turbine, three open cycle gas turbine, two oil... shifts between periods. Finally, higher variable costs, incurred if power stations are operated below their optimal rating, are allocated to the locally lowest de- mand. For inflexible power stations like nuclear, combined cycle gas turbines or coal...

Musgens, Felix; Neuhoff, Karsten

2006-03-14T23:59:59.000Z

330

SMES benefit analysis using a product cost model for Puget Sound applications  

DOE Green Energy (OSTI)

Superconducting magnetic energy storage (SMES) is an emerging technology that is expected to provide a means of storing electrical energy for use during peak demand periods. Pacific Northwest Laboratory (PNL) has estimated benefits and costs associated with the use of SMES technology and has provided insight into the overall future potential of SMES in the service area of the Bonneville Power Administration (BPA) and on systems that connect and exchange power with BPA.

Dagle, J.E.

1993-08-01T23:59:59.000Z

331

Health information technology and its impact on the quality and cost of healthcare delivery  

Science Conference Proceedings (OSTI)

The impact of health information technologies (HIT) on the quality of healthcare delivery is a topic of significant importance and recent research has yielded mixed evidence. We use archival data on HIT usage in combination with data on quality of care ... Keywords: Electronic medical record, Health information technology, Process quality

Indranil R. Bardhan, Mark F. Thouin

2013-05-01T23:59:59.000Z

332

ESS 2012 Peer Review - Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies - Thomas Kodenkandath, ITN Energy Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative, high energy density Mn-V based RFB electrolytes as a Innovative, high energy density Mn-V based RFB electrolytes as a low-cost alternate to all-Vanadium systems * Low-cost membrane technology, based on renewable biopolymer Chitosan with improved proton conduction & chemical stability, adaptable to Mn-V system * Scale-up of electrolyte and membrane technologies in pursuit of ARPA-E's goal for a 2.5kW/10kWh RFB stack with integrated BoS at a total cost of ~$1000/unit and ~1.2 m 3 footprint ITN Energy Systems, Inc., Littleton, CO 2.5kW/10kWh Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies $2.1 M, 33-month program awarded by ARPA-E Sept 7, 2012 Dr. Thomas Kodenkandath High-Performance, Low-cost RFB through Electrolyte & Membrane Innovations Technology Summary

333

InterTechnology Corporation report of solar energy systems installation costs for selected commercial buildings  

DOE Green Energy (OSTI)

The results of a study in which the primary objective was to determine actual costs associated with the installation of solar collector and thermal energy storage subsystems in specific non-residential building applications are presented. A secondary objective of the study was to assemble details of existing solar collector and storage subsystem installations, including caveats concerning cost estimating, logistics and installation practices. The study began with the development of an exhaustive listing and compilation of basic data and contacts for non-residential applications of solar heating and cooling of buildings. Both existing projects and those under construction were surveyed. Survey summary sheets for each project encountered are provided as a separate appendix. Subsequently, the rationale used to select the projects studied in-depth is presented. The results of each of the detailed studies are then provided along with survey summary sheets for each of the projects studied. Installation cost data are summarized and the significance of the differences and similarities between the reported projects is discussed. After evaluating the data obtained from the detailed studies, methods for reducing installation labor costs are postulated based on the experience of the study. Some of the methods include modularization of collectors, preplumbing and preinsulating, and collector placement procedures. Methods of cost reduction and a summary discussion of prominent problems encountered in the projects are considered.(WHK)

None

1976-12-01T23:59:59.000Z

334

Core Information Model: A Practical Solution to Costly Integration Problems  

E-Print Network (OSTI)

as a whole. Thus, an enterprise information model is critical to CIM. A missing element in many CIM, CIM-OSA [3]), which are recommended by international standards communities as an economical way is then fully engineered to integrate with a generic, basic CIM data model developed from industrial scenarios

Hsu, Cheng

335

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices  

SciTech Connect

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

336

Cost-effective allocation of public funding to promote the commercialization of renewable energy technology  

E-Print Network (OSTI)

The need for new Renewable Energy Technologies (RETs) is growing with the challenge of providing affordable electricity under increasing environmental and public health constraints while promoting energy security and ...

Culver, Lauren C. (Lauren Claire)

2009-01-01T23:59:59.000Z

337

Energy Technology Cost and Performance Data

This data indicates...  

Open Energy Info (EERE)

energy and other technologies. The estimates are shown in dollars per installed kilowatts of generating capacity.


This data provides a compilation of...

338

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Science Conference Proceedings (OSTI)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

2009-11-01T23:59:59.000Z

339

Language model rest costs and space-efficient storage  

Science Conference Proceedings (OSTI)

Approximate search algorithms, such as cube pruning in syntactic machine translation, rely on the language model to estimate probabilities of sentence fragments. We contribute two changes that trade between accuracy of these estimates and memory, holding ...

Kenneth Heafield; Philipp Koehn; Alon Lavie

2012-07-01T23:59:59.000Z

340

A Neural Network Model for Construction Projects Site Overhead Cost Estimating in Egypt  

E-Print Network (OSTI)

Estimating of the overhead costs of building construction projects is an important task in the management of these projects. The quality of construction management depends heavily on their accurate cost estimation. Construction costs prediction is a very difficult and sophisticated task especially when using manual calculation methods. This paper uses Artificial Neural Network (ANN) approach to develop a parametric cost-estimating model for site overhead cost in Egypt. Fifty-two actual real-life cases of building projects constructed in Egypt during the seven year period 2002-2009 were used as training materials. The neural network architecture is presented for the estimation of the site overhead costs as a percentage from the total project price.

ElSawy, Ismaail; Razek, Mohammed Abdel

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Environmental Energy Technologies Division Energy Analysis Department Weighing the Costs and Benefits of  

E-Print Network (OSTI)

Department 3 State RPS Policies and Purchase Mandates: 21 States and D.C. WI: 10% by 2015 NV: 20% by 2015 TX Objectives · Background: State RPS policies have become major drivers of renewable energy additions, but the adoption of new state RPS policies hinges on expected costs and benefits · Objective: We review previous

342

Bulk Electricity Generating Technologies This appendix describes the technical characteristics and cost and performance  

E-Print Network (OSTI)

foundations complete Start of boiler steel erection to commercial operation Time to complete (single unit factor of 1.10. May 2005 I-10 #12;petrochemical industry for processing of coal and petroleum residues the North American power generation industry. This is attributable to the availability of low- cost natural

343

Modeling of Performance, Cost, and Financing of Concentrating Solar, Photovoltaic, and Solar Heat Systems (Poster)  

SciTech Connect

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, 2006 in Boulder, Colorado, discusses the modeling, performance, cost, and financing of concentrating solar, photovoltaic, and solar heat systems.

Blair, N.; Mehos, M.; Christiansen, C.

2006-10-03T23:59:59.000Z

344

Dynamic Cost-Loss Ratio Decision-making Model with an Autocorrelated Climate Variable  

Science Conference Proceedings (OSTI)

A dynamic decision-making problem is considered involving the use of information about the autocorrelation of a climate variable. Specifically, an infinite horizon, discounted version of the dynamic cost-loss ratio model is treated, in which only ...

Richard W. Katz

1993-01-01T23:59:59.000Z

345

A chronological probabilistic production cost model to evaluate the reliability contribution of limited energy plants  

E-Print Network (OSTI)

The growth of renewables in power systems has reinvigorated research and regulatory interest in reliability analysis algorithms such as the Baleriaux/Booth convolution-based probabilistic production cost (PPC) model. ...

Leung, Tommy (Tommy Chun Ting)

2012-01-01T23:59:59.000Z

346

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network (OSTI)

Auto Industry Models to Review Electric Vehicle Costing andElectric Vehicles in the Nation's Energy Future , DE86-003295, Argonne National Laboratory, Illinois, November (1984). Auto industry

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

347

Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations  

SciTech Connect

Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

Wittenbrock, N. G.

1982-01-01T23:59:59.000Z

348

Solid waste integrated cost analysis model: 1991 project year report. Part 2  

SciTech Connect

The purpose of the City of Houston`s 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA`s Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

Not Available

1991-12-31T23:59:59.000Z

349

Intelligent Actuation Control Using Model-Free Adaptive Control Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Intelligent Actuation Control Using Intelligent Actuation Control Using Model-Free Adaptive Control Technology Background The Advanced Research Sensors and Controls Program is leading the effort to develop sensing and control technologies and methods to achieve seamlessly integrated and intelligent power systems. The program is led by the U.S. Department of Energy (DOE) Office of Fossil Energy National Energy Technology Laboratory (NETL) and is implemented

350

Low Cost High Performance Generator Technology Program. Volume 2. Design study  

DOE Green Energy (OSTI)

The systems studies directed towards up-rating the performance of an RTG using selenide thermoelectrics and a heat source with improved safety are reported. The resulting generator design, designated LCHPG, exhibits conversion efficiency of greater than 10 percent, a specific power of 3 W/lb., and a cost of $6,000/W(e). In the course of system analyses, the significant development activities required to achieve this performance by the 1980 time period are identified.

Not Available

1975-06-01T23:59:59.000Z

351

Electric power substation capital costs  

SciTech Connect

The displacement or deferral of substation equipment is a key benefit associated with several technologies that are being developed with the support of the US Department of Energy`s Office of Utility Technologies. This could occur, for example, as a result of installing a distributed generating resource within an electricity distribution system. The objective of this study was to develop a model for preparing preliminary estimates of substation capital costs based on rudimentary conceptual design information. The model is intended to be used by energy systems analysts who need ``ballpark`` substation cost estimates to help establish the value of advanced utility technologies that result in the deferral or displacement of substation equipment. This cost-estimating model requires only minimal inputs. More detailed cost-estimating approaches are recommended when more detailed design information is available. The model was developed by collecting and evaluating approximately 20 sets of substation design and cost data from about 10 US sources, including federal power marketing agencies and private and public electric utilities. The model is principally based on data provided by one of these sources. Estimates prepared with the model were compared with estimated and actual costs for the data sets received from the other utilities. In general, good agreement (for conceptual level estimating) was found between estimates prepared with the cost-estimating model and those prepared by the individual utilities. Thus, the model was judged to be adequate for making preliminary estimates of typical substation costs for US utilities.

Dagle, J.E.; Brown, D.R.

1997-12-01T23:59:59.000Z

352

NREL: Energy Analysis - Energy Sciences Technology Analysis Models...  

NLE Websites -- All DOE Office Websites (Extended Search)

of system flexibility. It can also evaluate the role of enabling technologies such as demand response and energy storage. It is an updated version of the PVFlex model described in...

353

Second Workshop on Coupling Technologies for Earth System Models  

Science Conference Proceedings (OSTI)

The Second Workshop on Coupling Technologies for Earth System Models (CW2013) was recently held at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. The goals of the workshop were to update participants on recent developments in ...

Rocky Dunlap; Mariana Vertenstein; Sophie Valcke; Tony Craig

354

Interconnect modeling and optimization in deep sub-micron technologies  

E-Print Network (OSTI)

Interconnect will be a major bottleneck for deep sub-micron technologies in the years to come. This dissertation addresses the communication aspect from a power consumption and transmission speed perspective. A model for ...

Sotiriadis, Paul Peter P. (Paul Peter Peter-Paul), 1973-

2002-01-01T23:59:59.000Z

355

User manual for GEOCITY: a computer model for geothermal district heating cost analysis  

DOE Green Energy (OSTI)

A computer model called GEOCITY has been developed to systematically calculate the potential cost of district heating using hydrothermal geothermal resources. GEOCITY combines climate, demographic factors, and heat demand of the city, resource conditions, well drilling costs, design of the distribution system, tax rates, and financial factors into one systematic model. The GEOCITY program provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heat from a geothermal resource. Both the geothermal reservoir and distribution system are simulated to model the complete district heating system. GEOCITY consists of two major parts: the geothermal reservoir submodel and the distribution submodel. The reservoir submodel calculates the unit cost of energy by simulating the exploration, development, and operation of a geothermal reservoir and the transmission of this energy to a distribution center. The distribution submodel calculates the unit cost of heat by simulating the design and operation of a district heating distribution system. GEOCITY calculates the unit cost of energy and the unit cost of heat for the district heating system based on the principle that the present worth of the revenues will be equal to the present worth of the expenses including investment return over the economic life of the distribution system.

Huber, H.D.; McDonald, C.L.; Bloomster, C.H.; Schulte, S.C.

1978-10-01T23:59:59.000Z

356

Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices  

SciTech Connect

Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

None

1980-06-01T23:59:59.000Z

357

Updated Cost and Performance Estimates for Clean Coal Technologies Including CO2 Capture - 2005  

Science Conference Proceedings (OSTI)

There was very little increase in the estimated capital cost of new coal fired plants over the 2000- 2003 period. However there were also very few orders for new coal plants in that period when Natural Gas Combined Cycle (NGCC) Plants were mostly the chosen selection. Since 2003 the value of the US dollar has been reduced versus other currencies. The greatly increased price of crude oil and natural gas since 2003 has also led to an increase in the price of basic commodities such as steel and cement. The ...

2006-03-20T23:59:59.000Z

358

Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology  

DOE Green Energy (OSTI)

This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

Vernon, S.M. (Spire Corp., Bedford, MA (United States))

1993-04-01T23:59:59.000Z

359

Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California  

E-Print Network (OSTI)

moment both costs and energy efficiency are too uncertain toW. (2008). Energy Efficiency Improvement and Cost Savingenergy densities, costs, cycle times and efficiencies. A

Xu, Tengfang

2011-01-01T23:59:59.000Z

360

Broadening the Appeal of Marginal Abatement Cost Curves: Capturing Both Carbon Mitigation and Development Benefits of Clean Energy Technologies; Preprint  

SciTech Connect

Low emission development strategies (LEDS) articulate policies and implementation plans that enable countries to advance sustainable, climate-resilient development and private sector growth while significantly reducing the greenhouse gas (GHG) emissions traditionally associated with economic growth. In creating a LEDS, policy makers often have access to information on abatement potential and costs for clean energy technologies, but there is a scarcity of economy-wide approaches for evaluating and presenting information on other dimensions of importance to development, such as human welfare, poverty alleviation, and energy security. To address this shortcoming, this paper proposes a new tool for communicating development benefits to policy makers as part of a LEDS process. The purpose of this tool is two-fold: 1. Communicate development benefits associated with each clean energy-related intervention; 2. Facilitate decision-making on which combination of interventions best contributes to development goals. To pilot this tool, the authors created a visual using data on developmental impacts identified through the Technology Needs Assessment (TNA) project in Montenegro. The visual will then be revised to reflect new data established through the TNA that provides information on cost, GHG mitigation, as well as the range and magnitude of developmental impacts.

Cowlin, S.; Cochran, J.; Cox, S.; Davison, C.; van der Gaast, Y.

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

An enumerative technique for modeling wind power variations in production costing  

DOE Green Energy (OSTI)

Production cost, generation expansion, and reliability models are used extensively by utilities in the planning process. Most models do not provide adequate means for representing the full range of potential variation in wind power plants. In order to properly account for expected variation in wind-generated electricity with these models, the authors describe an enumerated probabilistic approach that is performed outside the production cost model, compare it with a reduced enumerated approach, and present some selected utility results. The technique can be applied to any model, and can considerably reduce the number of model runs as compared to the full enumerated approach. They use both a load duration curve model and a chronological model to measure wind plant capacity credit, and also present some other selected results.

Milligan, M.R. [National Renewable Energy Lab., Golden, CO (United States); Graham, M.S. [Tri-State Generation and Transmission Association, Inc., Denver, CO (United States)

1997-04-01T23:59:59.000Z

362

NREL: Technology Deployment - Project Development Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Development Model Project Development Model NREL developed the Project Development Model to evaluate the risks and investment decisions required for successful renewable energy project development. The two-phase iterative model includes elements in project fundamentals and project development based off commercial project development practices supported by tools such as pro formas and checklists. Project Fundamentals or BEPTC(tm) Renewable Energy Project Development Tool For help with the BEPTC phase of your project, check out the Renewable Energy Project Development Tool, developed by NREL for U.S. Department of Energy's Community Renewable Energy Deployment effort. The tool helps you quickly establish the key motivators and feasibility of your project. Strong project fundamentals and an understanding of how a project fits

363

Modeling regional end user price/cost relationships in a widespread interconnected power system  

SciTech Connect

A combined programming and regression modeling approach is developed to analyze regional retail price/cost relationships for a widespread interconnected power system characterized by low population density and uniform (regulated) retail tariffs. The programming model is designed to calculate on the hour the delivered cost of electricity from 5 thermal power stations and one pumped storage hydrostation to end users in 8 distribution regions. A simultaneous equation regression model then analyses the link between retail prices charged end users, regional demand and supply characteristics, industry financial objectives and departures from economically efficient pricing. The electricity supply industry in Queensland Australia is used as a framework.

Tamaschke, R.; Docwra, G.; Stillman, R. [Univ. of Queensland, Brisbane, Queensland (Australia)

1995-11-01T23:59:59.000Z

364

A model for technology assessment and commercialization for innovative disruptive technologies  

SciTech Connect

Disruptive technologies are scientific discoveries that break through the usual product technology capabilities and provide a basis for a new competitive paradigm as described by Anderson and Tushman [1990], Tushman and Rosenkopf [1992], and Bower and Christensen [1995]. Discontinuous innovations are products/processes/services that provide exponential improvements in the value received by the customer much in the same vein as Walsh [1996], Lynn, Morone and Paulson [1996], and Veryzer [1998]. For more on definitions of disruptive technologies and discontinuous innovations, see Walsh and Linton [1999] who provide a number of definitions for disruptive technologies and discontinuous innovations. Disruptive technologies and discontinuous innovations present a unique challenge and opportunity for R and D organizations seeking to build their commercialization efforts and to reinvent the corporation. These technologies do not have a proven path from scientific discovery to mass production and therefore require novel approaches. These critically important technologies are the wellspring of wealth creation and new competency generation but are not readily accepted by the corporate community. They are alternatively embraced and eschewed by the commercial community. They are finally accepted when the technology has already affected the industry or when the technological horse has already flown out of the hanger. Many firms, especially larger firms, seem reluctant to familiarize themselves with these technologies quickly. The trend seems to be that these firms prefer to react to a proven disruptive technology that has changed the product market paradigm. If true, then there is cause for concern. This paper will review the literature on disruptive technologies presenting a model of the progression from scientific idea to mass production for disruptive technologies contrasted to the more copious incremental technologies. The paper will then describe Sandia National Laboratories' involvement in one of the disruptive technology areas, namely micro-electromechanical systems (sometimes referred to as Microsystems or MEMS) and will survey a number of companies that have investigated Sandia's technological discoveries for potential use in an industrial capacity. The survey will focus on the movement of the research findings from the laboratory into the marketplace and all of the problem areas that disruptive technologies face in this arena. The paper will then state several hypotheses that will be tested. The data will be described with results and conclusions reported.

KASSICIEH, SULEIMAN K.; WALSH, STEVE; MCWHORTER,PAUL J.; CUMMINGS JR.,JOHN C.; WILLIAMS,W. DAVID; ROMIG JR.,ALTON D.

2000-05-17T23:59:59.000Z

365

Low cost MCFC anodes  

DOE Green Energy (OSTI)

This paper outlines a project, funded under a DOE SBIR grant, which tested a potentially lower cost method of manufacturing MCFC stack anodes and evaluated the feasibility of using the technology in the existing M-C Power Corp. manufacturing facility. The procedure involves adding activator salts to the anode tape casting slurry with the Ni and Cr or Al powders. Two different processes occur during heat treatment in a reducing environment: sintering of the base Ni structure, and alloying or cementation of the Cr or Al powders. To determine whether it was cost-effective to implement the cementation alloying manufacturing process, the M-C Power manufacturing cost model was used to determine the impact of different material costs and processing parameters on total anode cost. Cost analysis included equipment expenditures and facility modifications required by the cementation alloying process.

Erickson, D.S.

1996-12-31T23:59:59.000Z

366

Pricing and Cost Recovery for Internet Services: Practical Review, Classification, and Application of Relevant Models  

Science Conference Proceedings (OSTI)

Suitable pricing models for Internet services represent one of the main prerequisites for a successfully running implementation of a charging and accounting system. This paper introduces general aspects influencing the choice of a pricing model in practical ... Keywords: Internet pricing, auction pricing, cost recovery, peering agreements

Burkhard Stiller; Peter Reichl; Simon Leinen

2001-09-01T23:59:59.000Z

367

Probabilistic Modeling and Evaluation of the Performance, Emissions, and Cost of Texaco Gasifier-  

E-Print Network (OSTI)

Probabilistic Modeling and Evaluation of the Performance, Emissions, and Cost of Texaco Gasifier.0 DOCUMENTATION OF THE PLANT PERFORMANCE SIMULATION MODEL IN ASPEN OF THE COAL-FUELED TEXACO-GASIFIER BASED IGCC to the Gasifier............................... 40 3.2.2 Gasification

Frey, H. Christopher

368

CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES  

E-Print Network (OSTI)

Market information, new technology and reference technology .. 6  Analyses of energyMarket information Reference technology information New technology information Energy savings analysis

Xu, T.

2011-01-01T23:59:59.000Z

369

System modeling, analysis, and optimization methodology for diesel exhaust after-treatment technologies  

E-Print Network (OSTI)

Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing problem for many automotive companies and suppliers. Balancing manufacturing cost, meeting emission performance, ...

Graff, Christopher Dominic

2006-01-01T23:59:59.000Z

370

HANFORD RIVER PROTECTION PROJECT ENHANCED MISSION PLANNING THROUGH INNOVATIVE TOOLS LIFECYCLE COST MODELING AND AQUEOUS THERMODYNAMIC MODELING - 12134  

SciTech Connect

Two notable modeling efforts within the Hanford Tank Waste Operations Simulator (HTWOS) are currently underway to (1) increase the robustness of the underlying chemistry approximations through the development and implementation of an aqueous thermodynamic model, and (2) add enhanced planning capabilities to the HTWOS model through development and incorporation of the lifecycle cost model (LCM). Since even seemingly small changes in apparent waste composition or treatment parameters can result in large changes in quantities of high-level waste (HLW) and low-activity waste (LAW) glass, mission duration or lifecycle cost, a solubility model that more accurately depicts the phases and concentrations of constituents in tank waste is required. The LCM enables evaluation of the interactions of proposed changes on lifecycle mission costs, which is critical for decision makers.

PIERSON KL; MEINERT FL

2012-01-26T23:59:59.000Z

371

Application of a New Structural Model and Exploration Technologies to  

Open Energy Info (EERE)

New Structural Model and Exploration Technologies to New Structural Model and Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Application of a New Structural Model and Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The structural model is based on the role of subsurface igneous dikes providing a buttressing effect in a regional strain field such that permeability is greatly enhanced. The basic thermal anomaly at McCoy was defined by substantial U.S. Department of Energy-funded temperature gradient drilling and geophysical studies conducted during the period 1978 to 1982. This database will be augmented with modern magnetotelluric, controlled-source audio-magnetotelluric, and 2D/3D reflection seismic surveys to define likely fluid up-flow plumes that will be drilled with slant-hole technology. Two sites for production-capable wells will be drilled in geothermally prospective areas identified in this manner. The uniqueness of this proposal lies in the use of a full suite of modern geophysical tools, use of slant-hole drilling, and the extensive technical database from previous DOE funding.

372

Technology-Mediated Collaboration, Shared Mental Model and Task Performance  

Science Conference Proceedings (OSTI)

This study takes a direct observation research approach to examine how the impact of collaboration mode on team productivity and process satisfaction is mediated by shared mental model. Team cognition and social impact theories are integrated to provide ... Keywords: Behavior Rating, Observer Rating, Shared Mental Model, Team Cognition, Teamwork, Technology-Mediated Collaboration, Virtual Team

Hayward P. Andres

2012-01-01T23:59:59.000Z

373

High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology  

Science Conference Proceedings (OSTI)

Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a future full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.

Joe Williams

2010-12-31T23:59:59.000Z

374

BatPaC - Battery Performance and Cost model - About BatPaC  

NLE Websites -- All DOE Office Websites (Extended Search)

About BatPaC About BatPaC The starting point for this work is based on the decades of battery design work headed by Paul Nelson at Argonne National Laboratory. These design models were based in Microsoft Office Excel® resulting in a flexible and straightforward format. The current effort builds on this previous experience by adding a manufacturing cost calculation as well as increasing the fidelity of the performance calculations all while maintaining efficient calculations (e.g. fractions of a second). The cost of a battery will change depending upon the materials chemistry, battery design, and manufacturing process. Therefore, it is necessary to account for all three areas with a bottom-up cost model. Other bottom-up cost models exist but are not generally available and have not been explicitly detailed in a public document. The motivation for our approach is based on a need for a battery performance and cost model that meets the following requirements:

375

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

per kWh produced than baseload coal, nuclear or combined-even. The model includes a baseload technology with high ?annual production cost are: Baseload (coal) Cost = $208247/M

Borenstein, Severin

2008-01-01T23:59:59.000Z

376

Decision Support System (DSS) for Machine Selection: A Cost Minimization Model  

E-Print Network (OSTI)

Within any manufacturing environment, the selection of the production or assembly machines is part of the day to day responsibilities of management. This is especially true when there are multiple types of machines that can be used to perform each assembly or manufacturing process. As a result, it is critical to find the optimal way to select machines when there are multiple related assembly machines available. The objective of this research is to develop and present a model that can provide guidance to management when making machine selection decisions of parallel, non-identical, related electronics assembly machines. A model driven Decision Support System (DSS) is used to solve the problem with the emphasis in optimizing available resources, minimizing production disruption, thus minimizing cost. The variables that affect electronics product costs are considered in detail. The first part of the Decision Support System was developed using Microsoft Excel as an interactive tool. The second part was developed through mathematical modeling with AMPL9 mathematical programming language and the solver CPLEX90 as the optimization tools. The mathematical model minimizes total cost of all products using a similar logic as the shortest processing time (SPT) scheduling rule. This model balances machine workload up to an allowed imbalance factor. The model also considers the impact on the product cost when expediting production. Different scenarios were studied during the sensitivity analysis, including varying the amount of assembled products, the quantity of machines at each assembly process, the imbalance factor, and the coefficient of variation (CV) of the assembly processes. The results show that the higher the CV, the total cost of all products assembled increased due to the complexity of balancing machine workload for a large number of products. Also, when the number of machines increased, given a constant number of products, the total cost of all products assembled increased because it is more difficult to keep the machines balanced. Similar results were obtained when a tighter imbalance factor was used.

Mendez Pinero, Mayra I.

2009-05-01T23:59:59.000Z

377

Work Costs and Nonconvex Preferences in the Estimation of Labor Supply Models  

E-Print Network (OSTI)

We first critique the manner in which work costs have been introduced into labor supply estimation, and note the difficulty of incorporating a realistic rendering of the costs of work. We then show that, if work costs are not acounted for in the budget and time constraints in a structural labor supply model, they will be subsumed into the data generating preferences. We show that even if underlying preferences over consumption and leisure are convex, the presence of unobservable work costs can make these preferences appear nonconvex. Absent strong functional form assumptions, these work costs are not identified in data commonly used for labor supply estimation. However, we show that even if work costs cannot be separately identified, policy relevant calculations, such as estimates of the effect of tax changes on labor supply and deadweight loss calculations, are not affected by the fact that estimated preferences incorporate work costs. We would like to thank Joe Altonji and Chris Taber for valuable conversations, and seminar participants

Bradley T. Heim; Bruce D. Meyer

2004-01-01T23:59:59.000Z

378

Examining the effectiveness of municipal solid waste management systems: An integrated cost-benefit analysis perspective with a financial cost modeling in Taiwan  

Science Conference Proceedings (OSTI)

In order to develop a sound material-cycle society, cost-effective municipal solid waste (MSW) management systems are required for the municipalities in the context of the integrated accounting system for MSW management. Firstly, this paper attempts to establish an integrated cost-benefit analysis (CBA) framework for evaluating the effectiveness of MSW management systems. In this paper, detailed cost/benefit items due to waste problems are particularly clarified. The stakeholders of MSW management systems, including the decision-makers of the municipalities and the citizens, are expected to reconsider the waste problems in depth and thus take wise actions with the aid of the proposed CBA framework. Secondly, focusing on the financial cost, this study develops a generalized methodology to evaluate the financial cost-effectiveness of MSW management systems, simultaneously considering the treatment technological levels and policy effects. The impacts of the influencing factors on the annual total and average financial MSW operation and maintenance (O and M) costs are analyzed in the Taiwanese case study with a demonstrative short-term future projection of the financial costs under scenario analysis. The established methodology would contribute to the evaluation of the current policy measures and to the modification of the policy design for the municipalities.

Weng, Yu-Chi, E-mail: clyde.weng@gmail.com [Solid Waste Management Research Center, Okayama University, Okayama (Japan); Fujiwara, Takeshi [Solid Waste Management Research Center, Okayama University, Okayama (Japan)

2011-06-15T23:59:59.000Z

379

Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model  

SciTech Connect

Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

Denholm, P.; Hummon, M.

2012-11-01T23:59:59.000Z

380

Cost-Affordable Titanium III  

Science Conference Proceedings (OSTI)

Cost-Effective Production and Thermomechanical Consolidation of Titanium Alloy Powders Cost Affordable Developments in Titanium Technology and...

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.  

DOE Green Energy (OSTI)

This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

Nelson, P. A.

2011-10-20T23:59:59.000Z

382

Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas  

DOE Green Energy (OSTI)

The production of hydrogen from synthesis gas made by gasification of coal is expensive. The separation of hydrogen from synthesis gas is a major cost element in the total process. In this report we describe the results of a program aimed at the development of membranes and membrane modules for the separation and purification of hydrogen from synthesis gas. The performance properties of the developed membranes were used in an economic evaluation of membrane gas separation systems in the coal gasification process. Membranes tested were polyetherimide and a polyamide copolymer. The work began with an examination of the chemical separations required to produce hydrogen from synthesis gas, identification of three specific separations where membranes might be applicable. A range of membrane fabrication techniques and module configurations were investigated to optimize the separation properties of the membrane materials. Parametric data obtained were used to develop the economic comparison of processes incorporating membranes with a base-case system without membranes. The computer calculations for the economic analysis were designed and executed. Finally, we briefly investigated alternative methods of performing the three separations in the production of hydrogen from synthesis gas. The three potential opportunities for membranes in the production of hydrogen from synthesis gas are: (1) separation of hydrogen from nitrogen as the final separation in a air-blown or oxygen-enriched air-blown gasification process, (2) separation of hydrogen from carbon dioxide and hydrogen sulfide to reduce or eliminate the conventional ethanolamine acid gas removal unit, and (3) separation of hydrogen and/or carbon dioxide form carbon monoxide prior to the shift reactor to influence the shift reaction. 28 refs., 54 figs., 40 tabs.

Baker, R.W.; Bell, C.M.; Chow, P.; Louie, J.; Mohr, J.M.; Peinemann, K.V.; Pinnau, I.; Wijmans, J.G.; Gottschlich, D.E.; Roberts, D.L.

1990-10-01T23:59:59.000Z

383

Broadening the Appeal of Marginal Abatement Cost Curves: Capturing Both Carbon Mitigation and Development Benefits of Clean Energy Technologies: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Broadening the Appeal of Broadening the Appeal of Marginal Abatement Cost Curves: Capturing Both Carbon Mitigation and Development Benefits of Clean Energy Technologies Preprint Shannon Cowlin, Jaquelin Cochran, Sadie Cox, and Carolyn Davidson National Renewable Energy Laboratory Wytze van der Gaast JI Network Presented at the 2012 World Renewable Energy Forum Denver, Colorado May 13-17, 2012 Conference Paper NREL/CP-6A20-54487 August 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

384

WARP TM TECHNOLOGY FOR LOW COST & ENVIRONMENTALLY FRIENDLY MARINE BASED WIND POWER PLANTS  

E-Print Network (OSTI)

Major consideration and effort has gone into the selection of locations for wind power plants with relatively high wind speed which is relatively near the place of energy demand. The reason is that as wind speed increases, collectable energy from the wind increases by the third power. That is, in a location with 20 % higher wind speed, it is possible to generate 73 % more power. If 50 % higher wind velocity is available, 300 % more power and energy can be generated. The father of modern day wind power, William Heronemus, former US Nuclear Navy officer, Engineering Professor of the University of Massachusetts, recognized this and therefore proposed offshore wind power plants which helped launch the wind industry in 1972 with his landmark paper (Ref. 1). However, subsequent studies in the US and Europe found that proposed large diameter windmills in offshore installations are relatively uneconomic (Ref. 2, 3) due to a number of unavoidable characteristic features. Recently, Danish wind power firms are finding reasonably promising economic performance when such turbines are limited to very shallow water of 3-5 meters near land where no platform is required to support them (Ref. 4 & 5). However, ENECOs Wind Amplified Rotor Platform (WARP TM) technology when applied in spar buoy design configuration has exceptional features and benefits desired by an offshore wind power plant:

Dr. David; L. Rainey; Alfred L. Weisbrich

1998-01-01T23:59:59.000Z

385

STATE-OF-THE-ART AND EMERGING TRUCK ENGINE TECHNOLOGIES FOR OPTIMIZED PERFORMANCE, EMISSIONS AND LIFE CYCLE COSTS  

DOE Green Energy (OSTI)

The challenge for truck engine product engineering is not only to fulfill increasingly stringent emission requirements, but also to improve the engine's economical viability in its role as the backbone of our global economy. While societal impact and therefore emission limit values are to be reduced in big steps, continuous improvement is not enough but technological quantum leaps are necessary. The introduction and refinement of electronic control of all major engine systems has already been a quantum leap forward. Maximizing the benefits of these technologies to customers and society requires full use of parameter optimization and other enabling technologies. The next big step forward will be widespread use of exhaust aftertreatment on all transportation related diesel engines. While exhaust gas aftertreatment has been successfully established on gasoline (Otto cycle) engines, the introduction of exhaust aftertreatment especially for heavy-duty diesel engines will be much mo re demanding. Implementing exhaust gas aftertreatment into commercial vehicle applications is a challenging task but the emission requirements to be met starting in Europe, the USA and Japan in the 2005-2007 timeframe require this step. The engine industry will be able to implement the new technology if all stakeholders support the necessary decisions. One decision has already been taken: the reduction of sulfur in diesel fuel being comparable with the elimination of lead in gasoline as a prerequisite for the three-way catalyst. Now we have the chance to optimize ecology and economy of the Diesel engine simultaneously by taking the decision to provide an additional infrastructure for a NOx reduction agent needed for the introduction of the Selective Catalytic Reduction (SCR) technology that is already implemented in the electric power generation industry. This requires some effort, but the resulting societal benefits, fuel economy and vehicle life cycle costs are significantly better when compared to other competitive technologies. After long discussions this decision for SCR has been made in Europe and is supported by all truck and engine manufacturers. The necessary logistic support will be in place when it will be needed commercially in 2005. For the US the decision has to be taken this year in order to have the infrastructure available in 2007. It will enable the global engine industry to focus their R & D resources in one direction not only for 2007, but for the years beyond 2010 with the best benefit for the environment, the customers and the industry.

Schittler, M

2003-08-24T23:59:59.000Z

386

Low Cost High Performance Generator Technology Program. Volume 4. Mission application study  

DOE Green Energy (OSTI)

Results of initial efforts to investigate application of selenide thermoelectric RTG's to specific missions as well as an indication of development requirements to enable satisfaction of emerging RTG performance criteria are presented. Potential mission applications in DoD such as SURVSATCOM, Advance Defense Support Program, Laser Communication Satellite, Satellite Data System, Global Positioning Satellite, Deep Space Surveillance Satellite, and Unmanned Free Swimming Submersible illustrate power requirements in the range of 500 to 1000 W. In contrast, the NASA applications require lower power ranging from 50 W for outer planetary atmospheric probes to about 200 W for spacecraft flights to Jupiter and other outer planets. The launch dates for most of these prospective missions is circa 1980, a requirement roughly compatible with selenide thermoelectric and heat source technology development. A discussion of safety criteria is included to give emphasis to the requirements for heat source design. In addition, the observation is made that the potential accident environments of all launch vehicles are similar so that a reasonable composite set of design specifications may be derived to satisfy almost all applications. Details of the LCHPG application potential is afforded by three designs: an 80 W RTG using improved selenide thermoelectric material, a 55 to 65 W LCHPG using current and improved selenide materials, and the final 500 W LCHPG as reported in Volume 2. The final results of the LCHPG design study have shown that in general, all missions can expect an LCHPG design which yields 10 percent efficiency at 3 W/lb with the current standard selenide thermoelectric materials, with growth potential to 14 percent at greater than 4 W/lb in the mid 1980's time frame.

Not Available

1975-07-01T23:59:59.000Z

387

Traders' collective portfolio optimization with transaction costs: towards microscopic validation of agent-based models  

E-Print Network (OSTI)

Despite the availability of very detailed data on financial market, agent-based modeling is hindered by the lack of information about real-trader behavior. This makes it impossible to validate agent-based models, which are thus reverse-engineering attempts. This work is a contribution to the building of a set of stylized facts about the traders themselves. Using the client database of Swissquote Bank SA, we find that the transaction cost structure determines on average to a large extend the relationship between the mean turnover per transaction of an investor and his mean wealth. A simple extension of CAPM that includes variable transaction costs is able to reproduce qualitatively the observed behaviors. We argue that this shows the collective ability of a population to construct a mean-variance portfolio that takes into account transaction costs.

de Lachapelle, David Morton

2010-01-01T23:59:59.000Z

388

Transparent Cost Database | Open Energy Information  

Open Energy Info (EERE)

Transparent Cost Database Transparent Cost Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transparent Cost Database Agency/Company /Organization: Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable Energy, Solar, Transportation Topics: Baseline projection, Low emission development planning, -LEDS, Resource assessment, Technology characterizations Resource Type: Dataset, Lessons learned/best practices, Software/modeling tools User Interface: Website Web Application Link: en.openei.org/apps/TCDB/ Cost: Free OpenEI Keyword(s): Featured Equivalent URI: cleanenergysolutions.org/content/united-states-transparent-cost-databa Language: English The Transparent Cost Database collects program cost and performance

389

CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES  

E-Print Network (OSTI)

of Demonstrated Energy Technologies. (1989). The Pyrocoreof Demonstrated Energy Technologies. (1990). Cooling systemof Demonstrated Energy Technologies. (1993a). Energy-saving

Xu, T.

2011-01-01T23:59:59.000Z

390

Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California  

E-Print Network (OSTI)

Energy Agency - Energy Technology Systems AnalysisEfficiency Renewable Energy Technologies TransportationU.S. Department of Energy Industrial Technologies Program. (

Xu, Tengfang

2011-01-01T23:59:59.000Z

391

Product Positioning in a Two-Dimensional Vertical Differentiation Model: The Role of Quality Costs  

Science Conference Proceedings (OSTI)

We study a duopoly model where consumers are heterogeneous with respect to their willingness to pay for two product characteristics and marginal costs are increasing with the quality level chosen on each attribute. We show that although firms seek to ... Keywords: competitive strategy, differentiation, game theory, multiattribute products, product positioning

Dominique Oli Lauga; Elie Ofek

2011-09-01T23:59:59.000Z

392

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Impact on Fuel Efficiency Technologies Impact on Fuel Efficiency One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle (PHEV) R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. Overall fuel efficiency is affected by component technologies from a component sizing and efficiency aspect. To properly define component requirements, several technologies for each of the main components (energy storage, engine and electric machines) are being compared at Argonne using PSAT. Per the R&D plan, several Li-ion battery materials are being modeled to evaluate their impacts on fuel efficiency and vehicle mass. Different Power to Energy ratios are being considered to understand the relative impact of power and energy.

393

Geothermal probabilistic cost model with an application to a geothermal reservoir at Heber, California  

DOE Green Energy (OSTI)

A financial accounting model that incorporates physical and institutional uncertainties has been developed for geothermal projects. Among the uncertainties it can handle are well depth, flow rate, fluid temperature, and permit and construction times. The outputs of the model are cumulative probability distributions of financial measures such as capital cost, levelized cost, and profit. These outputs are well suited for use in an investment decision incorporating risk. The model has the powerful feature that conditional probability distribution can be used to account for correlations among any of the input variables. The model has been applied to a geothermal reservoir at Heber, California, for a 45-MW binary electric plant. Under the assumptions made, the reservoir appears to be economically viable.

Orren, L.H.; Ziman, G.M.; Jones, S.C.

1981-12-15T23:59:59.000Z

394

Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters  

Science Conference Proceedings (OSTI)

Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

Konzek, G.J.

1983-07-01T23:59:59.000Z

395

Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas Emissions Reductions: Results from the EPPA Model  

E-Print Network (OSTI)

Marginal abatement cost (MAC) curves, relationships between tons of emissions abated and the CO2 (or GHG) price, have been widely used as pedagogic devices to illustrate simple economic concepts such as the benefits of ...

Morris, Jennifer

396

High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures  

E-Print Network (OSTI)

Administration, 2008). A number of low- carbon power generation technologies are available today, but many-rated by their forced outage rates to represent the amount of power generation capacity that is available on average). Rather, it does so indirectly, by changing the relative costs of power generating technologies

Kammen, Daniel M.

397

Evaluation of technological data in the DFI and PIES models  

DOE Green Energy (OSTI)

This report evaluates the data used in two of the models available to the Energy Information Administration (EIA). Specifically, the study involves updating, reviewing, and documenting the technological data on primary energy conversion, transportation, distribution and end-use conversion. The major focus is upon data used in the Decision Focus, Inc. (DFI), LEAP model. This is an abbreviated version of the Gulf-Stanford Research, Inc., energy model developed to assess the potential future impacts of synthetic fuels in the US energy system. A parallel effort assesses the data used in the model commonly known as the Project Independence Evaluation System (PIES).

Bhagat, N.; Beller, M.; Hermelee, A.; Wagner, J.; Lamontagne, J.

1979-04-01T23:59:59.000Z

398

Stochastic Modeling of Future Highway Maintenance Costs for Flexible Type Highway Pavement Construction Projects  

E-Print Network (OSTI)

The transportation infrastructure systems in the United States were built between the 50's and 80's, with 20 years design life. As most of them already exceeded their original life expectancy, state transportation agencies (STAs) are now under increased needs to rebuild deteriorated transportation networks. For major highway maintenance projects, a federal rule enforces to perform a life-cycle cost analysis (LCCA). The lack of analytical methods for LCCA creates many challenges of STAs to comply with the rule. To address these critical issues, this study aims at developing a new methodology for quantifying the future maintenance cost to assist STAs in performing a LCCA. The major objectives of this research are twofold: 1) identify the critical factors that affect pavement performances; 2) develop a stochastic model that predicts future maintenance costs of flexible-type pavement in Texas. The study data were gathered through the Pavement Management Information System (PMIS) containing more than 190,000 highway sections in Texas. These data were then grouped by critical performance-driven factor which was identified by K-means cluster analysis. Many factors were evaluated to identify the most critical factors that affect pavement maintenance need. With these data, a series of regression analyses were carried out to develop predictive models. Lastly, a validation study with PRESS statistics was conducted to evaluate reliability of the model. The research results reveal that three factors, annual average temperature, annual precipitation, and pavement age, were the most critical factors under very low traffic volume conditions. This research effort was the first of its kind undertaken in this subject. The maintenance cost lookup tables and stochastic model will assist STAs in carrying out a LCCA, with the reliable estimation of maintenance costs. This research also provides the research community with the first view and systematic estimation method that STAs can use to determine long-term maintenance costs in estimating life-cycle costs. It will reduce the agency's expenses in the time and effort required for conducting a LCCA. Estimating long-term maintenance cost is a core component of the LCCA. Therefore, methods developed from this project have the great potential to improve the accuracy of LCCA.

Kim, Yoo Hyun

2012-05-01T23:59:59.000Z

399

Modeling Resource, Infrastructure, and Policy Cost Layers for Optimizing Renewable Energy Investment and Deployment  

SciTech Connect

This paper presents a framework for creating a common spatial canvass that can bring together considerations of resource availability, infrastructure reliability, and development costs while strategizing renewable energy investment. We describe the underlying models and methodologies that annotate an investment plan for potential sites over a time-period with costs and constraints which may be imposed on distance from infrastructure, system impact on infrastructure, and policy incentives. The framework is intended as an enabler for visualization, optimization and decision making across diverse dimensions while searching for lucrative investment-plans.

Sukumar, Sreenivas R [ORNL; Olama, Mohammed M [ORNL; Shankar, Mallikarjun [ORNL; Hadley, Stanton W [ORNL; Nutaro, James J [ORNL; Protopopescu, Vladimir A [ORNL; Malinchik, Sergey [Lockheed Martin Corporation; Ives, Barry [Lockheed Martin Corporation

2010-01-01T23:59:59.000Z

400

Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2  

DOE Green Energy (OSTI)

Analysis of the levelized cost of producing hydrogen via different pathways using the National Renewable Energy Laboratory's H2A Hydrogen Production Model, Version 2.

Ramsden, T.; Steward, D.; Zuboy, J.

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Technological prospects and CO2 emission trading analyses in the iron and steel industry: A global model Energy  

E-Print Network (OSTI)

This article presents the Iron and Steel Industry Model (ISIM). This is a world simulation model able to analyze the evolution of the industry from 1997 to 2030, focusing on steel production, demand, trade, energy consumption, CO2 emissions, technology dynamics, and retrofitting options. In the context of the Kyoto Protocol on climate change, the potential impacts of a CO2 emission market (e.g. the gains in terms of compliance costs, the country trading position, the evolution of the technology and the energy mixes) are also addressed. In particular, three emission trading scenarios are considered: an EU15 market, an enlarged EU market, and an Annex B market.

Ignacio Hidalgo; Laszlo Szabo; Juan Carlos Ciscar; Antonio Soria

2005-01-01T23:59:59.000Z

402

Evaluation of the DRI quarterly macroeconomic model's response to energy and environmental cost shocks  

Science Conference Proceedings (OSTI)

During the 1970's two major energy price shocks occurred. Each was accompanied by cost shocks for industrial environmental control technology and reductions in the rate of growth of the money supply. Each was followed by a recession. A third energy-price shock and contractions of monetary growth occurred when President Reagan took office. The present recession followed. The DRI macromodel was used to evaluate the impacts of various impacts of various environmental regulations over the 1982 to 1987 period, under different assumptions about energy-price shocks and money-supply growth. The simulation results are critically evaluated in light of the historical evidence of the 1970's.

Dossani, N.G.; Santini, D.J.

1983-05-13T23:59:59.000Z

403

Effects of Technology Cost Parameters on Hydrogen Pathway Succession - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Mark F. Ruth* (Primary Contact), Victor Diakov*, Brian James † , Julie Perez ‡ , Andrew Spisak † *National Renewable Energy Laboratory 15013 Denver West Pkwy. Golden, CO 80401 Phone: (303) 817-6160 Email: Mark.Ruth@nrel.gov and Victor.Diakov@nrel.gov † Strategic Analysis, Inc. ‡ New West Technologies DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@ee.doe.gov Subcontractor: Strategic Analysis, Inc., Arlington, VA Project Start Date: February 1, 2009 Project End Date: October 31, 2011 Fiscal Year (FY) 2012 Objectives Develop a macro-system model (MSM): * Aimed at performing rapid cross-cutting analysis - Utilizing and linking other models - Improving consistency between models -

404

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

Science Conference Proceedings (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

Xu, T.T.; Sathaye, J.; Galitsky, C.

2010-09-30T23:59:59.000Z

405

Alternative Fuels Data Center: Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Cost Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator on AddThis.com... Vehicle Cost Calculator Vehicle Cost Calculator This tool uses basic information about your driving habits to calculate total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Also

406

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979  

SciTech Connect

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

407

Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site  

Science Conference Proceedings (OSTI)

In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

Church, A.; Gordon, J.; Montrose, J. K.

2002-02-26T23:59:59.000Z

408

New Methods for Modeling and Estimating the Social Costs of Motor Vehicle Use  

E-Print Network (OSTI)

Valuation and External Cost Estimates* VOD (Bootstrap) Std.accident externalities, cost estimates are di- rectlyand presents external cost estimates, along with related

Steimetz, Seiji Sudhana Carl

2004-01-01T23:59:59.000Z

409

AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM  

E-Print Network (OSTI)

of the battery, according to the battery cost equations (seediscussion of battery cost above). There actually are twoin the amount and cost of fuel-storage, battery, vehicle

Delucchi, Mark

2005-01-01T23:59:59.000Z

410

ImSET 3.1: Impact of Sector Energy Technologies Model Description and User's Guide  

SciTech Connect

This 3.1 version of the Impact of Sector Energy Technologies (ImSET) model represents the next generation of the previously-built ImSET model (ImSET 2.0) that was developed in 2005 to estimate the macroeconomic impacts of energy-efficient technology in buildings. In particular, a special-purpose version of the Benchmark National Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE)developed energy-saving technologies. In comparison with the previous versions of the model, this version features the use of the U.S. Bureau of Economic Analysis 2002 national input-output table and the central processing code has been moved from the FORTRAN legacy operating environment to a modern C++ code. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act. While it does not include the ability to model certain dynamic features of markets for labor and other factors of production featured in the more complex models, for most purposes these excluded features are not critical. The analysis is credible as long as the assumption is made that relative prices in the economy would not be substantially affected by energy efficiency investments. In most cases, the expected scale of these investments is small enough that neither labor markets nor production cost relationships should seriously affect national prices as the investments are made. The exact timing of impacts on gross product, employment, and national wage income from energy efficiency investments is not well-enough understood that much special insight can be gained from the additional dynamic sophistication of a macroeconomic simulation model. Thus, we believe that this version of ImSET is a cost-effective solution to estimating the economic impacts of the development of energy-efficient technologies.

Scott, Michael J.; Livingston, Olga V.; Balducci, Patrick J.; Roop, Joseph M.; Schultz, Robert W.

2009-05-22T23:59:59.000Z

411

Cost effectiveness of the 1993 model energy code in New Jersey  

SciTech Connect

This is an analysis of cost effectiveness the Council of American Building Officials` 1993 Model Energy Code (MEC) building thermal-envelope requirements for single-family houses and multifamily housing units in New Jersey. Goal was to compare the cost effectiveness of the 1993 MEC to the alternate allowed in the 1993 Building Officials & Code Administrators (BOCA) National Energy Conservation Code -- American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90A-1980 -- based on a comparison of the costs and benefits associated with complying with each. This comparison was performed for Camden, New Brunswick; Somerville, and Sparta. The analysis was done for two different scenarios: a ``move-up`` home buyer purchasing a single-family house and a ``first-time`` financially limited home buyer purchasing a multifamily unit. For the single-family home buyer, compliance with the 1993 MEC was estimated to increase first costs by $1028 to $1564, resulting in an incremental down payment increase of $206 to $313 (at 20% down). The time when the homeowner realizes net cash savings (net positive cash flow) for houses built in accordance with the 1993 MEC was from 1 to 5 years. The home buyer who paid 20% down had recovered increases in down payments and mortgage payments in energy cost savings by the end of the fifth year or sooner and thereafter will save more money each year. For the multifamily unit home buyer first costs were estimated to increase by $121 to $223, resulting in an incremental down payment increase of $12 to $22 (at 10% down). The time when the homeowner realizes net cash savings (net positive cash flow) for houses built in accordance with the 1993 MEC was 1 to 3 years.

Lucas, R.G.

1995-09-01T23:59:59.000Z

412

Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Technologies Technologies October 7, 2013 - 10:20am Addthis The Federal Energy Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find energy-efficient product requirements and technology, purchasing specifications, energy cost savings calculators, model contract language, and resources. Technology Deployment: Look up information about developing, measuring, and implementing new and underutilized technologies for energy management in the Federal Government. Renewable Energy: Read about renewable energy requirements, resources and technologies, project planning, purchasing renewable power, and more. See FEMP's other program areas. Addthis FEMP Home

413

Total Cost of Ownership Model for Current Plug-in Electric Vehicles  

Science Conference Proceedings (OSTI)

The plug-in electric vehicle (PEV) market has grown dramatically in the past three years, but the central question concerning PEV acceptance in the marketplace still remains: When compared to a hybrid or conventional vehicle, is a PEV worth the additional up-front cost to consumers? Given the incomplete understanding of changes in driving patterns due to vehicle purchases, the baseline analysis described in this report does not model customer adaptation, nor does it attempt to address non-tangible ...

2013-06-10T23:59:59.000Z

414

Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Pathways: Cost, Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios Mark Ruth National Renewable Energy Laboratory Melissa Laffen and Thomas A. Timbario Alliance Technical Services, Inc. Technical Report NREL/TP-6A1-46612 September 2009 Technical Report Hydrogen Pathways: Cost, NREL/TP-6A1-46612 Well-to-Wheels Energy Use, September 2009 and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios Mark Ruth National Renewable Energy Laboratory Melissa Laffen and Thomas A. Timbario Alliance Technical Services, Inc. Prepared under Task No. HS07.1002 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393

415

CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES  

E-Print Network (OSTI)

6  Market information, new technology and referenceis included: Market information Reference technologyinformation 2.2.1 Market information, new technology and

Xu, T.

2011-01-01T23:59:59.000Z

416

Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California  

E-Print Network (OSTI)

6  Market information, new technology and referenceis included: Market information Reference technologyinformation 2.2.1 Market information, new technology and

Xu, Tengfang

2011-01-01T23:59:59.000Z

417

Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024: Preprint  

DOE Green Energy (OSTI)

Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.

Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.

2011-01-01T23:59:59.000Z

418

Analysis of market penetration scenarios of clean coal technologies in China using the LLNL China Energy Model  

SciTech Connect

This paper presents the results of an analysis of the market penetration of Clean Coal Technologies in the electric utility market in China. The analysis is based on a model of the Chinese energy system developed at Lawrence Livermore National Laboratory. Under this model, the market penetration of a technology depends on the relative prices of all technologies in a market. The model assumes that for each technology there is a distribution of effective prices to the consumers in the market place. The prices for each technology computed in the model are assumed to be the means of these distributions: sometime the effective price is greater than this and sometimes it is less. Thus even a relatively expensive technology may cost less than its competitors in a fraction of the transactions. Using several scenarios about the possible dispersion of prices, we estimate the market share of CCTs over the next 50 years. We find that some CCTs penetrate under all scenarios, but the more expensive ones only show significant penetration when larger values of price dispersion are assumed. Generally the penetration of the CCTs is 15% or less of the market by 2020. However, advanced pulverized coal does exceed 15% in some cases.

Lamont, A

1998-08-17T23:59:59.000Z

419

Determining Wind Turbine Gearbox Model Complexity Using Measurement Validation and Cost Comparison: Preprint  

DOE Green Energy (OSTI)

The Gearbox Reliability Collaborative (GRC) has conducted extensive field and dynamometer test campaigns on two heavily instrumented wind turbine gearboxes. In this paper, data from the planetary stage is used to evaluate the accuracy and computation time of numerical models of the gearbox. First, planet-bearing load and motion data is analyzed to characterize planetary stage behavior in different environments and to derive requirements for gearbox models and life calculations. Second, a set of models are constructed that represent different levels of fidelity. Simulations of the test conditions are compared to the test data and the computational cost of the models are compared. The test data suggests that the planet-bearing life calculations should be made separately for each bearing on a row due to unequal load distribution. It also shows that tilting of the gear axes is related to planet load share. The modeling study concluded that fully flexible models were needed to predict planet-bearing loading in some cases, although less complex models were able to achieve good correlation in the field-loading case. Significant differences in planet load share were found in simulation and were dependent on the scope of the model and the bearing stiffness model used.

LaCava, W.; Xing, Y.; Guo, Y.; Moan, T.

2012-04-01T23:59:59.000Z

420

The value of windpower: An investigation using a qualified production cost model  

DOE Green Energy (OSTI)

As part of the US Department of Energy`s Wind Energy Program at the National Renewable Energy Laboratory, we are using the Environmental Defense Fund`s Electric Utility Financial & Production Cost Model (Elfin) as a tool to determine the value of wind energy to specific utilities. The cases we have developed exercise a number of options in the way in which wind energy is treated: (1) as a load modifer (negative load); (2) as a quick-start supply-side resource with hourly varying output; and (3) probabilistically, using time-varying Weibull distributions. By using two wind speed distributions, two different wind turbines, and two different utilities, we show what the wind turbine cost/kW might be that results in a positive value of wind energy for these utilities.

Milligan, M.R.; Miller, A.H.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "model technology cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SOLERAS - Solar-Powered Water Desalination Project at Yanbu: Forecasting models for operating and maintenance cost of the pilot plant  

Science Conference Proceedings (OSTI)

This study was conducted in cooperation with the Department of Industrial Engineering of King Abdulaziz University. The main objective of this study is to meet some of the goals of the Solar Energy Water Desalination Plant (SEWDP) plan in the area of economic evaluation. The first part of this project focused on describing the existing trend in the operation and maintenance (OandM) cost for the SOLERAS Solar Energy Water Desalination Plant in Yanbu. The second part used the information obtained on existing trends to find suitable forecasting models. These models, which are found here, are sensitive to changes in costs trends. Nevertheless, the study presented here has established the foundation for (OandM) costs estimating in the plant. The methodologies used in this study should continue as more data on operation and maintenance costs become available, because, in the long run, the trend in costs will help determine where cost effectiveness might be improved. 7 refs., 24 figs., 15 tabs.

Al-Idrisi, M.; Hamad, G.

1987-04-01T23:59:59.000Z

422

The Distributive Impact Assessment Model (DIAM): Technology share component  

DOE Green Energy (OSTI)

The models described in this report are used to allocate total energy consumption in an energy end-use service area by fuel type (including electricity) within the Distributive Impact Assessment Model (DIAM) framework. The primary objective of the DIAM is to provide energy consumption and expenditure forecasts for different population categories that are consistent with the US Department of Energy (DOE) Energy Information Administration`s (EIA`s) National Energy Modeling System (NEMS) forecast, which is produced annually in the Annual Energy Outlook and periodically in support of DOE policy formulation and analysis. The models are multinominal logit models that have been estimated using EIA`s 1990 Residential Energy Consumption Survey. Three models were estimated: space heating share, water heating share, and cooking share. These models are used to allocate total end-use service consumption over different technologies defined by fuel type characteristics. For each of the end-use service categories, consumption shares are estimated for a subset of six fuel types: natural gas, electricity, liquid petroleum gas, fuel oil/kerosene, wood, and other fuel.

Poyer, D.A.; Earl, E.; Bonner, B.

1995-03-01T23:59:59.000Z

423

Low Wind Speed Technology Phase II: Reducing Cost of Energy Through Rotor Aerodynamics Control; Global Energy Concepts, LLC  

DOE Green Energy (OSTI)

This fact sheet describes a subcontract with Global Energy Concepts to evaluate a wide range of wind turbine configurations and their impact on overall cost of energy (COE).

Not Available

2006-03-01T23:59:59.000Z

424

CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES  

E-Print Network (OSTI)

some cases by absorption cooling (Mottal, 1995). Electricitybasis. With the absorption cooling, the project decreasedsystem (without absorption cooling) has capital costs twice

Xu, T.

2011-01-01T23:59:59.000Z

425

Model Year 2006: Alternative Fuel and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

06: Alternative Fuel and Advanced Technology Vehicles 06: Alternative Fuel and Advanced Technology Vehicles Fuel Type EPAct Compliant? Model Vehicle Type Emission Class Powertrain Fuel Capacity Range American Honda Motor Corporation 888-CCHONDA www.honda.com CNG Dedicated EPAct Yes Civic GX Compact Sedan SULEV Tier 2 Bin II 1.7L, 4-cylinder 8 GGE 200 mi HEV (NiMH) EPAct No Accord Hybrid Sedan ULEV 3.0L V6 144 volt NiMH + 17.1 Gal Gasoline TBD HEV (NiMH) EPAct No Civic Hybrid Sedan CA ULEV 1.3L, 4-cylinder 144 volt NiMH + 13.2 Gal Gasoline TBD HEV (NiMH) EPAct No Insight Two-seater SULEV (CVT model) ULEV (MT model) 1.0L, 3-cylinder 144 volt NiMH + 10.6 Gal Gasoline 636 mi DaimlerChrysler 800-999-FLEET www.fleet.chrysler.com E85 FFV EPAct Yes Dodge Ram Pickup 1500 Series 1 Pickup Tier 2 Bin 10A 4.7L V8 26 Gal 416 mi E85 FFV

426

A New User-Friendly Model to Reduce Cost for Headwater Benefits Assessment  

DOE Green Energy (OSTI)

Headwater benefits at a downstream hydropower project are energy gains that are derived from the installation of upstream reservoirs. The Federal Energy Regulatory Commission is required by law to assess charges of such energy gains to downstream owners of non-federal hydropower projects. The high costs of determining headwater benefits prohibit the use of a complicated model in basins where the magnitude of the benefits is expected to be small. This paper presents a new user-friendly computer model, EFDAM (Enhanced Flow Duration Analysis Method), that not only improves the accuracy of the standard flow duration method but also reduces costs for determining headwater benefits. The EFDAM model includes a MS Windows-based interface module to provide tools for automating input data file preparation, linking and executing of a generic program, editing/viewing of input/output files, and application guidance. The EDFAM was applied to various river basins. An example was given to illustrate the main features of EFDAM application for creating input files and assessing headwater benefits at the Tulloch Hydropower Plant on the Stanislaus River Basin, California.

Bao, Y.S.; Cover, C.K.; Perlack, R.D.; Sale, M.J.; Sarma, V.

1999-07-07T23:59:59.000Z

427

Development of cost-effective surfactant flooding technology. First annual report for the period, September 30, 1992--September 29, 1993  

Science Conference Proceedings (OSTI)

This research consists of the parallel development of a new chemical flooding simulator and the application of existing UTCHEM simulation code to model surfactant flooding. The new code is based upon a completely new numerical method that combines for the first time higher order finite difference methods, flux limiters, and implicit algorithms. Early results indicate that this approach has significant advantages in some problems and will likely enable simulation of much larger and more realistic chemical floods once it is fully developed. Additional improvements have also been made to the UTCHEM code and it has been applied for the first time to the study of stochastic reservoirs with and without horizontal wells to evaluate methods to reduce the cost and risk of surfactant flooding. During the first year of this contract, significa